1
|
Do T, Vaculciakova S, Kluska K, Peris-Díaz MD, Priborsky J, Guran R, Krężel A, Adam V, Zitka O. Antioxidant-related enzymes and peptides as biomarkers of metallic nanoparticles (eco)toxicity in the aquatic environment. CHEMOSPHERE 2024; 364:142988. [PMID: 39103097 PMCID: PMC11422181 DOI: 10.1016/j.chemosphere.2024.142988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Increased awareness of the impact of human activities on the environment has emerged in recent decades. One significant global environmental and human health issue is the development of materials that could potentially have negative effects. These materials can accumulate in the environment, infiltrate organisms, and move up the food chain, causing toxic effects at various levels. Therefore, it is crucial to assess materials comprising nano-scale particles due to the rapid expansion of nanotechnology. The aquatic environment, particularly vulnerable to waste pollution, demands attention. This review provides an overview of the behavior and fate of metallic nanoparticles (NPs) in the aquatic environment. It focuses on recent studies investigating the toxicity of different metallic NPs on aquatic organisms, with a specific emphasis on thiol-biomarkers of oxidative stress such as glutathione, thiol- and related-enzymes, and metallothionein. Additionally, the selection of suitable measurement methods for monitoring thiol-biomarkers in NPs' ecotoxicity assessments is discussed. The review also describes the analytical techniques employed for determining levels of oxidative stress biomarkers.
Collapse
Affiliation(s)
- Tomas Do
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Silvia Vaculciakova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Katarzyna Kluska
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Manuel David Peris-Díaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Jan Priborsky
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Roman Guran
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
2
|
Croitoru GA, Pîrvulescu DC, Niculescu AG, Epistatu D, Rădulescu M, Grumezescu AM, Nicolae CL. Nanomaterials in Immunology: Bridging Innovative Approaches in Immune Modulation, Diagnostics, and Therapy. J Funct Biomater 2024; 15:225. [PMID: 39194663 DOI: 10.3390/jfb15080225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
The intersection of immunology and nanotechnology has provided significant advancements in biomedical research and clinical applications over the years. Immunology aims to understand the immune system's defense mechanisms against pathogens. Nanotechnology has demonstrated its potential to manipulate immune responses, as nanomaterials' properties can be modified for the desired application. Research has shown that nanomaterials can be applied in diagnostics, therapy, and vaccine development. In diagnostics, nanomaterials can be used for biosensor development, accurately detecting biomarkers even at very low concentrations. Therapeutically, nanomaterials can act as efficient carriers for delivering drugs, antigens, or genetic material directly to targeted cells or tissues. This targeted delivery improves therapeutic efficacy and reduces the adverse effects on healthy cells and tissues. In vaccine development, nanoparticles can improve vaccine durability and extend immune responses by effectively delivering adjuvants and antigens to immune cells. Despite these advancements, challenges regarding the safety, biocompatibility, and scalability of nanomaterials for clinical applications are still present. This review will cover the fundamental interactions between nanomaterials and the immune system, their potential applications in immunology, and their safety and biocompatibility concerns.
Collapse
Affiliation(s)
- George-Alexandru Croitoru
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania
| | - Diana-Cristina Pîrvulescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Dragoș Epistatu
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania
| | - Marius Rădulescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Carmen-Larisa Nicolae
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania
| |
Collapse
|
3
|
Yang X, Wang Z, Xu J, Zhang C, Gao P, Zhu L. Effects of dissolved organic matter on the environmental behavior and toxicity of metal nanomaterials: A review. CHEMOSPHERE 2024; 358:142208. [PMID: 38704042 DOI: 10.1016/j.chemosphere.2024.142208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Metal nanomaterials (MNMs) have been released into the environment during their usage in various products, and their environmental behaviors directly impact their toxicity. Numerous environmental factors potentially affect the behaviors and toxicity of MNMs with dissolved organic matter (DOM) playing the most essential role. Abundant facts showing contradictory results about the effects of DOM on MNMs, herein the occurrence of DOM on the environmental process change of MNMs such as dissolution, dispersion, aggregation, and surface transformation were summarized. We also reviewed the effects of MNMs on organisms and their mechanisms in the environment such as acute toxicity, oxidative stress, oxidative damage, growth inhibition, photosynthesis, reproductive toxicity, and malformation. The presence of DOM had the potential to reduce or enhance the toxicity of MNMs by altering the reactive oxygen species (ROS) generation, dissolution, stability, and electrostatic repulsion of MNMs. Furthermore, we summarized the factors that affected different toxicity including specific organisms, DOM concentration, DOM types, light conditions, detection time, and production methods of MNMs. However, the more detailed mechanism of interaction between DOM and MNMs needs further investigation.
Collapse
Affiliation(s)
- Xiaoqing Yang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhangjia Wang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jiake Xu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China.
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
4
|
Hashim AR, Bashir DW, Rashad E, Galal MK, Rashad MM, Deraz NM, Drweesh EA, El-Gharbawy SM. Alleviative effect of betaine against copper oxide nanoparticles-induced hepatotoxicity in adult male albino rats: histopathological, biochemical, and molecular studies. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 13:47. [DOI: 10.1186/s43088-024-00505-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/13/2024] [Indexed: 08/14/2024] Open
Abstract
Abstract
Background
Copper oxide nanoparticles (CuO-NPs) have gained interest due to their availability, efficiency, and their cost-effectiveness. Betaine is an essential methyl donor and takes part in various physiological activities inside the body; it is found to have protective and curative effects against various liver diseases. The present study aimed to evaluate the hepatotoxic effect of CuO-NPs on adult male albino rats and the ability of betaine to alleviate such hepatotoxicity.
Methods
Forty adult male albino Wister rats were grouped into 4 groups (10 rats/group): group I a negative control, group II (CuO-NPs) injected with CuO-NPs intra peritoneal by insulin needle (0.5 mg/kg/day), group III (betaine + CuO-NPs) administered betaine orally by gavage needle (250 mg/kg/day 1 h before CuO-NPs) and CuO-NPs (0.5 mg/kg/day) finally, group IV (betaine) administered betaine orally by gavage needle (250 mg/kg/day) for consecutive 28 days. Blood and liver samples were gathered and processed for biochemical, molecular, histopathological, and immunohistochemical investigations.
Results
Group II displayed a marked rise in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA) levels. Furthermore, there is an excessive upregulation of the inflammatory biomarkers interleukin1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). On the other hand, substantial reduction in glutathione (GSH) levels and significant downregulation at glutathione peroxidase (GPx) mRNA gene expression. Regarding the histopathological deviations, there were severe congestion, dilatation and hyalinization of blood vessels, steatosis, hydropic degeneration, hepatocytic necrosis, increased binucleation, degenerated bile ducts, hyperplasia of ducts epithelial lining, and inflammatory cells infiltration. Immunohistochemically, there was a pronounced immunoreactivity toward IL-1β. Luckily, the pre-administration of betaine was able to mitigate these changes. MDA was dramatically reduced, resulting in the downregulation of IL-1β and TNF-α. Additionally, there was a considerable rise in GSH levels and an upregulation of GPx. Histopathological deviations were substantially improved as diminished dilatation, hyalinization and congestion of blood vessels, hepatocytes, and bile ducts are normal to some extent. In addition, IL-1β immunohistochemical analysis revealed marked decreased intensity.
Conclusion
Betaine can effectively reduce the hepatotoxicity caused by CuO-NPs via its antioxidant properties and its ability to stimulate the cell redox system.
