1
|
Musharaf Hossain M, Alinapon CV, Todd CD, Wei Y, Bonham-Smith PC. The Plasmodiophora brassicae Golgi-localized UPF0016 protein PbGDT1 mediates calcium but not manganese transport in yeast and Nicotiana benthamiana. Fungal Genet Biol 2024; 172:103896. [PMID: 38663635 DOI: 10.1016/j.fgb.2024.103896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Manganese and calcium homeostasis and signalling, in eukaryotic organisms, are regulated through membrane located pumps, channels and exchangers, including the Mn2+/Ca2+ uncharacterized protein family 0016 (UPF0016). Here we show that Plasmodiophora brassicae PbGDT1 is a member of the UPF0016 and an ortholog of Saccharomyces cerevisiae Gdt1p (GCR Dependent Translation Factor 1) protein involved in manganese homeostasis as well as the calcium mediated stress response in yeast. PbGDT1 complemented the ScGdt1p and ScPMR1 (Ca2+ ATPase) double null mutant under elevated calcium stress but not under elevated manganese conditions. In both yeast and Nicotiana benthamiana, PbGDT1 localizes to the Golgi apparatus, with additional ER association in N. benthamiana. Expression of PbGDT1 in N. benthamiana, suppresses BAX-triggered cell death, further highlighting the importance of calcium homeostasis in maintaining cell physiology and integrity in a stress environment.
Collapse
Affiliation(s)
- Md Musharaf Hossain
- Department of Biology, University of Saskatchewan, Saskatoon S7N5E2, Saskatchewan, Canada
| | | | - Christopher D Todd
- Department of Biology, University of Saskatchewan, Saskatoon S7N5E2, Saskatchewan, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon S7N5E2, Saskatchewan, Canada
| | - Peta C Bonham-Smith
- Department of Biology, University of Saskatchewan, Saskatoon S7N5E2, Saskatchewan, Canada.
| |
Collapse
|
2
|
Lan YJ, Cheng CC, Chu SC, Chiang YW. A gating mechanism of the BsYetJ calcium channel revealed in an endoplasmic reticulum lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184153. [PMID: 36948481 DOI: 10.1016/j.bbamem.2023.184153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
The transmembrane BAX inhibitor-1-containing motif 6 (TMBIM6) is suggested to modulate apoptosis by regulating calcium homeostasis in the endoplasmic reticulum (ER). However, the precise molecular mechanism underlying this calcium regulation remains poorly understood. To shed light on this issue, we investigated all negatively charged residues in BsYetJ, a bacterial homolog of TMBIM6, using mutagenesis and fluorescence-based functional assays. We reconstituted BsYetJ in membrane vesicles with a lipid composition similar to that of the ER. Our results show that the charged residues E49 and R205 work together as a major gate, regulating calcium conductance in these ER-like lipid vesicles. However, these residues become largely inactive when reconstituted in other lipid environments. In addition, we found that D195 acts as a minor filter compared to the E49-R205 dyad. Our study uncovers a previously unknown function of BsYetJ/TMBIM6 in the calcium-dependent inactivation of BsYetJ, providing a framework for the development of a lipid-dependent mechanistic model of BsYetJ that will facilitate our understanding of calcium-dependent apoptosis.
Collapse
Affiliation(s)
- Yu-Jing Lan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Chu-Chun Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Shu-Chi Chu
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan.
| |
Collapse
|
3
|
Cai J, Ye Z, Hu Y, Wang Y, Ye L, Gao L, sun Q, Tong S, Sun Z, Yang J, Chen Q. FAIM2 is a potential pan-cancer biomarker for prognosis and immune infiltration. Front Oncol 2022; 12:998336. [PMID: 36185230 PMCID: PMC9516132 DOI: 10.3389/fonc.2022.998336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Fas apoptosis inhibitory molecule 2 (FAIM2) is an important member of the transmembrane BAX inhibitor motif containing (TMBIM) family. However, the role of FAIM2 in tumor prognosis and immune infiltration has rarely been studied. Here, we conducted a pan-cancer analysis to explore the role of FAIM2 in various tumors and further verified the results in glioma through molecular biology experiment. FAIM2 expression and clinical stages in tumor samples and para-cancerous samples were analyzed by TIMER2 database, GEPIA database, and the TISIDB database. The role of FAIM2 on prognosis was analyzed via GEPIA2. We utilized the ESTIMATE algorithm to evaluate the ImmuneScore and StromalScore of various tumors. In addition, we explored the correlation between FAIM2 expression and tumor immune cell infiltration by the TIMER2 database. The immune checkpoint genes, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), and DNA methylation related to FAIM2 were analyzed based on the TCGA database. The correlation between FAIM2 expression with Copy number variations (CNV) and methylation is explored by GSCA database. Protein-Protein Interaction (PPI) analysis was obtained from the STRING database and the CellMiner database was used to explore the association between FAIM2 expression and drug response. FAIM2 co-expression genes were studied by the LinkedOmics database. Immunohistochemistry, Western Blotting Analysis, Cell Viability Assay, Colony Formation Assay, and Edu staining assay were used in the molecular biology experiments section. The FAIM2 expression was down-regulated in most tumors and highly expressed FAIM2 was associated with a better prognosis in several cancers. FAIM2 plays an essential role in the tumor microenvironment and is closely associated with immune Infiltration in various tumors. The expression of FAIM2 was closely correlated to TMB, MSI, MMR, CNV, and DNA methylation. Furthermore, FAIM2 related genes in the PPI network and its co-expression genes in glioma are involved in a large number of immune-related pathways. Molecular biology experiments verified a cancer suppressor role for FAIM2 in glioma. FAIM2 may serve as a potential pan-cancer biomarker for prognosis and immune infiltration, especially in glioma. Moreover, this study might provide a potential target for tumor immunotherapy.
Collapse
Affiliation(s)
- Jiayang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhang Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanyuan Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yixuan Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiao Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiqiang Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ji'an Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Qianxue Chen, ; Ji'an Yang,
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Qianxue Chen, ; Ji'an Yang,
| |
Collapse
|
4
|
Sertsuvalkul N, DeMell A, Dinesh-Kumar SP. The complex roles of autophagy in plant immunity. FEBS Lett 2022; 596:2163-2171. [PMID: 35460270 PMCID: PMC9474723 DOI: 10.1002/1873-3468.14356] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/28/2022]
Abstract
Plant immunity is the result of multiple distinct cellular processes cooperating with each other to generate immune responses. Autophagy is a conserved cellular recycling process and has well-established roles in nutrient starvation responses and cellular homeostasis. Recently, the role of autophagy in immunity has become increasingly evident. However, our knowledge about plant autophagy remains limited, and how this fundamental cellular process is involved in plant immunity is still somewhat perplexing. Here, we summarize the current understanding of the positive and negative roles of autophagy in plant immunity and how different microbes exploit this process to their own advantage. The dualistic role of autophagy in plant immunity emphasizes that much remains to be explored in this area.
Collapse
Affiliation(s)
- Nyd Sertsuvalkul
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
- The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - April DeMell
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
- The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Savithramma P. Dinesh-Kumar
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
- The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Cai J, Gao L, Wang Y, Li Y, Ye Z, Tong S, Yan T, Sun Q, Xu Y, Jiang H, Zhang S, Zhao L, Yang J, Chen Q. TMBIM1 promotes proliferation and attenuates apoptosis in glioblastoma cells by targeting the p38 MAPK signalling pathway. Transl Oncol 2022; 19:101391. [PMID: 35279540 PMCID: PMC8920937 DOI: 10.1016/j.tranon.2022.101391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/12/2022] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
Our research firstly identified that TMBIM1 promotes proliferation and attenuates apoptosis via the p38/MAPK pathway in GBM. We also revealed that TMBIM1 regulates the sensitivity of GBM cells to TMZ. Our research will provide an important basis for future intensive molecular mechanism research in GBM and TMBIM1 might be a potential therapeutic target for treating GBM.
Glioblastoma multiforme (GBM) is the most common and most fatal primary malignant brain tumour in adults. The average survival time of patients after diagnosis is only 12–15 months. And its characteristics of excessive proliferation and apoptosis evasion play a crucial role in the poor prognosis of patients. Therefore, it is worth investigating the molecular mechanism of GBM to find an effective therapeutic target to overcome the dilemma. In the current study, Transmembrane BAX inhibitor motif containing 1 (TMBIM1) was highly expressed in GBM tissues and high TMBIM1 expression in GBM cell lines (U87 and U251) could promote cell proliferation and inhibit cell cycle arrest. In addition, TMBIM1 could significantly attenuate GBM cell apoptosis and decrease the sensitivity of GBM cells to temozolomide (TMZ). In terms of the molecular mechanism, we revealed that TMBIM1 interferes with the p38/MAPK pathway by inhibiting p38 phosphorylation to promote cell proliferation and attenuate cell apoptosis. In vivo experiments showed that the survival time of mice in TMBIM1 knockdown group was significantly prolonged. Our discovery provided an important basis for future intensive molecular mechanism research in GBM and presented a potential target for the treatment of GBM.
Collapse
Affiliation(s)
- Jiayang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060.
| | - Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060.
| | - Yixuan Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060.
| | - Yong Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060.
| | - Zhang Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060.
| | - Shiao Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060.
| | - Tengfeng Yan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060.
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060.
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060.
| | - Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060.
| | - Si Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060.
| | - Linyao Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060.
| | - Ji'an Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China, 430060.
| |
Collapse
|
6
|
Deng J, Gutiérrez LG, Stoll G, Motiño O, Martins I, Núñez L, Bravo-San Pedro JM, Humeau J, Bordenave C, Pan J, Fohrer-Ting H, Souquere S, Pierron G, Hetz C, Villalobos C, Kroemer G, Senovilla L. Paradoxical implication of BAX/BAK in the persistence of tetraploid cells. Cell Death Dis 2021; 12:1039. [PMID: 34725331 PMCID: PMC8560871 DOI: 10.1038/s41419-021-04321-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 12/22/2022]
Abstract
Pro-apoptotic multi-domain proteins of the BCL2 family such as BAX and BAK are well known for their important role in the induction of mitochondrial outer membrane permeabilization (MOMP), which is the rate-limiting step of the intrinsic pathway of apoptosis. Human or mouse cells lacking both BAX and BAK (due to a double knockout, DKO) are notoriously resistant to MOMP and cell death induction. Here we report the surprising finding that BAX/BAK DKO cells proliferate less than control cells expressing both BAX and BAK (or either BAX or BAK) when they are driven into tetraploidy by transient exposure to the microtubule inhibitor nocodazole. Mechanistically, in contrast to their BAX/BAK-sufficient controls, tetraploid DKO cells activate a senescent program, as indicated by the overexpression of several cyclin-dependent kinase inhibitors and the activation of β-galactosidase. Moreover, DKO cells manifest alterations in ionomycin-mobilizable endoplasmic reticulum (ER) Ca2+ stores and store-operated Ca2+ entry that are affected by tetraploidization. DKO cells manifested reduced expression of endogenous sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (Serca2a) and transfection-enforced reintroduction of Serca2a, or reintroduction of an ER-targeted variant of BAK into DKO cells reestablished the same pattern of Ca2+ fluxes as observed in BAX/BAK-sufficient control cells. Serca2a reexpression and ER-targeted BAK also abolished the tetraploidy-induced senescence of DKO cells, placing ER Ca2+ fluxes downstream of the regulation of senescence by BAX/BAK. In conclusion, it appears that BAX/BAK prevent the induction of a tetraploidization-associated senescence program. Speculatively, this may contribute to the low incidence of cancers in BAX/BAK DKO mice and explain why human cancers rarely lose the expression of both BAX and BAK.
