1
|
Su B, Ren Y, Yao W, Su Y, He Q. Mitochondrial dysfunction and NLRP3 inflammasome: key players in kidney stone formation. BJU Int 2024; 134:696-713. [PMID: 38967108 DOI: 10.1111/bju.16454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The mitochondrion serves as a critical intracellular organelle, engaging in essential roles in the regulation of energy production, oxidative stress management, calcium homeostasis, and apoptosis. One such disease that has been particularly associated with these functions is kidney stone disease (KSD), specifically calcium oxalate (CaOx). It is underpinned by oxidative stress and tissue inflammation. Recent studies have shed light on the vital involvement of mitochondrial dysfunction, the nucleotide-binding domain and leucine-rich repeat containing protein 3 (NLRP3) inflammasome, endoplasmic reticulum stress and subsequent cell death in CaOx crystal retention and aggregation. These processes are pivotal in the pathogenesis of kidney stone formation. This review focuses on the pivotal roles of mitochondria in renal cell functions and provides an overview of the intricate interconnectedness between mitochondrial dysfunction and NLRP3 inflammasome activation in the context of KSD. It is essential to recognise the utmost significance of gaining a comprehensive understanding of the mechanisms that safeguard mitochondrial function and regulate the NLRP3 inflammasome. Such knowledge carries significant scientific implications and opens up promising avenues for the development of innovative strategies to prevent the formation of kidney stones.
Collapse
Affiliation(s)
- Boyan Su
- Department of Urology, Key Laboratory of Disease of Urological Systems, Gansu Nepho-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - YaLin Ren
- Department of Urology, Key Laboratory of Disease of Urological Systems, Gansu Nepho-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Weimin Yao
- Department of Urology, Tongji Medical College Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Su
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Qiqi He
- Department of Urology, Key Laboratory of Disease of Urological Systems, Gansu Nepho-Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Sharma A, Dhavale DD, Kotzbauer PT, Weihl CC. VCP Inhibition Augments NLRP3 Inflammasome Activation. Inflammation 2024; 47:1868-1883. [PMID: 38563877 DOI: 10.1007/s10753-024-02013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Lysosomal membrane permeabilization caused either via phagocytosis of particulates or the uptake of protein aggregates can trigger the activation of NLRP3 inflammasome- an intense inflammatory response that drives the release of the pro-inflammatory cytokine IL-1β by regulating the activity of CASPASE 1. The maintenance of lysosomal homeostasis and lysosomal membrane integrity is facilitated by the AAA+ ATPase, VCP/p97 (VCP). However, the relationship between VCP and NLRP3 inflammasome activity remains unexplored. Here, we demonstrate that the VCP inhibitors, DBeQ and ML240 elicit the activation of NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs) when used as activation stimuli. Moreover, genetic inhibition of VCP or VCP chemical inhibition enhances lysosomal membrane damage and augments LLoME-associated NLRP3 inflammasome activation in BMDMs. Similarly, VCP inactivation also augments NLRP3 inflammasome activation mediated by aggregated alpha-synuclein fibrils and lysosomal damage. These data suggest that VCP is a participant in the complex regulation of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Ankita Sharma
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Dhruva D Dhavale
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Paul T Kotzbauer
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Conrad C Weihl
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
3
|
Anand PK. From fat to fire: The lipid-inflammasome connection. Immunol Rev 2024. [PMID: 39327931 DOI: 10.1111/imr.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Inflammasomes are multiprotein complexes that play a crucial role in regulating immune responses by governing the activation of Caspase-1, the secretion of pro-inflammatory cytokines, and the induction of inflammatory cell death, pyroptosis. The inflammasomes are pivotal in effective host defense against a range of pathogens. Yet, overt activation of inflammasome signaling can be detrimental. The most well-studied NLRP3 inflammasome has the ability to detect a variety of stimuli including pathogen-associated molecular patterns, environmental irritants, and endogenous stimuli released from dying cells. Additionally, NLRP3 acts as a key sensor of cellular homeostasis and can be activated by disturbances in diverse metabolic pathways. Consequently, NLRP3 is considered a key player linking metabolic dysregulation to numerous inflammatory disorders such as gout, diabetes, and atherosclerosis. Recently, compelling studies have highlighted a connection between lipids and the regulation of NLRP3 inflammasome. Lipids are integral to cellular processes that serve not only in maintaining the structural integrity and subcellular compartmentalization, but also in contributing to physiological equilibrium. Certain lipid species are known to define NLRP3 subcellular localization, therefore directly influencing the site of inflammasome assembly and activation. For instance, phosphatidylinositol 4-phosphate plays a crucial role in NLRP3 localization to the trans Golgi network. Moreover, new evidence has demonstrated the roles of lipid biosynthesis and trafficking in activation of the NLRP3 inflammasome. This review summarizes and discusses these emerging and varied roles of lipid metabolism in inflammasome activation. A deeper understanding of lipid-inflammasome interactions may open new avenues for therapeutic interventions to prevent or treat chronic inflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Paras K Anand
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
4
|
Cescato M, Zhu YYJ, Le Corre L, Py BF, Georgin-Lavialle S, Rodero MP. Implication of the LRR Domain in the Regulation and Activation of the NLRP3 Inflammasome. Cells 2024; 13:1365. [PMID: 39195255 DOI: 10.3390/cells13161365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/29/2024] Open
Abstract
The NLRP3 inflammasome is a critical component of the innate immune response. NLRP3 activation is a tightly controlled process involving an initial priming to express NLRP3, pro-IL-1 β, and pro-IL-18, followed by an activation signal. The precise mechanism of activation is not fully understood due to the diverse range of activators, yet it effectively orchestrates the activation of caspase-1, which subsequently triggers the release of proinflammatory cytokines IL-1β and IL-18. NLRP3 dysregulation can lead to a variety of inflammatory diseases, highlighting its significant role in immune response and disease pathogenesis. NLRP3 is divided into three domains: the PYD, the NACHT, and the LRR domains. This review focuses on the LRR domain of NLRP3, detailing its structural characteristics, its function in pathogen sensing, its role in the degradation process, and its involvement in inflammasome auto-inhibition and activation. Additionally, we discuss the impact of mutations within the LRR domain found in atypical Cryopyrin-Associated Periodic Syndromes (CAPS), highlighting the clinical relevance of this domain.
Collapse
Affiliation(s)
- Margaux Cescato
- Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, CNRS, Paris Cité University, 75006 Paris, France
| | - Yixiang Y J Zhu
- Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, CNRS, Paris Cité University, 75006 Paris, France
- National Reference Center for Autoinflammatory Diseases and AA Amyloidosis, Department of Internal Medicine, Tenon Hospital, Sorbonne University, Assistance Publique-Hôpitaux de Paris (APHP), 75020 Paris, France
| | - Laurent Le Corre
- Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, CNRS, Paris Cité University, 75006 Paris, France
| | - Bénédicte F Py
- CIRI, International Center for Research in Infectiology, Inserm, University Claude Bernard Lyon 1, 69007 Lyon, France
| | - Sophie Georgin-Lavialle
- National Reference Center for Autoinflammatory Diseases and AA Amyloidosis, Department of Internal Medicine, Tenon Hospital, Sorbonne University, Assistance Publique-Hôpitaux de Paris (APHP), 75020 Paris, France
| | - Mathieu P Rodero
- Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, CNRS, Paris Cité University, 75006 Paris, France
| |
Collapse
|
5
|
Xu S, Lu F, Gao J, Yuan Y. Inflammation-mediated metabolic regulation in adipose tissue. Obes Rev 2024; 25:e13724. [PMID: 38408757 DOI: 10.1111/obr.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/04/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Chronic inflammation of adipose tissue is a prominent characteristic of many metabolic diseases. Lipid metabolism in adipose tissue is consistently dysregulated during inflammation, which is characterized by substantial infiltration by proinflammatory cells and high cytokine concentrations. Adipose tissue inflammation is caused by a variety of endogenous factors, such as mitochondrial dysfunction, reactive oxygen species (ROS) production, endoplasmic reticulum (ER) stress, cellular senescence, ceramides biosynthesis and mediators of lipopolysaccharides (LPS) signaling. Additionally, the gut microbiota also plays a crucial role in regulating adipose tissue inflammation. Essentially, adipose tissue inflammation arises from an imbalance in adipocyte metabolism and the regulation of immune cells. Specific inflammatory signals, including nuclear factor-κB (NF-κB) signaling, inflammasome signaling and inflammation-mediated autophagy, have been shown to be involved in the metabolic regulation. The pathogenesis of metabolic diseases characterized by chronic inflammation (obesity, insulin resistance, atherosclerosis and nonalcoholic fatty liver disease [NAFLD]) and recent research regarding potential therapeutic targets for these conditions are also discussed in this review.
Collapse
Affiliation(s)
- Shujie Xu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhua Gao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Yuan
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Popoff MR. Overview of Bacterial Protein Toxins from Pathogenic Bacteria: Mode of Action and Insights into Evolution. Toxins (Basel) 2024; 16:182. [PMID: 38668607 PMCID: PMC11054074 DOI: 10.3390/toxins16040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/29/2024] Open
Abstract
Bacterial protein toxins are secreted by certain bacteria and are responsible for mild to severe diseases in humans and animals. They are among the most potent molecules known, which are active at very low concentrations. Bacterial protein toxins exhibit a wide diversity based on size, structure, and mode of action. Upon recognition of a cell surface receptor (protein, glycoprotein, and glycolipid), they are active either at the cell surface (signal transduction, membrane damage by pore formation, or hydrolysis of membrane compound(s)) or intracellularly. Various bacterial protein toxins have the ability to enter cells, most often using an endocytosis mechanism, and to deliver the effector domain into the cytosol, where it interacts with an intracellular target(s). According to the nature of the intracellular target(s) and type of modification, various cellular effects are induced (cell death, homeostasis modification, cytoskeleton alteration, blockade of exocytosis, etc.). The various modes of action of bacterial protein toxins are illustrated with representative examples. Insights in toxin evolution are discussed.
Collapse
Affiliation(s)
- Michel R Popoff
- Unité des Toxines Bactériennes, Institut Pasteur, Université Paris Cité, CNRS UMR 2001 INSERM U1306, F-75015 Paris, France
| |
Collapse
|
7
|
Manshouri S, Seif F, Kamali M, Bahar MA, Mashayekh A, Molatefi R. The interaction of inflammasomes and gut microbiota: novel therapeutic insights. Cell Commun Signal 2024; 22:209. [PMID: 38566180 PMCID: PMC10986108 DOI: 10.1186/s12964-024-01504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/28/2024] [Indexed: 04/04/2024] Open
Abstract
Inflammasomes are complex platforms for the cleavage and release of inactivated IL-1β and IL-18 cytokines that trigger inflammatory responses against damage-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs). Gut microbiota plays a pivotal role in maintaining gut homeostasis. Inflammasome activation needs to be tightly regulated to limit aberrant activation and bystander damage to the host cells. Several types of inflammasomes, including Node-like receptor protein family (e.g., NLRP1, NLRP3, NLRP6, NLRP12, NLRC4), PYHIN family, and pyrin inflammasomes, interact with gut microbiota to maintain gut homeostasis. This review discusses the current understanding of how inflammasomes and microbiota interact, and how this interaction impacts human health. Additionally, we introduce novel biologics and antagonists, such as inhibitors of IL-1β and inflammasomes, as therapeutic strategies for treating gastrointestinal disorders when inflammasomes are dysregulated or the composition of gut microbiota changes.