Collapse
|
5
|
Hashim AR, Bashir DW, Rashad E, Galal MK, Rashad MM, Khalil HMA, Deraz NM, S M EG. Neuroprotective Assessment of Betaine against Copper Oxide Nanoparticle-Induced Neurotoxicity in the Brains of Albino Rats: A Histopathological, Neurochemical, and Molecular Investigation. ACS Chem Neurosci 2024; 15:1684-1701. [PMID: 38564598 DOI: 10.1021/acschemneuro.3c00810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Copper oxide nanoparticles (CuO-NPs) are commonly used metal oxides. Betaine possesses antioxidant and neuroprotective activities. The current study aimed to investigate the neurotoxic effect of CuO-NPs on rats and the capability of betaine to mitigate neurotoxicity. Forty rats; 4 groups: group I a control, group II intraperitoneally CuO-NPs (0.5 mg/kg/day), group III orally betaine (250 mg/kg/day) and CuO-NPs, group IV orally betaine for 28 days. Rats were subjected to neurobehavioral assessments. Brain samples were processed for biochemical, molecular, histopathological, and immunohistochemical analyses. Behavioral performance of betaine demonstrated increasing locomotion and cognitive abilities. Group II exhibited significantly elevated malondialdehyde (MDA), overexpression of interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α). Significant decrease in glutathione (GSH), and downregulation of acetylcholine esterase (AChE), nuclear factor erythroid 2-like protein 2 (Nrf-2), and superoxide dismutase (SOD). Histopathological alterations; neuronal degeneration, pericellular spaces, and neuropillar vacuolation. Immunohistochemically, an intense immunoreactivity is observed against IL-1β and glial fibrillary acidic protein (GFAP). Betaine partially neuroprotected against CuO-NPs associated alterations. A significant decrease at MDA, downregulation of IL-1β, and TNF-α, a significant increase at GSH, and upregulation of AChE, Nrf-2, and SOD. Histopathological alterations partially ameliorated. Immunohistochemical intensity of IL-1β and GFAP reduced. It is concluded that betaine neuroprotected against most of CuO-NP neurotoxic effects through antioxidant and cell redox system stimulating efficacy.
Collapse
Affiliation(s)
- Asmaa R Hashim
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mona K Galal
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Maha M Rashad
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Heba M A Khalil
- Veterinary Hygiene and Management Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Nasrallah M Deraz
- Physical Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - El-Gharbawy S M
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
6
|
Zhang M, Wang W, Zhang D, Zhang Y, Yang Z, Li Y, Fang F, Xue Y, Zhang Y. Copper oxide nanoparticles impairs oocyte meiosis maturation by inducing mitochondrial dysfunction and oxidative stress. Food Chem Toxicol 2024; 185:114441. [PMID: 38218586 DOI: 10.1016/j.fct.2024.114441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Copper oxides nanoparticles (CuO NPs) are widely used for a variety of industrial and life science applications. In addition to cause neurotoxicity, hepatotoxicity, immunotoxicity, CuO NPs have also been reported to adversely affect the reproductive system in animals; However, little is known about the effects and potential mechanism of CuO NPs exposure on oocyte quality, especially oocyte maturation. In the present study, we reported that CuO NPs exposure impairs the oocyte maturation by disrupting meiotic spindle assembly and chromosome alignment, as well as kinetochore-microtubule attachment. In addition, CuO NPs exposure also affects the acetylation level of α-tubulin in mice oocyte, which hence impairs microtubule dynamics and organization. Besides, CuO NPs exposure would result in the mis-localization of Juno and Ovastacin, which might be one of the critical factors leading to the failure of oocyte maturation. Finally, CuO NPs exposure impairs the mitochondrial distribution and induced high levels of ROS, which led to the accumulation of DNA damage and occurrence of apoptosis. In summary, our results indicated that CuO NPs exposure had potential toxic effects on female fertility and led to the poor oocyte quality in female mice.
Collapse
Affiliation(s)
- Mianqun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Wei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Dandan Zhang
- Department of Reproductive Medicine, General Hospital of WanBei Coal Group, Suzhou, 234000, China
| | - Yiwen Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Zaishan Yang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Yunsheng Li
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Fugui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China.
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China.
| |
Collapse
|
7
|
Missawi O, Wouters C, Lambert J, Garigliany MM, Kestemont P, Cornet V. Realistic microplastics harness bacterial presence and promote impairments in early zebrafish embryos: Behavioral, developmental, and transcriptomic approaches. CHEMOSPHERE 2024; 350:141107. [PMID: 38171397 DOI: 10.1016/j.chemosphere.2023.141107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/05/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024]
Abstract
The plastisphere is a newly recognized ecosystem. However, its interaction with early life stages of aquatic vertebrates is a multifaceted issue that requires further research. This study investigated the involvement of bacteria in shaping realistic microplastics hazards in zebrafish Danio rerio embryos. Fish were exposed to bottle micro-fragments (FR) and textile micro-fibers (FI) of polyethylene terephthalate (5-15 μm), concomitant with Aeromonas salmonicida achromogenes challenge from 2h post-fertilization for 3 days. Egg chorion showed affinity for FR and FI, inducing earlier embryo hatching. However, this effect was masked by biofilm invasion. Fragments were more detrimental than fibers on developmental parameters, while bacterial presence compromised body length, eye, and yolk sac surface area. In a further finding, MPs alone increased locomotor activity in zebrafish larvae, without synergistic effect when combined with bacteria. Data showed that realistic MPs had no significant effects except for downregulated sod and cyp1a gene expression, whereas bacterial challenge inhibited larval potency for most of the evaluated mRNA levels (mpx (immune system), apoeb (lipid metabolism), nfkb and tfa (inflammation), cyp and sod (oxidative stress)). This study provides new insights into realistic microplastic effects under relevant conditions when combined with environmental pathogen within the first life stages of aquatic vertebrates.
Collapse
Affiliation(s)
- Omayma Missawi
- University of Namur, Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, Namur, Belgium.
| | - Charlotte Wouters
- University of Namur, Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, Namur, Belgium
| | - Jérôme Lambert
- University of Namur, Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, Namur, Belgium
| | - Mutien-Marie Garigliany
- University of Liege, Laboratory of Veterinary Pathology, Fundamental and Applied Research for Animals & Health (FARAH), Liege, Belgium
| | - Patrick Kestemont
- University of Namur, Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, Namur, Belgium
| | - Valérie Cornet
- University of Namur, Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, Namur, Belgium
| |
Collapse
|
8
|
Wang H, Xu J, Yuan Y, Wang Z, Zhang W, Li J. The Exploration of Joint Toxicity and Associated Mechanisms of Primary Microplastics and Methamphetamine in Zebrafish Larvae. TOXICS 2024; 12:64. [PMID: 38251019 PMCID: PMC10820113 DOI: 10.3390/toxics12010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
The co-existence of microplastics (MPs) and methamphetamine (METH) in aquatic ecosystems has been widely reported; however, the joint toxicity and associated mechanisms remain unclear. Here, zebrafish larvae were exposed individually or jointly to polystyrene (PS) and polyvinyl chloride (PVC) MPs (20 mg/L) and METH (1 and 5 mg/L) for 10 days. The mortality, behavioral functions, and histopathology of fish from different groups were determined. PS MPs posed a stronger lethal risk to fish than PVC MPs, while the addition of METH at 5 mg/L significantly increased mortality. Obvious deposition of MPs was observed in the larvae's intestinal tract in the exposure groups. Meanwhile, treatment with MPs induced intestinal deposits and intestinal hydrops in the fish, and this effect was enhanced with the addition of METH. Furthermore, MPs significantly suppressed the locomotor activation of zebrafish larvae, showing extended immobility duration and lower velocity. METH stimulated the outcome of PS but had no effect on the fish exposed to PVC. However, combined exposure to MPs and METH significantly increased the turn angle, which declined in individual MP exposure groups. RNA sequencing and gene quantitative analysis demonstrated that exposure to PS MPs and METH activated the MAPK signaling pathway and the C-type lectin signaling pathway of fish, while joint exposure to PVC MPs and METH stimulated steroid hormone synthesis pathways and the C-type lectin signaling pathway in zebrafish, contributing to cellular apoptosis and immune responses. This study contributes to the understanding of the joint toxicity of microplastics and pharmaceuticals to zebrafish, highlighting the significance of mitigating microplastic pollution to preserve the health of aquatic organisms and human beings.
