1
|
Lian JZ, Borrion A, Fisher RP, Yaman R, Linden KG, Campos LC, Cucurachi S. A comparative life cycle analysis of Sol-Char and anaerobic digestion sanitation systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178622. [PMID: 39864246 DOI: 10.1016/j.scitotenv.2025.178622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
In this study, we compared the Sol-Char sanitation system with an Anaerobic Digestion (AD) system using Life Cycle Assessment (LCA) to evaluate their environmental impacts. Since both systems offer opportunities for human waste treatment and resource recovery, understanding their performance is crucial. This comparison aims to determine their environmental impacts while considering diverse factors, such as energy production and nutrient recovery. The Sol-Char system demonstrated a superior life-cycle environmental performance, showing two to five times lower impacts in categories such as Climate Change (e.g., 127 kg CO₂-eq for the Sol-Char system while that 592 kg CO₂-eq for the AD system), Non-Renewable Energy Resources, Ionizing Radiation, Land Use, and Water Use. Both systems exhibited significant potential for resource recovery, with the Sol-Char system producing biochar and disinfected urine, and the AD system generating electricity, heat, and digestate. Updated LCA results, after byproduct application, indicated that both systems potentially have a net positive environmental impact (both with reductions exceeding -500 kg CO₂-eq per day). Nutrient recovery simulations using SAmpSONS2 revealed that the AD system performed better when utilizing multiple biomass sources. The nitrogen content in the solids was 20.25 kg/day after AD and 3.75 kg/day for the Sol-Char system. Our results highlight the Sol-Char system is a viable sanitation solution in rural areas. However, the study also identified key challenges, including the absence of uncertainty analysis and the need for a standardized framework that enables more consistent evaluations and comparisons across diverse sanitation systems and contexts.
Collapse
Affiliation(s)
- Justin Z Lian
- Leiden University, Institute of Environmental Science - Industrial Ecology, Van Steenisgebouw, Einsteinweg 2, 2333 CC Leiden, the Netherlands
| | - Aiduan Borrion
- University College London, Civil Environmental & Geomatic Engineering, Chadwick Building Room GM11, Gower Street, London WC1E 6BT, United Kingdom
| | - Richard P Fisher
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO 80303, United States
| | - Rokiah Yaman
- LEAP Micro AD Ltd, 193 Downham Way, London BR1 5EL, United Kingdom
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO 80303, United States
| | - Luiza C Campos
- University College London, Civil Environmental & Geomatic Engineering, Chadwick Building Room GM11, Gower Street, London WC1E 6BT, United Kingdom.
| | - Stefano Cucurachi
- Leiden University, Institute of Environmental Science - Industrial Ecology, Van Steenisgebouw, Einsteinweg 2, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
2
|
Andleeb S, Irfan M, Atta-Obeng E, Sukmawati D. Advances in waste-derived functional materials for PFAS remediation. Biodegradation 2025; 36:13. [PMID: 39832063 DOI: 10.1007/s10532-025-10109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic organofluoride compounds, widely used in industries since the 1950s for their hydrophobic properties. PFAS contamination of soil and water poses significant environmental and public health risks due to their persistence, chemical stability, and resistance to degradation. The Chemical Abstracts Service catalogs approximately 4300 PFAS globally. Research in various regions such as North America, Asia, Europe, and remote polar zones has revealed the accumulation of perfluorooctane sulfonate (PFOS) in the tissues of various animal species, with concentrations reaching up to 1900 ng/g in aquatic species like dolphins and whales. Researchers have employed various remediation techniques such as solvent extraction, ion exchange, precipitation, adsorption, and membrane filtration, each of which has its drawbacks. Adsorption, particularly using waste-derived functional materials like biochar, is emerging as a promising method for PFAS remediation due to its cost-effectiveness and sustainability. For example, waste timber-derived biochar exhibits adsorption efficiency comparable to commercial activated carbon. This review highlights advancements in using agricultural, industrial, and biological waste-derived materials for sustainable PFAS remediation. We discuss innovative modification techniques like hydrothermal synthesis, pyrolysis, calcination, co-precipitation, the sol-gel method, and ball milling. The study also examines adsorption mechanisms, factors affecting adsorption efficiency, and the technological challenges in scaling up waste-derived material use. It aims to explore developments, challenges, and future directions for using these materials for efficient PFAS remediation and contributing to sustainable environmental cleanup solutions.
Collapse
Affiliation(s)
- Saba Andleeb
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Emmanuel Atta-Obeng
- Department of Natural Science, Coppin State University, Baltimore, MD, 21216, USA.
| | - Dalia Sukmawati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, Indonesia
| |
Collapse
|
3
|
Bhardwaj A, Bansal M, Garima, Wilson K, Gupta S, Dhanawat M. Lignocellulose biosorbents: Unlocking the potential for sustainable environmental cleanup. Int J Biol Macromol 2025; 294:139497. [PMID: 39756760 DOI: 10.1016/j.ijbiomac.2025.139497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Climate change, the overconsumption of fossil fuels, and rapid population and economic growth have collectively driven a growing emphasis on environmental sustainability and the need for effective resource management. Chemicals or materials not currently regulated are known as contaminants of emergent concern (CECs). Nevertheless, wastewater is thought to be its main source, and worries about its probable presence in the environment are growing due to its potential damage to human and environmental health. To counteract hazardous chemicals in wastewater and promote ecological sustainability, there has been a significant deal of interest in finding environmentally benign and renewable materials. Because of its constituents' distinct physical and chemical qualities, lignocellulose stands out among the many possibilities as the most appealing possibility for water cleanup. It is an abundant, biocompatible, and renewable substance. Sustainable social development requires wastewater cleanup using renewable lignocellulosic resources. However, the generation of lignocellulose-based materials is restricted by the byproducts that are produced and the complicated, expensive, and environmentally harmful synthetic process. It has been determined that biosorption on lignocellulosic wastes and by-products is a suitable substitute for the current technologies used to remove hazardous metal ions and dye from wastewater streams. Lignocellulose is highly effective at adsorbing heavy metals like arsenic (As), cadmium (Cd), copper (Cu), chromium (Cr), and lead (Pb). Beyond heavy metals, it can also capture various organic pollutants, that includes dyes (like methylene blue, methyl orange and malachite green), and pharmaceutical residues, and pesticides. Additionally, lignocellulosic materials are valuable for adsorbing oil and hydrocarbons from water, playing a crucial role in addressing environmental concerns related to oil spills. The pollutant removal efficiency of lignocellulose can be greatly improved through a range of physical, chemical, and biological modification methods, including thermal and ultrasound treatments, acid and alkali processing, ammoniation, amination, grafting, crosslinking, enzymatic modifications, and microbial colonization. In this article, we examine the most recent developments in lignocellulose-based adsorbent research, with an emphasis on lignocellulosic composition, adsorbent application, and material modification. A methodical and thorough presentation of the preparation and modification techniques for lignin, cellulose, and hemicellulose, as well as their utilization for treating various types of contaminated water, is provided. Additionally, a great resource for comprehending the specified adsorption mechanism and recycling of adsorbents is the thorough explanation of the mechanism of adsorption, the adsorbent renewal process, and the adsorption model.
Collapse
Affiliation(s)
- Anjali Bhardwaj
- HRIT University, 8 Km Stone Delhi Meerut Road NH-58 Morta, Ghaziabad, Uttar Pradesh 201003, India
| | - Mukesh Bansal
- HRIT University, 8 Km Stone Delhi Meerut Road NH-58 Morta, Ghaziabad, Uttar Pradesh 201003, India
| | - Garima
- 4Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Kashish Wilson
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Sumeet Gupta
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Meenakshi Dhanawat
- Amity Institute of Pharmacy, Amity University Haryana, Amity Education Valley, Panchgaon, Manesar, Gurugram, Haryana 122413, India.
| |
Collapse
|
4
|
Patel DK, Won SY, Han SS. Banana peels-derived shape-regulated nanocellulose for effective adsorption of Nile blue A dye. Int J Biol Macromol 2024; 293:139384. [PMID: 39743095 DOI: 10.1016/j.ijbiomac.2024.139384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Industrial wastes, including dyes and other chemicals, are significant sources of water pollution. The adsorption process is often explored in water purification. However, developing low-cost, sustainable adsorbents with good dye removal capacity remains challenging. We developed shape-regulated nanocellulose from waste banana peels through chemical treatment and examined their Nile blue A dye removal efficiency to address these limitations. The average diameter and length spherical (s-NC) and rod-shaped nanocellulose (CNCs) were 43.29 ± 5.97 and 137.61 ± 3.86, respectively. The zeta potential of the s-NC and CNCs was -34.5 ± 0.14 and - 27.6 ± 0.21 mV, respectively. The s-NC demonstrated improved thermal stability and cytocompatibility vis-à-vis CNCs. The s-NC exhibited enhanced dye removal potential compared to CNCs. Nearly 63.75 % and 87.32 % of dye were removed with 10 mg of CNCs and s-NC within 10 min of contact time, respectively. The adsorption isotherm was best fitted with Freundlich isotherm with a maximum adsorption capacity (qm) of 54.37 mg/g. Furthermore, the adsorbent demonstrated good recyclability and maintained ~68 % removal efficiency until six cycles. The adsorbent exhibited prolonged periods of stability under dye solution. These findings open a new direction in developing cost-effective and sustainable adsorbents/composite membranes by selecting suitable nanomaterial for water purification.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
5
|
Raccuia SGM, Zanda E, Bretti C, Formica M, Macedi E, Melchior A, Tolazzi M, Sanadar M, Lascari D, De Luca G, Irto A, De Stefano C, Cardiano P, Lando G. Multi-Analytical Approach for the Acid-Base, Thermal and Surface Properties Assessment of Waste Biomasses. Molecules 2024; 29:5735. [PMID: 39683892 DOI: 10.3390/molecules29235735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
A multi-analytical approach was used to comprehensively characterize the acid-base, thermal, and surface properties of agri-food processing wastes (i.e., original and pre-treated bergamot, grape and olive pomaces). These biomasses, often underutilised and inadequately studied in terms of their physicochemical properties, were investigated under varying ionic strength conditions at t = 25 °C. This investigation uniquely integrates multiple advanced techniques: Brunauer-Emmett-Teller porosimetry, Scanning Electron Microscopy, Thermogravimetric Analysis coupled with Fourier Transform Infrared Spectroscopy, Differential Scanning Calorimetry, Attenuated Total Reflectance Fourier-Transform Infrared, and potentiometry to provide a holistic understanding of these biomasses potential for environmental remediation. The modelling of ionic strength-dependent acid-base behaviour, established using an extended Debye-Hückel-type equation, revealed the dominant role of carboxylic groups as active sites across all pomace types, although with variations in abundances across the different samples. Additionally, morphological analysis highlighted the presence of irregularly shaped particles, heterogeneous size distributions, and distinct thermal stability trends, with grape pomace exhibiting the highest mass loss. These findings underscore the significant potential of these biomasses for the remediation of cationic pollutants from natural waters. Moreover, this comprehensive characterisation not only advances the understanding of agri-food waste valorisation but also provides a robust framework for designing targeted strategies in environmental applications.
Collapse
Affiliation(s)
| | - Emanuele Zanda
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, 98168 Messina, Italy
| | - Clemente Bretti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, 98168 Messina, Italy
| | - Mauro Formica
- Dipartimento di Scienze Pure e Applicate, Università degli Studi di Urbino "Carlo Bo", 61029 Urbino, Italy
| | - Eleonora Macedi
- Dipartimento di Scienze Pure e Applicate, Università degli Studi di Urbino "Carlo Bo", 61029 Urbino, Italy
| | - Andrea Melchior
- Dipartimento Politecnico di Ingegneria e Architettura, Laboratorio di Tecnologie Chimiche, Università di Udine, 33100 Udine, Italy
| | - Marilena Tolazzi
- Dipartimento Politecnico di Ingegneria e Architettura, Laboratorio di Tecnologie Chimiche, Università di Udine, 33100 Udine, Italy
| | - Martina Sanadar
- Dipartimento Politecnico di Ingegneria e Architettura, Laboratorio di Tecnologie Chimiche, Università di Udine, 33100 Udine, Italy
| | - Davide Lascari
- Dipartimento di Fisica e Chimica-Emilio Segré, Università di Palermo, 90128 Palermo, Italy
| | - Giovanna De Luca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, 98168 Messina, Italy
| | - Anna Irto
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, 98168 Messina, Italy
| | - Concetta De Stefano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, 98168 Messina, Italy
| | - Paola Cardiano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, 98168 Messina, Italy
| | - Gabriele Lando
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, 98168 Messina, Italy
| |
Collapse
|
6
|
Fauzi AAB, Chitraningrum N, Budiman I, Subyakto S, Widyaningrum BA, Maheswari CS, Jalil ABA, Hassan NSB, Hata T, Azami MSBM. A state-of-the-art review on lignocellulosic biomass-derived activated carbon for adsorption and photocatalytic degradation of pollutants: a property and mechanistic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64453-64475. [PMID: 39576437 DOI: 10.1007/s11356-024-35589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/14/2024] [Indexed: 12/08/2024]
Abstract
A promising water treatment method involves using biomass-derived activated carbon (AC) to remove emerging pollutants from wastewater due to its adsorption capacity, cost-effectiveness, and sustainability. Notwithstanding, the existing literature lacks comprehensive studies that specifically focus on removing contaminants in water by comparing the effectiveness of adsorption and photocatalytic degradation methods. Additionally, there is not much emphasis on analyzing the combined processes of adsorption-photocatalytic degradation utilizing AC. Herein, this paper investigates the intricacies of adsorption-photocatalytic degradation mechanisms and contributing variables in the enhancement of performances using biomass-derived AC. Furthermore, this review paper presents a comprehensive examination of different biomass sources employed in the synthesis of AC. It also discusses the diverse techniques utilized for the fabrication of AC, including physical and chemical activation methods. Finally, the shortcomings and future prospects of biomass-derived AC have been addressed. This study offers significant insights for the development of future biomass-derived AC, with the goal of improving their efficiency and expanding their uses in wastewater treatment.
