1
|
Zhao Z, Okada N, Yagishita S, Yahata N, Nitta N, Shibata S, Abe Y, Morita S, Kumagai E, Tanaka KF, Suhara T, Takumi T, Kasai K, Jinde S. Correlations of brain structure with the social behavior of 15q11-13 duplication mice, an animal model of autism. Neurosci Res 2024; 209:42-49. [PMID: 39097003 DOI: 10.1016/j.neures.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Duplication of chromosome 15q11-13 has been reported to be one of the most frequent cytogenetic copy number variations in autism spectrum disorder (ASD), and a mouse model of paternal 15q11-13 duplication was generated, termed 15q dup mice. While previous studies have replicated some of the behavioral and brain structural phenotypes of ASD separately, the relationship between brain structure and behavior has rarely been examined. In this study, we performed behavioral experiments related to anxiety and social behaviors and magnetic resonance imaging (MRI) using the same set of 15q dup and wild-type mice. 15q dup mice showed increased anxiety and a tendency toward alterations in social behaviors, as reported previously, as well as variability in terms of sociability. MRI analysis revealed that a lower sociability index was correlated with a smaller gray matter volume in the right medial entorhinal cortex. These results may help to understand how variability in behavioral phenotypes of ASD arises even in individuals with the same genetic background and to determine the individual differences in neurodevelopmental trajectory correlated with specific brain structures that underlie these phenotypes.
Collapse
Affiliation(s)
- Zhilei Zhao
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sho Yagishita
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, Faculty of Medicine Bldg, The University of Tokyo, 1 #NC207, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Noriaki Yahata
- National Institutes for Quantum Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Nobuhiro Nitta
- National Institutes for Quantum Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan; Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki Ward, Kawasaki, Kanagawa 210-0821, Japan
| | - Sayaka Shibata
- National Institutes for Quantum Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Susumu Morita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Eureka Kumagai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Tetsuya Suhara
- National Institutes for Quantum Sciences and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Chuo, Kobe 650-0017, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Seiichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
2
|
Narita A, Asano H, Kudo H, Miyata S, Shutoh F, Miyoshi G. A novel quadrant spatial assay reveals environmental preference in mouse spontaneous and parental behaviors. Neurosci Res 2024; 209:18-27. [PMID: 39134225 DOI: 10.1016/j.neures.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Environmental factors have well-documented impacts on brain development and mental health. Therefore, it is crucial to employ a reliable assay system to assess the spatial preference of model animals. In this study, we introduced an unbiased quadrant chamber assay system and discovered that parental pup-gathering behavior takes place in a very efficient manner. Furthermore, we found that test mice exhibited preferences for specific environments in both spontaneous and parental pup-gathering behavior contexts. Notably, the spatial preferences of autism spectrum disorder model animals were initially suppressed but later equalized during the spontaneous behavior assay, accompanied by increased time spent in the preferred chamber. In conclusion, our novel quadrant chamber assay system provides an ideal platform for investigating the spatial preference of mice, offering potential applications in studying environmental impacts and exploring neurodevelopmental and psychiatric disorder models.
Collapse
Affiliation(s)
- Aito Narita
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi city, Gunma 371-8511, Japan
| | - Hirofumi Asano
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi city, Gunma 371-8511, Japan
| | - Hayato Kudo
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi city, Gunma 371-8511, Japan
| | - Shigeo Miyata
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi city, Gunma 371-8511, Japan
| | - Fumihiro Shutoh
- Division of Informatics, Bioengineering and Bioscience, Maebashi Institute of Technology, 460-1 Kamisadori-machi, Maebashi city, Gunma 371-0816, Japan
| | - Goichi Miyoshi
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi city, Gunma 371-8511, Japan.
| |
Collapse
|
3
|
Landaverde S, Sleep M, Lacoste A, Tan S, Schuback R, Reiter LT, Iyengar A. Glial expression of Drosophila UBE3A causes spontaneous seizures that can be modulated by 5-HT signaling. Neurobiol Dis 2024; 200:106651. [PMID: 39197537 DOI: 10.1016/j.nbd.2024.106651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024] Open
Abstract
Misexpression of the E3 ubiquitin ligase gene UBE3A is thought to contribute to a range of neurological disorders. In the context of Dup15q syndrome, additional genomic copies of UBE3A give rise to the autism, muscle hypotonia and spontaneous seizures characteristics of the disorder. In a Drosophila model of Dup 15q syndrome, it was recently shown that glial-driven expression of the UBE3A ortholog dube3a led to a "bang-sensitive" phenotype, where mechanical shock triggers convulsions, suggesting glial dube3a expression contributes to hyperexcitability in flies. Here we directly compare the consequences of glial- and neuronal-driven dube3a expression on motor coordination and seizure susceptibility in Drosophila. To quantify seizure-related behavioral events, we developed and trained a hidden Markov model that identified these events based on automated video tracking of fly locomotion. Both glial and neuronal driven dube3a expression led to clear motor phenotypes. However, only glial-driven dube3a expression displayed spontaneous seizure-associated immobilization events, that were clearly observed at high-temperature (38 °C). Using a tethered fly preparation amenable to electrophysiological monitoring of seizure activity, we found glial-driven dube3a flies display aberrant spontaneous spike discharges which are bilaterally synchronized. Neither neuronal-dube3a overexpressing flies, nor control flies displayed these firing patterns. We previously performed a drug screen for FDA approved compounds that can suppress bang-sensitivity in glial-driven dube3a expressing flies and identified certain 5-HT modulators as strong seizure suppressors. Here we found glial-driven dube3a flies fed the serotonin reuptake inhibitor vortioxetine and the 5-HT2A antagonist ketanserin displayed reduced immobilization and spike bursting, consistent with the previous study. Together these findings highlight the potential for glial pathophysiology to drive Dup15q syndrome-related seizure activity.
Collapse
Affiliation(s)
- Saul Landaverde
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States of America
| | - Megan Sleep
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States of America
| | - Andrew Lacoste
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States of America
| | - Selene Tan
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States of America
| | - Reid Schuback
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States of America
| | - Lawrence T Reiter
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States of America; Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States of America; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Atulya Iyengar
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States of America; Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, United States of America; Center for Convergent Bioscience and Medicine, University of Alabama, Tuscaloosa, AL, United States of America.
| |
Collapse
|
4
|
Zahran MA, Manas-Ojeda A, Navarro-Sánchez M, Castillo-Gómez E, Olucha-Bordonau FE. Deep learning-based scoring method of the three-chamber social behaviour test in a mouse model of alcohol intoxication. A comparative analysis of DeepLabCut, commercial automatic tracking and manual scoring. Heliyon 2024; 10:e36352. [PMID: 39286202 PMCID: PMC11403434 DOI: 10.1016/j.heliyon.2024.e36352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Background Alcohol consumption and withdrawal alter social behaviour in humans in a sex-dependent manner. The three-chamber test is a widely used paradigm to assess rodents' social behaviour, including sociability and social novelty. Automatic tracking systems are commonly used to score time spent with conspecifics, despite failing to score direct interaction time with conspecifics rather than time in the nearby zone. Thereby, the automatically scored results are usually inaccurate and need manual corrections. New method New advances in artificial intelligence (AI) have been used recently to analyze complex behaviours. DeepLabCat is a pose-estimation toolkit that allows the tracking of animal body parts. Thus, we used DeepLabCut, to introduce a scoring model of the three-chamber test to investigate alcohol withdrawal effects on social behaviour in mice considering sex and withdrawal periods. We have compared the results of two automatic pose estimation methods: automatic tracking (AnyMaze) and DeepLabCut considering the manual scoring method, the current gold standard. Results We have found that the automatic tracking method (AnyMaze) has failed to detect the significance of social deficits in female mice during acute withdrawal. However, tracking the animal's nose using DeepLabCut showed a significant social deficit in agreement with manual scoring. Interestingly, this social deficit was shown only in females during acute and recovered by the protracted withdrawal. DLC and manually scored results showed a higher Spearman correlation coefficient and a lower bias in the Bland-Altman analysis. Conclusion our approach helps improve the accuracy of scoring the three-chamber test while outperforming commercial automatic tracking systems.
Collapse
Affiliation(s)
- Mohamed Aly Zahran
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
| | - Aroa Manas-Ojeda
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
| | - Mónica Navarro-Sánchez
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
| | - Esther Castillo-Gómez
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
- CIBERsam-ISCiii, Spain
| | - Francisco E Olucha-Bordonau
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
- CIBERsam-ISCiii, Spain
| |
Collapse
|
5
|
Munezane H, Imamura K, Fujimoto N, Hotta A, Yukitake H, Inoue H. Elimination of the extra chromosome of Dup15q syndrome iPSCs for cellular and molecular investigation. Eur J Cell Biol 2024; 103:151446. [PMID: 39059105 DOI: 10.1016/j.ejcb.2024.151446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/23/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Chromosome 15q11.2-13.1 duplication (Dup15q) syndrome is one of the most common autism spectrum disorders (ASDs) associated with copy number variants (CNVs). For the analysis of CNV-relevant pathological cellular phenotypes, a CNV-corrected isogenic cell line is useful for excluding the influence of genetic background. Here, we devised a strategy to remove the isodicentric chromosome 15 by inserting a puro-ΔTK selection cassette into the extra chromosome using the CRISPR-Cas9 system, followed by a subsequent two-step drug selection. A series of assays, including qPCR-based copy number analysis and karyotype analysis, confirmed the elimination of the extra chromosome. Furthermore, cerebral organoids were generated from the parental Dup15q iPSCs and their isogenic iPSCs. scRNA-seq analysis revealed the alteration of expression levels in ion-channel-related genes and synapse-related genes in glutamatergic and GABAergic neurons in Dup15q organoids, respectively. The established isogenic cell line is a valuable resource for unraveling cellular and molecular alterations associated with Dup15q syndrome.
Collapse
Affiliation(s)
- Haruka Munezane
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Takeda-CiRA (T-CiRA) Joint Program, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Japan
| | - Keiko Imamura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Takeda-CiRA (T-CiRA) Joint Program, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Japan; iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, 1-7 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan; Medical-Risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Naoko Fujimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Takeda-CiRA (T-CiRA) Joint Program, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Japan
| | - Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Takeda-CiRA (T-CiRA) Joint Program, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Japan
| | - Hiroshi Yukitake
- Takeda-CiRA (T-CiRA) Joint Program, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Japan; Global Advanced Platform, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Takeda-CiRA (T-CiRA) Joint Program, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Japan; iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, 1-7 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan; Medical-Risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
6
|
Zhang R, He Z, Shi Y, Sun X, Chen X, Wang G, Zhang Y, Gao P, Wu Y, Lu S, Duan J, Sun S, Yang N, Fan W, Zhao K, Yang B, Xia Y, Zhang Y, Zhang Y, Yin H. Amplification editing enables efficient and precise duplication of DNA from short sequence to megabase and chromosomal scale. Cell 2024; 187:3936-3952.e19. [PMID: 38936359 DOI: 10.1016/j.cell.2024.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/24/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
Duplication is a foundation of molecular evolution and a driver of genomic and complex diseases. Here, we develop a genome editing tool named Amplification Editing (AE) that enables programmable DNA duplication with precision at chromosomal scale. AE can duplicate human genomes ranging from 20 bp to 100 Mb, a size comparable to human chromosomes. AE exhibits activity across various cell types, encompassing diploid, haploid, and primary cells. AE exhibited up to 73.0% efficiency for 1 Mb and 3.4% for 100 Mb duplications, respectively. Whole-genome sequencing and deep sequencing of the junctions of edited sequences confirm the precision of duplication. AE can create chromosomal microduplications within disease-relevant regions in embryonic stem cells, indicating its potential for generating cellular and animal models. AE is a precise and efficient tool for chromosomal engineering and DNA duplication, broadening the landscape of precision genome editing from an individual genetic locus to the chromosomal scale.
