1
|
Zhang W, Zhang J, Xue H, Chen X, Li M, Chen S, Li Z, Sechi LA, Wang Q, Capobianco G, Lei X. Nicotinamide Mononucleotide Improves Endometrial Homeostasis in a Rat Model of Polycystic Ovary Syndrome by Decreasing Insulin Resistance and Regulating the Glylytic Pathway. Mol Nutr Food Res 2024:e2400340. [PMID: 39420767 DOI: 10.1002/mnfr.202400340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Indexed: 10/19/2024]
Abstract
SCOPE Polycystic ovary syndrome (PCOS) is a common endocrine disorder that can lead to insulin resistance (IR) and dysregulation of glucose metabolism, resulting in an imbalance in the endometrial environment, which is unfavorable for embryo implantation of PCOS. This study aims to investigate whether nicotinamide mononucleotide (NMN) improves the stability of the endometrium in a rat model of PCOS and identifies whether it is related to reduce IR and increase glycolysis levels and its potential signaling pathway. METHODS AND RESULTS Female Sprague-Dawley (SD) rats are fed letrozole and a high-fat diet (HFD) to form the PCOS model, then the model rats are treated with or without NMN. It randomly divided into control, PCOS, and PCOS-NMN groups according to the feeding and treating method. Compared with the PCOS group, the regular estrous cycles are restored, the serum androgen (p<0.01) and fasting insulin levels (p<0.05) are reduced, and endometrial morphology (p<0.05) is improved in NMN-PCOS group. Furthermore, NMN inhibits endometrial cell apoptosis, improves endometrial decidualization transition, reduces IR, restores the expression of glycolysis rate-limiting enzymes, and activates the PI3K/AKT pathway in the uterus. CONCLUSIONS These results suggest that NMN enhances endometrial tissue homeostasis by decreasing uterine IR and regulating the glycolysis through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Wenhui Zhang
- Gynecology & Obstetrics and Reproductive Medical Center, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Jiaming Zhang
- Gynecology & Obstetrics and Reproductive Medical Center, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Haoxuan Xue
- Gynecology & Obstetrics and Reproductive Medical Center, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Xi Chen
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Meixiang Li
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Shenghua Chen
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiling Li
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, 515041, China
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy
- Unit of Microbiology and Virology, AOU Sassari, Sassari, 07100, Italy
| | - Qian Wang
- Gynecology & Obstetrics and Reproductive Medical Center, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
- Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, 515041, China
- Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy
- Gynecologic and Obstetric Clinic, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Giampiero Capobianco
- Gynecologic and Obstetric Clinic, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Xiaocan Lei
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
2
|
Zheng T, Jiang T, Ma H, Zhu Y, Wang M. Targeting PI3K/Akt in Cerebral Ischemia Reperfusion Injury Alleviation: From Signaling Networks to Targeted Therapy. Mol Neurobiol 2024; 61:7930-7949. [PMID: 38441860 DOI: 10.1007/s12035-024-04039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/09/2024] [Indexed: 09/21/2024]
Abstract
Ischemia/reperfusion (I/R) injury is a pathological event that results in reperfusion due to low blood flow to an organ. Cerebral ischemia is a common cerebrovascular disease with high mortality, and reperfusion is the current standard intervention. However, reperfusion may further induce cellular damage and dysfunction known as cerebral ischemia/reperfusion injury (CIRI). Currently, strategies for the clinical management of CIRI are limited, necessitating the exploration of novel and efficacious treatment modalities for the benefit of patients. PI3K/Akt signaling pathway is an important cellular process associated with the disease. Stimulation of the PI3K/Akt pathway enhances I/R injury in multiple organs such as heart, brain, lung, and liver. It stands as a pivotal signaling pathway crucial for diminishing cerebral infarction size and safeguarding the functionality of brain tissue after CIRI. During CIRI, activation of the PI3K/Akt pathway exhibits a protective effect on CIRI. Furthermore, activation of the PI3K/Akt pathway has the potential to augment the activity of antioxidant enzymes, resulting in a decrease in reactive oxygen species (ROS) and the associated oxidative stress. Meanwhile, PI3K/Akt plays a neuroprotective role by inhibiting inflammatory responses and apoptosis. For example, PI3K/Akt interacts with NF-κB, Nrf2, and MAPK signaling pathways to mitigate CIRI. This article is aimed to explore the pivotal role and underlying mechanism of PI3K/Akt in ameliorating CIRI and investigate the influence of ischemic preconditioning and post-processing, as well as the impact of pertinent drugs or activators targeting the PI3K/Akt pathway on CIRI. The primary objective is to furnish compelling evidence supporting the activation of PI3K/Akt in the context of CIRI, elucidating its mechanistic intricacies. By doing so, the paper aims to underscore the critical contribution of PI3K/Akt in mitigating CIRI, providing a theoretical foundation for considering the PI3K/Akt pathway as a viable target for CIRI treatment.
Collapse
Affiliation(s)
- Ting Zheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Taotao Jiang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongxiang Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yanping Zhu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Manxia Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
3
|
Wu Q, Liu WJ, Ma XY, Chang JS, Zhao XY, Liu YH, Yu XY. Zonisamide attenuates pressure overload-induced myocardial hypertrophy in mice through proteasome inhibition. Acta Pharmacol Sin 2024; 45:738-750. [PMID: 38097716 PMCID: PMC10943222 DOI: 10.1038/s41401-023-01191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/02/2023] [Indexed: 03/17/2024] Open
Abstract
Myocardial hypertrophy is a pathological thickening of the myocardium which ultimately results in heart failure. We previously reported that zonisamide, an antiepileptic drug, attenuated pressure overload-caused myocardial hypertrophy and diabetic cardiomyopathy in murine models. In addition, we have found that the inhibition of proteasome activates glycogen synthesis kinase 3 (GSK-3) thus alleviates myocardial hypertrophy, which is an important anti-hypertrophic strategy. In this study, we investigated whether zonisamide prevented pressure overload-caused myocardial hypertrophy through suppressing proteasome. Pressure overload-caused myocardial hypertrophy was induced in mice by trans-aortic constriction (TAC) surgery. Two days after the surgery, the mice were administered zonisamide (10, 20, 40 mg·kg-1·d-1, i.g.) for four weeks. We showed that zonisamide administration significantly mitigated impaired cardiac function. Furthermore, zonisamide administration significantly inhibited proteasome activity as well as the expression levels of proteasome subunit beta types (PSMB) of the 20 S proteasome (PSMB1, PSMB2 and PSMB5) and proteasome-regulated particles (RPT) of the 19 S proteasome (RPT1, RPT4) in heart tissues of TAC mice. In primary neonatal rat cardiomyocytes (NRCMs), zonisamide (0.3 μM) prevented myocardial hypertrophy triggered by angiotensin II (Ang II), and significantly inhibited proteasome activity, proteasome subunits and proteasome-regulated particles. In Ang II-treated NRCMs, we found that 18α-glycyrrhetinic acid (18α-GA, 2 mg/ml), a proteasome inducer, eliminated the protective effects of zonisamide against myocardial hypertrophy and proteasome. Moreover, zonisamide treatment activated GSK-3 through inhibiting the phosphorylated AKT (protein kinase B, PKB) and phosphorylated liver kinase B1/AMP-activated protein kinase (LKB1/AMPKα), the upstream of GSK-3. Zonisamide treatment also inhibited GSK-3's downstream signaling proteins, including extracellular signal-regulated kinase (ERK) and GATA binding protein 4 (GATA4), both being the hypertrophic factors. Collectively, this study highlights the potential of zonisamide as a new therapeutic agent for myocardial hypertrophy, as it shows potent anti-hypertrophic potential through the suppression of proteasome.
Collapse
Affiliation(s)
- Qian Wu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wan-Jie Liu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xin-Yu Ma
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ji-Shuo Chang
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiao-Ya Zhao
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying-Hua Liu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xi-Yong Yu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
4
|
De Biasi S, Gigan JP, Borella R, Santacroce E, Lo Tartaro D, Neroni A, Paschalidis N, Piwocka K, Argüello RJ, Gibellini L, Cossarizza A. Cell metabolism: Functional and phenotypic single cell approaches. Methods Cell Biol 2024; 186:151-187. [PMID: 38705598 DOI: 10.1016/bs.mcb.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Several metabolic pathways are essential for the physiological regulation of immune cells, but their dysregulation can cause immune dysfunction. Hypermetabolic and hypometabolic states represent deviations in the magnitude and flexibility of effector cells in different contexts, for example in autoimmunity, infections or cancer. To study immunometabolism, most methods focus on bulk populations and rely on in vitro activation assays. Nowadays, thanks to the development of single-cell technologies, including multiparameter flow cytometry, mass cytometry, RNA cytometry, among others, the metabolic state of individual immune cells can be measured in a variety of samples obtained in basic, translational and clinical studies. Here, we provide an overview of different single-cell approaches that are employed to investigate both mitochondrial functions and cell dependence from mitochondria metabolism. Moreover, besides the description of the appropriate experimental settings, we discuss the strengths and weaknesses of different approaches with the aim to suggest how to study cell metabolism in the settings of interest.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy.
| | - Julien Paul Gigan
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Katarzyna Piwocka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Rafael José Argüello
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
5
|
Wang L, Li Z, Lu T, Su L, Mao C, Zhang Y, Zhang X, Jiang X, Xie H, Yu X. The potential mechanism of Choulingdan mixture in improving acute lung injury based on HPLC-Q-TOF-MS, network pharmacology and in vivo experiments. Biomed Chromatogr 2023; 37:e5709. [PMID: 37533317 DOI: 10.1002/bmc.5709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
Choulingdan mixture (CLDM) is an empirical clinical prescription for the adjuvant treatment of acute lung injury (ALI). CLDM has been used for almost 30 years in the clinic. However, its mechanism for improving ALI still needs to be investigated. In this study, high-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS) was applied to characterize the overall chemical composition of CLDM. A total of 93 ingredients were characterized, including 25 flavonoids, 20 organic acids, 11 saponins, nine terpenoids, seven tannins and 21 other compounds. Then network pharmacology was applied to predict the potential bioactive components, target genes and signaling pathways of CLDM in improving ALI. Additionally, molecular docking was performed to demonstrate the interaction between the active ingredients and the disease targets. Finally, animal experiments further confirmed that CLDM significantly inhibits pulmonary inflammation, pulmonary edema and oxidative stress in lipopolysaccharide-induced ALI mice by inhibiting the PI3K-AKT signaling pathway. This study enhanced the amount and accuracy of compounds of CLDM and provided new insights into CLDM preventing and treating ALI.
Collapse
Affiliation(s)
- Lili Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengyan Li
- Department of Pharmacy, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lianlin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunqin Mao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiting Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinrui Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaofeng Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoling Yu
- Department of Pharmacy, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
6
|
Kimani CN, Reuter H, Kotzé SH, Muller CJF. Regeneration of Pancreatic Beta Cells by Modulation of Molecular Targets Using Plant-Derived Compounds: Pharmacological Mechanisms and Clinical Potential. Curr Issues Mol Biol 2023; 45:6216-6245. [PMID: 37623211 PMCID: PMC10453321 DOI: 10.3390/cimb45080392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
Type 2 diabetes (T2D) is characterized by pancreatic beta-cell dysfunction, increased cell death and loss of beta-cell mass despite chronic treatment. Consequently, there has been growing interest in developing beta cell-centered therapies. Beta-cell regeneration is mediated by augmented beta-cell proliferation, transdifferentiation of other islet cell types to functional beta-like cells or the reprograming of beta-cell progenitors into fully differentiated beta cells. This mediation is orchestrated by beta-cell differentiation transcription factors and the regulation of the cell cycle machinery. This review investigates the beta-cell regenerative potential of antidiabetic plant extracts and phytochemicals. Various preclinical studies, including in vitro, in vivo and ex vivo studies, are highlighted. Further, the potential regenerative mechanisms and the intra and extracellular mediators that are of significance are discussed. Also, the potential of phytochemicals to translate into regenerative therapies for T2D patients is highlighted, and some suggestions regarding future perspectives are made.