Collapse
Affiliation(s)
- Hao Wang
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Jindong Xu
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Yang Yuan
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Zhenglu Wang
- West China School of Public Health, West China Fourth Hospital Sichuan University, Chengdu 610041, China;
| | - Wenjing Zhang
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Jiana Li
- Ningbo Academy of Ecological, Environmental Sciences, Ningbo 315000, China
| |
Collapse
|
9
|
Bhai MKP, Binesh A, Shanmugam SA, Venkatachalam K. Effects of mercury chloride on antioxidant and inflammatory cytokines in zebrafish embryos. J Biochem Mol Toxicol 2024; 38:e23589. [PMID: 37985964 DOI: 10.1002/jbt.23589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
In this study, a zebrafish embryo toxicity model was employed, utilizing 24 h postfertilization (hpf) zebrafish embryos. These embryos were treated with varying concentrations of mercuric chloride for 96 h under static conditions. We assessed multiple parameters that reflected developmental abnormalities, behavioral alterations, morphological anomalies, antioxidant enzyme activities, including those of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione S-transferase (GST), immune messenger RNA transcription levels of key factors such as tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and cyclooxygenase 2 (COX-2), as well as protein expression of TNF-α. The results revealed that embryos exposed to higher concentrations of mercury exhibited reduced hatchability and increased rates of morphological abnormalities and mortality at 48, 72, and 96 hpf. In addition, a concentration-dependent increase in developmental abnormalities, including cardiac edema, reduced body length, yolk sac edema, scoliosis, and bent tails, was observed. Larval behaviors, such as touch-induced escape responses, startle reactions, and turning actions, were found to be diminished in a concentration-dependent manner. Additionally, the activities of various antioxidative enzymes, such as SOD, CAT, and GST, exhibited an increase at higher mercury concentrations, with the exception of GPX activity, which decreased significantly in a dose-dependent manner (p < 0.05). Pro-inflammatory cytokine transcription levels, specifically TNF-α, IL-1β, IL-6, and COX-2, were significantly upregulated in a dose-dependent manner in the mercuric (II) chloride (HgCl2 ) treatment group compared with the control group. TNF-α protein expression was notably elevated in the larvae group treated with 300 and 400 nM HgCl2 .
Collapse
Affiliation(s)
- Modi K P Bhai
- Department of Fisheries Biotechnology, Institute of Fisheries Postgraduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Chennai, India
| | - Ambika Binesh
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Chennai, India
| | - S A Shanmugam
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Chennai, India
| | - Kaliyamurthi Venkatachalam
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Chennai, India
| |
Collapse
|
10
|
Balasubramanian S, Rangasamy S, Vivekanandam R, Perumal E. Acute exposure to tenorite nanoparticles induces phenotypic and behavior alterations in zebrafish larvae. CHEMOSPHERE 2023; 339:139681. [PMID: 37524270 DOI: 10.1016/j.chemosphere.2023.139681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Tenorite or copper oxide nanoparticles (CuO NPs) are extensively used in biomedical fields due to their unique physicochemical properties. Increased usage of these NPs leads to release in the environment, affecting varied ecosystems and the biota within them, including humans. The effect of these NPs can be evaluated with zebrafish, an excellent complementary model for nanotoxicity studies. Previous reports focusing on CuO NPs-induced teratogenicity in zebrafish development have not elucidated the phenotypical changes in detail. In most of the studies, embryos at 3 hpf with a protective chorion layer were exposed to CuO NPs, and their effect on the overall developmental process is studied. Hence, in this study, we focused on the effect of acute exposure to CuO NPs (96-120 hpf) and its impact on zebrafish larvae. Larvae were exposed to commercially available CuO NPs (<50 nm) at various concentrations to obtain the LC50 value (52.556 ppm). Based on the LC50, three groups (10, 20, and 40 ppm) were taken for further analysis. Upon treatment, bradycardia, and impaired swim bladder (reduced/absence of inflation) were found in the treated groups along with alterations in the erythrocyte levels. Also, the angles and distance between the cartilages varied in the treated larvae affecting their craniofacial structures. There was a significant behavior change, as evidenced by the reduced touch escape response and locomotion (speed, distance, time mobile, time frozen, and absolute turn angle). Further, the acetylcholinesterase activity was reduced. Overall, our results suggest that acute exposure to CuO NPs elicits morphological defects in zebrafish larvae.
Collapse
Affiliation(s)
| | - Sakthi Rangasamy
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Reethu Vivekanandam
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
11
|
Gao F, Yuan Z, Zhang L, Peng Y, Qian K, Zheng M. Toxic Effects of Copper Fungicides on the Development and Behavior of Zebrafish in Early-Life Stages. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2629. [PMID: 37836270 PMCID: PMC10574507 DOI: 10.3390/nano13192629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Copper-based fungicides have been used to control various plant diseases for more than one hundred years and play very important roles in agriculture. Accumulation of copper in freshwater and environment pose severe threats to human health and the environment. The current study evaluated the developmental and behavioral toxicity of PEG@Cu NCs (copper nanoclusters), Kocide® 3000 (copper hydroxide), and Cu(CH3COO)2 (copper acetate) to zebrafish in early-life stages. The developmental toxicity was evaluated according to the parameters of mortality, hatching rate, autonomous movement and heartbeat of embryos, and body length of larvae. The 9 dpf (days postfertilization)-LC50 (50% lethal concentration) of embryonic mortality was 0.077, 0.174 or 0.088 mg/L, and the 9 dpf-EC50 (effective concentration of 50% embryos hatching) of hatching rate was 0.079 mg/L, 0.21 mg/L and 0.092 mg/L when the embryos were exposed to PEG@Cu NCs, Kocide® 3000 or Cu(CH3COO)2, respectively. Kocide® 3000 and Cu(CH3COO)2 obviously decreased the spontaneous movements, while PEG@Cu NCs had no adverse effects on that of embryos. The reduced heartbeat can return to normal after exposure to PEG@Cu NCs for 96 h, while it cannot recover from Kocide® 3000. In addition, Kocide® 3000 (≥0.2 mg/L), PEG@Cu NCs and Cu(CH3COO)2 with 0.05 mg/L or higher concentration exhibited obvious behavioral toxicity to zebrafish larvae according to the parameters of movement distance, average velocity, absolute sinuosity, absolute turn angle and absolute angular velocity.
Collapse
Affiliation(s)
- Fei Gao
- College of Science, China Agricultural University, Beijing 100193, China; (F.G.); (L.Z.)
| | - Zitong Yuan
- College of Plant Protection, Southwest University, Chongqing 400715, China; (Z.Y.); (Y.P.); (K.Q.)
| | - Lingling Zhang
- College of Science, China Agricultural University, Beijing 100193, China; (F.G.); (L.Z.)
| | - Yiyuan Peng
- College of Plant Protection, Southwest University, Chongqing 400715, China; (Z.Y.); (Y.P.); (K.Q.)