Collapse
Affiliation(s)
- Anees Ameera Binti Fauzi
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong, 16911, Indonesia
| | - Nidya Chitraningrum
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong, 16911, Indonesia.
| | - Ismail Budiman
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong, 16911, Indonesia
| | - Subyakto Subyakto
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong, 16911, Indonesia
| | - Bernadeta Ayu Widyaningrum
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong, 16911, Indonesia
| | - Cinnathambi Subramani Maheswari
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46, Cibinong, 16911, Indonesia
| | - Aishah Binti Abd Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Nurul Sahida Binti Hassan
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Toshimitsu Hata
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho Uji, Kyoto, Kyoto, 611-0011, Japan
| | | |
Collapse
|
7
|
György B, Bujdoš M, Vojtková H, Diviš P, Slaný M, Matúš P, Urík M. Comparative Study of Water and Milk Kefir Grains as Biopolymeric Adsorbents for Copper(II) and Arsenic(V) Removal from Aqueous Solutions. Polymers (Basel) 2024; 16:3340. [PMID: 39684085 DOI: 10.3390/polym16233340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigates the biosorption capabilities of kefir grains, a polysaccharide-based byproduct of the fermentation process, for removing copper(II) and arsenic(V) from contaminated water. Unlike traditional heavy-metal removal methods, which are typically expensive and involve environmentally harmful chemicals, biopolymeric materials such as kefir grains provide a sustainable and cost-effective alternative for adsorbing hazardous inorganic pollutants from aqueous solutions. Our experimental results revealed significant differences in the sorption capacities of two types of kefir grains. Grains of milk kefir outperformed water kefir, particularly in copper(II) removal, achieving up to 95% efficiency at low copper concentrations (0.16 mmol·L-1) and demonstrating a maximum sorption capacity of 49 µmol·g-1. In contrast, water kefir grains achieved only 35.5% maximum removal efficiency and exhibited lower sorption capacity. For arsenic(V) removal, milk kefir grains also showed superior performance, removing up to 56% of arsenic in diluted solution with experimental sorption capacities reaching up to 20 µmol·g-1, whereas water kefir grains achieved a maximum removal efficiency of 34.5%. However, these findings also suggest that while kefir grains show potential as low-cost biosorbents, further modifications are needed to enhance their competitiveness for large-scale water treatment applications.
Collapse
Affiliation(s)
- Balázs György
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Marek Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Hana Vojtková
- Department of Environmental Engineering, Faculty of Mining and Geology, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic
| | - Pavel Diviš
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 612 00 Brno, Czech Republic
| | - Michal Slaný
- Department of Materials Engineering and Physics, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 810 05 Bratislava, Slovakia
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague, Czech Republic
| | - Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
8
|
Ramutshatsha-Makhwedzha D, Munonde TS. Review of the Integrated Approaches for Monitoring and Treating Parabens in Water Matrices. Molecules 2024; 29:5533. [PMID: 39683693 DOI: 10.3390/molecules29235533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Due to their antibacterial and antifungal properties, parabens are commonly used as biocides and preservatives in food, cosmetics, and pharmaceuticals. Parabens have been reported to exist in various water matrices at low concentrations, which renders the need for sample preparation before their quantification using analytical techniques. Thus, sample preparation methods such as solid-phase extraction (SPE), rotating-disk sorptive extraction (RDSE), and vortex-assisted dispersive liquid-liquid extraction (VA-DLLE) that are commonly used for parabens extraction and preconcentration have been discussed. As a result of sample preparation methods, analytical techniques now detect parabens at trace levels ranging from µg/L to ng/L. These compounds have been detected in water, air, soil, and human tissues. While the full impact of parabens on human health and ecosystems is still being debated in the scientific community, it is widely recognized that parabens can act as endocrine disruptors. Furthermore, some studies have suggested that parabens may have carcinogenic effects. The presence of parabens in the environment is primarily due to wastewater discharges, which result in widespread contamination and their concentrations increased during the COVID-19 pandemic waves. Neglecting the presence of parabens in water exposes humans to these compounds through contaminated food and drinking water. Although there are reviews that focus on the occurrence, fate, and behavior of parabens in the environment, they frequently overlook critical aspects such as removal methods, policy development, and regulatory frameworks. Addressing this gap, the effective treatment of parabens in water relies on combined approaches that address both cost and operational challenges. Membrane filtration methods, such as nanofiltration (NF) and reverse osmosis (RO), demonstrate high efficacy but are hindered by maintenance and energy costs due to extensive fouling. Innovations in anti-fouling and energy efficiency, coupled with pre-treatment methods like adsorption, help mitigate these costs and enhance scalability. Furthermore, combining adsorption with advanced oxidation processes (AOPs) or biological treatments significantly improves economic and energy efficiency. Integrating systems like O₃/UV with activated carbon, along with byproduct recovery strategies, further advances circular economy goals by minimizing waste and resource use. This review provides a thorough overview of paraben monitoring in wastewater, current treatment techniques, and the regulatory policies that govern their presence. Furthermore, it provides perspectives that are critical for future scientific investigations and shaping policies aimed at mitigating the risks of parabens in drinking water.
Collapse
Affiliation(s)
- Denga Ramutshatsha-Makhwedzha
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| | - Tshimangadzo S Munonde
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa
| |
Collapse
|
9
|
Vasudhevan P, Kalaimurugan D, Ganesan S, Akbar N, Dixit S, Pu S. Enhanced biocatalytic laccase production using agricultural waste in solid-state fermentation by Aspergillus oryzae for p-chlorophenol degradation. Int J Biol Macromol 2024; 281:136460. [PMID: 39389485 DOI: 10.1016/j.ijbiomac.2024.136460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Agricultural residues are one of the most cost-effective and readily accessible carbon resources for producing commercially significant enzymes. Several enzymes have been used in different industries like pharmaceuticals, foods, textiles, and dyes that can be generated by various species of microbes found in waste from agriculture. The current research investigated laccase production by Aspergillus oryzae utilizing agricultural wastes. Physical and chemical properties, including pH, temperature, sucrose, yeast extract, and copper sulfate levels, were optimized. The utilization of the response surface methodology along with the centralized composite design method, which assesses multiple media parameters and utilizes a two-level experimental approach, aids in determining the variable and its significance in increasing production quality. The centralized composite design enhancement showed that the optimal conditions for highest laccase activity (623.16 U/mL) were pH 7.0, temperature 25 °C, corn cobs as substrate, sucrose (2.0 %), yeast extract (1.0 %), and copper sulfate (0.1 mM) level. The laccase enzyme was optimized using various pH, temperature, metal ions, and inhibitors combinations. The extracted laccase enzyme maximum activity was attained at pH 6.0 and 40 °C. The inclusion of divalent ions can enhance laccase activity, while the use of various inhibitors decreases laccase activity. Under various pH circumstances, the Aspergillus oryzae laccase enzyme can successfully degrade p-chlorophenol. The present study describes statistically validated optimal methodologies for enhancing laccase synthesis, leading to a laccase production technique that is simultaneously highly efficient and economically profitable, with possible use of p-chlorophenol degradation.
Collapse
Affiliation(s)
- Palanisamy Vasudhevan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Dharman Kalaimurugan
- Geo-Technical Mining Solutions, Oddapatti - 636705, Dharmapuri, Tamil Nadu, India
| | - Sivarasan Ganesan
- Department of Material Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Naveed Akbar
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Saurav Dixit
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India; Adjunct Faculty, Woxsen School of Business, Woxsen University, Hyderabad, Telangana 502345, India
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China.
| |
Collapse
|
10
|
Cecire R, Diana A, Giacomino A, Abollino O, Inaudi P, Favilli L, Bertinetti S, Cavalera S, Celi L, Malandrino M. Rice Husk as a Sustainable Amendment for Heavy Metal Immobilization in Contaminated Soils: A Pathway to Environmental Remediation. TOXICS 2024; 12:790. [PMID: 39590970 PMCID: PMC11597911 DOI: 10.3390/toxics12110790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Rice husk is a waste byproduct of rice production. This material has a moderate cost and is readily available, representing 20-22% of the biomass produced by rice cultivation. This study focused on the properties of rice husk in the remediation of soils contaminated by heavy metals. The effect of particle size, pH, and the presence of organic ligands on sorption efficiency was evaluated for Cd, Cu, and Mn. The continuous flow method was used to select suitable operative conditions and maximize the retention of heavy metals. Subsequently, pot experiments were carried out by growing two broadleaf plants, Lactuca sativa and Spinacia oleracea, in aliquots of soil collected in a Piedmont (Northwest Italy) site heavily contaminated by Cu, Cr, and Ni. Rice husk was added to the contaminated soil to evaluate its effectiveness in immobilizing heavy metals. The availability of Cr, Mn, Ni, Cu, Zn, Cd, and Pb in soil was studied using Tessier's sequential extraction protocol. The content of the elements was also analyzed in plants and the uptake of heavy metals was evaluated in relation to the addition of rice husk. The growth of both plants was more efficient in the presence of rice husk due to its ability to reduce the mobility of heavy metals in the soil. The simplicity, cost-effectiveness, and scalability of its employment make the use of rice husk suitable for practical applications in soil remediation.
Collapse
Affiliation(s)
- Riccardo Cecire
- Department of Chemistry, University of Turin, Via Giuria 7, 10125 Turin, Italy; (R.C.); (S.B.); (S.C.)
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Aleandro Diana
- Department of Chemistry, University of Turin, Via Giuria 7, 10125 Turin, Italy; (R.C.); (S.B.); (S.C.)
| | - Agnese Giacomino
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy; (A.G.); (O.A.); (P.I.); (L.F.)
| | - Ornella Abollino
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy; (A.G.); (O.A.); (P.I.); (L.F.)
| | - Paolo Inaudi
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy; (A.G.); (O.A.); (P.I.); (L.F.)
| | - Laura Favilli
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy; (A.G.); (O.A.); (P.I.); (L.F.)
| | - Stefano Bertinetti
- Department of Chemistry, University of Turin, Via Giuria 7, 10125 Turin, Italy; (R.C.); (S.B.); (S.C.)
| | - Simone Cavalera
- Department of Chemistry, University of Turin, Via Giuria 7, 10125 Turin, Italy; (R.C.); (S.B.); (S.C.)
| | - Luisella Celi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Mery Malandrino
- Department of Chemistry, University of Turin, Via Giuria 7, 10125 Turin, Italy; (R.C.); (S.B.); (S.C.)
| |
Collapse
|
11
|
Moreno-Rivas SC, Ibarra-Gutiérrez MJ, Fernández-Quiroz D, Lucero-Acuña A, Burgara-Estrella AJ, Zavala-Rivera P. pH-Responsive Alginate/Chitosan Gel Films: An Alternative for Removing Cadmium and Lead from Water. Gels 2024; 10:669. [PMID: 39451322 PMCID: PMC11507177 DOI: 10.3390/gels10100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Biosorption, a non-expensive and easy method for removing potentially toxic metal ions from water, has been the subject of extensive research. In this context, this study introduces a novel approach using sodium alginate and chitosan, versatile biopolymers that have shown excellent results as biosorbents. The challenge of maintaining high efficiencies and reuse is addressed by developing alginate/chitosan-based films. These films, prepared using solvent casting and crosslinking methods, form a hydrogel network. The alginate/chitosan-based films, obtained using the eco-friendly polyelectrolyte complex method, were characterized by FTIR, SEM, TGA, and DSC. The study of their swelling pH response, adsorption, and desorption behavior revealed promising results. The adsorption of Pb was significantly enhanced by the presence of both biopolymers (98%) in a shorter time (15 min) at pH = 6.5. The adsorption of both ions followed a pseudo-second-order kinetic and the Langmuir isotherm model. The desorption efficiencies for Cd and Pb were 98.8% and 77.6% after five adsorption/desorption cycles, respectively. In conclusion, the alginate/chitosan-based films present a highly effective and novel approach for removing Cd and Pb from water, with a promising potential for reuse, demonstrating their strong potential in potentially toxic metal removal.