Collapse
Affiliation(s)
- Clare Njoki Kimani
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa;
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Sanet Henriët Kotzé
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- Division of Anatomy, Department of Biomedical Sciences, School of Veterinary Medicine, Ross University, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Christo John Fredrick Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa;
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
7
|
Kalous J, Aleshkina D, Anger M. A Role of PI3K/Akt Signaling in Oocyte Maturation and Early Embryo Development. Cells 2023; 12:1830. [PMID: 37508495 PMCID: PMC10378481 DOI: 10.3390/cells12141830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
A serine/threonine-specific protein kinase B (PKB), also known as Akt, is a key factor in the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway that regulates cell survival, metabolism and proliferation. Akt phosphorylates many downstream specific substrates, which subsequently control the nuclear envelope breakdown (NEBD), centrosome maturation, spindle assembly, chromosome segregation, and cytokinesis. In vertebrates, Akt is also an important player during oogenesis and preimplantation development. In the signaling pathways regulating mRNA translation, Akt is involved in the control of mammalian target of rapamycin complex 1 (mTORC1) and thereby regulates the activity of a translational repressor, the eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1). In this review, we summarize the functions of Akt in mitosis, meiosis and early embryonic development. Additionally, the role of Akt in the regulation of mRNA translation is addressed with respect to the significance of this process during early development.
Collapse
Affiliation(s)
- Jaroslav Kalous
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
| | - Daria Aleshkina
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 00 Praha, Czech Republic
| | - Martin Anger
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
| |
Collapse
|
8
|
McCord JM, Gao B, Hybertson BM. The Complex Genetic and Epigenetic Regulation of the Nrf2 Pathways: A Review. Antioxidants (Basel) 2023; 12:antiox12020366. [PMID: 36829925 PMCID: PMC9952775 DOI: 10.3390/antiox12020366] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Nrf2 is a major transcription factor that significantly regulates-directly or indirectly-more than 2000 genes. While many of these genes are involved in maintaining redox balance, others are involved in maintaining balance among metabolic pathways that are seemingly unrelated to oxidative stress. In the past 25 years, the number of factors involved in the activation, nuclear translocation, and deactivation of Nrf2 has continued to expand. The purpose of this review is to provide an overview of the remarkable complexity of the tortuous sequence of stop-and-go signals that not only regulate expression or repression, but may also modify transcriptional intensity as well as the specificity of promoter recognition, allowing fluidity of its gene expression profile depending on the various structural modifications the transcription factor encounters on its journey to the DNA. At present, more than 45 control points have been identified, many of which represent sites of action of the so-called Nrf2 activators. The complexity of the pathway and the synergistic interplay among combinations of control points help to explain the potential advantages seen with phytochemical compositions that simultaneously target multiple control points, compared to the traditional pharmaceutical paradigm of "one-drug, one-target".
Collapse
Affiliation(s)
- Joe M. McCord
- Pathways Bioscience, Aurora, CO 80045, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence:
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO 80045, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brooks M. Hybertson
- Pathways Bioscience, Aurora, CO 80045, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Ojo OA, Grant S, Amanze JC, Oni AI, Ojo AB, Elebiyo TC, Obafemi TO, Ayokunle DI, Ogunlakin AD. Annona muricata L. peel extract inhibits carbohydrate metabolizing enzymes and reduces pancreatic β-cells, inflammation, and apoptosis via upregulation of PI3K/AKT genes. PLoS One 2022; 17:e0276984. [PMID: 36301972 PMCID: PMC9612462 DOI: 10.1371/journal.pone.0276984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Annona muricata L. peel has been recognized for many ethnobotanical uses, including diabetes management. However, limited detailed scientific information about its mechanism of antidiabetic activity exists. The objective of this study was to evaluate the anti-diabetic properties of an aqueous extract of A. muricata peel (AEAMP) and its mechanism of action on alloxan-induced diabetic rats. METHODS In vitro antidiabetic assays, such as α-amylase and α-glucosidase were analyzed on AEAMP. Alloxan monohydrate (150 mg/kg b.w) was used to induce diabetes in the rats. 150 mg/kg b.w positive control group doses of 6.67, 13.53, and 27.06 mg/kg were administered to 3 groups for twenty-one days. The positive control group was administered 30 mg/kg of metformin. The negative and normal control groups were administered distilled water. The fasting blood glucose, serum insulin, lipid profile, inflammatory cytokines, antioxidant markers, carbohydrate metabolizing enzymes, and liver glycogen were analyzed as well as PI3K/AKT and apoptotic markers PCNA and Bcl2 by RT-PCR. RESULTS AEAMP inhibited α-amylase and α-glucosidase enzymes more effectively than acarbose. AEAMP reduced FBG levels, HOMA-IR, G6P, F-1,6-BP, MDA, TG, TC, AI, CRI, IL-6, TNF-α, and NF-κB in diabetic rats. Furthermore, in diabetic rats, AEAMP improved serum insulin levels, HOMA-β, hexokinase, CAT, GST, and HDL-c. Liver PI3K, liver PCNA and pancreas PCNA were not significantly different in untreated diabetic rats when compared to normal rats suggesting alloxan induction of diabetes did not downregulate the mRNA expression of these genes. AEAMP significantly up-regulated expression of AKT and Bcl2 in the liver and pancreatic tissue. It is interesting that luteolin and resorcinol were among the constituents of AEAMP. CONCLUSIONS AEAMP can improve β-cell dysfunction by upregulating liver AKT and pancreatic PI3K and AKT genes, inhibiting carbohydrate metabolizing enzymes and preventing apoptosis by upregulating liver and pancreatic Bcl2. However, the potential limitation of this study is the unavailability of equipment and techniques for collecting more data for the study.
Collapse
Affiliation(s)
| | - Susan Grant
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhou Y, Cai W, Lu H. Overexpression of microRNA-145 enhanced docetaxel sensitivity in breast cancer cells via inactivation of protein kinase B gamma-mediated phosphoinositide 3-kinase -protein kinase B pathway. Bioengineered 2022; 13:11310-11320. [PMID: 35499128 PMCID: PMC9278436 DOI: 10.1080/21655979.2022.2068756] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Chemoresistance is a major challenge for the treatment of breast cancer (BC). Previous studies showed that miR-145 level decreases in chemoresistant BC tissues. Nevertheless, the biological function of miR-145 on docetaxel resistance of BC cells remains unclear, which is what our research attempted to clarify. RT-qPCR analyzed miR-145 level, and cell viability and colony formation assays assessed the impact of miR-145 on docetaxel resistance. Molecular mechanisms of miR-145-mediated docetaxel sensitivity were examined by Luciferase reporter assay and Western Blot assessed the function of AKT3 and PI3K/AKT signaling. Our research found that miR-145 expression presented significant downregulation in docetaxel-resistant BC cells. Meanwhile, miR-145 overexpression facilitated the docetaxel sensitivity of BC cells in vivo and in vitro, while the miR-145 inhibitor decreased the sensitivity of BC cells to docetaxel. We also observed that miR-145 inhibited docetaxel resistance mainly via downregulation of the AKT3 expression and further inhibited PI3K/AKT pathway. To conclude, this research provides a novel strategy for improving chemosensitivity through the newly identified miR-145-AKT3/PI3K-AKT signaling pathway in BC.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Oncology, Suzhou Ninth People’s Hospital, Suzhou, Jiangsu, China
| | - Wei Cai
- Department of Oncology, Suzhou Ninth People’s Hospital, Suzhou, Jiangsu, China
| | - Hailin Lu
- Department of Oncology, Suzhou Ninth People’s Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Linlin Z, Ciai L, Yanhong S, Huizhong G, Yongchun L, Zhen Y, Shan X, Fengying G, Ying L, Jingjun L, Qin F. A Multi-Target and Multi-Channel Mechanism of Action for Jiawei Yinhuo Tang in the Treatment of Social Communication Disorders in Autism: Network Pharmacology and Molecular Docking Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4093138. [PMID: 35178102 PMCID: PMC8846994 DOI: 10.1155/2022/4093138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder with complex pathogenesis. Currently, the pathogenesis of ASD is not fully understood. Moreover, current treatments do not effectively alleviate the primary symptoms of ASD social disorder (SCDA). Jiawei Yinhuo Tang (JWYHT) is an improved version of the classic prescription Yinhuo Tang. Although this medication has been shown to improve social behavior in ASD patients, the mechanism by which it works remains unknown. METHODS In this study, network pharmacology bioinformatics analysis was used to identify the key targets, biological functions, and signal pathways of JWYHT in SCDA. Then, molecular docking and molecular dynamic simulation were used to validate the activity and stability of the active ingredient and the target protein during the binding process. RESULTS The analysis identified 157 key targets and 9 core targets of JWYHT (including proto-oncogene (FOS), caspase 3 (CASP3), mitogen-activated protein kinase-3 (MAPK3), interleukin-6 (IL6), mitogen-activated protein kinase-1 (MAPK1), tumor necrosis factor (TNF), mitogen-activated protein kinase-8 (MAPK8), AKT serine/threonine kinase 1 (AKT1), and 5-hydroxytryptamine receptor 1B (5HT1B)) in SCDA. In addition, the Kyoto Encyclopedia of Gene and Genome results, as well as the staggering network analyses, revealed 20 biological processes and 20 signal pathways targeted by JWYHT in SCDA. Finally, molecular docking analysis was used to determine the binding activity of the main active components of JWYHT to the key targets. The binding activity and stability of methyl arachidonate and MAPK8 were demonstrated using molecular dynamics simulation. CONCLUSION This study demonstrates that JWYHT regulates neuronal development, synaptic transmission, intestinal and cerebral inflammatory response, and other processes in SCDA.