Collapse
Affiliation(s)
- Jiayin Deng
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Lucía G Gutiérrez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - CSIC, Valladolid, Spain
| | - Gautier Stoll
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Lucía Núñez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - CSIC, Valladolid, Spain
| | - José Manuel Bravo-San Pedro
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Facultad de Medicina, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Juliette Humeau
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC, Canada, H3C 3J7
- Department of Medicine, Université de Montréal, Montreal, QC, Canada, H3C 3J7
| | - Chloé Bordenave
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Juncheng Pan
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Hélène Fohrer-Ting
- Centre de Recherche des Cordeliers, Center for Histology, Cell Imaging and Cytometry (CHIC), Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France
| | | | - Gerard Pierron
- CNRS, UMR9196, Gustave Roussy Cancer Campus, Villejuif, France
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, 8380453, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, 7800003, Chile
- The Buck Institute for Research in Aging, Novato, CA, 94945, USA
| | - Carlos Villalobos
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - CSIC, Valladolid, Spain.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France.
| | - Laura Senovilla
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - CSIC, Valladolid, Spain.
| |
Collapse
|
7
|
Chen W, Yang X, Zhou Y, Ma Q, Wu X, Sha Y, Qian G. [Bax inhibitor-1 inhibits calcification of vascular smooth muscle cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1177-1182. [PMID: 34549708 DOI: 10.12122/j.issn.1673-4254.2021.08.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of Bax inhibitor-1(BI-1)on calcification of vascular smooth muscle cells(VSMCs). METHODS VSMCs were isolated from the thoracic aorta of SD rats.VSMCs or BI-1-overexpressing VSMCs(transfected with a BI-1-overexpressing plasmid) were cultured in normal medium or calcified medium containing β-glycerophosphate and calcium chloride, and the cell calcification was examined with Alizarin red staining.Enzyme-linked immunosorbent assay was used to determine the intracellular calcium content and alkaline phosphatase activity.The expression levels of Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP-2) and caspase-3 were detected with Western blotting. RESULTS After 14 days of culture in the calcified medium, the VSMCs showed significantly reduced expression of BI-1 protein(P=0.001).BI-1 overexpression in the VSMCs caused a significant reduction of calcium level and alkaline phosphatase activities(P=0.0006) and lowered the expression levels of RUNX2 and BMP-2 (P=0.0001) in the cells.The VSMCs with induced calcification exhibited a significantly increased apoptosis rate, but BI-1 overexpression obviously inhibited VSMC apoptosis in the calcified medium (P=0.0003). CONCLUSION BI-1 may attenuate vascular calcification by inhibiting calcium deposition, osteogenic differentiation and apoptosis.
Collapse
Affiliation(s)
- W Chen
- Department of Cardiology, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing 100029, China.,Department of Cardiology, Second Medical Center, General Hospital of PLA, Beijing 100853, China
| | - X Yang
- Department of Cardiology, First Medical Center, General Hospital of PLA, Beijing 100853, China
| | - Y Zhou
- Department of Cardiology, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing 100029, China
| | - Q Ma
- Department of Cardiology, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing 100029, China
| | - X Wu
- Department of Cardiology, Second Medical Center, General Hospital of PLA, Beijing 100853, China
| | - Y Sha
- Department of Cardiology, Second Medical Center, General Hospital of PLA, Beijing 100853, China
| | - G Qian
- Department of Cardiology, First Medical Center, General Hospital of PLA, Beijing 100853, China
| |
Collapse
|
8
|
Contribution of Yeast Studies to the Understanding of BCL-2 Family Intracellular Trafficking. Int J Mol Sci 2021; 22:ijms22084086. [PMID: 33920941 PMCID: PMC8071328 DOI: 10.3390/ijms22084086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
BCL-2 family members are major regulators of apoptotic cell death in mammals. They form an intricate regulatory network that ultimately regulates the release of apoptogenic factors from mitochondria to the cytosol. The ectopic expression of mammalian BCL-2 family members in the yeast Saccharomyces cerevisiae, which lacks BCL-2 homologs, has been long established as a useful addition to the available models to study their function and regulation. In yeast, individual proteins can be studied independently from the whole interaction network, thus providing insight into the molecular mechanisms underlying their function in a living context. Furthermore, one can take advantage of the powerful tools available in yeast to probe intracellular trafficking processes such as mitochondrial sorting and interactions/exchanges between mitochondria and other compartments, such as the endoplasmic reticulum that are largely conserved between yeast and mammals. Yeast molecular genetics thus allows the investigation of the role of these processes on the dynamic equilibrium of BCL-2 family members between mitochondria and extramitochondrial compartments. Here we propose a model of dynamic regulation of BCL-2 family member localization, based on available evidence from ectopic expression in yeast.
Collapse
|
9
|
Lemos FO, Bultynck G, Parys JB. A comprehensive overview of the complex world of the endo- and sarcoplasmic reticulum Ca 2+-leak channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119020. [PMID: 33798602 DOI: 10.1016/j.bbamcr.2021.119020] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022]
Abstract
Inside cells, the endoplasmic reticulum (ER) forms the largest Ca2+ store. Ca2+ is actively pumped by the SERCA pumps in the ER, where intraluminal Ca2+-binding proteins enable the accumulation of large amount of Ca2+. IP3 receptors and the ryanodine receptors mediate the release of Ca2+ in a controlled way, thereby evoking complex spatio-temporal signals in the cell. The steady state Ca2+ concentration in the ER of about 500 μM results from the balance between SERCA-mediated Ca2+ uptake and the passive leakage of Ca2+. The passive Ca2+ leak from the ER is often ignored, but can play an important physiological role, depending on the cellular context. Moreover, excessive Ca2+ leakage significantly lowers the amount of Ca2+ stored in the ER compared to normal conditions, thereby limiting the possibility to evoke Ca2+ signals and/or causing ER stress, leading to pathological consequences. The so-called Ca2+-leak channels responsible for Ca2+ leakage from the ER are however still not well understood, despite over 20 different proteins have been proposed to contribute to it. This review has the aim to critically evaluate the available evidence about the various channels potentially involved and to draw conclusions about their relative importance.
Collapse
Affiliation(s)
- Fernanda O Lemos
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
10
|
Han Q, Wang J, Luo H, Li L, Lu X, Liu A, Deng Y, Jiang Y. TMBIM6, a potential virus target protein identified by integrated multiomics data analysis in SARS-CoV-2-infected host cells. Aging (Albany NY) 2021; 13:9160-9185. [PMID: 33744846 PMCID: PMC8064151 DOI: 10.18632/aging.202718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we collected open access data to analyze the mechanisms associated with SARS-CoV-2 infection. Gene set enrichment analysis (GSEA) revealed that apoptosis-related pathways were enriched in the cells after SARS-CoV-2 infection, and the results of differential expression analysis showed that biological functions related to endoplasmic reticulum stress (ERS) and lipid metabolism were disordered. TMBIM6 was identified as a potential target for SARS-CoV-2 in host cells through weighted gene coexpression network analysis (WGCNA) of the time course of expression of host and viral proteins. The expression and related functions of TMBIM6 were subsequently analyzed to illuminate how viral proteins interfere with the physiological function of host cells. The potential function of viral proteins was further analyzed by GEne Network Inference with Ensemble of trees (GENIE3). This study identified TMBIM6 as a target protein associated with the pathogenesis of SARS-CoV-2, which might provide a novel therapeutic approach for COVID-19 in the future.
Collapse
Affiliation(s)
- Qizheng Han
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junhao Wang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haihua Luo
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lei Li
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xinya Lu
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Aihua Liu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongqiang Deng
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Zhang G, Zhong F, Chen L, Qin P, Li J, Zhi F, Tian L, Zhou D, Lin P, Chen H, Tang K, Liu W, Jin Y, Wang A. Integrated Proteomic and Transcriptomic Analyses Reveal the Roles of Brucella Homolog of BAX Inhibitor 1 in Cell Division and Membrane Homeostasis of Brucella suis S2. Front Microbiol 2021; 12:632095. [PMID: 33584633 PMCID: PMC7876416 DOI: 10.3389/fmicb.2021.632095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/12/2021] [Indexed: 11/20/2022] Open
Abstract
BAX inhibitor 1 (BI-1) is an evolutionarily conserved transmembrane protein first identified in a screening process for human proteins that suppress BAX-induced apoptosis in yeast cells. Eukaryotic BI-1 is a cytoprotective protein that suppresses cell death induced by multiple stimuli in eukaryotes. Brucella, the causative agent of brucellosis that threatens public health and animal husbandry, contains a conserved gene that encodes BI-1-like protein. To explore the role of the Brucella homolog of BI-1, BrBI, in Brucella suis S2, we constructed the brbI deletion mutant strain and its complemented strain. brbI deletion altered the membrane properties of Brucella suis S2 and decreased its resistance to acidic pH, H2O2, polymyxin B, and lincomycin. Additionally, deleting brbI led to defective growth, cell division, and viability in Brucella suis S2. We then revealed the effect of brbI deletion on the physiological characteristics of Brucella suis S2 via integrated transcriptomic and proteomic analyses. The integrated analysis showed that brbI deletion significantly affected the expression of multiple genes at the mRNA and/or protein levels. Specifically, the affected divisome proteins, FtsB, FtsI, FtsL, and FtsQ, may be the molecular basis of the impaired cell division of the brbI mutant strain, and the extensively affected membrane proteins and transporter-associated proteins were consistent with the phenotype of the membrane properties’ alterations of the brbI mutant strain. In conclusion, our results revealed that BrBI is a bacterial cytoprotective protein involved in membrane homeostasis, cell division, and stress resistance in Brucella suis S2.
