1
|
Bandyopadhyay U, Sen D, Ahuja D, Mahapatra SP, Biswas D, Maiti R, Chakraborty S, Hazra A, Parua S, Basak AK, Das A, Paul N, Purkait MP, Syamal AK, Dey R, Bhattacharya K, Adhikary K, Bhattacharjee A. Interplay of calcium, vitamin D, and parathormone in the milieu of infections and immunity: Reassessed in the context of COVID-19. J Steroid Biochem Mol Biol 2025; 245:106624. [PMID: 39389269 DOI: 10.1016/j.jsbmb.2024.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is recognized for inducing severe respiratory symptoms like cough, and shortness of breathing. Although symptom severity varies, some individuals remain asymptomatic. This virus has sparked a global pandemic, imposing a substantial rate of mortality or morbidity, with extended periods of illness reported. People with underlying medical issues and the elderly are more likely to experience adverse results. The virus's frequent mutations pose challenges for medical professionals, necessitating adaptable therapeutic and preventive strategies. Vitamin D, a versatile regulatory molecule, not only influences physiological processes such as serum calcium regulation but also exhibits immunomodulatory functions. Calcium ions play a crucial role as secondary signal transduction molecules, impacting diverse cellular functions and maintaining homeostasis through ion channel regulation. Parathormone, another key regulator of serum calcium, often acts antagonistically to vitamin D. This review delves into the interplay of vitamin D, calcium, and parathormone, exploring their possible influence on the progression of COVID-19. The intricate signaling involving these elements contributes to adverse prognosis, emphasizing the need for comprehensive understanding. Monitoring and controlling these physiological factors and associated pathways have shown the potential to alter disease outcomes, underscoring the importance of a holistic approach.
Collapse
Affiliation(s)
- Upasana Bandyopadhyay
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Khurda Road, Jatani, Odisha, India
| | - Debanjana Sen
- Post Graduate Department of Physiology, Hooghly Mohsin College, University of Burdwan, West Bengal, India
| | - Deepika Ahuja
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Khurda Road, Jatani, Odisha, India
| | - Smit Pratik Mahapatra
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Khurda Road, Jatani, Odisha, India
| | - Debjit Biswas
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Khurda Road, Jatani, Odisha, India
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura, West Bengal, India
| | - Sutanu Chakraborty
- Abhinav Bindra Targeting Performance (ABTP), Sports Science Centre, Kalinga Stadium, Bhubaneswar, Odisha, India
| | - Anukona Hazra
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Khurda Road, Jatani, Odisha, India
| | - Suparna Parua
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Khurda Road, Jatani, Odisha, India
| | - Asim Kumar Basak
- School of Allied Health Sciences, Brainware University, Barasat, West-Bengal, India.
| | - Arnab Das
- Department of Sports Science & Yoga, Ramakrishna Mission Vivekananda Educational & Research Institute, Belur Math, Howrah, India
| | - Nimisha Paul
- Department of General Human Physiology and Biochemistry, Hitkarini Dental College and Hospital, Jabalpur, Madhya Pradesh, India
| | | | - Alak Kumar Syamal
- Post Graduate Department of Physiology, Hooghly Mohsin College, University of Burdwan, West Bengal, India
| | - Rajen Dey
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Swami Vivekananda University, Barrackpore, West Bengal, India.
| | - Koushik Bhattacharya
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Khurda Road, Jatani, Odisha, India.
| | - Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology and Management, Khurda Road, Bhubaneswar, Odisha, India
| | - Aniruddha Bhattacharjee
- Department of Physiology, International Medical School, Management and Science University, Selangor, Malaysia
| |
Collapse
|
2
|
Dash MK, Samal S, Rout S, Behera CK, Sahu MC, Das B. Immunomodulation in dengue: towards deciphering dengue severity markers. Cell Commun Signal 2024; 22:451. [PMID: 39327552 PMCID: PMC11425918 DOI: 10.1186/s12964-024-01779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/06/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Dengue is a vector-borne debilitating disease that is manifested as mild dengue fever, dengue with warning signs, and severe dengue. Dengue infection provokes a collective immune response; in particular, the innate immune response plays a key role in primary infection and adaptive immunity during secondary infection. In this review, we comprehensively walk through the various markers of immune response against dengue pathogenesis and outcome. MAIN BODY Innate immune response against dengue involves a collective response through the expression of proinflammatory cytokines, such as tumor necrosis factors (TNFs), interferons (IFNs), and interleukins (ILs), in addition to anti-inflammatory cytokines and toll-like receptors (TLRs) in modulating viral pathogenesis. Monocytes, dendritic cells (DCs), and mast cells are the primary innate immune cells initially infected by DENV. Such immune cells modulate the expression of various markers, which can influence disease severity by aiding virus entry and proinflammatory responses. Adaptive immune response is mainly aided by B and T lymphocytes, which stimulate the formation of germinal centers for plasmablast development and antibody production. Such antibodies are serotype-dependent and can aid in virus entry during secondary infection, mediated through a different serotype, such as in antibody-dependent enhancement (ADE), leading to DENV severity. The entire immunological repertoire is exhibited differently depending on the immune status of the individual. SHORT CONCLUSION Dengue fever through severe dengue proceeds along with the modulated expression of several immune markers. In particular, TLR2, TNF-α, IFN-I, IL-6, IL-8, IL-17 and IL-10, in addition to intermediate monocytes (CD14+CD16+) and Th17 (CD4+IL-17+) cells are highly expressed during severe dengue. Such markers could assist greatly in severity assessment, prompt diagnosis, and treatment.
Collapse
Affiliation(s)
- Manoj Kumar Dash
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Sagnika Samal
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Shailesh Rout
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Chinmay Kumar Behera
- Department of Pediatrics, Kalinga Institute of Medical Sciences, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | | | - Biswadeep Das
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
3
|
Aghajani Mir M. Illuminating the pathogenic role of SARS-CoV-2: Insights into competing endogenous RNAs (ceRNAs) regulatory networks. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105613. [PMID: 38844190 DOI: 10.1016/j.meegid.2024.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The appearance of SARS-CoV-2 in 2019 triggered a significant economic and health crisis worldwide, with heterogeneous molecular mechanisms that contribute to its development are not yet fully understood. Although substantial progress has been made in elucidating the mechanisms behind SARS-CoV-2 infection and therapy, it continues to rank among the top three global causes of mortality due to infectious illnesses. Non-coding RNAs (ncRNAs), being integral components across nearly all biological processes, demonstrate effective importance in viral pathogenesis. Regarding viral infections, ncRNAs have demonstrated their ability to modulate host reactions, viral replication, and host-pathogen interactions. However, the complex interactions of different types of ncRNAs in the progression of COVID-19 remains understudied. In recent years, a novel mechanism of post-transcriptional gene regulation known as "competing endogenous RNA (ceRNA)" has been proposed. Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and viral ncRNAs function as ceRNAs, influencing the expression of associated genes by sequestering shared microRNAs. Recent research on SARS-CoV-2 has revealed that disruptions in specific ceRNA regulatory networks (ceRNETs) contribute to the abnormal expression of key infection-related genes and the establishment of distinctive infection characteristics. These findings present new opportunities to delve deeper into the underlying mechanisms of SARS-CoV-2 pathogenesis, offering potential biomarkers and therapeutic targets. This progress paves the way for a more comprehensive understanding of ceRNETs, shedding light on the intricate mechanisms involved. Further exploration of these mechanisms holds promise for enhancing our ability to prevent viral infections and develop effective antiviral treatments.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Deputy of Research and Technology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
4
|
Hernández-Sarmiento LJ, Valdés-López JF, Urcuqui-Inchima S. Zika virus infection suppresses CYP24A1 and CAMP expression in human monocytes. Arch Virol 2024; 169:135. [PMID: 38839691 PMCID: PMC11153301 DOI: 10.1007/s00705-024-06050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/27/2024] [Indexed: 06/07/2024]
Abstract
Monocytes are the primary targets of Zika virus (ZIKV) and are associated with ZIKV pathogenesis. Currently, there is no effective treatment for ZIKV infection. It is known that 1,25-dihydroxy vitamin D3 (VitD3) has strong antiviral activity in dengue virus-infected macrophages, but it is unknown whether VitD3 inhibits ZIKV infection in monocytes. We investigated the relationship between ZIKV infection and the expression of genes of the VitD3 pathway, as well as the inflammatory response of infected monocytes in vitro. ZIKV replication was evaluated using a plaque assay, and VitD3 pathway gene expression was analyzed by RT-qPCR. Pro-inflammatory cytokines/chemokines were quantified using ELISA. We found that VitD3 did not suppress ZIKV replication. The results showed a significant decrease in the expression of vitamin D3 receptor (VDR), cytochrome P450 family 24 subfamily A member 1 (CYP24A1), and cathelicidin antimicrobial peptide (CAMP) genes upon ZIKV infection. Treatment with VitD3 was unable to down-modulate production of pro-inflammatory cytokines, except TNF-α, and chemokines. This suggests that ZIKV infection inhibits the expression of VitD3 pathway genes, thereby preventing VitD3-dependent inhibition of viral replication and the inflammatory response. This is the first study to examine the effects of VitD3 in the context of ZIKV infection, and it has important implications for the role of VitD3 in the control of viral replication and inflammatory responses during monocyte infection.