Collapse
Affiliation(s)
- Shirin Manshouri
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Valiasr St, Niayesh Intersection, Tehran, 1995614331, Iran
| | - Farhad Seif
- Department of Photodynamic Therapy, Medical Laser Research Center, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Monireh Kamali
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Valiasr St, Niayesh Intersection, Tehran, 1995614331, Iran
| | - Mohammad Ali Bahar
- Department of Immunology, Medical School, Iran University of Medical Sciences, Tehran, Iran
| | - Arshideh Mashayekh
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Valiasr St, Niayesh Intersection, Tehran, 1995614331, Iran.
| | - Rasol Molatefi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Pediatric Department of Bou Ali Hospital, Ardabil University of Medical Sciences, Ardabil, 56189-85991, Iran.
| |
Collapse
|
8
|
Rozario P, Pinilla M, Gorse L, Vind AC, Robinson KS, Toh GA, Firdaus MJ, Martínez JF, Kerk SK, Lin Z, Chambers JC, Bekker-Jensen S, Meunier E, Zhong F. Mechanistic basis for potassium efflux-driven activation of the human NLRP1 inflammasome. Proc Natl Acad Sci U S A 2024; 121:e2309579121. [PMID: 38175865 PMCID: PMC10786283 DOI: 10.1073/pnas.2309579121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
Nigericin, an ionophore derived from Streptomyces hygroscopicus, is arguably the most commonly used tool compound to study the NLRP3 inflammasome. Recent findings, however, showed that nigericin also activates the NLRP1 inflammasome in human keratinocytes. In this study, we resolve the mechanistic basis of nigericin-driven NLRP1 inflammasome activation. In multiple nonhematopoietic cell types, nigericin rapidly and specifically inhibits the elongation stage of the ribosome cycle by depleting cytosolic potassium ions. This activates the ribotoxic stress response (RSR) sensor kinase ZAKα, p38, and JNK, as well as the hyperphosphorylation of the NLRP1 linker domain. As a result, nigericin-induced pyroptosis in human keratinocytes is blocked by extracellular potassium supplementation, ZAKα knockout, or pharmacologic inhibitors of ZAKα and p38 kinase activities. By surveying a panel of ionophores, we show that electroneutrality of ion movement is essential to activate ZAKα-driven RSR and a greater extent of K+ depletion is necessary to activate ZAKα-NLRP1 than NLRP3. These findings resolve the mechanism by which nigericin activates NLRP1 in nonhematopoietic cell types and demonstrate an unexpected connection between RSR, perturbations of potassium ion flux, and innate immunity.
Collapse
Affiliation(s)
- Pritisha Rozario
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Miriam Pinilla
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse31077, France
| | - Leana Gorse
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse31077, France
| | - Anna Constance Vind
- Center for Healthy Aging, University of Copenhagen, Copenhagen2200, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen2200, Denmark
| | - Kim S. Robinson
- Agency for Science, Technology and Research (A*STAR) Skin Research Labs, 138648, Singapore
- Skin Research Institute of Singapore, 308232, Singapore
| | - Gee Ann Toh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | | | - José Francisco Martínez
- Center for Healthy Aging, University of Copenhagen, Copenhagen2200, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen2200, Denmark
| | - Swat Kim Kerk
- Population and Global Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Zhewang Lin
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - John C. Chambers
- Population and Global Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Simon Bekker-Jensen
- Center for Healthy Aging, University of Copenhagen, Copenhagen2200, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen2200, Denmark
| | - Etienne Meunier
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse31077, France
| | - Franklin Zhong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
- Skin Research Institute of Singapore, 308232, Singapore
| |
Collapse
|
9
|
Lécuyer D, Nardacci R, Tannous D, Gutierrez-Mateyron E, Deva Nathan A, Subra F, Di Primio C, Quaranta P, Petit V, Richetta C, Mostefa-Kara A, Del Nonno F, Falasca L, Marlin R, Maisonnasse P, Delahousse J, Pascaud J, Deprez E, Naigeon M, Chaput N, Paci A, Saada V, Ghez D, Mariette X, Costa M, Pistello M, Allouch A, Delelis O, Piacentini M, Le Grand R, Perfettini JL. The purinergic receptor P2X7 and the NLRP3 inflammasome are druggable host factors required for SARS-CoV-2 infection. Front Immunol 2023; 14:1270081. [PMID: 37920468 PMCID: PMC10619763 DOI: 10.3389/fimmu.2023.1270081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Purinergic receptors and NOD-like receptor protein 3 (NLRP3) inflammasome regulate inflammation and viral infection, but their effects on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remain poorly understood. Here, we report that the purinergic receptor P2X7 and NLRP3 inflammasome are cellular host factors required for SARS-CoV-2 infection. Lung autopsies from patients with severe coronavirus disease 2019 (COVID-19) reveal that NLRP3 expression is increased in host cellular targets of SARS-CoV-2 including alveolar macrophages, type II pneumocytes and syncytia arising from the fusion of infected macrophages, thus suggesting a potential role of NLRP3 and associated signaling pathways to both inflammation and viral replication. In vitro studies demonstrate that NLRP3-dependent inflammasome activation is detected upon macrophage abortive infection. More importantly, a weak activation of NLRP3 inflammasome is also detected during the early steps of SARS-CoV-2 infection of epithelial cells and promotes the viral replication in these cells. Interestingly, the purinergic receptor P2X7, which is known to control NLRP3 inflammasome activation, also favors the replication of D614G and alpha SARS-CoV-2 variants. Altogether, our results reveal an unexpected relationship between the purinergic receptor P2X7, the NLRP3 inflammasome and the permissiveness to SARS-CoV-2 infection that offers novel opportunities for COVID-19 treatment.
Collapse
Affiliation(s)
- Déborah Lécuyer
- Université Paris-Saclay, Inserm UMR1030, Laboratory of Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
| | - Roberta Nardacci
- National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
- UniCamillus - Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Désirée Tannous
- Université Paris-Saclay, Inserm UMR1030, Laboratory of Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
- NH TherAguix SAS, Meylan, France
| | - Emie Gutierrez-Mateyron
- Université Paris-Saclay, Inserm UMR1030, Laboratory of Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
| | - Aurélia Deva Nathan
- Université Paris-Saclay, Inserm UMR1030, Laboratory of Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
| | - Frédéric Subra
- Université Paris-Saclay, ENS Paris-Saclay, CNRS UMR 8113, IDA FR3242, Laboratory of Biology and Applied Pharmacology (LBPA), Gif-sur-Yvette, France
| | - Cristina Di Primio
- Institute of Neuroscience, Italian National Research Council, Pisa, Italy
- Laboratory of Biology BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Paola Quaranta
- Institute of Neuroscience, Italian National Research Council, Pisa, Italy
- Retrovirus Center, Department of Translational Research, Universita of Pisa, Pisa, Italy
| | - Vanessa Petit
- Université Paris-Saclay, Inserm U1274, CEA, Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses, France
| | - Clémence Richetta
- Université Paris-Saclay, ENS Paris-Saclay, CNRS UMR 8113, IDA FR3242, Laboratory of Biology and Applied Pharmacology (LBPA), Gif-sur-Yvette, France
| | - Ali Mostefa-Kara
- Université Paris-Saclay, Inserm UMR1030, Laboratory of Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
| | - Franca Del Nonno
- National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Laura Falasca
- National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Romain Marlin
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA- HB/IDMIT), Fontenay-aux-Roses, France
| | - Pauline Maisonnasse
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA- HB/IDMIT), Fontenay-aux-Roses, France
| | - Julia Delahousse
- Université Paris-Saclay, Inserm UMR1030, Laboratory of Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
| | - Juliette Pascaud
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA- HB/IDMIT), Fontenay-aux-Roses, France
- Assistance Publique, Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Eric Deprez
- Université Paris-Saclay, ENS Paris-Saclay, CNRS UMR 8113, IDA FR3242, Laboratory of Biology and Applied Pharmacology (LBPA), Gif-sur-Yvette, France
| | - Marie Naigeon
- Gustave Roussy Cancer Center, Villejuif, France
- Université Paris-Saclay, Inserm, CNRS, Analyse Moléculaire, Modélisation et Imagerie de la Maladie Cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, Villejuif, France
- Université Paris-Saclay, Faculté de Pharmacie, Chatenay-Malabry, France
| | - Nathalie Chaput
- Université Paris-Saclay, Inserm, CNRS, Analyse Moléculaire, Modélisation et Imagerie de la Maladie Cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, Villejuif, France
- Université Paris-Saclay, Faculté de Pharmacie, Chatenay-Malabry, France
- Université Paris-Saclay, Gustave Roussy Cancer Center, CNRS, Stabilité Génétique et Oncogenèse, Villejuif, France
| | - Angelo Paci
- Université Paris-Saclay, Inserm UMR1030, Laboratory of Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
- Université Paris-Saclay, Faculté de Pharmacie, Chatenay-Malabry, France
- Department of Biology and Pathology, Gustave Roussy Cancer Center, Villejuif, France
| | - Véronique Saada
- Department of Biology and Pathology, Gustave Roussy Cancer Center, Villejuif, France
| | - David Ghez
- Université Paris-Saclay, Inserm UMR1030, Laboratory of Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Department of Hematology, Gustave Roussy Cancer Center, Villejuif, France
| | - Xavier Mariette
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA- HB/IDMIT), Fontenay-aux-Roses, France
- Assistance Publique, Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France
| | - Mario Costa
- Institute of Neuroscience, Italian National Research Council, Pisa, Italy
- Laboratory of Biology BIO@SNS, Scuola Normale Superiore, Pisa, Italy
- Centro Pisano Ricerca e Implementazione Clinical Flash Radiotherapy "CPFR@CISUP", "S. Chiara" Hospital, Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center, Department of Translational Research, Universita of Pisa, Pisa, Italy
- Virology Operative Unit, Pisa University Hospital, Pisa, Italy
| | - Awatef Allouch
- Université Paris-Saclay, Inserm UMR1030, Laboratory of Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
- NH TherAguix SAS, Meylan, France
| | - Olivier Delelis
- Université Paris-Saclay, ENS Paris-Saclay, CNRS UMR 8113, IDA FR3242, Laboratory of Biology and Applied Pharmacology (LBPA), Gif-sur-Yvette, France
| | - Mauro Piacentini
- National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA- HB/IDMIT), Fontenay-aux-Roses, France
| | - Jean-Luc Perfettini
- Université Paris-Saclay, Inserm UMR1030, Laboratory of Molecular Radiotherapy and Therapeutic Innovation, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
| |
Collapse
|
10
|
Stevenson ER, Smith LC, Wilkinson ML, Lee SJ, Gow AJ. Etiology of lipid-laden macrophages in the lung. Int Immunopharmacol 2023; 123:110719. [PMID: 37595492 PMCID: PMC10734282 DOI: 10.1016/j.intimp.2023.110719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023]
Abstract
Uniquely positioned as sentinel cells constantly exposed to the environment, pulmonary macrophages are vital for the maintenance of the lung lining. These cells are responsible for the clearance of xenobiotics, pathogen detection and clearance, and homeostatic functions such as surfactant recycling. Among the spectrum of phenotypes that may be expressed by macrophages in the lung, the pulmonary lipid-laden phenotype is less commonly studied in comparison to its circulatory counterpart, the atherosclerotic lesion-associated foam cell, or the acutely activated inflammatory macrophage. Herein, we propose that lipid-laden macrophage formation in the lung is governed by lipid acquisition, storage, metabolism, and export processes. The cellular balance of these four processes is critical to the maintenance of homeostasis and the prevention of aberrant signaling that may contribute to lung pathologies. This review aims to examine mechanisms and signaling pathways that are involved in lipid-laden macrophage formation and the potential consequences of this phenotype in the lung.
Collapse
Affiliation(s)
- E R Stevenson
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - L C Smith
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States; Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT, United States
| | - M L Wilkinson
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - S J Lee
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - A J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
11
|
Phoswa WN, Khaliq OP, Eche S. A Review on Inflammasomes and Immune Checkpoints in Pre-Eclampsia Complicated with Tuberculosis and Human Immune Deficiency Virus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6627. [PMID: 37681767 PMCID: PMC10487055 DOI: 10.3390/ijerph20176627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
The current review evaluates how inflammasomes and immune checkpoints are regulated in pre-eclampsia (PE) associated with tuberculosis (TB) and Human Immune Deficiency Virus (HIV). Studies indicate that inflammasomes such as (NRLP3, NEK7, and AIM2) and immune checkpoints such as (CLT4, PD-1, TIM3, and LAG-3) are dysregulated in TB- and HIV-infected individuals, and also in pre-eclamptic pregnancies, which explains why pregnant women who are either infected with TB or HIV have an increased risk of developing PE. Evidence suggests that inhibition of inflammasomes and immune checkpoints may assist in the development of novel anti-inflammatory drugs for the prevention and management of PE in patients with or without TB and HIV infection.
