1
|
Zhao N, Michelucci A, Pietrangelo L, Malik S, Groom L, Leigh J, O'Connor TN, Takano T, Kingsley PD, Palis J, Boncompagni S, Protasi F, Dirksen RT. An Orai1 gain-of-function tubular aggregate myopathy mouse model phenocopies key features of the human disease. EMBO J 2024:10.1038/s44318-024-00273-4. [PMID: 39420094 DOI: 10.1038/s44318-024-00273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Tubular aggregate myopathy (TAM) is a heritable myopathy primarily characterized by progressive muscle weakness, elevated levels of creatine kinase (CK), hypocalcemia, exercise intolerance, and the presence of tubular aggregates (TAs). Here, we generated a knock-in mouse model based on a human gain-of-function mutation which results in a severe, early-onset form of TAM, by inducing a glycine-to-serine point mutation in the ORAI1 pore (Orai1G100S/+ or GS mice). By 8 months of age, GS mice exhibited significant muscle weakness, exercise intolerance, elevated CK levels, hypocalcemia, and robust TA presence. Unexpectedly, constitutive Ca2+ entry in mutant mice was observed in muscle only during early development and was abolished in adult skeletal muscle, partly due to reduced ORAI1 expression. Consistent with proteomic results, significant mitochondrial damage and dysfunction was observed in skeletal muscle of GS mice. Thus, GS mice represent a powerful model for investigation of the pathophysiological mechanisms that underlie key TAM symptoms, as well as those compensatory responses that limit the damaging effects of uncontrolled ORAI1-mediated Ca2+ influx.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Antonio Michelucci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology & DMSI, Department of Medicine and Aging Sciences, University Gabriele d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer Leigh
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas N O'Connor
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Paul D Kingsley
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology & DNICS, Department of Neuroscience and Clinical Sciences, University Gabriele d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology & DMSI, Department of Medicine and Aging Sciences, University Gabriele d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
2
|
Di Fonso A, Serano M, He M, Leigh J, Rastelli G, Dirksen RT, Protasi F, Pietrangelo L. Constitutive, Muscle-Specific Orai1 Knockout Results in the Incomplete Assembly of Ca 2+ Entry Units and a Reduction in the Age-Dependent Formation of Tubular Aggregates. Biomedicines 2024; 12:1651. [PMID: 39200116 PMCID: PMC11351919 DOI: 10.3390/biomedicines12081651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous cellular mechanism that cells use to activate extracellular Ca2+ entry when intracellular Ca2+ stores are depleted. In skeletal muscle, SOCE occurs within Ca2+ entry units (CEUs), intracellular junctions between stacks of SR membranes containing STIM1 and transverse tubules (TTs) containing ORAI1. Gain-of-function mutations in STIM1 and ORAI1 are linked to tubular aggregate (TA) myopathy, a disease characterized by the atypical accumulation of tubes of SR origin. Moreover, SOCE and TAs are increased in the muscles of aged male mice. Here, we assessed the longitudinal effects (from 4-6 months to 10-14 months of age) of constitutive, muscle-specific Orai1 knockout (cOrai1 KO) on skeletal muscle structure, function, and the assembly of TAs and CEUs. The results from these studies indicate that cOrai1 KO mice exhibit a shorter lifespan, reduced body weight, exercise intolerance, decreased muscle-specific force and rate of force production, and an increased number of structurally damaged mitochondria. In addition, electron microscopy analyses revealed (i) the absence of TAs with increasing age and (ii) an increased number of SR stacks without adjacent TTs (i.e., incomplete CEUs) in cOrai1 KO mice. The absence of TAs is consistent with TAs being formed as a result of excessive ORAI1-dependent Ca2+ entry.
Collapse
Affiliation(s)
- Alessia Di Fonso
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (A.D.F.); (M.S.); (G.R.); (F.P.)
| | - Matteo Serano
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (A.D.F.); (M.S.); (G.R.); (F.P.)
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Miao He
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; (M.H.); (J.L.); (R.T.D.)
| | - Jennifer Leigh
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; (M.H.); (J.L.); (R.T.D.)
| | - Giorgia Rastelli
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (A.D.F.); (M.S.); (G.R.); (F.P.)
- Department of Neuroscience and Clinical Sciences (DNISC), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; (M.H.); (J.L.); (R.T.D.)
| | - Feliciano Protasi
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (A.D.F.); (M.S.); (G.R.); (F.P.)
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (A.D.F.); (M.S.); (G.R.); (F.P.)
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| |
Collapse
|
3
|
Wei J, Wu BJ, Daoud SS. Whole-Exome Sequencing (WES) Reveals Novel Sex-Specific Gene Variants in Non-Alcoholic Steatohepatitis (MASH). Genes (Basel) 2024; 15:357. [PMID: 38540416 PMCID: PMC10969913 DOI: 10.3390/genes15030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH, also known as MASH) is a severe form of non-alcoholic fatty liver disease (NAFLD, also known as MASLD). Emerging data indicate that the progression of the disease to MASH is higher in postmenopausal women and that genetic susceptibility increases the risk of MASH-related cirrhosis. This study aimed to investigate the association between genetic polymorphisms in MASH and sexual dimorphism. We applied whole-exome sequencing (WES) to identify gene variants in 8 age-adjusted matched pairs of livers from both male and female patients. Sequencing alignment, variant calling, and annotation were performed using standard methods. Polymerase chain reaction (PCR) coupled with Sanger sequencing and immunoblot analysis were used to validate specific gene variants. cBioPortal and Gene Set Enrichment Analysis (GSEA) were used for actionable target analysis. We identified 148,881 gene variants, representing 57,121 and 50,150 variants in the female and male cohorts, respectively, of which 251 were highly significant and MASH sex-specific (p < 0.0286). Polymorphisms in CAPN14, SLC37A3, BAZ1A, SRP54, MYH11, ABCC1, and RNFT1 were highly expressed in male liver samples. In female samples, Polymorphisms in RGSL1, SLC17A2, HFE, NLRC5, ACTN4, SBF1, and ALPK2 were identified. A heterozygous variant 1151G>T located on 18q21.32 for ALPK2 (rs3809983) was validated by Sanger sequencing and expressed only in female samples. Immunoblot analysis confirmed that the protein level of β-catenin in female samples was 2-fold higher than normal, whereas ALPK2 expression was 0.5-fold lower than normal. No changes in the protein levels of either ALPK2 or β-catenin were observed in male samples. Our study suggests that the perturbation of canonical Wnt/β-catenin signaling observed in postmenopausal women with MASH could be the result of polymorphisms in ALPK2.
Collapse
Affiliation(s)
| | | | - Sayed S. Daoud
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University Health Sciences, Spokane, WA 99202, USA; (J.W.); (B.J.W.)
| |
Collapse
|
4
|
Norman K, Hemmings KE, Shawer H, Appleby HL, Burnett AJ, Hamzah N, Gosain R, Woodhouse EM, Beech DJ, Foster R, Bailey MA. Side-by-side comparison of published small molecule inhibitors against thapsigargin-induced store-operated Ca2+ entry in HEK293 cells. PLoS One 2024; 19:e0296065. [PMID: 38261554 PMCID: PMC10805320 DOI: 10.1371/journal.pone.0296065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024] Open
Abstract
Calcium (Ca2+) is a key second messenger in eukaryotes, with store-operated Ca2+ entry (SOCE) being the main source of Ca2+ influx into non-excitable cells. ORAI1 is a highly Ca2+-selective plasma membrane channel that encodes SOCE. It is ubiquitously expressed in mammals and has been implicated in numerous diseases, including cardiovascular disease and cancer. A number of small molecules have been identified as inhibitors of SOCE with a variety of potential therapeutic uses proposed and validated in vitro and in vivo. These encompass both nonselective Ca2+ channel inhibitors and targeted selective inhibitors of SOCE. Inhibition of SOCE can be quantified both directly and indirectly with a variety of assay setups, making an accurate comparison of the activity of different SOCE inhibitors challenging. We have used a fluorescence based Ca2+ addback assay in native HEK293 cells to generate dose-response data for many published SOCE inhibitors. We were able to directly compare potency. Most compounds were validated with only minor and expected variations in potency, but some were not. This could be due to differences in assay setup relating to the mechanism of action of the inhibitors and highlights the value of a singular approach to compare these compounds, as well as the general need for biorthogonal validation of novel bioactive compounds. The compounds observed to be the most potent against SOCE in our study were: 7-azaindole 14d (12), JPIII (17), Synta-66 (6), Pyr 3 (5), GSK5503A (8), CM4620 (14) and RO2959 (7). These represent the most promising candidates for future development of SOCE inhibitors for therapeutic use.
Collapse
Affiliation(s)
- Katherine Norman
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Karen E. Hemmings
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Heba Shawer
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Hollie L. Appleby
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Alan J. Burnett
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Nurasyikin Hamzah
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Rajendra Gosain
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Emily M. Woodhouse
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - David J. Beech
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Richard Foster
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Marc A. Bailey
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom
| |
Collapse
|
5
|
Sakai‐Takemura F, Saito F, Nogami K, Maruyama Y, Elhussieny A, Matsumura K, Takeda S, Aoki Y, Miyagoe‐Suzuki Y. Antioxidants restore store-operated Ca 2+ entry in patient-iPSC-derived myotubes with tubular aggregate myopathy-associated Ile484ArgfsX21 STIM1 mutation via upregulation of binding immunoglobulin protein. FASEB Bioadv 2023; 5:453-469. [PMID: 37936920 PMCID: PMC10626159 DOI: 10.1096/fba.2023-00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is indispensable for intracellular Ca2+ homeostasis in skeletal muscle, and constitutive activation of SOCE causes tubular aggregate myopathy (TAM). To understand the pathogenesis of TAM, we induced pluripotent stem cells (iPSCs) from a TAM patient with a rare mutation (c.1450_1451insGA; p. Ile484ArgfsX21) in the STIM1 gene. This frameshift mutation produces a truncated STIM1 with a disrupted C-terminal inhibitory domain (CTID) and was reported to diminish SOCE. Myotubes induced from the patient's-iPSCs (TAM myotubes) showed severely impaired SOCE, but antioxidants greatly restored SOCE partly via upregulation of an endoplasmic reticulum (ER) chaperone, BiP (GRP78), in the TAM myotubes. Our observation suggests that antioxidants are promising tools for treatment of TAM caused by reduced SOCE.
Collapse
Affiliation(s)
- Fusako Sakai‐Takemura
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Fumiaki Saito
- Department of Neurology, School of MedicineTeikyo UniversityTokyoJapan
| | - Ken'ichiro Nogami
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Department of Neurology, Neurological Institute, Graduate School of Medical ScienceKyushu UniversityFukuokaJapan
| | - Yusuke Maruyama
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Department of Gene Regulation, Faculty of Pharmaceutical ScienceTokyo University of ScienceChibaJapan
| | - Ahmed Elhussieny
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Department of Neurology, Faculty of MedicineMinia UniversityMiniaEgypt
| | | | - Shin'ichi Takeda
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Yoshitsugu Aoki
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Yuko Miyagoe‐Suzuki
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| |
Collapse
|
6
|
Zhou Y, Jennette MR, Ma G, Kazzaz SA, Baraniak JH, Nwokonko RM, Groff ML, Velasquez-Reynel M, Huang Y, Wang Y, Gill DL. An apical Phe-His pair defines the Orai1-coupling site and its occlusion within STIM1. Nat Commun 2023; 14:6921. [PMID: 37903816 PMCID: PMC10616141 DOI: 10.1038/s41467-023-42254-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/04/2023] [Indexed: 11/01/2023] Open
Abstract
Ca2+ signal-generation through inter-membrane junctional coupling between endoplasmic reticulum (ER) STIM proteins and plasma membrane (PM) Orai channels, remains a vital but undefined mechanism. We identify two unusual overlapping Phe-His aromatic pairs within the STIM1 apical helix, one of which (F394-H398) mediates important control over Orai1-STIM1 coupling. In resting STIM1, this locus is deeply clamped within the folded STIM1-CC1 helices, likely near to the ER surface. The clamped environment in holo-STIM1 is critical-positive charge replacing Phe-394 constitutively unclamps STIM1, mimicking store-depletion, negative charge irreversibly locks the clamped-state. In store-activated, unclamped STIM1, Phe-394 mediates binding to the Orai1 channel, but His-398 is indispensable for transducing STIM1-binding into Orai1 channel-gating, and is spatially aligned with Phe-394 in the exposed Sα2 helical apex. Thus, the Phe-His locus traverses between ER and PM surfaces and is decisive in the two critical STIM1 functions-unclamping to activate STIM1, and conformational-coupling to gate the Orai1 channel.