Collapse
Affiliation(s)
- Zhang Linlin
- The Second School of Clinic Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510410, China
| | - Lai Ciai
- The Second School of Clinic Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510410, China
| | - Su Yanhong
- The Second School of Clinic Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510410, China
| | - Gan Huizhong
- The Second School of Clinic Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510410, China
| | - Li Yongchun
- Southern Medical University, Nanfang Hospital, Department of Ancient Traditional Chinese Medicine, Guangzhou 510610, China
| | - Yang Zhen
- Southern Medical University, Nanfang Hospital, Department of Ancient Traditional Chinese Medicine, Guangzhou 510610, China
| | - Xu Shan
- Southern Medical University, Nanfang Hospital, Department of Ancient Traditional Chinese Medicine, Guangzhou 510610, China
| | - Gong Fengying
- Southern Medical University, Nanfang Hospital, Department of Ancient Traditional Chinese Medicine, Guangzhou 510610, China
| | - Lv Ying
- Southern Medical University, Nanfang Hospital, Department of Ancient Traditional Chinese Medicine, Guangzhou 510610, China
| | - Li Jingjun
- Southern Medical University, Nanfang Hospital, Department of Ancient Traditional Chinese Medicine, Guangzhou 510610, China
| | - Fan Qin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
12
|
Bai C, Wang Y, Niu Z, Guan Y, Huang J, Nian X, Zuo F, Zhao J, Kazumi T, Wu B. Exenatide improves hepatocyte insulin resistance induced by different regional adipose tissue. Front Endocrinol (Lausanne) 2022; 13:1012904. [PMID: 36246878 PMCID: PMC9558273 DOI: 10.3389/fendo.2022.1012904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is resulted from energy surplus and is characterized by abnormal adipose tissue accumulation and/or distribution. Adipokines secreted by different regional adipose tissue can induce changes in key proteins of the insulin signaling pathway in hepatocytes and result in impaired hepatic glucose metabolism. This study aimed to investigate whether exenatide affects key proteins of IRS2/PI3K/Akt2 signaling pathway in hepatocytes altered by the different regional fat depots. Six non-obese patients without endocrine diseases were selected as the research subjects. Their subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT)were co-cultured with HepG2 cells in the transwell chamber. In the presence or absence of exenatide, adipokines content in the supernatant of each experimental group was detected by ELISA. In addition, HepG2 cells in each co-culture group with and without insulin were collected, and the expression of key proteins IRS2, p-IRS2(S731), PI3K-p85, Akt2, and p-Akt2(S473) was detected by western blotting (WB). The results showed that the adipokines IL-8, MCP-1, VEGF, and sTNFR2 in the supernatant of HepG2 cells induced by different regional adipose tissue were significantly higher than those in the HepG2 group, and VAT released more adipokines than SAT. Furthermore, these adipokines were significantly inhibited by exenatide. Importantly, the different regional fat depot affects the IRS2/PI3K/Akt2 insulin signaling pathway of hepatocytes. Exenatide can up-regulate the expression of hepatocyte proteins IRS2, PI3K-p85, p-Akt2(S731) inhibited by adipose tissue, and down-regulate the expression of hepatocyte proteins p-IRS2(S731) promoted by adipose tissue. The effect of VAT on the expression of these key proteins in hepatocytes is more significant than that of SAT. But there was no statistical difference in the expression of Akt2 protein among each experimental group, suggesting that exenatide has no influence on the expression of Akt2 protein in hepatocytes. In conclusion, exenatide may improve hepatic insulin resistance (IR) by inhibiting adipokines and regulating the expression of key proteins in the IRS2/PI3K/Akt2 pathway.
Collapse
Affiliation(s)
- Chuanmin Bai
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yujun Wang
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Zhi Niu
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yaxin Guan
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jingshan Huang
- School of Computing, University of South Alabama, Mobile, AL, United States
| | - Xin Nian
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Fan Zuo
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Juan Zhao
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Tsutomu Kazumi
- Open Research Center for Studying of Lifestyle−Related Diseases, Mukogawa Women’s University, Nishinomiya, Japan
- Research Institute for Nutrition Sciences, Mukogawa Women’s University, Nishinomiya, Japan
- Department of Medicine, Kohnan Kakogawa Hospital, Kakogawa, Japan
| | - Bin Wu
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
- *Correspondence: Bin Wu,
| |
Collapse
|
13
|
Garcia S, Saldana-Caboverde A, Anwar M, Raval AP, Nissanka N, Pinto M, Moraes CT, Diaz F. Enhanced glycolysis and GSK3 inactivation promote brain metabolic adaptations following neuronal mitochondrial stress. Hum Mol Genet 2021; 31:692-704. [PMID: 34559217 DOI: 10.1093/hmg/ddab282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/14/2022] Open
Abstract
We analyzed early brain metabolic adaptations in response to mitochondrial dysfunction in a mouse model of mitochondrial encephalopathy with complex IV deficiency (neuron specific COX10 KO). In this mouse model the onset of the mitochondrial defect did not coincide with immediate cell death suggesting early adaptive metabolic responses to compensate for the energetic deficit. Metabolomic analysis in the knockout mice revealed increased levels of glycolytic and pentose phosphate pathway intermediates, amino acids and lysolipids. Glycolysis was modulated by enhanced activity of glycolytic enzymes, and not by their overexpression, suggesting the importance of post-translational modifications in the adaptive response. GSK3 inactivation was the most upstream regulation identified, implying that it is a key event in this adaptive mechanism. Because neurons are thought not to rely on glycolysis for ATP production in normal conditions, our results indicate that neurons still maintain their ability to upregulate this pathway when under mitochondrial respiration stress.
Collapse
Affiliation(s)
- Sofia Garcia
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Amy Saldana-Caboverde
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Mir Anwar
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Ami Pravinkant Raval
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Nadee Nissanka
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Milena Pinto
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Carlos Torres Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136
| |
Collapse
|
14
|
An X, Wei Z, Ran B, Tian H, Gu H, Liu Y, Cui H, Zhu S. Histone Deacetylase Inhibitor Trichostatin A Suppresses Cell Proliferation and Induces Apoptosis by Regulating the PI3K/AKT Signalling Pathway in Gastric Cancer Cells. Anticancer Agents Med Chem 2021; 20:2114-2124. [PMID: 32593284 DOI: 10.2174/1871520620666200627204857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/28/2020] [Accepted: 04/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Gastric cancer, a common malignant tumour worldwide, has a relatively poor prognosis and is a serious threat to human health. Histone Deacetylase Inhibitors (HDACi) are anticancer agents that are known to affect the cell growth of different cancer types. Trichostatin A (TSA) selectively inhibits the class I and II mammalian Histone Deacetylase (HDAC) family enzymes and regulates many cell processes. Still, the underlying mechanisms of HDACs are not fully understood in gastric cancer. OBJECTIVE This study aims to investigate the antitumor effect and the mechanism of growth modulation of gastric cancer cells by TSA. METHODS The cell proliferation of gastric cancer cells was measured by MTT and BrdU immunofluorescence assays. Soft agar assay was used to detect the colony formation ability of gastric cancer cells. Flow cytometry was used to examine cell cycle and apoptosis. Western blot was employed to detect protein expression of target factors. RESULTS TSA inhibits the proliferation of MKN-45 and SGC-7901 cells and leads to significant repression of colony number and size. Flow cytometry assays show TSA induces cell cycle arrest at G1 phase and apoptosis, and TSA effects the expression of related factors in the mitochondrial apoptotic signalling and cell cycle-related regulatory pathways. Furthermore, TSA increased histone H3K27 acetylation and downregulated the expression of PI3K and p-AKT. CONCLUSION Downregulating PI3K/AKT pathway activation is involved in TSA-mediated proliferation inhibition of gastric cancer.
Collapse
Affiliation(s)
- Xinli An
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zekun Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine,
Chongqing 400716, China
| | - Botian Ran
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hao Tian
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hongyu Gu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine,
Chongqing 400716, China
| | - Yan Liu
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine,
Chongqing 400716, China
| | - Shunqin Zhu
- School of Life Sciences, Southwest University, Chongqing, 400715, China,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine,
Chongqing 400716, China
| |
Collapse
|
15
|
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Sharma N, Bungau S. Elucidating the Possible Role of FoxO in Depression. Neurochem Res 2021; 46:2761-2775. [PMID: 34075521 DOI: 10.1007/s11064-021-03364-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022]
Abstract
Forkhead box-O (FoxO) transcriptional factors perform essential functions in several physiological and biological processes. Recent studies have shown that FoxO is implicated in the pathophysiology of depression. Changes in the upstream mediators of FoxOs including brain-derived neurotrophic factor (BDNF) and protein kinase B have been associated with depressive disorder and the antidepressant agents are known to alter the phosphorylation of FoxOs. Moreover, FoxOs might be regulated by serotonin or noradrenaline signaling and the hypothalamic-pituitary-adrenal (HPA)-axis,both of them are associated with the development of the depressive disorder. FoxO also regulates neural morphology, synaptogenesis, and neurogenesis in the hippocampus, which accounts for the pathogenesis of the depressive disorder. The current article underlined the potential functions of FoxOs in the etiology of depressive disorder and formulate few essential proposals for further investigation. The review also proposes that FoxO and its signal pathway might establish possible therapeutic mediators for the management of depressive disorder.
Collapse
Affiliation(s)
- Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.,Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt., Shimla, Himachal Pradesh, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
16
|
Lee M, Li H, Zhao H, Suo M, Liu D. Effects of Hydroxysafflor Yellow A on the PI3K/AKT Pathway and Apoptosis of Pancreatic β-Cells in Type 2 Diabetes Mellitus Rats. Diabetes Metab Syndr Obes 2020; 13:1097-1107. [PMID: 32308459 PMCID: PMC7154009 DOI: 10.2147/dmso.s246381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/22/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND AIM Type 2 diabetes mellitus (T2DM), a complex metabolic disease, has become a major public health issue around the world. Hydroxysafflor yellow A (HSYA) is the major active chemical ingredient of Carthamus tinctorius L. (safflower), which is widely used in patients with cardiovascular and cerebrovascular diseases in China. The aim of this study was to investigate the anti-diabetic effect and potential mechanism of HSYA on the high-fat diet (HFD) and streptozotocin (STZ-)-induced T2DM rats. MATERIALS AND METHODS T2DM rats were induced by feeding HFD (60% fat) for four weeks followed by intraperitoneal injection of a low dose of streptozocin (35mg/kg). The T2DM rats were treated with HSYA (120mg/kg) or metformin (90mg/kg) for eight weeks. Biochemical analysis, histological analysis and Western blot analysis were conducted after 8 weeks of intervention. RESULTS The treatment with HSYA evidently reduced fasting-blood glucose and insulin resistance in T2DM rats, indicated by results from fasting-blood glucose, oral glucose tolerance test, fasting insulin levels and histology of pancreas islets. The Western blot results revealed that HSYA reversed the down-regulation of PI3K and AKT in liver. The TUNEL assay analysis of pancreatic tissue showed that HSYA could inhibit the apoptosis of pancreatic β-cells to a certain extent. Moreover, HSYA-treatment increased the levels of glycogen synthase and hepatic glycogen and improved lipid metabolism by reducing the triglyceride, total and low-density lipoprotein cholesterol levels, even though it did not change the rats' body weights. CONCLUSION The results of this study suggested that HSYA could promote PI3K/Akt activation and inhibit the apoptosis of pancreatic β-cells directly or indirectly, which might be the underlying mechanisms in HSYA to improve insulin resistance and regulate glycolipid metabolism in T2DM rats.
Collapse
Affiliation(s)
- Maosheng Lee
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou510006, People’s Republic of China
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen518033, People’s Republic of China
| | - Huilin Li
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen518033, People’s Republic of China
| | - Hengxia Zhao
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen518033, People’s Republic of China
| | - Miao Suo
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou510006, People’s Republic of China
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen518033, People’s Republic of China
| | - Deliang Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen518033, People’s Republic of China
| |
Collapse
|
17
|
Xu F, Na L, Li Y, Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 2020; 10:54. [PMID: 32266056 PMCID: PMC7110906 DOI: 10.1186/s13578-020-00416-0] [Citation(s) in RCA: 365] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
The PI3 K/AKT/mTOR signalling pathway plays an important role in the regulation of signal transduction and biological processes such as cell proliferation, apoptosis, metabolism and angiogenesis. Compared with those of other signalling pathways, the components of the PI3K/AKT/mTOR signalling pathway are complicated. The regulatory mechanisms and biological functions of the PI3K/AKT/mTOR signalling pathway are important in many human diseases, including ischaemic brain injury, neurodegenerative diseases, and tumours. PI3K/AKT/mTOR signalling pathway inhibitors include single-component and dual inhibitors. Numerous PI3K inhibitors have exhibited good results in preclinical studies, and some have been clinically tested in haematologic malignancies and solid tumours. In this review, we briefly summarize the results of research on the PI3K/AKT/mTOR pathway and discuss the structural composition, activation, communication processes, regulatory mechanisms and biological functions of the PI3K/AKT/mTOR signalling pathway in the pathogenesis of neurodegenerative diseases and tumours.