Collapse
Affiliation(s)
- Wendy N. Phoswa
- Department of Life and Consumer Sciences, Science Campus, University of South Africa (UNISA), Private Bag X 6, Florida, Roodepoort 1710, South Africa
| | - Olive P. Khaliq
- Department of Paediatrics and Child Health, University of the Free State, Bloemfontein 9300, South Africa;
| | - Simeon Eche
- School of Medicine, Yale University, 333 Cedar Street, New Haven, CO 06510, USA;
| |
Collapse
|
12
|
Chen F, Pang C, Zheng Z, Zhou W, Guo Z, Xiao D, Du H, Bravo A, Soberón M, Sun M, Peng D. Aminopeptidase MNP-1 triggers intestine protease production by activating daf-16 nuclear location to degrade pore-forming toxins in Caenorhabditis elegans. PLoS Pathog 2023; 19:e1011507. [PMID: 37440595 PMCID: PMC10368266 DOI: 10.1371/journal.ppat.1011507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Pore-forming toxins (PFTs) are effective tools for pathogens infection. By disrupting epithelial barriers and killing immune cells, PFTs promotes the colonization and reproduction of pathogenic microorganisms in their host. In turn, the host triggers defense responses, such as endocytosis, exocytosis, or autophagy. Bacillus thuringiensis (Bt) bacteria produce PFT, known as crystal proteins (Cry) which damage the intestinal cells of insects or nematodes, eventually killing them. In insects, aminopeptidase N (APN) has been shown to act as an important receptor for Cry toxins. Here, using the nematode Caenorhabditis elegans as model, an extensive screening of APN gene family was performed to analyze the potential role of these proteins in the mode of action of Cry5Ba against the nematode. We found that one APN, MNP-1, participate in the toxin defense response, since the mnp-1(ok2434) mutant showed a Cry5Ba hypersensitive phenotype. Gene expression analysis in mnp-1(ok2434) mutant revealed the involvement of two protease genes, F19C6.4 and R03G8.6, that participate in Cry5Ba degradation. Finally, analysis of the transduction pathway involved in F19C6.4 and R03G8.6 expression revealed that upon Cry5Ba exposure, the worms up regulated both protease genes through the activation of the FOXO transcription factor DAF-16, which was translocated into the nucleus. The nuclear location of DAF-16 was found to be dependent on mnp-1 under Cry5Ba treatment. Our work provides evidence of new host responses against PFTs produced by an enteric pathogenic bacterium, resulting in activation of host intestinal proteases that degrade the PFT in the intestine.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Cuiyun Pang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Ziqiang Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Wei Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Zhiqing Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Danyang Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Hongwen Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
13
|
Wang T, Xu H, Guo Y, Guo Y, Guan H, Wang D. Perfluorodecanoic acid promotes high-fat diet-triggered adiposity and hepatic lipid accumulation by modulating the NLRP3/caspase-1 pathway in male C57BL/6J mice. Food Chem Toxicol 2023; 178:113943. [PMID: 37451596 DOI: 10.1016/j.fct.2023.113943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Perfluorodecanoic acid (PFDA), a chemical contaminant, may casue became obesity, which makes it a public health concern. In this study, we investigated the effects of PFDA on adiposity development and hepatic lipid accumulation in mice fed with a high-fat diet (HFD). Animals were assigned to two diet treatments (low-fat and high-fat); and PFDA was administered through drinking water for 12 weeks. The contaminant promoted body weight gain and adiposity in HFD-fed mice. Moreover, HFD-fed mice exposed to PFDA had impaired glucose metabolism, inflammation and hepatic lipid accumulation compared to mice fed HFD alone. PFDA activated the expression of hepatic NLRP3 and caspase-1, and induced that of SREBP-1c expression in the liver of HFD-fed mice. PFDA exposure in HFD-fed mice significantly inhibited hepatic AMPK expression than animals fed HFD without PFDA exposure. Furthermore, MCC950, an NLRP3 inhibitor, suppressed the upregulation of NLRP3 and caspase-1 expression, and inhibited the expression of SREBP-1c and the accumulation of hepatic lipid in mice exposed to PFDA. Thus, PFDA may enhance HFD-induced adiposity and hepatic lipid accumulation through the NLRP3/caspase-1 pathway. This contaminant may be a key risk factor for obesity development in individuals consuming high-fat foods, particularly Western diet.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100, Zhenjiang, China
| | - Yu Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100, Zhenjiang, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100, Zhenjiang, China
| | - Huanan Guan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100, Zhenjiang, China.
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100, Zhenjiang, China.
| |
Collapse
|
14
|
Shetty SV, Mazzucco MR, Winokur P, Haigh SV, Rumah KR, Fischetti VA, Vartanian T, Linden JR. Clostridium perfringens Epsilon Toxin Binds to and Kills Primary Human Lymphocytes. Toxins (Basel) 2023; 15:423. [PMID: 37505692 PMCID: PMC10467094 DOI: 10.3390/toxins15070423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 07/29/2023] Open
Abstract
Clostridium perfringens epsilon toxin (ETX) is the third most lethal bacterial toxin and has been suggested to be an environmental trigger of multiple sclerosis, an immune-mediated disease of the human central nervous system. However, ETX cytotoxicity on primary human cells has not been investigated. In this article, we demonstrate that ETX preferentially binds to and kills human lymphocytes expressing increased levels of the myelin and lymphocyte protein MAL. Using flow cytometry, ETX binding was determined to be time and dose dependent and was highest for CD4+ cells, followed by CD8+ and then CD19+ cells. Similar results were seen with ETX-induced cytotoxicity. To determine if ETX preference for CD4+ cells was related to MAL expression, MAL gene expression was determined by RT-qPCR. CD4+ cells had the highest amount of Mal gene expression followed by CD8+ and CD19+ cells. These data indicate that primary human cells are susceptible to ETX and support the hypothesis that MAL is a main receptor for ETX. Interestingly, ETX bindings to human lymphocytes suggest that ETX may influence immune response in multiple sclerosis.
Collapse
Affiliation(s)
- Samantha V. Shetty
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| | - Michael R. Mazzucco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| | - Paige Winokur
- Harold and Margaret Milliken Hatch Laboratory of Neuro-Endocrinology Rockefeller University, New York, NY 10065, USA
| | - Sylvia V. Haigh
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| | - Kareem Rashid Rumah
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, NY 10065, USA
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, NY 10065, USA
| | - Timothy Vartanian
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| | - Jennifer R. Linden
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| |
Collapse
|
15
|
Fei X, Huang J, Li F, Wang Y, Shao Z, Dong L, Wu Y, Li B, Zhang X, Lv B, Zhao Y, Weng Q, Chen K, Zhang M, Yang S, Zhang C, Zhang M, Li W, Ying S, Sun Q, Chen Z, Shen H. The Scap-SREBP1-S1P/S2P lipogenesis signal orchestrates the homeostasis and spatiotemporal activation of NF-κB. Cell Rep 2023; 42:112586. [PMID: 37267109 DOI: 10.1016/j.celrep.2023.112586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
The nuclear factor κB (NF-κB) pathway plays essential roles in innate and adaptive immunity, but little is known how NF-κB signaling is compartmentalized and spatiotemporally activated in the cytoplasm. Here, we show that the lipogenesis signal cascade Scap-SREBP1-S1P/S2P orchestrates the homeostasis and spatiotemporal activation of NF-κB. SREBP cleavage-activating protein (Scap) and sterol regulatory element-binding protein 1 (SREBP1) form a super complex with inhibitors of NF-κB α (IκBα) to associate NF-κB close to the endoplasmic reticulum (ER). Upon lipopolysaccharide (LPS) stimulation, Scap transports the complex to the Golgi apparatus, where SREBP1 is cleaved by site-1 protease (S1P)/S2P, liberating IκBα for IκB kinase (Ikk)-mediated phosphorylation and subsequent activation of NF-κB. Loss of Scap or inhibition of S1P or S2P diminishes, while SREBP1 deficiency augments, LPS-induced NF-κB activation and subsequent inflammatory responses. Our results reveal the Scap-SREBP1 complex as an additional cytoplasmic checkpoint for NF-κB homeostasis and unveil the Golgi apparatus as the optimal cellular platform for NF-κB activation, providing insights into the crosstalk between lipogenesis signaling and immunity.
Collapse
Affiliation(s)
- Xia Fei
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jiaqi Huang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Fei Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yuejue Wang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhehua Shao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Lingling Dong
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Boran Li
- Department of Biochemistry, Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xue Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Baihui Lv
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yun Zhao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qingyu Weng
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Kaijun Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Min Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shiyi Yang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Songmin Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qiming Sun
- Department of Biochemistry, Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; State Key Lab for Respiratory Diseases, National Clinical Research Centre for Respiratory Disease, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
16
|
Lacrimal Gland Epithelial Cells Shape Immune Responses through the Modulation of Inflammasomes and Lipid Metabolism. Int J Mol Sci 2023; 24:ijms24054309. [PMID: 36901740 PMCID: PMC10001612 DOI: 10.3390/ijms24054309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Lacrimal gland inflammation triggers dry eye disease through impaired tear secretion by the epithelium. As aberrant inflammasome activation occurs in autoimmune disorders including Sjögren's syndrome, we analyzed the inflammasome pathway during acute and chronic inflammation and investigated its potential regulators. Bacterial infection was mimicked by the intraglandular injection of lipopolysaccharide (LPS) and nigericin, known to activate the NLRP3 inflammasome. Acute injury of the lacrimal gland was induced by interleukin (IL)-1α injection. Chronic inflammation was studied using two Sjögren's syndrome models: diseased NOD.H2b compared to healthy BALBc mice and Thrombospondin-1-null (TSP-1-/-) compared to TSP-1WTC57BL/6J mice. Inflammasome activation was investigated by immunostaining using the R26ASC-citrine reporter mouse, by Western blotting, and by RNAseq. LPS/Nigericin, IL-1α and chronic inflammation induced inflammasomes in lacrimal gland epithelial cells. Acute and chronic inflammation of the lacrimal gland upregulated multiple inflammasome sensors, caspases 1/4, and interleukins Il1b and Il18. We also found increased IL-1β maturation in Sjögren's syndrome models compared with healthy control lacrimal glands. Using RNA-seq data of regenerating lacrimal glands, we found that lipogenic genes were upregulated during the resolution of inflammation following acute injury. In chronically inflamed NOD.H2b lacrimal glands, an altered lipid metabolism was associated with disease progression: genes for cholesterol metabolism were upregulated, while genes involved in mitochondrial metabolism and fatty acid synthesis were downregulated, including peroxisome proliferator-activated receptor alpha (PPARα)/sterol regulatory element-binding 1 (SREBP-1)-dependent signaling. We conclude that epithelial cells can promote immune responses by forming inflammasomes, and that sustained inflammasome activation, together with an altered lipid metabolism, are key players of Sjögren's syndrome-like pathogenesis in the NOD.H2b mouse lacrimal gland by promoting epithelial dysfunction and inflammation.
Collapse
|
17
|
Glucocorticoids increase tissue cell protection against pore-forming toxins from pathogenic bacteria. Commun Biol 2023; 6:186. [PMID: 36807406 PMCID: PMC9938277 DOI: 10.1038/s42003-023-04568-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Many species of pathogenic bacteria damage tissue cells by secreting toxins that form pores in plasma membranes. Here we show that glucocorticoids increase the intrinsic protection of tissue cells against pore-forming toxins. Dexamethasone protected several cell types against the cholesterol-dependent cytolysin, pyolysin, from Trueperella pyogenes. Dexamethasone treatment reduced pyolysin-induced leakage of potassium and lactate dehydrogenase, limited actin cytoskeleton alterations, reduced plasma membrane blebbing, and prevented cytolysis. Hydrocortisone and fluticasone also protected against pyolysin-induced cell damage. Furthermore, dexamethasone protected HeLa and A549 cells against the pore-forming toxins streptolysin O from Streptococcus pyogenes, and alpha-hemolysin from Staphylococcus aureus. Dexamethasone cytoprotection was not associated with changes in cellular cholesterol or activating mitogen-activated protein kinase (MAPK) cell stress responses. However, cytoprotection was dependent on the glucocorticoid receptor and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR). Collectively, our findings imply that glucocorticoids could be exploited to limit tissue damage caused by pathogens secreting pore-forming toxins.