Collapse
Affiliation(s)
- Yandong Zhou
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Michelle R Jennette
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Guolin Ma
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Sarah A Kazzaz
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - James H Baraniak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Robert M Nwokonko
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mallary L Groff
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Marcela Velasquez-Reynel
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
7
|
O’Connor TN, Zhao N, Orciuoli HM, Brasile A, Pietrangelo L, He M, Groom L, Leigh J, Mahamed Z, Liang C, Malik S, Protasi F, Dirksen RT. Voluntary wheel running mitigates disease in an Orai1 gain-of-function mouse model of tubular aggregate myopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.559036. [PMID: 37808709 PMCID: PMC10557777 DOI: 10.1101/2023.09.29.559036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Tubular aggregate myopathy (TAM) is an inherited skeletal muscle disease associated with progressive muscle weakness, cramps, and myalgia. Tubular aggregates (TAs) are regular arrays of highly ordered and densely packed SR straight-tubes in muscle biopsies; the extensive presence of TAs represent a key histopathological hallmark of this disease in TAM patients. TAM is caused by gain-of-function mutations in proteins that coordinate store-operated Ca2+ entry (SOCE): STIM1 Ca2+ sensor proteins in the sarcoplasmic reticulum (SR) and Ca2+-permeable ORAI1 channels in the surface membrane. We have previously shown that voluntary wheel running (VWR) prevents formation of TAs in aging mice. Here, we assessed the therapeutic potential of endurance exercise (in the form of VWR) in mitigating the functional and structural alterations in a knock-in mouse model of TAM (Orai1G100S/+ or GS mice) based on a gain-of-function mutation in the ORAI1 pore. WT and GS mice were singly-housed for six months (from two to eight months of age) with either free-spinning or locked low profile wheels. Six months of VWR exercise significantly increased soleus peak tetanic specific force production, normalized FDB fiber Ca2+ store content, and markedly reduced TAs in EDL muscle from GS mice. Six months of VWR exercise normalized the expression of mitochondrial proteins found to be altered in soleus muscle of sedentary GS mice in conjunction with a signature of increased protein translation and biosynthetic processes. Parallel proteomic analyses of EDL muscles from sedentary WT and GS mice revealed changes in a tight network of pathways involved in formation of supramolecular complexes, which were also normalized following six months of VWR. In summary, sustained voluntary endurance exercise improved slow twitch muscle function, reduced the presence of TAs in fast twitch muscle, and normalized the muscle proteome of GS mice consistent with protective adaptions in proteostasis, mitochondrial structure/function, and formation of supramolecular complexes.
Collapse
Affiliation(s)
- Thomas N. O’Connor
- Department of Biomedical Genetics, Genetics and Genomics Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Nan Zhao
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Haley M. Orciuoli
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biology, Biological Sciences, University of Rochester, Rochester, NY, USA
| | - Alice Brasile
- CAST, Center for Advanced Studies and Technology & DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology & DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Miao He
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer Leigh
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Zahra Mahamed
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Chen Liang
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology & DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
8
|
Dixon RE, Trimmer JS. Endoplasmic Reticulum-Plasma Membrane Junctions as Sites of Depolarization-Induced Ca 2+ Signaling in Excitable Cells. Annu Rev Physiol 2023; 85:217-243. [PMID: 36202100 PMCID: PMC9918718 DOI: 10.1146/annurev-physiol-032122-104610] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane contact sites between endoplasmic reticulum (ER) and plasma membrane (PM), or ER-PM junctions, are found in all eukaryotic cells. In excitable cells they play unique roles in organizing diverse forms of Ca2+ signaling as triggered by membrane depolarization. ER-PM junctions underlie crucial physiological processes such as excitation-contraction coupling, smooth muscle contraction and relaxation, and various forms of activity-dependent signaling and plasticity in neurons. In many cases the structure and molecular composition of ER-PM junctions in excitable cells comprise important regulatory feedback loops linking depolarization-induced Ca2+ signaling at these sites to the regulation of membrane potential. Here, we describe recent findings on physiological roles and molecular composition of native ER-PM junctions in excitable cells. We focus on recent studies that provide new insights into canonical forms of depolarization-induced Ca2+ signaling occurring at junctional triads and dyads of striated muscle, as well as the diversity of ER-PM junctions in these cells and in smooth muscle and neurons.
Collapse
Affiliation(s)
- Rose E Dixon
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California, USA;
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California, USA;
| |
Collapse
|
9
|
Protasi F, Girolami B, Roccabianca S, Rossi D. Store-operated calcium entry: From physiology to tubular aggregate myopathy. Curr Opin Pharmacol 2023; 68:102347. [PMID: 36608411 DOI: 10.1016/j.coph.2022.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 01/06/2023]
Abstract
Store-Operated Ca2+ entry (SOCE) is recognized as a key mechanism in muscle physiology necessary to refill intracellular Ca2+ stores during sustained muscle activity. For many years the cell structures expected to mediate SOCE in skeletal muscle fibres remained unknown. Recently, the identification of Ca2+ Entry Units (CEUs) in exercised muscle fibres opened new insights into the role of extracellular Ca2+ in muscle contraction and, more generally, in intracellular Ca2+ homeostasis. Accordingly, intracellular Ca2+ unbalance due to alterations in SOCE strictly correlates with muscle disfunction and disease. Mutations in proteins involved in SOCE (STIM1, ORAI1, and CASQ1) have been linked to tubular aggregate myopathy (TAM), a disease that causes muscle weakness and myalgia and is characterized by a typical accumulation of highly ordered and packed membrane tubules originated from the sarcoplasmic reticulum (SR). Achieving a full understanding of the molecular pathways activated by alterations in Ca2+ entry mechanisms is a necessary step to design effective therapies for human SOCE-related disorders.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy; DMSI, Department of Medicine and Aging Sciences; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy
| | - Barbara Girolami
- CAST, Center for Advanced Studies and Technology; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy; DMSI, Department of Medicine and Aging Sciences; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy
| | - Sara Roccabianca
- DMMS, Department of Molecular and Developmental Medicine; University of Siena, I-53100, Siena Italy
| | - Daniela Rossi
- DMMS, Department of Molecular and Developmental Medicine; University of Siena, I-53100, Siena Italy.
| |
Collapse
|
10
|
Hirano K, Tsuchiya M, Shiomi A, Takabayashi S, Suzuki M, Ishikawa Y, Kawano Y, Takabayashi Y, Nishikawa K, Nagao K, Umemoto E, Kitajima Y, Ono Y, Nonomura K, Shintaku H, Mori Y, Umeda M, Hara Y. The mechanosensitive ion channel PIEZO1 promotes satellite cell function in muscle regeneration. Life Sci Alliance 2023; 6:6/2/e202201783. [PMID: 36446523 PMCID: PMC9711862 DOI: 10.26508/lsa.202201783] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
Muscle satellite cells (MuSCs), myogenic stem cells in skeletal muscles, play an essential role in muscle regeneration. After skeletal muscle injury, quiescent MuSCs are activated to enter the cell cycle and proliferate, thereby initiating regeneration; however, the mechanisms that ensure successful MuSC division, including chromosome segregation, remain unclear. Here, we show that PIEZO1, a calcium ion (Ca2+)-permeable cation channel activated by membrane tension, mediates spontaneous Ca2+ influx to control the regenerative function of MuSCs. Our genetic engineering approach in mice revealed that PIEZO1 is functionally expressed in MuSCs and that Piezo1 deletion in these cells delays myofibre regeneration after injury. These results are, at least in part, due to a mitotic defect in MuSCs. Mechanistically, this phenotype is caused by impaired PIEZO1-Rho signalling during myogenesis. Thus, we provide the first concrete evidence that PIEZO1, a bona fide mechanosensitive ion channel, promotes proliferation and regenerative functions of MuSCs through precise control of cell division.
Collapse
Affiliation(s)
- Kotaro Hirano
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.,School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Masaki Tsuchiya
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.,PRESTO, JST, Kawaguchi-shi, Saitama, Japan
| | - Akifumi Shiomi
- Microfluidics RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Seiji Takabayashi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Miki Suzuki
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yudai Ishikawa
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuya Kawano
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yutaka Takabayashi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kaori Nishikawa
- Microfluidics RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Eiji Umemoto
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yasuo Kitajima
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Keiko Nonomura
- Division of Embryology, National Institute for Basic Biology, Aichi, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI, Okazaki, Japan.,Department of Life Science and Technology, Tokyo Tech, Yokohama, Japan
| | - Hirofumi Shintaku
- Microfluidics RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuji Hara
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
11
|
Lupi A, Spolaor S, Favero A, Bello L, Stramare R, Pegoraro E, Nobile MS. Muscle magnetic resonance characterization of STIM1 tubular aggregate myopathy using unsupervised learning. PLoS One 2023; 18:e0285422. [PMID: 37155641 PMCID: PMC10166478 DOI: 10.1371/journal.pone.0285422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
PURPOSE Congenital myopathies are a heterogeneous group of diseases affecting the skeletal muscles and characterized by high clinical, genetic, and histological variability. Magnetic Resonance (MR) is a valuable tool for the assessment of involved muscles (i.e., fatty replacement and oedema) and disease progression. Machine Learning is becoming increasingly applied for diagnostic purposes, but to our knowledge, Self-Organizing Maps (SOMs) have never been used for the identification of the patterns in these diseases. The aim of this study is to evaluate if SOMs may discriminate between muscles with fatty replacement (S), oedema (E) or neither (N). METHODS MR studies of a family affected by tubular aggregates myopathy (TAM) with the histologically proven autosomal dominant mutation of the STIM1 gene, were examined: for each patient, in two MR assessments (i.e., t0 and t1, the latter after 5 years), fifty-three muscles were evaluated for muscular fatty replacement on the T1w images, and for oedema on the STIR images, for reference. Sixty radiomic features were collected from each muscle at t0 and t1 MR assessment using 3DSlicer software, in order to obtain data from images. A SOM was created to analyze all datasets using three clusters (i.e., 0, 1 and 2) and results were compared with radiological evaluation. RESULTS Six patients with TAM STIM1-mutation were included. At t0 MR assessments, all patients showed widespread fatty replacement that intensifies at t1, while oedema mainly affected the muscles of the legs and appears stable at follow-up. All muscles with oedema showed fatty replacement, too. At t0 SOM grid clustering shows almost all N muscles in Cluster 0 and most of the E muscles in Cluster 1; at t1 almost all E muscles appear in Cluster 1. CONCLUSION Our unsupervised learning model appears to be able to recognize muscles altered by the presence of edema and fatty replacement.
Collapse
Affiliation(s)
- Amalia Lupi
- Institute of Radiology, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Simone Spolaor
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Alessandro Favero
- Institute of Radiology, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Luca Bello
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Roberto Stramare
- Clinical and Translational Advanced Imaging Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Marco Salvatore Nobile
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Venice, Italy
| |
Collapse
|
12
|
Michelucci A, Pietrangelo L, Rastelli G, Protasi F, Dirksen RT, Boncompagni S. Constitutive assembly of Ca2+ entry units in soleus muscle from calsequestrin knockout mice. J Gen Physiol 2022; 154:213542. [PMID: 36222861 PMCID: PMC9565155 DOI: 10.1085/jgp.202213114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022] Open
Abstract
Calcium (Ca2+) entry units (CEUs) are junctions within the I band of the sarcomere between stacks of sarcoplasmic reticulum (SR) cisternae and extensions of the transverse (T)-tubule. CEUs contain STIM1 and Orai1 proteins, the molecular machinery of store-operated Ca2+ entry (SOCE). In extensor digitorum longus (EDL) fibers of wild-type (WT) mice, CEUs transiently assemble during acute exercise and disassemble several hours thereafter. By contrast, calsequestrin-1 (CASQ1) ablation induces a compensatory constitutive assembly of CEUs in EDL fibers, resulting in enhanced constitutive and maximum SOCE that counteracts SR Ca2+ depletion during repetitive activity. However, whether CEUs form in slow-twitch fibers, which express both the skeletal CASQ1 and the cardiac CASQ2 isoforms, is unknown. Herein, we compared the structure and function of soleus muscles from WT and knockout mice that lack either CASQ1 (CASQ1-null) or both CASQs (dCASQ-null). Ultrastructural analyses showed that SR/T-tubule junctions at the I band, virtually identical to CEUs in EDL muscle, were present and more frequent in CASQ1-null than WT mice, with dCASQ-null exhibiting the highest incidence. The greater incidence of CEUs in soleus from dCASQ-null mice correlated with increased specific force production during repetitive, high-frequency stimulation, which depended on Ca2+ entry. Consistent with this, Orai1 expression was significantly increased in soleus of CASQ1-null mice, but even more in dCASQ-null mice, compared with WT. Together, these results strengthen the concept that CEU assembly strongly depends on CASQ expression and provides an alternative source of Ca2+ needed to refill SR Ca2+ stores to maintain specific force production during sustained muscle activity.