Collapse
Affiliation(s)
| | - Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
5
|
Sadarangani SP, Htun HL, Ling W, Hawkins R, Yeo TW, Rivino L, MacAry PA, Leo YS. Association of systemic vitamin D on the course of dengue virus infection in adults: a single-centre dengue cohort study at a large institution in Singapore. Singapore Med J 2024; 65:332-339. [PMID: 35651103 PMCID: PMC11232714 DOI: 10.11622/smedj.2022064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/26/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Host immune responses may impact dengue severity in adults. Vitamin D has multiple immunomodulatory effects on innate and adaptive immunity. METHODS We evaluated the association between systemic 25-hydroxyvitamin D [25-(OH) D] and dengue disease severity in adults. We measured plasma for total 25-(OH) D levels with an electrochemiluminescence immunoassay using stored samples from participants with laboratory-confirmed dengue, who were prospectively enrolled in 2012-2016 at our institution. RESULTS A total of 80 participants (median age 43 years) were enrolled in the study. Six participants had severe dengue based on the World Health Organization (WHO) 1997 criteria (i.e. dengue haemorrhagic fever/dengue shock syndrome) and another six had severe dengue based on the WHO 2009 criteria. Median 25-(OH) D at the acute phase of dengue was 6.175 (interquartile range 3.82-8.21, range 3.00-15.29) mcg/L in all participants. The 25-(OH) D showed an inverse linear trend with severe dengue manifestations based on the WHO 2009 criteria (adjusted risk ratio 0.72, 95% confidence interval 0.57-0.91, P < 0.01) after adjustment for age, gender and ethnicity. CONCLUSION Limited studies have evaluated the role of systemic 25-(OH) D on dengue severity. Our study found low systemic 25-(OH) D was associated with increased dengue disease severity, particularly for severe bleeding that was not explained by thrombocytopenia. Further studies investigating the underlying immune mechanisms and effects on the vascular endothelium are needed.
Collapse
Affiliation(s)
- Sapna P Sadarangani
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
- National Centre for Infectious Diseases, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Htet Lin Htun
- Department of Preventive and Population Medicine, Office of Clinical Epidemiology, Analytics and Knowledge (OCEAN), Tan Tock Seng Hospital, Singapore
| | - Weiping Ling
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
| | - Robert Hawkins
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore
| | - Tsin Wen Yeo
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
- National Centre for Infectious Diseases, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Laura Rivino
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore
| | - Paul A MacAry
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yee-Sin Leo
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
- National Centre for Infectious Diseases, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
6
|
Wimalawansa SJ. Physiology of Vitamin D-Focusing on Disease Prevention. Nutrients 2024; 16:1666. [PMID: 38892599 PMCID: PMC11174958 DOI: 10.3390/nu16111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Vitamin D is a crucial micronutrient, critical to human health, and influences many physiological processes. Oral and skin-derived vitamin D is hydroxylated to form calcifediol (25(OH)D) in the liver, then to 1,25(OH)2D (calcitriol) in the kidney. Alongside the parathyroid hormone, calcitriol regulates neuro-musculoskeletal activities by tightly controlling blood-ionized calcium concentrations through intestinal calcium absorption, renal tubular reabsorption, and skeletal mineralization. Beyond its classical roles, evidence underscores the impact of vitamin D on the prevention and reduction of the severity of diverse conditions such as cardiovascular and metabolic diseases, autoimmune disorders, infection, and cancer. Peripheral target cells, like immune cells, obtain vitamin D and 25(OH)D through concentration-dependent diffusion from the circulation. Calcitriol is synthesized intracellularly in these cells from these precursors, which is crucial for their protective physiological actions. Its deficiency exacerbates inflammation, oxidative stress, and increased susceptibility to metabolic disorders and infections; deficiency also causes premature deaths. Thus, maintaining optimal serum levels above 40 ng/mL is vital for health and disease prevention. However, achieving it requires several times more than the government's recommended vitamin D doses. Despite extensive published research, recommended daily intake and therapeutic serum 25(OH)D concentrations have lagged and are outdated, preventing people from benefiting. Evidence suggests that maintaining the 25(OH)D concentrations above 40 ng/mL with a range of 40-80 ng/mL in the population is optimal for disease prevention and reducing morbidities and mortality without adverse effects. The recommendation for individuals is to maintain serum 25(OH)D concentrations above 50 ng/mL (125 nmol/L) for optimal clinical outcomes. Insights from metabolomics, transcriptomics, and epigenetics offer promise for better clinical outcomes from vitamin D sufficiency. Given its broader positive impact on human health with minimal cost and little adverse effects, proactively integrating vitamin D assessment and supplementation into clinical practice promises significant benefits, including reduced healthcare costs. This review synthesized recent novel findings related to the physiology of vitamin D that have significant implications for disease prevention.
Collapse
|
7
|
Valdés-López JF, Hernández-Sarmiento LJ, Tamayo-Molina YS, Velilla-Hernández PA, Rodenhuis-Zybert IA, Urcuqui-Inchima S. Interleukin 27, like interferons, activates JAK-STAT signaling and promotes pro-inflammatory and antiviral states that interfere with dengue and chikungunya viruses replication in human macrophages. Front Immunol 2024; 15:1385473. [PMID: 38720890 PMCID: PMC11076713 DOI: 10.3389/fimmu.2024.1385473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Interferons (IFNs) are a family of cytokines that activate the JAK-STAT signaling pathway to induce an antiviral state in cells. Interleukin 27 (IL-27) is a member of the IL-6 and/or IL-12 family that elicits both pro- and anti-inflammatory responses. Recent studies have reported that IL-27 also induces a robust antiviral response against diverse viruses, both in vitro and in vivo, suggesting that IFNs and IL-27 share many similarities at the functional level. However, it is still unknown how similar or different IFN- and IL-27-dependent signaling pathways are. To address this question, we conducted a comparative analysis of the transcriptomic profiles of human monocyte-derived macrophages (MDMs) exposed to IL-27 and those exposed to recombinant human IFN-α, IFN-γ, and IFN-λ. We utilized bioinformatics approaches to identify common differentially expressed genes between the different transcriptomes. To verify the accuracy of this approach, we used RT-qPCR, ELISA, flow cytometry, and microarrays data. We found that IFNs and IL-27 induce transcriptional changes in several genes, including those involved in JAK-STAT signaling, and induce shared pro-inflammatory and antiviral pathways in MDMs, leading to the common and unique expression of inflammatory factors and IFN-stimulated genes (ISGs)Importantly, the ability of IL-27 to induce those responses is independent of IFN induction and cellular lineage. Additionally, functional analysis demonstrated that like IFNs, IL-27-mediated response reduced chikungunya and dengue viruses replication in MDMs. In summary, IL-27 exhibits properties similar to those of all three types of human IFN, including the ability to stimulate a protective antiviral response. Given this similarity, we propose that IL-27 could be classified as a distinct type of IFN, possibly categorized as IFN-pi (IFN-π), the type V IFN (IFN-V).
Collapse
Affiliation(s)
- Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | | | - Y. S. Tamayo-Molina
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | | | - Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
8
|
Kalia V, Sarkar S. Vitamin D and antiviral immunity. FELDMAN AND PIKE'S VITAMIN D 2024:1011-1034. [DOI: 10.1016/b978-0-323-91338-6.00045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Jaratsittisin J, Sornjai W, Chailangkarn T, Jongkaewwattana A, Smith DR. The vitamin D receptor agonist EB1089 can exert its antiviral activity independently of the vitamin D receptor. PLoS One 2023; 18:e0293010. [PMID: 37847693 PMCID: PMC10581485 DOI: 10.1371/journal.pone.0293010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
Vitamin D has been shown to have antiviral activity in a number of different systems. However, few studies have investigated whether the antiviral activity is exerted through the vitamin D receptor (VDR). In this study, we investigated whether the antiviral activity of a vitamin D receptor agonist (EB1089) towards dengue virus (DENV) was modulated by VDR. To undertake this, VDR was successively overexpressed, knocked down and retargeted through mutation of the nuclear localization signal. In no case was an effect seen on the level of the antiviral activity induced by EB1089, strongly indicating that the antiviral activity of EB1089 is not exerted through VDR. To further explore the antiviral activity of EB1089 in a more biologically relevant system, human neural progenitor cells were differentiated from induced pluripotent stem cells, and infected with Zika virus (ZIKV). EB1089 exerted a significant antiviral effect, reducing virus titers by some 2Log10. In support of the results seen with DENV, no expression of VDR at the protein level was observed. Collectively, these results show that the vitamin D receptor agonist EB1089 exerts its antiviral activity independently of VDR.
Collapse
Affiliation(s)
| | - Wannapa Sornjai
- Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| |
Collapse
|
10
|
Fernandez GJ, Ramírez-Mejía JM, Castillo JA, Urcuqui-Inchima S. Vitamin D modulates expression of antimicrobial peptides and proinflammatory cytokines to restrict Zika virus infection in macrophages. Int Immunopharmacol 2023; 119:110232. [PMID: 37150017 DOI: 10.1016/j.intimp.2023.110232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/09/2023]
Abstract
Although the impact of Zika virus (ZIKV) infection on human health has been well documented, we still have no vaccine or effective treatment. This fact highlights the importance of searching for alternative therapy for treating ZIKV. To search for ZIKV antivirals, we examined the effect of vitamin D in monocyte-derived macrophages (MDMs) differentiated in the presence of vitamin D (D3-MDM) and explored the molecular mechanisms by analyzing transcriptional profiles. Our data show the restriction of ZIKV infection in D3-MDMs as compared to MDMs. Transcriptional profiles show that vitamin D alters about 19% of Zika response genes (8.2% diminished and 10.8% potentiated). Among the genes with diminished expression levels, we found proinflammatory cytokines and chemokines such as IL6, TNF, IL1A, IL1B, and IL12B, CCL1, CCL4, CCL7, CXCL3, CXCL6, and CXCL8. On the other hand, genes with potentiated expression were related to degranulation such as Lysozyme, cathelicidin (CAMP), and Serglycin. Since the CAMP gene encodes the antimicrobial peptide LL-37, we treated MDMs with LL-37 and infected them with ZIKV. The results showed a decrease in the proportion of infected cells. Our data provide new insights into the role of vitamin D in restricting ZIKV infection in macrophages that are mediated by induction of cathelicidin/LL-37 expression and downregulation of proinflammatory genes. Results highlight the biological relevance of vitamin D-inducible peptides as an antiviral treatment for Zika fever.