Collapse
|
18
|
Cheng Y, Manabe I, Hayakawa S, Endo Y, Oishi Y. Caspase-11 contributes to site-1 protease cleavage and SREBP1 activation in the inflammatory response of macrophages. Front Immunol 2023; 14:1009973. [PMID: 36776855 PMCID: PMC9912839 DOI: 10.3389/fimmu.2023.1009973] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Sterol regulatory element-binding proteins (SREBPs) are key transcription factors that control fatty acid and cholesterol metabolism. As the major SREBP isoform in macrophages, SREBP1a is also required for inflammatory and phagocytotic functions. However, it is insufficiently understood how SREBP1a is activated by the innate immune response in macrophages. Here, we show that mouse caspase-11 is a novel inflammatory activator of SREBP1a in macrophages. Upon LPS treatment, caspase-11 was found to promote the processing of site-1 protease (S1P), an enzyme that mediates the cleavage and activation of SREBP1. We also determined that caspase-11 directly associates with S1P and cleaves it at a specific site. Furthermore, deletion of the Casp4 gene, which encodes caspase-11, impaired the activation of S1P and SREBP1 as well as altered the expression of genes regulated by SREBP1 in macrophages. These results demonstrate that the caspase-11/S1P pathway activates SREBP1 in response to LPS, thus regulating subsequent macrophage activation.
Collapse
Affiliation(s)
- Yinglan Cheng
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan,*Correspondence: Ichiro Manabe, ; Yumiko Oishi,
| | - Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku, Japan
| | - Yusuke Endo
- Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku, Japan,*Correspondence: Ichiro Manabe, ; Yumiko Oishi,
| |
Collapse
|
19
|
Chuphal B, Rai U, Roy B. Teleost NOD-like receptors and their downstream signaling pathways: A brief review. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100056. [DOI: 10.1016/j.fsirep.2022.100056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 02/08/2023] Open
|
20
|
Araki M, Nakagawa Y, Saito H, Yamada Y, Han SI, Mizunoe Y, Ohno H, Miyamoto T, Sekiya M, Matsuzaka T, Sone H, Shimano H. Hepatocyte- or macrophage-specific SREBP-1a deficiency in mice exacerbates methionine- and choline-deficient diet-induced nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol 2022; 323:G627-G639. [PMID: 36283088 DOI: 10.1152/ajpgi.00090.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sterol regulatory element-binding proteins (SREBPs) are master transcription factors for lipid synthesis, and SREBP-1 is important for fatty acid and triglyceride synthesis. SREBP-1 has two isoforms, SREBP-1a and SREBP-1c, which are splicing variants transcribed from the Srebf1 gene. Although SREBP-1a exhibits stronger transcriptional activity than SREBP-1c, hepatic SREBP-1c is considered more physiologically important. We generated SREBP-1a flox mice using the CRISPR/Cas9 system and hepatocyte- and macrophage-specific SREBP-1a knockout (KO) mice (LKO, liver-knockout; and mΦKO, macrophage-knockout). There were no significant differences among all the mouse genotypes upon feeding with a normal diet. However, feeding with a methionine- and choline-deficient (MCD) diet resulted in exacerbated liver injury in both KO mice. In LKO mice, fatty liver was unexpectedly exacerbated, leading to macrophage infiltration and inflammation. In contrast, in mΦKO mice, the fatty liver state was similar to that in flox mice, but the polarity of the macrophages in the liver was transformed into a proinflammatory M1 subtype, resulting in the exacerbation of inflammation. Taken together, we found that SREBP-1a does not contribute to hepatic lipogenesis, but in either hepatocytes or macrophages distinctly controls the onset of pathological conditions in MCD diet-induced hepatitis.NEW & NOTEWORTHY Hepatocyte- and macrophage-specific SREBP-1a knockout mice were generated for the first time. This study reveals that SREBP-1a does not contribute to hepatic lipogenesis, but in either hepatocytes or macrophages distinctly controls the onset of pathological conditions in methionine- and choline-deficient diet-induced hepatitis.
Collapse
Affiliation(s)
- Masaya Araki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshimi Nakagawa
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Hodaka Saito
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Yasunari Yamada
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Song-Iee Han
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yuhei Mizunoe
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ohno
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Motohiro Sekiya
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center (TMRC), University of Tsukuba, Tsukuba, Japan
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| |
Collapse
|
21
|
CCN1/Integrin α 5β 1 Instigates Free Fatty Acid-Induced Hepatocyte Lipid Accumulation and Pyroptosis through NLRP3 Inflammasome Activation. Nutrients 2022; 14:nu14183871. [PMID: 36145246 PMCID: PMC9505842 DOI: 10.3390/nu14183871] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/20/2022] Open
Abstract
Hyperlipidemia with high blood levels of free fatty acids (FFA) is the leading cause of non-alcoholic steatohepatitis. CCN1 is a secreted matricellular protein that drives various cellular functions, including proliferation, migration, and differentiation. However, its role in mediating FFA-induced pro-inflammatory cell death and its underlying molecular mechanisms have not been characterized. In this study, we demonstrated that CCN1 was upregulated in the livers of obese mice. The increase in FFA-induced CCN1 was evaluated in vitro by treating hepatocytes with a combination of oleic acid and palmitic acid (2:1). Gene silencing using specific small interfering RNAs (siRNA) revealed that CCN1 participated in FFA-induced intracellular lipid accumulation, caspase-1 activation, and hepatocyte pyroptosis. Next, we identified integrin α5β1 as a potential receptor of CCN1. Co-immunoprecipitation demonstrated that the binding between CCN1 and integrin α5β1 increased in hepatocytes upon FFA stimulation in the livers of obese mice. Similarly, the protein levels of integrin α5 and β1 were increased in vitro and in vivo. Experiments with specific siRNAs confirmed that integrin α5β1 played a part in FFA-induced intracellular lipid accumulation, NLRP3 inflammasome activation, and pyroptosis in hepatocytes. In conclusion, these results provide novel evidence that the CCN1/integrin α5β1 is a novel mediator that drives hepatic lipotoxicity via NLRP3-dependent pyroptosis.
Collapse
|
22
|
Cell death in skin function, inflammation, and disease. Biochem J 2022; 479:1621-1651. [PMID: 35929827 PMCID: PMC9444075 DOI: 10.1042/bcj20210606] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Cell death is an essential process that plays a vital role in restoring and maintaining skin homeostasis. It supports recovery from acute injury and infection and regulates barrier function and immunity. Cell death can also provoke inflammatory responses. Loss of cell membrane integrity with lytic forms of cell death can incite inflammation due to the uncontrolled release of cell contents. Excessive or poorly regulated cell death is increasingly recognised as contributing to cutaneous inflammation. Therefore, drugs that inhibit cell death could be used therapeutically to treat certain inflammatory skin diseases. Programmes to develop such inhibitors are already underway. In this review, we outline the mechanisms of skin-associated cell death programmes; apoptosis, necroptosis, pyroptosis, NETosis, and the epidermal terminal differentiation programme, cornification. We discuss the evidence for their role in skin inflammation and disease and discuss therapeutic opportunities for targeting the cell death machinery.
Collapse
|
23
|
SARS-CoV-2 non-structural protein 6 triggers NLRP3-dependent pyroptosis by targeting ATP6AP1. Cell Death Differ 2022; 29:1240-1254. [PMID: 34997207 PMCID: PMC9177730 DOI: 10.1038/s41418-021-00916-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 01/18/2023] Open
Abstract
A recent mutation analysis suggested that Non-Structural Protein 6 (NSP6) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a key determinant of the viral pathogenicity. Here, by transcriptome analysis, we demonstrated that the inflammasome-related NOD-like receptor signaling was activated in SARS-CoV-2-infected lung epithelial cells and Coronavirus Disease 2019 (COVID-19) patients' lung tissues. The induction of inflammasomes/pyroptosis in patients with severe COVID-19 was confirmed by serological markers. Overexpression of NSP6 triggered NLRP3/ASC-dependent caspase-1 activation, interleukin-1β/18 maturation, and pyroptosis of lung epithelial cells. Upstream, NSP6 impaired lysosome acidification to inhibit autophagic flux, whose restoration by 1α,25-dihydroxyvitamin D3, metformin or polydatin abrogated NSP6-induced pyroptosis. NSP6 directly interacted with ATP6AP1, a vacuolar ATPase proton pump component, and inhibited its cleavage-mediated activation. L37F NSP6 variant, which was associated with asymptomatic COVID-19, exhibited reduced binding to ATP6AP1 and weakened ability to impair lysosome acidification to induce pyroptosis. Consistently, infection of cultured lung epithelial cells with live SARS-CoV-2 resulted in autophagic flux stagnation, inflammasome activation, and pyroptosis. Overall, this work supports that NSP6 of SARS-CoV-2 could induce inflammatory cell death in lung epithelial cells, through which pharmacological rectification of autophagic flux might be therapeutically exploited.
Collapse
|
24
|
Ormsby TJR, Owens SE, Clement L, Mills TJ, Cronin JG, Bromfield JJ, Sheldon IM. Oxysterols Protect Epithelial Cells Against Pore-Forming Toxins. Front Immunol 2022; 13:815775. [PMID: 35154132 PMCID: PMC8825411 DOI: 10.3389/fimmu.2022.815775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/05/2022] [Indexed: 12/25/2022] Open
Abstract
Many species of bacteria produce toxins such as cholesterol-dependent cytolysins that form pores in cell membranes. Membrane pores facilitate infection by releasing nutrients, delivering virulence factors, and causing lytic cell damage - cytolysis. Oxysterols are oxidized forms of cholesterol that regulate cellular cholesterol and alter immune responses to bacteria. Whether oxysterols also influence the protection of cells against pore-forming toxins is unresolved. Here we tested the hypothesis that oxysterols stimulate the intrinsic protection of epithelial cells against damage caused by cholesterol-dependent cytolysins. We treated epithelial cells with oxysterols and then challenged them with the cholesterol-dependent cytolysin, pyolysin. Treating HeLa cells with 27-hydroxycholesterol, 25-hydroxycholesterol, 7α-hydroxycholesterol, or 7β-hydroxycholesterol reduced pyolysin-induced leakage of lactate dehydrogenase and reduced pyolysin-induced cytolysis. Specifically, treatment with 10 ng/ml 27-hydroxycholesterol for 24 h reduced pyolysin-induced lactate dehydrogenase leakage by 88%, and reduced cytolysis from 74% to 1%. Treating HeLa cells with 27-hydroxycholesterol also reduced pyolysin-induced leakage of potassium ions, prevented mitogen-activated protein kinase cell stress responses, and limited alterations in the cytoskeleton. Furthermore, 27-hydroxycholesterol reduced pyolysin-induced damage in lung and liver epithelial cells, and protected against the cytolysins streptolysin O and Staphylococcus aureus α-hemolysin. Although oxysterols regulate cellular cholesterol by activating liver X receptors, cytoprotection did not depend on liver X receptors or changes in total cellular cholesterol. However, oxysterol cytoprotection was partially dependent on acyl-CoA:cholesterol acyltransferase (ACAT) reducing accessible cholesterol in cell membranes. Collectively, these findings imply that oxysterols stimulate the intrinsic protection of epithelial cells against pore-forming toxins and may help protect tissues against pathogenic bacteria.
Collapse
Affiliation(s)
- Thomas J R Ormsby
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Sian E Owens
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Liam Clement
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Tom J Mills
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - James G Cronin
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - John J Bromfield
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Iain Martin Sheldon
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| |
Collapse
|
25
|
Pyroptosis and Sarcopenia: Frontier Perspective of Disease Mechanism. Cells 2022; 11:cells11071078. [PMID: 35406642 PMCID: PMC8998102 DOI: 10.3390/cells11071078] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023] Open
Abstract
With global ageing, sarcopenia, as an age-related disease, has brought a heavy burden to individuals and society. Increasing attention has been given to further exploring the morbidity mechanism and intervention measures for sarcopenia. Pyroptosis, also known as cellular inflammatory necrosis, is a kind of regulated cell death that plays a role in the ageing progress at the cellular level. It is closely related to age-related diseases such as cardiovascular diseases, Alzheimer’s disease, osteoarthritis, and sarcopenia. In the process of ageing, aggravated oxidative stress and poor skeletal muscle perfusion in ageing muscle tissues can activate the nod-like receptor (NLRP) family to trigger pyroptosis. Chronic inflammation is a representative characteristic of ageing. The levels of inflammatory factors such as TNF-α may activate the signaling pathways of pyroptosis by the NF-κB-GSDMD axis, which remains to be further studied. Autophagy is a protective mechanism in maintaining the integrity of intracellular organelles and the survival of cells in adverse conditions. The autophagy of skeletal muscle cells can inhibit the activation of the pyroptosis pathway to some extent. A profound understanding of the mechanism of pyroptosis in sarcopenia may help to identify new therapeutic targets in the future. This review article focuses on the role of pyroptosis in the development and progression of sarcopenia.