Collapse
Affiliation(s)
- Silvia Carolina Moreno-Rivas
- Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo 83000, Mexico; (S.C.M.-R.); (M.J.I.-G.); (A.L.-A.)
| | - María José Ibarra-Gutiérrez
- Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo 83000, Mexico; (S.C.M.-R.); (M.J.I.-G.); (A.L.-A.)
| | - Daniel Fernández-Quiroz
- Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo 83000, Mexico; (S.C.M.-R.); (M.J.I.-G.); (A.L.-A.)
| | - Armando Lucero-Acuña
- Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo 83000, Mexico; (S.C.M.-R.); (M.J.I.-G.); (A.L.-A.)
| | | | - Paul Zavala-Rivera
- Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo 83000, Mexico; (S.C.M.-R.); (M.J.I.-G.); (A.L.-A.)
| |
Collapse
|
12
|
Hamed A, Badran SR. The role of rice husk in Oreochromis niloticus safety enhancement by bio-adsorbing copper oxide nanoparticles following its green synthesis: an endeavor to advance environmental sustainability. Sci Rep 2024; 14:23730. [PMID: 39390125 PMCID: PMC11467324 DOI: 10.1038/s41598-024-74113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Lowering nanoparticles (NPs) toxicity before discharge into aquatic environments and employing agricultural waste materials for environmental sustainability are necessary nowadays. Since this has never been done, this work examines how green CuO NPs treated with rice husk (RH) as a bio-adsorbent may be safer for Nile tilapia (Oreochromis niloticus) than chemically manufactured ones. So, five groups of fish were randomly placed in glass aquaria. One group was a control, and four groups received 50 mg/L green and chemically produced CuO NPs (GS and CS) with and without RH for 24, 48, and 96 h. RH was collected from all groups, and the results showed GS-CuO NPs had a greater adsorptive capacity than CS-CuO NPs after all time intervals. After analyzing fish indicators in all groups compared to the control, higher Cu bioaccumulation was exhibited in the liver and gills. The liver and gills showed elevated levels of glutathione peroxidase (GPx), catalase (CAT), and thiobarbituric acid reactive substances (TBARS), while the levels of glutathione reduced (GSH) were significantly lower. In addition, Cu exposure impaired liver and gill histology. Finally, our results indicated that using RH as an adsorbent for CuO NPs after their green synthesis instead of chemical synthesis before they enter the aquatic environment can enhance the overall health of fish and environmental sustainability.
Collapse
Affiliation(s)
- Aliaa Hamed
- Department of Biology, Basic Science Center, Misr University for Science and Technology (MUST), Giza, Egypt.
| | - Shereen R Badran
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
13
|
Sharma M, Bains A, Goksen G, Dhull SB, Ali N, Rashid S, Elossaily GM, Chawla P. A review of valorization of agricultural waste for the synthesis of cellulose membranes: Separation of organic, inorganic, and microbial pollutants. Int J Biol Macromol 2024; 277:134170. [PMID: 39067731 DOI: 10.1016/j.ijbiomac.2024.134170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Agricultural waste presents a significant environmental challenge due to improper disposal and management practices, contributing to soil degradation, biodiversity loss, and pollution of water and air resources. To address these issues, there is a growing emphasis on the valorization of agricultural waste. Cellulose, a major component of agricultural waste, offers promising opportunities for resource utilization due to its unique properties, including biodegradability, biocompatibility, and renewability. Thus, this review explored various types of agricultural waste, their chemical composition, and pretreatment methods for cellulose extraction. It also highlights the significance of rice straw, sugarcane bagasse, and other agricultural residues as cellulose-rich resources. Among the various membrane fabrication techniques, phase inversion is highly effective for creating porous membranes with controlled thickness and uniformity, while electrospinning produces nanofibrous membranes with high surface area and exceptional mechanical properties. The review further explores the separation of pollutants including using cellulose membranes, demonstrating their potential in environmental remediation. Hence, by valorizing agricultural residues into functional materials, this approach addresses the challenge of agricultural waste management and contributes to the development of innovative solutions for pollution control and water treatment.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey.
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia.
| | - Gehan M Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
14
|
Makoś-Chełstowska P, Słupek E, Gębicki J. Agri-food waste biosorbents for volatile organic compounds removal from air and industrial gases - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173910. [PMID: 38880149 DOI: 10.1016/j.scitotenv.2024.173910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/18/2024]
Abstract
Approximately 1.3 billion metric tons of agricultural and food waste is produced annually, highlighting the need for appropriate processing and management strategies. This paper provides an exhaustive overview of the utilization of agri-food waste as a biosorbents for the elimination of volatile organic compounds (VOCs) from gaseous streams. The review paper underscores the critical role of waste management in the context of a circular economy, wherein waste is not viewed as a final product, but rather as a valuable resource for innovative processes. This perspective is consistent with the principles of resource efficiency and sustainability. Various types of waste have been described as effective biosorbents, and methods for biosorbents preparation have been discussed, including thermal treatment, surface activation, and doping with nitrogen, phosphorus, and sulfur atoms. This review further investigates the applications of these biosorbents in adsorbing VOCs from gaseous streams and elucidates the primary mechanisms governing the adsorption process. Additionally, this study sheds light on methods of biosorbents regeneration, which is a key aspect of practical applications. The paper concludes with a critical commentary and discussion of future perspectives in this field, emphasizing the need for more research and innovation in waste management to fully realize the potential of a circular economy. This review serves as a valuable resource for researchers and practitioners interested in the potential use of agri-food waste biosorbents for VOCs removal, marking a significant first step toward considering these aspects together.
Collapse
Affiliation(s)
- Patrycja Makoś-Chełstowska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland.
| | - Edyta Słupek
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland
| |
Collapse
|
15
|
El-Sawaf AK, El-Dakkony SR, Mubarak MF, Nassar AA. Synergistic effect of synthesized green nanocomposite of chitosan-activated carbon thin film (ACTF)@opuntia ficus-indica shell for removal of Sn (II) and As (V) ions from aqueous solution. CELLULOSE 2024. [DOI: 10.1007/s10570-024-05930-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/24/2024] [Indexed: 01/03/2025]
|
16
|
Knani S, Wjihi S, Bouzid M, Silva LFO, Oliveira MLS, Mahmoud SA, Alenazi A, Selmi R, Alshammari A. A statistical physics-based physicochemical study of L-phenylalanine adsorption on activated carbon. J Mol Model 2024; 30:335. [PMID: 39283541 DOI: 10.1007/s00894-024-06142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024]
Abstract
CONTEXT In this comparative study of the adsorption of L-phenylalanine (L-Phe) on two modified low-activated carbons (ACK and ACZ) at four temperatures (293-313 K), steric and energetic characteristics of adsorption were investigated. An advanced statistical physics multilayer model involving single-layer and double-layer adsorption scenarios was developed to interpret the L-Phe adsorption phenomenon. Modeling results indicate that two and three L-Phe layers were arranged depending on the tested adsorption systems. The estimated number of L-Phe molecules per leading adsorption site varied from 1.71 to 2.09 and from 1.76 to 1.86 for systems L-Phe-ACK and L-Phe-ACZ, respectively. The results show that a multimolecular adsorption mechanism might connect this amino acid molecule on ACZ and ACK surfaces in a non-parallel location. These parameters changed as follows, according to the adsorbed quantity at saturation analysis: Qasat (L-Phe-ACK) ˃ Qasat (L-Phe-ACZ). This indicates that ACK material was more efficient and valuable for L-Phe adsorption than ACZ. It was also shown that the adsorption capacity decreases as the temperature increases, proving the exothermicity of the adsorption process. This analytical substantiation is confirmed by calculating the binding energies, suggesting the occurrence of physical bonds between L-Phe amino acid molecules and ACK/ACZ binding sites and among L-Phe-L-Phe molecules. Pore size distribution was interpreted and calculated by applying the Kelvin theory to data from single adsorption isotherms. All used temperatures depicted a distribution of pores below 2 nm. The docking analysis involving L-Phe and the ACZ and ACK adsorbents reveal a significant resemblance in how receptors detect ligands. Consequently, the findings from the docking process confirm that the calculated binding affinities fall within the spectrum of adsorption energy. METHODS This study analyzed the adsorption capacity of the L-Phe through a model proposed by statistical physics formalism. Molecular docking was used to determine the various types of interactions between the two activated carbons. Two aspects, including orientation of L-Phe on the site, number of molecules per site n, interaction energy, density of receptor site, and adsorption capacity, were discussed to elucidate the influence of activation on the two adsorbents.
Collapse
Affiliation(s)
- Salah Knani
- Department of Physics, College of Science, Northern Border University, Arar, Saudi Arabia.
| | - Sarra Wjihi
- Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environment Street, 5019, Monastir, Tunisia
| | - Mohamed Bouzid
- CRMN, Centre for Research on Microelectronics and Nanotechnology of Sousse, NANOMISENE, LR16CRMN01, Code Postal 4054, Sousse, Tunisia
| | | | | | - Safwat A Mahmoud
- Department of Physics, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Abdulaziz Alenazi
- Department of Mathematics, College of Science, Northern Border University, Arar, Saudi Arabia
- Center for Scientific Research and Entrepreneurship, Northern Border University, 73213, Arar, Saudi Arabia
| | - Ridha Selmi
- Department of Mathematics, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Abdulmajeed Alshammari
- Department of Physics, College of Science, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
17
|
Kundu S, Khandaker T, Anik MAAM, Hasan MK, Dhar PK, Dutta SK, Latif MA, Hossain MS. A comprehensive review of enhanced CO 2 capture using activated carbon derived from biomass feedstock. RSC Adv 2024; 14:29693-29736. [PMID: 39297049 PMCID: PMC11409178 DOI: 10.1039/d4ra04537h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
The increasing level of atmospheric CO2 requires the urgent development of effective capture technologies. This comprehensive review thoroughly examines various methods for the synthesis of carbon materials, modification techniques for converting biomass feedstock into carbon materials and pivotal factors impacting their properties. The novel aspect of this review is its in-depth comparison of how these modifications specifically affect the pore structure and surface area together with the exploration of the mechanism underlying the enhancement of CO2 adsorption performance. Additionally, this review addresses research gaps and provides recommendations for future studies concerning the advantages and drawbacks of CO2 adsorbents and their prospects for commercialization and economic feasibility. This article revealed that among the various strategies, template carbonization offers a viable option for providing control of the material pore diameter and structure without additional modification treatments. Optimizing the pore structure of activated carbons, particularly those activated with agents such as KOH and ZnCl2, together with synthesizing hybrid activated carbons using multiple activating agents, is crucial for enhancing their CO2 capture performance. Cost-benefit analysis suggests that biomass-derived activated carbons can significantly meet the escalating demand for CO2 capture materials, offering economic advantages and supporting sustainable waste management.
Collapse
Affiliation(s)
- Shreyase Kundu
- Chemistry Discipline, Khulna University Khulna-9208 Bangladesh
| | - Tasmina Khandaker
- Department of Chemistry, Bangladesh Army University of Engineering & Technology (BAUET) Qadirabad Cantonment Natore-6431 Bangladesh
| | | | - Md Kamrul Hasan
- Chemistry Discipline, Khulna University Khulna-9208 Bangladesh
| | | | | | - M Abdul Latif
- Department of Chemistry, Begum Rokeya University Rangpur-5404 Bangladesh
| | | |
Collapse
|
18
|
Akhtar MS, Ali S, Zaman W. Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications. Molecules 2024; 29:4317. [PMID: 39339312 PMCID: PMC11433758 DOI: 10.3390/molecules29184317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The growing presence of diverse pollutants, including heavy metals, organic compounds, pharmaceuticals, and emerging contaminants, poses significant environmental and health risks. Traditional methods for pollutant removal often face limitations in efficiency, selectivity, and sustainability. This review provides a comprehensive analysis of recent advancements in innovative adsorbents designed to address these challenges. It explores a wide array of non-conventional adsorbent materials, such as nanocellulose, metal-organic frameworks (MOFs), graphene-based composites, and biochar, emphasizing their sources, structural characteristics, and unique adsorption mechanisms. The review discusses adsorption processes, including the basic principles, kinetics, isotherms, and the factors influencing adsorption efficiency. It highlights the superior performance of these materials in removing specific pollutants across various environmental settings. The practical applications of these adsorbents are further explored through case studies in industrial settings, pilot studies, and field trials, showcasing their real-world effectiveness. Additionally, the review critically examines the economic considerations, technical challenges, and environmental impacts associated with these adsorbents, offering a balanced perspective on their viability and sustainability. The conclusion emphasizes future research directions, focusing on the development of scalable production methods, enhanced material stability, and sustainable regeneration techniques. This comprehensive assessment underscores the transformative potential of innovative adsorbents in pollutant remediation and their critical role in advancing environmental protection.