Collapse
Affiliation(s)
- Fei Xu
- Department of Microbiology and Immunology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Rd, Shanghai, 201318 China
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Lixin Na
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Yanfei Li
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Linjun Chen
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| |
Collapse
|
18
|
Manda G, Rojo AI, Martínez-Klimova E, Pedraza-Chaverri J, Cuadrado A. Nordihydroguaiaretic Acid: From Herbal Medicine to Clinical Development for Cancer and Chronic Diseases. Front Pharmacol 2020; 11:151. [PMID: 32184727 PMCID: PMC7058590 DOI: 10.3389/fphar.2020.00151] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Nordihydroguaiaretic acid (NDGA) is a phenolic lignan obtained from Larrea tridentata, the creosote bush found in Mexico and USA deserts, that has been used in traditional medicine for the treatment of numerous diseases such as cancer, renal, cardiovascular, immunological, and neurological disorders, and even aging. NDGA presents two catechol rings that confer a very potent antioxidant activity by scavenging oxygen free radicals and this may explain part of its therapeutic action. Additional effects include inhibition of lipoxygenases (LOXs) and activation of signaling pathways that impinge on the transcription factor Nuclear Factor Erythroid 2-related Factor (NRF2). On the other hand, the oxidation of the catechols to the corresponding quinones my elicit alterations in proteins and DNA that raise safety concerns. This review describes the current knowledge on NDGA, its targets and side effects, and its synthetic analogs as promising therapeutic agents, highlighting their mechanism of action and clinical projection towards therapy of neurodegenerative, liver, and kidney disease, as well as cancer.
Collapse
Affiliation(s)
- Gina Manda
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Ana I Rojo
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain
| | - Elena Martínez-Klimova
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Antonio Cuadrado
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania.,Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain
| |
Collapse
|
19
|
Campbell A, Mohl JE, Gutierrez DA, Varela-Ramirez A, Boland T. Thermal Bioprinting Causes Ample Alterations of Expression of LUCAT1, IL6, CCL26, and NRN1L Genes and Massive Phosphorylation of Critical Oncogenic Drug Resistance Pathways in Breast Cancer Cells. Front Bioeng Biotechnol 2020; 8:82. [PMID: 32154227 PMCID: PMC7047130 DOI: 10.3389/fbioe.2020.00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/29/2020] [Indexed: 12/19/2022] Open
Abstract
Bioprinting technology merges engineering and biological fields and together, they possess a great translational potential, which can tremendously impact the future of regenerative medicine and drug discovery. However, the molecular effects elicited by thermal inkjet bioprinting in breast cancer cells remains elusive. Previous studies have suggested that bioprinting can be used to model tissues for drug discovery and pharmacology. We report viability, apoptosis, phosphorylation, and RNA sequence analysis of bioprinted MCF7 breast cancer cells at separate timepoints post-bioprinting. An Annexin A5-FITC apoptosis stain was used in combination with flow cytometry at 2 and 24 h post-bioprinting. Antibody arrays using a Human phospho-MAPK array kit was performed 24 h post-bioprinting. RNA sequence analysis was conducted in samples collected at 2, 7, and 24 h post-bioprinting. The post-bioprinting cell viability averages were 77 and 76% at 24 h and 48 h, with 31 and 64% apoptotic cells at 2 and 24 h after bioprinting. A total of 21 kinases were phosphorylated in the bioprinted cells and 9 were phosphorylated in the manually seeded controls. The RNA seq analysis in the bioprinted cells identified a total of 12,235 genes, of which 9.7% were significantly differentially expressed. Using a ±2-fold change as the cutoff, 266 upregulated and 206 downregulated genes were observed in the bioprinted cells, with the following 5 genes uniquely expressed NRN1L, LUCAT1, IL6, CCL26, and LOC401585. This suggests that thermal inkjet bioprinting is stimulating large scale gene alterations that could potentially be utilized for drug discovery. Moreover, bioprinting activates key pathways implicated in drug resistance, cell motility, proliferation, survival, and differentiation.
Collapse
Affiliation(s)
- Aleli Campbell
- Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, TX, United States
| | - Jonathon E Mohl
- Department of Mathematical Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Denisse A Gutierrez
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Armando Varela-Ramirez
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Thomas Boland
- Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
20
|
Li M, Gao WW, Liu L, Gao Y, Wang YF, Zhao B, Xiong XX. The Akt/glycogen synthase kinase-3β pathway participates in the neuroprotective effect of interleukin-4 against cerebral ischemia/reperfusion injury. Neural Regen Res 2020; 15:1716-1723. [PMID: 32209778 PMCID: PMC7437578 DOI: 10.4103/1673-5374.276343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interleukin-4 (IL-4) has a protective effect against cerebral ischemia/reperfusion injury. Animal experiments have shown that IL-4 improves the short- and long-term prognosis of neurological function. The Akt (also called protein kinase B, PKB)/glycogen synthase kinase-3β (Akt/GSK-3β) signaling pathway is involved in oxidative stress, the inflammatory response, apoptosis, and autophagy. However, it is not yet clear whether the Akt/GSK-3β pathway participates in the neuroprotective effect of IL-4 against cerebral ischemia/reperfusion injury. In the present study, we established a cerebral ischemia/reperfusion mouse model by middle cerebral artery occlusion for 60 minutes followed by a 24-hour reperfusion. An IL-4/anti-IL-4 complex (10 μg) was intraperitoneally administered 30 minutes before surgery. We found that administration of IL-4 significantly alleviated the neurological deficits, oxidative stress, cell apoptosis, and autophagy and reduced infarct volume of the mice with cerebral ischemia/reperfusion injury 24 hours after reperfusion. Simultaneously, IL-4 activated Akt/GSK-3β signaling pathway. However, an Akt inhibitor LY294002, which was injected at 15 nmol/kg via the tail vein, attenuated the protective effects of IL-4. These findings indicate that IL-4 has a protective effect on cerebral ischemia/reperfusion injury by mitigating oxidative stress, reducing apoptosis, and inhibiting excessive autophagy, and that this mechanism may be related to activation of the Akt/GSK-3β pathway. This animal study was approved by the Animal Ethics Committee of Renmin Hospital of Wuhan University, China (approval No. WDRY2017-K037) on March 9, 2017.
Collapse
Affiliation(s)
- Mei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wen-Wei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yue Gao
- Department of Personnel, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Ya-Feng Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiao-Xing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
21
|
Li X, Wu X. Soluble epoxide hydrolase ( Ephx2) silencing attenuates the hydrogen peroxide-induced oxidative damage in IEC-6 cells. Arch Med Sci 2019; 17:1075-1086. [PMID: 34336035 PMCID: PMC8314398 DOI: 10.5114/aoms.2019.87137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/30/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Oxidative stress can cause intestinal disease. Soluble epoxide hydrolase (sEH, Ephx2) is related to cell apoptosis. The effect of Ephx2 on the H2O2-induced oxidative damage remains unclear. Thus, we aimed to explore the effect of Ephx2 on oxidative damage and the underlying potential mechanism. MATERIAL AND METHODS The cell viability was determined using cell counting kit-8 (CCK-8) assay. The reactive oxygen species (ROS), apoptosis, and mitochondrial membrane potential (MMP) were examined using flow cytometry analysis. Commercial kits were applied to respectively determine the lactate dehydrogenase (LDH) leakage, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity. The expressions of target factors were measured by conducting quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot. RESULTS We found that knockdown of Ephx2 enhanced the viability of H2O2-treated IEC-6 cells, and that si-Ephx2 reduced the ROS level, MMP loss, and apoptosis in comparison to the H2O2 model group. Knockdown of Ephx2 was found to decrease LDH activity and MDA content, and to improve the SOD activity in comparison to those in the H2O2 model group. Knockdown of Ephx2 reduced the expressions of Fas, Fasl, Bax, and cleavedcaspase-3 and elevated the expression of Bcl-2 in H2O2-treated IEC-6 cells. Furthermore, we observed that knockdown of Ephx2 enhanced the phosphorylation of PI3K, Akt, and GSK3β, which were reduced by the treatment of H2O2. In addition, the anti-apoptotic effect of si-Ephx2 was enhanced in the presence of AUDA-pharmacological Ephx2 inhibitor. CONCLUSIONS Ephx2 silencing inhibited H2O2-induced oxidative damage. The PI3K/Akt/GSK3β pathway was related to the effect of si-Ephx2. Our study provided a potential target for the prevention of intestinal injury.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Anorectal Surgery, First People's Hospital of Yuhang District, Hangzhou, China
| | - Xiaoqin Wu
- Anorectal Care Unit, First People's Hospital of Yuhang District, Hangzhou, China
| |
Collapse
|
22
|
Aftab S, Shakoori AR. Low glucose availability alters the expression of genes involved in initial adhesion of human glioblastoma cancer cell line SF767. J Cell Biochem 2019; 120:16824-16839. [PMID: 31111555 DOI: 10.1002/jcb.28940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 01/09/2023]
Abstract
Studying the metabolic pathways of cancer cells is considered as a key to control cancer malignancies and open windows for effective drug discovery against cancer. Of all the properties of a tumor, metastasis potential is a defining characteristic. Metastasis is controlled by a variety of factors that directly control the expression of cell adhesion proteins. In this study we have investigated the expression of cell to cell and cell to matrix adhesion protein genes during the initial phases of attachment of human glioblastoma cancer cell line SF767 (66Y old human female: UCSF Neurosurgery Tissue Bank) to the attachment surface under (Cell culture treated polystyrene plate bottom) glucose-rich and glucose-starved conditions. The aim was to imitate the natural microenvironment of glucose availability to cancer cells inside a tumor that triggers epithelial to mesenchymal transition (EMT). In this study, we have observed the gene expression of epithelial and mesenchymal isoforms of cadherin (E-CAD and N-CAD) and Ig like cell adhesion molecules (E-CAM and N-CAM) along with Integrin family subunits for the initial attachment of cancer cells. We observed that high glucose environments promoted cell survival and cell adhesion, whereas low glucose accelerated EMT by downregulating the expression level of integrin, E-CAD, and N-CAD, and upregulation of N-CAM during early period of cell adhesion. Low glucose availability also downregulated variety of structural and regulatory genes, such as zinc finger E-box binding home box 1A), cytokeratin, Snail, and β catenin, and upregulation of hypoxia-inducible factor 1, matrix metalloprotease 13/Collagenase 3, vimentim, p120, and fructose 1,6 bisphosphatase. Glucose conditions are more efficient for cancer studies in this case glioblastoma cells.
Collapse
Affiliation(s)
- Saira Aftab
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, Pakistan
| | - Abdul Rauf Shakoori
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, Pakistan.,Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
23
|
Nalbuphine suppresses breast cancer stem-like properties and epithelial-mesenchymal transition via the AKT-NFκB signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:197. [PMID: 31092275 PMCID: PMC6521451 DOI: 10.1186/s13046-019-1184-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/17/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cancer pain is a debilitating disorder of human breast cancer and a primary determinant of the poor quality of life, and relieving pain is fundamental strategy in the cancer treatment. However, opioid analgesics, like morphine and fentanyl, which are widely used in cancer pain treatment have been reported to enhance stem-like traits and epithelial-mesenchymal transition (EMT) of breast cancer cells. As such, it is vital to make the best choice of analgesic for breast cancer management. METHODS MTT assays and colony formation assays were performed to examine tumor cell proliferation upon nalbuphine treatment. RT-PCR, western blot, flow cytometry, sphere formation, immunohistochemistry, transwell assays, wound healing assays and mouse xenograft were used to assess the biological effects of nalbuphine treatment. RESULTS Nalbuphine inhibited breast cancer cell growth and tumorigenesis, with little effect on noncancerous breast cell lines. Nalbuphine suppressed cancer stem-like traits and EMT in both breast cancer cells and mouse xenograft tumor tissues. Additionally, activation of AKT reversed the nalbuphine-induced inhibition of cancer stem-like properties, tumorigenesis and EMT. CONCLUSIONS Our results demonstrate a new role of nalbuphine in inhibiting cancer stem-like properties and EMT in addition to relieving pain, which suggests that nalbuphine may be effective in breast cancer treatment.