Collapse
Affiliation(s)
- Antonio Michelucci
- Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Giorgia Rastelli
- Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Feliciano Protasi
- Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY
| | - Simona Boncompagni
- Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
13
|
Kitase Y, Vallejo JA, Dallas SL, Xie Y, Dallas M, Tiede-Lewis L, Moore D, Meljanac A, Kumar C, Zhao C, Rosser J, Brotto M, Johnson ML, Liu Z, Wacker MJ, Bonewald L. Body weight influences musculoskeletal adaptation to long-term voluntary wheel running during aging in female mice. Aging (Albany NY) 2022; 15:308-352. [PMID: 36403149 PMCID: PMC9925690 DOI: 10.18632/aging.204390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022]
Abstract
Frailty is the hallmark of aging that can be delayed with exercise. The present studies were initiated based on the hypothesis that long-term voluntary wheel running (VWR) in female mice from 12 to 18 or 22 months of age would have beneficial effects on the musculoskeletal system. Mice were separated into high (HBW) and low (LBW) body weight based on final body weights upon termination of experiments. Bone marrow fat was significantly higher in HBW than LBW under sedentary conditions, but not with VWR. HBW was more protective for soleus size and function than LBW under sedentary conditions, however VWR increased soleus size and function regardless of body weight. VWR plus HBW was more protective against muscle loss with aging. Similar effects of VWR plus HBW were observed with the extensor digitorum longus, EDL, however, LBW with VWR was beneficial in improving EDL fatigue resistance in 18 mo mice and was more beneficial with regards to muscle production of bone protective factors. VWR plus HBW maintained bone in aged animals. In summary, HBW had a more beneficial effect on muscle and bone with aging especially in combination with exercise. These effects were independent of bone marrow fat, suggesting that intrinsic musculoskeletal adaptions were responsible for these beneficial effects.
Collapse
Affiliation(s)
- Yukiko Kitase
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Julian A. Vallejo
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
- Department of Biomedical Sciences, School of Medicine, University of Missouri, Kansas City, MO 64108, USA
| | - Sarah L. Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - Yixia Xie
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - Mark Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - LeAnn Tiede-Lewis
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - David Moore
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - Anthony Meljanac
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - Corrine Kumar
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Carrie Zhao
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Jennifer Rosser
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas, Arlington, TX 76019, USA
| | - Mark L. Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - Ziyue Liu
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Michael J. Wacker
- Department of Biomedical Sciences, School of Medicine, University of Missouri, Kansas City, MO 64108, USA
| | - Lynda Bonewald
- Department of Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Protasi F, Girolami B, Serano M, Pietrangelo L, Paolini C. Ablation of Calsequestrin-1, Ca 2+ unbalance, and susceptibility to heat stroke. Front Physiol 2022; 13:1033300. [PMID: 36311237 PMCID: PMC9598425 DOI: 10.3389/fphys.2022.1033300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction: Ca2+ levels in adult skeletal muscle fibers are mainly controlled by excitation-contraction (EC) coupling, a mechanism that translates action potentials in release of Ca2+ from the sarcoplasmic reticulum (SR) release channels, i.e. the ryanodine receptors type-1 (RyR1). Calsequestrin (Casq) is a protein that binds large amounts of Ca2+ in the lumen of the SR terminal cisternae, near sites of Ca2+ release. There is general agreement that Casq is not only important for the SR ability to store Ca2+, but also for modulating the opening probability of the RyR Ca2+ release channels. The initial studies: About 20 years ago we generated a mouse model lacking Casq1 (Casq1-null mice), the isoform predominantly expressed in adult fast twitch skeletal muscle. While the knockout was not lethal as expected, lack of Casq1 caused a striking remodeling of membranes of SR and of transverse tubules (TTs), and mitochondrial damage. Functionally, CASQ1-knockout resulted in reduced SR Ca2+ content, smaller Ca2+ transients, and severe SR depletion during repetitive stimulation. The myopathic phenotype of Casq1-null mice: After the initial studies, we discovered that Casq1-null mice were prone to sudden death when exposed to halogenated anaesthetics, heat and even strenuous exercise. These syndromes are similar to human malignant hyperthermia susceptibility (MHS) and environmental-exertional heat stroke (HS). We learned that mechanisms underlying these syndromes involved excessive SR Ca2+ leak and excessive production of oxidative species: indeed, mortality and mitochondrial damage were significantly prevented by administration of antioxidants and reduction of oxidative stress. Though, how Casq1-null mice could survive without the most important SR Ca2+ binding protein was a puzzling issue that was not solved. Unravelling the mystery: The mystery was finally solved in 2020, when we discovered that in Casq1-null mice the SR undergoes adaptations that result in constitutively active store-operated Ca2+ entry (SOCE). SOCE is a mechanism that allows skeletal fibers to use external Ca2+ when SR stores are depleted. The post-natal compensatory mechanism that allows Casq1-null mice to survive involves the assembly of new SR-TT junctions (named Ca2+ entry units) containing Stim1 and Orai1, the two proteins that mediate SOCE.
Collapse
Affiliation(s)
- Feliciano Protasi
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Barbara Girolami
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Matteo Serano
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Cecilia Paolini
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
15
|
Rossi D, Catallo MR, Pierantozzi E, Sorrentino V. Mutations in proteins involved in E-C coupling and SOCE and congenital myopathies. J Gen Physiol 2022; 154:e202213115. [PMID: 35980353 PMCID: PMC9391951 DOI: 10.1085/jgp.202213115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
In skeletal muscle, Ca2+ necessary for muscle contraction is stored and released from the sarcoplasmic reticulum (SR), a specialized form of endoplasmic reticulum through the mechanism known as excitation-contraction (E-C) coupling. Following activation of skeletal muscle contraction by the E-C coupling mechanism, replenishment of intracellular stores requires reuptake of cytosolic Ca2+ into the SR by the activity of SR Ca2+-ATPases, but also Ca2+ entry from the extracellular space, through a mechanism called store-operated calcium entry (SOCE). The fine orchestration of these processes requires several proteins, including Ca2+ channels, Ca2+ sensors, and Ca2+ buffers, as well as the active involvement of mitochondria. Mutations in genes coding for proteins participating in E-C coupling and SOCE are causative of several myopathies characterized by a wide spectrum of clinical phenotypes, a variety of histological features, and alterations in intracellular Ca2+ balance. This review summarizes current knowledge on these myopathies and discusses available knowledge on the pathogenic mechanisms of disease.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Maria Rosaria Catallo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| |
Collapse
|
16
|
Bolaños P, Calderón JC. Excitation-contraction coupling in mammalian skeletal muscle: Blending old and last-decade research. Front Physiol 2022; 13:989796. [PMID: 36117698 PMCID: PMC9478590 DOI: 10.3389/fphys.2022.989796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The excitation–contraction coupling (ECC) in skeletal muscle refers to the Ca2+-mediated link between the membrane excitation and the mechanical contraction. The initiation and propagation of an action potential through the membranous system of the sarcolemma and the tubular network lead to the activation of the Ca2+-release units (CRU): tightly coupled dihydropyridine and ryanodine (RyR) receptors. The RyR gating allows a rapid, massive, and highly regulated release of Ca2+ from the sarcoplasmic reticulum (SR). The release from triadic places generates a sarcomeric gradient of Ca2+ concentrations ([Ca2+]) depending on the distance of a subcellular region from the CRU. Upon release, the diffusing Ca2+ has multiple fates: binds to troponin C thus activating the contractile machinery, binds to classical sarcoplasmic Ca2+ buffers such as parvalbumin, adenosine triphosphate and, experimentally, fluorescent dyes, enters the mitochondria and the SR, or is recycled through the Na+/Ca2+ exchanger and store-operated Ca2+ entry (SOCE) mechanisms. To commemorate the 7th decade after being coined, we comprehensively and critically reviewed “old”, historical landmarks and well-established concepts, and blended them with recent advances to have a complete, quantitative-focused landscape of the ECC. We discuss the: 1) elucidation of the CRU structures at near-atomic resolution and its implications for functional coupling; 2) reliable quantification of peak sarcoplasmic [Ca2+] using fast, low affinity Ca2+ dyes and the relative contributions of the Ca2+-binding mechanisms to the whole concert of Ca2+ fluxes inside the fibre; 3) articulation of this novel quantitative information with the unveiled structural details of the molecular machinery involved in mitochondrial Ca2+ handing to understand how and how much Ca2+ enters the mitochondria; 4) presence of the SOCE machinery and its different modes of activation, which awaits understanding of its magnitude and relevance in situ; 5) pharmacology of the ECC, and 6) emerging topics such as the use and potential applications of super-resolution and induced pluripotent stem cells (iPSC) in ECC. Blending the old with the new works better!
Collapse
Affiliation(s)
- Pura Bolaños
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Juan C. Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia
- *Correspondence: Juan C. Calderón,
| |
Collapse
|
17
|
Liu T, Juan Z, Xia B, Ren G, Xi Z, Hao J, Sun Z. HSP70 protects H9C2 cells from hypoxia and reoxygenation injury through STIM1/IP3R. Cell Stress Chaperones 2022; 27:535-544. [PMID: 35841499 PMCID: PMC9485396 DOI: 10.1007/s12192-022-01290-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022] Open
Abstract
Hypoxia/reoxygenation (H/R) is used as an in vivo model of ischemia/reperfusion injury, and myocardial ischemia can lead to heart disease. Calcium overload is an important factor in myocardial ischemia-reperfusion injury and can lead to apoptosis of myocardial cells. Therefore, it is of great clinical importance to find ways to regulate calcium overload and reduce apoptosis of myocardial cells, and thus alleviate myocardial ischemia-reperfusion injury. There is evidence that heat shock protein 70 (HSP70) has a protective effect on the myocardium, but the exact mechanism of this effect is not completely understood. Stromal interaction molecule 1 and inositol 1,4,5-triphosphate receptor (STIM/1IP3R) play an important role in myocardial ischemia-reperfusion injury. Therefore, this study aimed to investigate whether HSP70 plays an anti-apoptotic role in H9C2 cardiomyocytes by regulating the calcium overload pathway through STIM1/IP3R. Rat H9C2 cells were subjected to transient oxygen and glucose deprivation (incubated in glucose-free medium and hypoxia for 6 h) followed by re-exposure to glucose and reoxygenation (incubated in high glucose medium and reoxygenation for 4 h) to simulate myocardial ischemia reperfusion-induced cell injury. H9C2 cell viability was significantly decreased, and lactate dehydrogenase (LDH) release and apoptosis were significantly increased after oxygen and glucose deprivation. Transfection of HSP70 into H9C2 cells could reduce the corresponding effect, increase cell viability and anti-apoptotic signal pathway, and reduce the apoptotic rate and pro-apoptotic signal pathway. After hypoxia and reoxygenation, the expression of STIM1/IP3R and intracellular calcium concentration of HSP70-overexpressed H9C2 cells were significantly lower than those of hypoxia cells. Similarly, direct silencing of STIM1 by siRNA significantly increased cell viability and expression of anti-apoptotic protein Bcl-2 and decreased apoptosis rate and expression of pro-apoptotic protein BAX. These data are consistent with HSP70 overexpression. These results suggest that HSP70 abrogates intracellular calcium overload by inhibiting upregulation of STIM1/IP3R expression, thus reducing apoptosis in H9C2 cells and playing a protective role in cardiomyocytes.
Collapse
Affiliation(s)
- TianYu Liu
- The First Affiliated Hospital of Weifang Medical University, Weifang People's Hospital Cardiovascular Surgery, Weifang, 261000, China
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, 261000, China
| | - Zhaodong Juan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, 261000, China
| | - Bin Xia
- The First Affiliated Hospital of Weifang Medical University, Weifang People's Hospital Cardiovascular Surgery, Weifang, 261000, China
| | - GuanHua Ren
- The First Affiliated Hospital of Weifang Medical University, Weifang People's Hospital Cardiovascular Surgery, Weifang, 261000, China
| | - Zhen Xi
- School of Clinical Medicine, Weifang Medical University, Weifang, 261000, China
| | - JunWen Hao
- School of Clinical Medicine, Weifang Medical University, Weifang, 261000, China
| | - ZhongDong Sun
- The First Affiliated Hospital of Weifang Medical University, Weifang People's Hospital Cardiovascular Surgery, Weifang, 261000, China.
| |
Collapse
|
18
|
García-Castañeda M, Michelucci A, Zhao N, Malik S, Dirksen RT. Postdevelopmental knockout of Orai1 improves muscle pathology in a mouse model of Duchenne muscular dystrophy. J Gen Physiol 2022; 154:213383. [PMID: 35939054 PMCID: PMC9365874 DOI: 10.1085/jgp.202213081] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), an X-linked disorder caused by loss-of-function mutations in the dystrophin gene, is characterized by progressive muscle degeneration and weakness. Enhanced store-operated Ca2+ entry (SOCE), a Ca2+ influx mechanism coordinated by STIM1 sensors of luminal Ca2+ within the sarcoplasmic reticulum (SR) and Ca2+-permeable Orai1 channels in the sarcolemma, is proposed to contribute to Ca2+-mediated muscle damage in DMD. To directly determine the impact of Orai1-dependent SOCE on the dystrophic phenotype, we crossed mdx mice with tamoxifen-inducible, muscle-specific Orai1 knockout mice (mdx-Orai1 KO mice). Both constitutive and SOCE were significantly increased in flexor digitorum brevis fibers from mdx mice, while SOCE was absent in fibers from both Orai1 KO and mdx-Orai1 KO mice. Compared with WT mice, fibers from mdx mice exhibited (1) increased resting myoplasmic Ca2+ levels, (2) reduced total releasable Ca2+ store content, and (3) a prolonged rate of electrically evoked Ca2+ transient decay. These effects were partially normalized in fibers from mdx-Orai1 KO mice. Intact extensor digitorum longus muscles from mdx mice exhibited a significant reduction of maximal specific force, which was rescued in muscles from mdx-Orai1 KO mice. Finally, during exposure to consecutive eccentric contractions, muscles from mdx mice displayed a more pronounced decline in specific force compared with that of WT mice, which was also significantly attenuated by Orai1 ablation. Together, these results indicate that enhanced Orai1-dependent SOCE exacerbates the dystrophic phenotype and that Orai1 deficiency improves muscle pathology by both normalizing Ca2+ homeostasis and promoting sarcolemmal integrity/stability.