Collapse
Affiliation(s)
- Ruiwen Zhang
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Zhou He
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yajing Shi
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiangkun Sun
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinyu Chen
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Guoquan Wang
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yizhou Zhang
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Pan Gao
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ying Wu
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Shuhan Lu
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Junyi Duan
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Shangwu Sun
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Na Yang
- Center for Gene Diagnosis and Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Fan
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan 430071, China
| | - Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan 430071, China
| | - Yan Zhang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ying Zhang
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hao Yin
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
7
|
Saravanapandian V, Madani M, Nichols I, Vincent S, Dover M, Dikeman D, Philpot BD, Takumi T, Colwell CS, Jeste S, Paul KN, Golshani P. Sleep EEG signatures in mouse models of 15q11.2-13.1 duplication (Dup15q) syndrome. J Neurodev Disord 2024; 16:39. [PMID: 39014349 PMCID: PMC11251350 DOI: 10.1186/s11689-024-09556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Sleep disturbances are a prevalent and complex comorbidity in neurodevelopmental disorders (NDDs). Dup15q syndrome (duplications of 15q11.2-13.1) is a genetic disorder highly penetrant for NDDs such as autism and intellectual disability and it is frequently accompanied by significant disruptions in sleep patterns. The 15q critical region harbors genes crucial for brain development, notably UBE3A and a cluster of gamma-aminobutyric acid type A receptor (GABAAR) genes. We previously described an electrophysiological biomarker of the syndrome, marked by heightened beta oscillations (12-30 Hz) in individuals with Dup15q syndrome, akin to electroencephalogram (EEG) alterations induced by allosteric modulation of GABAARs. Those with Dup15q syndrome exhibited increased beta oscillations during the awake resting state and during sleep, and they showed profoundly abnormal NREM sleep. This study aims to assess the translational validity of these EEG signatures and to delve into their neurobiological underpinnings by quantifying sleep physiology in chromosome-engineered mice with maternal (matDp/ + mice) or paternal (patDp/ + mice) inheritance of the full 15q11.2-13.1-equivalent duplication, and mice with duplication of just the UBE3A gene (Ube3a overexpression mice; Ube3a OE mice) and comparing the sleep metrics with their respective wildtype (WT) littermate controls. METHODS We collected 48-h EEG/EMG recordings from 35 (23 male, 12 female) 12-24-week-old matDp/ + , patDp/ + , Ube3a OE mice, and their WT littermate controls. We quantified baseline sleep, sleep fragmentation, spectral power dynamics during sleep states, and recovery following sleep deprivation. Within each group, distinctions between Dup15q mutant mice and WT littermate controls were evaluated using analysis of variance (ANOVA) and student's t-test. The impact of genotype and time was discerned through repeated measures ANOVA, and significance was established at p < 0.05. RESULTS Our study revealed that across brain states, matDp/ + mice mirrored the elevated beta oscillation phenotype observed in clinical EEGs from individuals with Dup15q syndrome. Time to sleep onset after light onset was significantly reduced in matDp/ + and Ube3a OE mice. However, NREM sleep between Dup15q mutant and WT littermate mice remained unaltered, suggesting a divergence from the clinical presentation in humans. Additionally, while increased beta oscillations persisted in matDp/ + mice after 6-h of sleep deprivation, recovery NREM sleep remained unaltered in all groups, thus suggesting that these mice exhibit resilience in the fundamental processes governing sleep-wake regulation. CONCLUSIONS Quantification of mechanistic and translatable EEG biomarkers is essential for advancing our understanding of NDDs and their underlying pathophysiology. Our study of sleep physiology in the Dup15q mice underscores that the beta EEG biomarker has strong translational validity, thus opening the door for pre-clinical studies of putative drug targets, using the biomarker as a translational measure of drug-target engagement. The unaltered NREM sleep may be due to inherent differences in neurobiology between mice and humans. These nuanced distinctions highlight the complexity of sleep disruptions in Dup15q syndrome and emphasize the need for a comprehensive understanding that encompasses both shared and distinct features between murine models and clinical populations.
Collapse
Affiliation(s)
- Vidya Saravanapandian
- Department of Neurology and Semel Institute for Neuroscience, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
| | - Melika Madani
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - India Nichols
- Department of Biology, Spelman College, 350 Spelman Lane, Atlanta, GA, 30314, USA
| | - Scott Vincent
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Mary Dover
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Dante Dikeman
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Benjamin D Philpot
- Neuroscience Center, Department of Cell Biology and Physiology, and the Carolina Institute for Developmental Disabilities, UNC-Chapel Hill, NC, 27599, USA
| | - Toru Takumi
- Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan
| | - Christopher S Colwell
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Shafali Jeste
- Children's Hospital Los Angeles, 4650 Sunset Blvd, MS 82, Los Angeles, CA, 90027, USA
| | - Ketema N Paul
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Peyman Golshani
- Department of Neurology and Semel Institute for Neuroscience, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
- West Los Angeles VA Medical Center, 11301 Wilshire Blvd, Los Angeles, CA, 90073, USA
| |
Collapse
|
8
|
Montani C, Balasco L, Pagani M, Alvino FG, Barsotti N, de Guzman AE, Galbusera A, de Felice A, Nickl-Jockschat TK, Migliarini S, Casarosa S, Lau P, Mattioni L, Pasqualetti M, Provenzano G, Bozzi Y, Lombardo MV, Gozzi A. Sex-biasing influence of autism-associated Ube3a gene overdosage at connectomic, behavioral, and transcriptomic levels. SCIENCE ADVANCES 2024; 10:eadg1421. [PMID: 38996019 PMCID: PMC11244557 DOI: 10.1126/sciadv.adg1421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
Genomic mechanisms enhancing risk in males may contribute to sex bias in autism. The ubiquitin protein ligase E3A gene (Ube3a) affects cellular homeostasis via control of protein turnover and by acting as transcriptional coactivator with steroid hormone receptors. Overdosage of Ube3a via duplication or triplication of chromosomal region 15q11-13 causes 1 to 2% of autistic cases. Here, we test the hypothesis that increased dosage of Ube3a may influence autism-relevant phenotypes in a sex-biased manner. We show that mice with extra copies of Ube3a exhibit sex-biasing effects on brain connectomics and autism-relevant behaviors. These effects are associated with transcriptional dysregulation of autism-associated genes, as well as genes differentially expressed in 15q duplication and in autistic people. Increased Ube3a dosage also affects expression of genes on the X chromosome, genes influenced by sex steroid hormone, and genes sex-differentially regulated by transcription factors. These results suggest that Ube3a overdosage can contribute to sex bias in neurodevelopmental conditions via influence on sex-differential mechanisms.
Collapse
Affiliation(s)
- Caterina Montani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Luigi Balasco
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
- Autism Center, Child Mind Institute, New York, NY, USA
- IMT School for Advanced Studies, Lucca, Italy
| | - Filomena Grazia Alvino
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Noemi Barsotti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - A. Elizabeth de Guzman
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Alessia de Felice
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Thomas K. Nickl-Jockschat
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Sara Migliarini
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Simona Casarosa
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Pierre Lau
- Istituto Italiano di Tecnologia, Center for Human Technologies, Genova, Italy
| | - Lorenzo Mattioni
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Giovanni Provenzano
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Yuri Bozzi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
- CNR Neuroscience Institute, Pisa, Italy
| | - Michael V. Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| |
Collapse
|
9
|
Chauhan W, Sudharshan SJ, Kafle S, Zennadi R. SnoRNAs: Exploring Their Implication in Human Diseases. Int J Mol Sci 2024; 25:7202. [PMID: 39000310 PMCID: PMC11240930 DOI: 10.3390/ijms25137202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) are earning increasing attention from research communities due to their critical role in the post-transcriptional modification of various RNAs. These snoRNAs, along with their associated proteins, are crucial in regulating the expression of a vast array of genes in different human diseases. Primarily, snoRNAs facilitate modifications such as 2'-O-methylation, N-4-acetylation, and pseudouridylation, which impact not only ribosomal RNA (rRNA) and their synthesis but also different RNAs. Functionally, snoRNAs bind with core proteins to form small nucleolar ribonucleoproteins (snoRNPs). These snoRNAs then direct the protein complex to specific sites on target RNA molecules where modifications are necessary for either standard cellular operations or the regulation of pathological mechanisms. At these targeted sites, the proteins coupled with snoRNPs perform the modification processes that are vital for controlling cellular functions. The unique characteristics of snoRNAs and their involvement in various non-metabolic and metabolic diseases highlight their potential as therapeutic targets. Moreover, the precise targeting capability of snoRNAs might be harnessed as a molecular tool to therapeutically address various disease conditions. This review delves into the role of snoRNAs in health and disease and explores the broad potential of these snoRNAs as therapeutic agents in human pathologies.
Collapse
Affiliation(s)
| | | | | | - Rahima Zennadi
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas St., Memphis, TN 38103, USA; (W.C.); (S.S.); (S.K.)
| |
Collapse
|
10
|
Hagihara H, Shoji H, Hattori S, Sala G, Takamiya Y, Tanaka M, Ihara M, Shibutani M, Hatada I, Hori K, Hoshino M, Nakao A, Mori Y, Okabe S, Matsushita M, Urbach A, Katayama Y, Matsumoto A, Nakayama KI, Katori S, Sato T, Iwasato T, Nakamura H, Goshima Y, Raveau M, Tatsukawa T, Yamakawa K, Takahashi N, Kasai H, Inazawa J, Nobuhisa I, Kagawa T, Taga T, Darwish M, Nishizono H, Takao K, Sapkota K, Nakazawa K, Takagi T, Fujisawa H, Sugimura Y, Yamanishi K, Rajagopal L, Hannah ND, Meltzer HY, Yamamoto T, Wakatsuki S, Araki T, Tabuchi K, Numakawa T, Kunugi H, Huang FL, Hayata-Takano A, Hashimoto H, Tamada K, Takumi T, Kasahara T, Kato T, Graef IA, Crabtree GR, Asaoka N, Hatakama H, Kaneko S, Kohno T, Hattori M, Hoshiba Y, Miyake R, Obi-Nagata K, Hayashi-Takagi A, Becker LJ, Yalcin I, Hagino Y, Kotajima-Murakami H, Moriya Y, Ikeda K, Kim H, Kaang BK, Otabi H, Yoshida Y, Toyoda A, Komiyama NH, Grant SGN, Ida-Eto M, Narita M, Matsumoto KI, Okuda-Ashitaka E, Ohmori I, Shimada T, Yamagata K, Ageta H, Tsuchida K, Inokuchi K, Sassa T, Kihara A, Fukasawa M, Usuda N, Katano T, Tanaka T, Yoshihara Y, Igarashi M, Hayashi T, Ishikawa K, Yamamoto S, Nishimura N, Nakada K, Hirotsune S, Egawa K, Higashisaka K, Tsutsumi Y, Nishihara S, Sugo N, Yagi T, Ueno N, Yamamoto T, Kubo Y, Ohashi R, Shiina N, Shimizu K, Higo-Yamamoto S, Oishi K, Mori H, Furuse T, Tamura M, Shirakawa H, Sato DX, Inoue YU, Inoue T, Komine Y, Yamamori T, Sakimura K, Miyakawa T. Large-scale animal model study uncovers altered brain pH and lactate levels as a transdiagnostic endophenotype of neuropsychiatric disorders involving cognitive impairment. eLife 2024; 12:RP89376. [PMID: 38529532 PMCID: PMC10965225 DOI: 10.7554/elife.89376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Increased levels of lactate, an end-product of glycolysis, have been proposed as a potential surrogate marker for metabolic changes during neuronal excitation. These changes in lactate levels can result in decreased brain pH, which has been implicated in patients with various neuropsychiatric disorders. We previously demonstrated that such alterations are commonly observed in five mouse models of schizophrenia, bipolar disorder, and autism, suggesting a shared endophenotype among these disorders rather than mere artifacts due to medications or agonal state. However, there is still limited research on this phenomenon in animal models, leaving its generality across other disease animal models uncertain. Moreover, the association between changes in brain lactate levels and specific behavioral abnormalities remains unclear. To address these gaps, the International Brain pH Project Consortium investigated brain pH and lactate levels in 109 strains/conditions of 2294 animals with genetic and other experimental manipulations relevant to neuropsychiatric disorders. Systematic analysis revealed that decreased brain pH and increased lactate levels were common features observed in multiple models of depression, epilepsy, Alzheimer's disease, and some additional schizophrenia models. While certain autism models also exhibited decreased pH and increased lactate levels, others showed the opposite pattern, potentially reflecting subpopulations within the autism spectrum. Furthermore, utilizing large-scale behavioral test battery, a multivariate cross-validated prediction analysis demonstrated that poor working memory performance was predominantly associated with increased brain lactate levels. Importantly, this association was confirmed in an independent cohort of animal models. Collectively, these findings suggest that altered brain pH and lactate levels, which could be attributed to dysregulated excitation/inhibition balance, may serve as transdiagnostic endophenotypes of debilitating neuropsychiatric disorders characterized by cognitive impairment, irrespective of their beneficial or detrimental nature.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Satoko Hattori
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Giovanni Sala
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Yoshihiro Takamiya
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Mika Tanaka
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular CenterSuitaJapan
| | - Mihiro Shibutani
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Kei Hori