Collapse
Affiliation(s)
- Geysson Javier Fernandez
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia; Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia UdeA, Medellín, Colombia.
| | - Julieta M Ramírez-Mejía
- CIBIOP Group, Department of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Antioquia, Colombia.
| | - Jorge Andrés Castillo
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia; Grupo de enfermedades infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.
| |
Collapse
|
11
|
Castillo JA, Urcuqui-Inchima S. Vitamin D modulates inflammatory response of DENV-2-infected macrophages by inhibiting the expression of inflammatory-liked miRNAs. Pathog Glob Health 2023; 117:167-180. [PMID: 35850625 PMCID: PMC9970239 DOI: 10.1080/20477724.2022.2101840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Dengue disease caused by dengue virus (DENV) infection is the most common vector-borne viral disease worldwide. Currently, no treatment is available to fight dengue symptoms. We and others have demonstrated the antiviral and immunomodulatory properties of VitD3 as a possible therapy for DENV infection. MicroRNAs (miRNAs) are small non-coding RNAs responsible for the regulation of cell processes including antiviral defense. Previous transcriptomic analysis showed that VitD3 regulates the expression of genes involved in stress and immune response by inducing specific miRNAs. Here, we focus on the effects of VitD3 supplementation in the regulation of the expression of inflammatory-liked miR-182-5p, miR-130a-3p, miR125b-5p, miR146a-5p, and miR-155-5p during DENV-2 infection of monocyte-derived macrophages (MDMs). Further, we evaluated the effects of inhibition of these miRNAs in the innate immune response. Our results showed that supplementation with VitD3 differentially regulated the expression of these inflammatory miRNAs. We also observed that inhibition of miR-182-5p, miR-130a-3p, miR-125b-5p, and miR-155-5p, led to decreased production of TNF-α and TLR9 expression, while increased the expression of SOCS-1, IFN-β, and OAS1, without affecting DENV replication. By contrast, over-expression of miR-182-5p, miR-130a-3p, miR-125b-5p, and miR-155-5p significantly decreased DENV-2 infection rates and also DENV-2 replication in MDMs. Our results suggest that VitD3 immunomodulatory effects involve regulation of inflammation-linked miRNAs expression, which might play a key role in the inflammatory response during DENV infection.
Collapse
Affiliation(s)
- Jorge Andrés Castillo
- Grupo de Inmunovirología. Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo de Inmunovirología. Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
12
|
Iqtadar S, Khan A, Mumtaz SU, Livingstone S, Chaudhry MNA, Raza N, Zahra M, Abaidullah S. Vitamin D Deficiency (VDD) and Susceptibility towards Severe Dengue Fever-A Prospective Cross-Sectional Study of Hospitalized Dengue Fever Patients from Lahore, Pakistan. Trop Med Infect Dis 2023; 8:tropicalmed8010043. [PMID: 36668950 PMCID: PMC9866117 DOI: 10.3390/tropicalmed8010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Dengue is a mosquito-borne flaviviral serious febrile illness, most common in the tropical and subtropical regions including Pakistan. Vitamin D is a strong immunomodulator affecting both the innate and adaptive immune responses and plays a pivotal role in pathogen-defense mechanisms. There has been considerable interest in the possible role of vitamin D in dengue viral (DENV) infection. In the present prospective cross-sectional study, we assessed a possible association between serum vitamin D deficiency (VDD) and susceptibility towards severe dengue fever (DF) illness. Serum vitamin D levels were measured at the time of hospitalization in 97 patients diagnosed with dengue fever (DF), dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS) at Mayo Hospital, King Edward Medical University, Lahore, PK, from 16 November 2021 to 15 January 2022. In terms of disease severity, 37 (38.1%) patients were DF, 52 (53.6%) were DHF grade 1 and 2, and 8 (8.2%) were DSS. The results revealed that most patients (75 (77.3%)) were vitamin-D-deficient (i.e., serum level < 20 ng/mL), including 27 (73.0%) in DF, 41 (78.8%) in DHF grade 1 and 2, and 7 (87.5%) in DSS. The degree of VDD was somewhat higher in DSS patients as compared to DF and DHF grade 1 and 2 patients. Overall, serum vitamin D levels ranged from 4.2 to 109.7 ng/mL, and the median (IQR) was in the VDD range, i.e., 12.2 (9.1, 17.8) ng/mL. Our results suggest that there may be a possible association between VDD and susceptibility towards severe dengue illness. Hence, maintaining sufficient vitamin D levels in the body either through diet or supplementation may help provide adequate immune protection against severe dengue fever illness. Further research is warranted.
Collapse
Affiliation(s)
- Somia Iqtadar
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan
| | - Amjad Khan
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DU, UK
- Correspondence:
| | - Sami Ullah Mumtaz
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan
| | - Shona Livingstone
- School of Medicine, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
| | | | - Nauman Raza
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan
| | - Mehreen Zahra
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan
| | - Sajid Abaidullah
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan
| |
Collapse
|
13
|
Savolainen L, Timpmann S, Mooses M, Medijainen L, Tõnutare L, Ross F, Lellsaar M, Piir A, Zilmer M, Unt E, Ööpik V. Vitamin D Supplementation Has No Impact on Cardiorespiratory Fitness, but Improves Inflammatory Status in Vitamin D Deficient Young Men Engaged in Resistance Training. Nutrients 2022; 14:nu14245302. [PMID: 36558461 PMCID: PMC9787541 DOI: 10.3390/nu14245302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Data on the effect of vitamin D (Vit-D) supplementation on cardiorespiratory fitness (VO2max) are conflicting. A possible source of discrepancies in the literature is the heterogeneity in baseline Vit-D status among participants in previous studies. The main objectives of the present study were to assess the impact of Vit-D supplementation on VO2max and inflammatory status in Vit-D deficient young healthy men. Participants (n = 39, baseline serum Vit-D level < 50 nmol/L) were quasi-randomly assigned to one of the two groups, which, in a double-blind manner, supplemented their diet daily with either Vit-D (8000 IU; VD) or placebo (PLC) and concomitantly performed a 12-week supervised resistance training program. During the 12-week intervention, serum Vit-D concentrations increased 3.9-fold (p < 0.001) in the VD group while no changes occurred in the PLC group. Baseline VO2max did not differ in the two groups and remained unchanged during the intervention. Serum interleukin-10/tumour necrosis factor alpha ratio increased significantly (30%, p = 0.007; effect size 0.399) in VD but not in PLC group. In conclusion, 12-week Vit-D supplementation increases serum 25(OH)D levels and improves inflammatory status, but has no impact on VO2max in Vit-D deficient young men engaged in resistance training.
Collapse
Affiliation(s)
- Lauri Savolainen
- Institute of Sport Sciences and Physiotherapy, University of Tartu, 18 Ülikooli St., 50090 Tartu, Estonia
| | - Saima Timpmann
- Institute of Sport Sciences and Physiotherapy, University of Tartu, 18 Ülikooli St., 50090 Tartu, Estonia
| | - Martin Mooses
- Institute of Sport Sciences and Physiotherapy, University of Tartu, 18 Ülikooli St., 50090 Tartu, Estonia
| | - Luule Medijainen
- Institute of Sport Sciences and Physiotherapy, University of Tartu, 18 Ülikooli St., 50090 Tartu, Estonia
| | - Lisette Tõnutare
- Institute of Sport Sciences and Physiotherapy, University of Tartu, 18 Ülikooli St., 50090 Tartu, Estonia
| | - Frederik Ross
- Institute of Sport Sciences and Physiotherapy, University of Tartu, 18 Ülikooli St., 50090 Tartu, Estonia
| | - Märt Lellsaar
- Institute of Sport Sciences and Physiotherapy, University of Tartu, 18 Ülikooli St., 50090 Tartu, Estonia
| | - Anneli Piir
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Mihkel Zilmer
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, 50090 Tartu, Estonia
| | - Eve Unt
- Department of Cardiology, Institute of Clinical Medicine, University of Tartu, 50090 Tartu, Estonia
- Department of Sport Medicine and Rehabilitation, Institute of Clinical Medicine, University of Tartu, 50090 Tartu, Estonia
- Sport Medicine and Rehabilitation Clinic, Tartu University Hospital, 1a Puusepa St., 50406 Tartu, Estonia
| | - Vahur Ööpik
- Institute of Sport Sciences and Physiotherapy, University of Tartu, 18 Ülikooli St., 50090 Tartu, Estonia
- Correspondence: ; Tel.: +372-7-375-366
| |
Collapse
|
14
|
Mirza WA, Zhang K, Zhang R, Duan G, Khan MSN, Ni P. Vitamin D deficiency in dengue fever patients' coinfected with H. pylori in Pakistan. A case-control study. Front Public Health 2022; 10:1035560. [PMID: 36388314 PMCID: PMC9659955 DOI: 10.3389/fpubh.2022.1035560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/14/2022] [Indexed: 01/29/2023] Open
Abstract
Introduction Dengue fever is a vector-borne disease with an estimate of 390 million persons getting the infection each year with a significant public health impact. It has been reported DENV patients with vitamin D deficiency led to severe form of dengue infection; while H. pylori coinfection alters vitamin D receptors leading to vitamin D deficiency. We hypothesize that DENV patient's having low vitamin D along with H. pylori coinfection could have worsen dengue severity as well as vitamin D deficiency. In this case-control study, we compared (I) the vitamin D deficiency in dengue fever cases with or without H. pylori coinfection, and (II) negative dengue fever as a control with or without H. pylori coinfection. We have also assessed the correlation between vitamin D levels and its effect on warning signs of the dengue fever. Further, we have investigated whether coinfection with H. pylori has any effect on warning signs in the dengue fever patients and the vitamin D deficiency in all serotypes of the dengue virus infected patients. Methods In this case control study the association of the vitamin D levels with age, gender and H. pylori coinfection in dengue fever hospitalized patients was assessed using chi-square and multivariate logistic regression analysis. Results Four hundred dengue fever patients with H. pylori coinfection were compared with 400 dengue negative controls with H. pylori coinfection. The mean age was 29.96 ± 10.5 and 29.88 ± 10.7 years among cases and controls, respectively. Most dengue fever patients with H. pylori coinfection were deficient in vitamin D compared with negative dengue controls with H. pylori coinfection. In multivariate logistic regression, the dengue cases with H. pylori coinfection were.056 times (95% CI: 0.024, 0.128, P = 0.000) more likely to have vitamin D "deficiency', while compared with the cases who did not have H. pylori coinfection. Conclusion The present study proposes that vitamin D deficiency in dengue fever patients coinfected with H. pylori is much higher than the dengue fever negative controls coinfected with H. pylori. As hypothesized the DENV patient with H. pylori coinfection has vitamin D deficiency as well as increased dengue severity.