Collapse
Affiliation(s)
- Maricela García-Castañeda
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Antonio Michelucci
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY,Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Nan Zhao
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
19
|
Pani P, Bal NC. Avian adjustments to cold and non-shivering thermogenesis: whats, wheres and hows. Biol Rev Camb Philos Soc 2022; 97:2106-2126. [PMID: 35899483 DOI: 10.1111/brv.12885] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
Avian cold adaptation is hallmarked by innovative strategies of both heat conservation and thermogenesis. While minimizing heat loss can reduce the thermogenic demands of body temperature maintenance, it cannot eliminate the requirement for thermogenesis. Shivering and non-shivering thermogenesis (NST) are the two synergistic mechanisms contributing to endothermy. Birds are of particular interest in studies of NST as they lack brown adipose tissue (BAT), the major organ of NST in mammals. Critical analysis of the existing literature on avian strategies of cold adaptation suggests that skeletal muscle is the principal site of NST. Despite recent progress, isolating the mechanisms involved in avian muscle NST has been difficult as shivering and NST co-exist with its primary locomotory function. Herein, we re-evaluate various proposed molecular bases of avian skeletal muscle NST. Experimental evidence suggests that sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA) and ryanodine receptor 1 (RyR1) are key in avian muscle NST, through their mediation of futile Ca2+ cycling and thermogenesis. More recent studies have shown that SERCA regulation by sarcolipin (SLN) facilitates muscle NST in mammals; however, its role in birds is unclear. Ca2+ signalling in the muscle seems to be common to contraction, shivering and NST, but elucidating its roles will require more precise measurement of local Ca2+ levels inside avian myofibres. The endocrine control of avian muscle NST is still poorly defined. A better understanding of the mechanistic details of avian muscle NST will provide insights into the roles of these processes in regulatory thermogenesis, which could further inform our understanding of the evolution of endothermy among vertebrates.
Collapse
Affiliation(s)
- Punyadhara Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
20
|
de la Fuente-Munoz E, Van Den Rym A, García-Solis B, Ochoa Grullón J, Guevara-Hoyer K, Fernández-Arquero M, Galán Dávila L, Matías-Guiú J, Sánchez-Ramón S, Pérez de Diego R. Case Report: Novel STIM1 Gain-of-Function Mutation in a Patient With TAM/STRMK and Immunological Involvement. Front Immunol 2022; 13:917601. [PMID: 35812399 PMCID: PMC9263075 DOI: 10.3389/fimmu.2022.917601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 11/20/2022] Open
Abstract
Gain-of-function (GOF) mutations in STIM1 are responsible for tubular aggregate myopathy and Stormorken syndrome (TAM/STRMK), a clinically overlapping multisystemic disease characterised by muscle weakness, miosis, thrombocytopaenia, hyposplenism, ichthyosis, dyslexia, and short stature. Several mutations have been reported as responsible for the disease. Herein, we describe a patient with TAM/STRMK due to a novel L303P STIM1 mutation, who not only presented clinical manifestations characteristic of TAM/STRMK but also manifested immunological involvement with respiratory infections since childhood, with chronic cough and chronic bronchiectasis. Despite the seemingly normal main immunological parameters, immune cells revealed GOF in calcium signalling compared with healthy donors. The calcium flux dysregulation in the immune cells could be responsible for our patient’s immune involvement. The patient’s mother carried the mutation but did not exhibit TAM/STRMK, manifesting an incomplete penetrance of the mutation. More cases and evidence are necessary to clarify the dual role of STIM1 in immune system dysregulation and myopathy.
Collapse
Affiliation(s)
| | - Ana Van Den Rym
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Blanca García-Solis
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | | | | | - Miguel Fernández-Arquero
- Clinical Immunology Department, San Carlos Clinical Hospital, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | | | | | - Silvia Sánchez-Ramón
- Clinical Immunology Department, San Carlos Clinical Hospital, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- *Correspondence: Rebeca Pérez de Diego,
| |
Collapse
|
21
|
Humer C, Berlansky S, Grabmayr H, Sallinger M, Bernhard A, Fahrner M, Frischauf I. Science CommuniCa 2+tion Developing Scientific Literacy on Calcium: The Involvement of CRAC Currents in Human Health and Disease. Cells 2022; 11:1849. [PMID: 35681544 PMCID: PMC9179999 DOI: 10.3390/cells11111849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 02/05/2023] Open
Abstract
All human life starts with a calcium (Ca2+) wave. This ion regulates a plethora of cellular functions ranging from fertilisation and birth to development and cell death. A sophisticated system is responsible for maintaining the essential, tight concentration of calcium within cells. Intricate components of this Ca2+ network are store-operated calcium channels in the cells' membrane. The best-characterised store-operated channel is the Ca2+ release-activated Ca2+ (CRAC) channel. Currents through CRAC channels are critically dependent on the correct function of two proteins: STIM1 and Orai1. A disruption of the precise mechanism of Ca2+ entry through CRAC channels can lead to defects and in turn to severe impacts on our health. Mutations in either STIM1 or Orai1 proteins can have consequences on our immune cells, the cardiac and nervous system, the hormonal balance, muscle function, and many more. There is solid evidence that altered Ca2+ signalling through CRAC channels is involved in the hallmarks of cancer development: uncontrolled cell growth, resistance to cell death, migration, invasion, and metastasis. In this work we highlight the importance of Ca2+ and its role in human health and disease with focus on CRAC channels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irene Frischauf
- Life Science Center, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (C.H.); (S.B.); (H.G.); (M.S.); (A.B.); (M.F.)
| |
Collapse
|
22
|
O'Connor TN, Kallenbach JG, Orciuoli HM, Paris ND, Bachman JF, Johnston CJ, Hernady E, Williams JP, Dirksen RT, Chakkalakal JV. Endurance exercise attenuates juvenile irradiation-induced skeletal muscle functional decline and mitochondrial stress. Skelet Muscle 2022; 12:8. [PMID: 35414122 PMCID: PMC9004104 DOI: 10.1186/s13395-022-00291-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/05/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Radiotherapy is commonly used to treat childhood cancers and can have adverse effects on muscle function, but the underlying mechanisms have yet to be fully elucidated. We hypothesized that endurance exercise following radiation treatment would improve skeletal muscle function. METHODS We utilized the Small Animal Radiation Research Platform (SARRP) to irradiate juvenile male mice with a clinically relevant fractionated dose of 3× (every other day over 5 days) 8.2 Gy X-ray irradiation locally from the knee to footpad region of the right hindlimb. Mice were then singly housed for 1 month in cages equipped with either locked or free-spinning voluntary running wheels. Ex vivo muscle contractile function, RT-qPCR analyses, resting cytosolic and sarcoplasmic reticulum (SR) store Ca2+ levels, mitochondrial reactive oxygen species levels (MitoSOX), and immunohistochemical and biochemical analyses of muscle samples were conducted to assess the muscle pathology and the relative therapeutic impact of voluntary wheel running (VWR). RESULTS Irradiation reduced fast-twitch extensor digitorum longus (EDL) muscle-specific force by 27% compared to that of non-irradiated mice, while VWR post-irradiation improved muscle-specific force by 37%. Radiation treatment similarly reduced slow-twitch soleus muscle-specific force by 14% compared to that of non-irradiated mice, while VWR post-irradiation improved specific force by 18%. We assessed intracellular Ca2+ regulation, oxidative stress, and mitochondrial homeostasis as potential mechanisms of radiation-induced pathology and exercise-mediated rescue. We found a significant reduction in resting cytosolic Ca2+ concentration following irradiation in sedentary mice. Intriguingly, however, SR Ca2+ store content was increased in myofibers from irradiated mice post-VWR compared to mice that remained sedentary. We observed a 73% elevation in the overall protein oxidization in muscle post-irradiation, while VWR reduced protein nitrosylation by 35% and mitochondrial reactive oxygen species (ROS) production by 50%. Finally, we found that VWR significantly increased the expression of PGC1α at both the transcript and protein levels, consistent with an exercise-dependent increase in mitochondrial biogenesis. CONCLUSIONS Juvenile irradiation stunted muscle development, disrupted proper Ca2+ handling, damaged mitochondria, and increased oxidative and nitrosative stress, paralleling significant deficits in muscle force production. Exercise mitigated aberrant Ca2+ handling, mitochondrial homeostasis, and increased oxidative and nitrosative stress in a manner that correlated with improved skeletal muscle function after radiation.
Collapse
Affiliation(s)
- Thomas N O'Connor
- Department of Biomedical Genetics, Genetics, Development and Stem Cells Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacob G Kallenbach
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - Haley M Orciuoli
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biology, Biological Sciences, University of Rochester, Rochester, NY, USA
| | - Nicole D Paris
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - John F Bachman
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Carl J Johnston
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Eric Hernady
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacqueline P Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joe V Chakkalakal
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Orthopaedic Surgery and Cell Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
23
|
Lu T, Zhang Y, Su Y, Zhou D, Xu Q. Role of store-operated Ca2+ entry in cardiovascular disease. Cell Commun Signal 2022; 20:33. [PMID: 35303866 PMCID: PMC8932232 DOI: 10.1186/s12964-022-00829-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/14/2022] [Indexed: 01/01/2023] Open
Abstract
Store-operated channels (SOCs) are highly selective Ca2+ channels that mediate Ca2+ influx in non-excitable and excitable (i.e., skeletal and cardiac muscle) cells. These channels are triggered by Ca2+ depletion of the endoplasmic reticulum and sarcoplasmic reticulum, independently of inositol 1,4,5-trisphosphate (InsP3), which is involved in cell growth, differentiation, and gene transcription. When the Ca2+ store is depleted, stromal interaction molecule1 (STIM1) as Ca2+ sensor redistributes into discrete puncta near the plasma membrane and activates the protein Ca2+ release activated Ca2+ channel protein 1 (Orai1). Accumulating evidence suggests that SOC is associated with several physiological roles in endothelial dysfunction and vascular smooth muscle proliferation that contribute to the progression of cardiovascular disease. This review mainly elaborates on the contribution of SOC in the vasculature (endothelial cells and vascular smooth muscle cells). We will further retrospect the literature implicating a critical role for these proteins in cardiovascular disease.