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing 400715, China; (Z.Y.); (Y.P.); (K.Q.)
| | - Mingqi Zheng
- College of Science, China Agricultural University, Beijing 100193, China; (F.G.); (L.Z.)
| |
Collapse
|
12
|
Barreto A, Santos J, Calisto V, Rocha LS, Amorim MJB, Maria VL. Cocktail effects of emerging contaminants on zebrafish: Nanoplastics and the pharmaceutical diphenhydramine. NANOIMPACT 2023; 30:100456. [PMID: 36841353 DOI: 10.1016/j.impact.2023.100456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/03/2023]
Abstract
Nanoplastics (NPLs) became ubiquitous in the environment, from the air we breathe to the food we eat. One of the main concerns about the NPLs risks is their role as carrier of other environmental contaminants, potentially increasing their uptake, bioaccumulation and toxicity to the organisms. Therefore, the main aim of this study was to understand how the presence of polystyrene NPLs (∅ 44 nm) will influence the toxicity (synergism, additivity or antagonism) of the antihistamine diphenhydramine (DPH), towards zebrafish (Danio rerio) embryos, when in dual mixtures. After 96 hours (h) exposure, at the organismal level, NPLs (0.015 or 1.5 mg/L) + DPH (10 mg/L) induced embryo mortality (90%) and malformations (100%) and decreased hatching (80%) and heartbeat rates (60%). After 120 h exposure, NPLs (0.015 or 1.5 mg/L) + DPH (0.01 mg/L) decreased larvae swimming distance (30-40%). At the biochemical level, increased glutathione S-transferases (55-122%) and cholinesterase (182-343%) activities were found after 96 h exposure to NPLs (0.015 or 1.5 mg/L) + DPH (0.01 mg/L). However, catalase (CAT) activity remained similar to the control group in the mixtures, inhibiting the effects detected after the exposure to 1.5 mg/L NPLs alone (increased 230% of CAT activity). In general, the effects of dual combination - NPLs + DPH (even at concentrations as low as 10 μg/L of DPH) - were more harmful than the correspondent individual exposures, showing the synergistic interactions of the dual mixture and answering to the main question of this work. The obtained results, namely the altered toxicity patterns of NPLs + DPH compared with the individual exposures, show the importance of an environmental risk assessment considering NPLs as a co-contaminant due to the potential NPLs role as vector for other contaminants.
Collapse
Affiliation(s)
- Angela Barreto
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Santos
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Department of Chemistry & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luciana S Rocha
- Department of Chemistry & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera L Maria
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
13
|
Bashirova N, Poppitz D, Klüver N, Scholz S, Matysik J, Alia A. A mechanistic understanding of the effects of polyethylene terephthalate nanoplastics in the zebrafish (Danio rerio) embryo. Sci Rep 2023; 13:1891. [PMID: 36732581 PMCID: PMC9894871 DOI: 10.1038/s41598-023-28712-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Plastic pollution, especially by nanoplastics (NPs), has become an emerging topic due to the widespread existence and accumulation in the environment. The research on bioaccumulation and toxicity mechanism of NPs from polyethylene terephthalate (PET), which is widely used for packaging material, have been poorly investigated. Herein, we report the first use of high-resolution magic-angle spinning (HRMAS) NMR based metabolomics in combination with toxicity assay and behavioural end points to get systems-level understanding of toxicity mechanism of PET NPs in intact zebrafish embryos. PET NPs exhibited significant alterations on hatching and survival rate. Accumulation of PET NPs in larvae were observed in liver, intestine, and kidney, which coincide with localization of reactive oxygen species in these areas. HRMAS NMR data reveal that PET NPs cause: (1) significant alteration of metabolites related to targeting of the liver and pathways associated with detoxification and oxidative stress; (2) impairment of mitochondrial membrane integrity as reflected by elevated levels of polar head groups of phospholipids; (3) cellular bioenergetics as evidenced by changes in numerous metabolites associated with interrelated pathways of energy metabolism. Taken together, this work provides for the first time a comprehensive system level understanding of toxicity mechanism of PET NPs exposure in intact larvae.
Collapse
Affiliation(s)
- Narmin Bashirova
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany.,Institute for Analytical Chemistry, Leipzig University, Leipzig, Germany
| | - David Poppitz
- Institute of Chemical Technology, Leipzig University, Leipzig, Germany
| | - Nils Klüver
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Jörg Matysik
- Institute for Analytical Chemistry, Leipzig University, Leipzig, Germany
| | - A Alia
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany. .,Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
14
|
Wang Y, Gao Z, Liu C, Mao L, Liu X, Ren J, Lu Z, Yao J, Liu X. Mixture toxicity of pyraclostrobine and metiram to the zebrafish (Danio rerio) and its potential mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44400-44414. [PMID: 36692725 DOI: 10.1007/s11356-023-25518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
The interplay between pesticides plays a critical role in ecotoxicology since these chemicals rarely emerge as single substances but rather in mixtures with other chemicals. In the present work, we purposed to clarify the combined toxic impacts of pyraclostrobine (PYR) and metiram (MET) on the zebrafish by using numerous indicators. Results exhibited that the 4-day LC50 value of MET to fish embryos was 0.0025 mg a.i. L-1, which was lower compared with PYR (0.019 mg a.i. L-1). Combinations of PYR and MET presented a synergetic impact on fish embryos. Contents of POD, CYP450, and VTG were drastically increased in the plurality of the single and joint treatments relative to the baseline value. Three genes, including vtg1, crh, and il-8, related to the endocrine and immune systems, were also surprisingly up-regulated when fish were challenged by the individual and mixture pesticides compared with the baseline value. These results afforded valuable information on the latent toxicity mechanisms of co-exposure for PYR and MET in the early growth stage of fish. Moreover, our data also revealed that frequent application of these two pesticides might exert a potentially ecotoxicological hazard on aquatic ecosystems. Collectively, the present study provided valuable guidance for the risk evaluation of chemical combinations.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, HangzhouZhejiang, 310021, China
| | - Zhongwen Gao
- College of Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuande Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, HangzhouZhejiang, 310021, China
| | - Jindong Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, HangzhouZhejiang, 310021, China
| | - Zeqi Lu
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Jie Yao
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Xuan Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China.
| |
Collapse
|
15
|
Bragato C, Mostoni S, D’Abramo C, Gualtieri M, Pomilla FR, Scotti R, Mantecca P. On the In Vitro and In Vivo Hazard Assessment of a Novel Nanomaterial to Reduce the Use of Zinc Oxide in the Rubber Vulcanization Process. TOXICS 2022; 10:781. [PMID: 36548614 PMCID: PMC9787408 DOI: 10.3390/toxics10120781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Zinc oxide (ZnO) is the most efficient curing activator employed in the industrial rubber production. However, ZnO and Zn(II) ions are largely recognized as an environmental hazard being toxic to aquatic organisms, especially considering Zn(II) release during tire lifecycle. In this context, aiming at reducing the amount of microcrystalline ZnO, a novel activator was recently synthetized, constituted by ZnO nanoparticles (NPs) anchored to silica NPs (ZnO-NP@SiO2-NP). The objective of this work is to define the possible hazards deriving from the use of ZnO-NP@SiO2-NP compared to ZnO and SiO2 NPs traditionally used in the tire industry. The safety of the novel activators was assessed by in vitro testing, using human lung epithelial (A549) and immune (THP-1) cells, and by the in vivo model zebrafish (Danio rerio). The novel manufactured nanomaterial was characterized morphologically and structurally, and its effects evaluated in vitro by the measurement of the cell viability and the release of inflammatory mediators, while in vivo by the Fish Embryo Acute Toxicity (FET) test. Resulting data demonstrated that ZnO-NP@SiO2-NP, despite presenting some subtoxic events, exhibits the lack of acute effects both in vitro and in vivo, supporting the safe-by-design development of this novel material for the rubber industry.
