1
|
Xu CX, Pan JK, Wu LH, Jin ZF, Chen SS, Liu JW, Liu JS, Li M. Effects of prolonged fasting on substrate metabolism in female Japanese quails. Comp Biochem Physiol A Mol Integr Physiol 2025; 304:111845. [PMID: 40096968 DOI: 10.1016/j.cbpa.2025.111845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Food stands as a pivotal environmental element that exerts a profound influence on the survival of animals. Faced with food shortages, animals need to develop morphological, physiological, and behavioral strategies to improve their survival adaptability. Animals undergoing fasting tend to mobilize the reserved substances in the body to meet the energy needs for metabolism. In the present investigation, we assessed the influence of prolonged fasting on various physiological parameters related to fat catabolism, carbohydrate metabolism, and protein catabolism in female Japanese quails (Coturnix japonica). The treatment of Japanese quails was divided into four stages: the pre-fasting stage, Phase I (fasting for 1 day), Phase II (fasting for 4 days), and Phase III (fasting for 6-11 days). Compared with the pre-fasting stage, the following indicators changed significantly during prolonged fasting. (1) Fat catabolism: In the liver, the level of lipid droplets and free fatty acids (FFA), the activity of triacylglycerol lipase (TGL), the activity and mRNA level of hydroxymethylglutaryl-CoA synthetase (HMGCS), and the level of β-hydroxybutyric acid (BHBA) in the serum increased significantly, while the activity and mRNA level of carnitine acyltransferase I (CPTI) and carnitine acyltransferase II (CPT-II) decreased significantly. (2) Carbohydrate metabolism: The activity and mRNA levels of the pyruvate carboxylase (PC) and phosphoenolpyruvate carboxykinase (PEPCK) genes, and that of the glucose-6-phosphatase (G6Pase) in the liver increased significantly, while the mRNA level of the hexokinase domain containing 1 (HKDC1) and pyruvate kinase (PK) genes in the liver decreased significantly. (3) Protein catabolism: free amino acid levels in the liver and pectoral muscle increased significantly, whereas the mRNA levels of the asparagine synthetase (ASNS) and glutamate dehydrogenase (GLUD) genes in the liver decreased significantly, while the mRNA level of the nuclear factor-kappa B (NF-kB1 and NF-kB2) in the pectoral muscle increased significantly. Additionally, glucocorticoid levels significantly rose in Phase III compared with Phases I and II. Therefore, for prolonged fasting female Japanese quails, the mobilization of fat, fat decomposition, and generation of ketone bodies increased significantly, and gluconeogenesis in the liver also increased significantly, while glycolysis decreased significantly; protein decomposition, particularly in pectoral muscle, increased significantly. These results indicate that enhanced fat catabolism, protein catabolism, and gluconeogenesis, along with reduced glycolysis, could play an important role in the tolerance of female Japanese quails to prolonged fasting. These mechanisms might be significant for the birds to establish a temporary balance to maintain homeostasis under conditions of restricted exogenous energy supply.
Collapse
Affiliation(s)
- Chong-Xiang Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Jun-Kun Pan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Lan-Hua Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Zi-Fan Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Shan-Shan Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Jin-Wen Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Jin-Song Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China.
| | - Ming Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China.
| |
Collapse
|
2
|
Zaman M, Sharma G, Almutawa W, Soule TG, Sabouny R, Joel M, Mohan A, Chute C, Joseph JT, Pfeffer G, Shutt TE. The MFN2 Q367H variant reveals a novel pathomechanism connected to mtDNA-mediated inflammation. Life Sci Alliance 2025; 8:e202402921. [PMID: 40175090 PMCID: PMC11966011 DOI: 10.26508/lsa.202402921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025] Open
Abstract
Pathogenic variants in the mitochondrial protein MFN2 are typically associated with a peripheral neuropathy phenotype, but can also cause a variety of additional pathologies including myopathy. Here, we identified an uncharacterized MFN2 variant, Q367H, in a patient diagnosed with late-onset distal myopathy, but without peripheral neuropathy. Supporting the hypothesis that this variant contributes to the patient's pathology, patient fibroblasts and transdifferentiated myoblasts showed changes consistent with impairment of several MFN2 functions. We also observed mtDNA outside of the mitochondrial network that colocalized with early endosomes, and measured activation of both TLR9 and cGAS-STING inflammation pathways that sense mtDNA. Re-expressing the Q367H variant in MFN2 KO cells also induced mtDNA release, demonstrating this phenotype is a direct result of the variant. As elevated inflammation can cause myopathy, our findings linking the Q367H MFN2 variant with elevated TLR9 and cGAS-STING signalling can explain the patient's myopathy. Thus, we characterize a novel MFN2 variant in a patient with an atypical presentation that separates peripheral neuropathy and myopathy phenotypes, and establish a potential pathomechanism connecting MFN2 dysfunction to mtDNA-mediated inflammation.
Collapse
Affiliation(s)
- Mashiat Zaman
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Govinda Sharma
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Walaa Almutawa
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Tyler Gb Soule
- Department of Neuroscience, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Rasha Sabouny
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Matt Joel
- Department of Neuroscience, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Armaan Mohan
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Cole Chute
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jeffrey T Joseph
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Department of Pathology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences; and Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Alberta Children's Hospital Research Institute; University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Zhao X, Liu Y, Wang D, Li T, Xu Z, Li Z, Bai X, Wang Y. Role of GLP‑1 receptor agonists in sepsis and their therapeutic potential in sepsis‑induced muscle atrophy (Review). Int J Mol Med 2025; 55:74. [PMID: 40052580 PMCID: PMC11936484 DOI: 10.3892/ijmm.2025.5515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/17/2025] [Indexed: 03/27/2025] Open
Abstract
Sepsis‑induced myopathy (SIM) is a common complication in intensive care units, which is often associated with adverse outcomes, primarily manifested as skeletal muscle weakness and atrophy. Currently, the management of SIM focuses on prevention strategies, as effective therapeutic options remain elusive. Glucagon‑like peptide‑1 (GLP‑1) receptor agonists (GLP‑1RAs) have garnered attention as hypoglycemic and weight‑loss agents, with an increasing body of research focusing on the extrapancreatic effects of GLP‑1. In preclinical settings, GLP‑1RAs exert protective effects against sepsis‑related multiple organ dysfunction through anti‑inflammatory and antioxidant mechanisms. Based on the existing research, we hypothesized that GLP‑1RAs may serve potential protective roles in the repair and regeneration of skeletal muscle affected by sepsis. The present review aimed to explore the relationship between GLP‑1RAs and sepsis, as well as their impact on muscle atrophy‑related myopathy. Furthermore, the potential mechanisms and therapeutic benefits of GLP‑1RAs are discussed in the context of muscle atrophy induced by sepsis.
Collapse
Affiliation(s)
- Xuan Zhao
- Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yukun Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Dongfang Wang
- Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Tonghan Li
- Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhikai Xu
- Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhanfei Li
- Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiangjun Bai
- Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yuchang Wang
- Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
4
|
Riccardi V, Viscomi CF, Sandri M, D'Alessandro A, Dzieciatkowska M, Stephenson D, Federti E, Hermann A, Salviati L, Siciliano A, Andolfo I, Alper SL, Ceolan J, Iolascon A, Vattemi G, Danek A, Walker RH, Mensch A, Otto M, Deschauer M, Armbrust M, Beninca' C, Salari V, Fabene P, Peikert K, De Franceschi L. Premature skeletal muscle aging in VPS13A deficiency relates to impaired autophagy. Acta Neuropathol Commun 2025; 13:83. [PMID: 40275365 PMCID: PMC12023462 DOI: 10.1186/s40478-025-01997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
VPS13A disease (chorea-acanthocytosis), is an ultra-rare autosomal recessive neurodegenerative disorder caused by mutations of the VPS13A gene encoding Vps13A. Increased serum levels of the muscle isoform of creatine kinase associated with often asymptomatic muscle pathology are among the poorly understood early clinical manifestations of VPS13A disease. Here, we carried out an integrated analysis of skeletal muscle from Vps13a-/- mice and from VPS13A disease patient muscle biopsies. The absence of Vps13A impaired autophagy, resulting in pathologic metabolic remodeling characterized by cellular energy depletion, increased protein/lipid oxidation and a hyperactivated unfolded protein response. This was associated with defects in myofibril stability and the myofibrillar regulatory proteome, with accumulation of the myocyte senescence marker, NCAM1. In Vps13a-/- mice, the impairment of autophagy was further supported by the lacking effect of starvation alone or in combination with colchicine on autophagy markers. As a proof of concept, we showed that rapamycin treatment rescued the accumulation of terminal phase autophagy markers LAMP1 and p62 as well as NCAM1, supporting a connection between impaired autophagy and accelerated aging in the absence of VPS13A. The premature senescence was also corroborated by local activation of pro-inflammatory NF-kB-related pathways in both Vps13a-/- mice and patients with VPS13A disease. Our data link for the first time impaired autophagy and inflammaging with muscle dysfunction in the absence of VPS13A. The biological relevance of our mouse findings, supported by human muscle biopsy data, shed new light on the role of VPS13A in muscle homeostasis.
Collapse
Affiliation(s)
- Veronica Riccardi
- Department of Engineering for Innovative Medicine- DIMI, University of Verona, Verona, Italy
| | | | - Marco Sandri
- Department of Bomedical Sciences, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Enrica Federti
- Department of Engineering for Innovative Medicine- DIMI, University of Verona, Verona, Italy
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, Rostock, Germany
- United Neuroscience Campus Lund-Rostock (UNC), Rostock site, Rostock, Germany
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Pediatric Research Institute (IRP) - Fondazione Città della Speranza, Padova, Italy
| | - Angela Siciliano
- Department of Engineering for Innovative Medicine- DIMI, University of Verona, Verona, Italy
- Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Napoli, Italy
| | - Seth L Alper
- Division of Nephrology, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jacopo Ceolan
- Department of Engineering for Innovative Medicine- DIMI, University of Verona, Verona, Italy
- Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Napoli, Italy
| | - Gaetano Vattemi
- Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, LMU Klinikum, LMU München, München, Germany
| | - Ruth H Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Neurology, Mount Sinai School of Medicine, New York City, NY, USA
| | - Alexander Mensch
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Marcus Deschauer
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, München, Germany
| | - Moritz Armbrust
- Goethe University, University Hospital Frankfurt, Neurological Institute (Edinger Institute), Frankfurt am Main, Germany
- Goethe University, University Hospital Frankfurt, University Cancer Center (UCT) Frankfurt-Marburg, Frankfurt am Main, Germany
- Goethe University, University Hospital Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt / Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cristiane Beninca'
- Mitochondria and Metabolism Imaging Core, Department of Endocrinology, University of California, Los Angeles, USA
| | - Valentina Salari
- Department of Engineering for Innovative Medicine- DIMI, University of Verona, Verona, Italy
| | - Paolo Fabene
- Department of Engineering for Innovative Medicine- DIMI, University of Verona, Verona, Italy
- Section of Anatomy and Histology, Department of Excellence in Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Kevin Peikert
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, Rostock, Germany
- United Neuroscience Campus Lund-Rostock (UNC), Rostock site, Rostock, Germany
| | - Lucia De Franceschi
- Department of Engineering for Innovative Medicine- DIMI, University of Verona, Verona, Italy.
- Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy.
| |
Collapse
|
5
|
Liu H, Wang K, Shang T, Cai Z, Lu C, Shen M, Yu S, Yao X, Shen Y, Chen X, Xu F, Sun H. Astragaloside IV Improves Muscle Atrophy by Modulating the Activity of UPS and ALP via Suppressing Oxidative Stress and Inflammation in Denervated Mice. Mol Neurobiol 2025; 62:4689-4704. [PMID: 39480556 DOI: 10.1007/s12035-024-04590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Peripheral nerve injury is common clinically and can lead to neuronal degeneration and atrophy and fibrosis of the target muscle. The molecular mechanisms of muscle atrophy induced by denervation are complex and not fully understood. Inflammation and oxidative stress play an important triggering role in denervated muscle atrophy. Astragaloside IV (ASIV), a monomeric compound purified from astragalus membranaceus, has antioxidant and anti-inflammatory properties. The aim of this study was to investigate the effect of ASIV on denervated muscle atrophy and its molecular mechanism, so as to provide a new potential therapeutic target for the prevention and treatment of denervated muscle atrophy. In this study, an ICR mouse model of muscle atrophy was generated through sciatic nerve dissection. We found that ASIV significantly inhibited the reduction of tibialis anterior muscle mass and muscle fiber cross-sectional area in denervated mice, reducing ROS and oxidative stress-related protein levels. Furthermore, ASIV inhibits the increase in inflammation-associated proteins and infiltration of inflammatory cells, protecting the denervated microvessels in skeletal muscle. We also found that ASIV reduced the expression levels of MAFbx, MuRF1 and FoxO3a, while decreasing the expression levels of autophagy-related proteins, it inhibited the activation of ubiquitin-proteasome and autophagy-lysosome hydrolysis systems and the slow-to-fast myofiber shift. Our results show that ASIV inhibits oxidative stress and inflammatory responses in skeletal muscle due to denervation, inhibits mitophagy and proteolysis, improves microvascular circulation and reverses the transition of muscle fiber types; Therefore, the process of skeletal muscle atrophy caused by denervation can be effectively delayed.
Collapse
Affiliation(s)
- Hua Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, 226600, P. R. China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Tongxin Shang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Zhigang Cai
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, 226600, P. R. China
| | - Chunfeng Lu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, Jiangsu Province, 226006, P. R. China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaofang Chen
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, 226600, P. R. China.