Collapse
Affiliation(s)
- Ting Lu
- Department of Cardiology, Chongqing Fifth People's Hospital, No. 24 Renji Road, Chongqing, 400000, China
| | - Yihua Zhang
- Department of Cardiology, Chongqing Fifth People's Hospital, No. 24 Renji Road, Chongqing, 400000, China
| | - Yong Su
- Department of Cardiology, Chongqing Fifth People's Hospital, No. 24 Renji Road, Chongqing, 400000, China
| | - Dayan Zhou
- Department of Cardiology, Chongqing Fifth People's Hospital, No. 24 Renji Road, Chongqing, 400000, China
| | - Qiang Xu
- Department of Cardiology, Chongqing Fifth People's Hospital, No. 24 Renji Road, Chongqing, 400000, China.
| |
Collapse
|
24
|
Wilson RJ, Lyons SP, Koves TR, Bryson VG, Zhang H, Li T, Crown SB, Ding JD, Grimsrud PA, Rosenberg PB, Muoio DM. Disruption of STIM1-mediated Ca 2+ sensing and energy metabolism in adult skeletal muscle compromises exercise tolerance, proteostasis, and lean mass. Mol Metab 2022; 57:101429. [PMID: 34979330 PMCID: PMC8814391 DOI: 10.1016/j.molmet.2021.101429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Stromal interaction molecule 1 (STIM1) is a single-pass transmembrane endoplasmic/sarcoplasmic reticulum (E/SR) protein recognized for its role in a store operated Ca2+ entry (SOCE), an ancient and ubiquitous signaling pathway. Whereas STIM1 is known to be indispensable during development, its biological and metabolic functions in mature muscles remain unclear. METHODS Conditional and tamoxifen inducible muscle STIM1 knock-out mouse models were coupled with multi-omics tools and comprehensive physiology to understand the role of STIM1 in regulating SOCE, mitochondrial quality and bioenergetics, and whole-body energy homeostasis. RESULTS This study shows that STIM1 is abundant in adult skeletal muscle, upregulated by exercise, and is present at SR-mitochondria interfaces. Inducible tissue-specific deletion of STIM1 (iSTIM1 KO) in adult muscle led to diminished lean mass, reduced exercise capacity, and perturbed fuel selection in the settings of energetic stress, without affecting whole-body glucose tolerance. Proteomics and phospho-proteomics analyses of iSTIM1 KO muscles revealed molecular signatures of low-grade E/SR stress and broad activation of processes and signaling networks involved in proteostasis. CONCLUSION These results show that STIM1 regulates cellular and mitochondrial Ca2+ dynamics, energy metabolism and proteostasis in adult skeletal muscles. Furthermore, these findings provide insight into the pathophysiology of muscle diseases linked to disturbances in STIM1-dependent Ca2+ handling.
Collapse
Affiliation(s)
- Rebecca J Wilson
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA
| | - Scott P Lyons
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Geriatrics, Duke University School of Medicine, Durham, NC 27705, USA
| | - Victoria G Bryson
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Hengtao Zhang
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27705, USA
| | - TianYu Li
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Scott B Crown
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA
| | - Jin-Dong Ding
- Department of Medicine, Division of Ophthalmology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Paul A Grimsrud
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, NC 27705, USA
| | - Paul B Rosenberg
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, NC 27705, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27705, USA.
| |
Collapse
|
25
|
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ signaling pathway that is evolutionarily conserved across eukaryotes. SOCE is triggered physiologically when the endoplasmic reticulum (ER) Ca2+ stores are emptied through activation of inositol 1,4,5-trisphosphate receptors. SOCE is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels, which are highly Ca2+ selective. Upon store depletion, the ER Ca2+-sensing STIM proteins aggregate and gain extended conformations spanning the ER-plasma membrane junctional space to bind and activate Orai, the pore-forming proteins of hexameric CRAC channels. In recent years, studies on STIM and Orai tissue-specific knockout mice and gain- and loss-of-function mutations in humans have shed light on the physiological functions of SOCE in various tissues. Here, we describe recent findings on the composition of native CRAC channels and their physiological functions in immune, muscle, secretory, and neuronal systems to draw lessons from transgenic mice and human diseases caused by altered CRAC channel activity.
Collapse
Affiliation(s)
- Scott M Emrich
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Knapp ML, Alansary D, Poth V, Förderer K, Sommer F, Zimmer D, Schwarz Y, Künzel N, Kless A, Machaca K, Helms V, Mühlhaus T, Schroda M, Lis A, Niemeyer BA. A longer isoform of Stim1 is a negative SOCE regulator but increases cAMP-modulated NFAT signaling. EMBO Rep 2021; 23:e53135. [PMID: 34942054 PMCID: PMC8892257 DOI: 10.15252/embr.202153135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022] Open
Abstract
Alternative splicing is a potent modifier of protein function. Stromal interaction molecule 1 (Stim1) is the essential activator of store‐operated Ca2+ entry (SOCE) triggering activation of transcription factors. Here, we characterize Stim1A, a splice variant with an additional 31 amino acid domain inserted in frame within its cytosolic domain. Prominent expression of exon A is found in astrocytes, heart, kidney, and testes. Full‐length Stim1A functions as a dominant‐negative regulator of SOCE and ICRAC, facilitating sequence‐specific fast calcium‐dependent inactivation and destabilizing gating of Orai channels. Downregulation or absence of native Stim1A results in increased SOCE. Despite reducing SOCE, Stim1A leads to increased NFAT translocation. Differential proteomics revealed an interference of Stim1A with the cAMP‐SOCE crosstalk by altered modulation of phosphodiesterase 8 (PDE8), resulting in reduced cAMP degradation and increased PIP5K activity, facilitating NFAT activation. Our study uncovers a hitherto unknown mechanism regulating NFAT activation and indicates that cell‐type‐specific splicing of Stim1 is a potent means to regulate the NFAT signalosome and cAMP‐SOCE crosstalk.
Collapse
Affiliation(s)
- Mona L Knapp
- Molecular Biophysics, Saarland University, Homburg, Germany
| | - Dalia Alansary
- Molecular Biophysics, Saarland University, Homburg, Germany
| | - Vanessa Poth
- Molecular Biophysics, Saarland University, Homburg, Germany
| | | | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - David Zimmer
- Computational Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Yvonne Schwarz
- Molecular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Nicolas Künzel
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Achim Kless
- Grünenthal Innovation, Drug Discovery Technologies, Grünenthal GmbH, Aachen, Germany
| | | | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Annette Lis
- Biophysics, Saarland University, Homburg, Germany
| | | |
Collapse
|
27
|
Uchimura T, Sakurai H. Orai1-STIM1 Regulates Increased Ca 2+ Mobilization, Leading to Contractile Duchenne Muscular Dystrophy Phenotypes in Patient-Derived Induced Pluripotent Stem Cells. Biomedicines 2021; 9:biomedicines9111589. [PMID: 34829817 PMCID: PMC8615222 DOI: 10.3390/biomedicines9111589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Ca2+ overload is one of the factors leading to Duchenne muscular dystrophy (DMD) pathogenesis. However, the molecular targets of dystrophin deficiency-dependent Ca2+ overload and the correlation between Ca2+ overload and contractile DMD phenotypes in in vitro human models remain largely elusive. In this study, we utilized DMD patient-derived induced pluripotent stem cells (iPSCs) to differentiate myotubes using doxycycline-inducible MyoD overexpression, and searched for a target molecule that mediates dystrophin deficiency-dependent Ca2+ overload using commercially available chemicals and siRNAs. We found that several store-operated Ca2+ channel (SOC) inhibitors effectively prevented Ca2+ overload and identified that STIM1–Orai1 is a molecular target of SOCs. These findings were further confirmed by demonstrating that STIM1–Orai1 inhibitors, CM4620, AnCoA4, and GSK797A, prevented Ca2+ overload in dystrophic myotubes. Finally, we evaluated CM4620, AnCoA4, and GSK7975A activities using a previously reported model recapitulating a muscle fatigue-like decline in contractile performance in DMD. All three chemicals ameliorated the decline in contractile performance, indicating that modulating STIM1–Orai1-mediated Ca2+ overload is effective in rescuing contractile phenotypes. In conclusion, SOCs are major contributors to dystrophin deficiency-dependent Ca2+ overload through STIM1–Orai1 as molecular mediators. Modulating STIM1–Orai1 activity was effective in ameliorating the decline in contractile performance in DMD.
Collapse
Affiliation(s)
- Tomoya Uchimura
- Center for iPSC Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Takeda-CiRA Joint Program, Fujisawa 251-8555, Japan
- Correspondence: (T.U.); (H.S.)
| | - Hidetoshi Sakurai
- Center for iPSC Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Takeda-CiRA Joint Program, Fujisawa 251-8555, Japan
- Correspondence: (T.U.); (H.S.)
| |
Collapse
|
28
|
Conte E, Imbrici P, Mantuano P, Coppola MA, Camerino GM, De Luca A, Liantonio A. Alteration of STIM1/Orai1-Mediated SOCE in Skeletal Muscle: Impact in Genetic Muscle Diseases and Beyond. Cells 2021; 10:2722. [PMID: 34685702 PMCID: PMC8534495 DOI: 10.3390/cells10102722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023] Open
Abstract
Intracellular Ca2+ ions represent a signaling mediator that plays a critical role in regulating different muscular cellular processes. Ca2+ homeostasis preservation is essential for maintaining skeletal muscle structure and function. Store-operated Ca2+ entry (SOCE), a Ca2+-entry process activated by depletion of intracellular stores contributing to the regulation of various function in many cell types, is pivotal to ensure a proper Ca2+ homeostasis in muscle fibers. It is coordinated by STIM1, the main Ca2+ sensor located in the sarcoplasmic reticulum, and ORAI1 protein, a Ca2+-permeable channel located on transverse tubules. It is commonly accepted that Ca2+ entry via SOCE has the crucial role in short- and long-term muscle function, regulating and adapting many cellular processes including muscle contractility, postnatal development, myofiber phenotype and plasticity. Lack or mutations of STIM1 and/or Orai1 and the consequent SOCE alteration have been associated with serious consequences for muscle function. Importantly, evidence suggests that SOCE alteration can trigger a change of intracellular Ca2+ signaling in skeletal muscle, participating in the pathogenesis of different progressive muscle diseases such as tubular aggregate myopathy, muscular dystrophy, cachexia, and sarcopenia. This review provides a brief overview of the molecular mechanisms underlying STIM1/Orai1-dependent SOCE in skeletal muscle, focusing on how SOCE alteration could contribute to skeletal muscle wasting disorders and on how SOCE components could represent pharmacological targets with high therapeutic potential.
Collapse
Affiliation(s)
- Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.I.); (P.M.); (M.A.C.); (G.M.C.); (A.D.L.)
| | | | | | | | | | | | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.I.); (P.M.); (M.A.C.); (G.M.C.); (A.D.L.)
| |
Collapse
|
29
|
Michelucci A, Boncompagni S, Pietrangelo L, Takano T, Protasi F, Dirksen RT. Pre-assembled Ca2+ entry units and constitutively active Ca2+ entry in skeletal muscle of calsequestrin-1 knockout mice. J Gen Physiol 2021; 152:152001. [PMID: 32761048 PMCID: PMC7537346 DOI: 10.1085/jgp.202012617] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ influx mechanism triggered by depletion of Ca2+ stores from the endoplasmic/sarcoplasmic reticulum (ER/SR). We recently reported that acute exercise in WT mice drives the formation of Ca2+ entry units (CEUs), intracellular junctions that contain STIM1 and Orai1, the two key proteins mediating SOCE. The presence of CEUs correlates with increased constitutive- and store-operated Ca2+ entry, as well as sustained Ca2+ release and force generation during repetitive stimulation. Skeletal muscle from mice lacking calsequestrin-1 (CASQ1-null), the primary Ca2+-binding protein in the lumen of SR terminal cisternae, exhibits significantly reduced total Ca2+ store content and marked SR Ca2+ depletion during high-frequency stimulation. Here, we report that CEUs are constitutively assembled in extensor digitorum longus (EDL) and flexor digitorum brevis (FDB) muscles of sedentary CASQ1-null mice. The higher density of CEUs in EDL (39.6 ± 2.1/100 µm2 versus 2.0 ± 0.3/100 µm2) and FDB (16.7 ± 1.0/100 µm2 versus 2.7 ± 0.5/100 µm2) muscles of CASQ1-null compared with WT mice correlated with enhanced constitutive- and store-operated Ca2+ entry and increased expression of STIM1, Orai1, and SERCA. The higher ability to recover Ca2+ ions via SOCE in CASQ1-null muscle served to promote enhanced maintenance of peak Ca2+ transient amplitude, increased dependence of luminal SR Ca2+ replenishment on BTP-2-sensitive SOCE, and increased maintenance of contractile force during repetitive, high-frequency stimulation. Together, these data suggest that muscles from CASQ1-null mice compensate for the lack of CASQ1 and reduction in total releasable SR Ca2+ content by assembling CEUs to promote constitutive and store-operated Ca2+ entry.