Collapse
|
24
|
Chen K, Rekep M, Wei W, Wu Q, Xue Q, Li S, Tian J, Yi Q, Zhang G, Zhang G, Xiao Q, Luo J, Liu Y. Quercetin Prevents In Vivo and In Vitro Myocardial Hypertrophy Through the Proteasome-GSK-3 Pathway. Cardiovasc Drugs Ther 2019; 32:5-21. [PMID: 29435775 DOI: 10.1007/s10557-018-6771-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE Quercetin, a flavonoid, has been reported to ameliorate cardiovascular diseases, such as cardiac hypertrophy. However, the mechanism is not completely understood. In this study, a mechanism related to proteasome-glycogen synthesis kinase 3 (GSK-3) was elucidated in rats and primary neonatal cardiomyocytes. METHODS Rats were subjected to sham or constriction of abdominal aorta surgery groups and treated with or without quercetin for 8 weeks. Angiotensin II (Ang II)-induced primary cardiomyocytes were cultured with quercetin treatment or not for 48 h. Echocardiography, real-time RT-PCR, histology, immunofluorescence, and Western blotting were conducted. Proteasome activities were also detected using a fluorescent peptide substrate. RESULTS Echocardiography showed that quercetin prevented constriction of abdominal aorta-induced cardiac hypertrophy and improved the cardiac diastolic function. In addition, quercetin also significantly reduced the Ang II-induced hypertrophic surface area and atrial natriuretic factor (ANF) mRNA level in primary cardiomyocytes. Proteasome activities were obviously inhibited in the quercetin-treated group both in vivo and in vitro. Quercetin also decreased the levels of proteasome subunit beta type (PSMB) 1, PSMB2, and PSMB5 of the 20S proteasome as well as the levels of proteasome regulatory particle (Rpt) 1 and Rpt4 of the 19S proteasome. In particular, the PSMB5 level in the nucleus was reduced after quercetin treatment. Furthermore, phosphorylated GSK-3α/β (inactivation of GSK-3) was decreased, which means that GSK-3 activity was increased. The phosphorylation levels of upstream AKT (PKB (protein kinase B)) and liver kinase B1/AMP activated protein kinase (LKB1/AMPKα) and those of downstream extracellular signal-regulated kinase (ERK), histone H3, β-catenin, and GATA binding protein 4 (GATA4) were reduced after quercetin treatment, while hypertrophy was reversed after treatment with the GSK-3 inhibitor. CONCLUSION In summary, quercetin prevents cardiac hypertrophy, which is related to proteasome inhibition and activation of GSK-3α/β. Upstream (AKT, LKB1/AMPKα) and downstream hypertrophic factors, such as ERK, histone H3, β-catenin, and GATA4, may also be involved.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Disease Models, Animal
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta/metabolism
- Hypertrophy, Left Ventricular/enzymology
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Male
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Phosphorylation
- Proteasome Endopeptidase Complex/drug effects
- Proteasome Endopeptidase Complex/metabolism
- Proteasome Inhibitors/pharmacology
- Quercetin/pharmacology
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Kuixiang Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
- Medical College of Jiaying University, Meizhou, 514031, China
| | - Mubarak Rekep
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wei Wei
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, 510632, China
| | - Qian Wu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qin Xue
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Sujuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiahui Tian
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Quan Yi
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Genshui Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guiping Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qing Xiao
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiandong Luo
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yinghua Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
25
|
Pederson BA. Structure and Regulation of Glycogen Synthase in the Brain. ADVANCES IN NEUROBIOLOGY 2019; 23:83-123. [PMID: 31667806 DOI: 10.1007/978-3-030-27480-1_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Brain glycogen synthesis is a regulated, multi-step process that begins with glucose transport across the blood brain barrier and culminates with the actions of glycogen synthase and the glycogen branching enzyme to elongate glucose chains and introduce branch points in a growing glycogen molecule. This review focuses on the synthesis of glycogen in the brain, with an emphasis on glycogen synthase, but draws on salient studies in mammalian muscle and liver as well as baker's yeast, with the goal of providing a more comprehensive view of glycogen synthesis and highlighting potential areas for further study in the brain. In addition, deficiencies in the glycogen biosynthetic enzymes which lead to glycogen storage diseases in humans are discussed, highlighting effects on the brain and discussing findings in genetically modified animal models that recapitulate these diseases. Finally, implications of glycogen synthesis in neurodegenerative and other diseases that impact the brain are presented.
Collapse
|
26
|
Zhang Y, Xiang Y, Wang X, Zhu L, Li H, Wang S, Pan X, Zhao H. Cerebral dopamine neurotrophic factor protects microglia by combining with AKT and by regulating FoxO1/mTOR signaling during neuroinflammation. Biomed Pharmacother 2019; 109:2278-2284. [DOI: 10.1016/j.biopha.2018.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 01/13/2023] Open
|
27
|
Xie Y, Shi X, Sheng K, Han G, Li W, Zhao Q, Jiang B, Feng J, Li J, Gu Y. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep 2018; 19:783-791. [PMID: 30535469 PMCID: PMC6323245 DOI: 10.3892/mmr.2018.9713] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
The purpose of this review is to summarize the research progress of PI3K/Akt signaling pathway in erythropoiesis and glycolysis. Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) is activated by numerous genes and leads to protein kinase B (Akt) binding to the cell membrane, with the help of phosphoinositide-dependent kinase, in the PI3K/Akt signal transduction pathway. Threonine and serine phosphorylation contribute to Akt translocation from the cytoplasm to the nucleus and further mediates enzymatic biological effects, including those involved in cell proliferation, apoptosis inhibition, cell migration, vesicle transport and cell cancerous transformation. As a key downstream protein of the PI3K/Akt signaling pathway, hypoxia-inducible factor (HIF)-1 is closely associated with the concentration of oxygen in the environment. Maintaining stable levels of HIF-1 protein is critical under normoxic conditions; however, HIF-1 levels quickly increase under hypoxic conditions. HIF-1α is involved in the acute hypoxic response associated with erythropoietin, whereas HIF-2α is associated with the response to chronic hypoxia. Furthermore, PI3K/Akt can reduce the synthesis of glycogen and increase glycolysis. Inhibition of glycogen synthase kinase 3β activity by phosphorylation of its N-terminal serine increases accumulation of cyclin D1, which promotes the cell cycle and improves cell proliferation through the PI3K/Akt signaling pathway. The PI3K/Akt signaling pathway is closely associated with a variety of enzymatic biological effects and glucose metabolism.
Collapse
Affiliation(s)
- Youbang Xie
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Xuefeng Shi
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Kuo Sheng
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Guoxiong Han
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Wenqian Li
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Qiangqiang Zhao
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Baili Jiang
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Jianming Feng
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Jianping Li
- Department of Hematology, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Yuhai Gu
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
28
|
Tang X, Yu R, Zhou Q, Jiang S, Le G. Protective effects of γ-aminobutyric acid against H 2O 2-induced oxidative stress in RIN-m5F pancreatic cells. Nutr Metab (Lond) 2018; 15:60. [PMID: 30202421 PMCID: PMC6122738 DOI: 10.1186/s12986-018-0299-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/26/2018] [Indexed: 11/30/2022] Open
Abstract
Background γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system and reported to maintain the redox homeostasis and insulin secretion function of pancreatic β cells. This study tested the hypothesis that GABA maintains cellular redox status, and modulates glycogen synthase kinase (GSK)-3β and antioxidant-related nuclear factor erythroid 2-related factor 2 (NRF2) nuclear mass ratio in the H2O2-injured RINm5F cells. Methods RINm5F cells were treated with/without GABA (50, 100 and 200 μmol/L) for 48 h and then exposed to 100 μmol/L H2O2 for 30 min. Viable cells were harvested, and dichloro-dihydro-fluorescein diacetate (DCFH-DA) was used to detect reactive oxygen species (ROS) level; cellular redox status and insulin secretion were measured; cell viability was determined by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay; mitochondrial membrane potential (MMP) was detected by flow cytometry; relative genes levels were analyzed by reverse transcriptase polymerase chain reaction (RT-PCR); western blotting was used to determine protein expression of GSK-3β and p-GSK-3β (Ser9), and nuclear and cytoplasmic NRF2. Results H2O2 increased ROS production, and induced adverse affects in relation to antioxidant defense systems and insulin secretion. These changes were restored by treatment with 100 and 200 μmol/L GABA. In addition, 100 or 200 μmol/L GABA induced membrane depolarization and increased cell viability. These effects were mediated by Caspase-3, Bcl-2 associated X protein (Bax) and B-cell lymphoma-2 (Bcl-2) expression. Western blotting indicated that GABA inhibited GSK-3β by increasing p-GSK-3β (Ser9) level, and directed the transcription factor NRF2 to the nucleus. Conclusion In rat insulin-producing RINm5F cells, GABA exerts its protective effect by regulating GSK-3β and NRF2, which governs redox homeostasis by inhibiting apoptosis and abnormal insulin secretion by exposure to H2O2.
Collapse
Affiliation(s)
- Xue Tang
- 1State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China.,3School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Renqiang Yu
- 2The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002 Jiangsu China
| | - Qin Zhou
- 2The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002 Jiangsu China
| | - Shanyu Jiang
- 2The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002 Jiangsu China
| | - Guowei Le
- 1State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China.,3School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| |
Collapse
|
29
|
Bin Y, Jingbo W, Hong Z, Guoqing T, Yuqin L. Effect of icariin on apoptosis in hippocampal neurons cultured in high glucose. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30887-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Inhibition of PTEN protects PC12 cells against oxygen-glucose deprivation induced cell death through mitoprotection. Brain Res 2018; 1692:100-109. [DOI: 10.1016/j.brainres.2018.05.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/24/2018] [Accepted: 05/18/2018] [Indexed: 01/06/2023]
|
31
|
Duan Q, Sun W, Yuan H, Mu X. MicroRNA-135b-5p prevents oxygen-glucose deprivation and reoxygenation-induced neuronal injury through regulation of the GSK-3β/Nrf2/ARE signaling pathway. Arch Med Sci 2018; 14:735-744. [PMID: 30002689 PMCID: PMC6040137 DOI: 10.5114/aoms.2017.71076] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are emerging as critical regulators in the pathological process of cerebral ischemia/reperfusion injury. miRNAs play an important role in regulating neuronal survival. miR-135b-5p has been reported as an important miRNA in regulating cell apoptosis. However, the role of miR-135b-5p in regulating neuronal survival remains poorly understood. Here, we aimed to investigate the role of miR-135b-5p in cerebral ischemia/ reperfusion using an in vitro model of oxygen-glucose deprivation and reoxygenation-(OGD/R) induced neuron injury. MATERIAL AND METHODS miRNA, mRNA and protein expression was detected by real-time quantitative polymerase chain reaction and Western blot. Cell viability was detected by cell counting kit-8 and lactate dehydrogenase assays. Cell apoptosis was detected by caspase-3 activity assay. Oxidative stress was determined using commercial kits. The target of miR-135b-5p was confirmed by dual-luciferase reporter assay. RESULTS We found that miR-135b-5p expression was significantly decreased in hippocampal neurons receiving OGD/R treatment. Overexpression of miR-135b-5p markedly alleviated OGD/R-induced cell injury and oxidative stress, whereas suppression of miR-135b-5p showed the opposite effects. We observed that miR-135b-5p directly targeted the 3'-untranslated region of glycogen synthase kinase-3β (GSK-3β). We found that miR-135b-5p negatively regulates the expression of GSK-3β in hippocampal neurons. Moreover, miR-135b-5p overexpression promotes activation of nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling. However, the restoration of GSK-3β expression significantly reversed the protective effects of miR-135b-5p overexpression. CONCLUSIONS Overall, our results suggest that miR-135b-5p protects neurons against OGD/R-induced injury through downregulation of GSK-3β and promotion of the Nrf2/ARE signaling pathway-mediated antioxidant responses.