Collapse
|
26
|
Ulhuq FR, Mariano G. Bacterial pore-forming toxins. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001154. [PMID: 35333704 PMCID: PMC9558359 DOI: 10.1099/mic.0.001154] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022]
Abstract
Pore-forming toxins (PFTs) are widely distributed in both Gram-negative and Gram-positive bacteria. PFTs can act as virulence factors that bacteria utilise in dissemination and host colonisation or, alternatively, they can be employed to compete with rival microbes in polymicrobial niches. PFTs transition from a soluble form to become membrane-embedded by undergoing large conformational changes. Once inserted, they perforate the membrane, causing uncontrolled efflux of ions and/or nutrients and dissipating the protonmotive force (PMF). In some instances, target cells intoxicated by PFTs display additional effects as part of the cellular response to pore formation. Significant progress has been made in the mechanistic description of pore formation for the different PFTs families, but in several cases a complete understanding of pore structure remains lacking. PFTs have evolved recognition mechanisms to bind specific receptors that define their host tropism, although this can be remarkably diverse even within the same family. Here we summarise the salient features of PFTs and highlight where additional research is necessary to fully understand the mechanism of pore formation by members of this diverse group of protein toxins.
Collapse
Affiliation(s)
- Fatima R. Ulhuq
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
27
|
Tingting W, Tianqi F, Xinyu W, Can Z, Xue S, Xuming D, Jianfeng W. Amentoflavone attenuates Listeria monocytogenes pathogenicity through an LLO-dependent mechanism. Br J Pharmacol 2022; 179:3839-3858. [PMID: 35229287 DOI: 10.1111/bph.15827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
Background and purpose L. monocytogenes remain a leading cause of foodborne infection. Listeriolysin O (LLO), an indispensable virulence determinant involved in diverse pathogenic mechanisms of L. monocytogenes infection, represents a promising therapeutic target. In this study, we sought to identify an effective inhibitor of LLO pore formation and its mechanism of action in the treatment of L. monocytogenes infection. Experimental approach Hemolysis assay was carried out to screen an effective LLO inhibitor. The interaction between candidate and LLO was investigated using SPR assay and MD. The effect of candidate on LLO-mediated cytotoxicity, barrier disruption and immune response were investigated. Finally, the in vivo effect of candidate on mice challenged with L. monocytogenes was examined. Key results Amentoflavone, a natural flavone broadly present in traditional Chinese herbs, effectively inhibited LLO pore formation by engaging the residues Lys93, Asp416, Tyr469 and Lys505 in LLO. Amentoflavone dose-dependently reduced L. monocytogenes-induced cell injury in an LLO-dependent manner. In the Caco-2 monolayer model, amentoflavone maintained the integrity of the epithelial barrier exposed to LLO. Additionally, amentoflavone inhibited the inflammatory response evoked by L. monocytogenes in an LLO-dependent manner, and such inhibition was attributed to its ability to block perforation-associated K+ efflux and Ca2+ influx. In mice infection model, amentoflavone treatment significantly reduced bacterial burdens and pathological lesions in target organs, with a significant increase in the survival rate. Conclusions and implications Amentoflavone reduced the pathogenicity of L. monocytogenes by specifically inhibiting LLO pore formation, and this natural compound may present a potential candidate treatment for L. monocytogenes infection.
Collapse
Affiliation(s)
- Wang Tingting
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fang Tianqi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wang Xinyu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhang Can
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shen Xue
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Deng Xuming
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wang Jianfeng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
28
|
Liu T, Hou M, Li M, Qiu C, Cheng L, Zhu T, Qu J, Li L. Pyroptosis: A Developing Foreland of Ovarian Cancer Treatment. Front Oncol 2022; 12:828303. [PMID: 35198448 PMCID: PMC8858844 DOI: 10.3389/fonc.2022.828303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OVCA) has the second highest mortality among all gynecological cancers worldwide due to its complexity and difficulty in early-stage diagnosis and a lack of targeted therapy. Modern strategies of OVCA treatment involve debulking surgery combined with chemotherapy. Nonetheless, the current treatment is far from satisfactory sometimes and therefore the demand for novel therapeutic measures needs to be settled. Pyroptosis is a notable form of programmed cell death characterized by influx of sodium with water, swelling of cells, and finally osmotic lysis, which is distinctive from numerous classes of programmed cell death. So far, four major pathways underlying mechanisms of pyroptosis have been identified and pyroptosis is indicated to be connected with a variety of disorders including cancerous diseases. Interestingly enough, pyroptosis plays an important role in ovarian cancer with regard to long non-coding RNAs and several regulatory molecules, as is shown by previously published reports. In this review, we summarized major pathways of pyroptosis and the current research foundations of pyroptosis and ovarian cancer, anticipating enriching the thoughts for the treatment of ovarian cancer. What is more, some problems yet unsolved in this field were also raised to hopefully propose several potential threads of OVCA treatment and research directions in future.
Collapse
Affiliation(s)
- Tianyi Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Hou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Manyu Li
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cheng Qiu
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Cheng
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tianyu Zhu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinfeng Qu
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lanyu Li
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Lanyu Li,
| |
Collapse
|
29
|
Elrayess RA, Mohallal ME, Mobarak YM, Ebaid HM, Haywood-Small S, Miller K, Strong PN, Abdel-Rahman MA. Scorpion Venom Antimicrobial Peptides Induce Caspase-1 Dependant Pyroptotic Cell Death. Front Pharmacol 2022; 12:788874. [PMID: 35082671 PMCID: PMC8784870 DOI: 10.3389/fphar.2021.788874] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022] Open
Abstract
Within the last decade, several peptides have been identified according to their ability to inhibit the growth of microbial pathogens. These antimicrobial peptides (AMPs) are a part of the innate immune system of all living organisms. Many studies on their effects on prokaryotic microorganisms have been reported; some of these peptides have cytotoxic properties although the molecular mechanisms underlying their activity on eukaryotic cells remain poorly understood. Smp24 and Smp43 are novel cationic AMPs which were identified from the venom of the Egyptian scorpion Scorpio maurus palmatus. Smp24 and Smp43 showed potent activity against both Gram-positive and Gram-negative bacteria as well as fungi. Here we describe cytotoxicity of these peptides towards two acute leukaemia cell lines (myeloid (KG1-a) and lymphoid (CCRF-CEM) leukaemia cell lines) and three non-tumour cell lines CD34+ (hematopoietic stem progenitor from cord blood), HRECs (human renal epithelial cells) and HaCaT (human skin keratinocytes). Smp24 and Smp43 (4–256 µg/ml) decreased the viability of all cell lines, although HaCaT cells were markedly less sensitive. With the exception HaCaT cells, the caspase-1 gene was uniquely up-regulated in all cell lines studied. However, all cell lines showed an increase in downstream interleukin-1β (IL-1β) expression. Transmission electron microscope studies revealed the formation of cell membrane blebs and the appearance of autolysosomes and lipid droplets in all cell lines; KG1-a leukemia cells also showed the unique appearance of glycogen deposits. Our results reveal a novel mechanism of action for scorpion venom AMPs, activating a cascade of events leading to cell death through a programmed pyroptotic mechanism.
Collapse
Affiliation(s)
- Ranwa A Elrayess
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom.,Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mahmoud E Mohallal
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Yomn M Mobarak
- Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Hala M Ebaid
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Sarah Haywood-Small
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Keith Miller
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Peter N Strong
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | | |
Collapse
|
30
|
Zou J, Yan C, Wan JB. Red yeast rice ameliorates non-alcoholic fatty liver disease through inhibiting lipid synthesis and NF-κB/NLRP3 inflammasome-mediated hepatic inflammation in mice. Chin Med 2022; 17:17. [PMID: 35078487 PMCID: PMC8788078 DOI: 10.1186/s13020-022-00573-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Red yeast rice (RYR), a nutraceutical with a profound cholesterol-lowering effect, was found to attenuate non-alcoholic fatty liver disease (NAFLD) in mice. Despite monacolin K in RYR being a specific inhibitor of hydroxymethylglutaryl-coenzyme A reductase (HMCGR), the mechanisms underlying the protective effects of RYR against NAFLD are not fully elucidated. METHODS Using a mouse model of high-fat diet (HFD) feeding and a cellular model of HepG2 cells challenged by lipopolysaccharide (LPS) and palmitic acid (PA), the possible molecular mechanisms were exploited in the aspects of NF-κB/NLRP3 inflammasome and mTORC1-SREBPs signaling pathways by examining the relevant gene/protein expressions. Subsequently, the correlation between these two signals was also verified using cellular experiments. RESULTS RYR ameliorated lipid accumulation and hepatic inflammation in vivo and in vitro. RYR improved lipid metabolism through modulating mTORC1-SREBPs and their target genes related to triglyceride and cholesterol synthesis. Furthermore, RYR suppressed hepatic inflammation by inhibiting the NF-κB/NLRP3 inflammasome signaling. Interestingly, the treatment with RYR or MCC950, a specific NLRP3 inhibitor, resulted in the reduced lipid accumulation in HepG2 cells challenged by LPS plus PA, suggesting that the inhibitory effects of RYR on NLRP3 inflammasome-mediated hepatic inflammation may partially, in turn, contribute to the lipid-lowering effect of RYR. CONCLUSIONS The modulation of NF-κB/NLRP3 inflammasome and lipid synthesis may contribute to the ameliorative effects of RYR against HFD-induced NAFLD.
Collapse
Affiliation(s)
- Jian Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China
| | - Chunyan Yan
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China.