Collapse
Affiliation(s)
- Wajid Ameen Mirza
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ke Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China,The First Affiliated Hospital and International College of Public Health and One Health, Hainan Medical University, Haikou, China,*Correspondence: Rongguang Zhang
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | | | - Peng Ni
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Vitamin D supplementation and immune-related markers: an update from nutrigenetic and nutrigenomic studies. Br J Nutr 2022; 128. [PMCID: PMC9557210 DOI: 10.1017/s0007114522002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vitamin D is both a nutrient and a neurologic hormone that plays a critical role in modulating immune responses. While low levels of vitamin D are associated with increased susceptibility to infections and immune-related disorders, vitamin D supplementation has demonstrated immunomodulatory effects that can be protective against various diseases and infections. Vitamin D receptor is expressed in immune cells that have the ability to synthesise the active vitamin D metabolite. Thus, vitamin D acts in an autocrine manner in a local immunologic milieu in fighting against infections. Nutrigenetics and nutrigenomics are the new disciplines of nutritional science that explore the interaction between nutrients and genes using distinct approaches to decipher the mechanisms by which nutrients can influence disease development. Though molecular and observational studies have proved the immunomodulatory effects of vitamin D, only very few studies have documented the molecular insights of vitamin D supplementation. Until recently, researchers have investigated only a few selected genes involved in the vitamin D metabolic pathway that may influence the response to vitamin D supplementation and possibly disease risk. This review summarises the impact of vitamin D supplementation on immune markers from nutrigenetics and nutrigenomics perspective based on evidence collected through a structured search using PubMed, EMBASE, Science Direct and Web of Science. The research gaps and shortcomings from the existing data and future research direction of vitamin D supplementation on various immune-related disorders are discussed.
Collapse
|
16
|
Antibody dynamics post-Comirnaty and CoronaVac vaccination in Malaysia. Sci Rep 2022; 12:15665. [PMID: 36123431 PMCID: PMC9484708 DOI: 10.1038/s41598-022-19776-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Several vaccines have been fast-tracked through clinical trials to mitigate the progression of the SARS‑CoV‑2 pandemic. We analyzed sequential blood samples from 314 recipients of Comirnaty and CoronaVac in East Malaysia for the spike-binding IgG (IgG-S), nucleocapsid-binding IgG (IgG-N), spike-binding IgM (IgM-S) and serum vitamin D (VitD). A subset of samples was analyzed for the neutralizing antibodies (Ig-RBD). Results showed that IgG-S due to Comirnaty was significantly higher than CoronaVac. IgM-S was detected in 80.0% Comirnaty and 69.5% CoronaVac recipients, while IgG-N was detected in 58.1% CoronaVac but not in Comirnaty recipients. All IgG-S-positive vaccines possessed detectable Ig-RBD after the second dose but with a weak to moderate correlation. The serum VitD levels did not influence the antibody magnitude in both vaccines. In essence, SARS-CoV-2 vaccination is an IgG-S-dominant event, Comirnaty was more effective than CoronaVac in mounting IgG-S and Ig-RBD responses, independent of the patient’s VitD level.
Collapse
|
17
|
The Role of Diet in Regulation of Macrophages Functioning. Biomedicines 2022; 10:biomedicines10092087. [PMID: 36140188 PMCID: PMC9495355 DOI: 10.3390/biomedicines10092087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
The great importance of diet for health and high life-expectancy is established. The impact of nutrients on immune system is a point of growing research interest. Recent studies have found pro- and anti-inflammatory properties of some diet patterns and nutrients that can be used from the bench to the bedside for chronic low-grade inflammatory status correction. In this regard, the assessment of potential effects of nutrition on macrophage differentiation, proliferation, and functioning in health and disease is highly demanded. In this review, we present current data on the effects of nutrients on the macrophage functioning.
Collapse
|
18
|
Valdés-López JF, Velilla P, Urcuqui-Inchima S. Vitamin D modulates the expression of Toll-like receptors and pro-inflammatory cytokines without affecting Chikungunya virus replication, in monocytes and macrophages. Acta Trop 2022; 232:106497. [PMID: 35508271 DOI: 10.1016/j.actatropica.2022.106497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 11/30/2022]
Abstract
Chikungunya virus (CHIKV) is a zoonotic arthropod-borne virus that causes Chikungunya fever (CHIKF), a self-limiting disease characterized by myalgia and acute or chronic arthralgia. CHIKF pathogenesis has an important immunological component since higher levels of pro-inflammatory factors, including cytokines and chemokines, are detected in CHIKV-infected patients. In vitro studies, using monocytes and macrophages have shown that CHIKV infection promotes elevated production of pro-inflammatory cytokines and antiviral response factors. Vitamin D3 (VD3) has been described as an important modulator of immune response and as an antiviral factor for several viruses. Here, we aimed to study the effects of VD3 treatment on viral replication and pro-inflammatory response in CHIKV-infected human monocytes (VD3-Mon) and monocyte-derived macrophages differentiated in the absence (MDMs) or the presence of VD3 (VD3-MDMs). We found that VD3 treatment did not suppress CHIKV replication in either VD3-Mon or VD3-MDMs. However, the expression of VDR, CAMP and CYP24A1 mRNAs was altered by CHIKV infection. Furthermore, VD3 treatment alters TLRs mRNA expression and production of pro-inflammatory cytokines, including TNFα and CXCL8/IL8, but not IL1β and IL6, in response to CHIKV infection in both VD3-Mon and VD3-MDMs. While a significant decrease in CXCL8/IL8 production was observed in CHIKV-infected VD3-Mon, significantly higher production of CXCL8/IL8 was observed in CHIKV-infected VD3-MDM at 24 hpi. Altogether, our results suggest that vitamin D3 may play an important role in ameliorating pro-inflammatory response during CHIKV infection in human Mon, but not in MDMs. Although further studies are needed to evaluate the efficacy of VD3; nevertheless, this study provides novel insights into its benefits in modulating the inflammatory response elicited by CHIKV infection in humans.
Collapse
Affiliation(s)
- Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Paula Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
19
|
Ratra Y, Kumar N, Saha MK, Bharadwaj C, Chongtham C, Bais SS, Medigeshi G, Arimbasseri GA, Basak S. A Vitamin D-RelB/NF-κB Pathway Limits Chandipura Virus Multiplication by Rewiring the Homeostatic State of Autoregulatory Type 1 IFN-IRF7 Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:559-568. [PMID: 35851541 DOI: 10.4049/jimmunol.2101054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/20/2022] [Indexed: 10/17/2023]
Abstract
Besides its functions in the skeletomuscular system, vitamin D is known to alleviate viral-inflicted pathologies. However, the mechanism underlying protective vitamin D function remains unclear. We examined the role of vitamin D in controlling cellular infections by Chandipura virus, an RNA virus implicated in human epidemics. How immune signaling pathways, including those regulating NF-κB and IFN regulatory factors (IRFs), are activated in virus-infected cells has been well studied. Our investigation involving human- and mouse-derived cells revealed that vitamin D instructs the homeostatic state of these antiviral pathways, leading to cellular resilience to subsequent viral infections. In particular, vitamin D provoked autoregulatory type 1 IFN-IRF7 signaling even in the absence of virus infection by downmodulating the expression of the IFN-inhibitory NF-κB subunit RelB. Indeed, RelB deficiency rendered vitamin D treatment redundant, whereas IRF7 depletion abrogated antiviral vitamin D action. In sum, immune signaling homeostasis appears to connect micronutrients to antiviral immunity at the cellular level. The proposed link may have a bearing on shaping public health policy during an outbreak.
Collapse
Affiliation(s)
- Yashika Ratra
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Naveen Kumar
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Manti K Saha
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Chandrima Bharadwaj
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Chen Chongtham
- Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, India; and
| | - Sachendra S Bais
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | | | | | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
20
|
Fernandez GJ, Ramírez-Mejia JM, Urcuqui-Inchima S. Vitamin D boosts immune response of macrophages through a regulatory network of microRNAs and mRNAs. J Nutr Biochem 2022; 109:109105. [PMID: 35858666 DOI: 10.1016/j.jnutbio.2022.109105] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 10/31/2022]
Abstract
Vitamin D is associated with the stimulation of innate immunity, inflammation, and host defense against pathogens. Macrophages express receptors of Vitamin D, regulating transcription of genes related to immune processes. However, the transcriptional and post-transcriptional strategies controlling gene expression in differentiated macrophages, and how they are influenced by Vitamin D are not well understood. We studied whether Vitamin D enhances immune response by regulating the expression of microRNAs and mRNAs. Analysis of the transcriptome showed differences in expression of 199 genes, of which 68% were up-regulated, revealing the cell state of monocyte-derived macrophages differentiated with Vitamin D (D3-MDMs) as compared to monocyte-derived macrophages (MDMs). The differentially expressed genes appear to be associated with pathophysiological processes, including inflammatory responses, and cellular stress. Transcriptional motifs in promoter regions of up- or down-regulated genes showed enrichment of VDR motifs, suggesting possible roles of transcriptional activator or repressor in gene expression. Further, microRNA-Seq analysis indicated that there were 17 differentially expressed miRNAs, of which, 7 were up-regulated and 10 down-regulated, suggesting that Vitamin D plays a critical role in the regulation of miRNA expression during macrophages differentiation. The miR-6501-3p, miR-1273h-5p, miR-665, miR-1972, miR-1183, miR-619-5p were down-regulated in D3-MDMs compared to MDMs. The integrative analysis of miRNA and mRNA expression profiles predict that miR-1972, miR-1273h-5p, and miR-665 regulate genes PDCD1LG2, IL-1B, and CD274, which are related to the inflammatory response. Results suggest an essential role of Vitamin D in macrophage differentiation that modulates host response against pathogens, inflammation, and cellular stress.