Collapse
Affiliation(s)
- Cinzia Bragato
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Silvia Mostoni
- Department of Materials Science (INSTM), University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Christian D’Abramo
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Maurizio Gualtieri
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Francesca Rita Pomilla
- Department of Materials Science (INSTM), University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Roberto Scotti
- Department of Materials Science (INSTM), University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Paride Mantecca
- POLARIS Research Center, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| |
Collapse
|
16
|
Farshori NN, Siddiqui MA, Al-Oqail MM, Al-Sheddi ES, Al-Massarani SM, Ahamed M, Ahmad J, Al-Khedhairy AA. Copper Oxide Nanoparticles Exhibit Cell Death Through Oxidative Stress Responses in Human Airway Epithelial Cells: a Mechanistic Study. Biol Trace Elem Res 2022; 200:5042-5051. [PMID: 35000107 DOI: 10.1007/s12011-022-03107-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 11/02/2022]
Abstract
Copper oxide nanoparticles (CuONPs) are purposefully used to inhibit the growth of bacteria, algae, and fungi. Several studies on the beneficial and harmful effects of CuONPs have been conducted in vivo and in vitro, but there are a few studies that explain the toxicity of CuONPs in human airway epithelial cells (HEp-2). As a result, the purpose of this study is to look into the dose-dependent toxicity of CuONPs in HEp-2 cells. After 24 h of exposure to 1-40 µg/ml CuONPs, the MTT and neutral red assays were used to test for cytotoxicity. To determine the mechanism(s) of cytotoxicity in HEp-2 cells, additional oxidative stress assays (LPO and GSH), the amount of ROS produced, the loss of MMP, caspase enzyme activities, and apoptosis-related genes were performed using qRT-PCR. CuONPs exhibited dose-dependent cytotoxicity in HEp-2 cells, with an IC50 value of ~ 10 μg/ml. The morphology of HEp-2 cells was also altered in a dose-dependent manner. The involvement of oxidative stress in CuONP-induced cytotoxicity was demonstrated by increased LPO levels and ROS generation, as well as decreased levels of GSH and MMP. Furthermore, activated caspase enzymes and altered apoptotic genes support CuONPs' ability to induce apoptosis in HEp-2 cells. Overall, this study demonstrated that CuONPs can cause apoptosis in HEp-2 cells via oxidative stress; therefore, CuONPs may pose a risk to human health and should be handled and used with caution.
Collapse
Affiliation(s)
- Nida N Farshori
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Maqsood A Siddiqui
- DNA Research Chair, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Mai M Al-Oqail
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Ebtesam S Al-Sheddi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Shaza M Al-Massarani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Javed Ahmad
- DNA Research Chair, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulaziz A Al-Khedhairy
- DNA Research Chair, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
17
|
Feng W, Su S, Song C, Yu F, Zhou J, Li J, Jia R, Xu P, Tang Y. Effects of Copper Exposure on Oxidative Stress, Apoptosis, Endoplasmic Reticulum Stress, Autophagy and Immune Response in Different Tissues of Chinese Mitten Crab ( Eriocheir sinensis). Antioxidants (Basel) 2022; 11:antiox11102029. [PMID: 36290752 PMCID: PMC9598082 DOI: 10.3390/antiox11102029] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
High concentrations of copper (Cu2+) pose a great threat to aquatic animals. However, the mechanisms underlying the response of crustaceans to Cu2+ exposure have not been well studied. Therefore, we investigated the alterations of physiological and molecular parameters in Chinese mitten crab (Eriocheir sinensis) after Cu2+ exposure. The crabs were exposed to 0 (control), 0.04, 0.18, and 0.70 mg/L of Cu2+ for 5 days, and the hemolymph, hepatopancreas, gills, and muscle were sampled. The results showed that Cu2+ exposure decreased the antioxidative capacity and promoted lipid peroxidation in different tissues. Apoptosis was induced by Cu2+ exposure, and this activation was associated with the mitochondrial and ERK pathways in the hepatopancreas. ER stress-related genes were upregulated in the hepatopancreas but downregulated in the gills at higher doses of Cu2+. Autophagy was considerably influenced by Cu2+ exposure, as evidenced by the upregulation of autophagy-related genes in the hepatopancreas and gills. Cu2+ exposure also caused an immune response in different tissues, especially the hepatopancreas, where the TLR2-MyD88-NF-κB pathway was initiated to mediate the inflammatory response. Overall, our results suggest that Cu2+ exposure induces oxidative stress, ER stress, apoptosis, autophagy, and immune response in E. sinensis, and the toxicity may be implicated following the activation of the ERK, AMPK, and TLR2-MyD88-NF-κB pathways.
Collapse
Affiliation(s)
- Wenrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shengyan Su
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Changyou Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Fan Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jun Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Jianlin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongkai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Correspondence: ; Tel.: +86-051085554198
| |
Collapse
|
18
|
Hu G, Wang H, Shi H, Wan Y, Zhu J, Li X, Wang Q, Wang Y. Mixture toxicity of cadmium and acetamiprid to the early life stages of zebrafish (Danio rerio). Chem Biol Interact 2022; 366:110150. [PMID: 36084721 DOI: 10.1016/j.cbi.2022.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
Aquatic organisms are often exposed to contaminants that occur in the natural environment. Nevertheless, the toxic effects of chemical combinations on aquatic animals and their underlying toxic mechanisms for dealing with such exposures are still not fully understood. In this study, we investigated the combined effects of cadmium (Cd) and acetamiprid (ACE) on zebrafish (Danio rerio) using various endpoints. Cd exhibited a 96-h LC50 value of 4.77 mg a.i. L-1 against zebrafish embryos, which was lower than that of ACE (152.6 mg a.i. L-1). In contrast, the 96-h LC50 value of the mixture of Cd and ACE was 157.4 mg a.i. L-1. The mixture of Cd and ACE had a synergetic effect on the organisms. The activities of T-SOD, POD, and CarE were significantly changed in most exposures compared with the control group. In addition, five genes (TRα, crh, Tnf, IL, and P53) involved in oxidative stress, cellular apoptosis, the immune system, and the endocrine system exhibited more remarkable changes when exposed to chemical mixtures relative to their individual counterparts, demonstrating variations in the cellular and mRNA expression levels induced by the mixture exposure of ACE and Cd during the embryonic development of zebrafish. Therefore, these results indicated that the combined pollution of ACE and Cd could be a potentially hazardous factor, and further investigation is necessary for the safety evaluation and application of ACE. Moreover, further investigation on the combined toxicities of various chemicals must be performed to determine the chemical mixtures with synergistic responses.
Collapse
Affiliation(s)
- Guixian Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Hao Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, Jiangsu, China
| | - Yujie Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jiahong Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xue Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
19
|
Turna Demir F, Demir E. Exposure to boron trioxide nanoparticles and ions cause oxidative stress, DNA damage, and phenotypic alterations in Drosophila melanogaster as an in vivo model. J Appl Toxicol 2022; 42:1854-1867. [PMID: 35837816 DOI: 10.1002/jat.4363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 11/09/2022]
Abstract
Boron trioxide nanoparticles (B2 O3 NPs) have recently been widely used in a range of applications including electronic device technologies, acousto-optic apparatus fields and as nanopowder for the production of special glasses. We propose Drosophila melanogaster as a useful in vivo model system to study the genotoxic risks associated with NP exposure. In this study we have conducted a genotoxic evaluation of B2 O3 NPs (size average 55.52 ± 1.41 nm) and its ionic form in D. melanogaster. B2 O3 NPs were supplied to third instar larvae at concentrations ranging from 0.1-10 mM. Toxicity, intracellular oxidative stress (reactive oxygen species, ROS), phenotypic alterations, genotoxic effect (via the wing somatic mutation and recombination test (SMART), and DNA damage (via Comet assay) were the end-points evaluated. B2 O3 NPs did not cause any mutagenic/recombinogenic effects in all tested non-toxic concentrations in Drosophila SMART. Negative data were also obtained with the ionic form. Exposure to B2 O3 NPs and its ionic form (at two highest concentrations, 2.5 and 5 mM) was found to induce DNA damage in Comet assay. Additionally, ROS induction in hemocytes and phenotypic alterations were determined in the mouths and legs of Drosophila. This study is the first study reporting genotoxicity data in the somatic cells of Drosophila larvae, emphasizing the importance of D. melanogaster as a model organism in investigating the different biological effects in a concentration dependent manner caused by B2 O3 NPs and its ionic form. The obtained in vivo results contribute to improvement the genotoxicity database on the B2 O3 NPs.