Collapse
Affiliation(s)
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
19
|
Şenol ZM, El Messaoudi N, Ciğeroglu Z, Miyah Y, Arslanoğlu H, Bağlam N, Kazan-Kaya ES, Kaur P, Georgin J. Removal of food dyes using biological materials via adsorption: A review. Food Chem 2024; 450:139398. [PMID: 38677180 DOI: 10.1016/j.foodchem.2024.139398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
It is alarming that synthetic food dyes (FD) are widely used in various industries and that these facilities discharge their wastewater into the environment without treating it. FDs mixed into industrial wastewater pose a threat to the environment and human health. Therefore, removing FDs from wastewater is very important. This review explores the burgeoning field of FD removal from wastewater through adsorption using biological materials (BMs). By synthesizing a wealth of research findings, this comprehensive review elucidates the diverse array of BMs employed, ranging from algae and fungi to agricultural residues and microbial biomass. Furthermore, this review investigates challenges in practical applications, such as process optimization and scalability, offering insights into bridging the gap between laboratory successes and real-world implementations. Harnessing the remarkable adsorptive potential of BMs, this review presents a roadmap toward transformative solutions for FD removal, promising cleaner and safer production practices in the food and beverage industry.
Collapse
Affiliation(s)
- Zeynep Mine Şenol
- Department of Nutrition and Diet, Faculty of Health Sciences, Cumhuriyet University, Sivas 58140, Turkey.
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Zeynep Ciğeroglu
- Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Usak University, Usak 64300, Turkey
| | - Youssef Miyah
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez, Morocco; Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez/Meknes, Morocco
| | - Hasan Arslanoğlu
- Çanakkale Onsekiz Mart University, Engineering Faculty, Chemical Engineering, Çanakkale, Turkey
| | - Nurcan Bağlam
- Department of Nutrition and Diet, Faculty of Health Sciences, Cumhuriyet University, Sivas 58140, Turkey
| | - Emine Sena Kazan-Kaya
- Chemical Engineering Department, Faculty of Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Parminder Kaur
- Circular Economy Solutions (KTR), Geological Survey of Finland, 70210 Kuopio, Finland
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 #55-66, Barranquilla, Atlántico, Colombia
| |
Collapse
|
20
|
Kaur P, Kumar S, Rani J, Singh J, Kaushal S, Hussain K, Nagendra Babu J, Mittal S. Rationally tailored synergy between adsorption efficiency of cotton shell activated carbon and PMS activation via biogenic Fe0 or Cu0 for effective mitigation of triphenylmethane dyes. Sep Purif Technol 2024; 342:127010. [DOI: 10.1016/j.seppur.2024.127010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Callisaya MP, Fuentes DP, Braga VHA, Finzi-Quintão CM, Oliveira PV, Petri DFS. Harnessing carboxymethyl cellulose and Moringa oleifera seed husks for sustainable treatment of a multi-metal real waste. ENVIRONMENTAL RESEARCH 2024; 252:118970. [PMID: 38642642 DOI: 10.1016/j.envres.2024.118970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
This study aimed to evaluate effective treatment strategies for laboratory waste with an initial pH of 1.0, containing Cr6+, Mn2+, Co2+, Fe3+, Ni2+, Cu2+, Zn2+, Sr2+, Hg2+, and Pb2+ ions, focusing on flocculation, precipitation, and adsorption techniques. The study utilized microparticles derived from Moringa oleifera seed husks (MS), cryogels of carboxymethyl cellulose (CMC), and hybrid cryogels combining CMC and MS (CMC-MS25 and CMC-MS50) as adsorbents. The optimal strategy involved raising the pH to 7 using NH4OH, leading to the partial precipitation of metal ions. The remaining supernatant was then passed through columns packed with the aforementioned adsorbents. Utilizing CMC-MS25 and CMC-MS50 adsorbents resulted in the simultaneous removal of over 90% of the targeted metal ions. The adsorption of Cu2+ ions onto the adsorbents was facilitated by electrostatic interactions between Cu2+ ions and carboxylate groups, as well as Cu-OH chelation, as confirmed by X-ray photoelectron spectroscopy. Under optimized conditions, the fixed-bed column adsorption capacity was determined as 88.2 mg g-1. The CMC-MS25 adsorbents proved reusable at least 5 times, with the recovered Cu2+ ions potentially suitable for other processes. The scalability and feasibility of producing these novel adsorbents suggest a promising, cost-effective solution for treating complex matrices and recovering high-value metals, as copper.
Collapse
Affiliation(s)
- Marleidy P Callisaya
- Institute of Chemistry, University of São Paulo, Brazil Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil.
| | - Dairon P Fuentes
- Institute of Chemistry, University of São Paulo, Brazil Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil.
| | - Victor H A Braga
- Institute of Chemistry, University of São Paulo, Brazil Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil.
| | - Cristiane M Finzi-Quintão
- Department of Chemical Engineering, Federal University of São João del-Rei (UFSJ), Ouro Branco, Brazil.
| | - Pedro V Oliveira
- Institute of Chemistry, University of São Paulo, Brazil Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil.
| | - Denise F S Petri
- Institute of Chemistry, University of São Paulo, Brazil Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil.
| |
Collapse
|
22
|
Barbinta-Patrascu ME, Bita B, Negut I. From Nature to Technology: Exploring the Potential of Plant-Based Materials and Modified Plants in Biomimetics, Bionics, and Green Innovations. Biomimetics (Basel) 2024; 9:390. [PMID: 39056831 PMCID: PMC11274542 DOI: 10.3390/biomimetics9070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
This review explores the extensive applications of plants in areas of biomimetics and bioinspiration, highlighting their role in developing sustainable solutions across various fields such as medicine, materials science, and environmental technology. Plants not only serve essential ecological functions but also provide a rich source of inspiration for innovations in green nanotechnology, biomedicine, and architecture. In the past decade, the focus has shifted towards utilizing plant-based and vegetal waste materials in creating eco-friendly and cost-effective materials with remarkable properties. These materials are employed in making advancements in drug delivery, environmental remediation, and the production of renewable energy. Specifically, the review discusses the use of (nano)bionic plants capable of detecting explosives and environmental contaminants, underscoring their potential in improving quality of life and even in lifesaving applications. The work also refers to the architectural inspirations drawn from the plant world to develop novel design concepts that are both functional and aesthetic. It elaborates on how engineered plants and vegetal waste have been transformed into value-added materials through innovative applications, especially highlighting their roles in wastewater treatment and as electronic components. Moreover, the integration of plants in the synthesis of biocompatible materials for medical applications such as tissue engineering scaffolds and artificial muscles demonstrates their versatility and capacity to replace more traditional synthetic materials, aligning with global sustainability goals. This paper provides a comprehensive overview of the current and potential uses of living plants in technological advancements, advocating for a deeper exploration of vegetal materials to address pressing environmental and technological challenges.
Collapse
Affiliation(s)
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 077125 Magurele, Romania;
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| |
Collapse
|
23
|
Mortada WI, Ghaith MM, Khedr NE, Ellethy MI, Mohsen AW, Shafik AL. Mesoporous magnetic biochar derived from common reed (Phragmites australis) for rapid and efficient removal of methylene blue from aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42330-42341. [PMID: 38866933 PMCID: PMC11219389 DOI: 10.1007/s11356-024-33860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
A novel mesoporous magnetic biochar (MBC) was prepared, using a randomly growing plant, i.e., common reed, as an exporter of carbon, and applied for removal of methylene blue (MB) from aqueous solutions. The prepared sorbent was characterized by nitrogen adsorption/desorption isotherm, saturation magnetization, pH of point of zero charges (pHPZC), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The obtained MBC has a specific surface area of 94.2 m2 g-1 and a pore radius of 4.1 nm, a pore volume of 0.252 cm3 g-1, a saturation magnetization of 0.786 emu g-1, and a pHPZC of 6.2. Batch adsorption experiments were used to study the impact of the physicochemical factors involved in the adsorption process. The findings revealed that MB removal by MBC was achieved optimally at pH 8.0, sorbent dosage of 1.0 g L-1, and contact time of 30 min. At these conditions, the maximum adsorption was 353.4 mg g-1. Furthermore, the adsorption isotherm indicated that the Langmuir pattern matched well with the experimental data, compared to the Freindlich model. The ∆G was - 6.7, - 7.1, and - 7.5 kJ mol-1, at 298, 308, and 318 K, respectively, indicating a spontaneous process. The values of ∆H and ∆S were 5.71 kJ mol-1 and 41.6 J mol-1 K-1, respectively, suggesting endothermic and the interaction between MB and MBC is van der Waals type. The absorbent was regenerated and reused for four cycles after elution with 0.1 mol L-1 of HCl. This study concluded that the magnetic biochar generated from common reed has tremendous promise in the practical use of removing MB from wastewater.
Collapse
Affiliation(s)
| | - Mahmoud Mohsen Ghaith
- Petrochemical Program, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Nada Elsayed Khedr
- Petrochemical Program, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mostafa Ibrahim Ellethy
- Petrochemical Program, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Alaa Waleed Mohsen
- Petrochemical Program, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amira Labib Shafik
- Petrochemical Program, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
24
|
Mandal RR, Bashir Z, Mandal JR, Raj D. Potential strategies for phytoremediation of heavy metals from wastewater with circular bioeconomy approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:502. [PMID: 38700594 DOI: 10.1007/s10661-024-12680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024]
Abstract
Water pollution is an inextricable problem that stems from natural and human-related factors. Unfortunately, with rapid industrialization, the problem has escalated to alarming levels. The pollutants that contribute to water pollution include heavy metals (HMs), chemicals, pesticides, pharmaceuticals, and other industrial byproducts. Numerous methods are used for treating HMs in wastewater, like ion exchange, membrane filtration, chemical precipitation, adsorption, and electrochemical treatment. But the remediation through the plant, i.e., phytoremediation is the most sustainable approach to remove the contaminants from wastewater. Aquatic plants illustrate the capacity to absorb excess pollutants including organic and inorganic compounds, HMs, and pharmaceutical residues present in agricultural, residential, and industrial discharges. The extensive exploitation of these hyperaccumulator plants can be attributed to their abundance, invasive mechanisms, potential for bioaccumulation, and biomass production. Post-phytoremediation, plant biomass can be toxic to both water bodies and soil. Therefore, the circular bioeconomy approach can be applied to reuse and repurpose the toxic plant biomass into different circular bioeconomy byproducts such as biochar, biogas, bioethanol, and biodiesel is essential. In this regard, the current review highlights the potential strategies for the phytoremediation of HMs in wastewater and various strategies to efficiently reuse metal-enriched biomass material and produce commercially valuable products. The implementation of circular bioeconomy practices can help overcome significant obstacles and build a new platform for an eco-friendlier lifestyle.
Collapse
Affiliation(s)
- Rashmi Ranjan Mandal
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Jyoti Ranjan Mandal
- Electro-Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India.
| |
Collapse
|
25
|
Nizzy AM, Kannan S, Kanmani S. Utilization of plant-derived wastes as the potential biohydrogen source: a sustainable strategy for waste management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34839-34858. [PMID: 38744759 DOI: 10.1007/s11356-024-33610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
The sustainable economy has shown a renewed interest in acquiring access to the resources required to promote innovative practices that favor recycling and the reuse of existing, unconsidered things over newly produced ones. The production of biohydrogen through dark anaerobic fermentation of organic wastes is one of the intriguing possibilities for replacing fossil-based fuels through the circular economy. At present, plant-derived waste from the agro-based industry is the main global concern. When these wastes are improperly disposed of in landfills, they become the habitat for several pathogens. Additionally, it contaminates surface water as a result of runoff, and the leachate that is created from the waste enters groundwater and degrades its quality. However, cellulose and hemicellulose-rich plant wastes from agriculture fields and agro-based industries have been employed as the most efficient feedstock since carbohydrates are the primary substrate for the synthesis of biohydrogen. To produce biohydrogen from plant-derived wastes on a large scale, it is necessary to explore comprehensive knowledge of lab-scale parameters and pretreatment strategies. This paper summarizes the problems associated with the improper management of plant-derived wastes and discusses the recent developments in dark fermentation and substrate pretreatment techniques with the goal of gaining significant insight into the biohydrogen production process. It also highlights the utilization of anaerobic digestate, which is left over after biohydrogen gas as feedstock for the development of value-added products such as volatile fatty acids (VFA), biochar, and biofertilizer.