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, Jiangsu Province, 226006, P. R. China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| |
Collapse
|
6
|
Zhang Y, Wang T, Wang Z, Shi X, Jin J. Functions and Therapeutic Potentials of Long Noncoding RNA in Skeletal Muscle Atrophy and Dystrophy. J Cachexia Sarcopenia Muscle 2025; 16:e13747. [PMID: 40034097 PMCID: PMC11876862 DOI: 10.1002/jcsm.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 12/23/2024] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
Skeletal muscle is the most abundant tissue in the human body and is responsible for movement, metabolism, energy production and longevity. Muscle atrophy is a frequent complication of several diseases and occurs when protein degradation exceeds protein synthesis. Genetics, ageing, nerve injury, weightlessness, cancer, chronic diseases, the accumulation of metabolic byproducts and other stimuli can lead to muscle atrophy. Muscular dystrophy is a neuromuscular disorder, part of which is caused by the deficiency of dystrophin protein and is mostly related to genetics. Muscle atrophy and muscular dystrophy are accompanied by dynamic changes in transcriptomic, translational and epigenetic regulation. Multiple signalling pathways, such as the transforming growth factor-β (TGF-β) signalling pathway, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, inflammatory signalling pathways, neuromechanical signalling pathways, endoplasmic reticulum stress and glucocorticoids signalling pathways, regulate muscle atrophy. A large number of long noncoding RNAs (lncRNAs) have been found to be abnormally expressed in atrophic muscles and dystrophic muscles and regulate the balance of muscle protein synthesis and degradation or dystrophin protein expression. These lncRNAs may serve as potential targets for treating muscle atrophy and muscular dystrophy. In this review, we summarized the known lncRNAs related to muscular dystrophy and muscle atrophy induced by denervation, ageing, weightlessness, cachexia and abnormal myogenesis, along with their molecular mechanisms. Finally, we explored the potential of using these lncRNAs as therapeutic targets for muscle atrophy and muscular dystrophy, including the methods of discovery and clinical application prospects for functional lncRNAs.
Collapse
Affiliation(s)
- Yidi Zhang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Teng Wang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Ziang Wang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Xin'e Shi
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Jianjun Jin
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
7
|
Feng X, Xu M, Liu Y, Wang X, Duan Y, Zheng X, Yin W, Cai Y, Zhang W, Jiang Q, Pang J, Li J. The sperm quality in DIO male mice is linked to the NF-κB signaling and Ppp2ca expression in the hypothalamus. iScience 2025; 28:112110. [PMID: 40160428 PMCID: PMC11951025 DOI: 10.1016/j.isci.2025.112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/24/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Recent studies show obesity correlated with reduced sperm quality in males, but the mechanism is unclear. In this study, diet-induced obese (DIO) male mice exhibited disrupted luteinizing hormone (LH) pulse release due to altered function of the hypothalamic-pituitary-gonadal (HPG) axis. This alteration was caused by activation of nuclear factor kappa B (NF-κB) signaling in the hypothalamus, which led to decreased sperm quality. RNA sequencing (RNA-seq) analysis of the hypothalamic arcuate nucleus (ARC) revealed a signaling network involving protein phosphatase 2 catalytic subunit alpha (Ppp2ca). This network disrupted LH pulse secretion by inhibiting Akt kinase (AKT) and cAMP responsive element-binding protein 1 (CREB1) activities, thereby reducing KiSS-1 metastasis-suppressor (Kiss1) expression. Furthermore, overexpression of the Ppp2ca gene in the ARC led to disrupted LH patterns and reduced sperm quality. These findings offer new insights into the molecular mechanisms underlying sperm quality decline in DIO male mice.
Collapse
Affiliation(s)
- Xu Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Maoxing Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ying Liu
- Clinical Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xiaoyu Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yiman Duan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyan Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wen Yin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jing Pang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Juxue Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| |
Collapse
|
8
|
Gao J, Sikal A, Hankin R, Zheng Y, Sterling E, Chan K, Yao Y. Extracellular Vesicles from Regenerating Skeletal Muscle Mitigate Muscle Atrophy in an Amyotrophic Lateral Sclerosis Mouse Model. Cells 2025; 14:464. [PMID: 40136713 PMCID: PMC11941016 DOI: 10.3390/cells14060464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neuromuscular disease characterized by progressive motor neuron degeneration and muscle atrophy, with no effective treatments available. Chronic inflammation, which impairs muscle regeneration and promotes proteolysis, is a key contributor to ALS-related muscle atrophy and a promising therapeutic target. Here, we applied extracellular vesicles (EVs) derived from regenerating skeletal muscles 14 days post-acute injury (CTXD14SkM-EVs), which possess a unique anti-inflammatory profile, to target muscle defects in ALS. We found that CTXD14SkM-EVs enhanced myoblast differentiation and fusion in a cellular muscle-wasting model induced by pro-inflammatory cytokine tumor necrosis factor alpha. Intramuscular administration of these EVs into an ALS mouse model mitigated muscle atrophy by promoting muscle regeneration, shifting macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 state, and suppressing the aberrant Nuclear Factor Kappa B (NF-κB) signaling, a key driver of muscle protein degradation. These results underscore the therapeutic potential of regenerating muscle-derived EVs for combating muscle atrophy in ALS.
Collapse
Affiliation(s)
- Jinghui Gao
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Science, University of Georgia, Athens, GA 30602, USA
| | - Aria Sikal
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Science, University of Georgia, Athens, GA 30602, USA
| | - Rachel Hankin
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Science, University of Georgia, Athens, GA 30602, USA
| | - Yaochao Zheng
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Science, University of Georgia, Athens, GA 30602, USA
| | - Elijah Sterling
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Science, University of Georgia, Athens, GA 30602, USA
| | - Kenny Chan
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Yao Yao
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Ayyadurai VAS, Deonikar P, Kamm RD. A molecular systems architecture of neuromuscular junction in amyotrophic lateral sclerosis. NPJ Syst Biol Appl 2025; 11:27. [PMID: 40097438 PMCID: PMC11914587 DOI: 10.1038/s41540-025-00501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
A molecular systems architecture is presented for the neuromuscular junction (NMJ) in order to provide a framework for organizing complexity of biomolecular interactions in amyotrophic lateral sclerosis (ALS) using a systematic literature review process. ALS is a fatal motor neuron disease characterized by progressive degeneration of the upper and lower motor neurons that supply voluntary muscles. The neuromuscular junction contains cells such as upper and lower motor neurons, skeletal muscle cells, astrocytes, microglia, Schwann cells, and endothelial cells, which are implicated in pathogenesis of ALS. This molecular systems architecture provides a multi-layered understanding of the intra- and inter-cellular interactions in the ALS neuromuscular junction microenvironment, and may be utilized for target identification, discovery of single and combination therapeutics, and clinical strategies to treat ALS.
Collapse
Affiliation(s)
- V A Shiva Ayyadurai
- Systems Biology Group, CytoSolve Research Division, CytoSolve, Inc., Cambridge, MA, UK.
- Open Science Institute, International Center for Integrative Systems, Cambridge, MA, UK.
| | - Prabhakar Deonikar
- Systems Biology Group, CytoSolve Research Division, CytoSolve, Inc., Cambridge, MA, UK
- Open Science Institute, International Center for Integrative Systems, Cambridge, MA, UK
| | - Roger D Kamm
- Departments of Biological Engineering and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, UK
| |
Collapse
|
10
|
Fan X, Peng Y, Li B, Wang X, Liu Y, Shen Y, Liu G, Zheng Y, Deng Q, Liu J, Yang L. Liver-Secreted Extracellular Vesicles Promote Cirrhosis-Associated Skeletal Muscle Injury Through mtDNA-cGAS/STING Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410439. [PMID: 39804962 PMCID: PMC11884600 DOI: 10.1002/advs.202410439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/15/2024] [Indexed: 01/16/2025]
Abstract
Skeletal muscle atrophy (sarcopenia) is a serious complication of liver cirrhosis, and chronic muscle inflammation plays a pivotal role in its pathologenesis. However, the detailed mechanism through which injured liver tissues mediate skeletal muscle inflammatory injury remains elusive. Here, it is reported that injured hepatocytes might secrete mtDNA-enriched extracellular vesicles (EVs) to trigger skeletal muscle inflammation by activating the cGAS-STING pathway. Briefly, injured liver secreted increased amounts of EVs into circulation, which are then engulfed primarily by macrophages in skeletal muscle and subsequently induce cGAS-STING signaling and its-mediated inflammatory response in muscles. In contrast, suppression of hepatic EV secretion or STING signaling significantly alleviated cirrhosis-induced skeletal muscle inflammation and muscle atrophy in vivo. Circulating EVs from cirrhotic patients showed higher levels of mtDNA, and the levels of EV-mtDNA positively correlated with the severity of liver injury. In injured hepatocytes, mitochondrial damage promoted the release of cytosolic mtDNA and the subsequent secretion of mtDNA-enriched EVs. This study reveals that injured hepatocyte-derived EVs induce skeletal muscle inflammation via the mtDNA‒STING axis, while targeted blockade of liver EV secretion or STING signaling represents a potential therapeutic approach for preventing cirrhosis-associated skeletal muscle atrophy.
Collapse
Affiliation(s)
- Xiaoli Fan
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Yunke Peng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Bo Li
- Department of RadiologyWest China HospitalSichuan UniversityChengdu610041China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Yifeng Liu
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Yi Shen
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Guofeng Liu
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Qiaoyu Deng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and ImmunologyCenter for Disease‐related Molecular NetworkWest China Hospital of Sichuan UniversityChengdu610041China
| | - Li Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver DiseaseWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
11
|
Yeh SL, Chen PY, Liao JW, Huang RL, Yu SH, Chen LN, Lee MH, Chen LW, Chen HW, Yang YC, Wu YL, Liu KL. The Protective Effects of Perch Essence Against Muscle Atrophy in Cancer Cachexia and Cisplatin Treatment. Curr Issues Mol Biol 2025; 47:152. [PMID: 40136406 PMCID: PMC11941385 DOI: 10.3390/cimb47030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Muscle atrophy, through several pathways including increased protein catabolism, leads to adverse effects in cachexia induced by cancer and chemotherapy. Perch essence (PE) is a perch extract rich in branched-chain amino acids and peptides. The present study initially investigated the effects of PE supplementation on muscle atrophy in a mouse model of cancer cachexia induced by C26 cancer cells and compared these effects with those of tryptone. Compared with the tumor-only group, we found that PE supplementation significantly improved body weight, muscle mass, maximum limb grip strength (MLGS), and myosin heavy chain expression in the muscles of tumor-bearing mice. PE also significantly inhibited the expression of factors related to protein degradation, oxidative stress, and inflammation, while enhancing the expression of antioxidant enzymes in tumor-bearing mice. These effects of PE were associated with an increased expression of phosphorylated Akt and forkhead box protein O1, along with a reduced expression of phosphorylated nuclear factor-κB p65 in the muscles of tumor-bearing mice. Furthermore, PE similarly increased MLGS and attenuated muscle atrophy in mice exposed to cisplatin by inhibiting protein degradation. All the therapeutic effects of PE supplementation mentioned above were generally greater than those of tryptone supplementation. These results suggest the potential of PE in protecting against muscle atrophy induced by tumors or chemotherapy.
Collapse
Affiliation(s)
- Shu-Lan Yeh
- Department of Nutrition, Chung Shan Medical University, Taichung 40203, Taiwan; (S.-L.Y.); (R.-L.H.); (S.-H.Y.)
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40203, Taiwan
| | - Pei-Yin Chen
- Department of Senior Citizen Welfare and Long-Term Care Business (Master Program), Hungkuang University, Taichung 433304, Taiwan;
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, College of Veterinary Medicine, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Ruo-Li Huang
- Department of Nutrition, Chung Shan Medical University, Taichung 40203, Taiwan; (S.-L.Y.); (R.-L.H.); (S.-H.Y.)
| | - Shu-Han Yu
- Department of Nutrition, Chung Shan Medical University, Taichung 40203, Taiwan; (S.-L.Y.); (R.-L.H.); (S.-H.Y.)
| | - Ling-Ni Chen
- Anyong Biotechnology Inc., Kaohsiung 827012, Taiwan; (L.-N.C.); (M.-H.L.)
| | - Mao-Hsiang Lee
- Anyong Biotechnology Inc., Kaohsiung 827012, Taiwan; (L.-N.C.); (M.-H.L.)
| | - Li-Wen Chen
- Division of Nutrition Therapy, Jen-Ai Hospital, Taichung 412224, Taiwan;
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan;
| | - Ya-Chen Yang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan;
| | - Yu-Ling Wu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung 40203, Taiwan; (S.-L.Y.); (R.-L.H.); (S.-H.Y.)