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
| | - Akito Nakao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto UniversityKyotoJapan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto UniversityKyotoJapan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Masayuki Matsushita
- Department of Molecular Cellular Physiology, Graduate School of Medicine, University of the RyukyusNishiharaJapan
| | - Anja Urbach
- Department of Neurology, Jena University HospitalJenaGermany
| | - Yuta Katayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Akinobu Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Shota Katori
- Laboratory of Mammalian Neural Circuits, National Institute of GeneticsMishimaJapan
| | - Takuya Sato
- Laboratory of Mammalian Neural Circuits, National Institute of GeneticsMishimaJapan
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of GeneticsMishimaJapan
| | - Haruko Nakamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of MedicineYokohamaJapan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of MedicineYokohamaJapan
| | - Matthieu Raveau
- Laboratory for Neurogenetics, RIKEN Center for Brain ScienceWakoJapan
| | - Tetsuya Tatsukawa
- Laboratory for Neurogenetics, RIKEN Center for Brain ScienceWakoJapan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain ScienceWakoJapan
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Sciences, Nagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of TokyoTokyoJapan
- Department of Physiology, Kitasato University School of MedicineSagamiharaJapan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of TokyoTokyoJapan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of TokyoTokyoJapan
| | - Johji Inazawa
- Research Core, Tokyo Medical and Dental UniversityTokyoJapan
| | - Ikuo Nobuhisa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | - Tetsushi Kagawa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | - Mohamed Darwish
- Department of Biochemistry, Faculty of Pharmacy, Cairo UniversityCairoEgypt
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of ToyamaToyamaJapan
| | | | - Keizo Takao
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of ToyamaToyamaJapan
- Department of Behavioral Physiology, Faculty of Medicine, University of ToyamaToyamaJapan
| | - Kiran Sapkota
- Department of Neuroscience, Southern ResearchBirminghamUnited States
| | | | - Tsuyoshi Takagi
- Institute for Developmental Research, Aichi Developmental Disability CenterKasugaiJapan
| | - Haruki Fujisawa
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health UniversityToyoakeJapan
| | - Yoshihisa Sugimura
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health UniversityToyoakeJapan
| | - Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo Medical University School of MedicineNishinomiyaJapan
| | - Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Nanette Deneen Hannah
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa UniversityKita-gunJapan
| | - Shuji Wakatsuki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Katsuhiko Tabuchi
- Department of Molecular & Cellular Physiology, Shinshu University School of MedicineMatsumotoJapan
| | - Tadahiro Numakawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
- Department of Psychiatry, Teikyo University School of MedicineTokyoJapan
| | - Freesia L Huang
- Program of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Atsuko Hayata-Takano
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
- Department of Pharmacology, Graduate School of Dentistry, Osaka UniversitySuitaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of FukuiSuitaJapan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of FukuiSuitaJapan
- Division of Bioscience, Institute for Datability Science, Osaka UniversitySuitaJapan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
- Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka UniversitySuitaJapan
| | - Kota Tamada
- RIKEN Brain Science InstituteWakoJapan
- Department of Physiology and Cell Biology, Kobe University School of MedicineKobeJapan
| | - Toru Takumi
- RIKEN Brain Science InstituteWakoJapan
- Department of Physiology and Cell Biology, Kobe University School of MedicineKobeJapan
| | - Takaoki Kasahara
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain ScienceWakoJapan
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University of OldenburgOldenburgGermany
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain ScienceWakoJapan
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of MedicineTokyoJapan
| | - Isabella A Graef
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Gerald R Crabtree
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Nozomi Asaoka
- Department of Pharmacology, Kyoto Prefectural University of MedicineKyotoJapan
| | - Hikari Hatakama
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto UniversityKyotoJapan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto UniversityKyotoJapan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City UniversityNagoyaJapan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City UniversityNagoyaJapan
| | - Yoshio Hoshiba
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Ryuhei Miyake
- Laboratory for Multi-scale Biological Psychiatry, RIKEN Center for Brain ScienceWakoJapan
| | - Kisho Obi-Nagata
- Laboratory for Multi-scale Biological Psychiatry, RIKEN Center for Brain ScienceWakoJapan
| | - Akiko Hayashi-Takagi
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
- Laboratory for Multi-scale Biological Psychiatry, RIKEN Center for Brain ScienceWakoJapan
| | - Léa J Becker
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de StrasbourgStrasbourgFrance
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de StrasbourgStrasbourgFrance
| | - Yoko Hagino
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | | | - Yuki Moriya
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Hyopil Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National UniversitySeoulRepublic of Korea
- Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National UniversitySeoulRepublic of Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| | - Hikari Otabi
- College of Agriculture, Ibaraki UniversityAmiJapan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and TechnologyFuchuJapan
| | - Yuta Yoshida
- College of Agriculture, Ibaraki UniversityAmiJapan
| | - Atsushi Toyoda
- College of Agriculture, Ibaraki UniversityAmiJapan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and TechnologyFuchuJapan
- Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM)IbarakiJapan
| | - Noboru H Komiyama
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Seth GN Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Michiru Ida-Eto
- Department of Developmental and Regenerative Medicine, Mie University, Graduate School of MedicineTsuJapan
| | - Masaaki Narita
- Department of Developmental and Regenerative Medicine, Mie University, Graduate School of MedicineTsuJapan
| | - Ken-ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane UniversityIzumoJapan
| | | | - Iori Ohmori
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Tadayuki Shimada
- Child Brain Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Kanato Yamagata
- Child Brain Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Hiroshi Ageta
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Kunihiro Tsuchida
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Kaoru Inokuchi
- Research Center for Idling Brain Science, University of ToyamaToyamaJapan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyamaJapan
- Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST), University of ToyamaToyamaJapan
| | - Takayuki Sassa
- Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Motoaki Fukasawa
- Department of Anatomy II, Fujita Health University School of MedicineToyoakeJapan
| | - Nobuteru Usuda
- Department of Anatomy II, Fujita Health University School of MedicineToyoakeJapan
| | - Tayo Katano
- Department of Medical Chemistry, Kansai Medical UniversityHirakataJapan
| | - Teruyuki Tanaka
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Yoshihiro Yoshihara
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain ScienceWakoJapan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine, and Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
- Transdiciplinary Research Program, Niigata UniversityNiigataJapan
| | - Takashi Hayashi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Kaori Ishikawa
- Institute of Life and Environmental Sciences, University of TsukubaTsukubaJapan
- Graduate School of Science and Technology, University of TsukubaTsukubaJapan
| | - Satoshi Yamamoto
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company, LtdFujisawaJapan
| | - Naoya Nishimura
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company, LtdFujisawaJapan
| | - Kazuto Nakada
- Institute of Life and Environmental Sciences, University of TsukubaTsukubaJapan
- Graduate School of Science and Technology, University of TsukubaTsukubaJapan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University Graduate School of MedicineOsakaJapan
| | - Kiyoshi Egawa
- Department of Pediatrics, Hokkaido University Graduate School of MedicineSapporoJapan
| | - Kazuma Higashisaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
| | - Yasuo Tsutsumi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
| | - Shoko Nishihara
- Glycan & Life Systems Integration Center (GaLSIC), Soka UniversityTokyoJapan
| | - Noriyuki Sugo
- Graduate School of Frontier Biosciences, Osaka UniversitySuitaJapan
| | - Takeshi Yagi
- Graduate School of Frontier Biosciences, Osaka UniversitySuitaJapan
| | - Naoto Ueno
- Laboratory of Morphogenesis, National Institute for Basic BiologyOkazakiJapan
| | - Tomomi Yamamoto
- Division of Biophysics and Neurobiology, National Institute for Physiological SciencesOkazakiJapan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, National Institute for Physiological SciencesOkazakiJapan
| | - Rie Ohashi
- Laboratory of Neuronal Cell Biology, National Institute for Basic BiologyOkazakiJapan
- Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies)OkazakiJapan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural SciencesOkazakiJapan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic BiologyOkazakiJapan
- Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies)OkazakiJapan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural SciencesOkazakiJapan
| | - Kimiko Shimizu
- Department of Biological Sciences, School of Science, The University of TokyoTokyoJapan
| | - Sayaka Higo-Yamamoto
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of ScienceNodaJapan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwaJapan
- School of Integrative and Global Majors (SIGMA), University of TsukubaTsukubaJapan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyamaJapan
| | - Tamio Furuse
- Mouse Phenotype Analysis Division, Japan Mouse Clinic, RIKEN BioResource Research Center (BRC)TsukubaJapan
| | - Masaru Tamura
- Mouse Phenotype Analysis Division, Japan Mouse Clinic, RIKEN BioResource Research Center (BRC)TsukubaJapan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto UniversityKyotoJapan
| | - Daiki X Sato
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
| | - Yuriko Komine
- Young Researcher Support Group, Research Enhancement Strategy Office, National Institute for Basic Biology, National Institute of Natural SciencesOkazakiJapan
- Division of Brain Biology, National Institute for Basic BiologyOkazakiJapan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic BiologyOkazakiJapan
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain ScienceWakoJapan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata UniversityNiigataJapan
- Department of Animal Model Development, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| |
Collapse
|
11
|
Sleep M, Landaverde S, Lacoste A, Tan S, Schuback R, Reiter LT, Iyengar A. Glial expression of Drosophila UBE3A causes spontaneous seizures modulated by 5-HT signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579543. [PMID: 38370819 PMCID: PMC10871353 DOI: 10.1101/2024.02.08.579543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Misexpression of the E3 ubiquitin ligase UBE3A is thought to contribute to a range of neurological disorders. In the context of Dup15q syndrome, excess genomic copies of UBE3A is thought to contribute to the autism, muscle tone and spontaneous seizures characteristic of the disorder. In a Drosophila model of Dup 15q syndrome, it was recently shown glial-driven expression of the UBE3A ortholog dube3a led to a "bang-sensitive" phenotype, where mechanical shock triggers convulsions, suggesting glial dube3a expression contributes to hyperexcitability in flies. Here we directly compare the consequences of glial- and neuronal-driven dube3a expression on motor coordination and neuronal excitability in Drosophila. We utilized IowaFLI tracker and developed a hidden Markov Model to classify seizure-related immobilization. Both glial and neuronal driven dube3a expression led to clear motor phenotypes. However, only glial-driven dube3a expression displayed spontaneous immobilization events, that were exacerbated at high-temperature (38 °C). Using a tethered fly preparation we monitored flight muscle activity, we found glial-driven dube3a flies display spontaneous spike discharges which were bilaterally synchronized indicative of seizure activity. Neither control flies, nor neuronal- dube3a overexpressing flies display such firing patterns. Prior drug screen indicated bang-sensitivity in glial-driven dube3a expressing flies could be suppressed by certain 5-HT modulators. Consistent with this report, we found glial-driven dube3a flies fed the serotonin reuptake inhibitor vortioxetine and the 5HT 2A antagonist ketanserin displayed reduced immobilization and spike bursting. Together these findings highlight the potential for glial pathophysiology to drive Dup15q syndrome-related seizure activity.
Collapse
|
12
|
Lee HHC, Sahin M. Rodent Models for ASD Biomarker Development. ADVANCES IN NEUROBIOLOGY 2024; 40:189-218. [PMID: 39562446 DOI: 10.1007/978-3-031-69491-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Advances in molecular biology and genetics are increasingly revealing the complex etiology of autism spectrum disorder (ASD). In parallel, a number of biochemical, anatomical, and electrophysiological measures are emerging as potential disease-relevant biomarkers that could inform the diagnosis and clinical management of ASD. Rodent ASD models play a key role in ASD research as essential experimental tools. Nevertheless, there are challenges and limitations to the validity and translational value of rodent models, including genetic relevance and cognitive performance differences between humans and rodents. In this chapter, we begin with a brief history of autism research, followed by prominent examples of disease-relevant mouse models enabled by current knowledge of genetics, molecular biology, and bioinformatics. These ASD-associated rodent models enable quantifiable biomarker development. Finally, we discuss the prospects of ASD biomarker development.