Collapse
Affiliation(s)
- Antonio Michelucci
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY.,Center for Advanced Studies and Technologies, University G. d'Annunzio of Chieti, Chieti, Italy
| | - Simona Boncompagni
- Center for Advanced Studies and Technologies, University G. d'Annunzio of Chieti, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti, Chieti, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technologies, University G. d'Annunzio of Chieti, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti, Chieti, Italy
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Feliciano Protasi
- Center for Advanced Studies and Technologies, University G. d'Annunzio of Chieti, Chieti, Italy.,Department of Medicine and Ageing Sciences, University G. d'Annunzio of Chieti, Chieti, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
30
|
Kountz TS, Jairaman A, Kountz CD, Stauderman KA, Schleimer RP, Prakriya M. Differential Regulation of ATP- and UTP-Evoked Prostaglandin E 2 and IL-6 Production from Human Airway Epithelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1275-1287. [PMID: 34389624 PMCID: PMC8816324 DOI: 10.4049/jimmunol.2100127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
The airway epithelial cells (AECs) lining the conducting passageways of the lung secrete a variety of immunomodulatory factors. Among these, PGE2 limits lung inflammation and promotes bronchodilation. By contrast, IL-6 drives intense airway inflammation, remodeling, and fibrosis. The signaling that differentiates the production of these opposing mediators is not understood. In this study, we find that the production of PGE2 and IL-6 following stimulation of human AECs by the damage-associated molecular pattern extracellular ATP shares a common requirement for Ca2+ release-activated Ca2+ (CRAC) channels. ATP-mediated synthesis of PGE2 required activation of metabotropic P2Y2 receptors and CRAC channel-mediated cytosolic phospholipase A2 signaling. By contrast, ATP-evoked synthesis of IL-6 occurred via activation of ionotropic P2X receptors and CRAC channel-mediated calcineurin/NFAT signaling. In contrast to ATP, which elicited the production of both PGE2 and IL-6, the uridine nucleotide, UTP, stimulated PGE2 but not IL-6 production. These results reveal that human AECs employ unique receptor-specific signaling mechanisms with CRAC channels as a signaling nexus to regulate release of opposing immunomodulatory mediators. Collectively, our results identify P2Y2 receptors, CRAC channels, and P2X receptors as potential intervention targets for airway diseases.
Collapse
Affiliation(s)
- Timothy S Kountz
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Amit Jairaman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Candace D Kountz
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL;
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
31
|
Hussein M, Shebl S, Elnemr R, Elkaranshawy H. A New Muscle Activation Dynamics Model, That Simulates the Calcium Kinetics and Incorporates the Role of Store-Operated Calcium Entry Channels, to Enhance the EMG-Driven Hill-type Models. J Biomech Eng 2021; 144:1114505. [PMID: 34251438 DOI: 10.1115/1.4051718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Indexed: 12/12/2022]
Abstract
Hill-type models are frequently used in biomechanical simulations. They are attractive for their low computational cost and close relation to commonly measured musculotendon parameters. Still, more attention is needed to improve the activation dynamics of the model specifically because of the nonlinearity observed in the EMG-Force relation. Moreover, one of the important and practical questions regarding the assessment of the model's performance is how adequately can the model simulate any fundamental type of human movement without modifying model parameters for different tasks? This paper tries to answer this question by proposing a simple physiologically based activation dynamics model. The model describes the ?kinetics of the calcium dynamics while activating and deactivating the muscle contraction process. Hence, it allowed simulating the recently discovered role of store-operated calcium entry (SOCE) channels as immediate counter-flux to calcium loss across the tubular system during excitation-contraction coupling. By comparing the ability to fit experimental data without readjusting the parameters, the proposed model has proven to have more steady performance than phenomenologically based models through different submaximal isometric contraction levels. This model indicates that more physiological insights is key for improving Hill-type model performance.
Collapse
Affiliation(s)
- Moemen Hussein
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Egypt
| | - Said Shebl
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Egypt
| | - Rehab Elnemr
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Alexandria University, Egypt
| | - Hesham Elkaranshawy
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Egypt
| |
Collapse
|
32
|
Michelucci A, Liang C, Protasi F, Dirksen RT. Altered Ca 2+ Handling and Oxidative Stress Underlie Mitochondrial Damage and Skeletal Muscle Dysfunction in Aging and Disease. Metabolites 2021; 11:metabo11070424. [PMID: 34203260 PMCID: PMC8304741 DOI: 10.3390/metabo11070424] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle contraction relies on both high-fidelity calcium (Ca2+) signals and robust capacity for adenosine triphosphate (ATP) generation. Ca2+ release units (CRUs) are highly organized junctions between the terminal cisternae of the sarcoplasmic reticulum (SR) and the transverse tubule (T-tubule). CRUs provide the structural framework for rapid elevations in myoplasmic Ca2+ during excitation-contraction (EC) coupling, the process whereby depolarization of the T-tubule membrane triggers SR Ca2+ release through ryanodine receptor-1 (RyR1) channels. Under conditions of local or global depletion of SR Ca2+ stores, store-operated Ca2+ entry (SOCE) provides an additional source of Ca2+ that originates from the extracellular space. In addition to Ca2+, skeletal muscle also requires ATP to both produce force and to replenish SR Ca2+ stores. Mitochondria are the principal intracellular organelles responsible for ATP production via aerobic respiration. This review provides a broad overview of the literature supporting a role for impaired Ca2+ handling, dysfunctional Ca2+-dependent production of reactive oxygen/nitrogen species (ROS/RNS), and structural/functional alterations in CRUs and mitochondria in the loss of muscle mass, reduction in muscle contractility, and increase in muscle damage in sarcopenia and a wide range of muscle disorders including muscular dystrophy, rhabdomyolysis, central core disease, and disuse atrophy. Understanding the impact of these processes on normal muscle function will provide important insights into potential therapeutic targets designed to prevent or reverse muscle dysfunction during aging and disease.
Collapse
Affiliation(s)
- Antonio Michelucci
- DNICS, Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
- Correspondence:
| | - Chen Liang
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.L.); (R.T.D.)
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy;
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.L.); (R.T.D.)
| |
Collapse
|
33
|
Protasi F, Pietrangelo L, Boncompagni S. Improper Remodeling of Organelles Deputed to Ca 2+ Handling and Aerobic ATP Production Underlies Muscle Dysfunction in Ageing. Int J Mol Sci 2021; 22:6195. [PMID: 34201319 PMCID: PMC8228829 DOI: 10.3390/ijms22126195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/28/2022] Open
Abstract
Proper skeletal muscle function is controlled by intracellular Ca2+ concentration and by efficient production of energy (ATP), which, in turn, depend on: (a) the release and re-uptake of Ca2+ from sarcoplasmic-reticulum (SR) during excitation-contraction (EC) coupling, which controls the contraction and relaxation of sarcomeres; (b) the uptake of Ca2+ into the mitochondrial matrix, which stimulates aerobic ATP production; and finally (c) the entry of Ca2+ from the extracellular space via store-operated Ca2+ entry (SOCE), a mechanism that is important to limit/delay muscle fatigue. Abnormalities in Ca2+ handling underlie many physio-pathological conditions, including dysfunction in ageing. The specific focus of this review is to discuss the importance of the proper architecture of organelles and membrane systems involved in the mechanisms introduced above for the correct skeletal muscle function. We reviewed the existing literature about EC coupling, mitochondrial Ca2+ uptake, SOCE and about the structural membranes and organelles deputed to those functions and finally, we summarized the data collected in different, but complementary, projects studying changes caused by denervation and ageing to the structure and positioning of those organelles: a. denervation of muscle fibers-an event that contributes, to some degree, to muscle loss in ageing (known as sarcopenia)-causes misplacement and damage: (i) of membrane structures involved in EC coupling (calcium release units, CRUs) and (ii) of the mitochondrial network; b. sedentary ageing causes partial disarray/damage of CRUs and of calcium entry units (CEUs, structures involved in SOCE) and loss/misplacement of mitochondria; c. functional electrical stimulation (FES) and regular exercise promote the rescue/maintenance of the proper architecture of CRUs, CEUs, and of mitochondria in both denervation and ageing. All these structural changes were accompanied by related functional changes, i.e., loss/decay in function caused by denervation and ageing, and improved function following FES or exercise. These data suggest that the integrity and proper disposition of intracellular organelles deputed to Ca2+ handling and aerobic generation of ATP is challenged by inactivity (or reduced activity); modifications in the architecture of these intracellular membrane systems may contribute to muscle dysfunction in ageing and sarcopenia.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DNICS, Department of Neuroscience and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| |
Collapse
|
34
|
Yang BG, Yuan Y, Zhou DK, Ma YH, Mahrous KF, Wang SZ, He YM, Duan XH, Zhang WY, E G. Genome-wide selection signal analysis of Australian Boer goat reveals artificial selection imprinting on candidate genes related to muscle development. Anim Genet 2021; 52:550-555. [PMID: 34029388 DOI: 10.1111/age.13092] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 12/25/2022]
Abstract
As one of the best-known commercial goat breeds in the world, Boer goat has undergone long-term artificial selection for nearly 100 years, and its excellent growth rate and meat production performance have attracted considerable worldwide attention. Herein, we used single nucleotide polymorphisms (SNPs) called from the whole-genome sequencing data of 46 Australian Boer goats to detect polymorphisms and identify genomic regions related to muscle development in comparison with those of 81 non-specialized meat goat individuals from Europe, Africa, and Asia. A total of 13 795 202 SNPs were identified, and the whole-genome selective signal screen with a π ratio of nucleotide diversity (πcase /πcontrol ) and pairwise fixation index (FST ) was analyzed. Finally, we identified 1741 candidate selective windows based on the top 5% threshold of both parameters; here, 449 candidate genes were only found in 727 of these regions. A total of 433 genes out of the 449 genes obtained were annotated to 2729 gene ontology terms, of which 51 were directly linked to muscle development (e.g., muscle organ development, muscle cell differentiation) by 30 candidate genes (e.g., JAK2, KCNQ1, PDE5A, PDLIM5, TBX5). In addition, 246 signaling pathways were annotated by 178 genes, and two pathways related to muscle contraction, including vascular smooth muscle contraction (ADCY7, PRKCB, PLA2G4E, ROCK2) and cardiac muscle contraction (CACNA2D3, CASQ2, COX6B1), were identified. The results could improve the current understanding of the genetic effects of artificial selection on the muscle development of goat. More importantly, this study provides valuable candidate genes for future breeding of goats.
Collapse
Affiliation(s)
- B-G Yang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Y Yuan
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - D-K Zhou
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Y-H Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - K-F Mahrous
- Division of Genetic Engineering and Biotechnology Research Cell, Biology Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - S-Z Wang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Y-M He
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - X-H Duan
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - W-Y Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| |
Collapse
|
35
|
Brzezinska P, Simpson NJ, Hubert F, Jacobs AN, Umana MB, MacKeil JL, Burke-Kleinman J, Payne DM, Ferguson AV, Maurice DH. Phosphodiesterase 1C integrates store-operated calcium entry and cAMP signaling in leading-edge protrusions of migrating human arterial myocytes. J Biol Chem 2021; 296:100606. [PMID: 33789162 PMCID: PMC8095186 DOI: 10.1016/j.jbc.2021.100606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 01/17/2023] Open
Abstract
In addition to maintaining cellular ER Ca2+ stores, store-operated Ca2+ entry (SOCE) regulates several Ca2+-sensitive cellular enzymes, including certain adenylyl cyclases (ADCYs), enzymes that synthesize the secondary messenger cyclic AMP (cAMP). Ca2+, acting with calmodulin, can also increase the activity of PDE1-family phosphodiesterases (PDEs), which cleave the phosphodiester bond of cAMP. Surprisingly, SOCE-regulated cAMP signaling has not been studied in cells expressing both Ca2+-sensitive enzymes. Here, we report that depletion of ER Ca2+ activates PDE1C in human arterial smooth muscle cells (HASMCs). Inhibiting the activation of PDE1C reduced the magnitude of both SOCE and subsequent Ca2+/calmodulin–mediated activation of ADCY8 in these cells. Because inhibiting or silencing Ca2+-insensitive PDEs had no such effects, these data identify PDE1C-mediated hydrolysis of cAMP as a novel and important link between SOCE and its activation of ADCY8. Functionally, we showed that PDE1C regulated the formation of leading-edge protrusions in HASMCs, a critical early event in cell migration. Indeed, we found that PDE1C populated the tips of newly forming leading-edge protrusions in polarized HASMCs, and co-localized with ADCY8, the Ca2+ release activated Ca2+ channel subunit, Orai1, the cAMP-effector, protein kinase A, and an A-kinase anchoring protein, AKAP79. Because this polarization could allow PDE1C to control cAMP signaling in a hyper-localized manner, we suggest that PDE1C-selective therapeutic agents could offer increased spatial specificity in HASMCs over agents that regulate cAMP globally in cells. Similarly, such agents could also prove useful in regulating crosstalk between Ca2+/cAMP signaling in other cells in which dysregulated migration contributes to human pathology, including certain cancers.