Collapse
Affiliation(s)
- Guangdong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Fangli Zhong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Lei Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Peipei Qin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Junmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Feijie Zhi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Lulu Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Pengfei Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Huatao Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Keqiong Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
12
|
Singh R, Kaushik R, Dige MS, Rout PK. Identification of mutation in TMB1M6 gene in response to heat stress in goats. BIOL RHYTHM RES 2020. [DOI: 10.1080/09291016.2018.1563322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- R. Singh
- Animal Genetics and Breeding Division, ICAR-Central Institute for Research on Goats, Mathura, India
| | - R. Kaushik
- Animal Genetics and Breeding Division, ICAR-Central Institute for Research on Goats, Mathura, India
| | - M. S. Dige
- Animal Genetics and Breeding Division, ICAR-Central Institute for Research on Goats, Mathura, India
| | - P. K. Rout
- Animal Genetics and Breeding Division, ICAR-Central Institute for Research on Goats, Mathura, India
| |
Collapse
|
13
|
Philippaert K, Roden M, Lisak D, Bueno D, Jelenik T, Radyushkin K, Schacht T, Mesuere M, Wüllner V, Herrmann AK, Baumgart J, Vennekens R, Methner A. Bax inhibitor-1 deficiency leads to obesity by increasing Ca 2+-dependent insulin secretion. J Mol Med (Berl) 2020; 98:849-862. [PMID: 32394396 PMCID: PMC7297831 DOI: 10.1007/s00109-020-01914-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022]
Abstract
Abstract Transmembrane BAX inhibitor motif containing 6 (TMBIM6), also known as Bax inhibitor-1, is an evolutionarily conserved protein involved in endoplasmic reticulum (ER) function. TMBIM6 is an ER Ca2+ leak channel and its deficiency enhances susceptibility to ER stress due to inhibition of the ER stress sensor IRE1α. It was previously shown that TMBIM6 overexpression improves glucose metabolism and that TMBIM6 knockout mice develop obesity. We here examined the metabolic alterations underlying the obese phenotype and subjected TMBIM6 knockout mice to indirect calorimetry and euglycemic-hyperinsulinemic tests with stable isotope dilution to gauge tissue-specific insulin sensitivity. This demonstrated no changes in heat production, food intake, activity or hepatic and peripheral insulin sensitivity. TMBIM6 knockout mice, however, featured a higher glucose-stimulated insulin secretion in vivo as assessed by the hyperglycemic clamp test and hepatic steatosis. This coincided with profound changes in glucose-mediated Ca2+ regulation in isolated pancreatic β cells and increased levels of IRE1α levels but no differences in downstream effects of IRE1α like increased Xbp1 mRNA splicing or Ire1-dependent decay of insulin mRNA in the pancreas. We therefore conclude that lack of TMBIM6 does not affect insulin sensitivity but leads to hyperinsulinemia, which serves to explain the weight gain. TMBIM6-mediated metabolic alterations are mainly caused by its role as a Ca2+ release channel in the ER. Key messages TMBIM6−/− leads to obesity and hepatic steatosis. Food intake and energy expenditure are not changed in TMBIM6−/− mice. No changes in insulin resistance in TMBIM6−/− mice. Increased insulin secretion caused by altered calcium dynamics in β cells.
Collapse
Affiliation(s)
- Koenraad Philippaert
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany. .,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany. .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Dmitrij Lisak
- Institute for Molecular Medicine of the University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Diones Bueno
- Institute for Molecular Medicine of the University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | | - Teresa Schacht
- Institute for Molecular Medicine of the University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Margot Mesuere
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Verena Wüllner
- Institute for Molecular Medicine of the University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ann-Kathrin Herrmann
- Institute for Molecular Medicine of the University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Jan Baumgart
- Translational Animal Research Center, The Johannes Gutenberg University, Mainz, Germany
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Axel Methner
- Institute for Molecular Medicine of the University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
14
|
Lebeaupin C, Blanc M, Vallée D, Keller H, Bailly-Maitre B. BAX inhibitor-1: between stress and survival. FEBS J 2020; 287:1722-1736. [PMID: 31841271 DOI: 10.1111/febs.15179] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/18/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Cellular gatekeepers are essential to maintain order within a cell and anticipate signals of stress to promote survival. BCL2 associated X, apoptosis regulator (BAX) inhibitor-1 (BI-1), also named transmembrane BAX inhibitor motif containing-6, is a highly conserved endoplasmic reticulum (ER) transmembrane protein. Originally identified as an inhibitor of BAX-induced apoptosis, its pro-survival properties have been expanded to include functions targeted against ER stress, calcium imbalance, reactive oxygen species accumulation, and metabolic dysregulation. Nevertheless, the structural biology and biochemical mechanism of action of BI-1 are still under debate. BI-1 has been implicated in several diseases, including chronic liver disease, diabetes, ischemia/reperfusion injury, neurodegeneration, and cancer. While most studies have demonstrated a beneficial role for BI-1 in the ubiquitous maintenance of cellular homeostasis, its expression in cancer cells seems most often to contribute to tumorigenesis and metastasis. Here, we summarize what is known about BI-1 and encourage future studies on BI-1's contribution to cellular life and death decisions to advocate its potential as a target for drug development and other therapeutic strategies.
Collapse
Affiliation(s)
- Cynthia Lebeaupin
- INSERM U1065, C3M, Université Côte d'Azur, Nice, France.,Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marina Blanc
- INSERM U1065, C3M, Université Côte d'Azur, Nice, France
| | | | - Harald Keller
- INRA1355-CNRS7254, Université Côte d'Azur, Sophia Antipolis, France
| | | |
Collapse
|
15
|
Wang J, Zhu P, Li R, Ren J, Zhang Y, Zhou H. Bax inhibitor 1 preserves mitochondrial homeostasis in acute kidney injury through promoting mitochondrial retention of PHB2. Theranostics 2020; 10:384-397. [PMID: 31903127 PMCID: PMC6929616 DOI: 10.7150/thno.40098] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
Bax inhibitor-1 (BI1) conveys anti-apoptotic signals for mitochondria while prohibitin 2 (PHB2) is implicated in sustaining mitochondrial morphology and function. However, their regulatory roles in acute kidney injury (AKI) are largely unknown. Methods: In human patients with AKI, levels of BI1 in urine and plasma were determined using ELISA. An experimental model of AKI was established using ATP depletion-mediated metabolic stress and ischemia-reperfusion injury (IRI) in primary tubule cells and BI1 transgenic mice, respectively. Western blots, ELISA, qPCR, immunofluorescence, RNA silencing, and domain deletion assay were employed to evaluate the roles of BI1 and PHB2 in the preservation of mitochondrial integrity. Results: Levels of BI1 in urine and plasma were decreased in patients with AKI and its expression correlated inversely with renal function. However, reconstitution of BI1 in a murine AKI model was capable of alleviating renal failure, inflammation and tubular death. Further molecular scrutiny revealed that BI1 preserved mitochondrial genetic integrity, reduced mitochondrial oxidative stress, promoted mitochondrial respiration, inhibited excessive mitochondrial fission, improved mitophagy and suppressed mitochondrial apoptosis. Intriguingly, levels of the mitochondria-localized PHB2 were sustained by BI1 and knockdown of PHB2 abolished the mitochondrial- and renal- protective properties of BI1. Furthermore, BI1 promoted PHB2 retention within mitochondria through direct interaction with cytoplasmic PHB2 to facilitate its mitochondrial import. This was confirmed by the observation that the C-terminus of BI1 and the PHB domain of PHB2 were required for the BI1-PHB2 cross-linking. Conclusion: Our data have unveiled an essential role of BI1 as a master regulator of renal tubule function through sustaining mitochondrial localization of PHB2, revealing novel therapeutic promises against AKI.
Collapse
|
16
|
Godlewski M, Kobylińska A. Bax Inhibitor 1 (BI-1) as a conservative regulator of Programmed Cell Death. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.6294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Programmed cell death (PCD) is a physiological process in which infected or unnecessary cells due to their suicidal death capability can be selectively eliminated. Pro- and antiapoptotic proteins play an important role in the induction or inhibition of this process. Presented article shows property of Bax-1 (BI-1) inhibitor which is one of the conservative protein associated with the endoplasmic reticulum (ER) as well as its cytoprotective role in the regulation of cellular processes. It was shown that: 1) BI-1 is a small protein consisting of 237 amino acids (human protein - 36 kDa) and has 6 (in animals) and 7 (in plants) α-helical transmembrane domains, 2) BI-1 is expressed in all organisms and in most tissues, moreover its level depends on the functional condition of cells and it is involved in the development or reaction to biotic and abiotic stresses, 3) BI-1 forms a pH-dependent Ca2+ channel enabling release of these ions from the ER, 4) cytoprotective effects of BI-1 requires a whole, unchanged C-terminus, 5) BI-1 can interact directly with numerous other proteins, BI-1 protein affects numerous cellular processes, including: counteracting ER stress, oxidative stress, loss of cellular Ca2+ homeostasis as well as this protein influences on sphingolipid metabolism, autophagy, actin polymerization, lysosomal activity and cell proliferation. Studies of BI-1 functions will allow understanding the mechanisms of anticancer therapy or increases the knowledge of crop tolerance to environmental stresses.
Collapse
Affiliation(s)
- Mirosław Godlewski
- Katedra Ekofizjologii Roślin, Instytut Biologii Eksperymentalnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Łódź
| | - Agnieszka Kobylińska
- Katedra Ekofizjologii Roślin, Instytut Biologii Eksperymentalnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Łódź
| |
Collapse
|
17
|
Doycheva D, Xu N, Kaur H, Malaguit J, McBride DW, Tang J, Zhang JH. Adenoviral TMBIM6 vector attenuates ER-stress-induced apoptosis in a neonatal hypoxic-ischemic rat model. Dis Model Mech 2019; 12:dmm040352. [PMID: 31636086 PMCID: PMC6898997 DOI: 10.1242/dmm.040352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a major pathology encountered after hypoxic-ischemic (HI) injury. Accumulation of unfolded proteins triggers the unfolded protein response (UPR), resulting in the activation of pro-apoptotic cascades that lead to cell death. Here, we identified Bax inhibitor 1 (BI-1), an evolutionarily conserved protein encoded by the transmembrane BAX inhibitor motif-containing 6 (TMBIM6) gene, as a novel modulator of ER-stress-induced apoptosis after HI brain injury in a neonatal rat pup. The main objective of our study was to overexpress BI-1, via viral-mediated gene delivery of human adenoviral-TMBIM6 (Ad-TMBIM6) vector, to investigate its anti-apoptotic effects as well as to elucidate its signaling pathways in an in vivo neonatal HI rat model and in vitro oxygen-glucose deprivation (OGD) model. Ten-day-old unsexed Sprague Dawley rat pups underwent right common carotid artery ligation followed by 1.5 h of hypoxia. Rat pups injected with Ad-TMBIM6 vector, 48 h pre-HI, showed a reduction in relative infarcted area size, attenuated neuronal degeneration and improved long-term neurological outcomes. Furthermore, silencing of BI-1 or further activating the IRE1α branch of the UPR, using a CRISPR activation plasmid, was shown to reverse the protective effects of BI-1. Based on our in vivo and in vitro data, the protective effects of BI-1 are mediated via inhibition of IRE1α signaling and in part via inhibition of the second stress sensor receptor, PERK. Overall, this study showed a novel role for BI-1 and ER stress in the pathophysiology of HI and could provide a basis for BI-1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Desislava Doycheva
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Ningbo Xu
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
- Department of Interventional Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Harpreet Kaur
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Jay Malaguit
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Devin William McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jiping Tang
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - John H Zhang
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
- Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| |
Collapse
|
18
|
Doycheva D, Xu N, Tang J, Zhang J. Viral-mediated gene delivery of TMBIM6 protects the neonatal brain via disruption of NPR-CYP complex coupled with upregulation of Nrf-2 post-HI. J Neuroinflammation 2019; 16:174. [PMID: 31472686 PMCID: PMC6717394 DOI: 10.1186/s12974-019-1559-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Oxidative stress, inflammation, and endoplasmic reticulum (ER) stress play a major role in the pathogenesis of neonatal hypoxic-ischemic (HI) injury. ER stress results in the accumulation of unfolded proteins that trigger the NADPH-P450 reductase (NPR) and the microsomal monooxygenase system which is composed of cytochrome P450 members (CYP) generating reactive oxygen species (ROS) as well as the release of inflammatory cytokines. We explored the role of Bax Inhibitor-1 (BI-1) protein, encoded by the Transmembrane Bax inhibitor Motif Containing 6 (TMBIM6) gene, in protection from ER stress after HI brain injury. BI-1 may attenuate ER stress-induced ROS production and release of inflammatory mediators via (1) disruption of the NPR-CYP complex and (2) upregulation of Nrf-2, a redox-sensitive transcription factor, thus promoting an increase in anti-oxidant enzymes to inhibit ROS production. The main objective of our study is to evaluate BI-1's inhibitory effects on ROS production and inflammation by overexpressing BI-1 in 10-day-old rat pups. METHODS Ten-day-old (P10) unsexed Sprague-Dawley rat pups underwent right common carotid artery ligation, followed by 1.5 h of hypoxia. To overexpress BI-1, rat pups were intracerebroventricularly (icv) injected at 48 h pre-HI with the human adenoviral vector-TMBIM6 (Ad-TMBIM6). BI-1 and Nrf-2 silencing were achieved by icv injection at 48 h pre-HI using siRNA to elucidate the potential mechanism. Percent infarcted area, immunofluorescent staining, DHE staining, western blot, and long-term neurobehavior assessments were performed. RESULTS Overexpression of BI-1 significantly reduced the percent infarcted area and improved long-term neurobehavioral outcomes. BI-1's mediated protection was observed to be via inhibition of P4502E1, a major contributor to ROS generation and upregulation of pNrf-2 and HO-1, which correlated with a decrease in ROS and inflammatory markers. This effect was reversed when BI-1 or Nrf-2 were inhibited. CONCLUSIONS Overexpression of BI-1 increased the production of antioxidant enzymes and attenuated inflammation by destabilizing the complex responsible for ROS production. BI-1's multimodal role in inhibiting P4502E1, together with upregulating Nrf-2, makes it a promising therapeutic target.