Collapse
Affiliation(s)
- Qiang Duan
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Sun
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hua Yuan
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiang Mu
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
32
|
Yu Y, Dai M, Lu A, Yu E, Merlino G. PHLPP1 mediates melanoma metastasis suppression through repressing AKT2 activation. Oncogene 2018; 37:2225-2236. [PMID: 29391600 DOI: 10.1038/s41388-017-0061-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 10/19/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023]
Abstract
PI3K/AKT pathway activation is thought to be a driving force in metastatic melanomas. Members of the pleckstrin homology (PH) domain leucine-rich repeat protein Ser/Thr specific phosphatase family (PHLPP1 and PHLPP2) can regulate AKT activation. By dephosphorylating specific serine residues in the hydrophobic motif, PHLPP1 and PHLPP2 restrain AKT signalings, thereby regulating cell proliferation and survival. We here show that PHLPP1 expression was significantly downregulated or lost and correlated with metastatic potential in melanoma. Forcing expression of either PHLPP1 or PHLPP2 in melanoma cells inhibited cell proliferation, migration, and colony formation in soft agar; but PHLPP1 had the most profound inhibitory effect on metastasis. Moreover, expression of PH mutant forms of PHLPP1 continued to inhibit metastasis, whereas a phosphatase-dead C-terminal mutant did not. The introduction of activated PHLPP1-specific targets AKT2 or AKT3 also promoted melanoma metastasis, while the non-PHLPP1 target AKT1 did not. AKT2 and AKT3 could even rescue the PHLPP1-mediated inhibition of metastasis. An AKT inhibitor blocked the activity of AKT2 and inhibited AKT2-mediated tumor growth and metastasis in a preclinical mouse model. Our data demonstrate that PHLPP1 functions as a metastasis suppressor through its phosphatase activity, and suggest that PHLPP1 represents a novel diagnostic and therapeutic marker for metastatic melanoma.
Collapse
Affiliation(s)
- Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Meng Dai
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Andrew Lu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ellen Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
33
|
Accessing Gene Expression in Treatment-Resistant Schizophrenia. Mol Neurobiol 2018; 55:7000-7008. [PMID: 29374346 DOI: 10.1007/s12035-018-0876-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/07/2018] [Indexed: 01/22/2023]
Abstract
Schizophrenia (SCZ) is a mental disorder arising from a complex interaction of genetic and environmental factors. It has been suggested that treatment-resistant schizophrenia (TRS) is a distinct, more severe, and homogenous subgroup of schizophrenia that could present specific biological markers. Our aim was to characterize expression of target genes in blood of TRS patients compared with non-TRS (NTRS) patients and healthy controls (HC). TRS has been defined using failure to respond to two previous antipsychotic trials. We hypothesized that genes involved in neurodevelopment, myelination, neuroplasticity, neurotransmission, and miRNA processing could be involved in treatment resistance; then, we investigated 13 genes related to those processes in 256 subjects, being 94 healthy controls and 162 schizophrenia patients treated with antipsychotics. Of those, 78 were TRS patients and 84 were NTRS patients. Peripheral blood samples were collected from all subjects and RNA was isolated. Gene expression analysis was performed using the TaqMan low-density array (TLDA) technology. To verify the influence of expression quantitative trait loci (eQTLs), we evaluated single-nucleotide polymorphism (SNP) of all genes using data from GTEx Project. SNP genotypes were obtained from HumanOmniExpress BeadChip. We did not detect gene expression differences between TRS and NTRS subjects, indicating candidate genes specific to treatment resistance. We detected an upregulation of CNR1 and UFD1L gene expression in patients (TRS and NTRS groups) when compared to controls, that may be associated with the release of neurotransmitters, which can influence neuronal plasticity, or with a stress response-activating protein degradation. DICER1 and AKT1 expression increased slightly across the groups and could differentiate only the extreme opposite groups, HC and TRS. Both genes act in heterogeneous pathways, such as cell signaling and miRNA processing, and seem to have an increased demand in the TRS group. We did not detect any eQTLs in our sample that could explain differences in mRNA levels, suggesting a possible regulation by other mechanism, not driven by genotypes. Our data strengthen the importance of several biological pathways involved in the schizophrenia refractoriness and severity, adding knowledge to develop more effective treatments in the future.
Collapse
|
34
|
Pinton G, Zonca S, Manente AG, Cavaletto M, Borroni E, Daga A, Jithesh PV, Fennell D, Nilsson S, Moro L. SIRT1 at the crossroads of AKT1 and ERβ in malignant pleural mesothelioma cells. Oncotarget 2018; 7:14366-79. [PMID: 26885609 PMCID: PMC4924721 DOI: 10.18632/oncotarget.7321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/29/2016] [Indexed: 12/29/2022] Open
Abstract
In this report, we show that malignant pleural mesothelioma (MPM) patients whose tumors express high levels of AKT1 exhibit a significantly worse prognosis, whereas no significant correlation with AKT3 expression is observed. We provide data that establish a phosphorylation independent role of AKT1 in affecting MPM cell shape and anchorage independent cell growth in vitro and highlight the AKT1 isoform-specific nature of these effects. We describe that AKT1 activity is inhibited by the loss of SIRT1-mediated deacetylation and identify, by mass spectrometry, 11 unique proteins that interact with acetylated AKT1. Our data demonstrate a role of the AKT1/SIRT1/FOXM1 axis in the expression of the tumor suppressor ERβ. We further demonstrate an inhibitory feedback loop by ERβ, activated by the selective agonist KB9520, on this axis both in vitro and in vivo. Our data broaden the current knowledge of ERβ and AKT isoform-specific functions that could be valuable in the design of novel and effective therapeutic strategies for MPM.
Collapse
Affiliation(s)
- Giulia Pinton
- Department of Pharmaceutical Sciences, University of Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Sara Zonca
- Department of Pharmaceutical Sciences, University of Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Arcangela G Manente
- Department of Pharmaceutical Sciences, University of Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Maria Cavaletto
- Department of Sciences and Technological Innovation, University of Piemonte Orientale "A. Avogadro", 15121 Alessandria, Italy
| | - Ester Borroni
- Department of Health Sciences, University of Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Antonio Daga
- Department of Integrated Oncological Therapies, IRCCS San Martino-IST, 16132 Genova, Italy
| | - Puthen V Jithesh
- Division of Biomedical Informatics Research, Sidra Medical and Research Center, 26999 Doha, Qatar
| | - Dean Fennell
- Department of Cancer Studies, Cancer Research UK Leicester Centre, University of Leicester, LE1 7RH Leicester, UK
| | - Stefan Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 57 Huddinge, Sweden.,Karo Bio AB, Novum, S-141 57 Huddinge, Sweden
| | - Laura Moro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| |
Collapse
|
35
|
Rotwein P. Variation in Akt protein kinases in human populations. Am J Physiol Regul Integr Comp Physiol 2017; 313:R687-R692. [PMID: 28931550 DOI: 10.1152/ajpregu.00295.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 11/22/2022]
Abstract
The three Akt kinases are related proteins that are essential for normal growth and metabolic regulation and are implicated as key signaling mediators in many physiological and pathophysiological processes. Each Akt is activated by common biochemical signals that act downstream of growth factor and hormone receptors via phosphatidylinositol-3 kinase, and each controls several downstream pathways. The importance of Akt actions in human physiology is strengthened by the rarity of modifying mutations in their genes and by the devastating impact caused by these mutations on growth and development and in disorders such as cancer. Recent advances in genomics present unique opportunities for enhancing our understanding of human physiology and disease predisposition through the lens of population genetics, and the availability of DNA sequence data from 60,706 people in the Exome Aggregation Consortium has prompted this analysis. Results reveal a cohort of potential missense and other alterations in the coding regions of each AKT gene, but with nearly all changes being uncommon. The total number of different alleles per gene varied over an approximately threefold range, from 52 for AKT3 to 158 for AKT2, with variants distributed throughout all Akt protein domains. Previously characterized disease-causing mutations were found rarely in the general population. In contrast, a fairly prevalent amino acid substitution in AKT2 appears to be linked to increased predisposition for type 2 diabetes. Further analysis of variant Akt molecules as identified here will provide opportunities to understand the intricacies of Akt signaling and actions at a population level in human physiology and pathology.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, Texas
| |
Collapse
|
36
|
Oh S, Kim H, Nam K, Shin I. Silencing of Glut1 induces chemoresistance via modulation of Akt/GSK-3β/β-catenin/survivin signaling pathway in breast cancer cells. Arch Biochem Biophys 2017; 636:110-122. [DOI: 10.1016/j.abb.2017.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/24/2017] [Accepted: 08/09/2017] [Indexed: 12/29/2022]
|
37
|
Matson DR, Hardin H, Buehler D, Lloyd RV. AKT activity is elevated in aggressive thyroid neoplasms where it promotes proliferation and invasion. Exp Mol Pathol 2017; 103:288-293. [PMID: 29169802 DOI: 10.1016/j.yexmp.2017.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/18/2017] [Indexed: 02/06/2023]
Abstract
The PI3K/AKT/mTOR signaling pathway controls major cellular processes such as cell growth, proliferation and survival. Stimulation of this pathway leads to AKT phosphorylation and activation, resulting in phosphorylation of mTOR and myriad other targets. AKT upregulation has been implicated in thyroid cancer pathogenesis and is a candidate treatment target for patients with advanced disease that has not responded to traditional therapies. Here we evaluate a large series of benign and malignant thyroid tumors for AKT activity and intracellular distribution. We also deplete AKT from multiple thyroid cancer cell lines, including putative cancer stem cell lines, and measure the effect on proliferation and invasion in vitro. We show that active AKT has a predominantly nuclear distribution and its expression is highest in anaplastic thyroid carcinomas and papillary thyroid carcinomas, including encapsulated and invasive follicular variants. Depletion of AKT in thyroid carcinoma cell lines led to greatly reduced proliferative capacity and resulted in a reduction of invasive potential. A reduction in invasion was also observed in the cancer stem cell compartment. Targeting AKT activity in the clinical setting may slow the growth and spread of aggressive thyroid neoplasms, and target the tumor stem cell compartment.