Collapse
Affiliation(s)
- Henry H C Lee
- Rosamund Stone Zander Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
WATANABE T, KANO M. Molecular and cellular mechanisms of developmental synapse elimination in the cerebellum: Involvement of autism spectrum disorder-related genes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:508-523. [PMID: 39522973 PMCID: PMC11635086 DOI: 10.2183/pjab.100.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024]
Abstract
Neural circuits are initially created with excessive synapse formation until around birth and undergo massive reorganization until they mature. During postnatal development, necessary synapses strengthen and remain, whereas unnecessary ones are weakened and eventually eliminated. These events, collectively called "synapse elimination" or "synapse pruning", are thought to be fundamental for creating functionally mature neural circuits in adult animals. In the cerebellum of neonatal rodents, Purkinje cells (PCs) receive synaptic inputs from multiple climbing fibers (CFs). Then, inputs from a single CF are strengthened and those from the other CFs are eliminated, and most PCs become innervated by single CFs by the end of the third postnatal week. These events are regarded as a representative model of synapse elimination. This review examines the molecular and cellular mechanisms of CF synapse elimination in the developing cerebellum and argues how autism spectrum disorder (ASD)-related genes are involved in CF synapse development. We introduce recent studies to update our knowledge, incorporate new data into the known scheme, and discuss the remaining issues and future directions.
Collapse
Affiliation(s)
- Takaki WATANABE
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo, Japan
| | - Masanobu KANO
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo, Japan
| |
Collapse
|
14
|
Roy B, Amemasor E, Hussain S, Castro K. UBE3A: The Role in Autism Spectrum Disorders (ASDs) and a Potential Candidate for Biomarker Studies and Designing Therapeutic Strategies. Diseases 2023; 12:7. [PMID: 38248358 PMCID: PMC10814747 DOI: 10.3390/diseases12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Published reports from the CDC's Autism and Development Disabilities Monitoring Networks have shown that an average of 1 in every 44 (2.3%) 8-year-old children were estimated to have ASD in 2018. Many of the ASDs exhibiting varying degrees of autism-like phenotypes have chromosomal anomalies in the Chr15q11-q13 region. Numerous potential candidate genes linked with ASD reside in this chromosomal segment. However, several clinical, in vivo, and in vitro studies selected one gene more frequently than others randomly and unbiasedly. This gene codes for UBE3A or Ubiquitin protein ligase E3A [also known as E6AP ubiquitin-protein ligase (E6AP)], an enzyme involved in the cellular degradation of proteins. This gene has been listed as one of the several genes with a high potential of causing ASD in the Autism Database. The gain of function mutations, triplication, or duplication in the UBE3A gene is also associated with ASDs like Angelman Syndrome (AS) and Dup15q Syndrome. The genetic imprinting of UBE3A in the brain and a preference for neuronal maternal-specific expression are the key features of various ASDs. Since the UBE3A gene is involved in two main important diseases associated with autism-like symptoms, there has been widespread research going on in understanding the link between this gene and autism. Additionally, since no universal methodology or mechanism exists for identifying UBE3A-mediated ASD, it continues to be challenging for neurobiologists, neuroscientists, and clinicians to design therapies or diagnostic tools. In this review, we focus on the structure and functional aspects of the UBE3A protein, discuss the primary relevance of the 15q11-q13 region in the cause of ASDs, and highlight the link between UBE3A and ASD. We try to broaden the knowledge of our readers by elaborating on the possible mechanisms underlying UBE3A-mediated ASDs, emphasizing the usage of UBE3A as a prospective biomarker in the preclinical diagnosis of ASDs and discuss the positive outcomes, advanced developments, and the hurdles in the field of therapeutic strategies against UBE3A-mediated ASDs. This review is novel as it lays a very detailed and comprehensive platform for one of the most important genes associated with diseases showing autistic-like symptoms. Additionally, this review also attempts to lay optimistic feedback on the possible steps for the diagnosis, prevention, and therapy of these UBE3A-mediated ASDs in the upcoming years.
Collapse
Affiliation(s)
- Bidisha Roy
- Life Science Centre, Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA; (E.A.); (S.H.); (K.C.)
| | | | | | | |
Collapse
|
15
|
Nakagami Y, Nishi M. MA-5 ameliorates autism-like behavior in mice prenatally exposed to valproic acid. Behav Pharmacol 2023; 34:488-493. [PMID: 37917568 DOI: 10.1097/fbp.0000000000000758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Indole-3-acetic acid is a common naturally occurring auxin in plants. A synthesized derivative of this compound, 4-(2,4-difluorophenyl)-2-(1H-indol-3-yl)-4-oxobutanoic acid also called mitochonic acid 5 (MA-5), has shown to increase the survival ratio of fibroblasts from patients with mitochondrial disease under stress-induced conditions. Further studies verified its efficacy in pathological models, such as an ischemia-reperfusion model, possibly by increasing ATP production. However, the efficacy of MA-5 in mental disorders, such as anxiety, schizophrenia, and autism spectrum disorders (ASD), has not been investigated. Our study focused on examining the effect of MA-5 in a mouse model of ASD induced by prenatal exposure to valproic acid (VPA). VPA exposure significantly deteriorated the level of anxiety and exploratory behavior in an open field test. We fed mice an MA-5-containing diet for 5 weeks and observed an improvement in the above behavior in the MA-5-fed groups. The efficacy of MA-5 was also observed in the elevated plus maze and three-chambered tests. These findings suggest that MA-5 could potentially be used to treat ASD, especially in patients with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yasuhiro Nakagami
- Specialty Medicine Research Laboratories II, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | |
Collapse
|
16
|
Schamiloglu S, Wu H, Zhou M, Kwan AC, Bender KJ. Dynamic Foraging Behavior Performance Is Not Affected by Scn2a Haploinsufficiency. eNeuro 2023; 10:ENEURO.0367-23.2023. [PMID: 38151324 PMCID: PMC10755640 DOI: 10.1523/eneuro.0367-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Dysfunction in the gene SCN2A, which encodes the voltage-gated sodium channel Nav1.2, is strongly associated with neurodevelopmental disorders including autism spectrum disorder and intellectual disability (ASD/ID). This dysfunction typically manifests in these disorders as a haploinsufficiency, where loss of one copy of a gene cannot be compensated for by the other allele. Scn2a haploinsufficiency affects a range of cells and circuits across the brain, including associative neocortical circuits that are important for cognitive flexibility and decision-making behaviors. Here, we tested whether Scn2a haploinsufficiency has any effect on a dynamic foraging task that engages such circuits. Scn2a +/- mice and wild-type (WT) littermates were trained on a choice behavior where the probability of reward between two options varied dynamically across trials and where the location of the high reward underwent uncued reversals. Despite impairments in Scn2a-related neuronal excitability, we found that both male and female Scn2a +/- mice performed these tasks as well as wild-type littermates, with no behavioral difference across genotypes in learning or performance parameters. Varying the number of trials between reversals or probabilities of receiving reward did not result in an observable behavioral difference, either. These data suggest that, despite heterozygous loss of Scn2a, mice can perform relatively complex foraging tasks that make use of higher-order neuronal circuits.
Collapse
Affiliation(s)
- Selin Schamiloglu
- Neuroscience Graduate Program, University of California, San Francisco, CA 94158
- Center for Integrative Neuroscience, Department of Neurology, University of California, San Francisco, CA 94158
| | - Hao Wu
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511
| | - Mingkang Zhou
- Neuroscience Graduate Program, University of California, San Francisco, CA 94158
- Center for Integrative Neuroscience, Department of Neurology, University of California, San Francisco, CA 94158
| | - Alex C Kwan
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Kevin J Bender
- Center for Integrative Neuroscience, Department of Neurology, University of California, San Francisco, CA 94158
| |
Collapse
|
17
|
Cording KR, Bateup HS. Altered motor learning and coordination in mouse models of autism spectrum disorder. Front Cell Neurosci 2023; 17:1270489. [PMID: 38026686 PMCID: PMC10663323 DOI: 10.3389/fncel.2023.1270489] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with increasing prevalence. Over 1,000 risk genes have now been implicated in ASD, suggesting diverse etiology. However, the diagnostic criteria for the disorder still comprise two major behavioral domains - deficits in social communication and interaction, and the presence of restricted and repetitive patterns of behavior (RRBs). The RRBs associated with ASD include both stereotyped repetitive movements and other motor manifestations including changes in gait, balance, coordination, and motor skill learning. In recent years, the striatum, the primary input center of the basal ganglia, has been implicated in these ASD-associated motor behaviors, due to the striatum's role in action selection, motor learning, and habit formation. Numerous mouse models with mutations in ASD risk genes have been developed and shown to have alterations in ASD-relevant behaviors. One commonly used assay, the accelerating rotarod, allows for assessment of both basic motor coordination and motor skill learning. In this corticostriatal-dependent task, mice walk on a rotating rod that gradually increases in speed. In the extended version of this task, mice engage striatal-dependent learning mechanisms to optimize their motor routine and stay on the rod for longer periods. This review summarizes the findings of studies examining rotarod performance across a range of ASD mouse models, and the resulting implications for the involvement of striatal circuits in ASD-related motor behaviors. While performance in this task is not uniform across mouse models, there is a cohort of models that show increased rotarod performance. A growing number of studies suggest that this increased propensity to learn a fixed motor routine may reflect a common enhancement of corticostriatal drive across a subset of mice with mutations in ASD-risk genes.
Collapse
Affiliation(s)
- Katherine R. Cording
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Helen S. Bateup
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
18
|
John RM, Higgs MJ, Isles AR. Imprinted genes and the manipulation of parenting in mammals. Nat Rev Genet 2023; 24:783-796. [PMID: 37714957 DOI: 10.1038/s41576-023-00644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/17/2023]
Abstract
Genomic imprinting refers to the parent-of-origin expression of genes, which originates from epigenetic events in the mammalian germ line. The evolution of imprinting may reflect a conflict over resource allocation early in life, with silencing of paternal genes in offspring soliciting increased maternal provision and silencing of maternal genes limiting demands on the mother. Parental caregiving has been identified as an area of potential conflict, with several imprinted genes serendipitously found to directly influence the quality of maternal care. Recent systems biology approaches, based on single-cell RNA sequencing data, support a more deliberate relationship, which is reinforced by the finding that imprinted genes expressed in the offspring influence the quality of maternal caregiving. These bidirectional, reiterative relationships between parents and their offspring are critical both for short-term survival and for lifelong wellbeing, with clear implications for human health.
Collapse
|
19
|
Forrest MP, Penzes P. Mechanisms of copy number variants in neuropsychiatric disorders: From genes to therapeutics. Curr Opin Neurobiol 2023; 82:102750. [PMID: 37515924 PMCID: PMC10529795 DOI: 10.1016/j.conb.2023.102750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/31/2023]
Abstract
Copy number variants (CNVs) are genomic imbalances strongly linked to the aetiology of neuropsychiatric disorders such as schizophrenia and autism. By virtue of their large size, CNVs often contain many genes, providing a multi-genic view of disease processes that can be dissected in model systems. Thus, CNV research provides an important stepping stone towards understanding polygenic disease mechanisms, positioned between monogenic and polygenic risk models. In this review, we will outline hypothetical models for gene interactions occurring within CNVs and discuss different approaches used to study rodent and stem cell disease models. We highlight recent work showing that genetic and pharmacological strategies can be used to rescue important aspects of CNV-mediated pathophysiology, which often converges onto synaptic pathways. We propose that using a rescue approach in complete CNV models provides a new path forward for precise mechanistic understanding of complex disorders and a tangible route towards therapeutic development.