Collapse
Affiliation(s)
| | - Suruli Kannan
- Department of Environmental Studies, School of Energy Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Sellappa Kanmani
- Centre for Environmental Studies, Anna University, Chennai, Tamil Nadu, 625021, India
| |
Collapse
|
26
|
Sahlabadi F, Salmani MH, Rezaeiarshad N, Ehrampoush MH, Mokhtari M. Isotherm and kinetic studies on adsorption of gasoline and kerosene using jujube and barberry tree stem powder and commercially available activated carbon. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1003-1015. [PMID: 38042992 DOI: 10.1080/15226514.2023.2288895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
Herein, the application of granular activated carbon, jujube, and barberry tree stem powder for the removal of gasoline and kerosene from water was investigated. Kerosene removal rates upwards of 68.48, 83.87, and 99.02% were achieved using jujube tree stem powder, barberry tree stem powder, and granular activated carbon, respectively. Besides, gasoline removal rates upwards of 69.35, 55.02, and 95.59% were attained using jujube tree stem powder, barberry tree stem powder, and granular activated carbon, respectively. Isotherm data were further investigated and fitted using Langmuir, Freundlich, and Elovich models. The results indicated that the adsorption onto jujube adsorbent is a multilayer adsorption process over a heterogeneous surface, which is best illustrated by the Temkin (Ave. R2= 0.95) model. It was found that the Temkin isotherm (Ave. R2= 0.81) best describes the properties of barberry stem powder in the adsorption of gasoline and kerosene from water. Moreover, the best models to describe the characteristics of granular activated carbon in the adsorption of gasoline and kerosene from water were Freundlich (Ave. R2= 0.74) and Langmuir (Ave. R2= 0.73) isotherms, respectively. The adsorption kinetics showed that the pseudo-second-order was appropriate in modeling the adsorption kinetics of gasoline and kerosene to the studied adsorbents (R2>0.74).
Collapse
Affiliation(s)
- Fatemeh Sahlabadi
- Department of Environmental Health Engineering, School of Health, Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hossein Salmani
- Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Negin Rezaeiarshad
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Ehrampoush
- Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehdi Mokhtari
- Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
27
|
Rahmatpour A, Alizadeh AH. Biofilm hydrogel derived from physical crosslinking (self-assembly) of xanthan gum and chitosan for removing Cd 2+, Ni 2+, and Cu 2+ from aqueous solution. Int J Biol Macromol 2024; 266:131394. [PMID: 38582469 DOI: 10.1016/j.ijbiomac.2024.131394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/20/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
This study aimed to fabricate a series of biodegradable hydrogel films by gelating/physically crosslinking a blend of xanthan gum (XG) and chitosan (CS) in various combinations using a facile, green, and low cost solution casting technique. The adsorption of Cd2+, Cu2+ and Ni2+ by the XG/CS biofilm in aqueous solution was studied in batch experiments to determine how the pH of the solution, contact time, dosage of adsorbent, initial metal ion concentration and ionic strength affect its adsorption. A highly pH-dependent adsorption process was observed for three metal ions. A maximum amount of Cd2+, Ni2+, and Cu2+ ions was adsorbable with 50 mg of the adsorbent at pH 6.0 for an initial metal concentration of 50 mg.L-1. An empirical pseudo-second-order model seems to fit the kinetic experimental data reasonably well. It was found that the Langmuir model correlated better with equilibrium isotherm when compared with the Freundlich model. For Cd2+, Ni2+, and Cu2+ ions at 25 °C, the maximum monolayer adsorption capacity was 152.33, 144.79, and 139.71 mg.g-1, respectively. Furthermore, the biofilm was capable of regenerating, allowing metal ions to adsorb and desorb for five consecutive cycles. Therefore, the developed biodegradable film offers the potential for remediation of specified metal ions.
Collapse
Affiliation(s)
- Ali Rahmatpour
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, P. O. Box 1983969411, Tehran, Iran.
| | - Amir Hossein Alizadeh
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, P. O. Box 1983969411, Tehran, Iran
| |
Collapse
|
28
|
Kumar H, Kimta N, Guleria S, Cimler R, Sethi N, Dhanjal DS, Singh R, Duggal S, Verma R, Prerna P, Pathera AK, Alomar SY, Kuca K. Valorization of non-edible fruit seeds into valuable products: A sustainable approach towards circular bioeconomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171142. [PMID: 38387576 DOI: 10.1016/j.scitotenv.2024.171142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Global imperatives have recently shown a paradigm shift in the prevailing resource utilization model from a linear approach to a circular bioeconomy. The primary goal of the circular bioeconomy model is to minimize waste by effective re-usage of organic waste and efficient nutrient recycling. In essence, circular bioeconomy integrates the fundamental concept of circular economy, which strives to offer sustainable goods and services by leveraging biological resources and processes. Notably, the circular bioeconomy differs from conventional waste recycling by prioritizing the safeguarding and restoration of production ecosystems, focusing on harnessing renewable biological resources and their associated waste streams to produce value-added products like food, animal feed, and bioenergy. Amidst these sustainability efforts, fruit seeds are getting considerable attention, which were previously overlooked and commonly discarded but were known to comprise diverse chemicals with significant industrial applications, not limited to cosmetics and pharmaceutical industries. While, polyphenols in these seeds offer extensive health benefits, the inadequate conversion of fruit waste into valuable products poses substantial environmental challenges and resource wastage. This review aims to comprehend the known information about the application of non-edible fruit seeds for synthesising metallic nanoparticles, carbon dots, biochar, biosorbent, and biodiesel. Further, this review sheds light on the potential use of these seeds as functional foods and feed ingredients; it also comprehends the safety aspects associated with their utilization. Overall, this review aims to provide a roadmap for harnessing the potential of non-edible fruit seeds by adhering to the principles of a sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Richard Cimler
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Nidhi Sethi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sampy Duggal
- Department of Ayurveda & Health Sciences, Abhilashi University, Mandi 175028, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India.
| | - Prerna Prerna
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | | | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
29
|
Majeed F, Razzaq A, Rehmat S, Azhar I, Mohyuddin A, Rizvi NB. Enhanced dye sequestration with natural polysaccharides-based hydrogels: A review. Carbohydr Polym 2024; 330:121820. [PMID: 38368085 DOI: 10.1016/j.carbpol.2024.121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
Due to the expansion of industrial activities, the concentration of dyes in water has been increasing. The dire need to remove these pollutants from water has been heavily discussed. This study focuses on the reproducible and sustainable solution for wastewater treatment and dye annihilation challenges. Adsorption has been rated the most practical way of the several decolorization procedures due to its minimal initial investment, convenient utility, and high-performance caliber. Hydrogels, which are three-dimensional polymer networks, are notable because of their potential to regenerate, biodegrade, absorb bulky amounts of water, respond to stimuli, and have unique morphologies. Natural polysaccharide hydrogels are chosen over synthetic ones because they are robust, bioresorbable, non-toxic, and cheaply accessible. This study has covered six biopolymers, including chitosan, cellulose, pectin, sodium alginate, guar gum, and starch, consisting of their chemical architecture, origins, characteristics, and uses. The next part describes these polysaccharide-based hydrogels, including their manufacturing techniques, chemical alterations, and adsorption effectiveness. It is deeply evaluated how size and shape affect the adsorption rate, which has not been addressed in any prior research. To assist the readers in identifying areas for further research in this subject, limitations of these hydrogels and future views are provided in the conclusion.
Collapse
Affiliation(s)
- Fiza Majeed
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan
| | - Ammarah Razzaq
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan
| | - Shabnam Rehmat
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan; School of Chemistry, University of the Punjab, Lahore 54590, Pakistan.
| | - Irfan Azhar
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Abrar Mohyuddin
- Department of Chemistry, The Emerson University Multan, Multan 60000, Pakistan
| | | |
Collapse
|
30
|
Ogugua PC, Su H, Tu Y, Wang E. Synergistic consideration of co-treatment of sewage sludge, low-rank coal, and straw for sustainable resource utilization and enhanced energy efficiency: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24788-24814. [PMID: 38526717 DOI: 10.1007/s11356-024-32797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/03/2024] [Indexed: 03/27/2024]
Abstract
This article provides a comprehensive exploration of the imperative necessity for coupling the utilization of low-rank coal, sewage sludge, and straw. It studies the challenges and limitations of individual utilization methods, addressing the unique hurdles associated with feedstocks. It focused on achieving integrated and sustainable resource management, emphasizing efficient resource utilization, waste minimization, and environmental impact reduction. The investigation extends to the intricate details of reaction processes in co-processing, with a specific emphasis on the drying of raw materials to enhance combustion characteristics. The molding and preparation of feedstock are dissected, encompassing raw material selection, mixing, and the crucial addition of additives and binders. The proportions and homogenization of these feedstocks are intricately examined for uniformity and effectiveness. Furthermore, it presents theoretical approaches for investigating the co-combustion of these diverse feedstocks, contributing a solid foundation for future studies in this dynamic field. The findings presented in it offer valuable insights for researchers, practitioners, and policymakers seeking sustainable solutions in the co-disposal technology of these feedstocks. Therefore, it provides a holistic understanding of the challenges and opportunities in coupling the utilization of these selected feedstocks. By addressing individual limitations and emphasizing integrated resource management, the article establishes the groundwork for sustainable and efficient co-processing practices. The exploration of reaction processes gives a comprehensive framework for future research and application in the field of co-combustion technology. The insights gleaned from this study contribute significantly to advancing knowledge in the sustainable utilization of diverse feedstocks, guiding efforts towards environmentally responsible and resource-efficient practices.
Collapse
Affiliation(s)
- Paul Chinonso Ogugua
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huihui Su
- School of China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanyang Tu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Enlu Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
31
|
Shomar B, Rovira J. Human health risk assessment associated with the reuse of treated wastewater in arid areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123478. [PMID: 38311158 DOI: 10.1016/j.envpol.2024.123478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Qatar produces more than 850,000 m3/day of highly treated wastewater. The present study aims at characterizing the effluents coming out of three central wastewater treatment plants (WWTPs) of chemical pollutants including metals, metalloids and antibiotics commonly used in the country. Additionally, the study is assessing human health risks associated with the exposure to the treated wastewater (TWW) via dermal and ingestion routes. Although the origin of domestic wastewater is desalinated water (the only source of fresh water), the results show that the targeted parameters in TWW were within the international standards. Concentrations of Cl, F, Br, NO3, NO2, SO4 and PO4, were 389, <0.1, 1.2, 25, <0.1, 346, and 2.8 mg/L, respectively. On the other hand, among all cations, metals and metalloids, only boron (B) was 2.1 mg/L which is higher than the Qatari guidelines for TWW reuse in irrigation of 1.5 mg/L. Additionally, strontium (Sr) and thallium (Tl) were detected with relatively high concentrations of 30 mg/L and 12.5 μg/L, respectively, due to their natural and anthropogenic sources. The study found that the low concentrations of all tested metals and metalloids do not pose any risk to human health. However, Tl presents exposure levels above the 10 % of oral reference dose (HQ = 0.4) for accidental oral ingestion of TWW. The results for antibiotics show that exposure for adults and children to TWW are far below the admissible daily intakes set using minimum therapeutic dose and considering uncertainty factors. Treated wastewater of Qatar can be used safely for irrigation. However, further investigations are still needed to assess microbiological quality.
Collapse
Affiliation(s)
- Basem Shomar
- Environmental Science Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Joaquim Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Paisos Catalans Avenue 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Institut d'Investigació Sanitaria Pere Virgili (IISPV), 43204, Reus, Catalonia, Spain.
| |
Collapse
|
32
|
Januário EFD, Vidovix TB, Ribeiro AC, da Costa Neves Fernandes de Almeida Duarte E, Bergamasco R, Vieira AMS. Evaluation of hydrochar from peach stones for caffeine removal from aqueous medium and treatment of a synthetic mixture. ENVIRONMENTAL TECHNOLOGY 2024; 45:1141-1154. [PMID: 36274643 DOI: 10.1080/09593330.2022.2138786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The presence of micropollutants, such as caffeine (CAF), has been detected throughout the world, since conventional treatment plants are not able to properly degrade them. CAF is a widely consumed stimulant, and has been demanding the development of efficient methodologies for its removal. Aiming at the agriculture waste valorization, a new hydrochar was developed based on chemical and thermal modification of peach stones (mod-PS) for CAF removal from water and from a synthetic mixture. The morphology, functional groups and surface electrical charge of the adsorbent were characterized by SEM, FTIR and zeta potential, respectively. Regarding CAF adsorption performance, the equilibrium time was reached at 480 min and the pseudo-second-order model presented the best fit for the experimental data. The maximum adsorption capacity was 68.39 mg g-1 (298 K) and the Langmuir model exhibited a better fit for the isothermal data. The thermodynamic properties confirmed that the process was exothermic, spontaneous and reversible. The main adsorption mechanisms were hydrogen bonds and π-interactions. The global removal efficiency was satisfactory in the synthetic mixture simulating real wastewater (67%). Therefore, the proposed new hydrochar has potential application as a low-cost adsorbent for CAF removal.