Collapse
Affiliation(s)
- Paulina Brzezinska
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Nicholas J Simpson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Fabien Hubert
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Ariana N Jacobs
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - M Bibiana Umana
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jodi L MacKeil
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jonah Burke-Kleinman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Darrin M Payne
- Department of Surgery, Queen's University, Kingston, Ontario, Canada
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Donald H Maurice
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
36
|
Prakriya M. Orai1 is in neurons: Reply to "where have all the Orais gone?". Cell Calcium 2021; 96:102389. [PMID: 33744779 DOI: 10.1016/j.ceca.2021.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, United States.
| |
Collapse
|
37
|
Conte E, Pannunzio A, Imbrici P, Camerino GM, Maggi L, Mora M, Gibertini S, Cappellari O, De Luca A, Coluccia M, Liantonio A. Gain-of-Function STIM1 L96V Mutation Causes Myogenesis Alteration in Muscle Cells From a Patient Affected by Tubular Aggregate Myopathy. Front Cell Dev Biol 2021; 9:635063. [PMID: 33718371 PMCID: PMC7952532 DOI: 10.3389/fcell.2021.635063] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Tubular Aggregate Myopathy (TAM) is a hereditary ultra-rare muscle disorder characterized by muscle weakness and cramps or myasthenic features. Biopsies from TAM patients show the presence of tubular aggregates originated from sarcoplasmic reticulum due to altered Ca2+ homeostasis. TAM is caused by gain-of-function mutations in STIM1 or ORAI1, proteins responsible for Store-Operated-Calcium-Entry (SOCE), a pivotal mechanism in Ca2+ signaling. So far there is no cure for TAM and the mechanisms through which STIM1 or ORAI1 gene mutation lead to muscle dysfunction remain to be clarified. It has been established that post-natal myogenesis critically relies on Ca2+ influx through SOCE. To explore how Ca2+ homeostasis dysregulation associated with TAM impacts on muscle differentiation cascade, we here performed a functional characterization of myoblasts and myotubes deriving from patients carrying STIM1 L96V mutation by using fura-2 cytofluorimetry, high content imaging and real-time PCR. We demonstrated a higher resting Ca2+ concentration and an increased SOCE in STIM1 mutant compared with control, together with a compensatory down-regulation of genes involved in Ca2+ handling (RyR1, Atp2a1, Trpc1). Differentiating STIM1 L96V myoblasts persisted in a mononuclear state and the fewer multinucleated myotubes had distinct morphology and geometry of mitochondrial network compared to controls, indicating a defect in the late differentiation phase. The alteration in myogenic pathway was confirmed by gene expression analysis regarding early (Myf5, Mef2D) and late (DMD, Tnnt3) differentiation markers together with mitochondrial markers (IDH3A, OGDH). We provided evidences of mechanisms responsible for a defective myogenesis associated to TAM mutant and validated a reliable cellular model usefull for TAM preclinical studies.
Collapse
Affiliation(s)
- Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | | | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | | | - Lorenzo Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Sara Gibertini
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | | | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Mauro Coluccia
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | | |
Collapse
|
38
|
Chen Y, Koshy R, Guirado E, George A. STIM1 a calcium sensor promotes the assembly of an ECM that contains Extracellular vesicles and factors that modulate mineralization. Acta Biomater 2021; 120:224-239. [PMID: 33130308 DOI: 10.1016/j.actbio.2020.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 01/07/2023]
Abstract
Osteoblasts and odontoblasts, are non-excitable cells and facilitate mass calcium transport during matrix mineralization. A sophisticated Ca2+ sensing mechanism is used to maintain Ca2+ homeostasis. STIM1 (Stromal interaction molecule 1) is a calcium sensor protein localized in the ER membrane and maintains calcium homeostasis by initiating the store-operated Ca2+ entry (SOCE) process, following store depletion. The role of STIM1 in dentin mineralization is yet to be elucidated. Therefore, transgenic DPSCs were generated in which overexpression or knockdown of STIM1 was achieved to study its function in matrix mineralization. Gene expression analysis and Alizarin Red staining assay demonstrated upregulation of genes involved in odontogenic differentiation and matrix mineralization with increased calcium deposition with STIM1 overexpression. Topology of the ECM examined by Field Emission Scanning Electron Microscopy (FESEM) showed the presence of large amounts of extracellular microvesicles with mineral deposits. Interestingly, silencing STIM1 resulted in fewer vesicles and less mineral deposits in the ECM. Analysis of the dentin-pulp complex of STIM1- deficient mice by micro-CT show reduced dentin thickness, malformed and highly porous alveolar bone, suggesting a cell intrinsic role for STIM1 in dentin mineralization. Confocal microscopy showed that DMP1-mediated depletion of store Ca2+ resulted in aggregation or "puncta-formation" of STIM1 at the plasma membrane indicative of a gating arrangement with Orai1 for Ca2+ influx. Together, our data provide evidence for an important role for STIM1 in dentin and alveolar bone mineralization by influencing intracellular Ca2+ oscillations that could provide signals for a wide array of cellular functions. STATEMENT OF SIGNIFICANCE: Calcium signaling and transport are fundamental to bone and dentin mineralization. Osteoblasts and odontoblasts transport large amounts of Ca2+ to the extracellular matrix. These cells maintain calcium homeostasis by spatially distributed calcium pumps and channels at the plasma membrane. STIM1 an ER Ca2+ sensor protein is an important component of the store-operated calcium entry (SOCE) process. In this study, we examined the role of STIM1 during the differentiation of dental pulp stem cells into functional odontoblasts and formation of mineralized dentin matrix. Stimulation of these cells with DMP1, a key regulatory protein in matrix mineralization, stimulates STIM1-mediated release of ER Ca2+ and SOCE activation. Silencing of STIM1 impairs signaling events, release of exosomes containing matrix proteins and matrix mineralization.
Collapse
Affiliation(s)
- Yinghua Chen
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rahul Koshy
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Elizabeth Guirado
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Anne George
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
39
|
Boncompagni S, Pecorai C, Michelucci A, Pietrangelo L, Protasi F. Long-Term Exercise Reduces Formation of Tubular Aggregates and Promotes Maintenance of Ca 2+ Entry Units in Aged Muscle. Front Physiol 2021; 11:601057. [PMID: 33469430 PMCID: PMC7813885 DOI: 10.3389/fphys.2020.601057] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Tubular aggregates (TAs) in skeletal muscle fibers are unusual accumulation of sarcoplasmic reticulum (SR) tubes that are found in different disorders including TA myopathy (TAM). TAM is a muscular disease characterized by muscle pain, cramping, and weakness that has been recently linked to mutations in STIM1 and ORAI1. STIM1 and ORAI1 are the two main proteins mediating store-operated Ca2+ entry (SOCE), a mechanism activated by depletion of intracellular Ca2+ stores (e.g., SR) that allows recovery of Ca2+ from the extracellular space during repetitive muscle activity. We have recently shown that exercise triggers the formation of unique intracellular junctions between SR and transverse tubules named Ca 2+ entry units (CEUs). CEUs promote colocalization of STIM1 with ORAI1 and improve muscle function in presence of external Ca2+. TAs virtually identical to those of TAM patients are also found in fast-twitch fibers of aging male mice. Here, we used a combination of electron and confocal microscopy, Western blotting, and ex vivo stimulation protocols (in presence or absence of external Ca2+) to evaluate the presence of TAs, STIM1-ORAI1 localization and expression and fatigue resistance of intact extensor digitorum longus (EDL) muscles in wild-type male adult (4-month-old) and aged (24-month-old) mice and in mice trained in wheel cages for 15 months (from 9 to 24 months of age). The results collected indicate that (i) aging causes STIM1 and ORAI1 to accumulate in TAs and (ii) long-term exercise significantly reduced formation of TAs. In addition, (iii) EDL muscles from aged mice exhibited a faster decay of contractile force than adult muscles, likely caused by their inability to refill intracellular Ca2+ stores, and (iv) exercise in wheel cages restored the capability of aged EDL muscles to use external Ca2+ by promoting maintenance of CEUs. In conclusion, exercise prevented improper accumulation of STIM1 and ORAI1 in TAs during aging, maintaining the capability of aged muscle to refill intracellular Ca2+ stores via SOCE.
Collapse
Affiliation(s)
- Simona Boncompagni
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences (DNICS), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Claudia Pecorai
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Antonio Michelucci
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Feliciano Protasi
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
40
|
Melzer W. ECC meets CEU-New focus on the backdoor for calcium ions in skeletal muscle cells. J Gen Physiol 2020; 152:152046. [PMID: 32851409 PMCID: PMC7537343 DOI: 10.1085/jgp.202012679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this issue, Michelucci et al. report the existence of specific sites acting as Ca2+ entry units (CEUs) in fast skeletal muscle of mice lacking calsequestrin (CASQ1), the major Ca2+ binding protein of the SR. The CEU provides constitutive and store-operated Ca2+ entry (SOCE) and resistance to force decline resulting from SR Ca2+ depletion during repetitive muscle activity.
Collapse
Affiliation(s)
- Werner Melzer
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
41
|
Maneshi MM, Toth AB, Ishii T, Hori K, Tsujikawa S, Shum AK, Shrestha N, Yamashita M, Miller RJ, Radulovic J, Swanson GT, Prakriya M. Orai1 Channels Are Essential for Amplification of Glutamate-Evoked Ca 2+ Signals in Dendritic Spines to Regulate Working and Associative Memory. Cell Rep 2020; 33:108464. [PMID: 33264616 PMCID: PMC7832685 DOI: 10.1016/j.celrep.2020.108464] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/14/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
Store-operated Orai1 calcium channels function as highly Ca2+-selective ion channels and are broadly expressed in many tissues including the central nervous system, but their contributions to cognitive processing are largely unknown. Here, we report that many measures of synaptic, cellular, and behavioral models of learning are markedly attenuated in mice lacking Orai1 in forebrain excitatory neurons. Results with focal glutamate uncaging in hippocampal neurons support an essential role of Orai1 channels in amplifying NMDA-receptor-induced dendritic Ca2+ transients that drive activity-dependent spine morphogenesis and long-term potentiation at Schaffer collateral-CA1 synapses. Consistent with these signaling roles, mice lacking Orai1 in pyramidal neurons (but not interneurons) exhibit striking deficits in working and associative memory tasks. These findings identify Orai1 channels as essential regulators of dendritic spine Ca2+ signaling, synaptic plasticity, and cognition.
Collapse
Affiliation(s)
- Mohammad Mehdi Maneshi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anna B Toth
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Toshiyuki Ishii
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kotaro Hori
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shogo Tsujikawa
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew K Shum
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nisha Shrestha
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Richard J Miller
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jelena Radulovic
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
42
|
Poth V, Knapp ML, Niemeyer BA. STIM proteins at the intersection of signaling pathways. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
TRICking SOCE into altered oscillations. Cell Calcium 2020; 92:102290. [PMID: 32979765 DOI: 10.1016/j.ceca.2020.102290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022]
Abstract
Defective ER/SR-cytosol Ca2+ cycling is associated with increased ER stress, pathological heart conditions and muscular defects. Within the SR, ryanodine receptor 2 (RyR2) is required for excitation/contraction coupling. Ca2+ release from the SR is counterbalanced by K+ influx through trimeric intracellular cation (TRIC) channels to maintain ER/SR polarity. New functions of TRIC channels have been discovered.
Collapse
|
44
|
Protasi F, Pietrangelo L, Boncompagni S. Calcium entry units (CEUs): perspectives in skeletal muscle function and disease. J Muscle Res Cell Motil 2020; 42:233-249. [PMID: 32812118 PMCID: PMC8332569 DOI: 10.1007/s10974-020-09586-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022]
Abstract
In the last decades the term Store-operated Ca2+ entry (SOCE) has been used in the scientific literature to describe an ubiquitous cellular mechanism that allows recovery of calcium (Ca2+) from the extracellular space. SOCE is triggered by a reduction of Ca2+ content (i.e. depletion) in intracellular stores, i.e. endoplasmic or sarcoplasmic reticulum (ER and SR). In skeletal muscle the mechanism is primarily mediated by a physical interaction between stromal interaction molecule-1 (STIM1), a Ca2+ sensor located in the SR membrane, and ORAI1, a Ca2+-permeable channel of external membranes, located in transverse tubules (TTs), the invaginations of the plasma membrane (PM) deputed to propagation of action potentials. It is generally accepted that in skeletal muscle SOCE is important to limit muscle fatigue during repetitive stimulation. We recently discovered that exercise promotes the assembly of new intracellular junctions that contains colocalized STIM1 and ORAI1, and that the presence of these new junctions increases Ca2+ entry via ORAI1, while improving fatigue resistance during repetitive stimulation. Based on these findings we named these new junctions Ca2+ Entry Units (CEUs). CEUs are dynamic organelles that assemble during muscle activity and disassemble during recovery thanks to the plasticity of the SR (containing STIM1) and the elongation/retraction of TTs (bearing ORAI1). Interestingly, similar structures described as SR stacks were previously reported in different mouse models carrying mutations in proteins involved in Ca2+ handling (calsequestrin-null mice; triadin and junctin null mice, etc.) or associated to microtubules (MAP6 knockout mice). Mutations in Stim1 and Orai1 (and calsequestrin-1) genes have been associated to tubular aggregate myopathy (TAM), a muscular disease characterized by: (a) muscle pain, cramping, or weakness that begins in childhood and worsens over time, and (b) the presence of large accumulations of ordered SR tubes (tubular aggregates, TAs) that do not contain myofibrils, mitochondria, nor TTs. Interestingly, TAs are also present in fast twitch muscle fibers of ageing mice. Several important issues remain un-answered: (a) the molecular mechanisms and signals that trigger the remodeling of membranes and the functional activation of SOCE during exercise are unclear; and (b) how dysfunctional SOCE and/or mutations in Stim1, Orai1 and calsequestrin (Casq1) genes lead to the formation of tubular aggregates (TAs) in aging and disease deserve investigation.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy.