Collapse
Affiliation(s)
- Desislava Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - Ningbo Xu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - John Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
- Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Loma Linda, CA 92354 USA
| |
Collapse
|
19
|
Guo G, Xu M, Chang Y, Luyten T, Seitaj B, Liu W, Zhu P, Bultynck G, Shi L, Quick M, Liu Q. Ion and pH Sensitivity of a TMBIM Ca 2+ Channel. Structure 2019; 27:1013-1021.e3. [PMID: 30930064 PMCID: PMC6560632 DOI: 10.1016/j.str.2019.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/25/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
The anti-apoptotic transmembrane Bax inhibitor motif (TMBIM) containing protein family regulates Ca2+ homeostasis, cell death, and the progression of diseases including cancers. The recent crystal structures of the TMBIM homolog BsYetJ reveal a conserved Asp171-Asp195 dyad that is proposed in regulating a pH-dependent Ca2+ translocation. Here we show that BsYetJ mediates Ca2+ fluxes in permeabilized mammalian cells, and its interaction with Ca2+ is sensitive to protons and other cations. We report crystal structures of BsYetJ in additional states, revealing the flexibility of the dyad in a closed state and a pore-opening mechanism. Functional studies show that the dyad is responsible for both Ca2+ affinity and pH dependence. Computational simulations suggest that protonation of Asp171 weakens its interaction with Arg60, leading to an open state. Our integrated analysis provides insights into the regulation of the BsYetJ Ca2+ channel that may inform understanding of human TMBIM proteins regarding their roles in cell death and diseases.
Collapse
Affiliation(s)
- Gongrui Guo
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Min Xu
- Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MA 21224, USA
| | - Yanqi Chang
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA
| | - Tomas Luyten
- Laboratory Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I Bus 802, Herestraat 49 3000 Leuven, Belgium
| | - Bruno Seitaj
- Laboratory Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I Bus 802, Herestraat 49 3000 Leuven, Belgium
| | - Wu Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ping Zhu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Geert Bultynck
- Laboratory Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I Bus 802, Herestraat 49 3000 Leuven, Belgium
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Unit, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MA 21224, USA.
| | - Matthias Quick
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
20
|
Doycheva D, Kaur H, Tang J, Zhang JH. The characteristics of the ancient cell death suppressor, TMBIM6, and its related signaling pathways after endoplasmic reticulum stress. J Neurosci Res 2019; 98:77-86. [PMID: 31044452 DOI: 10.1002/jnr.24434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022]
Abstract
Activation of the unfolded protein response in combination with generation of reactive oxygen species, from cytochrome P450 members and NADPH-P450 reductases, are two major consequences of Endoplasmic Reticulum (ER) stress that cause oxidative damage and cell death. Herein, we reviewed the role of Bax Inhibitor-1 (BI-1), an evolutionarily conserved protein encoded by the Transmembrane Bax inhibitor Motif Containing 6 gene, in protection from ER stress. As BI-1 has multimodal properties that can target a wide array of pathophysiological consequences after injury, our main objective was to explore BI-1's protective role in ER stress and its potential signaling pathways.
Collapse
Affiliation(s)
- Desislava Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - Harpreet Kaur
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Neurology, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
21
|
Xie S, Wang Y, Wei W, Li C, Liu Y, Qu J, Meng Q, Lin Y, Yin W, Yang Y, Luo C. The Bax inhibitor UvBI-1, a negative regulator of mycelial growth and conidiation, mediates stress response and is critical for pathogenicity of the rice false smut fungus Ustilaginoidea virens. Curr Genet 2019; 65:1185-1197. [PMID: 30993412 DOI: 10.1007/s00294-019-00970-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 01/31/2023]
Abstract
Bax inhibitor-1 (BI-1), an evolutionarily conserved protein, is a suppressor of cell death induced by the proapoptotic protein Bax and is involved in the response to biotic and abiotic stress in animals, plants and yeast. Rice false smut caused by Ustilaginoidea virens is one of the destructive rice diseases worldwide. Although BI-1 proteins are widely distributed across filamentous fungi, few of them are functionally characterized. In this study, we identified a BI-1 protein in U. virens, UvBI-1, which contains a predicted Bax inhibitor-1-like family domain and could suppress the cell death induced by Bax. By co-transformation of the CRISPR/Cas9 construct along with donor DNA fragment containing the hygromycin resistance gene, we successfully generated Uvbi-1 deletion mutants. The UvBI-1 deletion showed an increase in mycelia vegetative growth and conidiation, suggesting this gene acts as a negative regulator of the growth and conidiation. In addition, the Uvbi-1 mutants exhibited higher sensitivity to osmotic and salt stress, hydrogen peroxide stress, and cell wall or membrane stress than the wild-type strain. Furthermore, UvBI-1 deletion was found to cause increased production of secondary metabolites and loss of pathogenicity of U. virens. Taken together, our results demonstrate that UvBI-1 plays a negative role in mycelial growth and conidiation, and is critical for stress tolerance, cell wall integrity, secondary metabolites production and pathogenicity of U. virens. Therefore, this study provides new evidence on the conserved function of BI-1 among fungal organisms and other species.
Collapse
Affiliation(s)
- Songlin Xie
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufu Wang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Wei
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chongyang Li
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Liu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinsong Qu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianghong Meng
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Lin
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weixiao Yin
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Chaoxi Luo
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
22
|
Wang W, Li X, Zhu M, Tang X, Wang Z, Guo K, Zhou Y, Sun Y, Zhang W, Li X. Arabidopsis GAAP1 to GAAP3 Play Redundant Role in Cell Death Inhibition by Suppressing the Upregulation of Salicylic Acid Pathway Under Endoplasmic Reticulum Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1032. [PMID: 31507623 PMCID: PMC6719610 DOI: 10.3389/fpls.2019.01032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/24/2019] [Indexed: 05/03/2023]
Abstract
The unfolded protein response (UPR) is activated to sustain cell survival by reducing misfolded protein accumulation in the endoplasmic reticulum (ER). The UPR also promotes cell death when the ER stress is severe. However, the underlying molecular mechanisms of UPR activity regulation and cell death transition are less understood in plants. Arabidopsis GAAP1 and GAAP3 are involved in the regulation of UPR and cell death. Five GAAP gene members are found in Arabidopsis. Here, we analyzed the function of GAAP2 in addition to GAAP1 and GAAP3 in ER stress response using single, double, and triple mutants. Results showed that single or double or triple mutants reduced plant survival and enhanced cell death under ER stress. And the sensitivity increased with the number of mutation genes increase. Quantitative real-time polymerase chain reaction analysis showed that mutation in triple genes promoted UPR signaling when confronted with mild ER stress, advanced SA target genes upregulation when confronted with severe stress. Moreover, Quantitative detection by UPLC-ESI-MS/MS showed that ER stress upregulated salicylic acid (SA) content in plants. These data suggest that GAAP1 to GAAP3 played redundant roles in cell death resistance and fine tuning UPR activation. And the anti-cell death function of GAAPs might be achieved by impairing the up-regulation of the SA pathway under ER stress.
Collapse
|
23
|
Gong F, Gu J, Wang H. Up regulated Tmbim1 activation promotes high fat diet (HFD)-induced cardiomyopathy by enhancement of inflammation and oxidative stress. Biochem Biophys Res Commun 2018; 504:797-804. [PMID: 30217448 DOI: 10.1016/j.bbrc.2018.08.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022]
Abstract
The prevalence of cardiomyopathy due to metabolic stress has up-regulated dramatically; nevertheless, its molecular mechanisms remain unclear. Here we suggested that transmembrane BAX inhibitor motif-containing 1 (Tmbim1) is down-regulated in the hearts of mice fed with high fat diet (HFD). We provided evidence that Tmbim1 knockout (KO) accelerated HFD-induced metabolic disorders in mice, as supported by the remarkable increase of fasting serum glucose and insulin levels. HFD-induced cardiac dysfunctions were greatly intensified by the loss of Tmbim1, along with higher levels of lactate dehydrogenase (LDH) and creatine kinase (CK) in serum. In addition, Tmbim1 deletion significantly enhanced lipid accumulation in heart of mice administrated with HFD. Furthermore, Tmbim1 knockout reinforced myocardial inflammation, evidenced by increasing the expression of pro-inflammatory cytokines (interleukin 1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α)), and the activation of nuclear factor-κB (NF-κB) signaling pathway. Tmbim1 deficiency strengthened oxidative damage in hearts of HFD-fed mice, accompanied with a significant reduction of nuclear factor-erythroid 2 related factor 2 (Nrf-2) pathway. In palmitate (PA)-treated primary cardiomyocytes, Tmbim1 ablation markedly enhanced cell inflammation and oxidative stress, which were abolished by the suppression of ROS generation and NF-κB activation. Taken together, these findings suggested that Tmbim1 might be a key suppressor of metabolic stress-induced cardiomyopathy, which could be a promising target for the treatment of metabolic syndrome-triggered myocardial damage and heart failure.