Collapse
Affiliation(s)
| | - Taynara Basso Vidovix
- Department of Chemical Engineering, State University of Maringá, Maringá, Paraná, Brazil
| | - Anna Carla Ribeiro
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Rosângela Bergamasco
- Department of Chemical Engineering, State University of Maringá, Maringá, Paraná, Brazil
| | | |
Collapse
|
33
|
Younas F, Younas S, Bibi I, Farooqi ZUR, Hameed MA, Mohy-Ud-Din W, Shehzad MT, Hussain MM, Shakil Q, Shahid M, Niazi NK. A critical review on the separation of heavy metal(loid)s from the contaminated water using various agricultural wastes. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:349-368. [PMID: 37559458 DOI: 10.1080/15226514.2023.2242973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Wastewater contamination with heavy metal(loids)s has become a worldwide environmental and public health problem due to their toxic and non-degradable nature. Different methods and technologies have been applied for water/wastewater treatment to mitigate heavy metal(loid)-induced toxicity threat to humans. Among various treatment methods, adsorption is considered the most attractive method because of its high ability and efficiency to remove contaminants from wastewater. Agricultural waste-based adsorbents have gained great attention because of high efficiency to heavy metal(loids)s removal from contaminated water. Chemically modified biosorbents can significantly enhance the stability and adsorption ability of the sorbents. The two mathematical models of sorption, Freundlich and Langmuir isotherm models, have mostly been studied. In kinetic modeling, pseudo-second-order model proved better in most of the studies compared to pseudo-first-order model. The ion exchange and electrostatic attraction are the main mechanisms for adsorption of heavy metal(loid)s on biosorbents. The regeneration has allowed various biosorbents to be recycled and reused up to 4-5 time. Most effective eluents used for regeneration are dilute acids. For practical perspective, biosorbent removal efficiency has been elucidated using various types of wastewater and economic analysis studies. Economic analysis of adsorption process using agricultural waste-based biosorbents proved this approach cheaper compared to traditional commercial adsorbents, such as chemically activated carbon. The review also highlights key research gaps to advance the scope and application of waste peels for the remediation of heavy metal(loid)s-contaminated wastewater.
Collapse
Affiliation(s)
- Fazila Younas
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Sadia Younas
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zia Ur Rahman Farooqi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ashir Hameed
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Tahir Shehzad
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Qamar Shakil
- Fodder Research Sub-Station, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad Vehari Campus, Vehari, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
34
|
Ahmed MA, Mohamed AA. Advances in ultrasound-assisted synthesis of photocatalysts and sonophotocatalytic processes: A review. iScience 2024; 27:108583. [PMID: 38226158 PMCID: PMC10788205 DOI: 10.1016/j.isci.2023.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Water pollution and the global energy crisis are two significant challenges that the world is facing today. Ultrasound-assisted synthesis offers a simple, versatile, and green synthetic tool for nanostructured materials that are often unavailable by traditional synthesis. Furthermore, the integration of ultrasound and photocatalysis has recently received considerable interest due to its potential for environmental remediation as a low-cost, efficient, and environmentally friendly technique. The underlying principles and mechanisms of sonophotocatalysis, including enhanced mass transfer, improved catalyst-pollutant interaction, and reactive species production have been discussed. Various organic pollutants as dyes, pharmaceuticals, pesticides, and emerging organic pollutants are targeted based on their improved sonophotocatalytic degradation efficiency. Additionally, the important factors affecting sonophotocatalytic processes and the advantages and challenges associated with these processes are discussed. Overall, this review provides a comprehensive understanding of sono-assisted synthesis and photocatalytic degradation of organic pollutants and prospects for progress in this field.
Collapse
Affiliation(s)
- Mahmoud A. Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Ashraf A. Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
35
|
Jaffari ZH, Abbas A, Kim CM, Shin J, Kwak J, Son C, Lee YG, Kim S, Chon K, Cho KH. Transformer-based deep learning models for adsorption capacity prediction of heavy metal ions toward biochar-based adsorbents. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132773. [PMID: 37866140 DOI: 10.1016/j.jhazmat.2023.132773] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/24/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Biochar adsorbents synthesized from food and agricultural wastes are commonly applied to eliminate heavy metal (HM) ions from wastewater. However, biochar's diverse characteristics and varied experimental conditions make the accurate estimation of their adsorption capacity (qe) challenging. Herein, various machine-learning (ML) and three deep learning (DL) models were built using 1518 data points to predict the qe of HM on various biochars. The recursive feature elimination technique with 28 inputs suggested that 14 inputs were significant for model building. FT-transformer with the highest test R2 (0.98) and lowest root mean square error (RMSE) (0.296) and mean absolute error (MAE) (0.145) outperformed various ML and DL models. The SHAP feature importance analysis of the FT-transformer model predicted that the adsorption conditions (72.12%) were more important than the pyrolysis conditions (25.73%), elemental composition (1.39%), and biochar's physical properties (0.73%). The two-feature SHAP analysis proposed the optimized process conditions including adsorbent loading of 0.25 g, initial concentration of 12 mg/L, and solution pH of 9 using phosphoric-acid pre-treated biochar synthesized from banana-peel with a higher O/C ratio. The t-SNE technique was applied to transform the 14-input matrix of the FT-Transformer into two-dimensional data. Finally, we outlined the study's environmental implications.
Collapse
Affiliation(s)
- Zeeshan Haider Jaffari
- Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ather Abbas
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Chang-Min Kim
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Jaegwan Shin
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Jinwoo Kwak
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Changgil Son
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Yong-Gu Lee
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Sangwon Kim
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Kangmin Chon
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea.
| | - Kyung Hwa Cho
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
36
|
Ullah H, Chen B, Rashid A, Zhao R, Shahab A, Yu G, Wong MH, Khan S. A critical review on selenium removal capacity from water using emerging non-conventional biosorbents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122644. [PMID: 37827352 DOI: 10.1016/j.envpol.2023.122644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/27/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Anthropogenic-driven selenium (Se) contamination of natural waters has emerged as severe health and environmental concern. Lowering Se levels to safe limits of 40 μg-L-1 (recommended by WHO) presents a critical challenge for the scientific community, necessitating reliable and effective methods for Se removal. The primary obectives of this review are to evaluate the efficiency of different biosorbents in removing Se, understand the mechanism of adsorption, and identify the factors influencing the biosorption process. A comprehensive literature review is conducted to analyze various studies that have explored the use of modified biochars, iron oxides, and other non-conventional biosorbents for selenium removal. The assessed biosorbents include biomass, microalgae-based, alginate compounds, peats, chitosan, and biochar/modified biochar-based adsorbents. Quantitative data from the selected studies analyzed Se adsorption capacities of biosorbents, were collected considering pH, temperature, and environmental conditions, while highlighting advantages and limitations. The role of iron impregnation in enhancing the biosorption efficiency is investigated, and the mechanisms of Se adsorption on these biosorbents at different pH levels are discussed. A critical literature assessment reveals a robust understanding of the current state of Se biosorption and the effectiveness of non-conventional biosorbents for Se removal, providing crucial information for further research and practical applications in water treatment processes. By understanding the strengths and limitations of various biosorbents, this review is expected to scale-up targeted research on Se removal, promoting the development of innovative and cost-effective adsorbents, efficient and sustainable approaches for Se removal from water.
Collapse
Affiliation(s)
- Habib Ullah
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, Zhejiang, China; Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Baoliang Chen
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, Zhejiang, China; Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Audil Rashid
- Faculty of Sciences, Department of Botany, University of Gujrat, Gujrat-50700, Pakistan
| | - Ruohan Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Asfandyar Shahab
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China.
| | - Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China.
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China.
| | - Sangar Khan
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
37
|
Saravanan A, Karishma S, Kumar PS, Thamarai P, Yaashikaa PR. Recent insights into mechanism of modified bio-adsorbents for the remediation of environmental pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122720. [PMID: 37839681 DOI: 10.1016/j.envpol.2023.122720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Rapid industrialization has exacerbated the hazard to health and the environment. Wide spectrums of contaminants pose numerous risks, necessitating their disposal and treatment. There is a need for further remediation methods since pollutant residues cannot be entirely eradicated by traditional treatment techniques. Bio-adsorbents are gaining popularity due to their eco-friendly approach, broad applicability, and improved functional and surface characteristics. Adsorbents that have been modified have improved qualities that aid in their adsorptive nature. Adsorption, ion exchange, chelation, surface precipitation, microbial uptake, physical entrapment, biodegradation, redox reactions, and electrostatic interactions are some of the processes that participate in the removal mechanism of biosorbents. These processes can vary depending on the particular biosorbent and the type of pollutants being targeted. The systematic review focuses on the many modification approaches used to remove environmental contaminants. Different modification or activation strategies can be used depending on the type of bio-adsorbent and pollutant to be remediated. Physical activation procedures such as ultrasonication and pyrolysis are more commonly used to modify bio-adsorbents. Ultrasonication process improves the adsorption efficiency by 15-25%. Acid and alkali modified procedures are the most effective chemical activation strategies for adsorbent modification for pollution removal. Chemical modification increases the removal to around 95-99%. The biological technique involving microbial culture is an emerging field that needs to be investigated further for pollutant removal. A short evaluation of modified adsorbents with multi-pollutant adsorption capability that have been better eliminated throughout the adsorption process has been provided.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
38
|
Joseph TM, Al-Hazmi HE, Śniatała B, Esmaeili A, Habibzadeh S. Nanoparticles and nanofiltration for wastewater treatment: From polluted to fresh water. ENVIRONMENTAL RESEARCH 2023; 238:117114. [PMID: 37716387 DOI: 10.1016/j.envres.2023.117114] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Water pollution poses significant threats to both ecosystems and human health. Mitigating this issue requires effective treatment of domestic wastewater to convert waste into bio-fertilizers and gas. Neglecting liquid waste treatment carries severe consequences for health and the environment. This review focuses on intelligent technologies for water and wastewater treatment, targeting waterborne diseases. It covers pollution prevention and purification methods, including hydrotherapy, membrane filtration, mechanical filters, reverse osmosis, ion exchange, and copper-zinc cleaning. The article also highlights domestic purification, field techniques, heavy metal removal, and emerging technologies like nanochips, graphene, nanofiltration, atmospheric water generation, and wastewater treatment plants (WWTPs)-based cleaning. Emphasizing water cleaning's significance for ecosystem protection and human health, the review discusses pollution challenges and explores the integration of wastewater treatment, coagulant processes, and nanoparticle utilization in management. It advocates collaborative efforts and innovative research for freshwater preservation and pollution mitigation. Innovative biological systems, combined with filtration, disinfection, and membranes, can elevate recovery rates by up to 90%, surpassing individual primary (<10%) or biological methods (≤50%). Advanced treatment methods can achieve up to 95% water recovery, exceeding UN goals for clean water and sanitation (Goal 6). This progress aligns with climate action objectives and safeguards vital water-rich habitats (Goal 13). The future holds promise with advanced purification techniques enhancing water quality and availability, underscoring the need for responsible water conservation and management for a sustainable future.
Collapse
Affiliation(s)
- Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Hussein E Al-Hazmi
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Bogna Śniatała
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology, and Industrial Trades, College of the North Atlantic-Qatar, Doha, Qatar
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology, Tehran 1599637111, Iran.
| |
Collapse
|
39
|
He M, Wu F, Qu G, Liu X. Harmless and resourceful utilization of solid waste: Multi physical field regulation in the microbiological treatment process of solid waste treatment. ENVIRONMENTAL RESEARCH 2023; 238:117149. [PMID: 37716393 DOI: 10.1016/j.envres.2023.117149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Solid waste (SW) treatment methods mainly include physical, chemical, and biological methods, while physical and chemical methods have advantages such as fast effectiveness and short treatment time, but have high costs and were prone to secondary pollution. Due to the advantages of mild conditions and environmental protection, microbial methods have attracted the attention of numerous researchers. Recently, promotion of biological metabolic activity in biotreatment technology by applying multiple physical conditions, and reducing the biochemical reaction energy base to promote the transfer of protons and electrons, has made significant progress in harmless and resourceful utilization of SW. This paper main summarized the harmless and resourceful treatment methods of common bulk SW. The research of physical field-enhanced microbial treatment of inorganic solid waste (ISW) and organic solid waste (OSW) was discussed. The advantages and mechanisms of microbial treatment compared to traditional SW treatment methods were analyzed. The multi-physical field coupling enhanced microbial treatment technology was proposed to further improving the efficiency of large-scale treatment of bulk SW. The application prospects and potential opportunities of this technology were analyzed. Novel research ideas for the large-scale harmless and resourceful treatment of bulk SW were provided.