Collapse
Affiliation(s)
- Geysson Javier Fernandez
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Julieta M Ramírez-Mejia
- Research group CIBIOP, Department of Biological Sciences, Universidad EAFIT, Medellín, Antioquia, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.
| |
Collapse
|
21
|
Islam MT, Quispe C, Herrera-Bravo J, Sarkar C, Sharma R, Garg N, Fredes LI, Martorell M, Alshehri MM, Sharifi-Rad J, Daştan SD, Calina D, Alsafi R, Alghamdi S, Batiha GES, Cruz-Martins N. Production, Transmission, Pathogenesis, and Control of Dengue Virus: A Literature-Based Undivided Perspective. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4224816. [PMID: 34957305 PMCID: PMC8694986 DOI: 10.1155/2021/4224816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022]
Abstract
Dengue remains one of the most serious and widespread mosquito-borne viral infections in human beings, with serious health problems or even death. About 50 to 100 million people are newly infected annually, with almost 2.5 billion people living at risk and resulting in 20,000 deaths. Dengue virus infection is especially transmitted through bites of Aedes mosquitos, hugely spread in tropical and subtropical environments, mostly found in urban and semiurban areas. Unfortunately, there is no particular therapeutic approach, but prevention, adequate consciousness, detection at earlier stage of viral infection, and appropriate medical care can lower the fatality rates. This review offers a comprehensive view of production, transmission, pathogenesis, and control measures of the dengue virus and its vectors.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka)8100, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka)8100, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | | | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Radi Alsafi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| |
Collapse
|
22
|
Castillo JA, Giraldo DM, Hernandez JC, Smit JM, Rodenhuis-Zybert IA, Urcuqui-Inchima S. Regulation of innate immune responses in macrophages differentiated in the presence of vitamin D and infected with dengue virus 2. PLoS Negl Trop Dis 2021; 15:e0009873. [PMID: 34634046 PMCID: PMC8530315 DOI: 10.1371/journal.pntd.0009873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/21/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022] Open
Abstract
A dysregulated or exacerbated inflammatory response is thought to be the key driver of the pathogenesis of severe disease caused by the mosquito-borne dengue virus (DENV). Compounds that restrict virus replication and modulate the inflammatory response could thus serve as promising therapeutics mitigating the disease pathogenesis. We and others have previously shown that macrophages, which are important cellular targets for DENV replication, differentiated in the presence of bioactive vitamin D (VitD3) are less permissive to viral replication, and produce lower levels of pro-inflammatory cytokines. Therefore, we here evaluated the extent and kinetics of innate immune responses of DENV-2 infected monocytes differentiated into macrophages in the presence (D3-MDMs) or absence of VitD3 (MDMs). We found that D3-MDMs expressed lower levels of RIG I, Toll-like receptor (TLR)3, and TLR7, as well as higher levels of SOCS-1 in response to DENV-2 infection. D3-MDMs produced lower levels of reactive oxygen species, related to a lower expression of TLR9. Moreover, although VitD3 treatment did not modulate either the expression of IFN-α or IFN-β, higher expression of protein kinase R (PKR) and 2'-5'-oligoadenylate synthetase 1 (OAS1) mRNA were found in D3-MDMs. Importantly, the observed effects were independent of reduced infection, highlighting the intrinsic differences between D3-MDMs and MDMs. Taken together, our results suggest that differentiation of MDMs in the presence of VitD3 modulates innate immunity in responses to DENV-2 infection.
Collapse
Affiliation(s)
- Jorge Andrés Castillo
- Grupo de Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, (Antioquia), Colombia
- Department of Medical Microbiology and infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Diana M. Giraldo
- Grupo de Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, (Antioquia), Colombia
| | - Juan C. Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, (Antioquia), Colombia
| | - Jolanda M. Smit
- Department of Medical Microbiology and infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology and infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Silvio Urcuqui-Inchima
- Grupo de Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, (Antioquia), Colombia
| |
Collapse
|
23
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Recent Insights Into the Molecular Mechanism of Toll-Like Receptor Response to Dengue Virus Infection. Front Microbiol 2021; 12:744233. [PMID: 34603272 PMCID: PMC8483762 DOI: 10.3389/fmicb.2021.744233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue is the most prevalent and rapidly spreading mosquito-borne viral disease caused by dengue virus (DENV). Recently, DENV has been affecting humans within an expanding geographic range due to the warming of the earth. Innate immune responses play a significant role in antiviral defense, and Toll-like receptors (TLRs) are key regulators of innate immunity. Therefore, a detailed understanding of TLR and DENV interactions is important for devising therapeutic and preventive strategies. Several studies have indicated the ability of DENV to modulate the TLR signaling pathway and host immune response. Vaccination is considered one of the most successful medical interventions for preventing viral infections. However, only a partially protective dengue vaccine, the first licensed dengue vaccine CYD-TDV, is available in some dengue-endemic countries to protect against DENV infection. Therefore, the development of a fully protective, durable, and safe DENV vaccine is a priority for global health. Here, we demonstrate the progress made in our understanding of the host response to DENV infection, with a particular focus on TLR response and how DENV avoids the response toward establishing infection. We also discuss dengue vaccine candidates in late-stage development and the issues that must be overcome to enable their success.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
24
|
Alagarasu K. Immunomodulatory effect of vitamin D on immune response to dengue virus infection. VITAMINS AND HORMONES 2021; 117:239-252. [PMID: 34420583 DOI: 10.1016/bs.vh.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dengue, an acute febrile illness which in some cases requires hospitalization and occasionally a fatal disease, caused by dengue virus is a potential threat to the public health systems throughout the world. Approved antivirals are not available for treating dengue. Immunomodulators, that can reduce inflammation which if not treated properly results in vascular leakage, are being attempted as therapeutics against severe dengue. Vitamin D, an immunomodulatory hormone, with both antiviral and immunomodulatory effects, is an appropriate choice for investigation as a potential drug against dengue. Investigations of vitamin D levels by many studies have suggested vitamin D levels as a potential marker for predicting severe dengue. In-vitro studies have shown that 1, 25 dihydroxy vitamin D3 (1,25(OH)2D3), active form of vitamin D, can reduce the expression of dengue virus entry receptors, restrict the viral replication and can modulate the expression of inflammatory cytokines in dengue virus infected cells. The results from in-vitro studies also have cautioned that insufficient levels of vitamin D supplementation might increase the virus replication. Available evidence suggests vitamin D based therapeutics against dengue and provides ray of light for treating dengue patients but, the available evidence needs to be supported by beneficial outcomes in clinical trials.
Collapse
Affiliation(s)
- K Alagarasu
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, Maharashtra, India.
| |
Collapse
|
25
|
Werneke U, Gaughran F, Taylor DM. Vitamin D in the time of the coronavirus (COVID-19) pandemic - a clinical review from a public health and public mental health perspective. Ther Adv Psychopharmacol 2021; 11:20451253211027699. [PMID: 34290856 PMCID: PMC8274110 DOI: 10.1177/20451253211027699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Individuals with serious mental disorders (SMD) may have a higher risk of vitamin D (VIT-D) deficiency. They also experience higher mortality because of coronavirus disease 2019 (COVID-19) infection. Therefore, we have conducted a comprehensive review to examine the significance of VIT-D for public health and public mental health during the ongoing COVID-19 pandemic. This review had three specific aims, from a global perspective to (a) create a profile of VIT-D and review the epidemiology of VIT-D deficiency, (b) explore VIT-D deficiency as risk factor for SMD and COVID-19 infections and (c) examine the effectiveness of VIT-D supplementation for both conditions. We found that, in terms of SMD, the evidence from laboratory and observational studies points towards some association between VIT-D deficiency and depression or schizophrenia. Mendelian randomisation studies, however, suggest no, or reverse, causality. The evidence from intervention studies is conflicting. Concerning COVID-19 infection, on proof of principle, VIT-D could provide a plausible defence against the infection itself and against an adverse clinical course. But data from observational studies and the first preliminary intervention studies remain conflicting, with stronger evidence that VIT-D may mitigate the clinical course of COVID-19 infection rather than the risk of infection in the first place. From a public health and public mental health point of view, based on the currently limited knowledge, for individuals with SMD, the benefits of VIT-D optimisation through supplementation seem to outweigh the risks. VIT-D supplementation, however, should not substitute for vaccination or medical care for COVID-19 infection.
Collapse
Affiliation(s)
- Ursula Werneke
- Sunderby Research Unit – Psychiatry, Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Fiona Gaughran
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College and National Psychosis Service, South London & the Maudsley NHS Foundation Trust, London, UK
| | - David M. Taylor
- Maudsley Hospital, Pharmacy Department Denmark Hill, King’s College London and Institute of Pharmaceutical Science, London, UK
| |
Collapse
|
26
|
Laneri S, Brancaccio M, Mennitti C, De Biasi MG, Pero ME, Pisanelli G, Scudiero O, Pero R. Antimicrobial Peptides and Physical Activity: A Great Hope against COVID 19. Microorganisms 2021; 9:1415. [PMID: 34209064 PMCID: PMC8304224 DOI: 10.3390/microorganisms9071415] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/07/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial peptides (AMPs), α- and β-defensins, possess antiviral properties. These AMPs achieve viral inhibition through different mechanisms of action. For example, they can: (i) bind directly to virions; (ii) bind to and modulate host cell-surface receptors, disrupting intracellular signaling; (iii) function as chemokines to augment and alter adaptive immune responses. Given their antiviral properties and the fact that the development of an effective coronavirus disease 2019 (COVID-19) treatment is an urgent public health priority, they and their derivatives are being explored as potential therapies against COVID-19. These explorations using various strategies, range from their direct interaction with the virus to using them as vaccine adjuvants. However, AMPs do not work in isolation, specifically in their role as potent immune modulators, where they interact with toll-like receptors (TLRs) and chemokine receptors. Both of these receptors have been shown to play roles in COVID-19 pathogenesis. In addition, it is known that a healthy lifestyle accompanied by controlled physical activity can represent a natural weapon against COVID-19. In competitive athletes, an increase in serum defensins has been shown to function as self-protection from the attack of microorganisms, consequently a controlled physical activity could act as a support to any therapies in fighting COVID-19. Therefore, including information on all these players' interactions would produce a complete picture of AMP-based therapies' response.
Collapse
Affiliation(s)
- Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Via Montesano, 80138 Naples, Italy; (S.L.); (M.G.D.B.)
| | - Mariarita Brancaccio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.B.); (C.M.)
| | - Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.B.); (C.M.)
| | - Margherita G. De Biasi
- Department of Pharmacy, University of Naples Federico II, Via Montesano, 80138 Naples, Italy; (S.L.); (M.G.D.B.)
| | - Maria Elena Pero
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (M.E.P.); (G.P.)
| | - Giuseppe Pisanelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (M.E.P.); (G.P.)