Collapse
Affiliation(s)
- Daniel R Matson
- Department of Pathology and Laboratory Medicine, University of Wisconsin, School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin, School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792, USA
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin, School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin, School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792, USA.
| |
Collapse
|
38
|
PI3K/mTOR dual inhibitor BEZ235 and histone deacetylase inhibitor Trichostatin A synergistically exert anti-tumor activity in breast cancer. Oncotarget 2017; 8:11937-11949. [PMID: 28060760 PMCID: PMC5355316 DOI: 10.18632/oncotarget.14442] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/27/2016] [Indexed: 01/01/2023] Open
Abstract
Molecule-targeted therapy has achieved great progress in cancer therapy. Effective drug combinations are one way to enhance the therapeutic efficacy and combat resistance. Here, we determined the effect of the PI3K/mTOR dual inhibitor BEZ235 and the histone deacetylase inhibitor Trichostatin A (TSA) on human breast cancer. We demonstrated that the combination of BEZ235 and TSA results in significant synergistic growth inhibition of multiple breast cancer cell lines. Mechanistic studies revealed that the combined therapy induced apoptosis in a caspase-dependent manner, which might be related to the further depression of the PI3K/Akt/mTOR signalling pathway. Additionally, co-treatment with BEZ235 and TSA enhanced autophagic cell death by up-regulating the expression of LC3B-II and Beclin-1. The vivo tumour modelling studies revealed that BEZ235 combined with TSA blocked tumour growth without noticeable side effects. These data suggest that the combination of BEZ235 and TSA may be a new selective strategy, which may have significant clinical application in the treatment of breast cancer patients.
Collapse
|
39
|
Wang H, Zhang J, Zhang M, Wei L, Chen H, Li Z. A systematic study of Girdin on cell proliferation, migration and angiogenesis in different breast cancer subtypes. Mol Med Rep 2017; 16:3351-3356. [DOI: 10.3892/mmr.2017.6971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/20/2017] [Indexed: 11/06/2022] Open
|
40
|
Herkel J, Schrader J, Erez N, Lohse AW, Cohen IR. Activation of the Akt-CREB signalling axis by a proline-rich heptapeptide confers resistance to stress-induced cell death and inflammation. Immunology 2017; 151:474-480. [PMID: 28419468 DOI: 10.1111/imm.12745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/31/2017] [Accepted: 04/08/2017] [Indexed: 12/15/2022] Open
Abstract
Cell stress of various kinds can lead to the induction of cell death and a damaging inflammatory response. Hence, a goal of therapeutic cell-stress management is to develop agents that might effectively regulate undesirable cell death and inflammation. To that end, we developed a synthetic peptide of seven amino acids based on structural mimicry to a functional domain of p53, a key factor in the responses of cells to stressful stimuli. This heptapeptide, which we term Stressin-1, was found to inhibit both cell death and the secretion of inflammatory mediators by various cell types in response to different stressful agents in vitro. The combined anti-inflammatory and anti-apoptotic activities of Stressin-1 were associated with a cellular signalling cascade that induced activation of Akt kinase and activation of the cAMP response element-binding protein (CREB) transcription factor. These immediate signalling events led to the inhibition of the signal transducer and activator of transcription and nuclear factor-κB pathways 24 hr later. Unexpectedly, we found no evidence for a direct involvement of p53 in the effects produced by Stressin-1. Intraperitoneal administration of 100 μg of Stressin-1 to lethally irradiated mice significantly protected them from death. These findings show that activating the Akt-CREB axis with Stressin-1 can counteract some of the undesirable effects of various cell stresses. Stressin-1 may have clinical usefulness.
Collapse
Affiliation(s)
- Johannes Herkel
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Schrader
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ansgar W Lohse
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Irun R Cohen
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
41
|
Chow TJ, Tee SF, Yong HS, Tang PY. Genetic Association of TCF4 and AKT1 Gene Variants with the Age at Onset of Schizophrenia. Neuropsychobiology 2017; 73:233-40. [PMID: 27305091 DOI: 10.1159/000446285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 04/19/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Age at onset (AAO) is a known prognostic indicator for schizophrenia and is hypothesized to correlate with cognition and symptom severity. TCF4 and AKT1 are schizophrenia risk genes involved in cognitive functions. The current study examined the interactive effects of TCF4 and AKT1 variants with gender, family history of psychiatric disorders and ethnicity on the AAO of schizophrenia. METHODS This study consisted of 322 patients with schizophrenia meeting the DSM-IV criteria. Six single nucleotide polymorphisms (SNPs) of TCF4 (rs12966547, rs8766, rs2958182, rs9960767, rs10401120 and rs17512836) and seven AKT1 SNPs (rs2498804, rs3803304, rs2494732, rs3730358, rs1130214, rs2498784 and rs3803300) were genotyped using the TaqMan® SNP genotyping-based assays method. The relationship of AAO with each variant was investigated using analyses of covariance. RESULTS Among the TCF4 variants, rs12966547 (p = 0.024) and rs8766 (p = 0.021) were significantly associated with earlier AAO. We found a lower average AAO in patients with the AA genotype of rs12966547, while the CT genotype of rs8766 was demonstrated to have a protective effect on AAO. For rs8766, there was significant gene × gender interaction (p = 0.012) in influencing AAO. However, these results were not significant after false discovery rate correction. Significant gene × ethnicity interactions were observed to influence AAO (p < 0.05). The Kaplan-Meier curve of the minor AA genotype of rs12966547 displayed a significant trend (p = 0.008) for onset after 19 years of age. Similarly, the minor CC genotype of rs8766 showed a significantly (p = 0.034) lower AAO compared to the TT genotype. CONCLUSION Our analyses suggest that individual risk genotypes may influence the risk of schizophrenia in an age-specific manner.
Collapse
Affiliation(s)
- Tze Jen Chow
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Tunku Abdul Rahman University, Kajang, Malaysia
| | | | | | | |
Collapse
|
42
|
Hu J, Chen R, Jia P, Fang Y, Liu T, Song N, Xu X, Ji J, Ding X. Augmented O-GlcNAc signaling via glucosamine attenuates oxidative stress and apoptosis following contrast-induced acute kidney injury in rats. Free Radic Biol Med 2017; 103:121-132. [PMID: 28017896 DOI: 10.1016/j.freeradbiomed.2016.12.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/27/2016] [Accepted: 12/21/2016] [Indexed: 12/24/2022]
Abstract
Contrast-induced acute kidney injury (CI-AKI) is an iatrogenic renal injury and associated with substantial morbidity and mortality in susceptible individuals. Despite extensive study of a variety of agents for renal protection, limited strategies have been shown to be effective in the reduction of CI-AKI. O-linked β-N-acetylglucosamine (O-GlcNAc) is a post-translational regulatory modification of intracellular proteins and governs the function of numerous proteins, both cytosolic and nuclear. Increasing evidence suggests that O-GlcNAc levels are increased in response to stress and that acute augmentation of this reaction is cytoprotective. However, the underlying mechanisms by which augmented OGlcNAc signaling provides renoprotection against contrast media insults is still unknown. Here, we investigated the effect of augmented O-GlcNAc signaling via glucosamine on CI-AKI and explored the underlying molecular mechanisms, particularly its relationship with PI3-kinase (PI3K)/Akt signaling. We used a novel and reliable CI-AKI model consisting of 5/6 nephrectomized (NE) rats, and a low-osmolar contrast media (iohexol, 10mL/kg, 3.5gI) injected via the tail vein after dehydration for 48h. The results showed that augmented O-GlcNAc signaling by glucosamine prevented the kidneys against iohexol-induced injury characterized by the attenuation of renal dysfunction, tubular damage, apoptosis and oxidative stress. Furthermore, this renoprotection was blocked by treatment with alloxan, an O-GlcNAc transferase inhibitor. Augmented O-GlcNAc signaling also increased the protein expression levels of phospho-Akt (Ser473, but not Thr308 and Thr450), phospho-GSK-3β, Nrf2, and Bcl-2, and decreased the levels of Bax and cleaved caspase-3. Both alloxan and specific inhibitors of PI3K (Wortmannin and LY294002) blocked the protection of glucosamine via inhibiting Akt signaling pathway. We further identified O-GlcNAcylated Akt through immunoprecipitation and western blot. We confirmed that Akt was modified by O-GlcNAcylation, and glucosamine pretreatment increased the O-GlcNAcylation of Akt. Collectively, the results demonstrate that glucosamine induces renoprotection against CI-AKI through augmented O-GlcNAc and activation of PI3K/Akt signaling, making it a promising strategy for preventing CI-AKI.
Collapse
Affiliation(s)
- Jiachang Hu
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China
| | - Rongyi Chen
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China
| | - Ping Jia
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China
| | - Yi Fang
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China
| | - Tongqiang Liu
- Division of Nephrology, The Affiliated Chang zhou No. 2 Hospital of Nanjing Medical College, Changzhou, Jiangsu 213003, China
| | - Nana Song
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China
| | - Xialian Xu
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China
| | - Jun Ji
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China.
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, Shanghai 200032, China; Key Laboratory of Kidney and Blood Purification of Shanghai, Shanghai 200032, China; Quality Control Center of Dialysis, Shanghai 200032, China.
| |
Collapse
|
43
|
Tanaka S, Hosogi S, Sawabe Y, Shimamoto C, Matsumura H, Inui T, Marunaka Y, Nakahari T. PPARα induced NOS1 phosphorylation via PI3K/Akt in guinea pig antral mucous cells: NO-enhancement in Ca(2+)-regulated exocytosis. Biomed Res 2017; 37:167-78. [PMID: 27356604 DOI: 10.2220/biomedres.37.167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A PPARα (peroxisome proliferation activation receptor α) agonist (GW7647) activates nitric oxide synthase 1 (NOS1) to produce NO leading to cGMP accumulation in antral mucous cells. In this study, we examined how PPARα activates NOS1. The NO production stimulated by GW7647 was suppressed by inhibitors of PI3K (wortmannin) and Akt (AKT 1/2 Kinase Inhibitor, AKT-inh), although it was also suppressed by the inhibitors of PPARα (GW6471) and NOS1 (N-PLA). GW7647 enhanced the ACh (acetylcholine)-stimulated exocytosis (Ca(2+)-regulated exocytosis) mediated via NO, which was abolished by GW6471, N-PLA, wortmannin, and AKT-inh. The Western blotting revealed that GW7647 phosphorylates NOS1 via phosphorylation of PI3K/Akt in antral mucous cells. The immunofluorescence examinations demonstrated that PPARα existing with NOS1 co-localizes with PI3K and Akt in the cytoplasm of antral mucous cells. ACh alone and AACOCF3, an analogue of arachidonic acid (AA), induced the NOS1 phosphorylation via PI3K/Akt to produce NO, which was inhibited by GW6471. Since AA is a natural ligand for PPARα, ACh stimulates PPARα probably via AA. In conclusion, PPARα activates NOS1 via PI3K/Akt phosphorylation to produce NO in antral mucous cells during ACh stimulation.
Collapse
Affiliation(s)
- Saori Tanaka
- Laboratory of Pharmacotherapy, Osaka University of Pharmaceutical Sciences
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Progression through the cell cycle causes changes in the cell's signaling pathways that can alter EGFR signal transduction. Here, we describe drug-derived protocols to synchronize HeLa cells in various phases of the cell cycle, including G1 phase, S phase, G2 phase, and mitosis, specifically in the mitotic stages of prometaphase, metaphase, and anaphase/telophase. The synchronization procedures are designed to allow synchronized cells to be treated for EGF and collected for the purpose of Western blotting for EGFR signal transduction components.S phase synchronization is performed by thymidine block, G2 phase with roscovitine, prometaphase with nocodazole, metaphase with MG132, and anaphase/telophase with blebbistatin. G1 phase synchronization is performed by culturing synchronized mitotic cells obtained by mitotic shake-off. We also provide methods to validate the synchronization methods. For validation by Western blotting, we provide the temporal expression of various cell cycle markers that are used to check the quality of the synchronization. For validation of mitotic synchronization by microscopy, we provide a guide that describes the physical properties of each mitotic stage, using their cellular morphology and DNA appearance. For validation by flow cytometry, we describe the use of imaging flow cytometry to distinguish between the phases of the cell cycle, including between each stage of mitosis.