Collapse
Affiliation(s)
- Fatma Turna Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Antalya, Turkey
| | - Eşref Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
20
|
Histopathological and Biochemical Comparative Study of Copper Oxide Nanoparticles and Copper Sulphate Toxicity in Male Albino Mice Reproductive System. Int J Biomater 2022; 2022:4877637. [PMID: 35615428 PMCID: PMC9126719 DOI: 10.1155/2022/4877637] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/21/2022] [Indexed: 02/08/2023] Open
Abstract
Copper (Cu) is an essential trace element for the efficient functioning of living organisms. Cu can enter the body in different ways, and when it surpasses the range of biological tolerance, it can have negative consequences. The use of different nanoparticles, especially metal oxide nanoparticles, is increasingly being expanded in the fields of industry and biomedical materials. However, the impact of these nanoparticles on human health is still not completely elucidated. This comparative study was conducted to evaluate the impacts of copper oxide nanoparticles (CuO NPs) and copper sulphate (CuSO4 0.5 (H2O)) on infertility and reproductive function in male albino mice BALB/c. Body weight, the weight of male reproductive organs, malondialdehyde (MDA) level, caspase-3 level, and the presence of Ki67 and CD68, as detected using the amino-histochemistry technique, were investigated. Animals were treated with 25 and 35 mg/kg of CuO NPs and CuSO4 0.5 (H2O) by oral gavage for 14 days. The control group was given distilled water by oral gavage. Body weight significantly decreased at the end of experiments in both treated groups in a concentration- and time-dependent manner compared with the control group. Weights of testes and epididymis (head and tail), as well as the weight of the seminal vesicle, showed a significant decrease compared with the control. However, the average weights of the seminal vesicle and prostate significantly increased. Caspase-3 and MDA levels increased in the CuO NP and CuSO4 0.5 (H2O) groups compared with the control group, and there was a significant difference between the two concentrations used. Immunohistochemical results detected a significant decrease in Ki67 protein in the treatment groups compared with the control. However, increase in CD68 protein was found in groups treated with CuO NPs and CuSO4 0.5 (H2O) compared with the control group. Overall, this in vivo comparative study of CuO NPs and CuSO4 0.5 (H2O) showed that oral intake of copper NPs at 25 and 23 mg/kg was safer to the mice reproductive system than CuSO4 0.5 (H2O) at the same dose. CuSO4 0.5 (H2O) significantly influenced the histopathological and toxicological alteration responses.
Collapse
|
21
|
Shi L, Qian Y, Shen Q, He Y, Jia Y, Wang F. The developmental toxicity and transcriptome analyses of zebrafish (Danio rerio) embryos exposed to carbon nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113417. [PMID: 35304337 DOI: 10.1016/j.ecoenv.2022.113417] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Long-term and short-term exposure to carbon nanoparticles (CNPs) can affect fetal development and subsequent adverse outcomes including preterm delivery, intrauterine growth restriction, low birth weight, increased health risk linked to cardiovascular, respiratory and nervous systems in adulthood. The adverse developmental outcomes of CNPs were well known, but the underlying mechanisms remain unresolved. In this study, zebrafish embryos were treated with CNPs of 50,100,200 μg/mL and the toxic effects were observed. Using the RNA-seq analysis approach, we examined the effects of CNPs (200 μg/mL) on gene expression in zebrafish embryos exposed from 4 to 96 h-post-fertilization (hpf). We observed that CNPs-treated embryos exhibited increased malformations and decreased hatching. A total of 236 differentially expressed genes were detected by transcriptome analyses, which were associated with phototransduction, amino acid metabolism, steroid and steroid hormone biosynthesis. Transcriptome results were verified by real-time fluorescence quantitative PCR (RT-qPCR). Our results indicated that CNPs exposure was most likely to lead to differential gene changes in steroid and hormone biosynthesis pathways, thus inducing developmental toxicity such as delayed incubation of zebrafish embryos, increased malformation rate and multiple malformation phenotypes.
Collapse
Affiliation(s)
- Leilei Shi
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia 014040, PR China
| | - Yaru Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, PR China
| | - Qian Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, PR China
| | - Yanan He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, PR China
| | - Yuqiao Jia
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia 014040, PR China.
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, PR China.
| |
Collapse
|
22
|
Evaluation of Ammonia Nitrogen Exposure in Immune Defenses Present on Spleen and Head-Kidney of Wuchang Bream ( Megalobrama amblycephala). Int J Mol Sci 2022; 23:ijms23063129. [PMID: 35328551 PMCID: PMC8953400 DOI: 10.3390/ijms23063129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Ammonia is one of the most important environmental factors in aquatic ecosystems. However, there are limited studies on the effects of chronic or long-term ammonia stress and its potential molecular mechanism in fish. This study aimed to investigate the immune response and molecular mechanisms in the spleen and head-kidney of fish following chronic ammonia exposure. Megalobrama amblycephala (9.98 ± 0.48 g) were exposed to different concentrations of total ammonia nitrogen (0-30 mg/L) for 30 days. Ammonia exposure caused significant increases in cortisol levels and decreases in lysozyme and complement 3/4 concentrations in the serum, indicating inhibitory effects of ammonia stress on innate immune responses. Ammonia exposure also induced concentration-dependent increases in ammonia concentrations in tissue, pathological damage and indexes of spleen and head-kidney. Additionally, the contents of immunoglobulin M (IgM), interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) as well as mRNA levels of toll-like receptors (TLRs)/Myeloid differentiation factor 88 (MyD88)-independent signaling molecules in the spleen and head-kidney were significantly downregulated after ammonia exposure. Our findings suggested that chronic ammonia exposure caused the suppression of innate and adaptive immune responses through downregulating TLR/MyD88-independent signaling. Adverse influences of chronic ammonia stress were more severe in the spleen than in the head-kidney.