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40203, Taiwan
| |
Collapse
|
12
|
Cheng Y, Lin S, Cao Z, Yu R, Fan Y, Chen J. The role of chronic low-grade inflammation in the development of sarcopenia: Advances in molecular mechanisms. Int Immunopharmacol 2025; 147:114056. [PMID: 39799736 DOI: 10.1016/j.intimp.2025.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
With the exacerbation of global population aging, sarcopenia has become an increasingly recognized public health issue. Sarcopenia, characterized by a progressive decline in skeletal muscle mass, strength, and function, significantly impacts the quality of life in the elderly. Herein, we explore the role of chroniclow-gradeinflammation in the development of sarcopenia and its underlying molecular mechanisms, including chronic inflammation-associated signaling pathways, immunosenescence, obesity and lipid infiltration, gut microbiota dysbiosis and intestinal barrier disruption, and the decline of satellite cells. The interplay and interaction of these molecular mechanisms provide new perspectives on the complexity of the pathogenesis of sarcopenia and offer a theoretical foundation for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Ying Cheng
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040 China
| | - Shangjin Lin
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040 China
| | - Ziyi Cao
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040 China
| | - Runzhi Yu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040 China
| | - Yongqian Fan
- Department of Orthopedics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China.
| | - Jie Chen
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040 China.
| |
Collapse
|
13
|
Therdyothin A, Prokopidis K, Galli F, Witard OC, Isanejad M. The effects of omega-3 polyunsaturated fatty acids on muscle and whole-body protein synthesis: a systematic review and meta-analysis. Nutr Rev 2025; 83:e131-e143. [PMID: 38777807 PMCID: PMC11723138 DOI: 10.1093/nutrit/nuae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
CONTEXT Sarcopenia describes the age-related decline in skeletal muscle mass and strength that is driven, at least in part, by an imbalance between rates of muscle protein synthesis (MPS) and muscle protein breakdown. An expanding body of literature has examined the effect of omega-3 polyunsaturated fatty acid (n-3 PUFA) ingestion on MPS rates in older adults, with mixed findings. OBJECTIVE The aim of this systematic review and meta-analysis was to investigate the effectiveness of n-3 PUFA ingestion in stimulating rates of MPS and whole-body protein synthesis in healthy adults and clinical populations. DATA SOURCES Searches were conducted of the PubMed, Web of Science, Cochrane Library, and Scopus databases from inception until December 2022 for articles on randomized controlled trials comparing the effect of n-3 PUFA ingestion vs a control or placebo on rates of MPS and whole-body protein synthesis. The search yielded 302 studies, of which 8 were eligible for inclusion. DATA EXTRACTION The random effects inverse-variance model was used and standardized mean differences (SMDs) with 95%CIs were calculated to assess the pooled effect. Risk of bias was assessed by the Cochrane Risk-of-Bias 2 tool. DATA ANALYSIS The main analysis indicated no effect of n-3 PUFA supplementation on MPS rates (k = 6; SMD: 0.03; 95%CI, -0.35 to 0.40; I2 = 30%; P = .89). Subgroup analysis based on age, n-3 PUFA dose, duration of supplementation, and method used to measure fractional synthetic rate also revealed no effect of n-3 PUFA ingestion on MPS. In contrast, the main analysis demonstrated an effect of n-3 PUFA ingestion on increasing whole-body protein synthesis rates (k = 3; SMD: 0.51; 95%CI, 0.12-0.90; I2 = 0%; P = .01). CONCLUSIONS n-3 PUFA ingestion augments the stimulation of whole-body protein synthesis rates in healthy adults and clinical populations. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. 42022366986.
Collapse
Affiliation(s)
- Atiporn Therdyothin
- Department of Musculoskeletal and Ageing Science, University of Liverpool, Liverpool, L7 8TX, United Kingdom
- Department of Orthopedics, Police General Hospital, Bangkok, Pathum Wan, Bangkok, 10330, Thailand
| | - Konstantinos Prokopidis
- Department of Musculoskeletal and Ageing Science, University of Liverpool, Liverpool, L7 8TX, United Kingdom
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia, Perugia, Piazza dell'Università, 1, Perugia PG, 06123, Italy
| | - Oliver C Witard
- Centre of Human & Applied Physiological Research, King’s College London, London, SE1 1UL, United Kingdom
| | - Masoud Isanejad
- Department of Musculoskeletal and Ageing Science, University of Liverpool, Liverpool, L7 8TX, United Kingdom
| |
Collapse
|
14
|
Flaherty S, Song L, Albuquerque B, Rinaldi A, Piper M, Shanthappa D, Chen X, Stansfield J, Asano S, Pashos E, Ross T, Jagarlapudi S, Sheikh A, Zhang B, Wu Z. GDF15 Neutralization Ameliorates Muscle Atrophy and Exercise Intolerance in a Mouse Model of Mitochondrial Myopathy. J Cachexia Sarcopenia Muscle 2025; 16:e13715. [PMID: 39976232 PMCID: PMC11840706 DOI: 10.1002/jcsm.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 11/27/2024] [Accepted: 12/25/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Primary mitochondrial myopathies (PMMs) are disorders caused by mutations in genes encoding mitochondrial proteins and proteins involved in mitochondrial function. PMMs are characterized by loss of muscle mass and strength as well as impaired exercise capacity. Growth/Differentiation Factor 15 (GDF15) was reported to be highly elevated in PMMs and cancer cachexia. Previous studies have shown that GDF15 neutralization is effective in improving skeletal muscle mass and function in cancer cachexia. It remains to be determined if the inhibition of GDF15 could be beneficial for PMMs. The purpose of the present study is to assess whether treatment with a GDF15 neutralizing antibody can alleviate muscle atrophy and physical performance impairment in a mouse model of PMM. METHODS The effects of GDF15 neutralization on PMM were assessed using PolgD257A/D257A (POLG) mice. These mice express a proofreading-deficient version of the mitochondrial DNA polymerase gamma, leading to an increased rate of mutations in mitochondrial DNA (mtDNA). These animals display increased circulating GDF15 levels, reduced muscle mass and function, exercise intolerance, and premature aging. Starting at 9 months of age, the mice were treated with an anti-GDF15 antibody (mAB2) once per week for 12 weeks. Body weight, food intake, body composition, and muscle mass were assessed. Muscle function and exercise capacity were evaluated using in vivo concentric max force stimulation assays, forced treadmill running and voluntary home-cage wheel running. Mechanistic investigations were performed via muscle histology, bulk transcriptomic analysis, RT-qPCR and western blotting. RESULTS Anti-GDF15 antibody treatment ameliorated the metabolic phenotypes of the POLG animals, improving body weight (+13% ± 8%, p < 0.0001), lean mass (+13% ± 15%, p < 0.001) and muscle mass (+35% ± 24%, p < 0.001). Additionally, the treatment improved skeletal muscle max force production (+35% ± 43%, p < 0.001) and exercise performance, including treadmill (+40% ± 29%, p < 0.05) and voluntary wheel running (+320% ± 19%, p < 0.05). Mechanistically, the beneficial effects of GDF15 neutralization are linked to the reversal of the transcriptional dysregulation in genes involved in autophagy and proteasome signalling. The treatment also appears to dampen glucocorticoid signalling by suppressing circulating corticosterone levels in the POLG animals. CONCLUSIONS Our findings highlight the potential of GDF15 neutralization with a monoclonal antibody as a therapeutic avenue to enhance physical performance and mitigate adverse clinical outcomes in patients with PMM.
Collapse
Affiliation(s)
- Stephen E. Flaherty
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
- Obesity and ComplicationsEli LillyBostonMassachusettsUSA
| | - LouJin Song
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
- Diabetes, Obesity and MASH, Global Drug DiscoveryNovo NordiskLexingtonMassachusettsUSA
| | - Bina Albuquerque
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
- Diabetes, Obesity and MASH, Global Drug DiscoveryNovo NordiskLexingtonMassachusettsUSA
| | - Anthony Rinaldi
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
- Program Mamager, Preclinical Sciences, ToxicologyVertex PharmaceuticalsBostonMassachusettsUSA
| | - Mary Piper
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
| | | | - Xian Chen
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
| | - John Stansfield
- Biostatistics, Early Clinical DevelopmentPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
| | - Shoh Asano
- Inflammation and Immunology Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
| | - Evanthia Pashos
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
| | - Trenton Thomas Ross
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
| | - Srinath Jagarlapudi
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
| | - Abdul Sheikh
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
- Diabetes, Obesity and MASH, Global Drug DiscoveryNovo NordiskLexingtonMassachusettsUSA
| | - Bei Zhang
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
- Diabetes, Obesity and MASH, Global Drug DiscoveryNovo NordiskLexingtonMassachusettsUSA
| | - Zhidan Wu
- Internal Medicine Research UnitPfizer Worldwide Research, Development & MedicalCambridgeMassachusettsUSA
- Diabetes, Obesity and MASH, Global Drug DiscoveryNovo NordiskLexingtonMassachusettsUSA
| |
Collapse
|
15
|
Liu SY, Chen LK, Chung YT, Chen CW, Wu GL, Chang YC, Chen PR, Chang YI, Lin HF, Wu LY, Juan CC. Glucosamine inhibits myoblast proliferation and differentiation, and stimulates myotube atrophy through distinct signal pathways. J Nutr Biochem 2025; 135:109762. [PMID: 39251145 DOI: 10.1016/j.jnutbio.2024.109762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/01/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Glucosamine (GlcN) is one of the dietary supplements used in the treatment of osteoarthritis. Endogenously, GlcN is synthesized from glucose through the hexosamine pathway. In addition to ameliorating arthritis, several biological functions of GlcN have been reported, including insulin resistance in skeletal muscle. However, the regulatory role of GlcN in skeletal muscle development is not clear. We therefore investigated the effect of GlcN on myoblast proliferation, differentiation, and myotube development and their underlying mechanisms in C2C12 cells. Myoblast proliferation was measured by MTT assay. The expressions of MyoD, myogenin (MyoG), and myosin heavy chain (MyHC) were identified as determinants of myoblast differentiation. Expressions of atrogin-1 and muscle RING-finger protein-1 (MuRF-1) were identified as markers of myotube atrophy. The results show that treatment with GlcN significantly reduced myoblast proliferation and phosphorylation of Stat3 and S6K. These findings suggest that GlcN can inhibit growth of myoblasts through inhibiting phosphorylation of Stat3 and S6K. In addition, GlcN significantly suppressed the expression of MyoD, MyoG, and MyHC, as well as myotube formation. Pretreatment of C2C12 myoblast cells with ER stress inhibitors significantly blocked GlcN-inhibited MyHC expression and myotube formation. It can be concluded that GlcN suppressed myogenic differentiation via a pathway that involved ER stress. Moreover, GlcN decreased myotube diameter and expression of MyHC, as well as increased MuRF-1 in C2C12 myotubes. Meanwhile, GlcN also reduced the expressions of phosphorylated Akt and mTOR were stimulated after GlcN treatment in C2C12 myotubes. Thus, GlcN induced skeletal muscle atrophy by inhibiting the protein synthesis pathway. Chronic GlcN infusion also caused skeletal muscle atrophy in mice. In conclusion, GlcN regulated important stages of skeletal muscle development through different signaling pathways.
Collapse
Affiliation(s)
- Shui-Yu Liu
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Luen-Kui Chen
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ting Chung
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Wei Chen
- Department of Physical Education, Health, and Recreation, Teachers College, National Chiayi University, Chiayi, Taiwan
| | - Guan-Lin Wu
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chieh Chang
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pin-Rong Chen
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuan-I Chang
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Heng-Fu Lin
- Division of Trauma, Department of Surgery, Far-Eastern Memorial Hospital, New Taipei City, Taiwan; Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan.
| | - Liang-Yi Wu
- Department of Bioscience Technology, College of Science, Chung-Yuan Christian University, Chung Li, Taiwan.
| | - Chi-Chang Juan
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
16
|
You Y, Wang Y, Zhang G, Li Y. The Molecular Mechanisms and Treatment of Cancer-Related Cachexia. J Nutr Sci Vitaminol (Tokyo) 2025; 71:1-15. [PMID: 40024744 DOI: 10.3177/jnsv.71.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Cancer cachexia is a multifactorial syndrome characterized by persistent skeletal muscle loss, with or without fat loss, which cannot be completely reversed by traditional nutritional support and leads to impaired organ function. Cachexia seriously reduces the quality of life of (QOL) patients, affects the therapeutic effect against cancers, increases the incidence of complications, and is an important cause of death for patients with advanced cancers. To date, no effective medical intervention has completely reversed cachexia, and no medication has been agreed upon. Here, we describe recent advances in the diagnosis, molecular mechanism and treatment of cancer-related cachexia.
Collapse
Affiliation(s)
- Yongfei You
- Department of Medical Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University
- Department of Medical Oncology, The Third Affiliated Hospital, Jiangxi Medical College, Nanchang University, The First Hospital of Nanchang
| | - Yong Wang
- Department of Medical Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University
| | - Guohua Zhang
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University
| | - Yong Li
- Department of Medical Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University
| |
Collapse
|
17
|
Berriel Diaz M, Rohm M, Herzig S. Cancer cachexia: multilevel metabolic dysfunction. Nat Metab 2024; 6:2222-2245. [PMID: 39578650 DOI: 10.1038/s42255-024-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024]
Abstract
Cancer cachexia is a complex metabolic disorder marked by unintentional body weight loss or 'wasting' of body mass, driven by multiple aetiological factors operating at various levels. It is associated with many malignancies and significantly contributes to cancer-related morbidity and mortality. With emerging recognition of cancer as a systemic disease, there is increasing awareness that understanding and treatment of cancer cachexia may represent a crucial cornerstone for improved management of cancer. Here, we describe the metabolic changes contributing to body wasting in cachexia and explain how the entangled action of both tumour-derived and host-amplified processes induces these metabolic changes. We discuss energy homeostasis and possible ways that the presence of a tumour interferes with or hijacks physiological energy conservation pathways. In that context, we highlight the role played by metabolic cross-talk mechanisms in cachexia pathogenesis. Lastly, we elaborate on the challenges and opportunities in the treatment of this devastating paraneoplastic phenomenon that arise from the complex and multifaceted metabolic cross-talk mechanisms and provide a status on current and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Chair Molecular Metabolic Control, Technical University of Munich, Munich, Germany.
| |
Collapse
|
18
|
Grima-Terrén M, Campanario S, Ramírez-Pardo I, Cisneros A, Hong X, Perdiguero E, Serrano AL, Isern J, Muñoz-Cánoves P. Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets. Mol Aspects Med 2024; 100:101319. [PMID: 39312874 DOI: 10.1016/j.mam.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.