Collapse
|
45
|
Hu L, Li X, Liu Q, Xu J, Ge H, Wang Z, Wang H, Wang Z, Shi C, Xu X, Huang J, Lin Z, Pieper RO, Weng C. UBE2S, a novel substrate of Akt1, associates with Ku70 and regulates DNA repair and glioblastoma multiforme resistance to chemotherapy. Oncogene 2016; 36:1145-1156. [PMID: 27593939 DOI: 10.1038/onc.2016.281] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/17/2016] [Accepted: 06/28/2016] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain cancer in adults. However, the molecular events underlying carcinogenesis and their interplay remain elusive. Here, we report that the stability of Ubiquitin-conjugating enzyme E2S (UBE2S) is regulated by the PTEN/Akt pathway and that its degradation depends on the ubiquitin-proteasome system. Mechanistically, Akt1 physically interacted with and phosphorylated UBE2S at Thr 152, enhancing its stability by inhibiting proteasomal degradation. Additionally, accumulated UBE2S was found to be associated with the components of the non-homologous end-joining (NHEJ) complex and participated in the NHEJ-mediated DNA repair process. The association of Ku70 with UBE2S was enhanced, and the complex was recruited to double-stranded break (DSB) sites in response to etoposide treatment. Furthermore, knockdown of UBE2S expression inhibited NHEJ-mediated DSB repair and rendered glioblastoma cells more sensitive to chemotherapy. Overall, our findings provide a novel drug target that may serve as the rationale for the development of a new therapeutic approach.
Collapse
Affiliation(s)
- L Hu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - X Li
- Department of Neurosurgery, Liaocheng People's Hospital of Shandong University, Liaocheng, China
| | - Q Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - J Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - H Ge
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Z Wang
- Department of Epidemiology and Biostatistics, Harbin Medical University, Harbin, China
| | - H Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Z Wang
- Saint-Antoine Research Centre, University Pierre and Marie CURIE, Paris, France
| | - C Shi
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - X Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - J Huang
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Z Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - R O Pieper
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - C Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
46
|
Mavrofrydi O, Mavroeidi P, Papazafiri P. Comparative assessment of HIF-1α and Akt responses in human lung and skin cells exposed to benzo[α]pyrene: Effect of conditioned medium from pre-exposed primary fibroblasts. ENVIRONMENTAL TOXICOLOGY 2016; 31:1103-1112. [PMID: 25728052 DOI: 10.1002/tox.22119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/08/2015] [Accepted: 01/10/2015] [Indexed: 06/04/2023]
Abstract
Exposure to atmospheric pollutants has been accused for many adverse health effects. Benzo[α]pyrene (Β[α]Ρ) in particular, the most extensively studied member of pollutants, is implicated in both cancer initiation and promotion. In the present study, we compared the effects of noncytotoxic doses of Β[α]Ρ, between human skin and lung epithelial cells A431 and A549, respectively, focusing on Akt kinase and HIF-1α, as it is well known that these proteins are upregulated in various human cancers promoting survival, angiogenesis and metastasis of tumor cells. Also, taking into consideration that fibroblasts are involved in cancer progression, we tested the possible modulation of epithelial cell response by paracrine factors secreted by Β[α]Ρ-treated fibroblasts. Low doses of Β[α]Ρ were found to enhance epithelial cell proliferation and upregulate both Akt kinase and HIF-1α, with A549 cells exhibiting a more sustained profile of upregulation. It is to notice that, the response of HIF-1α was remarkably early, acting as a sensitive marker in response to airborne pollutants. Also, HIF-1α was induced by Β[α]Ρ in both lung and skin fibroblasts indicating that this effect may be conserved throughout different cell types and tissues. Interestingly however, the response of both proteins was differentially modified upon treatment with conditioned medium from Β[α]Ρ-exposed fibroblasts. This is particularly evident in A459 cells and confirms the critical role of intercellular and paracrine factors in the modulation of the final response to an extracellular signal. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1103-1112, 2016.
Collapse
Affiliation(s)
- Olga Mavrofrydi
- Division of Animal and Human Physiology, Department of Biology, University of Athens, 15784 Panepistimiopolis, Ilissia, Athens, Greece
| | - Panagiota Mavroeidi
- Division of Animal and Human Physiology, Department of Biology, University of Athens, 15784 Panepistimiopolis, Ilissia, Athens, Greece
| | - Panagiota Papazafiri
- Division of Animal and Human Physiology, Department of Biology, University of Athens, 15784 Panepistimiopolis, Ilissia, Athens, Greece
| |
Collapse
|
47
|
Ramachandran C, Portalatin G, Quirin KW, Escalon E, Khatib Z, Melnick SJ. Inhibition of AKT signaling by supercritical CO2 extract of mango ginger (Curcuma amada Roxb.) in human glioblastoma cells. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2016; 12:307-15. [PMID: 26439597 DOI: 10.1515/jcim-2015-0005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 07/15/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mango ginger (Curcuma amada Roxb.) is a less-investigated herb for anticancer properties than other related Curcuma species. AKT (a serine/threonine protein kinase B, originally identified as an oncogene in the transforming retrovirus AKT8) plays a central role in the development and promotion of cancer. In this investigation, we have analyzed the effect of supercritical CO2 extract of mango ginger (CA) on the genetic pathways associated with AKT signaling in human glioblastoma cells. METHODS The inhibitory effect of supercritical CO2 extract of mango ginger (Curcuma amada) on AKT signaling was investigated in U-87MG glioblastoma cells. RESULTS CA was highly cytotoxic to glioblastoma cell line (IC50=4.92±0.81 µg/mL) compared to mHypoE-N1 normal mouse hypothalamus cell line (IC50=40.57±0.06 µg/mL). CA inhibits AKT (protein Kinase B) and adenosine monophophate -activated protein kinase α (AMPKα) phosphorylation significantly in a dose-dependent manner. The cell migration which is necessary for invasion and metastasis was also inhibited by CA treatment, with about 43% reduction at 20 µg/mL concentration. Analysis of mRNA and protein expression of genes associated with apoptosis, cell proliferation and angiogenesis showed that CA modulates expression of genes associated with apoptosis (Bax, Bcl-2, Bcl-X, BNIP3, caspase-3, mutant p53 and p21), cell proliferation (Ki67) and angiogenesis vascular endothelial growth factor (VEGF). Additionally, heat shock protein 90 (HSP90) and AMPKα genes interacting with the AKT signaling pathway were also downregulated by CA treatment. CONCLUSIONS These results indicate the molecular targets and mechanisms underlying the anticancer effect of CA in human glioblastoma cells.
Collapse
|
48
|
Dinicola S, Fabrizi G, Masiello MG, Proietti S, Palombo A, Minini M, Harrath AH, Alwasel SH, Ricci G, Catizone A, Cucina A, Bizzarri M. Inositol induces mesenchymal-epithelial reversion in breast cancer cells through cytoskeleton rearrangement. Exp Cell Res 2016; 345:37-50. [DOI: 10.1016/j.yexcr.2016.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022]
|
49
|
Divolis G, Mavroeidi P, Mavrofrydi O, Papazafiri P. Differential effects of calcium on PI3K-Akt and HIF-1α survival pathways. Cell Biol Toxicol 2016; 32:437-49. [PMID: 27344565 DOI: 10.1007/s10565-016-9345-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/20/2016] [Indexed: 12/19/2022]
Abstract
Calcium signaling participates in the regulation of numberless cellular functions including cell cycle progression and cellular migration, important processes for cancer expansion. Cancer cell growth, migration, and invasion are typically supported by PI3K/Akt activation, while a hypoxic environment is critical in cancer development. Accordingly, in the present study, we aimed at investigating whether perturbations in calcium homeostasis induce alterations of HIF-1α and activate Akt levels in epithelial A549 and A431 cells. Survival was drastically reduced in the presence of calcium chelator BAPTA-AM and thapsigargin, a SERCA inhibitor inducing store-operated calcium entry, to a lesser extent. Calcium chelation provoked a transient but strong upregulation of HIF-1α protein levels and accumulation in the nucleus, whereas in the presence of thapsigargin, HIF-1α levels were rapidly abolished before reaching and exceeding control levels. Despite cell death, calcium chelation merely inhibited Akt, which was significantly activated in the presence of thapsigargin. Moreover, when store-operated calcium entry was simulated by reintroducing calcium ions in cell suspensions, Akt was rapidly activated in the absence of any growth factor. These data further underscore the growing importance of calcium entry and directly link this elementary event of calcium homeostasis to the Akt pathway, which is commonly deregulated in cancer.
Collapse
Affiliation(s)
- Georgios Divolis
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784, Athens, Greece.,Center for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Panagiota Mavroeidi
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784, Athens, Greece
| | - Olga Mavrofrydi
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784, Athens, Greece
| | - Panagiota Papazafiri
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784, Athens, Greece.
| |
Collapse
|
50
|
Peiris TH, Ramirez D, Barghouth PG, Oviedo NJ. The Akt signaling pathway is required for tissue maintenance and regeneration in planarians. BMC DEVELOPMENTAL BIOLOGY 2016; 16:7. [PMID: 27068018 PMCID: PMC4827215 DOI: 10.1186/s12861-016-0107-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/24/2016] [Indexed: 12/20/2022]
Abstract
Background Akt (PKB) is a serine threonine protein kinase downstream of the phosphoinositide 3-kinase (PI3K) pathway. In mammals, Akt is ubiquitously expressed and is associated with regulation of cellular proliferation, metabolism, cell growth and cell death. Akt has been widely studied for its central role in physiology and disease, in particular cancer where it has become an attractive pharmacological target. However, the mechanisms by which Akt signaling regulates stem cell behavior in the complexity of the whole body are poorly understood. Planarians are flatworms with large populations of stem cells capable of dividing to support adult tissue renewal and regeneration. The planarian ortholog Smed-Akt is molecularly conserved providing unique opportunities to analyze the function of Akt during cellular turnover and repair of adult tissues. Results Our findings abrogating Smed-Akt with RNA-interference in the planarian Schmidtea mediterranea led to a gradual decrease in stem cell (neoblasts) numbers. The reduced neoblast numbers largely affected the maintenance of adult tissues including the nervous and excretory systems and ciliated structures in the ventral epithelia, which impaired planarian locomotion. Downregulation of Smed-Akt function also resulted in an increase of cell death throughout the animal. However, in response to amputation, levels of cell death were decreased and failed to localize near the injury site. Interestingly, the neoblast mitotic response was increased around the amputation area but the regenerative blastema failed to form. Conclusions We demonstrate Akt signaling is essential for organismal physiology and in late stages of the Akt phenotype the reduction in neoblast numbers may impair regeneration in planarians. Functional disruption of Smed-Akt alters the balance between cell proliferation and cell death leading to systemic impairment of adult tissue renewal. Our results also reveal novel roles for Akt signaling during regeneration, specifically for the timely localization of cell death near the injury site. Thus, Akt signaling regulates neoblast biology and mediates in the distribution of injury-mediated cell death during tissue repair in planarians. Electronic supplementary material The online version of this article (doi:10.1186/s12861-016-0107-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- T Harshani Peiris
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA, 95343, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, 95343, USA
| | - Daniel Ramirez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA, 95343, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, 95343, USA
| | - Paul G Barghouth
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA, 95343, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, 95343, USA
| | - Néstor J Oviedo
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA, 95343, USA. .,Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, 95343, USA. .,Health Sciences Research Institute, University of California, Merced, CA, 95343, USA.
| |
Collapse
|