Collapse
Affiliation(s)
- Marc P Forrest
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
20
|
Gundersen BB, O'Brien WT, Schaffler MD, Schultz MN, Tsukahara T, Lorenzo SM, Nalesso V, Luo Clayton AH, Abel T, Crawley JN, Datta SR, Herault Y. Towards Preclinical Validation of Arbaclofen (R-baclofen) Treatment for 16p11.2 Deletion Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538987. [PMID: 37745360 PMCID: PMC10515778 DOI: 10.1101/2023.05.01.538987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
A microdeletion on human chromosome 16p11.2 is one of the most common copy number variants associated with autism spectrum disorder and other neurodevelopmental disabilities. Arbaclofen, a GABA(B) receptor agonist, is a component of racemic baclofen, which is FDA-approved for treating spasticity, and has been shown to alleviate behavioral phenotypes, including recognition memory deficits, in animal models of 16p11.2 deletion. Given the lack of reproducibility sometimes observed in mouse behavioral studies, we brought together a consortium of four laboratories to study the effects of arbaclofen on behavior in three different mouse lines with deletions in the mouse region syntenic to human 16p11.2 to test the robustness of these findings. Arbaclofen rescued cognitive deficits seen in two 16p11.2 deletion mouse lines in traditional recognition memory paradigms. Using an unsupervised machine-learning approach to analyze behavior, one lab found that arbaclofen also rescued differences in exploratory behavior in the open field in 16p11.2 deletion mice. Arbaclofen was not sedating and had modest off-target behavioral effects at the doses tested. Our studies show that arbaclofen consistently rescues behavioral phenotypes in 16p11.2 deletion mice, providing support for clinical trials of arbaclofen in humans with this deletion.
Collapse
Affiliation(s)
| | | | - Melanie D Schaffler
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA
| | - Maria N Schultz
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA
| | | | - Sandra Martin Lorenzo
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), Illkirch cedex, France
| | - Valerie Nalesso
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), Illkirch cedex, France
| | | | - Ted Abel
- University of Iowa, Iowa City, IA
| | - Jacqueline N Crawley
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA
| | | | - Yann Herault
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), Illkirch cedex, France
| |
Collapse
|
21
|
Büki G, Hadzsiev K, Bene J. Copy Number Variations in Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:13671. [PMID: 37761973 PMCID: PMC10530736 DOI: 10.3390/ijms241813671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Neuropsychiatric disorders are complex conditions that represent a significant global health burden with complex and multifactorial etiologies. Technological advances in recent years have improved our understanding of the genetic architecture of the major neuropsychiatric disorders and the genetic loci involved. Previous studies mainly investigated genome-wide significant SNPs to elucidate the cross-disorder and disorder-specific genetic basis of neuropsychiatric disorders. Although copy number variations represent a major source of genetic variations, they are known risk factors in developing a variety of human disorders, including certain neuropsychiatric diseases. In this review, we demonstrate the current understanding of CNVs contributing to liability for schizophrenia, bipolar disorder, and major depressive disorder.
Collapse
Affiliation(s)
| | | | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.B.); (K.H.)
| |
Collapse
|
22
|
Elamin M, Lemtiri-Chlieh F, Robinson TM, Levine ES. Dysfunctional sodium channel kinetics as a novel epilepsy mechanism in chromosome 15q11-q13 duplication syndrome. Epilepsia 2023; 64:2515-2527. [PMID: 37329181 PMCID: PMC10529833 DOI: 10.1111/epi.17687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Duplication of the maternal chromosome 15q11.2-q13.1 region causes Dup15q syndrome, a highly penetrant neurodevelopmental disorder characterized by severe autism and refractory seizures. Although UBE3A, the gene encoding the ubiquitin ligase E3A, is thought to be the main driver of disease phenotypes, the cellular and molecular mechanisms that contribute to the development of the syndrome are yet to be determined. We previously established the necessity of UBE3A overexpression for the development of cellular phenotypes in human Dup15q neurons, including increased action potential firing and increased inward current density, which prompted us to further investigate sodium channel kinetics. METHODS We used a Dup15q patient-derived induced pluripotent stem cell line that was CRISPR-edited to remove the supernumerary chromosome and create an isogenic control line. We performed whole cell patch clamp electrophysiology on Dup15q and corrected control neurons at two time points of in vitro development. RESULTS Compared to corrected neurons, Dup15q neurons showed increased sodium current density and a depolarizing shift in steady-state inactivation. Moreover, onset of slow inactivation was delayed, and a faster recovery from both fast and slow inactivation processes was observed in Dup15q neurons. A fraction of sodium current in Dup15q neurons (~15%) appeared to be resistant to slow inactivation. Not unexpectedly, a higher fraction of persistent sodium current was also observed in Dup15q neurons. These phenotypes were modulated by the anticonvulsant drug rufinamide. SIGNIFICANCE Sodium channels play a crucial role in the generation of action potentials, and sodium channelopathies have been uncovered in multiple forms of epilepsy. For the first time, our work identifies in Dup15q neurons dysfunctional inactivation kinetics, which have been previously linked to multiple forms of epilepsy. Our work can also guide therapeutic approaches to epileptic seizures in Dup15q patients and emphasize the role of drugs that modulate inactivation kinetics, such as rufinamide.
Collapse
Affiliation(s)
- Marwa Elamin
- Department of Neuroscience, School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Fouad Lemtiri-Chlieh
- Department of Neuroscience, School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Tiwanna M Robinson
- Department of Neuroscience, School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Eric S Levine
- Department of Neuroscience, School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| |
Collapse
|
23
|
Sato M, Nakai N, Fujima S, Choe KY, Takumi T. Social circuits and their dysfunction in autism spectrum disorder. Mol Psychiatry 2023; 28:3194-3206. [PMID: 37612363 PMCID: PMC10618103 DOI: 10.1038/s41380-023-02201-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Social behaviors, how individuals act cooperatively and competitively with conspecifics, are widely seen across species. Rodents display various social behaviors, and many different behavioral paradigms have been used for investigating their neural circuit bases. Social behavior is highly vulnerable to brain network dysfunction caused by neurological and neuropsychiatric conditions such as autism spectrum disorders (ASDs). Studying mouse models of ASD provides a promising avenue toward elucidating mechanisms of abnormal social behavior and potential therapeutic targets for treatment. In this review, we outline recent progress and key findings on neural circuit mechanisms underlying social behavior, with particular emphasis on rodent studies that monitor and manipulate the activity of specific circuits using modern systems neuroscience approaches. Social behavior is mediated by a distributed brain-wide network among major cortical (e.g., medial prefrontal cortex (mPFC), anterior cingulate cortex, and insular cortex (IC)) and subcortical (e.g., nucleus accumbens, basolateral amygdala (BLA), and ventral tegmental area) structures, influenced by multiple neuromodulatory systems (e.g., oxytocin, dopamine, and serotonin). We particularly draw special attention to IC as a unique cortical area that mediates multisensory integration, encoding of ongoing social interaction, social decision-making, emotion, and empathy. Additionally, a synthesis of studies investigating ASD mouse models demonstrates that dysfunctions in mPFC-BLA circuitry and neuromodulation are prominent. Pharmacological rescues by local or systemic (e.g., oral) administration of various drugs have provided valuable clues for developing new therapeutic agents for ASD. Future efforts and technological advances will push forward the next frontiers in this field, such as the elucidation of brain-wide network activity and inter-brain neural dynamics during real and virtual social interactions, and the establishment of circuit-based therapy for disorders affecting social functions.
Collapse
Affiliation(s)
- Masaaki Sato
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Kita, Sapporo, 060-8638, Japan
| | - Nobuhiro Nakai
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan
| | - Shuhei Fujima
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan
| | - Katrina Y Choe
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan.
- RIKEN Center for Biosystems Dynamics Research, Chuo, Kobe, 650-0047, Japan.
| |
Collapse
|
24
|
Soeda S, Ito D, Ogushi T, Sano Y, Negoro R, Fujita T, Saito R, Taniura H. Defects in early synaptic formation and neuronal function in Prader-Willi syndrome. Sci Rep 2023; 13:12053. [PMID: 37491450 PMCID: PMC10368700 DOI: 10.1038/s41598-023-39065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
Prader-Willi syndrome (PWS), which is a complex epigenetic disorder caused by the deficiency of paternally expressed genes in chromosome 15q11-q13, is associated with several psychiatric dimensions, including autism spectrum disorder. We have previously reported that iPS cells derived from PWS patients exhibited aberrant differentiation and transcriptomic dysregulation in differentiated neural stem cells (NSCs) and neurons. Here, we identified SLITRK1 as a downregulated gene in NSCs differentiated from PWS patient iPS cells by RNA sequencing analysis. Because SLITRK1 is involved in synaptogenesis, we focused on the synaptic formation and function of neurons differentiated from PWS patient iPS cells and NDN or MAGEL2 single gene defect mutant iPS cells. Although βIII tubulin expression levels in all the neurons were comparable to the level of differentiation in the control, pre- and postsynaptic markers were significantly lower in PWS and mutant neurons than in control neurons. PSD-95 puncta along βIII tubulin neurites were also decreased. Membrane potential responses were measured while exposed to high K+ stimulation. The neuronal excitabilities in PWS and mutant neurons showed significantly lower intensity than that of control neurons. These functional defects in PWS neurons may reflect phenotypes of neurodevelopmental disorders in PWS.
Collapse
Affiliation(s)
- Shuhei Soeda
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Daiki Ito
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Tomoe Ogushi
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yui Sano
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Ryosuke Negoro
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Ryo Saito
- Mitsubishi Tanabe Pharma Corporation, Kamoshida, Aoba, Yokohama, 227-0033, Japan
| | - Hideo Taniura
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
25
|
Busch SE, Simmons DH, Gama E, Du X, Longo F, Gomez CM, Klann E, Hansel C. Overexpression of the autism candidate gene Cyfip1 pathologically enhances olivo-cerebellar signaling in mice. Front Cell Neurosci 2023; 17:1219270. [PMID: 37545882 PMCID: PMC10399232 DOI: 10.3389/fncel.2023.1219270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Cyfip1, the gene encoding cytoplasmic FMR1 interacting protein 1, has been of interest as an autism candidate gene for years. A potential role in autism spectrum disorder (ASD) is suggested by its location on human chromosome 15q11-13, an instable region that gives rise to a variety of copy number variations associated with syndromic autism. In addition, the CYFIP1 protein acts as a binding partner to Fragile X Messenger Ribonucleoprotein (FMRP) in the regulation of translation initiation. Mutation of FMR1, the gene encoding FMRP, causes Fragile X syndrome, another form of syndromic autism. Here, in mice overexpressing CYFIP1, we study response properties of cerebellar Purkinje cells to activity of the climbing fiber input that originates from the inferior olive and provides an instructive signal in sensorimotor input analysis and plasticity. We find that CYFIP1 overexpression results in enhanced localization of the synaptic organizer neurexin 1 (NRXN1) at climbing fiber synaptic input sites on Purkinje cell primary dendrites and concomitant enhanced climbing fiber synaptic transmission (CF-EPSCs) measured using whole-cell patch-clamp recordings from Purkinje cells in vitro. Moreover, using two-photon measurements of GCaMP6f-encoded climbing fiber signals in Purkinje cells of intact mice, we observe enhanced responses to air puff stimuli applied to the whisker field. These findings resemble our previous phenotypic observations in a mouse model for the human 15q11-13 duplication, which does not extend to the Cyfip1 locus. Thus, our study demonstrates that CYFIP1 overexpression shares a limited set of olivo-cerebellar phenotypes as those resulting from an increased number of copies of non-overlapping genes located on chromosome 15q11-13.
Collapse
Affiliation(s)
- Silas E. Busch
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Dana H. Simmons
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Eric Gama
- Department of Neurology, The University of Chicago, Chicago, IL, United States
| | - Xiaofei Du
- Department of Neurology, The University of Chicago, Chicago, IL, United States
| | - Francesco Longo
- Center for Neural Science, New York University, New York, NY, United States
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | | | - Eric Klann
- Center for Neural Science, New York University, New York, NY, United States
| | - Christian Hansel
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
26
|
Nakamura T, Takata A. The molecular pathology of schizophrenia: an overview of existing knowledge and new directions for future research. Mol Psychiatry 2023; 28:1868-1889. [PMID: 36878965 PMCID: PMC10575785 DOI: 10.1038/s41380-023-02005-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Despite enormous efforts employing various approaches, the molecular pathology in the schizophrenia brain remains elusive. On the other hand, the knowledge of the association between the disease risk and changes in the DNA sequences, in other words, our understanding of the genetic pathology of schizophrenia, has dramatically improved over the past two decades. As the consequence, now we can explain more than 20% of the liability to schizophrenia by considering all analyzable common genetic variants including those with weak or no statistically significant association. Also, a large-scale exome sequencing study identified single genes whose rare mutations substantially increase the risk for schizophrenia, of which six genes (SETD1A, CUL1, XPO7, GRIA3, GRIN2A, and RB1CC1) showed odds ratios larger than ten. Based on these findings together with the preceding discovery of copy number variants (CNVs) with similarly large effect sizes, multiple disease models with high etiological validity have been generated and analyzed. Studies of the brains of these models, as well as transcriptomic and epigenomic analyses of patient postmortem tissues, have provided new insights into the molecular pathology of schizophrenia. In this review, we overview the current knowledge acquired from these studies, their limitations, and directions for future research that may redefine schizophrenia based on biological alterations in the responsible organ rather than operationalized criteria.