Collapse
Affiliation(s)
- Minjie He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Fenghui Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China.
| | - Xinxin Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| |
Collapse
|
40
|
Alardhi SM, Salih HG, Ali NS, Khalbas AH, Salih IK, Saady NMC, Zendehboudi S, Albayati TM, Harharah HN. Olive stone as an eco-friendly bio-adsorbent for elimination of methylene blue dye from industrial wastewater. Sci Rep 2023; 13:21063. [PMID: 38030694 PMCID: PMC10687264 DOI: 10.1038/s41598-023-47319-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
Adsorbents synthesized by activation and nanoparticle surface modifications are expensive and might pose health and ecological risks. Therefore, the interest in raw waste biomass materials as adsorbents is growing. In batch studies, an inexpensive and effective adsorbent is developed from raw olive stone (OS) to remove methylene blue (MB) from an aqueous solution. The OS adsorbent is characterized using scanning electron microscopy (SEM), Fourier Transform Infra-Red (FTIR), and Brunauer-Emmett-Teller (BET) surface area. Four isotherms are used to fit equilibrium adsorption data, and four kinetic models are used to simulate kinetic adsorption behavior. The obtained BET surface area is 0.9 m2 g-1, and the SEM analysis reveals significant pores in the OS sample that might facilitate the uptake of heavy compounds. The Langmuir and Temkin isotherm models best represent the adsorbtion of MB on the OS, with a maximum monolayer adsorption capacity of 44.5 mg g-1. The best dye color removal efficiency by the OS is 93.65% from an aqueous solution of 20 ppm at the OS doses of 0.2 g for 90 min contact time. The OS adsorbent serves in five successive adsorption cycles after a simple filtration-washing-drying process, maintaining MB removal efficiency of 91, 85, 80, and 78% in cycles 2, 3, 4, and 5, respectively. The pseudo second-order model is the best model to represent the adsorption process dynamics. Indeed, the pseudo second-order and the Elovich models are the most appropriate kinetic models, according to the correlation coefficient (R2) values (1.0 and 0.935, respectively) derived from the four kinetic models. The parameters of the surface adsorption are also predicted based on the mass transfer models of intra-particle diffusion and Bangham and Burt. According to the thermodynamic analysis, dye adsorption by the OS is endothermic and spontaneous. As a result, the OS material offers an efficient adsorbent for MB removal from wastewater that is less expensive, more ecologically friendly, and economically viable.
Collapse
Affiliation(s)
- Saja M Alardhi
- Nanotechnology and Advanced Materials Research Center, University of Technology-Iraq, Baghdad, Iraq
| | - Hussein G Salih
- Department of Chemical Engineering, University of Technology-Iraq, 52 Alsinaa St., PO Box 35010, Baghdad, Iraq
| | - Nisreen S Ali
- Materials Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq
| | - Ali H Khalbas
- Department of Chemical Engineering, University of Technology-Iraq, 52 Alsinaa St., PO Box 35010, Baghdad, Iraq
| | - Issam K Salih
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University, Babylon, 51001, Iraq
| | - Noori M Cata Saady
- Department of Civil Engineering, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Sohrab Zendehboudi
- Department of Process Engineering, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Talib M Albayati
- Department of Chemical Engineering, University of Technology-Iraq, 52 Alsinaa St., PO Box 35010, Baghdad, Iraq.
| | - Hamed N Harharah
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, 61411, Kingdom of Saudi Arabia
| |
Collapse
|
41
|
Singh NK, Sanghvi G, Yadav M, Padhiyar H, Christian J, Singh V. Fate of pesticides in agricultural runoff treatment systems: Occurrence, impacts and technological progress. ENVIRONMENTAL RESEARCH 2023; 237:117100. [PMID: 37689336 DOI: 10.1016/j.envres.2023.117100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The levels of pesticides in air, water, and soil are gradually increasing due to its inappropriate management. In particular, agricultural runoff inflicts the damages on the ecosystem and human health at massive scale. Present study summarizes 70 studies in which investigations on removal or treatment of pesticides/insecticides/herbicides are reported. A bibliometric analysis was also done to understand the recent research trends through the analysis of 2218 publications. The specific objectives of this study are as follows: i) to inventorize the characteristics details of agriculture runoff and analyzing the occurrence and impacts of pesticides, ii) analyzing the role and interaction of pesticides in different environmental segments, iii) investigating the fate of pesticides in agriculture runoff treatment systems, iv) summarizing the experiences and findings of most commonly technology deployed for pesticides remediation in agriculture runoff including target pesticide(s), specifications, configuration of technological intervention. Among the reported technologies for pesticide treatment in agriculture runoff, constructed wetland was at the top followed by algal or photobioreactor. Among various advanced oxidation processes, photo Fenton method is mainly used for pesticides remediation such as triazine, methyl parathion, fenuron and diuron. Algal bioreactors are extensively used for a wide range of pesticides treatment including 2,4-Dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, alachlor, diuron, chlorpyrifos, endosulfan, and imidacloprid; especially at lower hydraulic retention time of 2-6 h. This study highlights that hybrid approaches can offers potential opportunities for effective removal of pesticides in a more viable manner.
Collapse
Affiliation(s)
- Nitin Kumar Singh
- Department of Chemical Engineering, Marwadi University, Rajkot, 360003, Gujarat, India.
| | - Gaurav Sanghvi
- Department of Microbiology, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Manish Yadav
- Central Mine Planning Design and Institute, Bhubaneswar, 751013, Odisha, India
| | | | - Johnson Christian
- Environmental Audit Cell, Dr. R. D. Gardi Education Campus Rajkot, 360110, Gujarat India
| | - Vijai Singh
- Department of Biosciences, School of School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| |
Collapse
|
42
|
Kour G, Tyagi I, Dhar S, Kumari S, Pathania D, Kothari R. Spatio-temporal evaluation of surface water quality of Tawi watershed in the Himalayan region of Jammu (J&K, UT) using algal pollution indices: a geospatial approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1402. [PMID: 37917378 DOI: 10.1007/s10661-023-11975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
In the present work, an investigation was performed based on the genera and species stated in Palmer pollution index to show the extent of organic pollution in the surface water of the Tawi watershed in the Jammu province of the Union Territory of Jammu and Kashmir using algal pollution indices. Sampling was carried out for two seasons, pre-monsoon (PRM) and post-monsoon (POM), at 16 locations distributed over the entire Tawi watershed. The physico-chemical variables like water temperature, pH, electrical conductivity, TDS, total alkalinity, total hardness, DO, BOD, COD, nitrate, and phosphate were analyzed. The seasonal distribution of the pollution-tolerant algal genera and species was recorded and the algal pollution index for both genus (AGP index) and species (ASP index) was also calculated. The concentration of BOD, COD, and nitrate in the sampled river water was found to be higher during the PRM season as compared to the POM season. The lower stretch of the watershed (Jammu Sub-Watershed) falls in class IV-V as per the polluted river stretch priority ranking based on BOD levels as BOD levels are >3 mg/L in the downstream locations during both seasons. A total of 23 algal taxa belonging to 8 families, Chlorophyceae (4 algal genera), Cyanophyceae (2 algal genera), Bacillariophyceae (7 algal genera), Zygnematophyceae (3 algal genera), Trebouxiophyceae (2 algal genera), Ulvophyceae (1 algal genus), Mediophyceae (1 algal genus), and Euglenophyceae (3 algal genera), have been reported in the Tawi watershed. The results of the Palmer indices showed a lack of organic pollution in the upstream, varying pollution levels in the midstream, and partially high to very high organic pollution levels in the downstream of the watershed. Comparative temporal analysis of the distribution of pollution-tolerant algal genera and species showed more organic pollution during PRM. Navicula and Cymbella were found to be the most abundant genera in almost all the stations, whereas Ulothrix, Cocconeis, Anacystis, and Crucigenia were the least recorded genera in the entire watershed. The results will enhance the understanding of the health status of the watershed, and provide database for watershed vulnerability assessment for sustainability and watershed management with spatio-temporal improvement.
Collapse
Affiliation(s)
- Gagandeep Kour
- Department of Environmental Sciences, Central University of Jammu, Bagla, Rahya Suchani, Samba, Jammu and Kashmir, 181143, India
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M Block, New Alipore, Kolkata, 700053, India
| | - Sunil Dhar
- Department of Environmental Sciences, Central University of Jammu, Bagla, Rahya Suchani, Samba, Jammu and Kashmir, 181143, India
| | - Sarita Kumari
- Department of Zoology, Sardar Patel University, Mandi, Himachal Pradesh, 175001, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Bagla, Rahya Suchani, Samba, Jammu and Kashmir, 181143, India
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Bagla, Rahya Suchani, Samba, Jammu and Kashmir, 181143, India.
| |
Collapse
|
43
|
Annam Renita A, Sathish S, Kumar PS, Prabu D, Manikandan N, Mohamed Iqbal A, Rajesh G, Rangasamy G. Emerging aspects of metal ions-doped zinc oxide photocatalysts in degradation of organic dyes and pharmaceutical pollutants - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118614. [PMID: 37454449 DOI: 10.1016/j.jenvman.2023.118614] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
In recent periods, a broad assortment of continual organic contaminants has been released into our natural water resources. Indeed, it is exceedingly poisonous and perilous to living things; thus, the elimination of these organic pollutants before release into the water bodies is vital. A variety of techniques have been utilized to remove these organic pollutants with advanced oxidation photocatalytic methods with zinc oxide (ZnO) nanoparticles being commonly used as a capable catalyst for contaminated water treatment. Nevertheless, its broad energy gap, which can be only stimulated under an ultraviolet (UV) light source, and high recombination pairs of electrons and holes limit their photocatalytic behaviors. However, numerous methods have been suggested to decrease its energy gap for visible regions. Including, the doping ZnO with metal ions (dopant) can be considered as an effectual route not only the reason for a movement of the absorption edges toward the higher (visible light) region but also to lower the electron-hole pair (e--h+) recombination. This review concentrated on the impact of dissimilar types of metal ions (dopants) on the advancement in the degradation performance of ZnO. So, this work demonstrates a vital review of contemporary attainments in the alteration of ZnO nanoparticles for organic pollutants eliminations. Besides, the effect of doping ions including transition metals, rare earth metals, and metal ions (substitutional and interstitial) concerning numerous types of altered ZnO are summarized. The photodegradation mechanisms for pristine and metal-modified ZnO nanoparticles are also conferred.
Collapse
Affiliation(s)
- A Annam Renita
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 119, India
| | - S Sathish
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 119, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India.
| | - D Prabu
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 119, India
| | - N Manikandan
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 119, India
| | - A Mohamed Iqbal
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 119, India
| | - G Rajesh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
44
|
Xiao X, Ren Y, Lei Y, Li X, Guo H, Zhang C, Jiao Y. Jasmine waste derived biochar as green sulfate catalysts dominate non-free radical paths efficiently degraded tetracycline. CHEMOSPHERE 2023; 339:139610. [PMID: 37482311 DOI: 10.1016/j.chemosphere.2023.139610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
Because of the potential environmental harm caused by the extensive application of tetracycline (TC), this study used jasmine waste rich in organic matter as a precursor and one-step carbonization into metal-free carbon-based materials to efficiently activate peroxymonosulfate (PMS) toward degrading TC. The jasmine waste biochar (JWB) with a heating rate of 10 °C min-1 and a heating temperature of 700 °C was selected as the most suitable material based on its catalytic performance. The effects of catalyst dose, PMS dose, initial pH value, coexisting inorganic anions and TC concentration on the JWB/PMS/TC system were thoroughly optimized. The results showed that the degradation efficiency of TC by JWB/PMS system was 90%. Meanwhile, the combination of electron paramagnetic resonance, masking experiments and X-ray photoelectron spectrometry confirmed that JWB degraded TC mainly through the non-radical radical pathway of 1O2 oxidation and mediated the electron transfer to PMS. In addition, some degradation products were analyzed by LC-MS and possible degradation pathways of the system were proposed. Therefore, this paper proposes a novel method for recycling jasmine waste and providing a low-cost catalyst for the oxidation treatment of refractory organic matter.