| |
Collapse
|
31
|
Hernandez‐Cuellar E, Guerrero‐Barrera AL, Avelar‐Gonzalez FJ, Díaz JM, Chávez‐Reyes J, Salazar de Santiago A. An in vitro study of ApxI from Actinobacillus pleuropneumoniae serotype 10 and induction of NLRP3 inflammasome-dependent cell death. Vet Rec Open 2021; 8:e20. [PMID: 34631111 PMCID: PMC8490337 DOI: 10.1002/vro2.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Actinobacillus pleuropneumoniae (AP) is the causative agent of porcine pleuropneumonia. Apx exotoxins are the most important virulence factors associated with the induction of lesions. ApxI is highly cytotoxic on a wide range of cells. Besides the induction of necrosis and apoptosis of ApxI on porcine alveolar macrophages (PAMs), its role in pyroptosis, a caspase-1-dependent form of cell death, has not been reported. The aim of this study was to analyse if NLRP3 inflammasome participates in cell death induced by ApxI. METHODS PAMs, the porcine alveolar macrophage cell line 3D4/21 and a porcine aortic endothelial cell line were used in this study. We used Z-VAD-FMK and Ac-YVAD-cmk to inhibit caspase-1. Glyburide and MCC950 were used to inhibit the NLRP3 inflammasome. A lactate dehydrogenase release assay was used to measure the percentage of cell death. Caspase-1 expression was analysed by immunofluorescence. End-point RT-PCR was used to analyse the expression of NLRP3 mRNA. RESULTS Rapid cell death in PAMs, 3D4/21 cells and the endothelial cell line were induced by ApxI. This cell death decreased by using caspase-1 and NLRP3 inflammasome inhibitors and by blocking the K+ efflux. Expression of NLRP3 mRNA was induced by ApxI in alveolar macrophages while it was constitutive in the endothelial cell line. Detection of caspase-1 in alveolar macrophages was higher after ApxI treatment and it was blocked by MCC950 or heat inactivation. CONCLUSIONS To the best of the authors' knowledge, we have described for the first time in vitro induction of ApxI associated pyroptosis in alveolar macrophages and endothelial cells, a rapid cell death that depends on the activation of caspase-1 via the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Eduardo Hernandez‐Cuellar
- Laboratorio de Biología Celular y TisularDepartamento de MorfologíaUniversidad Autónoma de Aguascalientes (UAA)AguascalientesMexico
| | - Alma Lilián Guerrero‐Barrera
- Laboratorio de Biología Celular y TisularDepartamento de MorfologíaUniversidad Autónoma de Aguascalientes (UAA)AguascalientesMexico
| | - Francisco Javier Avelar‐Gonzalez
- Laboratorio de Ciencias AmbientalesDepartamento de Fisiología y FarmacologíaUniversidad Autónoma de Aguascalientes (UAA)AguascalientesMexico
| | - Juan Manuel Díaz
- Unidad Médico DidácticaCentro de Ciencias de la SaludUniversidad Autónoma de AguascalientesAguascalientesMéxico
| | - Jesús Chávez‐Reyes
- Laboratorio de Ciencias AmbientalesDepartamento de Fisiología y FarmacologíaUniversidad Autónoma de Aguascalientes (UAA)AguascalientesMexico
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de MatamorosUniversidad Autónoma de TamaulipasTamaulipasMéxico
| | - Alfredo Salazar de Santiago
- Laboratorio de Biología Celular y TisularDepartamento de MorfologíaUniversidad Autónoma de Aguascalientes (UAA)AguascalientesMexico
- Unidad Académica de OdontologíaÁrea de Ciencias de la SaludUniversidad Autónoma de ZacatecasZacatecasMéxico
| |
Collapse
|
32
|
Intracellularly Released Cholesterol from Polymer-Based Delivery Systems Alters Cellular Responses to Pneumolysin and Promotes Cell Survival. Metabolites 2021; 11:metabo11120821. [PMID: 34940579 PMCID: PMC8709088 DOI: 10.3390/metabo11120821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Cholesterol is highly abundant within all human body cells and modulates critical cellular functions related to cellular plasticity, metabolism, and survival. The cholesterol-binding toxin pneumolysin represents an essential virulence factor of Streptococcus pneumoniae in establishing pneumonia and other pneumococcal infections. Thus, cholesterol scavenging of pneumolysin is a promising strategy to reduce S. pneumoniae induced lung damage. There may also be a second cholesterol-dependent mechanism whereby pneumococcal infection and the presence of pneumolysin increase hepatic sterol biosynthesis. Here we investigated a library of polymer particles varying in size and composition that allow for the cellular delivery of cholesterol and their effects on cell survival mechanisms following pneumolysin exposure. Intracellular delivery of cholesterol by nanocarriers composed of Eudragit E100–PLGA rescued pneumolysin-induced alterations of lipid homeostasis and enhanced cell survival irrespective of neutralization of pneumolysin.
Collapse
|
33
|
Ormsby TJR, Owens SE, Horlock AD, Davies D, Griffiths WJ, Wang Y, Cronin JG, Bromfield JJ, Sheldon IM. Oxysterols protect bovine endometrial cells against pore-forming toxins from pathogenic bacteria. FASEB J 2021; 35:e21889. [PMID: 34569656 PMCID: PMC9272411 DOI: 10.1096/fj.202100036r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/16/2021] [Accepted: 08/16/2021] [Indexed: 11/11/2022]
Abstract
Many species of pathogenic bacteria secrete toxins that form pores in mammalian cell membranes. These membrane pores enable the delivery of virulence factors into cells, result in the leakage of molecules that bacteria can use as nutrients, and facilitate pathogen invasion. Inflammatory responses to bacteria are regulated by the side-chain-hydroxycholesterols 27-hydroxycholesterol and 25-hydroxycholesterol, but their effect on the intrinsic protection of cells against pore-forming toxins is unclear. Here, we tested the hypothesis that 27-hydroxycholesterol and 25-hydroxycholesterol help protect cells against pore-forming toxins. We treated bovine endometrial epithelial and stromal cells with 27-hydroxycholesterol or 25-hydroxycholesterol, and then challenged the cells with pyolysin, which is a cholesterol-dependent cytolysin from Trueperella pyogenes that targets these endometrial cells. We found that treatment with 27-hydroxycholesterol or 25-hydroxycholesterol protected both epithelial and stomal cells against pore formation and the damage caused by pyolysin. The oxysterols limited pyolysin-induced leakage of potassium and lactate dehydrogenase from cells, and reduced cytoskeletal changes and cytolysis. This oxysterol cytoprotection against pyolysin was partially dependent on reducing cytolysin-accessible cholesterol in the cell membrane and on activating liver X receptors. Treatment with 27-hydroxycholesterol also protected the endometrial cells against Staphylococcus aureus α-hemolysin. Using mass spectrometry, we found 27-hydroxycholesterol and 25-hydroxycholesterol in uterine and follicular fluid. Furthermore, epithelial cells released additional 25-hydroxycholesterol in response to pyolysin. In conclusion, both 27-hydroxycholesterol and 25-hydroxycholesterol increased the intrinsic protection of bovine endometrial cells against pore-forming toxins. Our findings imply that side-chain-hydroxycholesterols may help defend the endometrium against pathogenic bacteria.
Collapse
Affiliation(s)
| | - Sian E Owens
- Swansea University Medical School, Swansea University, Swansea, UK
| | | | - Daphne Davies
- Swansea University Medical School, Swansea University, Swansea, UK
| | | | - Yuqin Wang
- Swansea University Medical School, Swansea University, Swansea, UK
| | - James G Cronin
- Swansea University Medical School, Swansea University, Swansea, UK
| | - John J Bromfield
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Iain M Sheldon
- Swansea University Medical School, Swansea University, Swansea, UK
| |
Collapse
|
34
|
Ozma MA, Khodadadi E, Rezaee MA, Asgharzadeh M, Aghazadeh M, Zeinalzadeh E, Ganbarov K, Kafil H. Bacterial proteomics and its application for pathogenesis studies. Curr Pharm Biotechnol 2021; 23:1245-1256. [PMID: 34503411 DOI: 10.2174/1389201022666210908153234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 01/09/2023]
Abstract
Bacteria build their structures by implementing several macromolecules such as proteins, polysaccharides, phospholipids, and nucleic acids, which leads to preserve their lives and play an essential role in their pathogenesis. There are two genomic and proteomic methods to study various macromolecules of bacteria, which are complementary methods and provide comprehensive information. Proteomic approaches are used to identify proteins and their cell applications. Furthermore, to study bacterial proteins, macromolecules are involved in the bacteria's structures and functions. These protein-based methods provide comprehensive information about the cells, such as the external structures, internal compositions, post-translational modifications, and mechanisms of particular actions such as biofilm formation, antibiotic resistance, and adaptation to the environment, which are helpful in promoting bacterial pathogenesis. These methods use various devices such as MALDI-TOF MS, LC-MS, and two-dimensional electrophoresis, which are valuable tools for studying different structural and functional proteins of the bacteria and their mechanisms of pathogenesis that causes rapid, easy, and accurate diagnosis of the infections.
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Ehsaneh Khodadadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | | | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Mohammad Aghazadeh
- Microbiome and Health Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Elham Zeinalzadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | | | - Hossein Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614711. Iran
| |
Collapse
|
35
|
Ramachandran A, Kumar B, Waris G, Everly D. Deubiquitination and Activation of the NLRP3 Inflammasome by UCHL5 in HCV-Infected Cells. Microbiol Spectr 2021; 9:e0075521. [PMID: 34431717 PMCID: PMC8552718 DOI: 10.1128/spectrum.00755-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection induces liver inflammation that can lead to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Inflammation is the outcome of the action of proinflammatory cytokines and chemokines, including interleukin-1 beta (IL-1β) and tumor necrosis factor alpha. Mature IL-1β production and secretion are facilitated by active inflammasome complexes, including the NACHT-LRR pyrin domain-containing protein 3 (NLRP3) inflammasome. Our study shows that the NLRP3 inflammasome is activated in HCV-infected hepatocytes and that the activation is regulated by posttranslational modifications. NLRP3 is modified by lysine-63 ubiquitin chains in hepatocytes and is deubiquitinated during HCV infection. Inhibition of deubiquitinases (DUBs) with chemical inhibitors or blocking UCHL5 DUB expression with small interfering RNA (siRNA) abrogated NLRP3 inflammasome assembly and activation. Inhibition of inflammasome deubiquitination was correlated with a reduction in IL-1β maturation, decrease in HCV protein expression, and reduction in release of HCV from the cells. Together, this study suggests that HCV-induced activation of the NLRP3 inflammasome through posttranslational modification is crucial for the HCV life cycle and pathogenesis. IMPORTANCE HCV infection induces inflammation leading to fibrosis, cirrhosis, and cancer. The current study identifies the mechanisms leading to the activation of the NLRP3 inflammasome in hepatocytes, which is an important site of viral replication. Deubiquitination of NLRP3 by UCHL5 is required for inflammasome activation. Inhibition of deubiquitination blocks NLRP3 inflammasome activation and IL-1β maturation and also decreases HCV replication, suggesting the importance of the NLRP3 inflammasome in inflammation as well as other signaling pathways.
Collapse
Affiliation(s)
- Akshaya Ramachandran
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Binod Kumar
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Gulam Waris
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - David Everly
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| |
Collapse
|
36
|
Kulma M, Anderluh G. Beyond pore formation: reorganization of the plasma membrane induced by pore-forming proteins. Cell Mol Life Sci 2021; 78:6229-6249. [PMID: 34387717 PMCID: PMC11073440 DOI: 10.1007/s00018-021-03914-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022]
Abstract
Pore-forming proteins (PFPs) are a heterogeneous group of proteins that are expressed and secreted by a wide range of organisms. PFPs are produced as soluble monomers that bind to a receptor molecule in the host cell membrane. They then assemble into oligomers that are incorporated into the lipid membrane to form transmembrane pores. Such pore formation alters the permeability of the plasma membrane and is one of the most common mechanisms used by PFPs to destroy target cells. Interestingly, PFPs can also indirectly manipulate diverse cellular functions. In recent years, increasing evidence indicates that the interaction of PFPs with lipid membranes is not only limited to pore-induced membrane permeabilization but is also strongly associated with extensive plasma membrane reorganization. This includes lateral rearrangement and deformation of the lipid membrane, which can lead to the disruption of target cell function and finally death. Conversely, these modifications also constitute an essential component of the membrane repair system that protects cells from the lethal consequences of pore formation. Here, we provide an overview of the current knowledge on the changes in lipid membrane organization caused by PFPs from different organisms.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia.
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| |
Collapse
|
37
|
Alvarez C, Soto C, Cabezas S, Alvarado-Mesén J, Laborde R, Pazos F, Ros U, Hernández AM, Lanio ME. Panorama of the Intracellular Molecular Concert Orchestrated by Actinoporins, Pore-Forming Toxins from Sea Anemones. Toxins (Basel) 2021; 13:toxins13080567. [PMID: 34437438 PMCID: PMC8402351 DOI: 10.3390/toxins13080567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/25/2022] Open
Abstract
Actinoporins (APs) are soluble pore-forming proteins secreted by sea anemones that experience conformational changes originating in pores in the membranes that can lead to cell death. The processes involved in the binding and pore-formation of members of this protein family have been deeply examined in recent years; however, the intracellular responses to APs are only beginning to be understood. Unlike pore formers of bacterial origin, whose intracellular impact has been studied in more detail, currently, we only have knowledge of a few poorly integrated elements of the APs’ intracellular action. In this review, we present and discuss an updated landscape of the studies aimed at understanding the intracellular pathways triggered in response to APs attack with particular reference to sticholysin II, the most active isoform produced by the Caribbean Sea anemone Stichodactyla helianthus. To achieve this, we first describe the major alterations these cytolysins elicit on simpler cells, such as non-nucleated mammalian erythrocytes, and then onto more complex eukaryotic cells, including tumor cells. This understanding has provided the basis for the development of novel applications of sticholysins such as the construction of immunotoxins directed against undesirable cells, such as tumor cells, and the design of a cancer vaccine platform. These are among the most interesting potential uses for the members of this toxin family that have been carried out in our laboratory.