Collapse
Affiliation(s)
- Mercedes Grima-Terrén
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Silvia Campanario
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Ignacio Ramírez-Pardo
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Andrés Cisneros
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Xiaotong Hong
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | | | - Antonio L Serrano
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Pura Muñoz-Cánoves
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| |
Collapse
|
19
|
Pryce BR, Oles A, Talbert EE, Romeo MJ, Vaena S, Sharma S, Spadafora V, Tolliver L, Mahvi DA, Morgan KA, Lancaster WP, Beal E, Koren N, Watts B, Overstreet M, Berto S, Subramanian S, Calisir K, Crawford A, Neelon B, Ostrowski MC, Zimmers TA, Tidball JG, Wang DJ, Guttridge DC. Muscle inflammation is regulated by NF-κB from multiple cells to control distinct states of wasting in cancer cachexia. Cell Rep 2024; 43:114925. [PMID: 39475511 PMCID: PMC11774514 DOI: 10.1016/j.celrep.2024.114925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 07/01/2024] [Accepted: 10/14/2024] [Indexed: 12/01/2024] Open
Abstract
Although cancer cachexia is classically characterized as a systemic inflammatory disorder, emerging evidence indicates that weight loss also associates with local tissue inflammation. We queried the regulation of this inflammation and its causality to cachexia by exploring skeletal muscle, whose atrophy strongly associates with poor outcomes. Using multiple mouse models and patient samples, we show that cachectic muscle is marked by enhanced innate immunity. Nuclear factor κB (NF-κB) activity in multiple cells, including satellite cells, myofibers, and fibro-adipogenic progenitors, promotes macrophage expansion equally derived from infiltrating monocytes and resident cells. Moreover, NF-κB-activated cells and macrophages undergo crosstalk; NF-κB+ cells recruit macrophages to inhibit regeneration and promote atrophy but, interestingly, also protect myofibers, while macrophages stimulate NF-κB+ cells to sustain an inflammatory feedforward loop. Together, we propose that NF-κB functions in multiple cells in the muscle microenvironment to stimulate macrophages that both promote and protect against muscle wasting in cancer.
Collapse
Affiliation(s)
- Benjamin R Pryce
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alexander Oles
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Erin E Talbert
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Health and Human Physiology, and the Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Martin J Romeo
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Silvia Vaena
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sudarshana Sharma
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Victoria Spadafora
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lauren Tolliver
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - David A Mahvi
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Katherine A Morgan
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - William P Lancaster
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Eryn Beal
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Natlie Koren
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Bailey Watts
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Morgan Overstreet
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Suganya Subramanian
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kubra Calisir
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Anna Crawford
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Brian Neelon
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael C Ostrowski
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Teresa A Zimmers
- Department of Cell, Developmental, and Cancer Biology, Knight Cancer Institute, Portland, Oregon Health Science University, Portland, OR 97239, USA
| | - James G Tidball
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David J Wang
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Denis C Guttridge
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
20
|
Elgendy YS, Elzoghby S, AbuBakr N. Effect of zinc or copper supplementation on the efficacy and sustainability of botulinum toxin A "Botox" injection in masseter muscle of albino rats. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:102156. [PMID: 39550001 DOI: 10.1016/j.jormas.2024.102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
OBJECTIVES This study aimed to evaluate whether oral zinc or copper supplementation affected the efficacy and sustainability of botulinum toxin-A (BTX-A) injection in masseter muscle of albino rats. MATERIALS AND METHODS 32 adult male albino rats were allocated equally into four groups: group I (control), group II received 10U BTX-A injection, group III received 10U BTX-A injection + zinc (1 mg, 4 days pre-injection), and group IV received 10U BTX-A injection + copper (0.04 mg, 7 days post-injection). Rats were euthanized at 2 and 12 weeks (4 rats per subgroup) after injection. The masseter muscle was examined via histological, histochemical, histomorphometrical and real-time polymerase chain reaction (qRT-PCR) analyses. RESULTS The histopathological results of the BTX-A group showed atrophied muscle fibers with increased atrophy with time compared to the control group. The BTX-A + zinc group displayed more atrophy compared to BTX-A group. Conversely, the BTX-A + copper group demonstrated improved histology of muscle fibers compared to BTX-A and BTX-A + zinc groups. Histomorphometric analysis of Masson trichrome staining at 2 and 12 weeks revealed that collagen area percentage was the highest in the BTX-A + copper and control groups, followed by BTX-A and BTX-A + zinc groups. At 12 weeks, the nuclear factor kappa beta (NF-κB) mRNA expression was significantly higher in BTX-A + zinc and BTX-A groups compared to BTX-A + copper group and relative to the control group. CONCLUSION Zinc supplementation significantly improved the effectiveness and durability of BTX-A, whereas copper supplementation reduced its efficacy.
Collapse
Affiliation(s)
- Yasmin Saad Elgendy
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Sanaa Elzoghby
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Nermeen AbuBakr
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, Egypt.
| |
Collapse
|
21
|
Noh SG, Kim HW, Kim S, Chung KW, Jung YS, Yoon JH, Yu BP, Lee J, Chung HY. Senoinflammation as the underlying mechanism of aging and its modulation by calorie restriction. Ageing Res Rev 2024; 101:102503. [PMID: 39284417 DOI: 10.1016/j.arr.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Senoinflammation is characterized by an unresolved low-grade inflammatory process that affects multiple organs and systemic functions. This review begins with a brief overview of the fundamental concepts and frameworks of senoinflammation. It is widely involved in the aging of various organs and ultimately leads to progressive systemic degeneration. Senoinflammation underlying age-related inflammation, is causally related to metabolic dysregulation and the formation of senescence-associated secretory phenotype (SASP) during aging and age-related diseases. This review discusses the biochemical evidence and molecular biology data supporting the concept of senoinflammation and its regulatory processes, highlighting the anti-aging and anti-inflammatory effects of calorie restriction (CR). Experimental data from CR studies demonstrated effective suppression of various pro-inflammatory cytokines and chemokines, lipid accumulation, and SASP during aging. In conclusion, senoinflammation represents the basic mechanism that creates a microenvironment conducive to aging and age-related diseases. Furthermore, it serves as a potential therapeutic target for mitigating aging and age-related diseases.
Collapse
Affiliation(s)
- Sang Gyun Noh
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hyun Woo Kim
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Seungwoo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Young-Suk Jung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeong-Hyun Yoon
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jaewon Lee
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Hae Young Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
22
|
Delpino MV, Quarleri J. Aging mitochondria in the context of SARS-CoV-2: exploring interactions and implications. FRONTIERS IN AGING 2024; 5:1442323. [PMID: 39380657 PMCID: PMC11458564 DOI: 10.3389/fragi.2024.1442323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has presented global challenges with a diverse clinical spectrum, including severe respiratory complications and systemic effects. This review explores the intricate relationship between mitochondrial dysfunction, aging, and obesity in COVID-19. Mitochondria are vital for cellular energy provision and resilience against age-related macromolecule damage accumulation. They manage energy allocation in cells, activating adaptive responses and stress signals such as redox imbalance and innate immunity activation. As organisms age, mitochondrial function diminishes. Aging and obesity, linked to mitochondrial dysfunction, compromise the antiviral response, affecting the release of interferons, and worsening COVID-19 severity. Furthermore, the development of post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID has been associated with altered energy metabolism, and chronic immune dysregulation derived from mitochondrial dysfunction. Understanding the interplay between mitochondria, aging, obesity, and viral infections provides insights into COVID-19 pathogenesis. Targeting mitochondrial health may offer potential therapeutic strategies to mitigate severe outcomes and address long-term consequences in infected individuals.
Collapse
|
23
|
Su M, Qiu F, Li Y, Che T, Li N, Zhang S. Mechanisms of the NAD + salvage pathway in enhancing skeletal muscle function. Front Cell Dev Biol 2024; 12:1464815. [PMID: 39372950 PMCID: PMC11450036 DOI: 10.3389/fcell.2024.1464815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is crucial for cellular energy production, serving as a coenzyme in oxidation-reduction reactions. It also supports enzymes involved in processes such as DNA repair, aging, and immune responses. Lower NAD+ levels have been associated with various diseases, highlighting the importance of replenishing NAD+. Nicotinamide phosphoribosyltransferase (NAMPT) plays a critical role in the NAD+ salvage pathway, which helps sustain NAD+ levels, particularly in high-energy tissues like skeletal muscle.This review explores how the NAMPT-driven NAD+ salvage pathway influences skeletal muscle health and functionality in aging, type 2 diabetes mellitus (T2DM), and skeletal muscle injury. The review offers insights into enhancing the salvage pathway through exercise and NAD+ boosters as strategies to improve muscle performance. The findings suggest significant potential for using this pathway in the diagnosis, monitoring, and treatment of skeletal muscle conditions.
Collapse
Affiliation(s)
- Mengzhu Su
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
- School of Physical Education, Qingdao University, Qingdao, China
| | - Fanghui Qiu
- School of Physical Education, Qingdao University, Qingdao, China
| | - Yansong Li
- School of Physical Education, Qingdao University, Qingdao, China
| | - Tongtong Che
- School of Physical Education, Qingdao University, Qingdao, China
| | - Ningning Li
- School of Physical Education, Qingdao University, Qingdao, China
| | - Shuangshuang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
- School of Physical Education, Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Zhong S, Sun Z, Tian Q, Wen W, Chen F, Huang X, Li Y. Lactobacillus delbrueckii alleviates lipopolysaccharide-induced muscle inflammation and atrophy in weaned piglets associated with inhibition of endoplasmic reticulum stress and protein degradation. FASEB J 2024; 38:e70041. [PMID: 39250170 DOI: 10.1096/fj.202400969rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Pro-inflammatory cytokines in muscle play a pivotal role in physiological responses and in the pathophysiology of inflammatory disease and muscle atrophy. Lactobacillus delbrueckii (LD), as a kind of probiotics, has inhibitory effects on pro-inflammatory cytokines associated with various inflammatory diseases. This study was conducted to explore the effect of dietary LD on the lipopolysaccharide (LPS)-induced muscle inflammation and atrophy in piglets and to elucidate the underlying mechanism. A total of 36 weaned piglets (Duroc × Landrace × Large Yorkshire) were allotted into three groups with six replicates (pens) of two piglets: (1) Nonchallenged control; (2) LPS-challenged (LPS); (3) 0.2% LD diet and LPS-challenged (LD+LPS). On d 29, the piglets were injected intraperitoneally with LPS or sterilized saline, respectively. All piglets were slaughtered at 4 h after LPS or saline injection, the blood and muscle samples were collected for further analysis. Our results showed that dietary supplementation of LD significantly attenuated LPS-induced production of pro-inflammatory cytokines IL-6 and TNF-α in both serum and muscle of the piglets. Concomitantly, pretreating the piglets with LD also clearly inhibited LPS-induced nuclear translocation of NF-κB p65 subunits in the muscle, which correlated with the anti-inflammatory effects of LD on the muscle of piglets. Meanwhile, LPS-induced muscle atrophy, indicated by a higher expression of muscle atrophy F-box, muscle RING finger protein (MuRF1), forkhead box O 1, and autophagy-related protein 5 (ATG5) at the transcriptional level, whereas pretreatment with LD led to inhibition of these upregulations, particularly genes for MuRF1 and ATG5. Moreover, LPS-induced mRNA expression of endoplasmic reticulum stress markers, such as eukaryotic translational initiation factor 2α (eIF-2α) was suppressed by pretreatment with LD, which was accompanied by a decrease in the protein expression levels of IRE1α and GRP78. Additionally, LD significantly prevented muscle cell apoptotic death induced by LPS. Taken together, our data indicate that the anti-inflammatory effect of LD supply on muscle atrophy of piglets could be likely regulated by inhibiting the secretion of pro-inflammatory cytokines through the inactivation of the ER stress/NF-κB singling pathway, along with the reduction in protein degradation.
Collapse
Affiliation(s)
- Songshi Zhong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, P.R. China
| | - Zhiyuan Sun
- College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Qiyu Tian
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, P.R. China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, P.R. China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, P.R. China
| | - Wei Wen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, P.R. China
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, P.R. China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, P.R. China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, P.R. China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, P.R. China
| | - Yinghui Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, P.R. China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, P.R. China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, P.R. China
| |
Collapse
|
25
|
Belcher DJ, Kim N, Navarro‐Llinas B, Möller M, López‐Soriano FJ, Busquets S, Nader GA. Anabolic deficits and divergent unfolded protein response underlie skeletal and cardiac muscle growth impairments in the Yoshida hepatoma tumor model of cancer cachexia. Physiol Rep 2024; 12:e70044. [PMID: 39294861 PMCID: PMC11410559 DOI: 10.14814/phy2.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer cachexia manifests as whole body wasting, however, the precise mechanisms governing the alterations in skeletal muscle and cardiac anabolism have yet to be fully elucidated. In this study, we explored changes in anabolic processes in both skeletal and cardiac muscles in the Yoshida AH-130 ascites hepatoma model of cancer cachexia. AH-130 tumor-bearing rats experienced significant losses in body weight, skeletal muscle, and heart mass. Skeletal and cardiac muscle loss was associated with decreased ribosomal (r)RNA, and hypophosphorylation of the eukaryotic factor 4E binding protein 1. Endoplasmic reticulum stress was evident by higher activating transcription factor mRNA in skeletal muscle and growth arrest and DNA damage-inducible protein (GADD)34 mRNA in both skeletal and cardiac muscles. Tumors provoked an increase in tissue expression of interferon-γ in the heart, while an increase in interleukin-1β mRNA was apparent in both skeletal and cardiac muscles. We conclude that compromised skeletal muscle and heart mass in the Yoshida AH-130 ascites hepatoma model involves a marked reduction translational capacity and efficiency. Furthermore, our observations suggest that endoplasmic reticulum stress and tissue production of pro-inflammatory factors may play a role in the development of skeletal and cardiac muscle wasting.