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.B.); (C.M.)
- Ceinge Biotecnologie Avanzate S.C.aR.L., 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| | - Raffaela Pero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.B.); (C.M.)
- Ceinge Biotecnologie Avanzate S.C.aR.L., 80131 Naples, Italy
| |
Collapse
|
27
|
Strumillo ST, Kartavykh D, de Carvalho FF, Cruz NC, de Souza Teodoro AC, Sobhie Diaz R, Curcio MF. Host-virus interaction and viral evasion. Cell Biol Int 2021; 45:1124-1147. [PMID: 33533523 PMCID: PMC8014853 DOI: 10.1002/cbin.11565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
With each infectious pandemic or outbreak, the medical community feels the need to revisit basic concepts of immunology to understand and overcome the difficult times brought about by these infections. Regarding viruses, they have historically been responsible for many deaths, and such a peculiarity occurs because they are known to be obligate intracellular parasites that depend upon the host's cell machinery for their replication. Successful infection with the production of essential viral components requires constant viral evolution as a strategy to manipulate the cellular environment, including host internal factors, the host's nonspecific and adaptive immune responses to viruses, the metabolic and energetic state of the infected cell, and changes in the intracellular redox environment during the viral infection cycle. Based on this knowledge, it is fundamental to develop new therapeutic strategies for controlling viral dissemination, by means of antiviral therapies, vaccines, or antioxidants, or by targeting the inhibition or activation of cell signaling pathways or metabolic pathways that are altered during infection. The rapid recovery of altered cellular homeostasis during viral infection is still a major challenge. Here, we review the strategies by which viruses evade the host's immune response and potential tools used to develop more specific antiviral therapies to cure, control, or prevent viral diseases.
Collapse
Affiliation(s)
- Scheilla T Strumillo
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Denis Kartavykh
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Fábio F de Carvalho
- Departament of Educational Development, Getulio Vargas Foundation, São Paulo, Brazil
| | - Nicolly C Cruz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Ana C de Souza Teodoro
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Marli F Curcio
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Tanner A, Tiwari D, Allen S. Covid-19 Susceptibility and Severity Might be Modified by Vitamin D Status: Theoretical and Practical Considerations. CURRENT RESPIRATORY MEDICINE REVIEWS 2021. [DOI: 10.2174/1568009620999200924155221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background:
The recently identified SARS-CoV-2 coronavirus has resulted in the
Covid-19 pandemic with severe morbidity and high mortality, particularly in certain sections of the
population. The co-morbidity patterns associated with adverse outcomes are multiple and complex
and there is emerging epidemiological, nutritional and molecular biological evidence that an inadequate
vitamin D status is a contributing factor.
Objective:
The aim was to review the role of vitamin D in immune function with particular reference
to the mechanisms whereby it supports immune efficiency, host protection and immune modulation.
The evidence for the possible benefit of vitamin D supplementation to ameliorate the severity
of respiratory infection by SARS-CoV-2 and other pathogens was also reviewed with a view to
making a recommendation.
Methods:
PubMed, MEDLINE and Google Scholar were searched using the terms: Covid-19, coronavirus,
SARS-CoV-2, vitamin D, calcitriol, deficiency, adaptive immunity, innate immunity, ventilation,
critical care, intensive care, acute respiratory distress syndrome, cytokine storm, respiratory
viruses, respiratory tract infection, respiratory syncytial virus, influenza, supplementation. Papers
for inclusion were selected on the basis of relevance and quality.
Findings:
Vitamin D insufficiency is widespread in many parts of the world. Vitamin D is needed
for normal protective and surveillance immune function and there is evidence that deficiency increases
the risk of some respiratory infections, probably including Covid-19. By binding with dedicated
receptors on immune cells vitamin D influences several strands of immune function, including
the production of anti-microbial peptides and several cytokines that promote an appropriate immune
response. Vitamin D supplementation probably reduces the risk of respiratory infection, with
persuasive biological, epidemiological and observational evidence for possible benefit against
Covid-19.
Conclusion:
Despite the lack of direct evidence specific to Covid-19 a cogent theoretical case can
be made for giving adults from selected groups, and arguably all adults, routine supplementation
with vitamin D to improve immune efficiency and reduce the incidence and severity of respiratory
infections. This could be particularly important in sections of the population with a high prevalence
of vitamin D insufficiency. Targeted research is required to provide firm evidence to guide practice.
Collapse
Affiliation(s)
- Alex Tanner
- The Royal Bournemouth Hospital, Dorset, United Kingdom
| | - Divya Tiwari
- The Royal Bournemouth Hospital, Dorset, United Kingdom
| | - Stephen Allen
- The Royal Bournemouth Hospital, Dorset, United Kingdom
| |
Collapse
|
29
|
Langerman SD, Ververs M. Micronutrient Supplementation and Clinical Outcomes in Patients with Dengue Fever. Am J Trop Med Hyg 2020; 104:45-51. [PMID: 33258437 PMCID: PMC7790074 DOI: 10.4269/ajtmh.20-0731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Dengue fever (DF) is a viral infection that is common in tropical countries and represents a significant cause of global morbidity and mortality. Despite its prevalence and severity, treatment options for DF remain limited and consist primarily of supportive measures. Several recent studies have concluded that micronutrient supplementation may improve clinical outcomes in patients with DF, but no review has summarized and synthesized these findings. We conducted a literature review to identify articles investigating the effect of micronutrient supplementation on clinical outcomes among patients with DF. We found several studies which indicated that supplemental vitamin C, vitamin D, vitamin E, and zinc may be useful adjuncts in DF treatment. Folic acid supplementation did not appear to affect clinical outcomes. The reviewed studies have significant limitations including small sample sizes and limited data about the baseline nutritional status of study subjects. We identify a need for additional high-quality randomized trials to elucidate the role of micronutrient supplementation in DF treatment.
Collapse
Affiliation(s)
| | - Mija Ververs
- Address correspondence to Mija Ververs, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30333. E-mail:
| |
Collapse
|
30
|
Arpornsuwan M, Arpornsuwan M. A Proposal of Early Diagnosis and Early Management in Dengue Infection and Possible COVID-19. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2020; 000:1-11. [DOI: 10.14218/erhm.2020.00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Vitamin D high doses supplementation could represent a promising alternative to prevent or treat COVID-19 infection. CLÍNICA E INVESTIGACIÓN EN ARTERIOSCLEROSIS (ENGLISH EDITION) 2020. [PMCID: PMC7833195 DOI: 10.1016/j.artere.2020.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although we lack enough evidence to justify supplementing with vitamin D in the prevention and treatment of COVID-19 infection, it is increasingly feasible that this hypothesis is valid. Two general underlying mechanisms should be considered. One would be the anti-infectious and immunomodulatory action that it exerts by improving intercellular barriers by stimulating innate immunity, as well as by modulating adaptive immunity. Also, vitamin D reduces the production of inflammatory cytokines, such as IL-2 and interferon-gamma (INFγ). More recently, multiple pleiotropic effects have been demonstrated on the actions of vitamin D at the anti-inflammatory and immunomodulatory level with positive results in studies with influenza, coronavirus, and other respiratory infections. An inverse relationship between serum vitamin D levels and the prevalence of the respiratory infectious disease has been described. Of interest, another mechanistic approach responds to considering the inhibition of the renin-angiotensin-aldosterone system (RAAS), which is exacerbated in COVID-19 infection because the virus binds to the enzyme ACE2, making more angiotensin II available to cause damage. Vitamin D inhibits mediators of RAAS – present in all cells of the body – and by inhibiting ACE activity and increasing ACE2, it lowers angiotensin II levels. We present studies with proposals for recommended doses of vitamin D, and although a single guideline is not specified, the possible benefits are promising. Finally, the purpose of this review is to share this idea with health professionals to ignite the debate and call for critical reflection, so that it can contribute to the undertaking of more and better clinical designs to validate the benefits of using high doses of vitamin D for the benefit of public health and especially in times of crisis for COVID-19.
Collapse
|
32
|
Mansur JL, Tajer C, Mariani J, Inserra F, Ferder L, Manucha W. Vitamin D high doses supplementation could represent a promising alternative to prevent or treat COVID-19 infection. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2020; 32:267-277. [PMID: 32718670 PMCID: PMC7256522 DOI: 10.1016/j.arteri.2020.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Although we lack enough evidence to justify supplementing with vitaminD in the prevention and treatment of COVID-19 infection, it is increasingly feasible that this hypothesis is valid. Two general underlying mechanisms should be considered. One would be the anti-infectious and immunomodulatory action that it exerts by improving intercellular barriers by stimulating innate immunity, as well as by modulating adaptive immunity. Also, vitaminD reduces the production of inflammatory cytokines, such as IL-2 and interferon-gamma (INF-γ). More recently, multiple pleiotropic effects have been demonstrated on the actions of vitaminD at the anti-inflammatory and immunomodulatory level with positive results in studies with influenza, coronavirus, and other respiratory infections. An inverse relationship between serum vitaminD levels and the prevalence of the respiratory infectious disease has been described. Of interest, another mechanistic approach responds to considering the inhibition of the renin-angiotensin-aldosterone system (RAAS), which is exacerbated in COVID-19 infection because the virus binds to the enzyme ACE2, making more angiotensinII available to cause damage. VitaminD inhibits mediators of RAAS - present in all cells of the body - and by inhibiting ACE activity and increasing ACE2, it lowers angiotensinII levels. We present studies with proposals for recommended doses of vitaminD, and although a single guideline is not specified, the possible benefits are promising. Finally, the purpose of this review is to share this idea with health professionals to ignite the debate and call for critical reflection, so that it can contribute to the undertaking of more and better clinical designs to validate the benefits of using high doses of vitaminD for the benefit of public health and especially in times of crisis for COVID-19.