Collapse
Affiliation(s)
- Fen Gong
- Department of Surgical Outpatient, Jining No.1 People's Hospital, Jining, 272011, China
| | - Junfei Gu
- Department of Endocrinology, Vascular Disease Research Center, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Haijun Wang
- Department of Endocrinology, Yanan People`s Hospital, Yanan, 716000, China.
| |
Collapse
|
24
|
Cai J, Wei S, Lu Y, Wu Z, Qin Q, Jian J. Bax inhibitor-1 from orange spotted grouper, Epinephelus coioides involved in viral infection. FISH & SHELLFISH IMMUNOLOGY 2018; 78:91-99. [PMID: 29679759 DOI: 10.1016/j.fsi.2018.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
Bax inhibitor-1 (BI-1) is a conserved anti-apoptotic protein that suppresses endoplasmic reticulum (ER) stress-induced cell death. However, the function of fish BI-1 is not quite clear. In the present study, a bi-1 homolog (Ecbi-1) from orange spotted grouper, Epinephelus coioides was identified and its roles in viral infection were investigated. EcBI-1 encoded 237 amino acids protein, contained six transmembrane regions and a conservative C-terminus motif. Ecbi-1 predominantly expressed in kidney and spleen of healthy grouper. After SGIV stimulation, Ecbi-1 transcript was significantly increased in vitro. Subcellular localization analysis revealed that EcBI-1 was localized throughout the cytoplasm and co-localized with ER. Furthermore, overexpression of EcBI-1 suppressed SGIV infection induced cell death, caspase-3 activity and viral genes transcription. And C-terminus motif was critical for regulation roles of EcBI-1 during SGIV infection. In addition, EcBI-1 could interact with EcBNIP3 in vitro. Together, our data firstly demonstrated that fish BI-1 play important roles in response to viral infection.
Collapse
Affiliation(s)
- Jia Cai
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, PR China
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, PR China
| | - Zaohe Wu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, PR China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, PR China.
| |
Collapse
|
25
|
Gamboa-Tuz SD, Pereira-Santana A, Zhao T, Schranz ME, Castano E, Rodriguez-Zapata LC. New insights into the phylogeny of the TMBIM superfamily across the tree of life: Comparative genomics and synteny networks reveal independent evolution of the BI and LFG families in plants. Mol Phylogenet Evol 2018; 126:266-278. [PMID: 29702215 DOI: 10.1016/j.ympev.2018.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 10/17/2022]
Abstract
The Transmembrane BAX Inhibitor Motif containing (TMBIM) superfamily, divided into BAX Inhibitor (BI) and Lifeguard (LFG) families, comprises a group of cytoprotective cell death regulators conserved in prokaryotes and eukaryotes. However, no research has focused on the evolution of this superfamily in plants. We identified 685 TMBIM proteins in 171 organisms from Archaea, Bacteria, and Eukarya, and provided a phylogenetic overview of the whole TMBIM superfamily. Then, we used orthology and synteny network analyses to further investigate the evolution and expansion of the BI and LFG families in 48 plants from diverse taxa. Plant BI family forms a single monophyletic group; however, monocot BI sequences transposed to another genomic context during evolution. Plant LFG family, which expanded trough whole genome and tandem duplications, is subdivided in LFG I, LFG IIA, and LFG IIB major phylogenetic groups, and retains synteny in angiosperms. Moreover, two orthologous groups (OGs) are shared between bryophytes and seed plants. Other several lineage-specific OGs are present in plants. This work clarifies the phylogenetic classification of the TMBIM superfamily across the three domains of life. Furthermore, it sheds new light on the evolution of the BI and LFG families in plants providing a benchmark for future research.
Collapse
Affiliation(s)
- Samuel D Gamboa-Tuz
- Biotechnology Unit, Centro de Investigacion Cientifica de Yucatan, 97205 Yucatan, Mexico
| | | | - Tao Zhao
- Biosystematics Group, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Enrique Castano
- Biochemistry and Molecular Biology Unit, Centro de Investigacion Cientifica de Yucatan, 97205 Yucatan, Mexico
| | | |
Collapse
|
26
|
Carrara G, Parsons M, Saraiva N, Smith GL. Golgi anti-apoptotic protein: a tale of camels, calcium, channels and cancer. Open Biol 2018; 7:rsob.170045. [PMID: 28469007 PMCID: PMC5451544 DOI: 10.1098/rsob.170045] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Golgi anti-apoptotic protein (GAAP), also known as transmembrane Bax inhibitor-1 motif-containing 4 (TMBIM4) or Lifeguard 4 (Lfg4), shares remarkable amino acid conservation with orthologues throughout eukaryotes, prokaryotes and some orthopoxviruses, suggesting a highly conserved function. GAAPs regulate Ca2+ levels and fluxes from the Golgi and endoplasmic reticulum, confer resistance to a broad range of apoptotic stimuli, promote cell adhesion and migration via the activation of store-operated Ca2+ entry, are essential for the viability of human cells, and affect orthopoxvirus virulence. GAAPs are oligomeric, multi-transmembrane proteins that are resident in Golgi membranes and form cation-selective ion channels that may explain the multiple functions of these proteins. Residues contributing to the ion-conducting pore have been defined and provide the first clues about the mechanistic link between these very different functions of GAAP. Although GAAPs are naturally oligomeric, they can also function as monomers, a feature that distinguishes them from other virus-encoded ion channels that must oligomerize for function. This review summarizes the known functions of GAAPs and discusses their potential importance in disease.
Collapse
Affiliation(s)
- Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Nuno Saraiva
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK .,CBIOS, Universidade Lusófona Research Centre for Biosciences and Health Technologies, Campo Grande 376, Lisbon 1749-024, Portugal
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| |
Collapse
|
27
|
Guo K, Wang W, Fan W, Wang Z, Zhu M, Tang X, Wu W, Yang X, Shao X, Sun Y, Zhang W, Li X. Arabidopsis GAAP1 and GAAP3 Modulate the Unfolded Protein Response and the Onset of Cell Death in Response to ER Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:348. [PMID: 29616060 PMCID: PMC5864889 DOI: 10.3389/fpls.2018.00348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/01/2018] [Indexed: 05/03/2023]
Abstract
The function of human Golgi antiapoptotic proteins (GAAPs) resembles that of BAX inhibitor-1, with apoptosis inhibition triggered by intrinsic and extrinsic stimuli. However, little is known about the function of GAAP-related proteins in plants. Here, we studied Arabidopsis GAAP1 and GAAP3 and found that they were localized on the cellular membrane, including the endoplasmic reticulum (ER) membrane. The function of GAAP1/GAAP3 in ER-stress response was tested, and results showed that single or double mutation in GAAP1 and GAAP3 reduced plant survival and enhanced cell death under ER stress. The expression of both genes was induced by various abiotic stress signals. Quantitative real-time polymerase chain reaction analysis showed that GAAP1/GAAP3 level affected the expression pattern of the unfolded-protein response (UPR) signaling pathway genes upon prolonged ER stress. The mutation in both GAAP1 and GAAP3 genes promoted and enhanced UPR signaling when confronted with mild ER stress. Moreover, GAAP1/GAAP3 inhibited cell death caused by ER stress and promoted plant-growth recovery by turning down inositol-requiring enzyme 1 (IRE1) signaling after ER stress had been relieved. Co-immunoprecipitation (Co-Ip) and BiFC assays showed that GAAP1/GAAP3 interacted with IRE1. These data suggested that GAAP1/GAAP3 played dual roles in the negative regulation of IRE1 activity and anti-programmed cell death.
Collapse
|
28
|
Cheng CH, Luo SW, Wang AL, Guo ZX. Molecular and immune response characterizations of a novel Bax inhibitor-1 gene in pufferfish, Takifugu obscurus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:965-975. [PMID: 28553691 DOI: 10.1007/s10695-016-0337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/21/2016] [Indexed: 06/07/2023]
Abstract
Apoptosis plays a crucial role in many biological processes, including development, cellular homeostasis, and immune responses. Bax inhibitor-1 (BI-1) is an anti-apoptotic protein that protects cells from endoplasmic reticulum stress-induced apoptosis. In this study, a BI-1 gene from the pufferfish Takifugu obscurus (Pf-BI-1) was identified and characterized. The full length of Pf-BI-1 cDNA was 1387 bp, including a 5'-UTR of 82 bp, a 3'-UTR of 591 bp containing a poly-(A) tail, and an open reading frame (ORF) of 714 bp that encodes a polypeptide of 237 amino acids. Pf-BI-1 was ubiquitously expressed in various tissues, with the highest expression levels in the blood, brain, and gill. The expression of Pf-BI-1 was up-regulated in a time-dependent manner after heat shock stress, ammonia stress, and bacterial challenge. Intracellular localization revealed that Pf-BI-1 was primarily localized in the cell cytoplasm. Furthermore, over-expression of Pf-BI-1 could active NF-кB reporter genes in HeLa cells. These results indicated that Pf-BI-1 may be involved in the apoptosis and immunity process against ambient stressors in pufferfish.
Collapse
Affiliation(s)
- Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Sheng-Wei Luo
- Key Laboratory of Ecology and Environmental Science of Guangdong, Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - An-Li Wang
- Key Laboratory of Ecology and Environmental Science of Guangdong, Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China.
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center (SCS-REPIC), Guangzhou, People's Republic of China.
| |
Collapse
|
29
|
M'Angale PG, Staveley BE. Bax-inhibitor-1 knockdown phenotypes are suppressed by Buffy and exacerbate degeneration in a Drosophila model of Parkinson disease. PeerJ 2017; 5:e2974. [PMID: 28243526 PMCID: PMC5322759 DOI: 10.7717/peerj.2974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/10/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Bax inhibitor-1 (BI-1) is an evolutionarily conserved cytoprotective transmembrane protein that acts as a suppressor of Bax-induced apoptosis by regulation of endoplasmic reticulum stress-induced cell death. We knocked down BI-1 in the sensitive dopa decarboxylase (Ddc) expressing neurons of Drosophila melanogaster to investigate its neuroprotective functions. We additionally sought to rescue the BI-1-induced phenotypes by co-expression with the pro-survival Buffy and determined the effect of BI-1 knockdown on the neurodegenerative α-synuclein-induced Parkinson disease (PD) model. METHODS We used organismal assays to assess longevity of the flies to determine the effect of the altered expression of BI-1 in the Ddc-Gal4-expressing neurons by employing two RNAi transgenic fly lines. We measured the locomotor ability of these RNAi lines by computing the climbing indices of the climbing ability and compared them to a control line that expresses the lacZ transgene. Finally, we performed biometric analysis of the developing eye, where we counted the number of ommatidia and calculated the area of ommatidial disruption. RESULTS The knockdown of BI-1 in these neurons was achieved under the direction of the Ddc-Gal4 transgene and resulted in shortened lifespan and precocious loss of locomotor ability. The co-expression of Buffy, the Drosophila anti-apoptotic Bcl-2 homologue, with BI-1-RNAi resulted in suppression of the reduced lifespan and impaired climbing ability. Expression of human α-synuclein in Drosophila dopaminergic neurons results in neuronal degeneration, accompanied by the age-dependent loss in climbing ability. We exploited this neurotoxic system to investigate possible BI-1 neuroprotective function. The co-expression of α-synuclein with BI-1-RNAi results in a slight decrease in lifespan coupled with an impairment in climbing ability. In supportive experiments, we employed the neuron-rich Drosophila compound eye to investigate subtle phenotypes that result from altered gene expression. The knockdown of BI-1 in the Drosophila developing eye under the direction of the GMR-Gal4 transgene results in reduced ommatidia number and increased disruption of the ommatidial array. Similarly, the co-expression of BI-1-RNAi with Buffy results in the suppression of the eye phenotypes. The expression of α-synuclein along with the knockdown of BI-1 resulted in reduction of ommatidia number and more disruption of the ommatidial array. CONCLUSION Knockdown of BI-1 in the dopaminergic neurons of Drosophila results in a shortened lifespan and premature loss in climbing ability, phenotypes that appear to be strongly associated with models of PD in Drosophila, and which are suppressed upon overexpression of Buffy and worsened by co-expression with α-synuclein. This suggests that BI-1 is neuroprotective and its knockdown can be counteracted by the overexpression of the pro-survival Bcl-2 homologue.