Collapse
Affiliation(s)
- Daniel J. Belcher
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Nina Kim
- Department of KinesiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Blanca Navarro‐Llinas
- Department of Biochemistry and Molecular MedicineUniversity of BarcelonaBarcelonaSpain
| | - Maria Möller
- Department of Biochemistry and Molecular MedicineUniversity of BarcelonaBarcelonaSpain
| | - Francisco J. López‐Soriano
- Department of Biochemistry and Molecular MedicineUniversity of BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de BarcelonaBarcelonaSpain
| | - Silvia Busquets
- Department of Biochemistry and Molecular MedicineUniversity of BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de BarcelonaBarcelonaSpain
| | - Gustavo A. Nader
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of KinesiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Penn State Cancer InstituteThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
26
|
Epstein SA, Doles JD, Dasgupta A. KLF10: a point of convergence in cancer cachexia. Curr Opin Support Palliat Care 2024; 18:120-125. [PMID: 39007915 PMCID: PMC11293965 DOI: 10.1097/spc.0000000000000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
PURPOSE OF THE REVIEW Cancer-associated cachexia is a wasting syndrome entailing loss in body mass and a shortened life expectancy. There is currently no effective treatment to abrogate this syndrome, which leads to 20-30% of deaths in patients with cancer. While there have been advancements in defining signaling factors/pathways in cancer-induced muscle wasting, targeting the same in the clinic has not been as successful. Krüppel-like factor 10 (KLF10), a transcription factor implicated in muscle regulation, is regulated by the transforming growth factor-beta signaling pathway. This review proposes KLF10 as a potential convergence point of diverse signaling pathways involved in muscle wasting. RECENT FINDINGS KLF10 was discovered as a target of transforming growth factor-beta decades ago but more recently it has been shown that deletion of KLF10 rescues cancer-induced muscle wasting. Moreover, KLF10 has also been shown to bind key atrophy genes associated with muscle atrophy in vitro . SUMMARY There is an elevated need to explore targets in cachexia, which will successfully translate into the clinic. Investigating a convergence point downstream of multiple signaling pathways might hold promise in developing effective therapies for cachexia.
Collapse
Affiliation(s)
- Savannah A Epstein
- Department of Anatomy, Cell Biology and Physiology, Indiana School of Medicine, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
27
|
Bolado-Carrancio A, Tapia O, Rodríguez-Rey JC. Ubiquitination Insight from Spinal Muscular Atrophy-From Pathogenesis to Therapy: A Muscle Perspective. Int J Mol Sci 2024; 25:8800. [PMID: 39201486 PMCID: PMC11354275 DOI: 10.3390/ijms25168800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most frequent causes of death in childhood. The disease's molecular basis is deletion or mutations in the SMN1 gene, which produces reduced survival motor neuron protein (SMN) levels. As a result, there is spinal motor neuron degeneration and a large increase in muscle atrophy, in which the ubiquitin-proteasome system (UPS) plays a significant role. In humans, a paralogue of SMN1, SMN2 encodes the truncated protein SMNΔ7. Structural differences between SMN and SMNΔ7 affect the interaction of the proteins with UPS and decrease the stability of the truncated protein. SMN loss affects the general ubiquitination process by lowering the levels of UBA1, one of the main enzymes in the ubiquitination process. We discuss how SMN loss affects both SMN stability and the general ubiquitination process, and how the proteins involved in ubiquitination could be used as future targets for SMA treatment.
Collapse
Affiliation(s)
- Alfonso Bolado-Carrancio
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Olga Tapia
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas, Universidad de la Laguna, 38200 La Laguna, Spain
| | - José C. Rodríguez-Rey
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| |
Collapse
|
28
|
Gilda JE, Nahar A, Kasiviswanathan D, Tropp N, Gilinski T, Lahav T, Alexandrovich D, Mandel-Gutfreund Y, Park S, Shemer S. Proteasome gene expression is controlled by coordinated functions of multiple transcription factors. J Cell Biol 2024; 223:e202402046. [PMID: 38767572 PMCID: PMC11104393 DOI: 10.1083/jcb.202402046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Proteasome activity is crucial for cellular integrity, but how tissues adjust proteasome content in response to catabolic stimuli is uncertain. Here, we demonstrate that transcriptional coordination by multiple transcription factors is required to increase proteasome content and activate proteolysis in catabolic states. Using denervated mouse muscle as a model system for accelerated proteolysis in vivo, we reveal that a two-phase transcriptional program activates genes encoding proteasome subunits and assembly chaperones to boost an increase in proteasome content. Initially, gene induction is necessary to maintain basal proteasome levels, and in a more delayed phase (7-10 days after denervation), it stimulates proteasome assembly to meet cellular demand for excessive proteolysis. Intriguingly, the transcription factors PAX4 and α-PALNRF-1 control the expression of proteasome among other genes in a combinatorial manner, driving cellular adaptation to muscle denervation. Consequently, PAX4 and α-PALNRF-1 represent new therapeutic targets to inhibit proteolysis in catabolic diseases (e.g., type-2 diabetes, cancer).
Collapse
Affiliation(s)
- Jennifer E Gilda
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | | | | | - Nadav Tropp
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Tamar Gilinski
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Tamar Lahav
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | | | | | | | - Shenhav Shemer
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
29
|
Kok HJ, Fletcher DB, Oster JC, Conover CF, Barton ER, Yarrow JF. Transcriptomics reveals transient and dynamic muscle fibrosis and atrophy differences following spinal cord injury in rats. J Cachexia Sarcopenia Muscle 2024; 15:1309-1323. [PMID: 38764311 PMCID: PMC11294049 DOI: 10.1002/jcsm.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/24/2024] [Accepted: 03/10/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND The rate and magnitude of skeletal muscle wasting after severe spinal cord injury (SCI) exceeds most other disuse conditions. Assessing the time course of molecular changes can provide insight into the progression of muscle wasting post-SCI. The goals of this study were (1) to identify potential targets that may prevent the pathologic features of SCI in soleus muscles and (2) to establish therapeutic windows for treating these pathologic changes. METHODS Four-month-old Sprague-Dawley male rats received T9 laminectomy (SHAM surgery) or severe contusion SCI. Hindlimb locomotor function was assessed weekly, with soleus muscles obtained 1 week, 2 weeks, 1 month and 3 months post-surgery (n = 6-7 per group per timepoint). RNA was extracted from muscles for bulk RNA-sequencing analysis (n = 3-5 per group per timepoint). Differentially expressed genes (DEGs) were evaluated between age-matched SHAM and SCI animals. Myofiber size, muscle fibre type and fibrosis were assessed on contralateral muscles. RESULTS SCI produced immediate and persistent hindlimb paralysis, with Basso-Beattie-Bresnahan locomotor scores remaining below 7 throughout the study, contributing to a progressive 25-50% lower soleus mass and myofiber atrophy versus SHAM (P < 0.05 at all timepoints). Transcriptional comparisons of SCI versus SHAM resulted in 184 DEGs (1 week), 436 DEGs (2 weeks), 133 DEGs (1 month) and 1200 DEGs (3 months). Upregulated atrophy-related genes included those associated with cell senescence, nuclear factor kappa B, ubiquitin proteasome and unfolded protein response pathways, along with upregulated genes that negatively influence muscle growth through the transforming growth factor beta pathway and inhibition of insulin-like growth factor-I/Akt/mechanistic target of rapamycin and p38/mitogen-activated protein kinase signalling. Genes associated with extracellular matrix (ECM), including collagens, collagen crosslinkers, proteoglycans and those regulating ECM integrity, were enriched within upregulated DEGs at 1 week but subsequently downregulated at 2 weeks and 3 months and were accompanied by >50% higher ECM areas and hydroxyproline levels in SCI muscles (P < 0.05). Myofiber remodelling genes were enriched in upregulated DEGs at 2 weeks and 1 month and were downregulated at 3 months. Genes that regulate neuromuscular junction remodelling were evident in muscles post-SCI, along with slow-to-fast fibre-type shifts: 1 week and 2 weeks SCI muscles were composed of 90% myosin heavy chain (MHC) type I fibres, which decreased to only 16% at 3 months and were accompanied by 50% fibres containing MHC IIX (P < 0.05). Metabolism genes were enriched in upregulated DEGs at 1 month and were further enriched at 3 months. CONCLUSIONS Our results substantiate many known pathologic features of SCI-induced wasting in rat skeletal muscle and identify a progressive and dynamic transcriptional landscape within the post-SCI soleus. Future studies are warranted to consider these therapeutic treatment windows when countering SCI muscle pathology.
Collapse
Affiliation(s)
- Hui Jean Kok
- Department of Applied Physiology and KinesiologyCollege of Health and Human Performance, University of FloridaGainesvilleFLUSA
- Research Service, Malcolm Randall Department of Veterans Affairs Medical CenterNorth Florida/South Georgia Veterans Health SystemGainesvilleFLUSA
| | - Drew B. Fletcher
- Department of Applied Physiology and KinesiologyCollege of Health and Human Performance, University of FloridaGainesvilleFLUSA
| | - Jacob C. Oster
- Department of Applied Physiology and KinesiologyCollege of Health and Human Performance, University of FloridaGainesvilleFLUSA
| | - Christine F. Conover
- Research Service, Malcolm Randall Department of Veterans Affairs Medical CenterNorth Florida/South Georgia Veterans Health SystemGainesvilleFLUSA
| | - Elisabeth R. Barton
- Department of Applied Physiology and KinesiologyCollege of Health and Human Performance, University of FloridaGainesvilleFLUSA
| | - Joshua F. Yarrow
- Research Service, Malcolm Randall Department of Veterans Affairs Medical CenterNorth Florida/South Georgia Veterans Health SystemGainesvilleFLUSA
- Division of Endocrinology, Diabetes and MetabolismCollege of Medicine, University of FloridaGainesvilleFLUSA
- Brain Rehabilitation Research Center, Malcolm Randall Department of Veterans Affairs Medical CenterNorth Florida/South Georgia Veterans Health SystemGainesvilleFLUSA
- Eastern Colorado Geriatrics Research, Education, and Clinical CenterRocky Mountain Regional Veterans Affairs Medical Center, VA Eastern Colorado Health Care SystemAuroraCOUSA
| |
Collapse
|
30
|
Boire A, Burke K, Cox TR, Guise T, Jamal-Hanjani M, Janowitz T, Kaplan R, Lee R, Swanton C, Vander Heiden MG, Sahai E. Why do patients with cancer die? Nat Rev Cancer 2024; 24:578-589. [PMID: 38898221 PMCID: PMC7616303 DOI: 10.1038/s41568-024-00708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/21/2024]
Abstract
Cancer is a major cause of global mortality, both in affluent countries and increasingly in developing nations. Many patients with cancer experience reduced life expectancy and have metastatic disease at the time of death. However, the more precise causes of mortality and patient deterioration before death remain poorly understood. This scarcity of information, particularly the lack of mechanistic insights, presents a challenge for the development of novel treatment strategies to improve the quality of, and potentially extend, life for patients with late-stage cancer. In addition, earlier deployment of existing strategies to prolong quality of life is highly desirable. In this Roadmap, we review the proximal causes of mortality in patients with cancer and discuss current knowledge about the interconnections between mechanisms that contribute to mortality, before finally proposing new and improved avenues for data collection, research and the development of treatment strategies that may improve quality of life for patients.
Collapse
Affiliation(s)
- Adrienne Boire
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katy Burke
- University College London Hospitals NHS Foundation Trust and Central and North West London NHS Foundation Trust Palliative Care Team, London, UK
| | - Thomas R Cox
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| | - Theresa Guise
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mariam Jamal-Hanjani
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
- Cancer Research UK Lung Centre of Excellence, University College London Cancer Institute, London, UK
| | - Tobias Janowitz
- Cold Spring Harbour Laboratory, Cold Spring Harbour, New York, NY, USA
- Northwell Health Cancer Institute, New York, NY, USA
| | - Rosandra Kaplan
- Paediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Lee
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Charles Swanton
- Department of Oncology, University College London Hospitals, London, UK
- Cancer Research UK Lung Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
31
|
Caminiti G, Volterrani M, Iellamo F, Marazzi G, Silvestrini M, Giamundo DM, Morsella V, Di Biasio D, Franchini A, Perrone MA. Exercise training for patients with heart failure and preserved ejection fraction. A narrative review. Monaldi Arch Chest Dis 2024. [PMID: 39058025 DOI: 10.4081/monaldi.2024.3030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 07/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a significant global health challenge, accounting for up to 50% of all heart failure cases and predominantly affecting the elderly and women. Despite advancements in therapeutic strategies, HFpEF's complexity poses substantial challenges in management, particularly due to its high comorbidity burden, including renal failure, atrial fibrillation, and obesity, among others. These comorbidities not only complicate the pathophysiology of HFpEF but also exacerbate its symptoms, necessitating a personalized approach to treatment focused on comorbidity management and symptom alleviation. In heart failure with reduced ejection fraction, exercise training (ET) was effective in improving exercise tolerance, quality of life, and reducing hospitalizations. However, the efficacy of ET in HFpEF patients remains less understood, with limited studies showing mixed results. Exercise intolerance is a key symptom in HFpEF patients, and it has a multifactorial origin since both central and peripheral oxygen mechanisms of transport and utilization are often compromised. Recent evidence underscores the potential of supervised ET in enhancing exercise tolerance and quality of life among HFpEF patients; however, the literature remains sparse and predominantly consists of small-scale studies. This review highlights the critical role of exercise intolerance in HFpEF and synthesizes current knowledge on the benefits of ET. It also calls for a deeper understanding and further research into exercise-based interventions and their underlying mechanisms, emphasizing the need for larger, well-designed studies to evaluate the effectiveness of ET in improving outcomes for HFpEF patients.