Collapse
Affiliation(s)
- José Luis Mansur
- Centro de Endocrinología y Osteoporosis, La Plata, Buenos Aires, Argentina
| | - Carlos Tajer
- Hospital de Alta Complejidad El Cruce, Buenos Aires, Argentina
| | - Javier Mariani
- Hospital de Alta Complejidad El Cruce, Buenos Aires, Argentina
| | - Felipe Inserra
- Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - León Ferder
- Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - Walter Manucha
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-Mendoza, CONICET, Mendoza, Argentina; Laboratorio de Farmacología Experimental, Básica y Traslacional, Área de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
33
|
Zhou YT, Li SS, Ai M, Chen H, Liu YX, Li BY, Zhao Y, Cai WW, Hou B, Ni LL, Xu F, Qiu LY. 1,25(OH)2D3 mitigate cancer-related fatigue in tumor-bearing mice: Integrating network pharmacological analysis. Biomed Pharmacother 2020; 128:110256. [DOI: 10.1016/j.biopha.2020.110256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 12/19/2022] Open
|
34
|
Jaratsittisin J, Xu B, Sornjai W, Weng Z, Kuadkitkan A, Li F, Zhou GC, Smith DR. Activity of vitamin D receptor agonists against dengue virus. Sci Rep 2020; 10:10835. [PMID: 32616772 PMCID: PMC7331731 DOI: 10.1038/s41598-020-67783-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022] Open
Abstract
Infections with the mosquito-transmitted dengue virus (DENV) are a pressing public health problem in many parts of the world. The recently released commercial vaccine for DENV has encountered some problems, and there is still no effective drug to treat infections. Vitamin D has a well characterized role in calcium and phosphorus homeostasis, but additionally has a role in the immune response to bacterial and viral pathogens. In this study a number of fused bicyclic derivatives of 1H-pyrrolo[1,2]imidazol-1-one with vitamin D receptor (VDR) agonist activity were evaluated for possible anti-DENV activity. The results showed that five of the compounds were able to significantly inhibit DENV infection. The most effective compound, ZD-3, had an EC50 value of 7.47 μM and a selective index of 52.75. The compounds were only effective when used as a post-infection treatment and treatment significantly reduced levels of infection, virus output, DENV protein expression and genome copy number. These results suggest that these VDR agonists have the potential for future development as effective anti-DENV agents.
Collapse
Affiliation(s)
| | - Bin Xu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Wannapa Sornjai
- Institute of Molecular Biosciences, Mahidol University, Salaya, 73170, Thailand
| | - Zhibing Weng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Atichat Kuadkitkan
- Institute of Molecular Biosciences, Mahidol University, Salaya, 73170, Thailand
| | - Feng Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, 73170, Thailand.
| |
Collapse
|
35
|
Arboleda JF, Urcuqui-Inchima S. Vitamin D Supplementation: A Potential Approach for Coronavirus/COVID-19 Therapeutics? Front Immunol 2020; 11:1523. [PMID: 32655583 PMCID: PMC7324720 DOI: 10.3389/fimmu.2020.01523] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- John F. Arboleda
- Group of Immunovirology, Faculty of Medicine, University of Antioquia, Medellin, Colombia
- Behavioural Science and Health Care Habits Unit, Comfama, Medellin, Colombia
| | - Silvio Urcuqui-Inchima
- Group of Immunovirology, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| |
Collapse
|
36
|
Chakravarti A, Bharara T, Kapoor N, Ashraf A. Levels of 25-hydroxy Vitamin D3 and Vitamin D Receptor Polymorphism in Severe Dengue Cases from New Delhi. Trop Med Infect Dis 2020; 5:tropicalmed5020072. [PMID: 32375246 PMCID: PMC7344752 DOI: 10.3390/tropicalmed5020072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dengue is the "phoenix" that never went to ashes. First identified in 1943, in Japan, dengue virus has worldwide distribution and is a grave public health concern in developing countries like India; Methods: A cross sectional study was conducted among adults suspected of having dengue fever and attending Lok Nayak Hospital, New Delhi. Restriction Fragment Length Polymorphism was completed for the detection of vitamin D receptor (VDR) gene polymorphism; Results: Serum 25-hydroxy vitamin D3 (vitamin D) levels were found to be 1.6 times elevated in severe dengue cases as compared to healthy controls. Vitamin D levels were significantly higher in secondary infections compared to primary infections as well as secondary severe dengue cases as compared to secondary non-severe cases (p value < 0.05). A significant association of the T allele (rs2228570) was seen in severe dengue cases, while, when comparing the A/A with A/C and C/C genotypes (rs7975232) among dengue cases and healthy controls, the odds ratio was estimated to be 1.24 (0.55-2.75, p > 0.05) and 0.28 (0.08-0.96, p < 0.05) respectively; Conclusions: The present study is an attempt at decoding the role of vitamin D in dengue disease pathogenesis and exploring the role of genetic polymorphism in dengue disease pathogenesis.
Collapse
Affiliation(s)
- Anita Chakravarti
- Department of Microbiology, Shree Guru Gobind Singh Tricentenary University, Gurugram (Haryana) 1222505, India;
- Correspondence:
| | - Tanisha Bharara
- Department of Microbiology, Shree Guru Gobind Singh Tricentenary University, Gurugram (Haryana) 1222505, India;
| | - Neeru Kapoor
- Department of Microbiology, Maulana Azad Medical College, New Delhi 110002, India; (N.K.); (A.A.)
| | - Anzar Ashraf
- Department of Microbiology, Maulana Azad Medical College, New Delhi 110002, India; (N.K.); (A.A.)
| |
Collapse
|
37
|
Lee C. Controversial Effects of Vitamin D and Related Genes on Viral Infections, Pathogenesis, and Treatment Outcomes. Nutrients 2020; 12:nu12040962. [PMID: 32235600 PMCID: PMC7230640 DOI: 10.3390/nu12040962] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Vitamin D (VD) plays an essential role in mineral homeostasis and bone remodeling. A number of different VD-related genes (VDRG) are required for the metabolic activation of VD and the subsequent induction of its target genes. They include a set of genes that encode for VD-binding protein, metabolic enzymes, and the VD receptor. In addition to its well-characterized skeletal function, the immunoregulatory activities of VD and the related polymorphisms of VDRG have been reported and linked to its therapeutic and preventive actions for the control of several viral diseases. However, in regards to their roles in the progression of viral diseases, inconsistent and, in some cases, contradictory results also exist. To resolve this discrepancy, I conducted an extensive literature search by using relevant keywords on the PubMed website. Based on the volume of hit papers related to a certain viral infection, I summarized and compared the effects of VD and VDRG polymorphism on the infection, pathogenesis, and treatment outcomes of clinically important viral diseases. They include viral hepatitis, respiratory viral infections, acquired immunodeficiency syndrome (AIDS), and other viral diseases, which are caused by herpesviruses, dengue virus, rotavirus, and human papillomavirus. This review will provide the most current information on the nutritional and clinical utilization of VD and VDRG in the management of the key viral diseases. This information should be valuable not only to nutritionists but also to clinicians who wish to provide evidence-based recommendations on the use of VD to virally infected patients.
Collapse
Affiliation(s)
- Choongho Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| |
Collapse
|
38
|
Ghanaati S, Choukroun J, Volz U, Hueber R, Mourão CDAB, Sader R, Kawase-Koga Y, Mazhari R, Amrein K, Meybohm P, Al-Maawi S. One hundred years after Vitamin D discovery: Is there clinical evidence for supplementation doses? ACTA ACUST UNITED AC 2020. [DOI: 10.4103/gfsc.gfsc_4_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
39
|
Islam MT. Vitamin D with calcium supplements: a new hope for the treatment of dengue infection. DRUGS & THERAPY PERSPECTIVES 2019. [DOI: 10.1007/s40267-019-00676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Martínez-Moreno J, Hernandez JC, Urcuqui-Inchima S. Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells. Mol Cell Biochem 2019; 464:169-180. [PMID: 31758375 DOI: 10.1007/s11010-019-03658-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/16/2019] [Indexed: 01/18/2023]
Abstract
Dengue, caused by dengue virus (DENV) infection, is a public health problem worldwide. Although DENV pathogenesis has not yet been fully elucidated, the inflammatory response is a hallmark feature in severe DENV infection. Although vitamin D (vitD) can promote the innate immune response against virus infection, no studies have evaluated the effects of vitD on DENV infection, dendritic cells (DCs), and inflammatory response regulation. This study aimed to assess the impact of oral vitD supplementation on DENV-2 infection, Toll-like receptor (TLR) expression, and both pro- and anti-inflammatory cytokine production in monocyte-derived DCs (MDDCs). To accomplish this, 20 healthy donors were randomly divided into two groups and received either 1000 or 4000 international units (IU)/day of vitD for 10 days. During pre- and post-vitD supplementation, peripheral blood samples were taken to obtain MDDCs, which were challenged with DENV-2. We found that MDDCs from donors who received 4000 IU/day of vitD were less susceptible to DENV-2 infection than MDDCs from donors who received 1000 IU/day of vitD. Moreover, these cells showed decreased mRNA expression of TLR3, 7, and 9; downregulation of IL-12/IL-8 production; and increased IL-10 secretion in response to DENV-2 infection. In conclusion, the administration of 4000 IU/day of vitD decreased DENV-2 infection. Our findings support a possible role of vitD in improving the innate immune response against DENV. However, further studies are necessary to determine the role of vitD on DENV replication and its innate immune response modulation in MDDCs.