Collapse
Affiliation(s)
- Takumi Nakamura
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
27
|
Nakai N, Sato M, Yamashita O, Sekine Y, Fu X, Nakai J, Zalesky A, Takumi T. Virtual reality-based real-time imaging reveals abnormal cortical dynamics during behavioral transitions in a mouse model of autism. Cell Rep 2023; 42:112258. [PMID: 36990094 DOI: 10.1016/j.celrep.2023.112258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Functional connectivity (FC) can provide insight into cortical circuit dysfunction in neuropsychiatric disorders. However, dynamic changes in FC related to locomotion with sensory feedback remain to be elucidated. To investigate FC dynamics in locomoting mice, we develop mesoscopic Ca2+ imaging with a virtual reality (VR) environment. We find rapid reorganization of cortical FC in response to changing behavioral states. By using machine learning classification, behavioral states are accurately decoded. We then use our VR-based imaging system to study cortical FC in a mouse model of autism and find that locomotion states are associated with altered FC dynamics. Furthermore, we identify FC patterns involving the motor area as the most distinguishing features of the autism mice from wild-type mice during behavioral transitions, which might correlate with motor clumsiness in individuals with autism. Our VR-based real-time imaging system provides crucial information to understand FC dynamics linked to behavioral abnormality of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nobuhiro Nakai
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan
| | - Masaaki Sato
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Kita, Sapporo 060-8638, Japan.
| | - Okito Yamashita
- RIKEN Center for Advanced Intelligence Project, Chuo, Tokyo 103-0027, Japan; Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, Seika, Kyoto 619-0288, Japan
| | - Yukiko Sekine
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Xiaochen Fu
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Junichi Nakai
- Division of Oral Physiology, Department of Disease Management Dentistry, Tohoku University Graduate School of Dentistry, Aoba, Sendai 980-8575, Japan
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan; RIKEN Center for Biosystems Dynamics Research, Chuo, Kobe 650-0047, Japan.
| |
Collapse
|
28
|
Elamin M, Dumarchey A, Stoddard C, Robinson TM, Cowie C, Gorka D, Chamberlain SJ, Levine ES. The role of UBE3A in the autism and epilepsy-related Dup15q syndrome using patient-derived, CRISPR-corrected neurons. Stem Cell Reports 2023; 18:884-898. [PMID: 36898382 PMCID: PMC10147551 DOI: 10.1016/j.stemcr.2023.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
Chromosome 15q11-q13 duplication syndrome (Dup15q) is a neurodevelopmental disorder caused by maternal duplications of this region. Autism and epilepsy are key features of Dup15q. UBE3A, which encodes an E3 ubiquitin ligase, is likely a major driver of Dup15q because UBE3A is the only imprinted gene expressed solely from the maternal allele. Nevertheless, the exact role of UBE3A has not been determined. To establish whether UBE3A overexpression is required for Dup15q neuronal deficits, we generated an isogenic control line for a Dup15q patient-derived induced pluripotent stem cell line. Dup15q neurons exhibited hyperexcitability compared with control neurons, and this phenotype was generally prevented by normalizing UBE3A levels using antisense oligonucleotides. Overexpression of UBE3A resulted in a profile similar to that of Dup15q neurons except for synaptic phenotypes. These results indicate that UBE3A overexpression is necessary for most Dup15q cellular phenotypes but also suggest a role for other genes in the duplicated region.
Collapse
Affiliation(s)
- Marwa Elamin
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Aurelie Dumarchey
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Christopher Stoddard
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Tiwanna M Robinson
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Christopher Cowie
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Dea Gorka
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Stormy J Chamberlain
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Eric S Levine
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
29
|
O'Geen H, Beitnere U, Garcia MS, Adhikari A, Cameron DL, Fenton TA, Copping NA, Deng P, Lock S, Halmai JANM, Villegas IJ, Liu J, Wang D, Fink KD, Silverman JL, Segal DJ. Transcriptional reprogramming restores UBE3A brain-wide and rescues behavioral phenotypes in an Angelman syndrome mouse model. Mol Ther 2023; 31:1088-1105. [PMID: 36641623 PMCID: PMC10124086 DOI: 10.1016/j.ymthe.2023.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/19/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Angelman syndrome (AS) is a neurogenetic disorder caused by the loss of ubiquitin ligase E3A (UBE3A) gene expression in the brain. The UBE3A gene is paternally imprinted in brain neurons. Clinical features of AS are primarily due to the loss of maternally expressed UBE3A in the brain. A healthy copy of paternal UBE3A is present in the brain but is silenced by a long non-coding antisense transcript (UBE3A-ATS). Here, we demonstrate that an artificial transcription factor (ATF-S1K) can silence Ube3a-ATS in an adult mouse model of Angelman syndrome (AS) and restore endogenous physiological expression of paternal Ube3a. A single injection of adeno-associated virus (AAV) expressing ATF-S1K (AAV-S1K) into the tail vein enabled whole-brain transduction and restored UBE3A protein in neurons to ∼25% of wild-type protein. The ATF-S1K treatment was highly specific to the target site with no detectable inflammatory response 5 weeks after AAV-S1K administration. AAV-S1K treatment of AS mice showed behavioral rescue in exploratory locomotion, a task involving gross and fine motor abilities, similar to low ambulation and velocity in AS patients. The specificity and tolerability of a single injection of AAV-S1K therapy for AS demonstrate the use of ATFs as a promising translational approach for AS.
Collapse
Affiliation(s)
| | | | | | - Anna Adhikari
- MIND Institute, UC Davis Health System, Sacramento, CA, USA; Department of Psychiatry and Behavioral Sciences, UC Davis Health System, Sacramento, CA, USA
| | - David L Cameron
- Neurology Department, Stem Cell Program and Gene Therapy Center, UC Davis Health System, Sacramento, CA, USA; MIND Institute, UC Davis Health System, Sacramento, CA, USA
| | - Timothy A Fenton
- MIND Institute, UC Davis Health System, Sacramento, CA, USA; Department of Psychiatry and Behavioral Sciences, UC Davis Health System, Sacramento, CA, USA
| | - Nycole A Copping
- MIND Institute, UC Davis Health System, Sacramento, CA, USA; Department of Psychiatry and Behavioral Sciences, UC Davis Health System, Sacramento, CA, USA
| | - Peter Deng
- Neurology Department, Stem Cell Program and Gene Therapy Center, UC Davis Health System, Sacramento, CA, USA; MIND Institute, UC Davis Health System, Sacramento, CA, USA
| | - Samantha Lock
- Neurology Department, Stem Cell Program and Gene Therapy Center, UC Davis Health System, Sacramento, CA, USA; MIND Institute, UC Davis Health System, Sacramento, CA, USA
| | - Julian A N M Halmai
- Neurology Department, Stem Cell Program and Gene Therapy Center, UC Davis Health System, Sacramento, CA, USA; MIND Institute, UC Davis Health System, Sacramento, CA, USA
| | - Isaac J Villegas
- Neurology Department, Stem Cell Program and Gene Therapy Center, UC Davis Health System, Sacramento, CA, USA; MIND Institute, UC Davis Health System, Sacramento, CA, USA
| | - Jiajian Liu
- Genome Editing and Novel Modalities (GENM), MilliporeSigma, St. Louis, MO, USA
| | - Danhui Wang
- Genome Editing and Novel Modalities (GENM), MilliporeSigma, St. Louis, MO, USA
| | - Kyle D Fink
- Neurology Department, Stem Cell Program and Gene Therapy Center, UC Davis Health System, Sacramento, CA, USA; MIND Institute, UC Davis Health System, Sacramento, CA, USA
| | - Jill L Silverman
- MIND Institute, UC Davis Health System, Sacramento, CA, USA; Department of Psychiatry and Behavioral Sciences, UC Davis Health System, Sacramento, CA, USA
| | - David J Segal
- Genome Center, UC Davis, Davis, CA, USA; Department of Biochemistry and Molecular Medicine, UC Davis, Davis, CA, USA; MIND Institute, UC Davis Health System, Sacramento, CA, USA.
| |
Collapse
|
30
|
Yamada S, Wang Y, Monai H. Transcranial cortex-wide Ca 2+ imaging for the functional mapping of cortical dynamics. Front Neurosci 2023; 17:1119793. [PMID: 36875638 PMCID: PMC9975744 DOI: 10.3389/fnins.2023.1119793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Visualization and tracking of the information flow in the broader brain area are essential because nerve cells make a vast network in the brain. Fluorescence Ca2+ imaging is a simultaneous visualization of brain cell activities in a wide area. Instead of classical chemical indicators, developing various types of transgenic animals that express Ca2+-sensitive fluorescent proteins enables us to observe brain activities in living animals at a larger scale for a long time. Multiple kinds of literature have reported that transcranial imaging of such transgenic animals is practical for monitoring the wide-field information flow across the broad brain regions, although it has a lower spatial resolution. Notably, this technique is helpful for the initial evaluation of cortical function in disease models. This review will introduce fully intact transcranial macroscopic imaging and cortex-wide Ca2+ imaging as practical applications.
Collapse
Affiliation(s)
- Serika Yamada
- Department of Biology, Faculty of Science, Ochanomizu University, Tokyo, Japan
| | - Yan Wang
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Hiromu Monai
- Department of Biology, Faculty of Science, Ochanomizu University, Tokyo, Japan.,Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
31
|
Ninomiya T, Noritake A, Tatsumoto S, Go Y, Isoda M. Cognitive genomics of learning delay and low level of social performance monitoring in macaque. Sci Rep 2022; 12:16539. [PMID: 36192455 PMCID: PMC9529886 DOI: 10.1038/s41598-022-20948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Cognitive skills and the underlying neural architecture are under the influence of genetics. Cognitive genomics research explores the triadic relationship between genes, brain, and cognition, with its major strategy being genotype-driven. Here we show that an inverse strategy is feasible to identify novel candidate genes for particular neuro-cognitive phenotypes in macaques. Two monkeys, originally involved in separate psychological studies, exhibited learning delay and low levels of social performance monitoring. In one monkey, mirror neurons were fewer compared to controls and mu suppression was absent in the frontal cortex. The other monkey showed heightened visual responsiveness in both frontal cortex and dopamine-rich midbrain, with a lack of inter-areal synchronization. Exome analyses revealed that the two monkeys were most likely cousins and shared variants in MAP2, APOC1, and potentially HTR2C. This phenotype-driven strategy in cognitive genomics provides a useful means to clarify the genetic basis of phenotypic variation and develop macaque models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Taihei Ninomiya
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Atsushi Noritake
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Shoji Tatsumoto
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Yasuhiro Go
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.,Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Masaki Isoda
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan. .,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.
| |
Collapse
|
32
|
Simmons DH, Busch SE, Titley HK, Grasselli G, Shih J, Du X, Wei C, Gomez CM, Piochon C, Hansel C. Sensory Over-responsivity and Aberrant Plasticity in Cerebellar Cortex in a Mouse Model of Syndromic Autism. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:450-459. [PMID: 36324646 PMCID: PMC9616247 DOI: 10.1016/j.bpsgos.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022] Open
Abstract
Background Patients with autism spectrum disorder often show altered responses to sensory stimuli as well as motor deficits, including an impairment of delay eyeblink conditioning, which involves integration of sensory signals in the cerebellum. Here, we identify abnormalities in parallel fiber (PF) and climbing fiber (CF) signaling in the mouse cerebellar cortex that may contribute to these pathologies. Methods We used a mouse model for the human 15q11-13 duplication (patDp/+) and studied responses to sensory stimuli in Purkinje cells from awake mice using two-photon imaging of GCaMP6f signals. Moreover, we examined synaptic transmission and plasticity using in vitro electrophysiological, immunohistochemical, and confocal microscopic techniques. Results We found that spontaneous and sensory-evoked CF-calcium transients are enhanced in patDp/+ Purkinje cells, and aversive movements are more severe across sensory modalities. We observed increased expression of the synaptic organizer NRXN1 at CF synapses and ectopic spread of these synapses to fine dendrites. CF-excitatory postsynaptic currents recorded from Purkinje cells are enlarged in patDp/+ mice, while responses to PF stimulation are reduced. Confocal measurements show reduced PF+CF-evoked spine calcium transients, a key trigger for PF long-term depression, one of several plasticity types required for eyeblink conditioning learning. Long-term depression is impaired in patDp/+ mice but is rescued on pharmacological enhancement of calcium signaling. Conclusions Our findings suggest that this genetic abnormality causes a pathological inflation of CF signaling, possibly resulting from enhanced NRXN1 expression, with consequences for the representation of sensory stimuli by the CF input and for PF synaptic organization and plasticity.