Collapse
Affiliation(s)
- Giuseppe Caminiti
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University, Rome; Cardiology Rehabilitation Unit, IRCCS San Raffaele, Rome.
| | - Maurizio Volterrani
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University, Rome; Cardiology Rehabilitation Unit, IRCCS San Raffaele, Rome.
| | - Ferdinando Iellamo
- Division of Cardiology and Sports Medicine, Department of Clinical Sciences and Translational Medicine, Tor Vergata University, Rome.
| | | | - Marco Silvestrini
- Division of Cardiology and Sports Medicine, Department of Clinical Sciences and Translational Medicine, Tor Vergata University, Rome.
| | | | | | | | | | - Marco Alfonso Perrone
- Division of Cardiology and Sports Medicine, Department of Clinical Sciences and Translational Medicine, Tor Vergata University, Rome.
| |
Collapse
|
32
|
Lee EJ, Charles JF, Sinha I, Neppl RL. Loss of HNRNPU in Skeletal Muscle Increases Intramuscular Infiltration of Ly6C Positive Cells, leading to Muscle Atrophy through Activation of NF-κB Signaling. Adv Biol (Weinh) 2024; 8:e2400152. [PMID: 38797891 DOI: 10.1002/adbi.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Heterogeneous nuclear ribonucleoprotein U (hnRNPU) is known to play multiple biological roles by regulating transcriptional expression, RNA splicing, RNA stability, and chromatin structure in a tissue-dependent manner. The role of hnRNPU in skeletal muscle development and maintenance has not been previously evaluated. In this study, skeletal muscle specific hnRNPU knock out mice is utilized and evaluated skeletal muscle mass and immune cell infiltration through development. By 4 weeks, muscle-specific hnRNPU knockout mice revealed Ly6C+ monocyte infiltration into skeletal muscle, which preceded muscle atrophy. Canonical NF-kB signaling is activated in a myofiber-autonomous manner with hnRNPU repression. Inducible hnRNPU skeletal muscle knockout mice further demonstrated that deletion of hnRNPU in adulthood is sufficient to cause muscle atrophy, suggesting that hnRNPU's role in muscle maintenance is not during development alone. Treatment with salirasib, to inhibit proliferation of immune cells, prevents muscle atrophy in muscle-specific hnRNPU knock out mice, indicating that immune cell infiltration plays causal role in muscle atrophy of hnRNPU knock out mice. Overall, the findings suggest that loss of hnRNPU triggers muscle inflammation and activates NF-κB signaling in a cell-autonomous manner, culminating in muscle atrophy.
Collapse
Affiliation(s)
- Eun-Joo Lee
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Indranil Sinha
- Division of Plastic and reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ronald L Neppl
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
33
|
Kamal KY, Othman MA, Kim JH, Lawler JM. Bioreactor development for skeletal muscle hypertrophy and atrophy by manipulating uniaxial cyclic strain: proof of concept. NPJ Microgravity 2024; 10:62. [PMID: 38862543 PMCID: PMC11167039 DOI: 10.1038/s41526-023-00320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/15/2023] [Indexed: 06/13/2024] Open
Abstract
Skeletal muscles overcome terrestrial, gravitational loading by producing tensile forces that produce movement through joint rotation. Conversely, the microgravity of spaceflight reduces tensile loads in working skeletal muscles, causing an adaptive muscle atrophy. Unfortunately, the design of stable, physiological bioreactors to model skeletal muscle tensile loading during spaceflight experiments remains challenging. Here, we tested a bioreactor that uses initiation and cessation of cyclic, tensile strain to induce hypertrophy and atrophy, respectively, in murine lineage (C2C12) skeletal muscle myotubes. Uniaxial cyclic stretch of myotubes was conducted using a StrexCell® (STB-1400) stepper motor system (0.75 Hz, 12% strain, 60 min day^-1). Myotube groups were assigned as follows: (a) quiescent over 2- or (b) 5-day (no stretch), (c) experienced 2-days (2dHY) or (d) 5-days (5dHY) of cyclic stretch, or (e) 2-days of cyclic stretch followed by a 3-day cessation of stretch (3dAT). Using ß-sarcoglycan as a sarcolemmal marker, mean myotube diameter increased significantly following 2dAT (51%) and 5dAT (94%) vs. matched controls. The hypertrophic, anabolic markers talin and Akt phosphorylation (Thr308) were elevated with 2dHY but not in 3dAT myotubes. Inflammatory, catabolic markers IL-1ß, IL6, and NF-kappaB p65 subunit were significantly higher in the 3dAT group vs. all other groups. The ratio of phosphorylated FoxO3a/total FoxO3a was significantly lower in 3dAT than in the 2dHY group, consistent with elevated catabolic signaling during unloading. In summary, we demonstrated proof-of-concept for a spaceflight research bioreactor, using uniaxial cyclic stretch to produce myotube hypertrophy with increased tensile loading, and myotube atrophy with subsequent cessation of stretch.
Collapse
Affiliation(s)
- Khaled Y Kamal
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA.
| | - Mariam Atef Othman
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Joo-Hyun Kim
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - John M Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| |
Collapse
|
34
|
Sato R, Vatic M, Peixoto da Fonseca GW, Anker SD, von Haehling S. Biological basis and treatment of frailty and sarcopenia. Cardiovasc Res 2024:cvae073. [PMID: 38828887 DOI: 10.1093/cvr/cvae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 06/05/2024] Open
Abstract
In an ageing society, the importance of maintaining healthy life expectancy has been emphasized. As a result of age-related decline in functional reserve, frailty is a state of increased vulnerability and susceptibility to adverse health outcomes with a serious impact on healthy life expectancy. The decline in skeletal muscle mass and function, also known as sarcopenia, is key in the development of physical frailty. Both frailty and sarcopenia are highly prevalent in patients not only with advanced age but also in patients with illnesses that exacerbate their progression like heart failure (HF), cancer, or dementia, with the prevalence of frailty and sarcopenia in HF patients reaching up to 50-75% and 19.5-47.3%, respectively, resulting in 1.5-3 times higher 1-year mortality. The biological mechanisms of frailty and sarcopenia are multifactorial, complex, and not yet fully elucidated, ranging from DNA damage, proteostasis impairment, and epigenetic changes to mitochondrial dysfunction, cellular senescence, and environmental factors, many of which are further linked to cardiac disease. Currently, there is no gold standard for the treatment of frailty and sarcopenia, however, growing evidence supports that a combination of exercise training and nutritional supplement improves skeletal muscle function and frailty, with a variety of other therapies being devised based on the underlying pathophysiology. In this review, we address the involvement of frailty and sarcopenia in cardiac disease and describe the latest insights into their biological mechanisms as well as the potential for intervention through exercise, diet, and specific therapies.
Collapse
Affiliation(s)
- Ryosuke Sato
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Mirela Vatic
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Guilherme Wesley Peixoto da Fonseca
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité; German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
35
|
Snauwaert E, De Buyser S, Van Biesen W, Raes A, Glorieux G, Collard L, Van Hoeck K, Van Dyck M, Godefroid N, Walle JV, Eloot S. Indoxyl Sulfate Contributes to Impaired Height Velocity in (Pre)School Children. Kidney Int Rep 2024; 9:1674-1683. [PMID: 38899199 PMCID: PMC11184389 DOI: 10.1016/j.ekir.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Growth failure is considered the most important clinical outcome parameter in childhood chronic kidney disease (CKD). Central to the pathophysiology of growth failure is the presence of a chronic proinflammatory state, presumed to be partly driven by the accumulation of uremic toxins. In this study, we assessed the association between uremic toxin concentrations and height velocity in a longitudinal multicentric prospective pediatric CKD cohort of (pre)school-aged children and children during pubertal stages. Methods In a prospective, multicentric observational study, a selection of uremic toxin levels of children (aged 0-18 years) with CKD stage 1 to 5D was assessed every 3 months (maximum 2 years) along with clinical growth parameters. Linear mixed models with a random slope for age and a random intercept for child were fitted for height (in cm and SD scores [SDS]). A piecewise linear association between age and height was assumed. Results Data analysis included data from 560 visits of 81 children (median age 9.4 years; 2/3 male). In (pre)school aged children (aged 2-12 years), a 10% increase in concurrent indoxyl sulfate (IxS, total) concentration resulted in an estimated mean height velocity decrease of 0.002 SDS/yr (P < 0.05), given that CKD stage, growth hormone (GH), bicarbonate concentration, and dietary protein intake were held constant. No significant association with height velocity was found in children during pubertal stages (aged >12 years). Conclusion The present study demonstrated that, especially IxS contributes to a lower height velocity in (pre)school children, whereas we could not find a role for uremic toxins with height velocity during pubertal stages.
Collapse
Affiliation(s)
- Evelien Snauwaert
- Department of Pediatric Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Stefanie De Buyser
- Biostatistics Unit, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Wim Van Biesen
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Ann Raes
- Department of Pediatric Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Griet Glorieux
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Laure Collard
- Department of Pediatric Nephrology, CHC Liège, Ghent, Belgium
| | - Koen Van Hoeck
- Department of Pediatric Nephrology, Antwerp University Hospital, Antwerp, Belgium
| | - Maria Van Dyck
- Department of Pediatric Nephrology, University Hospital Leuven, Leuven, Belgium
| | - Nathalie Godefroid
- Department of Pediatric Nephrology, University Hospital Saint-Luc, Brussels, Belgium
| | - Johan Vande Walle
- Department of Pediatric Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Sunny Eloot
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
36
|
Fowler A, Knaus KR, Khuu S, Khalilimeybodi A, Schenk S, Ward SR, Fry AC, Rangamani P, McCulloch AD. Network model of skeletal muscle cell signalling predicts differential responses to endurance and resistance exercise training. Exp Physiol 2024; 109:939-955. [PMID: 38643471 PMCID: PMC11140181 DOI: 10.1113/ep091712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/20/2024] [Indexed: 04/22/2024]
Abstract
Exercise-induced muscle adaptations vary based on exercise modality and intensity. We constructed a signalling network model from 87 published studies of human or rodent skeletal muscle cell responses to endurance or resistance exercise in vivo or simulated exercise in vitro. The network comprises 259 signalling interactions between 120 nodes, representing eight membrane receptors and eight canonical signalling pathways regulating 14 transcriptional regulators, 28 target genes and 12 exercise-induced phenotypes. Using this network, we formulated a logic-based ordinary differential equation model predicting time-dependent molecular and phenotypic alterations following acute endurance and resistance exercises. Compared with nine independent studies, the model accurately predicted 18/21 (85%) acute responses to resistance exercise and 12/16 (75%) acute responses to endurance exercise. Detailed sensitivity analysis of differential phenotypic responses to resistance and endurance training showed that, in the model, exercise regulates cell growth and protein synthesis primarily by signalling via mechanistic target of rapamycin, which is activated by Akt and inhibited in endurance exercise by AMP-activated protein kinase. Endurance exercise preferentially activates inflammation via reactive oxygen species and nuclear factor κB signalling. Furthermore, the expected preferential activation of mitochondrial biogenesis by endurance exercise was counterbalanced in the model by protein kinase C in response to resistance training. This model provides a new tool for investigating cross-talk between skeletal muscle signalling pathways activated by endurance and resistance exercise, and the mechanisms of interactions such as the interference effects of endurance training on resistance exercise outcomes.
Collapse
Affiliation(s)
- Annabelle Fowler
- Department of BioengineeringUniversity of California SanDiegoLa JollaCaliforniaUSA
| | - Katherine R. Knaus
- Department of BioengineeringUniversity of California SanDiegoLa JollaCaliforniaUSA
| | - Stephanie Khuu
- Department of BioengineeringUniversity of California SanDiegoLa JollaCaliforniaUSA
| | - Ali Khalilimeybodi
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Simon Schenk
- Department of Orthopaedic SurgeryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Samuel R. Ward
- Department of Orthopaedic SurgeryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Andrew C. Fry
- Department of Health, Sport and Exercise SciencesUniversity of KansasLawrenceKansasUSA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Andrew D. McCulloch
- Department of BioengineeringUniversity of California SanDiegoLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
37
|
Yue M, Qin Z, Hu L, Ji H. Understanding cachexia and its impact on lung cancer and beyond. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:95-105. [PMID: 39169934 PMCID: PMC11332896 DOI: 10.1016/j.pccm.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 08/23/2024]
Abstract
Cancer cachexia is a multifactorial syndrome characterized by loss of body weight secondary to skeletal muscle atrophy and adipose tissue wasting. It not only has a significant impact on patients' quality of life but also reduces the effectiveness and tolerability of anticancer therapy, leading to poor clinical outcomes. Lung cancer is a prominent global health concern, and the prevalence of cachexia is high among patients with lung cancer. In this review, we integrate findings from studies of lung cancer and other types of cancer to provide an overview of recent advances in cancer cachexia. Our focus includes topics such as the clinical criteria for diagnosis and staging, the function and mechanism of selected mediators, and potential therapeutic strategies for clinical application. A comprehensive summary of current studies will improve our understanding of the mechanisms underlying cachexia and contribute to the identification of high-risk patients, the development of effective treatment strategies, and the design of appropriate therapeutic regimens for patients at different disease stages.