Collapse
Affiliation(s)
- P Githure M'Angale
- Department of Biology, Memorial University of Newfoundland , St. John's, NL , Canada
| | - Brian E Staveley
- Department of Biology, Memorial University of Newfoundland , St. John's, NL , Canada
| |
Collapse
|
30
|
Liu Q. TMBIM-mediated Ca 2+ homeostasis and cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:850-857. [PMID: 28064000 DOI: 10.1016/j.bbamcr.2016.12.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 11/25/2022]
Abstract
Ca2+ is a ubiquitous intracellular messenger that regulates numerous physiological activities in humans, animals, plants, and bacteria. Cytosolic Ca2+ is kept at a low level, but subcellular organelles such as the endoplasmic reticulum (ER) and Golgi apparatus maintain high-concentration Ca2+ stores. Under resting conditions, store Ca2+ homeostasis is dynamically regulated to equilibrate between active Ca2+ uptake and passive Ca2+ leak processes. The evolutionarily conserved Transmembrane BAX Inhibitor-1 Motif-containing (TMBIM) proteins mediate Ca2+ homeostasis and cell death. This review focuses on recent advances in functional and structural analysis of TMBIM proteins in regulation of the two related functions. The roles of TMBIM proteins in pathogen infection and cancer are also discussed with prospects for treatment. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
31
|
Nickel N, Cleven A, Enders V, Lisak D, Schneider L, Methner A. Androgen-inducible gene 1 increases the ER Ca2+ content and cell death susceptibility against oxidative stress. Gene 2016; 586:62-8. [DOI: 10.1016/j.gene.2016.03.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 11/27/2022]
|
32
|
Bcl-2 proteins and calcium signaling: complexity beneath the surface. Oncogene 2016; 35:5079-92. [DOI: 10.1038/onc.2016.31] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 12/12/2022]
|
33
|
Anderson L, Amaral MS, Beckedorff F, Silva LF, Dazzani B, Oliveira KC, Almeida GT, Gomes MR, Pires DS, Setubal JC, DeMarco R, Verjovski-Almeida S. Schistosoma mansoni Egg, Adult Male and Female Comparative Gene Expression Analysis and Identification of Novel Genes by RNA-Seq. PLoS Negl Trop Dis 2015; 9:e0004334. [PMID: 26719891 PMCID: PMC4699917 DOI: 10.1371/journal.pntd.0004334] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/06/2015] [Indexed: 12/28/2022] Open
Abstract
Background Schistosomiasis is one of the most prevalent parasitic diseases worldwide and is a public health problem. Schistosoma mansoni is the most widespread species responsible for schistosomiasis in the Americas, Middle East and Africa. Adult female worms (mated to males) release eggs in the hepatic portal vasculature and are the principal cause of morbidity. Comparative separate transcriptomes of female and male adult worms were previously assessed with using microarrays and Serial Analysis of Gene Expression (SAGE), thus limiting the possibility of finding novel genes. Moreover, the egg transcriptome was analyzed only once with limited bacterially cloned cDNA libraries. Methodology/Principal findings To compare the gene expression of S. mansoni eggs, females, and males, we performed RNA-Seq on these three parasite forms using 454/Roche technology and reconstructed the transcriptome using Trinity de novo assembly. The resulting contigs were mapped to the genome and were cross-referenced with predicted Smp genes and H3K4me3 ChIP-Seq public data. For the first time, we obtained separate, unbiased gene expression profiles for S. mansoni eggs and female and male adult worms, identifying enriched biological processes and specific enriched functions for each of the three parasite forms. Transcripts with no match to predicted genes were analyzed for their protein-coding potential and the presence of an encoded conserved protein domain. A set of 232 novel protein-coding genes with putative functions related to reproduction, metabolism, and cell biogenesis was detected, which contributes to the understanding of parasite biology. Conclusions/Significance Large-scale RNA-Seq analysis using de novo assembly associated with genome-wide information for histone marks in the vicinity of gene models constitutes a new approach to transcriptome analysis that has not yet been explored in schistosomes. Importantly, all data have been consolidated into a UCSC Genome Browser search- and download-tool (http://schistosoma.usp.br/). This database provides new ways to explore the schistosome genome and transcriptome and will facilitate molecular research on this important parasite. Schistosomiasis is a public health problem caused by parasites of the genus Schistosoma, of which S. mansoni is the primary causative agent. The parasite has a complex life cycle; their sexual reproductive stage is dependent on female and male adult worms mating inside the mesenteric circulation of the human host, with the female releasing hundreds of eggs daily. This phase of the life cycle is responsible for the development of pathology, which is proportional to the number of eggs accumulating in the liver and intestine of the human host. Genome and transcriptome sequencing of this parasite represent important advances in schistosome research, but there is still a need for integrated analyses to better understand the biology of this parasite. In this study, we describe the first large-scale transcriptomes of eggs, and female and male adult worms, the parasite forms that are mainly responsible for the pathology of schistosomiasis. We were able to cross-reference the gene transcription regions with promoter regions, thus improving the gene annotations. Moreover, we identified the expression of novel protein-coding genes not yet described in the current genome annotation, advancing the biological knowledge regarding this parasite.
Collapse
Affiliation(s)
- Letícia Anderson
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Murilo S. Amaral
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Instituto Butantan, São Paulo, SP, Brazil
| | - Felipe Beckedorff
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas F. Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Bianca Dazzani
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Katia C. Oliveira
- Núcleo de Enteroparasitas, Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, São Paulo, SP, Brazil
| | - Giulliana T. Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Monete R. Gomes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - David S. Pires
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Instituto Butantan, São Paulo, SP, Brazil
| | - João C. Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Ricardo DeMarco
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Sergio Verjovski-Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Instituto Butantan, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
34
|
Lisak D, Schacht T, Gawlitza A, Albrecht P, Aktas O, Koop B, Gliem M, Hofstetter HH, Zanger K, Bultynck G, Parys JB, De Smedt H, Kindler T, Adams-Quack P, Hahn M, Waisman A, Reed JC, Hövelmeyer N, Methner A. BAX inhibitor-1 is a Ca(2+) channel critically important for immune cell function and survival. Cell Death Differ 2015; 23:358-68. [PMID: 26470731 DOI: 10.1038/cdd.2015.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 01/03/2023] Open
Abstract
The endoplasmic reticulum (ER) serves as the major intracellular Ca(2+) store and has a role in the synthesis and folding of proteins. BAX (BCL2-associated X protein) inhibitor-1 (BI-1) is a Ca(2+) leak channel also implicated in the response against protein misfolding, thereby connecting the Ca(2+) store and protein-folding functions of the ER. We found that BI-1-deficient mice suffer from leukopenia and erythrocytosis, have an increased number of splenic marginal zone B cells and higher abundance and nuclear translocation of NF-κB (nuclear factor-κ light-chain enhancer of activated B cells) proteins, correlating with increased cytosolic and ER Ca(2+) levels. When put into culture, purified knockout T cells and even more so B cells die spontaneously. This is preceded by increased activity of the mitochondrial initiator caspase-9 and correlated with a significant surge in mitochondrial Ca(2+) levels, suggesting an exhausted mitochondrial Ca(2+) buffer capacity as the underlying cause for cell death in vitro. In vivo, T-cell-dependent experimental autoimmune encephalomyelitis and B-cell-dependent antibody production are attenuated, corroborating the ex vivo results. These results suggest that BI-1 has a major role in the functioning of the adaptive immune system by regulating intracellular Ca(2+) homeostasis in lymphocytes.
Collapse
Affiliation(s)
- D Lisak
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn) and Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - T Schacht
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn) and Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - A Gawlitza
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn) and Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - P Albrecht
- Heinrich Heine Universität Düsseldorf, Department of Neurology, Düsseldorf, Germany
| | - O Aktas
- Heinrich Heine Universität Düsseldorf, Department of Neurology, Düsseldorf, Germany
| | - B Koop
- Heinrich Heine Universität Düsseldorf, Department of Neurology, Düsseldorf, Germany
| | - M Gliem
- Heinrich Heine Universität Düsseldorf, Department of Neurology, Düsseldorf, Germany
| | - H H Hofstetter
- Heinrich Heine Universität Düsseldorf, Department of Neurology, Düsseldorf, Germany
| | - K Zanger
- Center for Anatomy and Brain Research, Düsseldorf, Germany
| | - G Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - J B Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - H De Smedt
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - T Kindler
- III Medical Clinic, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - P Adams-Quack
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - M Hahn
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - A Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - J C Reed
- Sanford Burnham Institute, La Jolla, CA, USA
| | - N Hövelmeyer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - A Methner
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn) and Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
35
|
Quaglino F, Kube M, Jawhari M, Abou-Jawdah Y, Siewert C, Choueiri E, Sobh H, Casati P, Tedeschi R, Lova MM, Alma A, Bianco PA. 'Candidatus Phytoplasma phoenicium' associated with almond witches'-broom disease: from draft genome to genetic diversity among strain populations. BMC Microbiol 2015; 15:148. [PMID: 26223451 PMCID: PMC4518686 DOI: 10.1186/s12866-015-0487-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Almond witches'-broom (AlmWB), a devastating disease of almond, peach and nectarine in Lebanon, is associated with 'Candidatus Phytoplasma phoenicium'. In the present study, we generated a draft genome sequence of 'Ca. P. phoenicium' strain SA213, representative of phytoplasma strain populations from different host plants, and determined the genetic diversity among phytoplasma strain populations by phylogenetic analyses of 16S rRNA, groEL, tufB and inmp gene sequences. RESULTS Sequence-based typing and phylogenetic analysis of the gene inmp, coding an integral membrane protein, distinguished AlmWB-associated phytoplasma strains originating from diverse host plants, whereas their 16S rRNA, tufB and groEL genes shared 100 % sequence identity. Moreover, dN/dS analysis indicated positive selection acting on inmp gene. Additionally, the analysis of 'Ca. P. phoenicium' draft genome revealed the presence of integral membrane proteins and effector-like proteins and potential candidates for interaction with hosts. One of the integral membrane proteins was predicted as BI-1, an inhibitor of apoptosis-promoting Bax factor. Bioinformatics analyses revealed the presence of putative BI-1 in draft and complete genomes of other 'Ca. Phytoplasma' species. CONCLUSION The genetic diversity within 'Ca. P. phoenicium' strain populations in Lebanon suggested that AlmWB disease could be associated with phytoplasma strains derived from the adaptation of an original strain to diverse hosts. Moreover, the identification of a putative inhibitor of apoptosis-promoting Bax factor (BI-1) in 'Ca. P. phoenicium' draft genome and within genomes of other 'Ca. Phytoplasma' species suggested its potential role as a phytoplasma fitness-increasing factor by modification of the host-defense response.