- DMSI, Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy.
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
- DMSI, Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
- DNICS, Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
45
|
Wang Q, Michalak M. Calsequestrin. Structure, function, and evolution. Cell Calcium 2020; 90:102242. [PMID: 32574906 DOI: 10.1016/j.ceca.2020.102242] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/25/2022]
Abstract
Calsequestrin is the major Ca2+ binding protein in the sarcoplasmic reticulum (SR), serves as the main Ca2+ storage and buffering protein and is an important regulator of Ca2+ release channels in both skeletal and cardiac muscle. It is anchored at the junctional SR membrane through interactions with membrane proteins and undergoes reversible polymerization with increasing Ca2+ concentration. Calsequestrin provides high local Ca2+ at the junctional SR and communicates changes in luminal Ca2+ concentration to Ca2+ release channels, thus it is an essential component of excitation-contraction coupling. Recent studies reveal new insights on calsequestrin trafficking, Ca2+ binding, protein evolution, protein-protein interactions, stress responses and the molecular basis of related human muscle disease, including catecholaminergic polymorphic ventricular tachycardia (CPVT). Here we provide a comprehensive overview of calsequestrin, with recent advances in structure, diverse functions, phylogenetic analysis, and its role in muscle physiology, stress responses and human pathology.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6H 2S7, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6H 2S7, Canada.
| |
Collapse
|
46
|
Rossi D, Gamberucci A, Pierantozzi E, Amato C, Migliore L, Sorrentino V. Calsequestrin, a key protein in striated muscle health and disease. J Muscle Res Cell Motil 2020; 42:267-279. [PMID: 32488451 DOI: 10.1007/s10974-020-09583-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
Calsequestrin (CASQ) is the most abundant Ca2+ binding protein localized in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle. The genome of vertebrates contains two genes, CASQ1 and CASQ2. CASQ1 and CASQ2 have a high level of homology, but show specific patterns of expression. Fast-twitch skeletal muscle fibers express only CASQ1, both CASQ1 and CASQ2 are present in slow-twitch skeletal muscle fibers, while CASQ2 is the only protein present in cardiomyocytes. Depending on the intraluminal SR Ca2+ levels, CASQ monomers assemble to form large polymers, which increase their Ca2+ binding ability. CASQ interacts with triadin and junctin, two additional SR proteins which contribute to localize CASQ to the junctional region of the SR (j-SR) and also modulate CASQ ability to polymerize into large macromolecular complexes. In addition to its ability to bind Ca2+ in the SR, CASQ appears also to be able to contribute to regulation of Ca2+ homeostasis in muscle cells. Both CASQ1 and CASQ2 are able to either activate and inhibit the ryanodine receptors (RyRs) calcium release channels, likely through their interactions with junctin and triadin. Additional evidence indicates that CASQ1 contributes to regulate the mechanism of store operated calcium entry in skeletal muscle via a direct interaction with the Stromal Interaction Molecule 1 (STIM1). Mutations in CASQ2 and CASQ1 have been identified, respectively, in patients with catecholamine-induced polymorphic ventricular tachycardia and in patients with some forms of myopathy. This review will highlight recent developments in understanding CASQ1 and CASQ2 in health and diseases.
Collapse
Affiliation(s)
- Daniela Rossi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy.
| | - Alessandra Gamberucci
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Caterina Amato
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Loredana Migliore
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| |
Collapse
|
47
|
Tammineni ER, Kraeva N, Figueroa L, Manno C, Ibarra CA, Klip A, Riazi S, Rios E. Intracellular calcium leak lowers glucose storage in human muscle, promoting hyperglycemia and diabetes. eLife 2020; 9:e53999. [PMID: 32364497 PMCID: PMC7282812 DOI: 10.7554/elife.53999] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Most glucose is processed in muscle, for energy or glycogen stores. Malignant Hyperthermia Susceptibility (MHS) exemplifies muscle conditions that increase [Ca2+]cytosol. 42% of MHS patients have hyperglycemia. We show that phosphorylated glycogen phosphorylase (GPa), glycogen synthase (GSa) - respectively activated and inactivated by phosphorylation - and their Ca2+-dependent kinase (PhK), are elevated in microsomal extracts from MHS patients' muscle. Glycogen and glucose transporter GLUT4 are decreased. [Ca2+]cytosol, increased to MHS levels, promoted GP phosphorylation. Imaging at ~100 nm resolution located GPa at sarcoplasmic reticulum (SR) junctional cisternae, and apo-GP at Z disk. MHS muscle therefore has a wide-ranging alteration in glucose metabolism: high [Ca2+]cytosol activates PhK, which inhibits GS, activates GP and moves it toward the SR, favoring glycogenolysis. The alterations probably cause these patients' hyperglycemia. For basic studies, MHS emerges as a variable stressor, which forces glucose pathways from the normal to the diseased range, thereby exposing novel metabolic links.
Collapse
Affiliation(s)
- Eshwar R Tammineni
- Department of Physiology and Biophysics, Rush University Medical CenterChicagoUnited States
| | - Natalia Kraeva
- Malignant Hyperthermia Investigation Unit (MHIU) of the University Health Network (Canada)TorontoCanada
- Department of Anaesthesia & Pain Management, Toronto General Hospital, UHN, University of TorontoTorontoCanada
| | - Lourdes Figueroa
- Department of Physiology and Biophysics, Rush University Medical CenterChicagoUnited States
| | - Carlo Manno
- Department of Physiology and Biophysics, Rush University Medical CenterChicagoUnited States
| | - Carlos A Ibarra
- Malignant Hyperthermia Investigation Unit (MHIU) of the University Health Network (Canada)TorontoCanada
- Department of Anaesthesia & Pain Management, Toronto General Hospital, UHN, University of TorontoTorontoCanada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick ChildrenTorontoCanada
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit (MHIU) of the University Health Network (Canada)TorontoCanada
- Department of Anaesthesia & Pain Management, Toronto General Hospital, UHN, University of TorontoTorontoCanada
| | - Eduardo Rios
- Department of Physiology and Biophysics, Rush University Medical CenterChicagoUnited States
| |
Collapse
|
48
|
Shrestha N, Bacsa B, Ong HL, Scheruebel S, Bischof H, Malli R, Ambudkar IS, Groschner K. TRIC-A shapes oscillatory Ca2+ signals by interaction with STIM1/Orai1 complexes. PLoS Biol 2020; 18:e3000700. [PMID: 32330125 PMCID: PMC7202670 DOI: 10.1371/journal.pbio.3000700] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/06/2020] [Accepted: 04/09/2020] [Indexed: 01/08/2023] Open
Abstract
Trimeric intracellular cation (TRIC) channels have been proposed to modulate Ca2+ release from the endoplasmic reticulum (ER) and determine oscillatory Ca2+ signals. Here, we report that TRIC-A-mediated amplitude and frequency modulation of ryanodine receptor 2 (RyR2)-mediated Ca2+ oscillations and inositol 1,4,5-triphosphate receptor (IP3R)-induced cytosolic signals is based on attenuating store-operated Ca2+ entry (SOCE). Further, TRIC-A-dependent delay in ER Ca2+ store refilling contributes to shaping the pattern of Ca2+ oscillations. Upon ER Ca2+ depletion, TRIC-A clusters with stromal interaction molecule 1 (STIM1) and Ca2+-release-activated Ca2+ channel 1 (Orai1) within ER-plasma membrane (PM) junctions and impairs assembly of the STIM1/Orai1 complex, causing a decrease in Orai1-mediated Ca2+ current and SOCE. Together, our findings demonstrate that TRIC-A is a negative regulator of STIM1/Orai1 function. Thus, aberrant SOCE could contribute to muscle disorders associated with loss of TRIC-A.
Collapse
Affiliation(s)
- Niroj Shrestha
- Gottfried Schatz Research Center-Biophysics, Medical University of Graz, Graz, Austria
| | - Bernadett Bacsa
- Gottfried Schatz Research Center-Biophysics, Medical University of Graz, Graz, Austria
| | - Hwei Ling Ong
- Secretory Physiology Section, NIDCR, NIH, Bethesda, Maryland, United States of America
| | - Susanne Scheruebel
- Gottfried Schatz Research Center-Biophysics, Medical University of Graz, Graz, Austria
| | - Helmut Bischof
- Gottfried Schatz Research Center-Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Roland Malli
- Gottfried Schatz Research Center-Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Indu Suresh Ambudkar
- Secretory Physiology Section, NIDCR, NIH, Bethesda, Maryland, United States of America
| | - Klaus Groschner
- Gottfried Schatz Research Center-Biophysics, Medical University of Graz, Graz, Austria
| |
Collapse
|
49
|
Wasala NB, Yue Y, Lostal W, Wasala LP, Niranjan N, Hajjar RJ, Babu GJ, Duan D. Single SERCA2a Therapy Ameliorated Dilated Cardiomyopathy for 18 Months in a Mouse Model of Duchenne Muscular Dystrophy. Mol Ther 2020; 28:845-854. [PMID: 31981493 DOI: 10.1016/j.ymthe.2019.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 01/16/2023] Open
Abstract
Loss of dystrophin leads to Duchenne muscular dystrophy (DMD). A pathogenic feature of DMD is the significant elevation of cytosolic calcium. Supraphysiological calcium triggers protein degradation, membrane damage, and eventually muscle death and dysfunction. Sarcoplasmic/endoplasmic reticulum (SR) calcium ATPase (SERCA) is a calcium pump that transports cytosolic calcium to the SR during excitation-contraction coupling. We hypothesize that a single systemic delivery of SERCA2a with adeno-associated virus (AAV) may improve calcium recycling and provide long-lasting benefits in DMD. To test this, we injected an AAV9 human SERCA2a vector (6 × 1012 viral genome particles/mouse) intravenously to 3-month-old mdx mice, the most commonly used DMD model. Immunostaining and western blot showed robust human SERCA2a expression in the heart and skeletal muscle for 18 months. Concomitantly, SR calcium uptake was significantly improved in these tissues. SERCA2a therapy significantly enhanced grip force and treadmill performance, completely prevented myocardial fibrosis, and normalized electrocardiograms (ECGs). Cardiac catheterization showed normalization of multiple systolic and diastolic hemodynamic parameters in treated mice. Importantly, chamber dilation was completely prevented, and ejection fraction was restored to the wild-type level. Our results suggest that a single systemic AAV9 SERCA2a therapy has the potential to provide long-lasting benefits for DMD.
Collapse
Affiliation(s)
- Nalinda B Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - William Lostal
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Lakmini P Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Nandita Niranjan
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | | | - Gopal J Babu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO 65212, USA; Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
50
|
Girault A, Ahidouch A, Ouadid-Ahidouch H. Roles for Ca 2+ and K + channels in cancer cells exposed to the hypoxic tumour microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118644. [PMID: 31931022 DOI: 10.1016/j.bbamcr.2020.118644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
For twenty years, ion channels have been studied in cancer progression. Several information have been collected about their involvement in cancer cellular processes like cell proliferation, motility and their participation in tumour progression using in-vivo models. Tumour microenvironment is currently the focus of many researches and the highlighting of the relationship between cancer cells and surrounding elements, is expanding. One of the major physic-chemical parameter involved in tumour progression is the hypoxia conditions observed in solid cancer. Due to their position on the cell membrane, ion channels are good candidates to transduce or to be modulated by environmental modifications. Until now, few reports have been interested in the modification of ion channel activities or expression in this context, compared to other pathological situations such as ischemia reperfusion. The aim of our review is to summarize the current knowledge about the calcium and potassium channels properties in the context of hypoxia in tumours. This review could pave the way to orientate new studies around this exciting field to obtain new potential therapeutic approaches.
Collapse
Affiliation(s)
- Alban Girault
- Université de Picardie Jules Verne, UFR des Sciences, Laboratoire de Physiologie Cellulaire et Moléculaire (EA 4667), Amiens, France
| | - Ahmed Ahidouch
- Université de Picardie Jules Verne, UFR des Sciences, Laboratoire de Physiologie Cellulaire et Moléculaire (EA 4667), Amiens, France; Université Ibn Zohr, Faculté des sciences, Département de Biologie, Agadir, Morocco
| | - Halima Ouadid-Ahidouch
- Université de Picardie Jules Verne, UFR des Sciences, Laboratoire de Physiologie Cellulaire et Moléculaire (EA 4667), Amiens, France.
| |
Collapse
|