Collapse
Affiliation(s)
- Jahnnyer Martínez-Moreno
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, 050010, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, 050012, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, 050010, Medellín, Colombia.
| |
Collapse
|
41
|
Faridvand Y, Bagherpour-Hassanlouei N, Nozari S, Nasiri N, Rajabi H, Ghaffari S, Nouri M. 1, 25-Dihydroxyvitamin D3 activates Apelin/APJ system and inhibits the production of adhesion molecules and inflammatory mediators in LPS-activated RAW264.7 cells. Pharmacol Rep 2019; 71:811-817. [PMID: 31377563 DOI: 10.1016/j.pharep.2019.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND 1, 25-Dihydroxyvitamin D3 (1, 25(OH)2D3), an active form of vitamin D3, plays a crucial role in the mitigation of inflammation damage. Recent studies have revealed that apelin and its receptor (apelin/APJ system) could significantly ameliorate LPS-induced inflammation-response. This investigation aimed to appraise the effects of 1, 25(OH)2D3 on the apelin/APJ system and production of adhesion molecules and inflammatory mediators in LPS-activated RAW264.7 macrophage cells. METHODS Murine RAW264.7 cells were pretreated with 1, 25(OH)2D3, followed stimulation with LPS (1 μg/mL) for 24 h. The effect of 1, 25(OH)2D3 on LPS-induced cell injury was determined by MTT assay, whereas, enzyme-linked immunosorbent assay (ELISA), qPCR and western blotting were used to evaluate cytokine production and apelin/APJ system expression. Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) protein expression were measured by flow cytometry. RESULTS The levels of IL-1β, IL-6, and TNF-α cytokines were significantly increased by incubation with LPS. LPS also increased the protein expression of adhesion molecules, including VCAM-1 and ICAM-1. However, pretreatment with 1, 25(OH)2D3 markedly inhibited LPS-induced production of inflammatory cytokines and adhesion molecules. Moreover, we found that 1, 25(OH)2D3 could induced the apelin/APJ system expression. Further experiments demonstrated the significant increase of apelin/APJ system expression at both the protein and mRNA levels in LPS-activated cells when pretreated with 1, 25(OH)2D3. CONCLUSION Taken together, our results indicated that 1, 25(OH)2D3 confers an anti-inflammatory effect through a likely mechanism involving a reduction in pro-inflammatory mediators and adhesion molecules via up-regulation of the apelin/APJ system in RAW264.7 cells.
Collapse
Affiliation(s)
- Yousef Faridvand
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Samira Nozari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Nasiri
- Department of Cellular and Molecular Biology (Genetic), Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Hadi Rajabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell and Regenerative Medicine (SCARM) Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
42
|
Zhao Y, Ran Z, Jiang Q, Hu N, Yu B, Zhu L, Shen L, Zhang S, Chen L, Chen H, Jiang J, Chen D. Vitamin D Alleviates Rotavirus Infection through a Microrna-155-5p Mediated Regulation of the TBK1/IRF3 Signaling Pathway In Vivo and In Vitro. Int J Mol Sci 2019; 20:ijms20143562. [PMID: 31330869 PMCID: PMC6678911 DOI: 10.3390/ijms20143562] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Vitamin D (VD) plays a vital role in anti-viral innate immunity. However, the role of VD in anti-rotavirus and its mechanism is still unclear. The present study was performed to investigate whether VD alleviates rotavirus (RV) infection through a microRNA-155-5p (miR-155-5p)-mediated regulation of TANK-binding kinase 1 (TBK1)/interferon regulatory factors 3 (IRF3) signaling pathway in vivo and in vitro. (2) Methods: The efficacy of VD treatment was evaluated in DLY pig and IPEC-J2. Dual-luciferase reporter activity assay was performed to verify the role of miR-155-5p in 1α,25-dihydroxy-VD3 (1,25D3) mediating the regulation of the TBK1/IRF3 signaling pathway. (3) Results: A 5000 IU·kg–1 dietary VD3 supplementation attenuated RV-induced the decrease of the villus height and crypt depth (p < 0.05), and up-regulated TBK1, IRF3, and IFN-β mRNA expressions in the jejunum (p < 0.05). Incubation with 1,25D3 significantly decreased the RV mRNA expression and the RV antigen concentration, and increased the TBK1 mRNA and protein levels, and the phosphoprotein IRF3 (p-IRF3) level (p < 0.05). The expression of miR-155-5p was up-regulated in response to an RV infection in vivo and in vitro (p < 0.05). 1,25D3 significantly repressed the up-regulation of miR-155-5p in vivo and in vitro (p < 0.05). Overexpression of miR-155-5p remarkably suppressed the mRNA and protein levels of TBK1 and p-IRF3 (p < 0.01), while the inhibition of miR-155-5p had an opposite effect. Luciferase activity assays confirmed that miR-155-5p regulated RV replication by directly targeting TBK1, and miR-155-5p suppressed the TBK1 protein level (p < 0.01). (4) Conclusions: These results indicate that miR-155-5p is involved in 1,25D3 mediating the regulation of the TBK1/IRF3 signaling pathway by directly targeting TBK1.
Collapse
Affiliation(s)
- Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China.
| | - Zhiming Ran
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Qin Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ningming Hu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China.
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
43
|
Vitamin D-mediated attenuation of miR-155 in human macrophages infected with dengue virus: Implications for the cytokine response. INFECTION GENETICS AND EVOLUTION 2019; 69:12-21. [PMID: 30639520 DOI: 10.1016/j.meegid.2018.12.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/17/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022]
Abstract
Clinical manifestations of dengue disease rely on complex interactions between dengue virus (DENV) and host factors that drive altered immune responses, including excessive inflammation. We have recently established that vitamin D can modulate DENV-induced cytokine responses and restrict infection in human macrophages. Cytokine responses are finely regulated by several homeostatic mechanisms, including microRNAs (miRNAs) that can rapidly target specific genes involved in the control of immune signaling pathways. However, the modulation of miRNAs by vitamin D during DENV infection is still unknown. Here, using a qPCR miRNA array we profiled immune-related miRNAs induced by DENV infection in human monocyte-derived macrophages (MDM) differentiated in absence or presence of vitamin D (D3-MDM). We found several miRNAs differentially expressed in both MDM and D3-MDM upon DENV infection. Interestingly, from these, a set of 11 miRNAs were attenuated in D3-MDM as compared to MDM. Gene set enrichment analysis of the predicted mRNA targets of these attenuated miRNAs suggested a predominant role of miR-155-5p in the TLR-induced cytokine responses. Indeed, validation of miR-155-5p attenuation in D3-MDM was linked to increased expression of its target gene SOCS-1, a key component for TLR4 signaling regulation. Likewise, TLR4 activation with LPS further corroborated the same miR-155-5p/SOCS-1 negative correlation observed in D3-MDM upon DENV exposure. Moreover, D3-MDM differentiation induced down-regulation of surface TLR4 that was linked to less TLR4/NF-κB-derived secretion of IL-1β. These data suggest a key role of vitamin D in the control of inflammatory cytokine responses during DENV infection of human macrophages via the TLR4/NF-κB/miR-155-5p/SOCS-1 axis.
Collapse
|
44
|
Vitamin D: Immunomodulatory Aspects. J Clin Gastroenterol 2018; 52 Suppl 1, Proceedings from the 9th Probiotics, Prebiotics and New Foods, Nutraceuticals and Botanicals for Nutrition & Human and Microbiota Health Meeting, held in Rome, Italy from September 10 to 12, 2017:S86-S88. [PMID: 30300262 DOI: 10.1097/mcg.0000000000001112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vitamin D is a group of liposoluble prohormones consisting of 5 different vitamins, the most important forms being vitamin D2 and vitamin D3. The ergocalciferol (vitamin D2) is less efficacious and derives from irradiated fungi, while colecalciferol (vitamin D3), derived from cholesterol, is synthesized via ultraviolet B rays in animal organisms. Only the ultraviolet B rays (290 to 315 nm) portion of the solar ray photolyzes 7-dehydrocholesterol in the skin to previtamin D3, which is converted subsequently to vitamin D3. Moreover, the skin makes little vitamin D from the sun at latitudes above 37 degrees north or below 37 degrees south of the equator. Calcidiol [25(OH)D] is the more stable metabolite of vitamin D in serum and the best indicator of the vitamin D status. Optimal values range are >30 ng/mL. Calcitriol [1,25(OH)2D] is the active hormone form of vitamin D. The 1,25(OH)2D binds to its nuclear receptor (vitamin D receptor), expressed in many tissues, regulating the expression of genes involved in calcium metabolism, cell differentiation, apoptosis, and immunity. About immunity, calcitriol stimulates innate immune responses by enhancing the chemotactic and phagocytotic responses of macrophages as well as the production of antimicrobial peptides. 1,25(OH)2D strongly enhances production of interleukine-10 by stimulating T regulatory cells and inhibiting Th1 and Th17 cell differentiation. Furthermore, several studies suggest that lower 25(OH)D serum levels are associated with an increased risk of respiratory infection at all ages in a dose-response manner.
Collapse
|
45
|
Immunomodulatory effect of 1, 25 dihydroxy vitamin D 3 on the expression of RNA sensing pattern recognition receptor genes and cytokine response in dengue virus infected U937-DC-SIGN cells and THP-1 macrophages. Int Immunopharmacol 2018; 62:237-243. [PMID: 30032048 DOI: 10.1016/j.intimp.2018.07.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 12/30/2022]
Abstract
Dengue virus (DENV) infections are straining public health systems worldwide. Vitamin D, a secosteroid hormone, is currently being investigated for its immunomodulatory effects in DENV infections. The objectives of the present study was to study the effect of 1, 25 dihydroxy vitamin D3 (1,25(OH)2D3) on the expression of genes coding for RNA sensing pattern recognition receptors, downstream signaling components including oligoadenylate synthetases (OAS) and interferon stimulated gene 15 (ISG15) and T helper (Th)1, Th2 and Th17 cytokine response in DENV infected U937-DC-SIGN cells and THP-1 macrophages. U937-DC-SIGN RNA was investigated for the expression of TLR3, DDX58, IFIH1, OAS1, OAS2, OAS3, CAMP and ISG15 genes using gene expression assays. Interleukin (IL)-12p70, IL-10, IL-4 and IL-17A levels were assessed in the THP-1 macrophage culture supernatants. The results revealed that 1,25(OH)2D3 increased the expression of DDX58, OAS1, OAS2 and OAS3 at 0.1 μM while higher concentration had diminishing effect. 1,25(OH)2D3 enhanced the expression of ISG15 and CAMP genes. 1,25(OH)2D3 suppressed the levels of IL-4 and IL-17A. Lower concentration of 1,25(OH)2D3 suppressed IL-12p70 and IL-10 levels while a higher concentration enhanced the levels. The results suggest that 1,25(OH)2D3 may have concentration dependent immunomodulatory effects. Higher dose of 1,25(OH)2D3 might have an immunoregulatory role in ameliorating inflammation during dengue infections. Further studies are needed to evaluate the efficacy of different doses of 1,25(OH)2D3 in preventing severe dengue.
Collapse
|