Collapse
Affiliation(s)
- Fabio Quaglino
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, via Celoria 2, 20133, Milan, Italy.
| | - Michael Kube
- Division Phytomedicine, Thaer-Institute, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Maan Jawhari
- Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon.
| | - Yusuf Abou-Jawdah
- Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon.
| | - Christin Siewert
- Division Phytomedicine, Thaer-Institute, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Elia Choueiri
- Department of Plant Protection, Lebanese Agricultural Research Institute, Tal Amara, Lebanon.
| | - Hana Sobh
- Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon.
| | - Paola Casati
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, via Celoria 2, 20133, Milan, Italy.
| | - Rosemarie Tedeschi
- Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Grugliasco (TO), Italy.
| | | | - Alberto Alma
- Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Grugliasco (TO), Italy.
| | - Piero Attilio Bianco
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, via Celoria 2, 20133, Milan, Italy.
| |
Collapse
|
36
|
The danger model approach to the pathogenesis of the rheumatic diseases. J Immunol Res 2015; 2015:506089. [PMID: 25973436 PMCID: PMC4417989 DOI: 10.1155/2015/506089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 12/12/2014] [Indexed: 12/19/2022] Open
Abstract
The danger model was proposed by Polly Matzinger as complement to the traditional self-non-self- (SNS-) model to explain the immunoreactivity. The danger model proposes a central role of the tissular cells' discomfort as an element to prime the immune response processes in opposition to the traditional SNS-model where foreignness is a prerequisite. However recent insights in the proteomics of diverse tissular cells have revealed that under stressful conditions they have a significant potential to initiate, coordinate, and perpetuate autoimmune processes, in many cases, ruling over the adaptive immune response cells; this ruling potential can also be confirmed by observations in several genetically manipulated animal models. Here, we review the pathogenesis of rheumatic diseases such as systemic lupus erythematous, rheumatoid arthritis, spondyloarthritis including ankylosing spondylitis, psoriasis, and Crohn's disease and provide realistic approaches based on the logic of the danger model. We assume that tissular dysfunction is a prerequisite for chronic autoimmunity and propose two genetically conferred hypothetical roles for the tissular cells causing the disease: (A) the Impaired cell and (B) the paranoid cell. Both roles are not mutually exclusive. Some examples in human disease and in animal models are provided based on current evidence.
Collapse
|
37
|
Lisak DA, Schacht T, Enders V, Habicht J, Kiviluoto S, Schneider J, Henke N, Bultynck G, Methner A. The transmembrane Bax inhibitor motif (TMBIM) containing protein family: Tissue expression, intracellular localization and effects on the ER CA²⁺-filling state. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2104-14. [PMID: 25764978 DOI: 10.1016/j.bbamcr.2015.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/19/2015] [Accepted: 03/01/2015] [Indexed: 10/23/2022]
Abstract
Bax inhibitor-1 (BI-1) is an evolutionarily conserved pH-dependent Ca²⁺ leak channel in the endoplasmic reticulum and the founding member of a family of six highly hydrophobic mammalian proteins named transmembrane BAX inhibitor motif containing (TMBIM) 1-6 with BI-1 being TMBIM6. Here we compared the structure, subcellular localization, tissue expression and the effect on the cellular Ca²⁺ homeostasis of all family members side by side. We found that all TMBIM proteins possess the di-aspartyl pH sensor responsible for pH sensing identified in TMBIM6 and its bacterial homologue BsYetJ. TMBIM1-3 and TMBIM4-6 represent two phylogenetically distinct groups that are localized in the Golgi apparatus (TMBIM1-3), endoplasmic reticulum (TMBIM4-6) or mitochondria (TMBIM5) but share a common structure of at least seven transmembrane domains with the last domain being semi-hydrophobic. TMBIM1 is mainly expressed in muscle, TMBIM2 and 3 in the nervous system, TMBIM4 and 5 are ubiquitously expressed and TMBIM6 in skeletal muscle, kidney, liver and spleen. All TMBIM proteins reduce the Ca²⁺ content of the endoplasmic reticulum, and all but TMBIM5 also reduce the cytosolic resting Ca²⁺ concentration. These results suggest that the TMBIM family has comparable functions in the maintenance of intracellular Ca²⁺ homeostasis in a wide variety of tissues. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Dmitrij A Lisak
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn(2)), Department of Neurology, Johannes Gutenberg University Medical Center Mainz, Langenbeckstr. 1, Mainz D-55131, Germany
| | - Teresa Schacht
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn(2)), Department of Neurology, Johannes Gutenberg University Medical Center Mainz, Langenbeckstr. 1, Mainz D-55131, Germany
| | - Vitalij Enders
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn(2)), Department of Neurology, Johannes Gutenberg University Medical Center Mainz, Langenbeckstr. 1, Mainz D-55131, Germany
| | - Jörn Habicht
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn(2)), Department of Neurology, Johannes Gutenberg University Medical Center Mainz, Langenbeckstr. 1, Mainz D-55131, Germany
| | - Santeri Kiviluoto
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, Leuven BE-3000, Belgium
| | - Julia Schneider
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn(2)), Department of Neurology, Johannes Gutenberg University Medical Center Mainz, Langenbeckstr. 1, Mainz D-55131, Germany
| | - Nadine Henke
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn(2)), Department of Neurology, Johannes Gutenberg University Medical Center Mainz, Langenbeckstr. 1, Mainz D-55131, Germany
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, Leuven BE-3000, Belgium
| | - Axel Methner
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn(2)), Department of Neurology, Johannes Gutenberg University Medical Center Mainz, Langenbeckstr. 1, Mainz D-55131, Germany.
| |
Collapse
|
38
|
Ueda N. Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. Int J Mol Sci 2015; 16:5076-124. [PMID: 25751724 PMCID: PMC4394466 DOI: 10.3390/ijms16035076] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/09/2015] [Accepted: 02/12/2015] [Indexed: 12/16/2022] Open
Abstract
Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed.
Collapse
Affiliation(s)
- Norishi Ueda
- Department of Pediatrics, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan, Ishikawa 924-8588, Japan.
| |
Collapse
|
39
|
Abstract
Permeabilization of the outer mitochondrial membrane that leads to the release of cytochrome c and several other apoptogenic proteins from mitochondria into cytosol represents a commitment point of apoptotic pathway in mammalian cells. This crucial event is governed by proteins of the Bcl-2 family. Molecular mechanisms, by which Bcl-2 family proteins permeabilize mitochondrial membrane, remain under dispute. Although yeast does not have apparent homologues of these proteins, when mammalian members of Bcl-2 family are expressed in yeast, they retain their activity, making yeast an attractive model system, in which to study their action. This review focuses on using yeast expressing mammalian proteins of the Bcl-2 family as a tool to investigate mechanisms, by which these proteins permeabilize mitochondrial membranes, mechanisms, by which pro- and antiapoptotic members of this family interact, and involvement of other cellular components in the regulation of programmed cell death by Bcl-2 family proteins.
Collapse
Affiliation(s)
- Peter Polčic
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Petra Jaká
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
40
|
Bultynck G, Kiviluoto S, Methner A. Bax Inhibitor-1 Is Likely a pH-Sensitive Calcium Leak Channel, Not a H+/Ca2+ Exchanger. Sci Signal 2014; 7:pe22. [DOI: 10.1126/scisignal.2005764] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
41
|
Arican GO, Khalilia W, Serbes U, Akman G, Cetin I, Arican E. Effects of hypobaric conditions on apoptosis signalling pathways in HeLa cells. Asian Pac J Cancer Prev 2014; 15:5043-7. [PMID: 24998584 DOI: 10.7314/apjcp.2014.15.12.5043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Nowadays increasing effectiveness in cancer therapy and investigation of formation of new strategies that enhance antiproliferative activity against target organs has become a subject of interest. Although the molecular mechanisms of apoptosis can not be fully explained, it is known that cell suicide program existing in their memory genetically is activated by pathophysiological conditions and events such as oxidative stress. Low pressure (hypobaric) conditions that create hypoxia promote apoptosis by inhibiting cell cycling. In this study, determination of the effects of fractional hypobaric applications at different times on HeLa cells at cellular and molecular levels were targeted. Experiments were carried out under hypobaric conditions (35.2 kPa) in a specially designed hypobaric cabin including 2% O2 and 98% N. Application of fractional hypobaric conditions was repeated two times for 3 hours with an interval of 24 hours. At the end of the implementation period cells were allowed to incubate for 24 hours for activation of repair mechanisms. Cell kinetic parameters such as growth rate (MTT) and apoptotic index were used in determination of the effect of hypobaric conditions on HeLa cells. Also in our study expression levels of the Bcl-2 gene family that have regulatory roles in apoptosis were determined by the RT-PCR technique to evaluate molecular mechanisms. The results showed that antiproliferative effect of hypobaric conditions on HeLa cells started three hours from the time of application and increased depending on the period of exposure. While there was a significant decrease in growth rate values, there was a significant increase in apoptotic index values (p<0.01). Also molecular studies showed that hypobaric conditions caused a significant increase in expression level of proapoptotic gene Bax and significant decrease in antiapoptotic Bfl-1. Consequently fractional application of hypobaric conditions on HeLa cell cultures increased both antiproliferative and apoptotic effects and these effects were triggered by the Bax gene.
Collapse
Affiliation(s)
- Gul Ozcan Arican
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey E-mail :
| | | | | | | | | | | |
Collapse
|
42
|
Chang Y, Bruni R, Kloss B, Assur Z, Kloppmann E, Rost B, Hendrickson WA, Liu Q. Structural basis for a pH-sensitive calcium leak across membranes. Science 2014; 344:1131-5. [PMID: 24904158 DOI: 10.1126/science.1252043] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Calcium homeostasis balances passive calcium leak and active calcium uptake. Human Bax inhibitor-1 (hBI-1) is an antiapoptotic protein that mediates a calcium leak and is representative of a highly conserved and widely distributed family, the transmembrane Bax inhibitor motif (TMBIM) proteins. Here, we present crystal structures of a bacterial homolog and characterize its calcium leak activity. The structure has a seven-transmembrane-helix fold that features two triple-helix sandwiches wrapped around a central C-terminal helix. Structures obtained in closed and open conformations are reversibly interconvertible by change of pH. A hydrogen-bonded, pKa (where Ka is the acid dissociation constant)-perturbed pair of conserved aspartate residues explains the pH dependence of this transition, and biochemical studies show that pH regulates calcium influx in proteoliposomes. Homology models for hBI-1 provide insights into TMBIM-mediated calcium leak and cytoprotective activity.
Collapse
Affiliation(s)
- Yanqi Chang
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA
| | - Renato Bruni
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA
| | - Zahra Assur
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Edda Kloppmann
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA. Department of Bioinformatics and Computational Biology, Fakultät für Informatik, Technische Universität München, Garching, Germany
| | - Burkhard Rost
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA. Department of Bioinformatics and Computational Biology, Fakultät für Informatik, Technische Universität München, Garching, Germany
| | - Wayne A Hendrickson
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA. Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA. New York Structural Biology Center, National Synchrotron Light Source (NSLS) X4, Brookhaven National Laboratory, Upton, NY 11973, USA. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Qun Liu
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA. New York Structural Biology Center, National Synchrotron Light Source (NSLS) X4, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
43
|
Fielding CA, Aicheler R, Stanton RJ, Wang ECY, Han S, Seirafian S, Davies J, McSharry BP, Weekes MP, Antrobus PR, Prod'homme V, Blanchet FP, Sugrue D, Cuff S, Roberts D, Davison AJ, Lehner PJ, Wilkinson GWG, Tomasec P. Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation. PLoS Pathog 2014; 10:e1004058. [PMID: 24787765 PMCID: PMC4006889 DOI: 10.1371/journal.ppat.1004058] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 02/18/2014] [Indexed: 02/07/2023] Open
Abstract
NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1-6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12-US21; a genetic arrangement, which is suggestive of an 'accordion' expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family.