Collapse
Affiliation(s)
- Meiting Yue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Qin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
38
|
Ma Y, Pan Y, Li Y, Guan H, Dai G. Prognosis of patients with advanced bile tract carcinoma: assessment using the modified-Gustave Roussy Immune Score (mGRIm-s) as a clinico-immunological tool. J Cancer Res Clin Oncol 2024; 150:247. [PMID: 38722378 PMCID: PMC11081983 DOI: 10.1007/s00432-024-05771-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND The emergence of immune checkpoint inhibitors (ICIs) has enhanced survival outcomes for certain patients with advanced biliary tract carcinoma (BTC). Pinpointing those who would benefit most from immunotherapy remains elusive. We investigated the predictive value of the modified Gustave Roussy Immune Score (mGRIm-s) in BTC patients treated with ICIs. METHODS Data from 110 patients at Chinese People's Liberation Army General Hospital, spanning September 2015 to April 2021, were analyzed. The median follow-up duration was 38.7 months as of December 2023. Risk factors included low albumin, high lactate dehydrogenase, and an elevated neutrophil-lymphocyte ratio. Patients were stratified into low (patients with no risk factors) and high (patients with at least one risk factor) mGRIm-s groups based on these factors. RESULTS Survival outcomes post-immunotherapy favored the low mGRIm-s group, with significantly improved progression-free survival (PFS) and overall survival (OS) (8.50 months vs. 3.70 months and 21.60 months vs. 8.00 months). COX regression confirmed an elevated risk in the high mGRIm-s group. Subgroup analysis highlighted a notable survival advantage for low mGRIm-s patients receiving first-line immunotherapy. CONCLUSIONS This study underscores mGRIm-s's potential in predicting immunotherapy response in BTC, paving the way for more targeted approaches.
Collapse
Affiliation(s)
- Yue Ma
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Medical Oncology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- Department of Medical Oncology, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yuting Pan
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Medical Oncology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
- Department of Medical Oncology, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yue Li
- Department of Medical Oncology, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Huafang Guan
- Yingtan City People's Hospital, Yingtan, 335000, China
| | - Guanghai Dai
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Medical Oncology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
- Department of Medical Oncology, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
39
|
Karafoulidou E, Kesidou E, Theotokis P, Konstantinou C, Nella MK, Michailidou I, Touloumi O, Polyzoidou E, Salamotas I, Einstein O, Chatzisotiriou A, Boziki MK, Grigoriadis N. Systemic LPS Administration Stimulates the Activation of Non-Neuronal Cells in an Experimental Model of Spinal Muscular Atrophy. Cells 2024; 13:785. [PMID: 38727321 PMCID: PMC11083572 DOI: 10.3390/cells13090785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deficiency of the survival motor neuron (SMN) protein. Although SMA is a genetic disease, environmental factors contribute to disease progression. Common pathogen components such as lipopolysaccharides (LPS) are considered significant contributors to inflammation and have been associated with muscle atrophy, which is considered a hallmark of SMA. In this study, we used the SMNΔ7 experimental mouse model of SMA to scrutinize the effect of systemic LPS administration, a strong pro-inflammatory stimulus, on disease outcome. Systemic LPS administration promoted a reduction in SMN expression levels in CNS, peripheral lymphoid organs, and skeletal muscles. Moreover, peripheral tissues were more vulnerable to LPS-induced damage compared to CNS tissues. Furthermore, systemic LPS administration resulted in a profound increase in microglia and astrocytes with reactive phenotypes in the CNS of SMNΔ7 mice. In conclusion, we hereby show for the first time that systemic LPS administration, although it may not precipitate alterations in terms of deficits of motor functions in a mouse model of SMA, it may, however, lead to a reduction in the SMN protein expression levels in the skeletal muscles and the CNS, thus promoting synapse damage and glial cells' reactive phenotype.
Collapse
Affiliation(s)
- Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Chrystalla Konstantinou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Maria-Konstantina Nella
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Iliana Michailidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Olga Touloumi
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Eleni Polyzoidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Ilias Salamotas
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel 40700, Israel;
| | - Athanasios Chatzisotiriou
- Department of Physiology, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Marina-Kleopatra Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| |
Collapse
|
40
|
Tamura Y, Kouzaki K, Kotani T, Nakazato K. Coculture with Colon-26 cancer cells decreases the protein synthesis rate and shifts energy metabolism toward glycolysis dominance in C2C12 myotubes. Am J Physiol Cell Physiol 2024; 326:C1520-C1542. [PMID: 38557354 DOI: 10.1152/ajpcell.00179.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Cancer cachexia is the result of complex interorgan interactions initiated by cancer cells and changes in patient behavior such as decreased physical activity and energy intake. Therefore, it is crucial to distinguish between the direct and indirect effects of cancer cells on muscle mass regulation and bioenergetics to identify novel therapeutic targets. In this study, we investigated the direct effects of Colon-26 cancer cells on the molecular regulating machinery of muscle mass and its bioenergetics using a coculture system with C2C12 myotubes. Our results demonstrated that coculture with Colon-26 cells induced myotube atrophy and reduced skeletal muscle protein synthesis and its regulating mechanistic target of rapamycin complex 1 signal transduction. However, we did not observe any activating effects on protein degradation pathways including ubiquitin-proteasome and autophagy-lysosome systems. From a bioenergetic perspective, coculture with Colon-26 cells decreased the complex I-driven, but not complex II-driven, mitochondrial ATP production capacity, while increasing glycolytic enzyme activity and glycolytic metabolites, suggesting a shift in energy metabolism toward glycolysis dominance. Gene expression profiling by RNA sequencing showed that the increased activity of glycolytic enzymes was consistent with changes in gene expression. However, the decreased ATP production capacity of mitochondria was not in line with the gene expression. The potential direct interaction between cancer cells and skeletal muscle cells revealed in this study may contribute to a better fundamental understanding of the complex pathophysiology of cancer cachexia.NEW & NOTEWORTHY We explored the potential direct interplay between colon cancer cells (Colon-26) and skeletal muscle cells (C2C12 myotubes) employing a noncontact coculture experimental model. Our findings reveal that coculturing with Colon-26 cells substantially impairs the protein synthesis rate, concurrently instigating a metabolic shift toward glycolytic dominance in C2C12 myotubes. This research unveils critical insights into the intricate cellular cross talk underpinning the complex pathophysiology of cancer cachexia.
Collapse
Affiliation(s)
- Yuki Tamura
- Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
- High Performance Center, Nippon Sport Science University, Tokyo, Japan
- Sport Training Center, Nippon Sport Science University, Tokyo, Japan
- Center for Coaching Excellence, Nippon Sport Science University, Tokyo, Japan
| | - Karina Kouzaki
- Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Takaya Kotani
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
- Department of Sports Sciences, The University of Tokyo, Tokyo, Japan
| | - Koichi Nakazato
- Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
41
|
Domaniku-Waraich A, Agca S, Toledo B, Sucuoglu M, Özen SD, Bilgic SN, Arabaci DH, Kashgari AE, Kir S. Oncostatin M signaling drives cancer-associated skeletal muscle wasting. Cell Rep Med 2024; 5:101498. [PMID: 38569555 PMCID: PMC11031427 DOI: 10.1016/j.xcrm.2024.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/21/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Progressive weakness and muscle loss are associated with multiple chronic conditions, including muscular dystrophy and cancer. Cancer-associated cachexia, characterized by dramatic weight loss and fatigue, leads to reduced quality of life and poor survival. Inflammatory cytokines have been implicated in muscle atrophy; however, available anticytokine therapies failed to prevent muscle wasting in cancer patients. Here, we show that oncostatin M (OSM) is a potent inducer of muscle atrophy. OSM triggers cellular atrophy in primary myotubes using the JAK/STAT3 pathway. Identification of OSM targets by RNA sequencing reveals the induction of various muscle atrophy-related genes, including Atrogin1. OSM overexpression in mice causes muscle wasting, whereas muscle-specific deletion of the OSM receptor (OSMR) and the neutralization of circulating OSM preserves muscle mass and function in tumor-bearing mice. Our results indicate that activated OSM/OSMR signaling drives muscle atrophy, and the therapeutic targeting of this pathway may be useful in preventing muscle wasting.
Collapse
Affiliation(s)
| | - Samet Agca
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Batu Toledo
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Melis Sucuoglu
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Sevgi Döndü Özen
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Sevval Nur Bilgic
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Dilsad Hilal Arabaci
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Aynur Erkin Kashgari
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye.
| |
Collapse
|
42
|
Hahm JH, Nirmala FS, Ha TY, Ahn J. Nutritional approaches targeting mitochondria for the prevention of sarcopenia. Nutr Rev 2024; 82:676-694. [PMID: 37475189 DOI: 10.1093/nutrit/nuad084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
A decline in function and loss of mass, a condition known as sarcopenia, is observed in the skeletal muscles with aging. Sarcopenia has a negative effect on the quality of life of elderly. Individuals with sarcopenia are at particular risk for adverse outcomes, such as reduced mobility, fall-related injuries, and type 2 diabetes mellitus. Although the pathogenesis of sarcopenia is multifaceted, mitochondrial dysfunction is regarded as a major contributor for muscle aging. Hence, the development of preventive and therapeutic strategies to improve mitochondrial function during aging is imperative for sarcopenia treatment. However, effective and specific drugs that can be used for the treatment are not yet approved. Instead studies on the relationship between food intake and muscle aging have suggested that nutritional intake or dietary control could be an alternative approach for the amelioration of muscle aging. This narrative review approaches various nutritional components and diets as a treatment for sarcopenia by modulating mitochondrial homeostasis and improving mitochondria. Age-related changes in mitochondrial function and the molecular mechanisms that help improve mitochondrial homeostasis are discussed, and the nutritional components and diet that modulate these molecular mechanisms are addressed.
Collapse
Affiliation(s)
- Jeong-Hoon Hahm
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
| | - Farida S Nirmala
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| | - Tae Youl Ha
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| | - Jiyun Ahn
- Research Group of Aging and Metabolism, Korea Food Research Institute, Wanju-gun, South Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea
| |
Collapse
|
43
|
Galal HM, Abdelhafez AT, Sayed MM, Gomaa WMS, Tohamy TA, Gomaa AMS, El-Metwally TH. Impact of L-Arginine on diabetes-induced neuropathy and myopathy: Roles of PAI-1, Irisin, oxidative stress, NF-κβ, autophagy and microRNA-29a. Tissue Cell 2024; 87:102342. [PMID: 38430848 DOI: 10.1016/j.tice.2024.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 02/11/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND T2DM is a chronic disorder with progressive neuromuscular alterations. L-arginine (ARG) is the most common semi-essential amino acid having several metabolic functions. AIM to investigate the impact of L-arginine in combating diabetic-induced neuromyopathy and its possible mechanisms. MATERIALS & METHODS 24 rats were divided into CON, CON+ARG, DC, DC+ARG. Behavioral tests, Body weight (BW), fasting blood glucose (FBG), insulin, total antioxidant capacity (TAC), malondialdehyde (MDA), plasminogen activator inhibitor-1 (PAI-1), and irisin were done. Creatine kinase-MM (CK-MM), interleukin 4 (IL-4), interleukin 6 (IL-6), TAC, MDA, expression of microRNA-29a mRNA & light chain 3 protein were determined in muscle. Histological and NF-κβ immunohistochemical expression in muscle and nerve were assessed. RESULTS ARG supplementation to diabetic rats improved altered behavior, significantly increased BW, insulin, TAC, irisin and Il-4, decreased levels of glucose, microRNA-29a, NF-κβ and LC3 expression, PAI-1, CK-MM and restored the normal histological appearance. CONCLUSIONS ARG supplementation potently alleviated diabetic-induced neuromuscular alterations.
Collapse
Affiliation(s)
- Heba M Galal
- Department of Medical Physiology, College of Medicine, Jouf University, Sakaka, Saudi Arabia; Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Alaa T Abdelhafez
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt; Department of Basic Medical Sciences, Badr University, New Nasser City, West of Assiut, Assiut, Egypt.
| | - Manal M Sayed
- Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Walaa M S Gomaa
- Department of Nutrition and Clinical Nutrition, Faculty of Vet. Medicine, Assiut University, Assiut, Egypt
| | | | - Asmaa M S Gomaa
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Tarek H El-Metwally
- Biochemistry Division, Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia; Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
44
|
Olthof MGL, Hasler A, Valdivieso P, Flück M, Gerber C, Gehrke R, Klein K, von Rechenberg B, Snedeker JG, Wieser K. Poly(ADP-Ribose) Polymerases-Inhibitor Talazoparib Inhibits Muscle Atrophy and Fatty Infiltration in a Tendon Release Infraspinatus Sheep Model: A Pilot Study. Metabolites 2024; 14:187. [PMID: 38668315 PMCID: PMC11051840 DOI: 10.3390/metabo14040187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Structural muscle changes, including muscle atrophy and fatty infiltration, follow rotator cuff tendon tear and are associated with a high repair failure rate. Despite extensive research efforts, no pharmacological therapy is available to successfully prevent both muscle atrophy and fatty infiltration after tenotomy of tendomuscular unit without surgical repair. Poly(ADP-ribose) polymerases (PARPs) are identified as a key transcription factors involved in the maintenance of cellular homeostasis. PARP inhibitors have been shown to influence muscle degeneration, including mitochondrial hemostasis, oxidative stress, inflammation and metabolic activity, and reduced degenerative changes in a knockout mouse model. Tenotomized infraspinatus were assessed for muscle degeneration for 16 weeks using a Swiss Alpine sheep model (n = 6). All sheep received daily oral administration of 0.5 mg Talazoparib. Due to animal ethics, the treatment group was compared with three different controls from prior studies of our institution. To mitigate potential batch heterogeneity, PARP-I was evaluated in comparison with three distinct control groups (n = 6 per control group) using the same protocol without treatment. The control sheep were treated with an identical study protocol without Talazoparib treatment. Muscle atrophy and fatty infiltration were evaluated at 0, 6 and 16 weeks post-tenotomy using DIXON-MRI. The controls and PARP-I showed a significant (control p < 0.001, PARP-I p = 0.01) decrease in muscle volume after 6 weeks. However, significantly less (p = 0.01) atrophy was observed in PARP-I after 6 weeks (control 1: 76.6 ± 8.7%; control 2: 80.3 ± 9.3%, control 3: 73.8 ± 6.7% vs. PARP-I: 90.8 ± 5.1% of the original volume) and 16 weeks (control 1: 75.7 ± 9.9; control 2: 74.2 ± 5.6%; control 3: 75.3 ± 7.4% vs. PARP-I 93.3 ± 10.6% of the original volume). All experimental groups exhibited a statistically significant (p < 0.001) augmentation in fatty infiltration following a 16-week period when compared to the initial timepoint. However, the PARP-I showed significantly less fatty infiltration (p < 0.003) compared to all controls (control 1: 55.6 ± 6.7%, control 2: 53.4 ± 9.4%, control 3: 52.0 ± 12.8% vs. PARP-I: 33.5 ± 8.4%). Finally, a significantly (p < 0.04) higher proportion and size of fast myosin heavy chain-II fiber type was observed in the treatment group. This study shows that PARP-inhibition with Talazoparib inhibits the progression of both muscle atrophy and fatty infiltration over 16 weeks in retracted sheep musculotendinous units.