Collapse
Affiliation(s)
- Carlos Alvarez
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
- Correspondence:
| | - Carmen Soto
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Sheila Cabezas
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Javier Alvarado-Mesén
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
- Escuela de Ciencias Biológicas, Universidad Nacional, Heredia 40101, Costa Rica
| | - Rady Laborde
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Fabiola Pazos
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Uris Ros
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-strasse 26, 50931 Cologne, Germany
| | - Ana María Hernández
- Immunobiology Division, Molecular Immunology Institute, Center of Molecular Immunology (CIM), Playa, Havana CP 11600, Cuba;
| | - María Eliana Lanio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| |
Collapse
|
38
|
The Natterin Proteins Diversity: A Review on Phylogeny, Structure, and Immune Function. Toxins (Basel) 2021; 13:toxins13080538. [PMID: 34437409 PMCID: PMC8402412 DOI: 10.3390/toxins13080538] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Since the first record of the five founder members of the group of Natterin proteins in the venom of the medically significant fish Thalassophryne nattereri, new sequences have been identified in other species. In this work, we performed a detailed screening using available genome databases across a wide range of species to identify sequence members of the Natterin group, sequence similarities, conserved domains, and evolutionary relationships. The high-throughput tools have enabled us to dramatically expand the number of members within this group of proteins, which has a remote origin (around 400 million years ago) and is spread across Eukarya organisms, even in plants and primitive Agnathans jawless fish. Overall, the survey resulted in 331 species presenting Natterin-like proteins, mainly fish, and 859 putative genes. Besides fish, the groups with more species included in our analysis were insects and birds. The number and variety of annotations increased the knowledge of the obtained sequences in detail, such as the conserved motif AGIP in the pore-forming loop involved in the transmembrane barrel insertion, allowing us to classify them as important constituents of the innate immune defense system as effector molecules activating immune cells by interacting with conserved intracellular signaling mechanisms in the hosts.
Collapse
|
39
|
Pospiech M, Owens SE, Miller DJ, Austin-Muttitt K, Mullins JGL, Cronin JG, Allemann RK, Sheldon IM. Bisphosphonate inhibitors of squalene synthase protect cells against cholesterol-dependent cytolysins. FASEB J 2021; 35:e21640. [PMID: 33991130 DOI: 10.1096/fj.202100164r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 01/29/2023]
Abstract
Certain species of pathogenic bacteria damage tissues by secreting cholesterol-dependent cytolysins, which form pores in the plasma membranes of animal cells. However, reducing cholesterol protects cells against these cytolysins. As the first committed step of cholesterol biosynthesis is catalyzed by squalene synthase, we explored whether inhibiting this enzyme protected cells against cholesterol-dependent cytolysins. We first synthesized 22 different nitrogen-containing bisphosphonate molecules that were designed to inhibit squalene synthase. Squalene synthase inhibition was quantified using a cell-free enzyme assay, and validated by computer modeling of bisphosphonate molecules binding to squalene synthase. The bisphosphonates were then screened for their ability to protect HeLa cells against the damage caused by the cholesterol-dependent cytolysin, pyolysin. The most effective bisphosphonate reduced pyolysin-induced leakage of lactate dehydrogenase into cell supernatants by >80%, and reduced pyolysin-induced cytolysis from >75% to <25%. In addition, this bisphosphonate reduced pyolysin-induced leakage of potassium from cells, limited changes in the cytoskeleton, prevented mitogen-activated protein kinases cell stress responses, and reduced cellular cholesterol. The bisphosphonate also protected cells against another cholesterol-dependent cytolysin, streptolysin O, and protected lung epithelial cells and primary dermal fibroblasts against cytolysis. Our findings imply that treatment with bisphosphonates that inhibit squalene synthase might help protect tissues against pathogenic bacteria that secrete cholesterol-dependent cytolysins.
Collapse
Affiliation(s)
- Mateusz Pospiech
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Siân E Owens
- Swansea University Medical School, Swansea University, Swansea, UK
| | | | | | | | - James G Cronin
- Swansea University Medical School, Swansea University, Swansea, UK
| | | | - I Martin Sheldon
- Swansea University Medical School, Swansea University, Swansea, UK
| |
Collapse
|
40
|
Abstract
Secretory pore-forming proteins (PFPs) have been identified in organisms from all kingdoms of life. Our studies with the toad species Bombina maxima found an interaction network among aerolysin family PFPs (af-PFPs) and trefoil factors (TFFs). As a toad af-PFP, BmALP1 can be reversibly regulated between active and inactive forms, with its paralog BmALP3 acting as a negative regulator. BmALP1 interacts with BmTFF3 to form a cellular active complex called βγ-CAT. This PFP complex is characterized by acting on endocytic pathways and forming pores on endolysosomes, including stimulating cell macropinocytosis. In addition, cell exocytosis can be induced and/or modulated in the presence of βγ-CAT. Depending on cell contexts and surroundings, these effects can facilitate the toad in material uptake and vesicular transport, while maintaining mucosal barrier function as well as immune defense. Based on experimental evidence, we hereby propose a secretory endolysosome channel (SELC) pathway conducted by a secreted PFP in cell endocytic and exocytic systems, with βγ-CAT being the first example of a SELC protein. With essential roles in cell interactions and environmental adaptations, the proposed SELC protein pathway should be conserved in other living organisms.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Qi-Quan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Zhong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Cheng-Jie Deng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
41
|
Xu F, Qi H, Li J, Sun L, Gong J, Chen Y, Shen A, Li W. Mycobacterium tuberculosis infection up-regulates MFN2 expression to promote NLRP3 inflammasome formation. J Biol Chem 2021; 295:17684-17697. [PMID: 33454007 PMCID: PMC7762945 DOI: 10.1074/jbc.ra120.014077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB), caused by the infection of Mycobacterium tuberculosis (MTB), is one of the leading causes of death worldwide, especially in children. However, the mechanisms by which MTB infects its cellular host, activates an immune response, and triggers inflammation remain unknown. Mitochondria play important roles in the initiation and activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, where mitochondria-associated endoplasmic reticulum membranes (MAMs) may serve as the platform for inflammasome assembly and activation. Additionally, mitofusin 2 (MFN2) is implicated in the formation of MAMs, but, the roles of mitochondria and MFN2 in MTB infection have not been elucidated. Using mircroarry profiling of TB patients and in vitro MTB stimulation of macrophages, we observed an up-regulation of MFN2 in the peripheral blood mononuclear cells of active TB patients. Furthermore, we found that MTB stimulation by MTB-specific antigen ESAT-6 or lysate of MTB promoted MFN2 interaction with NLRP3 inflammasomes, resulting in the assembly and activation of the inflammasome and, subsequently, IL-1β secretion. These findings suggest that MFN2 and mitochondria play important role in the pathogen-host interaction during MTB infection.
Collapse
Affiliation(s)
- Fang Xu
- Beijing Key Laboratory for Respiratory and Infectious Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hui Qi
- Beijing Key Laboratory for Respiratory and Infectious Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jieqiong Li
- Beijing Key Laboratory for Respiratory and Infectious Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lin Sun
- Beijing Key Laboratory for Respiratory and Infectious Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Juanjuan Gong
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yuanying Chen
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Adong Shen
- Beijing Key Laboratory for Respiratory and Infectious Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| |
Collapse
|
42
|
Estrada N, Núñez-Vázquez EJ, Palacios A, Ascencio F, Guzmán-Villanueva L, Contreras RG. In vitro Evaluation of Programmed Cell Death in the Immune System of Pacific Oyster Crassostrea gigas by the Effect of Marine Toxins. Front Immunol 2021; 12:634497. [PMID: 33868255 PMCID: PMC8047078 DOI: 10.3389/fimmu.2021.634497] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/24/2021] [Indexed: 01/09/2023] Open
Abstract
Programmed cell death (PCD) is an essential process for the immune system's development and homeostasis, enabling the remotion of infected or unnecessary cells. There are several PCD's types, depending on the molecular mechanisms, such as non-inflammatory or pro-inflammatory. Hemocytes are the main component of cellular immunity in bivalve mollusks. Numerous infectious microorganisms produce toxins that impair hemocytes functions, but there is little knowledge on the role of PCD in these cells. This study aims to evaluate in vitro whether marine toxins induce a particular type of PCD in hemocytes of the bivalve mollusk Crassostrea gigas during 4 h at 25°C. Hemocytes were incubated with two types of marine toxins: non-proteinaceous toxins from microalgae (saxitoxin, STX; gonyautoxins 2 and 3, GTX2/3; okadaic acid/dynophysistoxin-1, OA/DTX-1; brevetoxins 2 and 3, PbTx-2,-3; brevetoxin 2, PbTx-2), and proteinaceous extracts from bacteria (Vibrio parahaemolyticus, Vp; V. campbellii, Vc). Also, we used the apoptosis inducers, staurosporine (STP), and camptothecin (CPT). STP, CPT, STX, and GTX 2/3, provoked high hemocyte mortality characterized by apoptosis hallmarks such as phosphatidylserine translocation into the outer leaflet of the cell membrane, exacerbated chromatin condensation, DNA oligonucleosomal fragments, and variation in gene expression levels of apoptotic caspases 2, 3, 7, and 8. The mixture of PbTx-2,-3 also showed many apoptosis features; however, they did not show apoptotic DNA oligonucleosomal fragments. Likewise, PbTx-2, OA/DTX-1, and proteinaceous extracts from bacteria Vp, and Vc, induced a minor degree of cell death with high gene expression of the pro-inflammatory initiator caspase-1, which could indicate a process of pyroptosis-like PCD. Hemocytes could carry out both PCD types simultaneously. Therefore, marine toxins trigger PCD's signaling pathways in C. gigas hemocytes, depending on the toxin's nature, which appears to be highly conserved both structurally and functionally.
Collapse
Affiliation(s)
- Norma Estrada
- Programa Cátedras CONACyT (Consejo Nacional de Ciencia y Tecnología), Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| | - Erick J. Núñez-Vázquez
- Laboratorio de Toxinas Marinas y Aminoácidos, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| | - Alejandra Palacios
- Laboratorio de Patogénesis Microbiana, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| | - Felipe Ascencio
- Laboratorio de Patogénesis Microbiana, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| | - Laura Guzmán-Villanueva
- Programa Cátedras CONACyT (Consejo Nacional de Ciencia y Tecnología), Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| | - Rubén G. Contreras
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
43
|
Banerji R, Karkee A, Kanojiya P, Saroj SD. Pore-forming toxins of foodborne pathogens. Compr Rev Food Sci Food Saf 2021; 20:2265-2285. [PMID: 33773026 DOI: 10.1111/1541-4337.12737] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
Pore-forming toxins (PFTs) are water-soluble molecules that have been identified as the most crucial virulence factors during bacterial pathogenesis. PFTs disrupt the host cell membrane to internalize or to deliver other bacterial or virulence factors for establishing infections. Disruption of the host cell membrane by PFTs can lead to uncontrollable exchanges between the extracellular and the intracellular matrix, thereby disturbing the cellular homeostasis. Recent studies have provided insights into the molecular mechanism of PFTs during pathogenesis. Evidence also suggests the activation of several signal transduction pathways in the host cell on recognition of PFTs. Additionally, numerous distinctive host defense mechanisms as well as membrane repair mechanisms have been reported; however, studies reveal that PFTs aid in host immune evasion of the bacteria through numerous pathways. PFTs have been primarily associated with foodborne pathogens. Infection and death from diseases by consuming contaminated food are a constant threat to public health worldwide, affecting socioeconomic development. Moreover, the emergence of new foodborne pathogens has led to the rise of bacterial antimicrobial resistance affecting the population. Hence, this review focuses on the role of PFTs secreted by foodborne pathogens. The review highlights the molecular mechanism of foodborne bacterial PFTs, assisting bacterial survival from the host immune responses and understanding the downstream mechanism in the activation of various signaling pathways in the host upon PFT recognition. PFT research is a remarkable and an important field for exploring novel and broad applications of antimicrobial compounds as therapeutics.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Astha Karkee
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
44
|
Novel Immune Stimulant Amplifies Direct Tumoricidal Effect of Cancer Ablation Therapies and Their Systemic Antitumor Immune Efficacy. Cells 2021; 10:cells10030492. [PMID: 33668932 PMCID: PMC7996593 DOI: 10.3390/cells10030492] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Ablation therapies have emerged as an effective tool for destroying cancerous tissue, but for advanced and disseminated tumors their application remains mainly a palliative measure. However, it is becoming increasingly clear that this limitation can be redressed by the use of intratumoral immune stimulating agents for amplifying potential antitumor immune responses that are induced by ablation therapies. A novel immune stimulating drug IP-001, a specific variant of the N-dihydrogalactochitosan (GC) family of molecules, has shown to be effective against metastatic tumors, when combined with different forms tumor ablation. It acts as a multi-function immune stimulant both by directly inhibiting cell membrane repair and recycling of ablation-damaged tumor cells, and indirectly by sequestering ablation-released tumor antigens, as well as recruiting and stimulating antigen presenting cells to induce a potent Th1 type T cell response against the cancer. In this review, we briefly discuss the current applications of local ablation for cancer treatment and the effects of GC in combination with other ablation therapies, a therapeutic approach that is pioneering the field of Interventional Immuno-Oncology (IIO).