Collapse
Affiliation(s)
- Ceri A. Fielding
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Rebecca Aicheler
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard J. Stanton
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Eddie C. Y. Wang
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Song Han
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sepehr Seirafian
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James Davies
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Brian P. McSharry
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research (CIMR), Wellcome Trust/MRC Building, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - P. Robin Antrobus
- Cambridge Institute for Medical Research (CIMR), Wellcome Trust/MRC Building, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Virginie Prod'homme
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Fabien P. Blanchet
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Daniel Sugrue
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Simone Cuff
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Dawn Roberts
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Paul J. Lehner
- Cambridge Institute for Medical Research (CIMR), Wellcome Trust/MRC Building, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Gavin W. G. Wilkinson
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| | - Peter Tomasec
- Section of Medical Microbiology, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
44
|
Ivanova H, Vervliet T, Missiaen L, Parys JB, De Smedt H, Bultynck G. Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2164-83. [PMID: 24642269 DOI: 10.1016/j.bbamcr.2014.03.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/06/2014] [Accepted: 03/09/2014] [Indexed: 01/22/2023]
Abstract
Cell-death and -survival decisions are critically controlled by intracellular Ca(2+) homeostasis and dynamics at the level of the endoplasmic reticulum (ER). Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) play a pivotal role in these processes by mediating Ca(2+) flux from the ER into the cytosol and mitochondria. Hence, it is clear that many pro-survival and pro-death signaling pathways and proteins affect Ca(2+) signaling by directly targeting IP3R channels, which can happen in an IP3R-isoform-dependent manner. In this review, we will focus on how the different IP3R isoforms (IP3R1, IP3R2 and IP3R3) control cell death and survival. First, we will present an overview of the isoform-specific regulation of IP3Rs by cellular factors like IP3, Ca(2+), Ca(2+)-binding proteins, adenosine triphosphate (ATP), thiol modification, phosphorylation and interacting proteins, and of IP3R-isoform specific expression patterns. Second, we will discuss the role of the ER as a Ca(2+) store in cell death and survival and how IP3Rs and pro-survival/pro-death proteins can modulate the basal ER Ca(2+) leak. Third, we will review the regulation of the Ca(2+)-flux properties of the IP3R isoforms by the ER-resident and by the cytoplasmic proteins involved in cell death and survival as well as by redox regulation. Hence, we aim to highlight the specific roles of the various IP3R isoforms in cell-death and -survival signaling. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Hristina Ivanova
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Tim Vervliet
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Ludwig Missiaen
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Humbert De Smedt
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Geert Bultynck
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
45
|
Mariotti M, Smith TF, Sudmant PH, Goldberger G. Pseudogenization of testis-specific Lfg5 predates human/Neanderthal divergence. J Hum Genet 2014; 59:288-91. [PMID: 24599118 DOI: 10.1038/jhg.2014.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/30/2013] [Accepted: 01/06/2014] [Indexed: 01/06/2023]
Abstract
Recent reviews discussed the critical roles of apoptosis in human spermatogenesis and infertility. These reviews highlight the FasL-induced caspase cascade in apoptosis lending importance to our discovery of the pseudogene status of the Lfg5 gene in modern humans, Neanderthal and the Denisovan. This gene is a member of the ancient and highly conserved apoptosis Lifeguard family. This pseudogenization is the result of a premature stop codon at the 3'-end of exon 8 not found in any other ortholog. With the current exception of the domesticated bovine and buffalo, Lfg5's expression in mammals is testis-specific. A full analysis of this gene, its phylogenetic context and its recent hominin changes suggest its inactivation was likely under selection in human evolution.
Collapse
Affiliation(s)
| | - Temple F Smith
- Department of BioMedical Engineering, Boston University, Boston, MA, USA
| | - Peter H Sudmant
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Gabriel Goldberger
- Department of Psychiatry, Beth Israel Deaconess Medical Center, BSHC, Boston, MA, USA
| |
Collapse
|
46
|
TMBIM protein family: ancestral regulators of cell death. Oncogene 2014; 34:269-80. [DOI: 10.1038/onc.2014.6] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/27/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022]
|
47
|
B L, R.K Y, G.S J, H.-R K, H.-J C. The characteristics of Bax inhibitor-1 and its related diseases. Curr Mol Med 2014; 14:603-15. [PMID: 24894176 PMCID: PMC4083451 DOI: 10.2174/1566524014666140603101113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/01/2013] [Accepted: 11/24/2013] [Indexed: 11/28/2022]
Abstract
Bax inhibitor-1 (BI-1) is an evolutionarily-conserved endoplasmic reticulum protein. The expression of BI-1 in mammalian cells suppresses apoptosis induced by Bax, a pro-apoptotic member of the Bcl-2 family. BI-1 has been shown to be associated with calcium (Ca(2+)) levels, reactive oxygen species (ROS) production, cytosolic acidification, and autophagy as well as endoplasmic reticulum stress signaling pathways. According to both in vitro and clinical studies, BI-1 promotes the characteristics of cancers. In other diseases, BI-1 has also been shown to regulate insulin resistance, adipocyte differentiation, hepatic dysfunction and depression. However, the roles of BI-1 in these disease conditions are not fully consistent among studies. Until now, the molecular mechanisms of BI-1 have not directly explained with regard to how these conditions can be regulated. Therefore, this review investigates the physiological role of BI-1 through molecular mechanism studies and its application in various diseases.
Collapse
Affiliation(s)
- Li B
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Yadav R.K
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Jeong G.S
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Kim H.-R
- Department of Dental Pharmacology and Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, 570-749, Republic of Korea
| | - Chae H.-J
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| |
Collapse
|
48
|
Weis C, Hückelhoven R, Eichmann R. LIFEGUARD proteins support plant colonization by biotrophic powdery mildew fungi. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3855-67. [PMID: 23888068 PMCID: PMC3745739 DOI: 10.1093/jxb/ert217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pathogenic microbes manipulate eukaryotic cells during invasion and target plant proteins to achieve host susceptibility. BAX INHIBITOR-1 (BI-1) is an endoplasmic reticulum-resident cell death suppressor in plants and animals and is required for full susceptibility of barley to the barley powdery mildew fungus Blumeria graminis f.sp. hordei. LIFEGUARD (LFG) proteins resemble BI-1 proteins in terms of predicted membrane topology and cell-death-inhibiting function in metazoans, but display clear sequence-specific distinctions. This work shows that barley (Hordeum vulgare L.) and Arabidopsis thaliana genomes harbour five LFG genes, HvLFGa-HvLFGe and AtLFG1-AtLFG5, whose functions are largely uncharacterized. As observed for HvBI-1, single-cell overexpression of HvLFGa supports penetration success of B. graminis f.sp. hordei into barley epidermal cells, while transient-induced gene silencing restricts it. In penetrated barley epidermal cells, a green fluorescent protein-tagged HvLFGa protein accumulates at the site of fungal entry, around fungal haustoria and in endosomal or vacuolar membranes. The data further suggest a role of LFG proteins in plant-powdery mildew interactions in both monocot and dicot plants, because stable overexpression or knockdown of AtLFG1 or AtLFG2 also support or delay development of the powdery mildew fungus Erysiphe cruciferarum on the respective Arabidopsis mutants. Together, this work has identified new modulators of plant-powdery mildew interactions, and the data further support functional similarities between BI-1 and LFG proteins beyond cell death regulation.
Collapse
Affiliation(s)
| | | | - Ruth Eichmann
- * Present address: School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry CV4 7AL, UK
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Kiviluoto S, Luyten T, Schneider L, Lisak D, Rojas-Rivera D, Welkenhuyzen K, Missaen L, De Smedt H, Parys JB, Hetz C, Methner A, Bultynck G. Bax Inhibitor-1-mediated Ca2+ leak is decreased by cytosolic acidosis. Cell Calcium 2013; 54:186-92. [PMID: 23867001 DOI: 10.1016/j.ceca.2013.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 05/10/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
Bax Inhibitor-1 (BI-1) is an evolutionarily conserved six-transmembrane domain endoplasmic reticulum (ER)-localized protein that protects against ER stress-induced apoptotic cell death. This function is closely connected to its ability to lower steady-state ER Ca2+ levels. Recently, we elucidated BI-1's Ca(2+)-channel pore in the C-terminal part of the protein and identified the critical amino acids of its pore. Based on these insights, a Ca(2+)-channel pore-dead mutant BI-1 (BI-1(D213R)) was developed. We determined whether BI-1 behaves as a bona fide H+/Ca2+ antiporter or as an ER Ca(2+)-leak channel by investigating the effect of pH on unidirectional Ca(2+)-efflux rates. At pH 6.8, wild-type BI-1 expression in BI-1(-/-) cells increased the ER Ca(2+)-leak rate, correlating with its localization in the ER compartment. In contrast, BI-1(D231R) expression in BI-1(-/-), despite its ER localization, did not increase the ER Ca(2+)-leak rate. However, at pH < 6.8, the BI-1-mediated ER Ca2+ leak was blocked. Finally, a peptide representing the Ca(2+)-channel pore of BI-1 promoting Ca2+ flux from the ER was used. Lowering the pH from 6.8 to 6.0 completely abolished the ability of the BI-1 peptide to mediate Ca2+ flux from the ER. We propose that this pH dependence is due to two aspartic acid residues critical for the function of the Ca(2+)-channel pore and located in the ER membrane-dipping domain, which facilitates the protonation of these residues.
Collapse
Affiliation(s)
- Santeri Kiviluoto
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-I, Herestraat 49--box 802, BE-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Du ZQ, Lan JF, Weng YD, Zhao XF, Wang JX. BAX inhibitor-1 silencing suppresses white spot syndrome virus replication in red swamp crayfish, Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2013; 35:46-53. [PMID: 23583724 DOI: 10.1016/j.fsi.2013.03.376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
BAX inhibitor-1 (BI-1) was originally described as an anti-apoptotic protein in both animal and plant cells. BI-1 overexpression suppresses ER stress-induced apoptosis in animal cells. Inhibition of BI-1 activity could induce the cell death in mammals and plants. However, the function of BI-1 in crustacean immunity was unclear. In this paper, the full-length cDNA of a BI-1 protein in red swamp crayfish, Procambarus clarkii (PcBI-1) was cloned and its expression profiles in normal and infected crayfish were analyzed. The results showed that PcBI-1 was expressed in hemocytes, heart, hepatopancreas, gills, stomach, and intestines of the crayfish and was upregulated after challenged with Vibrio anguillarum and with white spot syndrome virus (WSSV). To determine the function of PcBI-1 in the innate immunity of the crayfish, the RNA interference against PcBI-1 was performed and the results indicated the hemocyte programmed cell death rate was increased significantly and WSSV replication was declined after PcBI-1 knocked down. Altogether, PcBI-1 plays an anti-apoptotic role, wherein high PcBI-1 expression suppresses programmed cell death, which is beneficial for WSSW replication in crayfish.
Collapse
Affiliation(s)
- Zhi-Qiang Du
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | | | | | | | | |
Collapse
|