Collapse
Affiliation(s)
- Dana H Simmons
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Silas E Busch
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Heather K Titley
- Department of Neurobiology, University of Chicago, Chicago, Illinois.,Department of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Giorgio Grasselli
- Department of Neurobiology, University of Chicago, Chicago, Illinois.,Istituto Italiano di Tecnologia, Center for Synaptic Neuroscience and Technology, Genoa, Italy.,IRCC Ospedale Policlinico San Martino, Genoa, Italy
| | - Justine Shih
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Xiaofei Du
- Department of Neurology, University of Chicago, Chicago, Illinois
| | - Cenfu Wei
- Department of Neurology, University of Chicago, Chicago, Illinois
| | | | - Claire Piochon
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| |
Collapse
|
33
|
Punt AM, Judson MC, Sidorov MS, Williams BN, Johnson NS, Belder S, den Hertog D, Davis CR, Feygin MS, Lang PF, Jolfaei MA, Curran PJ, van IJcken WF, Elgersma Y, Philpot BD. Molecular and behavioral consequences of Ube3a gene overdosage in mice. JCI Insight 2022; 7:e158953. [PMID: 36134658 PMCID: PMC9675564 DOI: 10.1172/jci.insight.158953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022] Open
Abstract
Chromosome 15q11.2-q13.1 duplication syndrome (Dup15q syndrome) is a severe neurodevelopmental disorder characterized by intellectual disability, impaired motor coordination, and autism spectrum disorder. Chromosomal multiplication of the UBE3A gene is presumed to be the primary driver of Dup15q pathophysiology, given that UBE3A exhibits maternal monoallelic expression in neurons and that maternal duplications typically yield far more severe neurodevelopmental outcomes than paternal duplications. However, studies into the pathogenic effects of UBE3A overexpression in mice have yielded conflicting results. Here, we investigated the neurodevelopmental impact of Ube3a gene overdosage using bacterial artificial chromosome-based transgenic mouse models (Ube3aOE) that recapitulate the increases in Ube3a copy number most often observed in Dup15q. In contrast to previously published Ube3a overexpression models, Ube3aOE mice were indistinguishable from wild-type controls on a number of molecular and behavioral measures, despite suffering increased mortality when challenged with seizures, a phenotype reminiscent of sudden unexpected death in epilepsy. Collectively, our data support a model wherein pathogenic synergy between UBE3A and other overexpressed 15q11.2-q13.1 genes is required for full penetrance of Dup15q syndrome phenotypes.
Collapse
Affiliation(s)
- A. Mattijs Punt
- Department of Clinical Genetics and Department of Neuroscience and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Matthew C. Judson
- Neuroscience Center, Department of Cell Biology and Physiology, and the Carolina Institute for Developmental Disabilities and
| | - Michael S. Sidorov
- Neuroscience Center, Department of Cell Biology and Physiology, and the Carolina Institute for Developmental Disabilities and
| | - Brittany N. Williams
- Neuroscience Center, Department of Cell Biology and Physiology, and the Carolina Institute for Developmental Disabilities and
| | - Naomi S. Johnson
- Neuroscience Center, Department of Cell Biology and Physiology, and the Carolina Institute for Developmental Disabilities and
| | - Sabine Belder
- Department of Clinical Genetics and Department of Neuroscience and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Dion den Hertog
- Department of Clinical Genetics and Department of Neuroscience and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Courtney R. Davis
- Neuroscience Center, Department of Cell Biology and Physiology, and the Carolina Institute for Developmental Disabilities and
| | - Maximillian S. Feygin
- Neuroscience Center, Department of Cell Biology and Physiology, and the Carolina Institute for Developmental Disabilities and
| | - Patrick F. Lang
- Neuroscience Center, Department of Cell Biology and Physiology, and the Carolina Institute for Developmental Disabilities and
| | - Mehrnoush Aghadavoud Jolfaei
- Department of Clinical Genetics and Department of Neuroscience and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Patrick J. Curran
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Ype Elgersma
- Department of Clinical Genetics and Department of Neuroscience and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Benjamin D. Philpot
- Neuroscience Center, Department of Cell Biology and Physiology, and the Carolina Institute for Developmental Disabilities and
| |
Collapse
|
34
|
Chu MC, Wu HF, Lee CW, Chung YJ, Chi H, Chen PS, Lin HC. Generational synaptic functions of GABA A receptor β3 subunit deteriorations in an animal model of social deficit. J Biomed Sci 2022; 29:51. [PMID: 35821032 PMCID: PMC9277936 DOI: 10.1186/s12929-022-00835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Disruption of normal brain development is implicated in numerous psychiatric disorders with neurodevelopmental origins, including autism spectrum disorder (ASD). Widespread abnormalities in brain structure and functions caused by dysregulations of neurodevelopmental processes has been recently shown to exert adverse effects across generations. An imbalance between excitatory/inhibitory (E/I) transmission is the putative hypothesis of ASD pathogenesis, supporting by the specific implications of inhibitory γ-aminobutyric acid (GABA)ergic system in autistic individuals and animal models of ASD. However, the contribution of GABAergic system in the neuropathophysiology across generations of ASD is still unknown. Here, we uncover profound alterations in the expression and function of GABAA receptors (GABAARs) in the amygdala across generations of the VPA-induced animal model of ASD. METHODS The F2 generation was produced by mating an F1 VPA-induced male offspring with naïve females after a single injection of VPA on embryonic day (E12.5) in F0. Autism-like behaviors were assessed by animal behavior tests. Expression and functional properties of GABAARs and related proteins were examined by using western blotting and electrophysiological techniques. RESULTS Social deficit, repetitive behavior, and emotional comorbidities were demonstrated across two generations of the VPA-induced offspring. Decreased synaptic GABAAR and gephyrin levels, and inhibitory transmission were found in the amygdala from two generations of the VPA-induced offspring with greater reductions in the F2 generation. Weaker association of gephyrin with GABAAR was shown in the F2 generation than the F1 generation. Moreover, dysregulated NMDA-induced enhancements of gephyrin and GABAAR at the synapse in the VPA-induced offspring was worsened in the F2 generation than the F1 generation. Elevated glutamatergic modifications were additionally shown across generations of the VPA-induced offspring without generation difference. CONCLUSIONS Taken together, these findings revealed the E/I synaptic abnormalities in the amygdala from two generations of the VPA-induced offspring with GABAergic deteriorations in the F2 generation, suggesting a potential therapeutic role of the GABAergic system to generational pathophysiology of ASD.
Collapse
Affiliation(s)
- Ming-Chia Chu
- grid.260539.b0000 0001 2059 7017Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Tainan, 112 Taiwan
| | - Han-Fang Wu
- grid.260539.b0000 0001 2059 7017Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Tainan, 112 Taiwan
| | - Chi-Wei Lee
- grid.260539.b0000 0001 2059 7017Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Tainan, 112 Taiwan
| | - Yueh-Jung Chung
- grid.260539.b0000 0001 2059 7017Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Tainan, 112 Taiwan
| | - Hsiang Chi
- grid.260539.b0000 0001 2059 7017Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Tainan, 112 Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan. .,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan. .,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
35
|
Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, Han F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022; 7:229. [PMID: 35817793 PMCID: PMC9273593 DOI: 10.1038/s41392-022-01081-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder which has strong genetic basis. Despite the rapidly rising incidence of autism, little is known about its aetiology, risk factors, and disease progression. There are currently neither validated biomarkers for diagnostic screening nor specific medication for autism. Over the last two decades, there have been remarkable advances in genetics, with hundreds of genes identified and validated as being associated with a high risk for autism. The convergence of neuroscience methods is becoming more widely recognized for its significance in elucidating the pathological mechanisms of autism. Efforts have been devoted to exploring the behavioural functions, key pathological mechanisms and potential treatments of autism. Here, as we highlight in this review, emerging evidence shows that signal transduction molecular events are involved in pathological processes such as transcription, translation, synaptic transmission, epigenetics and immunoinflammatory responses. This involvement has important implications for the discovery of precise molecular targets for autism. Moreover, we review recent insights into the mechanisms and clinical implications of signal transduction in autism from molecular, cellular, neural circuit, and neurobehavioural aspects. Finally, the challenges and future perspectives are discussed with regard to novel strategies predicated on the biological features of autism.
Collapse
Affiliation(s)
- Chen-Chen Jiang
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Li-Shan Lin
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Sen Long
- Department of Pharmacy, Hangzhou Seventh People's Hospital, Mental Health Center Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Xiao-Yan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
36
|
Dougnon G, Matsui H. Modelling Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) Using Mice and Zebrafish. Int J Mol Sci 2022; 23:ijms23147550. [PMID: 35886894 PMCID: PMC9319972 DOI: 10.3390/ijms23147550] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD) are two debilitating neurodevelopmental disorders. The former is associated with social impairments whereas the latter is associated with inattentiveness, hyperactivity, and impulsivity. There is recent evidence that both disorders are somehow related and that genes may play a large role in these disorders. Despite mounting human and animal research, the neurological pathways underlying ASD and ADHD are still not well understood. Scientists investigate neurodevelopmental disorders by using animal models that have high similarities in genetics and behaviours with humans. Mice have been utilized in neuroscience research as an excellent animal model for a long time; however, the zebrafish has attracted much attention recently, with an increasingly large number of studies using this model. In this review, we first discuss ASD and ADHD aetiology from a general point of view to their characteristics and treatments. We also compare mice and zebrafish for their similarities and discuss their advantages and limitations in neuroscience. Finally, we summarize the most recent and existing research on zebrafish and mouse models of ASD and ADHD. We believe that this review will serve as a unique document providing interesting information to date about these models, thus facilitating research on ASD and ADHD.
Collapse
|
37
|
Alamoudi MU, Hosie S, Shindler AE, Wood JL, Franks AE, Hill-Yardin EL. Comparing the Gut Microbiome in Autism and Preclinical Models: A Systematic Review. Front Cell Infect Microbiol 2022; 12:905841. [PMID: 35846755 PMCID: PMC9286068 DOI: 10.3389/fcimb.2022.905841] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022] Open
Abstract
Many individuals diagnosed with autism spectrum disorder (ASD) experience gastrointestinal (GI) dysfunction and show microbial dysbiosis. Variation in gut microbial populations is associated with increased risk for GI symptoms such as chronic constipation and diarrhoea, which decrease quality of life. Several preclinical models of autism also demonstrate microbial dysbiosis. Given that much pre-clinical research is conducted in mouse models, it is important to understand the similarities and differences between the gut microbiome in humans and these models in the context of autism. We conducted a systematic review of the literature using PubMed, ProQuest and Scopus databases to compare microbiome profiles of patients with autism and transgenic (NL3R451C, Shank3 KO, 15q dup), phenotype-first (BTBR) and environmental (Poly I:C, Maternal Inflammation Activation (MIA), valproate) mouse models of autism. Overall, we report changes in fecal microbial communities relevant to ASD based on both clinical and preclinical studies. Here, we identify an overlapping cluster of genera that are modified in both fecal samples from individuals with ASD and mouse models of autism. Specifically, we describe an increased abundance of Bilophila, Clostridium, Dorea and Lactobacillus and a decrease in Blautia genera in both humans and rodents relevant to this disorder. Studies in both humans and mice highlighted multidirectional changes in abundance (i.e. in some cases increased abundance whereas other reports showed decreases) for several genera including Akkermansia, Bacteroides, Bifidobacterium, Parabacteroides and Prevotella, suggesting that these genera may be susceptible to modification in autism. Identification of these microbial profiles may assist in characterising underlying biological mechanisms involving host-microbe interactions and provide future therapeutic targets for improving gut health in autism.