Collapse
|
23
|
Wang Y, Chen C, Yang G, Wang X, Wang Q, Weng H, Zhang Z, Qian Y. Combined lethal toxicity, biochemical responses, and gene expression variations induced by tebuconazole, bifenthrin and their mixture in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113116. [PMID: 34979316 DOI: 10.1016/j.ecoenv.2021.113116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Pesticides commonly occur as mixtures in an aqueous environment, causing deleterious effects on human health and the environment. However, the mechanism underlying the combined effects on aqueous organisms remains largely unknown, especially at low concentrations. In the current study, we inspected the interactive toxicity of tebuconazole (TEB), a triazole fungicide, and bifenthrin (BIF), a pyrethroid insecticide, to zebrafish (Danio rerio) using various toxicological assays. Our data revealed that the 96 h-LC50 (lethal concentration 50) values of BIF to fish at different life periods (embryonic, larval, juvenile, and adult periods) ranged from 0.013 (0.011-0.016) to 0.41 (0.35-0.48) mg a.i. L-1, which were lower than that of TEB ranging from 1.1 (0.88-1.3) to 4.8 (4.1-5.7) mg a.i. L-1. Combination of TEB and BIF induced synergetic acute toxicity to embryonic fish. Activities of T-SOD, POD, and GST were distinctly altered in most individual and joint administrations. Expressions of 16 genes associated with oxidative stress, cellular apoptosis, immune system, and endocrine system at the mRNA level were evaluated, and the information revealed that embryonic zebrafish were impacted by both individual compounds and their combinations. Six genes (cas9, P53, gr, TRα, IL-8, and cxcl-clc) exhibited greater changes when exposed to pesticide mixtures. Therefore, the joint effects induced by the pesticides at low concentrations should be considered in the risk assessment of mixtures and regulated as priorities for mixture risk management in the aqueous ecosystem. More research is needed to identify the threshold concentrations of the realistic pesticide mixtures above which synergistic interactions occur.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Chen Chen
- School of Public Health, Shandong University, Jinan 250012, Shandong, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Zhiheng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yongzhong Qian
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
24
|
Santos J, Barreto Â, Almeida C, Azevedo C, Domingues I, Amorim MJB, Maria VL. Toxicity of boron and vanadium nanoparticles on Danio rerio embryos - Phenotypical, biochemical, and behavioral alterations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105930. [PMID: 34364155 DOI: 10.1016/j.aquatox.2021.105930] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Engineered nanoparticles (NPs) are emerging contaminants of concern and it is important to understand their environmental behavior and ecological risks to exposed organisms. Despite their ubiquitous presence in the environment, there is little information about the hazards of certain NPs, such as boron (BNPs) and vanadium (VNPs). The aim of the present research was to investigate the effects of commercial BNPs and VNPs (80 to 100 nm) to zebrafish embryos, at different levels of biological organization. A range of nominal concentrations for both NPs (0, 0.01, 0.1, 1, and 10 mg/L) was tested. Due to the presence of triton X-100 in the NPs' stock dispersions, an additional control group was included (0.001% triton X-100). Survival, hatching, and malformations of embryos were assessed for 96 hours (h) exposure. Locomotor behavior was evaluated at 120 h. Furthermore, embryos were exposed to 0, 1, and 10 mg/L of NPs to evaluate a set of biomarker responses after 96 h: cholinesterase (ChE) and glutathione S-transferase (GST) activities, total glutathione (TG) and energy budgets levels. VNPs induced malformations (10 mg/L), hyperactivity (10 mg/L), erratic swimming (0.01 mg/L), altered swimming pattern (>0.01 mg/L), delayed hatching (10 mg/L) and altered biochemical responses involved in antioxidant defense (GST and TG at >1 mg/L), neurotransmission (ChE at 10 mg/L) and energy metabolism (lipids at >1 mg/L and carbohydrates at 10 mg/L). BNPs caused malformations (10 mg/L), affected swimming pattern (>0.01 mg/L), induced erratic swimming (10 mg/L) and decreased TG content and GST activity (>1 mg/L). At the same concentrations, VNPs affected a greater number of endpoints than BNPs, demonstrating a greater toxicity to zebrafish embryos. The present study shows that BNPs and VNPs may affect aquatic organisms, albeit at relatively great non-environmentally relevant concentrations, reinforcing the importance of the risk assessment of different NPs.
Collapse
Affiliation(s)
- Joana Santos
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ângela Barreto
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Célia Almeida
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Cátia Azevedo
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Inês Domingues
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Vera L Maria
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
25
|
Mohamed Mowafy S, Awad Hegazy A, A Mandour D, Salah Abd El-Fatah S. Impact of copper oxide nanoparticles on the cerebral cortex of adult male albino rats and the potential protective role of crocin. Ultrastruct Pathol 2021; 45:307-318. [PMID: 34459708 DOI: 10.1080/01913123.2021.1970660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of copper oxide nanoparticles (CUONPs) on a large-scale application is a reason for many health problems and morbidities involving most body tissues, particularly those of the nervous system. Crocin is the chemical ingredient primarily responsible for the color of saffron. It has different pharmacological effects, such as antioxidant, anticancer, and memory-improving activities. This study was conducted to elaborate the effects of CUONP exposureon the cerebellar cortical tissues of rats and explore the potential protecting role of crocin through biochemical, light microscopic, and ultrastructural examinations. Twenty four adult male albino rats were randomly divided into four equal groups: Group I (negative control); Group II (crocin-treated group; 30mg/kg body weight (BW) intraperitoneal (IP) crocin daily); Group III (CUONP-treatedgroup; 0.5-mg/kg BW IP CUONP daily); and Group IV (CUONP/crocin-treated group). After 14 days of the experiment, venous blood samples were collected to determine red blood cell (RBC), white blood cell (WBC), and hemoglobin (Hb) levels. Besides, serum malondialdehyde (MDA), glutathione peroxidase (GPx), and total antioxidant capacity (TAC) were measured. Cerebellar tissue samples were examined under light and electron microscopy along with a histomorphological analysis. CUONPs induced oxidative/antioxidative imbalance as evidenced by a significant increase in serum MDA levels and decreased GPx and TAC activities. CUONPs caused a significant decrease in RBC and Hb levels and an increase in WBC count. Histopathological alterations in the cerebellar cortex were observed. The administration of crocin showed some protection against the toxic effects of CUONPs. Crocin is suggested to have a mitigating role on oxidative stress and structure alterations in the cerebellar tissues induced by CUONPs.
Collapse
Affiliation(s)
- Sarah Mohamed Mowafy
- Department of Anatomy and Embryology, Faculty of Medicine, PortSaid University, Egypt
| | - Abdelmonem Awad Hegazy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia A Mandour
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samaa Salah Abd El-Fatah
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
26
|
Solano R, Patiño-Ruiz D, Tejeda-Benitez L, Herrera A. Metal- and metal/oxide-based engineered nanoparticles and nanostructures: a review on the applications, nanotoxicological effects, and risk control strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16962-16981. [PMID: 33638785 DOI: 10.1007/s11356-021-12996-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The production and demand of nanoparticles in the manufacturing sector and personal care products, release a large number of engineered nanoparticles (ENPs) into the atmosphere, aquatic ecosystems, and terrestrial environments. The intentional or involuntary incorporation of ENPs into the environment is carried out through different processes. The ENPs are combined with other compounds and release into the atmosphere, settling on the ground due to the water cycle or other atmospheric phenomena. In the case of aquatic ecosystems, the ENPs undergo hetero-aggregation and sedimentation, reaching different living organisms and flora, as well as groundwater. Accordingly, the high mobility of ENPs in diverse ecosystems is strongly related to physical, chemical, and biological processes. Recent studies have been focused on the toxicological effects of a wide variety of ENPs using different validated biological models. This literature review emphasizes the study of toxicological effects related to using the most common ENPs, specifically metal and metal/oxides-based nanoparticles, addressing different synthesis methodologies, applications, and toxicological evaluations. The results suggest negative impacts on biological models, such as oxidative stress, metabolic and locomotive toxicity, DNA replication dysfunction, and bioaccumulation. Finally, it was consulted the protocols for the control of risks, following the assessment and management process, as well as the classification system for technological alternatives and risk management measures of ENPs, which are useful for the transfer of technology and nanoparticles commercialization.
Collapse
Affiliation(s)
- Ricardo Solano
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - David Patiño-Ruiz
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - Lesly Tejeda-Benitez
- Chemical Engineering Program, Process Design and Biomass Utilization Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - Adriana Herrera
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia.
- Chemical Engineering Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia.
| |
Collapse
|
27
|
Abdel-Latif HMR, Dawood MAO, Mahmoud SF, Shukry M, Noreldin AE, Ghetas HA, Khallaf MA. Copper Oxide Nanoparticles Alter Serum Biochemical Indices, Induce Histopathological Alterations, and Modulate Transcription of Cytokines, HSP70, and Oxidative Stress Genes in Oreochromis niloticus. Animals (Basel) 2021; 11:652. [PMID: 33804566 PMCID: PMC8001779 DOI: 10.3390/ani11030652] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
In the present study, fish were exposed to sub-lethal doses of CuONPs (68.92 ± 3.49 nm) (10 mg/L, 20 mg/L, and 50 mg/L) for a long exposure period (25 days). Compared to the control group (0.0 mg/L CuONPs), a significant dose-dependent elevation in blood urea and creatinine values, serum alanine transaminase, aspartate transaminase, and alkaline phosphatase enzyme activities were evident in CuONPs-exposed groups (p < 0.05). Fish exposure to 50 mg/L CuONPs significantly upregulated the transcription of pro-inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta, interleukin 12, and interleukin 8), heat shock protein 70, apoptosis-related gene (caspase 3), and oxidative stress-related (superoxide dismutase, catalase, and glutathione peroxidase) genes in liver and gills of the exposed fish in comparison with those in the control group (p < 0.05). Moreover, varying histopathological injuries were noticed in the hepatopancreatic tissues, posterior kidneys, and gills of fish groups correlated to the tested exposure dose of CuONPs. In summary, our results provide new insights and helpful information for better understanding the mechanisms of CuONPs toxicity in Nile tilapia at hematological, molecular levels, and tissue levels.