Collapse
Affiliation(s)
- Maurits G. L. Olthof
- Department of Orthopaedics, Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (A.H.); (C.G.); (J.G.S.); (K.W.)
| | - Anita Hasler
- Department of Orthopaedics, Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (A.H.); (C.G.); (J.G.S.); (K.W.)
| | - Paola Valdivieso
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist Campus, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (P.V.); (M.F.)
| | - Martin Flück
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist Campus, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (P.V.); (M.F.)
| | - Christian Gerber
- Department of Orthopaedics, Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (A.H.); (C.G.); (J.G.S.); (K.W.)
| | - Rieke Gehrke
- Musculoskeletal Research Unit, Center for Applied Biotechnology and Molecular Medicine, Equine Department, Vetsuisse Faculty, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (R.G.); (K.K.); (B.v.R.)
| | - Karina Klein
- Musculoskeletal Research Unit, Center for Applied Biotechnology and Molecular Medicine, Equine Department, Vetsuisse Faculty, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (R.G.); (K.K.); (B.v.R.)
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit, Center for Applied Biotechnology and Molecular Medicine, Equine Department, Vetsuisse Faculty, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (R.G.); (K.K.); (B.v.R.)
| | - Jess G. Snedeker
- Department of Orthopaedics, Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (A.H.); (C.G.); (J.G.S.); (K.W.)
- Institute for Biomechanics, ETH Zurich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Karl Wieser
- Department of Orthopaedics, Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (A.H.); (C.G.); (J.G.S.); (K.W.)
| |
Collapse
|
45
|
Hesketh SJ. Advancing cancer cachexia diagnosis with -omics technology and exercise as molecular medicine. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:1-15. [PMID: 38463663 PMCID: PMC10918365 DOI: 10.1016/j.smhs.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 03/12/2024] Open
Abstract
Muscle atrophy exacerbates disease outcomes and increases mortality, whereas the preservation of skeletal muscle mass and function play pivotal roles in ensuring long-term health and overall quality-of-life. Muscle atrophy represents a significant clinical challenge, involving the continued loss of muscle mass and strength, which frequently accompany the development of numerous types of cancer. Cancer cachexia is a highly prevalent multifactorial syndrome, and although cachexia is one of the main causes of cancer-related deaths, there are still no approved management strategies for the disease. The etiology of this condition is based on the upregulation of systemic inflammation factors and catabolic stimuli, resulting in the inhibition of protein synthesis and enhancement of protein degradation. Numerous necessary cellular processes are disrupted by cachectic pathology, which mediate intracellular signalling pathways resulting in the net loss of muscle and organelles. However, the exact underpinning molecular mechanisms of how these changes are orchestrated are incompletely understood. Much work is still required, but structured exercise has the capacity to counteract numerous detrimental effects linked to cancer cachexia. Primarily through the stimulation of muscle protein synthesis, enhancement of mitochondrial function, and the release of myokines. As a result, muscle mass and strength increase, leading to improved mobility, and quality-of-life. This review summarises existing knowledge of the complex molecular networks that regulate cancer cachexia and exercise, highlighting the molecular interplay between the two for potential therapeutic intervention. Finally, the utility of mass spectrometry-based proteomics is considered as a way of establishing early diagnostic biomarkers of cachectic patients.
Collapse
|
46
|
Hosseini F, Hemmati A, Takabi FS, Naeini F, Shab Bidar S. A dose-response meta-analysis of randomized clinical trials investigating the effects of omega-3 supplementation on body weight in patients with cancer cachexia. Clin Nutr ESPEN 2024; 59:378-386. [PMID: 38220400 DOI: 10.1016/j.clnesp.2023.12.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/01/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Cachexia is one of the side effects of cancer diseases that can be reduced weight, and lower overall survival. Weight loss has been associated with adverse outcomes in both cancer patients and patients with benign diseases. There is no definitive treatment for fully reverse cachexia. studies showed higher levels of inflammatory markers in patient with cachectic cancer. Therefore, this study aimed to investigate the dose-response effects of omega-3 as an anti-inflammatory supplement on body weight in patients with cancer cachexia. METHODS Online databases including PubMed, Scopus, and Web of Science were systematically searched by relevant keywords up to January 2022. Random effect analysis was applied to perform meta-analysis. Subgroup analyses were performed to find heterogeneity sources. Quality assessment was conducted using Revised Cochrane Collaboration's tool II. Trim and fill analysis were also carried out in case of the presence of publication bias. The certainty in the evaluations was assessed by the GRADE approach. RESULTS Omega-3 supplementation resulted in a significant increase of body weight in patients with cancer cachexia when the age of study participants was ≥67 years and the baseline weight of them was ≤60 kg (WMD = 0.99; 95 % CI: 0.06, 1.92 and WMD = 1.22; 95 % CI: 0.14, 2.30, respectively). Also, there was a non-significant linear relationship between the dosage of omega-3 supplementation and body weight in patients with cancer cachexia. CONCLUSION Omega-3 supplementation may be a promising agent to increase body weight in patients with cancer cachexia. Also, a non-significant linear relationship between the dosage of omega-3 supplementation and body weight was found in these patients.
Collapse
Affiliation(s)
- Fatemeh Hosseini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Amirhossein Hemmati
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Shirani Takabi
- Department of Medical Physics, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran.
| | - Sakineh Shab Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
47
|
Shimizu Y, Hamada K, Guo T, Hasegawa C, Kuga Y, Takeda K, Yagi T, Koyama H, Takagi H, Aotani D, Kataoka H, Tanaka T. Role of PPARα in inflammatory response of C2C12 myotubes. Biochem Biophys Res Commun 2024; 694:149413. [PMID: 38141556 DOI: 10.1016/j.bbrc.2023.149413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Recent studies have shown a role of inflammation in muscle atrophy and sarcopenia. However, no anti-inflammatory pharmacotherapy has been established for the treatment of sarcopenia. Here, we investigate the potential role of PPARα and its ligands on inflammatory response and PGC-1α gene expression in LPS-treated C2C12 myotubes. Knockdown of PPARα, whose expression was upregulated upon differentiation, augmented IL-6 or TNFα gene expression. Conversely, PPARα overexpression or its activation by ligands suppressed 2-h LPS-induced cytokine expression, with pemafibrate attenuating NF-κB or STAT3 phosphorylation. Of note, reduction of PGC-1α gene expression by LPS treatment for 24 hours was partially reversed by fenofibrate. Our data demonstrate a critical inhibitory role of PPARα in inflammatory response of C2C12 myotubes and suggest a future possibility of PPARα ligands as a candidate for anti-inflammatory therapy against sarcopenia.
Collapse
Affiliation(s)
- Yuki Shimizu
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Keiko Hamada
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Tingting Guo
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Chie Hasegawa
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Yusuke Kuga
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Katsushi Takeda
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Takashi Yagi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Hiroyuki Koyama
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetology, Nagoya City University East Medical Center, 1-2-23 Wakamizu, Chikusa-ku, Nagoya, 464-8547, Japan
| | - Daisuke Aotani
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Tomohiro Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan.
| |
Collapse
|
48
|
Ma J, Wang PY, Zhuang J, Son AY, Karius AK, Syed AM, Nishi M, Wu Z, Mori MP, Kim YC, Hwang PM. CHCHD4-TRIAP1 regulation of innate immune signaling mediates skeletal muscle adaptation to exercise. Cell Rep 2024; 43:113626. [PMID: 38157298 PMCID: PMC10851177 DOI: 10.1016/j.celrep.2023.113626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Abstract
Exercise training can stimulate the formation of fatty-acid-oxidizing slow-twitch skeletal muscle fibers, which are inversely correlated with obesity, but the molecular mechanism underlying this transformation requires further elucidation. Here, we report that the downregulation of the mitochondrial disulfide relay carrier CHCHD4 by exercise training decreases the import of TP53-regulated inhibitor of apoptosis 1 (TRIAP1) into mitochondria, which can reduce cardiolipin levels and promote VDAC oligomerization in skeletal muscle. VDAC oligomerization, known to facilitate mtDNA release, can activate cGAS-STING/NFKB innate immune signaling and downregulate MyoD in skeletal muscle, thereby promoting the formation of oxidative slow-twitch fibers. In mice, CHCHD4 haploinsufficiency is sufficient to activate this pathway, leading to increased oxidative muscle fibers and decreased fat accumulation with aging. The identification of a specific mediator regulating muscle fiber transformation provides an opportunity to understand further the molecular underpinnings of complex metabolic conditions such as obesity and could have therapeutic implications.
Collapse
Affiliation(s)
- Jin Ma
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Ping-Yuan Wang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Jie Zhuang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA; School of Medicine, Nankai University, Tianjin 300071, China
| | - Annie Y Son
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Alexander K Karius
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Abu Mohammad Syed
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Masahiro Nishi
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Zhichao Wu
- Laboratory of Pathology, National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Mateus P Mori
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Young-Chae Kim
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Paul M Hwang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Rodríguez MP, Cabello-Verrugio C. Soluble Factors Associated with Denervation-induced Skeletal Muscle Atrophy. Curr Protein Pept Sci 2024; 25:189-199. [PMID: 38018212 DOI: 10.2174/0113892037189827231018092036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 11/30/2023]
Abstract
Skeletal muscle tissue has the critical function of mechanical support protecting the body. In addition, its functions are strongly influenced by the balanced synthesis and degradation processes of structural and regulatory proteins. The inhibition of protein synthesis and/or the activation of catabolism generally determines a pathological state or condition called muscle atrophy, a reduction in muscle mass that results in partial or total loss of function. It has been established that many pathophysiological conditions can cause a decrease in muscle mass. Skeletal muscle innervation involves stable and functional neural interactions with muscles via neuromuscular junctions and is essential for maintaining normal muscle structure and function. Loss of motor innervation induces rapid skeletal muscle fiber degeneration with activation of atrophy-related signaling and subsequent disassembly of sarcomeres, altering normal muscle function. After denervation, an inflammation stage is characterized by the increased expression of pro-inflammatory cytokines that determine muscle atrophy. In this review, we highlighted the impact of some soluble factors on the development of muscle atrophy by denervation.
Collapse
Affiliation(s)
- Marianny Portal Rodríguez
- Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
50
|
Zhang H, Du Y, Tang W, Chen M, Yu W, Ke Z, Dong S, Cheng Q. Eldecalcitol prevents muscle loss and osteoporosis in disuse muscle atrophy via NF-κB signaling in mice. Skelet Muscle 2023; 13:22. [PMID: 38115079 PMCID: PMC10729577 DOI: 10.1186/s13395-023-00332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
We investigated the effect of eldecalcitol on disuse muscle atrophy. C57BL/6J male mice aged 6 weeks were randomly assigned to control, tail suspension (TS), and TS-eldecalcitol-treated groups and were injected intraperitoneally twice a week with either vehicle (control and TS) or eldecalcitol at 3.5 or 5 ng for 3 weeks. Grip strength and muscle weights of the gastrocnemius (GAS), tibialis anterior (TA), and soleus (SOL) were determined. Oxidative stress was evaluated by malondialdehyde, superoxide dismutase, glutathione peroxidase, and catalase. Bone microarchitecture was analyzed using microcomputed tomography. The effect of eldecalcitol on C2C12 myoblasts was analyzed by measuring myofibrillar protein MHC and the atrophy markers Atrogin-1 and MuRF-1 using immunofluorescence. The influence of eldecalcitol on NF-κB signaling pathway and vitamin D receptor (VDR) was assessed through immunofluorescence, (co)-immunoprecipitation, and VDR knockdown studies. Eldecalcitol increased grip strength (P < 0.01) and restored muscle loss in GAS, TA, and SOL (P < 0.05 to P < 0.001) induced by TS. An improvement was noted in bone mineral density and bone architecture in the eldecalcitol group. The impaired oxidative defense system was restored by eldecalcitol (P < 0.05 to P < 0.01 vs. TS). Eldecalcitol (10 nM) significantly inhibited the expression of MuRF-1 (P < 0.001) and Atrogin-1 (P < 0.01), increased the diameter of myotubes (P < 0.05), inhibited the expression of P65 and P52 components of NF-κB and P65 nuclear location, thereby inhibiting NF-κB signaling. Eldecalcitol promoted VDR binding to P65 and P52. VDR signaling is required for eldecalcitol-mediated anti-atrophy effects. In conclusion, eldecalcitol exerted its beneficial effects on disuse-induced muscle atrophy via NF-κB inhibition.
Collapse
Affiliation(s)
- Haichao Zhang
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China
| | - Yanping Du
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China
| | - Wenjing Tang
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China
| | - Minmin Chen
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China
| | - Weijia Yu
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China
| | - Zheng Ke
- Medical Division, Chugai Pharma China Co., Ltd., Shanghai, 200021, People's Republic of China
| | - Shuangshuang Dong
- Medical Division, Chugai Pharma China Co., Ltd., Shanghai, 200021, People's Republic of China
| | - Qun Cheng
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China.
| |
Collapse
|