Collapse
Affiliation(s)
- Xiuchan Xiao
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China; Centre of Big Data for Smart Environmental Protection, Chengdu Technological University, Chengdu, 611730, China.
| | - Yaqi Ren
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China; Centre of Big Data for Smart Environmental Protection, Chengdu Technological University, Chengdu, 611730, China
| | - Yan Lei
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Xi Li
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China; Centre of Big Data for Smart Environmental Protection, Chengdu Technological University, Chengdu, 611730, China
| | - Hongyang Guo
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Chunhong Zhang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Yi Jiao
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610064, Sichuan, China.
| |
Collapse
|
45
|
Nguyen HT, Nguyen PN, Van Le T, Nguyen TH, Nguyen LD, Tran PH. Synthesis of benzo[ a]carbazole derivatives via intramolecular cyclization using Brønsted acidic carbonaceous material as the catalyst. RSC Adv 2023; 13:28623-28631. [PMID: 37780732 PMCID: PMC10540035 DOI: 10.1039/d3ra04943d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
In this work, a new procedure for the synthesis of benzo[a]carbazole from 1,3-diketones, primary amines, phenylglyoxal monohydrate, and malononitrile employing a solid acidic catalyst has been developed. The multicomponent reaction provided 3-cyanoacetamide pyrrole as an intermediate and then the formation of benzo[a]carbazole via intramolecular ring closure. The reaction was carried out for 2 h at 240 °C, resulting in the desired product with 73% yield. Acidic sites on the solid acid catalyst, made from rice husk-derived amorphous carbon with a sulfonic acid core (AC-SO3H), provided the best activity. Acidic sites on the surface of the catalyst, including carboxylic, phenolic, and sulfonic acids, were 4.606 mmol g-1 of the total acidity. AC-SO3H demonstrated low cost, low toxicity, porosity, stability, and flexibility of tuning and reusability.
Collapse
Affiliation(s)
- Hai Truong Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Phat Ngoc Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Tan Van Le
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Trinh Hao Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Linh Dieu Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
46
|
Sulejmanović J, Skopak E, Šehović E, Karadža A, Zahirović A, Smječanin N, Mahmutović O, Ansar S, Sher F. Surface engineered functional biomaterials for hazardous pollutants removal from aqueous environment. CHEMOSPHERE 2023:139205. [PMID: 37315864 DOI: 10.1016/j.chemosphere.2023.139205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
The issue of water contamination by heavy metal ions as highly persistent pollutants with harmful influence primarily on biological systems, even in trace levels, has become a great environmental concern globally. Therefore, there is a need for the use of highly sensitive techniques or preconcentration methods for the removal of heavy metal ions at trace levels. Thus, this research investigates a novel approach by examining the possibility of using pomegranate (Punica granatum) peel layered material for the simultaneous preconcentration of seven heavy metal ions; Cd(II), Co(II), Cr(III), Cu(II), Mn(II), Ni(II) and Pb(II) from aqueous solution and three river water samples. The quantification of the heavy metals was performed by the means of FAAS technique. The characterization of biomaterial was performed by SEM/EDS, FTIR analysis and pHpzc determination before and after the remediation process. The reusability study, as well as the influence of interfering ions (Ca, K, Mg, Na and Zn) were evaluated. The conditions of preconcentration by the column method included the optimization of solution pH (5); flow rate (1.5 mL/min), a dose of biosorbent (200 mg), type of the eluent (1 mol/L HNO3), sample volume (100 mL) and sorbent fraction (<0.25 mm). The biosorbent capacity ranged from 4.45 to 57.70 μmol/g for the investigated heavy metals. The practical relevance of this study is further extended by novel data regarding adsorbent cost analysis (17.49 $/mol). The Punica granatum sorbent represents a highly effective and economical biosorbent for the preconcentration of heavy metal ions for possible application in industrial sectors.
Collapse
Affiliation(s)
- Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Ena Skopak
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina
| | - Elma Šehović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Amar Karadža
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Adnan Zahirović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina
| | - Narcisa Smječanin
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Omer Mahmutović
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Educational Sciences, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
47
|
Ahmad FA. The use of agro-waste-based adsorbents as sustainable, renewable, and low-cost alternatives for the removal of ibuprofen and carbamazepine from water. Heliyon 2023; 9:e16449. [PMID: 37292321 PMCID: PMC10245173 DOI: 10.1016/j.heliyon.2023.e16449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
The occurrence of residual pharmaceuticals in the aquatic environment poses major toxicological impacts and adds to the increasing pressure on water resources. Many countries are already suffering from water scarcity, and with the burdening costs of water and wastewater treatment, the race towards innovative sustainable strategies for pharmaceutical remediation is ongoing. Out of the available treatment methods, adsorption proved to be a promising, environmentally friendly technique, particularly when efficient waste-based adsorbents are produced from agricultural residues, thus maximizing the value of wastes, minimizing production costs, and saving natural resources from depletion. Among the residual pharmaceuticals, ibuprofen and carbamazepine are heavily consumed and highly occurring in the environment. This paper aims to review the most recent literature on the application of agro-waste-based adsorbents as sustainable alternatives for the removal of ibuprofen and carbamazepine from contaminated waters. Highlights on the major mechanisms implicated in the adsorption of ibuprofen and carbamazepine are presented, and light is shed on multiple operational parameters that hold a key role in the adsorption process. This review also highlights the effects of different production parameters on adsorption efficiency and discusses many limitations currently encountered. Finally, an analysis is included to compare the efficiency of agro-waste-based adsorbents relative to other green and synthetic adsorbents.
Collapse
|
48
|
Mohamed Abdoul-Latif F, Ainane A, Hachi T, Abbi R, Achira M, Abourriche A, Brulé M, Ainane T. Materials Derived from Olive Pomace as Effective Bioadsorbents for the Process of Removing Total Phenols from Oil Mill Effluents. Molecules 2023; 28:4310. [PMID: 37298784 PMCID: PMC10254907 DOI: 10.3390/molecules28114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
This work investigates olive pomace from olive mill factories as an adsorbent for the removal of total phenols from olive mill effluent (OME). This pathway of valorization of olive pomace reduces the environmental impact of OME while providing a sustainable and cost-effective wastewater treatment approach for the olive oil industry. Olive pomace was pretreated with water washing, drying (60 °C) and sieving (<2 mm) to obtain the raw olive pomace (OPR) adsorbent material. Olive pomace biochar (OPB) was obtained via carbonization of OPR at 450 °C in a muffle furnace. The adsorbent materials OPR and OPB were characterized using several basic analyzes (Scanning Electron Microscopy-Energy-Dispersive X-ray SEM/EDX, X-ray Diffraction XRD, thermal analysis DTA and TGA, Fourier transform infrared FTIR and Brunauer, Emmett and Teller surface BET). The materials were subsequently tested in a series of experimental tests to optimize the sorption of polyphenols from OME, investigating the effects of pH and adsorbent dose. Adsorption kinetics showed good correlation with a pseudo-second-order kinetic model as well as Langmuir isotherms. Maximum adsorption capacities amounted to 21.27 mg·g-1 for OPR and 66.67 mg·g-1 for OPB, respectively. Thermodynamic simulations indicated spontaneous and exothermic reaction. The rates of total phenol removal were within the range of 10-90% following 24 h batch adsorption in OME diluted at 100 mg/L total phenols, with the highest removal rates observed at pH = 10. Furthermore, solvent regeneration with 70% ethanol solution yielded partial regeneration of OPR at 14% and of OPB at 45% following the adsorption, implying a significant rate of recovery of phenols in the solvent. The results of this study suggest that adsorbents derived from olive pomace may be used as economical materials for the treatment and potential capture of total phenols from OME, also suggesting potential further applications for pollutants in industrial wastewaters, which can have significant implications in the field of environmental technologies.
Collapse
Affiliation(s)
- Fatouma Mohamed Abdoul-Latif
- Medicinal Research Institute, Centre d’Etudes et de Recherche de Djibouti, IRM-CERD, Route de l’Aéroport, Haramous B.P. 486, Djibouti City 77101, Djibouti
| | - Ayoub Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco
| | - Touria Hachi
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco
| | - Rania Abbi
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco
| | - Meryem Achira
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco
| | - Abdelmjid Abourriche
- ENSAM Casablanca, University of Hassan II, 150 Bd du Nil, Casablanca 20670, Morocco
| | - Mathieu Brulé
- Laboratory of Biochemical Engineering and Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., 26504 Patras, Greece
| | - Tarik Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco
| |
Collapse
|
49
|
Guel-Nájar NA, Rios-Hurtado JC, Muzquiz-Ramos EM, Dávila-Pulido GI, González-Ibarra AA, Pat-Espadas AM. Magnetic Biochar Obtained by Chemical Coprecipitation and Pyrolysis of Corn Cob Residues: Characterization and Methylene Blue Adsorption. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3127. [PMID: 37109964 PMCID: PMC10140941 DOI: 10.3390/ma16083127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Biochar is a carbonaceous and porous material with limited adsorption capacity, which increases by modifying its surface. Many of the biochars modified with magnetic nanoparticles reported previously were obtained in two steps: first, the biomass was pyrolyzed, and then the modification was performed. In this research, a biochar with Fe3O4 particles was obtained during the pyrolysis process. Corn cob residues were used to obtain the biochar (i.e., BCM) and the magnetic one (i.e., BCMFe). The BCMFe biochar was synthesized by a chemical coprecipitation technique prior to the pyrolysis process. The biochars obtained were characterized to determine their physicochemical, surface, and structural properties. The characterization revealed a porous surface with a 1013.52 m2/g area for BCM and 903.67 m2/g for BCMFe. The pores were uniformly distributed, as observed in SEM images. BCMFe showed Fe3O4 particles on the surface with a spherical shape and a uniform distribution. According to FTIR analysis, the functional groups formed on the surface were aliphatic and carbonyl functional groups. Ash content in the biochar was 4.0% in BCM and 8.0% in BCMFe; the difference corresponded to the presence of inorganic elements. The TGA showed that BCM lost 93.8 wt% while BCMFe was more thermally stable due to the inorganic species on the biochar surface, with a weight loss of 78.6%. Both biochars were tested as adsorbent materials for methylene blue. BCM and BCMFe obtained a maximum adsorption capacity (qm) of 23.17 mg/g and 39.66 mg/g, respectively. The obtained biochars are promising materials for the efficient removal of organic pollutants.
Collapse
Affiliation(s)
- Norma Araceli Guel-Nájar
- Facultad de Metalurgia, Universidad Autónoma de Coahuila, Carretera 57 Km 5, Monclova 25710, Coahuila, Mexico
| | - Jorge Carlos Rios-Hurtado
- Facultad de Metalurgia, Universidad Autónoma de Coahuila, Carretera 57 Km 5, Monclova 25710, Coahuila, Mexico
| | - Elia Martha Muzquiz-Ramos
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza S/N, República, Saltillo 25280, Coahuila, Mexico
| | - Gloria I Dávila-Pulido
- Escuela Superior de Ingeniería, Universidad Autónoma de Coahuila, Boulevard Adolfo López Mateos S/N, Independencia, Nueva Rosita 26830, Coahuila, Mexico
| | - Adrián A González-Ibarra
- Escuela Superior de Ingeniería, Universidad Autónoma de Coahuila, Boulevard Adolfo López Mateos S/N, Independencia, Nueva Rosita 26830, Coahuila, Mexico
| | - Aurora M Pat-Espadas
- CONACyT, Estación Regional del Noroeste del Instituto de Geología de la UNAM, Luis D Colosio S/N Esquina Madrid, Hermosillo 83200, Sonora, Mexico
| |
Collapse
|
50
|
Effective and Low-Cost Adsorption Procedure for Removing Chemical Oxygen Demand from Wastewater Using Chemically Activated Carbon Derived from Rice Husk. SEPARATIONS 2023. [DOI: 10.3390/separations10010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Wastewater treatment by adsorption onto activated carbon is effective because it has a variety of benefits. In this work, activated carbon prepared from rice husk by chemical activation using zinc chloride was utilized to reduce chemical oxygen demand from wastewater. The as-prepared activated carbon was characterized by scanning electron microscope, Fourier transform infrared spectroscopy and nitrogen adsorption/desorption analysis. The optimum conditions for maximum removal were achieved by studying the impact of various factors such as solution pH, sorbent dose, shaking time and temperature in batch mode. The results displayed that the optimum sorption conditions were achieved at pH of 3.0, sorbent dose of 0.1 g L−1, shaking time of 100 min and at room temperature (25 °C). Based on the effect of temperature, the adsorption process is exothermic in nature. The results also implied that the isothermal data might be exceedingly elucidated by the Langmuir model. The maximum removal of chemical oxygen demand by the activated carbon was 45.9 mg g−1. The kinetic studies showed that the adsorption process follows a pseudo-first order model. The findings suggested that activated carbon from rice husk may be used as inexpensive substitutes for commercial activated carbon in the treatment of wastewater for the removal of chemical oxygen demand.
Collapse
|