Collapse
Affiliation(s)
- Hany M. R. Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21544, Egypt
| | - Mahmoud A. O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Samy F. Mahmoud
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Ahmed E. Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Hanan A. Ghetas
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt; (H.A.G.); (M.A.K.)
| | - Mohamed A. Khallaf
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt; (H.A.G.); (M.A.K.)
| |
Collapse
|
28
|
Aksakal FI, Sisman T. Developmental toxicity induced by Cu(OH) 2 nanopesticide in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY 2020; 35:1289-1298. [PMID: 32649028 DOI: 10.1002/tox.22993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
The current study evaluates the adverse effects of Cu(OH)2 nanopesticide (CNPE) on the early life stages of zebrafish (Danio rerio). The developmental toxicity was determined using different parameters such as mortality (including LC50 ), hatching, heart rates, malformations, and alteration of the gene expressions. Zebrafish embryos (4 hpf-hours postfertilization) were exposed to 1.0, 2.0, 4.0, 8.0, and 16.0 mg/l CNPE doses until 96 hpf. The 96 hours LC50 was recorded at 6.258 mg/l. Seventy-two hpf total malformation index values for 2.0, 4.0, and 8.0 mg/l CNPE doses were 4.3, 7.2 and 7.9, respectively. 1.0 mg/l CNPE is not toxic for the zebrafish embryos/larvae. 2.0 to 8.0 CNPE doses caused some abnormalities in embryos/larvae morphology, including lack of body parts, tail deformities, chorda deformity, bubbled head, scoliosis, lordosis, weak or non-pigmentation, decreased heart rate and larva length. 16.0 mg/l CNPE caused mortality in 72 hpf. The expression levels of seven immune system-related genes (il-1β, il-8, cebp, tlr4, hsp70, NF-kB, and mtf-1) were examined. The transcription level of il-1β, il-8, tlr4, hsp70, and NF-kB genes significantly increased in the CNPE exposure groups. While the expression of the mtf-1 gene considerably decreased, the cebp gene expression level did not change in the 4.0 and 8.0 mg/l CNPE doses. In conclusion, CNPE could induce developmental toxicity with malformations in embryos/larvae and alter the gene expression.
Collapse
Affiliation(s)
- Feyza Icoglu Aksakal
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Turgay Sisman
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
29
|
Chousidis I, Chatzimitakos T, Leonardos D, Filiou MD, Stalikas CD, Leonardos ID. Cannabinol in the spotlight: Toxicometabolomic study and behavioral analysis of zebrafish embryos exposed to the unknown cannabinoid. CHEMOSPHERE 2020; 252:126417. [PMID: 32200177 DOI: 10.1016/j.chemosphere.2020.126417] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Cannabinol (CBN) is a degradation product of the cannabis metabolite Δ9-tetrahydrocannabinol. The CBN concentration in cannabis leaves ranges between 0.1 and 1.6% (w/w of dry weight); it increases as the plant ages and its formation is affected by the storage conditions. As CBN has not been extensively studied so far, the need to examine its impact in vivo is imperative due to the increasing use of cannabis globally. In the study herein, the CBN toxicity, effects on heart physiology, morphological malformations, behavioral changes and alterations in metabolic pathways of zebrafish larvae upon CBN exposure to sublethal concentrations were examined. The LD50 value was estimated at 1.12 mg/l. At the same time, malformations in zebrafish larvae increased significantly in a dose-dependent manner and exposure to CBN concentrations greater than 0.75 mg/l provoked abnormalities like pericardial edema, yolk sac anomalies and tail bending. Concentrations above this threshold resulted in elongated and shorter in width hearts and in separation of ventricle from atrium. The total movement distance and velocity were increased in dark and decreased in light conditions, in a concentration-dependent manner. Our results showed that CBN acts both as a stimulant and a sedative, with larvae to exhibit altered velocity and bradycardia, respectively. The metabolomic analysis revealed alterations mainly to amino acids, which are related to acute toxicity and hint towards systemic metabolic and neuropathophysiological changes. Taken together, our data indicate increased toxic effects as CBN exposure concentration increases, which should be taken into consideration when studying the impact of cannabis on organisms.
Collapse
Affiliation(s)
- Ieremias Chousidis
- Laboratory of Zoology, Biological Applications and Technology Department, University of Ioannina, 45110, Greece
| | - Theodoros Chatzimitakos
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Greece
| | | | - Michaela D Filiou
- Laboratory of Biochemistry, Biological Applications and Technology Department, University of Ioannina, 45110, Greece
| | - Constantine D Stalikas
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Greece
| | - Ioannis D Leonardos
- Laboratory of Zoology, Biological Applications and Technology Department, University of Ioannina, 45110, Greece.
| |
Collapse
|
30
|
Muliari M, Zulfahmi I, Akmal Y, Karja NWK, Nisa C, Sumon KA, Rahman MM. Toxicity of palm oil mill effluent on the early life stages of Nile tilapia (Oreochromis niloticus, Linnaeus 1758). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30592-30599. [PMID: 32468372 DOI: 10.1007/s11356-020-09410-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Harmful effects of several pollutants have been reported on early life stages of fish. However, the effects of palm oil mill effluent (POME) on fish early life stages are still unexplored. Therefore, the objective of this present study was to elucidate the impact of POME on the early life stages of Nile tilapia (Oreochromis niloticus). Fertilized eggs of Nile tilapia were exposed to four concentrations of POME (0, 1.565, 2.347, and 3.130 mg/L) in 20 plastic funnels. Each of the control and treatment groups was maintained in five replicates. The cumulative hatching rate, malformation rate, body length, and deformities of larvae were analyzed. Results showed that hatching rate and survival rate of Nile tilapia larvae significantly decreased with increasing concentrations of POME. In contrast to, malformation rate and heart rate were significantly increased. Furthermore, results showed several malformations of Nile tilapia larvae including lordosis, kyphosis, and curved tail when exposed to 1.565 mg/L, 2.347 mg/L, and 3.130 mg/L of POME concentrations. Further research is required to understand the physiological mechanisms of different endpoints in the early stages of Nile tilapia induced by the toxicity of POME.
Collapse
Affiliation(s)
- Muliari Muliari
- Department of Aquaculture, Faculty of Agriculture, Almuslim University, Kabupaten Bireuen, Indonesia
| | - Ilham Zulfahmi
- Department of Biology, Faculty of Science and Technology, Ar-Raniry State Islamic University, Banda Aceh, 23111, Indonesia.
| | - Yusrizal Akmal
- Department of Aquaculture, Faculty of Agriculture, Almuslim University, Kabupaten Bireuen, Indonesia
| | - Ni Wayan Kurniani Karja
- Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Chairun Nisa
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Kizar Ahmed Sumon
- Department of Fisheries Management, Bangladesh Agricultural University, -2202, Mymensingh, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
31
|
Naeemi AS, Elmi F, Vaezi G, Ghorbankhah M. Copper oxide nanoparticles induce oxidative stress mediated apoptosis in carp (Cyprinus carpio) larva. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|