Collapse
|
45
|
Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. Therapeutic regulation of the NLRP3 inflammasome in chronic inflammatory diseases. Arch Pharm Res 2021; 44:16-35. [PMID: 33534121 PMCID: PMC7884371 DOI: 10.1007/s12272-021-01307-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022]
Abstract
Inflammasomes are cytosolic pattern recognition receptors that recognize pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) derived from invading pathogens and damaged tissues, respectively. Upon activation, the inflammasome forms a complex containing a receptor protein, an adaptor, and an effector to induce the autocleavage and activation of procaspase-1 ultimately culminating in the maturation and secretion of IL-1β and IL-18 and pyroptosis. Inflammasome activation plays an important role in host immune responses to pathogen infections and tissue repair in response to cellular damage. The NLRP3 inflammasome is a well-characterized pattern recognition receptor and is well known for its critical role in the regulation of immunity and the development and progression of various inflammatory diseases. In this review, we summarize recent efforts to develop therapeutic applications targeting the NLRP3 inflammasome to cure and prevent chronic inflammatory diseases. This review extensively discusses NLRP3 inflammasome-related diseases and current development of small molecule inhibitors providing beneficial information on the design of therapeutic strategies for NLRP3 inflammasome-related diseases. Additionally, small molecule inhibitors are classified depending on direct or indirect targeting mechanism to describe the current status of the development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Jin Kyung Seok
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Han Chang Kang
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yong-Yeon Cho
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hye Suk Lee
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Joo Young Lee
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| |
Collapse
|
46
|
Lima C, Falcao MAP, Andrade-Barros AI, Seni-Silva AC, Grund LZ, Balogh E, Conceiçao K, Queniaux VF, Ryffel B, Lopes-Ferreira M. Natterin an aerolysin-like fish toxin drives IL-1β-dependent neutrophilic inflammation mediated by caspase-1 and caspase-11 activated by the inflammasome sensor NLRP6. Int Immunopharmacol 2021; 91:107287. [PMID: 33378723 DOI: 10.1016/j.intimp.2020.107287] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Natterin is an aerolysin-like pore-forming toxin responsible for the toxic effects of the venom of the medically significant fish Thalassophryne nattereri. Using a combination of pharmacologic and genetic loss-of-function approaches we conduct a systematic investigation of the regulatory mechanisms that control Natterin-induced neutrophilic inflammation in the peritonitis model. Our data confirmed the capacity of Natterin to induce a strong and sustained neutrophilic inflammation leading to systemic inflammatory lung infiltration and revealed overlapping regulatory paths in its control. We found that Natterin induced the extracellular release of mature IL-1β and the sustained production of IL-33 by bronchial epithelial cells. We confirmed the dependence of both ST2/IL-33 and IL-17A/IL-17RA signaling on the local and systemic neutrophils migration, as well as the crucial role of IL-1α, caspase-1 and caspase-11 for neutrophilic inflammation. The inflammation triggered by Natterin was a gasdermin-D-dependent inflammasome process, despite the cells did not die by pyroptosis. Finally, neutrophilic inflammation was mediated by non-canonical NLRP6 and NLRC4 adaptors through ASC interaction, independent of NLRP3. Our data highlight that the inflammatory process dependent on non-canonical inflammasome activation can be a target for pharmacological intervention in accidents by T. nattereri, which does not have adequate specific therapy.
Collapse
Affiliation(s)
- Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009 São Paulo. Brazil.
| | - Maria Alice Pimentel Falcao
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009 São Paulo. Brazil
| | - Aline Ingrid Andrade-Barros
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009 São Paulo. Brazil
| | - Ana Carolina Seni-Silva
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009 São Paulo. Brazil
| | - Lidiane Zito Grund
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009 São Paulo. Brazil
| | - Eniko Balogh
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98, 4012 Debrecen, Hungary
| | - Katia Conceiçao
- Peptide Biochemistry Laboratory, UNIFESP, São José dos Campos. Brazil
| | - Valerie F Queniaux
- Allergy and Lung Inflammation Unit of the Molecular and Experimental Immunology and Neurogenetics (INEM, UMR7355, CNRS and University Orléans), Orléans, 45071 Orléans Cedex 2, France
| | - Bernhard Ryffel
- Allergy and Lung Inflammation Unit of the Molecular and Experimental Immunology and Neurogenetics (INEM, UMR7355, CNRS and University Orléans), Orléans, 45071 Orléans Cedex 2, France
| | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009 São Paulo. Brazil
| |
Collapse
|
47
|
Jing W, Lo Pilato J, Kay C, Man SM. Activation mechanisms of inflammasomes by bacterial toxins. Cell Microbiol 2021; 23:e13309. [PMID: 33426791 DOI: 10.1111/cmi.13309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/16/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
Inflammasomes are cytosolic innate immune complexes, which assemble in mammalian cells in response to microbial components and endogenous danger signals. A major family of inflammasome activators is bacterial toxins. Inflammasome sensor proteins, such as the nucleotide-binding oligomerisation domain-like receptor (NLR) family members NLRP1b and NLRP3, and the tripartite motif family member Pyrin+ efflux triggered by pore-forming toxins or by other toxin-induced homeostasis-altering events such as lysosomal rupture. Pyrin senses perturbation of host cell functions induced by certain enzymatic toxins resulting in impairment of RhoA GTPase activity. Assembly of the inflammasome complex activates the cysteine protease caspase-1, leading to the proteolytic cleavage of the proinflammatory cytokines IL-1β and IL-18, and the pore-forming protein gasdermin D causing pyroptosis. In this review, we discuss the latest progress in our understanding on the activation mechanisms of inflammasome complexes by bacterial toxins and effector proteins and explore avenues for future research into the relationships between inflammasomes and bacterial toxins.
Collapse
Affiliation(s)
- Weidong Jing
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jordan Lo Pilato
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Callum Kay
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Si Ming Man
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
48
|
Yang Y, Huang X, Yuan W, Xiang Y, Guo X, Wei W, Soberón M, Bravo A, Liu K. Bacillus thuringiensis cry toxin triggers autophagy activity that may enhance cell death. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104728. [PMID: 33357550 DOI: 10.1016/j.pestbp.2020.104728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/09/2020] [Accepted: 10/10/2020] [Indexed: 06/12/2023]
Abstract
Although it is well known that Bacillus thuringiensis Cry toxins kill insect pest by disrupting midgut cells of susceptible larvae through their pore formation activity, it is not clear what intracellular events are triggered after pore formation on the cell membrane of the target cells. Here we analyzed the role of Cry toxins on autophagy activation using several cell lines as models as well as in Helicoverpa armigera larvae. The selected insect cell lines (Hi5, Sl-HP and Sf9) were susceptible to activated Cry1Ca toxin, but only Sl-HP cells were also susceptible to activated Cry1Ac toxin. In contrast, the mammalian cell line 293 T was not susceptible to Cry1Ac or to Cry1Ca. Results show that Cry toxins induced autophagy only in the susceptible cell lines as shown by the analysis of the changes in the ratio of Atg8-PE to Atg8 and by formation of autophagosome dots containing Atg8-PE. The Cry1Ac enhanced autophagy in the midgut tissue of H. armigera larvae. Silencing expression of specific genes by RNAi assays confirmed that the autophagy induced by activated Cry toxins was dependent on AMPK and JNK pathways. Finally, inhibition of autophagy in the cell lines by specific inhibitors or RNAi assays resulted in delayed cell death triggered by Cry toxins, suggesting that the increased autophagy activity observed after toxin intoxication may contribute to cell death.
Collapse
Affiliation(s)
- Yongbo Yang
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Xiaoying Huang
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Wanli Yuan
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Yang Xiang
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Xueqin Guo
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Wei Wei
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan 430070, China,.
| |
Collapse
|
49
|
Ismael S, Ahmed HA, Adris T, Parveen K, Thakor P, Ishrat T. The NLRP3 inflammasome: a potential therapeutic target for traumatic brain injury. Neural Regen Res 2021; 16:49-57. [PMID: 32788447 PMCID: PMC7818859 DOI: 10.4103/1673-5374.286951] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although the precise mechanisms contributing to secondary brain injury following traumatic brain injury are complex and obscure, a number of studies have demonstrated that inflammatory responses are an obvious and early feature in the pathogenesis of traumatic brain injury. Inflammasomes are multiprotein complexes that prompt the stimulation of caspase-1 and subsequently induce the maturation and secretion of proinflammatory cytokines, such as interleukin-1β and interleukin-18. These cytokines play a pivotal role in facilitating innate immune responses and inflammation. Among various inflammasome complexes, the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is the best characterized, a crucial role for NLRP3 has been demonstrated in various brain diseases, including traumatic brain injury. Several recent studies have revealed the contribution of NLRP3 inflammasome in identifying cellular damage and stimulating inflammatory responses to aseptic tissue injury after traumatic brain injury. Even more important, blocking or inhibiting the activation of the NLRP3 inflammasome may have substantial potential to salvage tissue damage during traumatic brain injury. In this review, we summarize recently described mechanisms that are involved in the activation and regulation of the NLRP3 inflammasome. Moreover, we review the recent investigations on the contribution of the NLRP3 inflammasome in the pathophysiology of TBI, and current advances and challenges in potential NLRP3-targeted therapies. A significant contribution of NLRP3 inflammasome activation to traumatic brain injury implies that therapeutic approaches focused on targeting specific inflammasome components could significantly improve the traumatic brain injury outcomes.
Collapse
Affiliation(s)
- Saifudeen Ismael
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Heba A Ahmed
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tusita Adris
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Parth Thakor
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
50
|
Vieyra-Garcia PA, Wolf P. A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacol Ther 2020; 222:107784. [PMID: 33316286 DOI: 10.1016/j.pharmthera.2020.107784] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
UV-based phototherapy (including psoralen plus UVA (PUVA), UVB and UVA1) has a long, successful history in the management of numerous cutaneous disorders. Photoresponsive diseases are etiologically diverse, but most involve disturbances in local (and occasionally systemic) inflammatory cells and/or abnormalities in keratinocytes that trigger inflammation. UV-based phototherapy works by regulating the inflammatory component and inducing apoptosis of pathogenic cells. This results in a fascinating and complex network of simultaneous events-immediate transcriptional changes in keratinocytes, immune cells, and pigment cells; the emergence of apoptotic bodies; and the trafficking of antigen-presenting cells in skin-that quickly transform the microenvironment of UV-exposed skin. Molecular elements in this system of UV recognition and response include chromophores, metabolic byproducts, innate immune receptors, neurotransmitters and mediators such as chemokines and cytokines, antimicrobial peptides, and platelet activating factor (PAF) and PAF-like molecules that simultaneously shape the immunomodulatory effects of UV and their interplay with the microbiota of the skin and beyond. Phototherapy's key effects-proapoptotic, immunomodulatory, antipruritic, antifibrotic, propigmentary, and pro-prebiotic-promote clinical improvement in various skin diseases such as psoriasis, atopic dermatitis (AD), graft-versus-host disease (GvHD), vitiligo, scleroderma, and cutaneous T-cell lymphoma (CTCL) as well as prevention of polymorphic light eruption (PLE). As understanding of phototherapy improves, new therapies (UV- and non-UV-based) are being developed that will modify regulatory T-cells (Treg), interact with (resident) memory T-cells and /or utilize agonists and antagonists as well as antibodies targeting soluble molecules such as cytokines and chemokines, transcription factors, and a variety of membrane-associated receptors.
Collapse
Affiliation(s)
- Pablo A Vieyra-Garcia
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| |
Collapse
|