Collapse
Affiliation(s)
- Mohammed U. Alamoudi
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Bundoora, VIC, Australia
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Suzanne Hosie
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Bundoora, VIC, Australia
| | - Anya E. Shindler
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Jennifer L. Wood
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Ashley E. Franks
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Elisa L. Hill-Yardin
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Bundoora, VIC, Australia
- *Correspondence: Elisa L. Hill-Yardin,
| |
Collapse
|
38
|
Chung C, Shin W, Kim E. Early and Late Corrections in Mouse Models of Autism Spectrum Disorder. Biol Psychiatry 2022; 91:934-944. [PMID: 34556257 DOI: 10.1016/j.biopsych.2021.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and repetitive symptoms. A key feature of ASD is early-life manifestations of symptoms, indicative of early pathophysiological mechanisms. In mouse models of ASD, increasing evidence indicates that there are early pathophysiological mechanisms that can be corrected early to prevent phenotypic defects in adults, overcoming the disadvantage of the short-lasting effects that characterize adult-initiated treatments. In addition, the results from gene restorations indicate that ASD-related phenotypes can be rescued in some cases even after the brain has fully matured. These results suggest that we need to consider both temporal and mechanistic aspects in studies of ASD models and carefully compare genetic and nongenetic corrections. Here, we summarize the early and late corrections in mouse models of ASD by genetic and pharmacological interventions and discuss how to better integrate these results to ensure efficient and long-lasting corrections for eventual clinical translation.
Collapse
Affiliation(s)
- Changuk Chung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea; Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Wangyong Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
39
|
Tsurugizawa T. Translational Magnetic Resonance Imaging in Autism Spectrum Disorder From the Mouse Model to Human. Front Neurosci 2022; 16:872036. [PMID: 35585926 PMCID: PMC9108701 DOI: 10.3389/fnins.2022.872036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous syndrome characterized by behavioral features such as impaired social communication, repetitive behavior patterns, and a lack of interest in novel objects. A multimodal neuroimaging using magnetic resonance imaging (MRI) in patients with ASD shows highly heterogeneous abnormalities in function and structure in the brain associated with specific behavioral features. To elucidate the mechanism of ASD, several ASD mouse models have been generated, by focusing on some of the ASD risk genes. A specific behavioral feature of an ASD mouse model is caused by an altered gene expression or a modification of a gene product. Using these mouse models, a high field preclinical MRI enables us to non-invasively investigate the neuronal mechanism of the altered brain function associated with the behavior and ASD risk genes. Thus, MRI is a promising translational approach to bridge the gap between mice and humans. This review presents the evidence for multimodal MRI, including functional MRI (fMRI), diffusion tensor imaging (DTI), and volumetric analysis, in ASD mouse models and in patients with ASD and discusses the future directions for the translational study of ASD.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Faculty of Engineering, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Tomokazu Tsurugizawa,
| |
Collapse
|
40
|
Whole-Transcriptome Analysis of Serum L1CAM-Captured Extracellular Vesicles Reveals Neural and Glycosylation Changes in Autism Spectrum Disorder. J Mol Neurosci 2022; 72:1274-1292. [PMID: 35412111 DOI: 10.1007/s12031-022-01994-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
The pathophysiology of autistic spectrum disorder (ASD) is not fully understood and there are no diagnostic or predictive biomarkers. Extracellular vesicles (EVs) are cell-derived nano-sized vesicles, carrying nucleic acids, proteins, lipids, and other bioactive substances. As reported, serum neural cell adhesion molecule L1 (L1CAM)-captured EVs (LCEVs) can provide reliable biomarkers for neurological diseases; however, little is known about the LCEVs in children with ASD. The study enrolled 100 children with ASD (2.5-6 years of age; 90 males) and 60 age-matched TD children (54 males) as control. The serum sample was collected and pooled into five ASD subgroups and three TD subgroups (n = 20). LCEVs were isolated and characterized meticulously. Whole-transcriptome of LCEVs was analyzed by lncRNA microarray and RNA-sequencing. All raw data was submitted on GEO Profiles, and GEO accession numbers is GSE186493. RNAs expressed differently in LCEVs from ASD sera vs. TD sera were screened, analyzed, and further validated. A total of 1418 mRNAs, 1745 lncRNAs, and 11 miRNAs were differentially expressed, and most of them were downregulated in ASD. Most RNAs were involved in neuron- and glycan-related networks implicated in ASD. The levels of EDNRA, SLC17A6, HTR3A, OSTC, TMEM165, PC-5p-139289_26, and hsa-miR-193a-5p were validated in at least 15 ASD and 15 TD individual serum samples, which were consistent with the results of transcriptome analysis. In conclusion, whole-transcriptome analysis of serum LCEVs reveals neural and glycosylation changes in ASD, which may help detect predictive biomarkers and molecular mechanisms of ASD, and provide reference for diagnoses and therapeutic management of the disease.
Collapse
|
41
|
Mapelli L, Soda T, D’Angelo E, Prestori F. The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. Int J Mol Sci 2022; 23:ijms23073894. [PMID: 35409253 PMCID: PMC8998980 DOI: 10.3390/ijms23073894] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that include a variety of forms and clinical phenotypes. This heterogeneity complicates the clinical and experimental approaches to ASD etiology and pathophysiology. To date, a unifying theory of these diseases is still missing. Nevertheless, the intense work of researchers and clinicians in the last decades has identified some ASD hallmarks and the primary brain areas involved. Not surprisingly, the areas that are part of the so-called “social brain”, and those strictly connected to them, were found to be crucial, such as the prefrontal cortex, amygdala, hippocampus, limbic system, and dopaminergic pathways. With the recent acknowledgment of the cerebellar contribution to cognitive functions and the social brain, its involvement in ASD has become unmistakable, though its extent is still to be elucidated. In most cases, significant advances were made possible by recent technological developments in structural/functional assessment of the human brain and by using mouse models of ASD. Mouse models are an invaluable tool to get insights into the molecular and cellular counterparts of the disease, acting on the specific genetic background generating ASD-like phenotype. Given the multifaceted nature of ASD and related studies, it is often difficult to navigate the literature and limit the huge content to specific questions. This review fulfills the need for an organized, clear, and state-of-the-art perspective on cerebellar involvement in ASD, from its connections to the social brain areas (which are the primary sites of ASD impairments) to the use of monogenic mouse models.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| |
Collapse
|
42
|
Terashima H, Minatohara K, Maruoka H, Okabe S. Imaging neural circuit pathology of autism spectrum disorders: autism-associated genes, animal models and the application of in vivo two-photon imaging. Microscopy (Oxf) 2022; 71:i81-i99. [DOI: 10.1093/jmicro/dfab039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Recent advances in human genetics identified genetic variants involved in causing autism spectrum disorders (ASDs). Mouse models that mimic mutations found in patients with ASD exhibit behavioral phenotypes consistent with ASD symptoms. These mouse models suggest critical biological factors of ASD etiology. Another important implication of ASD genetics is the enrichment of ASD risk genes in molecules involved in developing synapses and regulating neural circuit function. Sophisticated in vivo imaging technologies applied to ASD mouse models identify common synaptic impairments in the neocortex, with genetic-mutation-specific defects in local neural circuits. In this article, we review synapse- and circuit-level phenotypes identified by in vivo two-photon imaging in multiple mouse models of ASD and discuss the contributions of altered synapse properties and neural circuit activity to ASD pathogenesis.
Collapse
Affiliation(s)
- Hiroshi Terashima
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiichiro Minatohara
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hisato Maruoka
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
43
|
A diffusion MRI-based spatiotemporal continuum of the embryonic mouse brain for probing gene-neuroanatomy connections. Proc Natl Acad Sci U S A 2022; 119:2111869119. [PMID: 35165149 PMCID: PMC8851557 DOI: 10.1073/pnas.2111869119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 11/18/2022] Open
Abstract
We established an ultra high-resolution diffusion MRI atlas of the embryonic mouse brains from E10.5 to E15.5, which characterizes the continuous changes of brain morphology and microstructures at mesoscopic scale. By integrating gene-expression data into the spatiotemporal continuum, we can navigate the evolving landscape of gene expression and neuroanatomy across both spatial and temporal dimensions to visualize their interactions in normal and abnormal embryonic brain development. We also identified regional clusters with distinct developmental trajectories and identified gene-expression profiles that matched to these regional domains. The diffusion MRI–based continuum of the embryonic brain and the computational techniques presented in this study offer a valuable tool for systematic study of the genetic control of brain development. The embryonic mouse brain undergoes drastic changes in establishing basic anatomical compartments and laying out major axonal connections of the developing brain. Correlating anatomical changes with gene-expression patterns is an essential step toward understanding the mechanisms regulating brain development. Traditionally, this is done in a cross-sectional manner, but the dynamic nature of development calls for probing gene–neuroanatomy interactions in a combined spatiotemporal domain. Here, we present a four-dimensional (4D) spatiotemporal continuum of the embryonic mouse brain from E10.5 to E15.5 reconstructed from diffusion magnetic resonance microscopy (dMRM) data. This study achieved unprecedented high-definition dMRM at 30- to 35-µm isotropic resolution, and together with computational neuroanatomy techniques, we revealed both morphological and microscopic changes in the developing brain. We transformed selected gene-expression data to this continuum and correlated them with the dMRM-based neuroanatomical changes in embryonic brains. Within the continuum, we identified distinct developmental modes comprising regional clusters that shared developmental trajectories and similar gene-expression profiles. Our results demonstrate how this 4D continuum can be used to examine spatiotemporal gene–neuroanatomical interactions by connecting upstream genetic events with anatomical changes that emerge later in development. This approach would be useful for large-scale analysis of the cooperative roles of key genes in shaping the developing brain.
Collapse
|
44
|
Vanderplow AM, Kermath BA, Bernhardt CR, Gums KT, Seablom EN, Radcliff AB, Ewald AC, Jones MV, Baker TL, Watters JJ, Cahill ME. A feature of maternal sleep apnea during gestation causes autism-relevant neuronal and behavioral phenotypes in offspring. PLoS Biol 2022; 20:e3001502. [PMID: 35113852 PMCID: PMC8812875 DOI: 10.1371/journal.pbio.3001502] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Mounting epidemiologic and scientific evidence indicates that many psychiatric disorders originate from a complex interplay between genetics and early life experiences, particularly in the womb. Despite decades of research, our understanding of the precise prenatal and perinatal experiences that increase susceptibility to neurodevelopmental disorders remains incomplete. Sleep apnea (SA) is increasingly common during pregnancy and is characterized by recurrent partial or complete cessations in breathing during sleep. SA causes pathological drops in blood oxygen levels (intermittent hypoxia, IH), often hundreds of times each night. Although SA is known to cause adverse pregnancy and neonatal outcomes, the long-term consequences of maternal SA during pregnancy on brain-based behavioral outcomes and associated neuronal functioning in the offspring remain unknown. We developed a rat model of maternal SA during pregnancy by exposing dams to IH, a hallmark feature of SA, during gestational days 10 to 21 and investigated the consequences on the offspring's forebrain synaptic structure, synaptic function, and behavioral phenotypes across multiples stages of development. Our findings represent a rare example of prenatal factors causing sexually dimorphic behavioral phenotypes associated with excessive (rather than reduced) synapse numbers and implicate hyperactivity of the mammalian target of rapamycin (mTOR) pathway in contributing to the behavioral aberrations. These findings have implications for neuropsychiatric disorders typified by superfluous synapse maintenance that are believed to result, at least in part, from largely unknown insults to the maternal environment.
Collapse
Affiliation(s)
- Amanda M. Vanderplow
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bailey A. Kermath
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cassandra R. Bernhardt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kimberly T. Gums
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erin N. Seablom
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Abigail B. Radcliff
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea C. Ewald
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mathew V. Jones
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tracy L. Baker
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jyoti J. Watters
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael E. Cahill
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
45
|
Dichter GS, Rodriguez-Romaguera J. Anhedonia and Hyperhedonia in Autism and Related Neurodevelopmental Disorders. Curr Top Behav Neurosci 2022; 58:237-254. [PMID: 35397066 DOI: 10.1007/7854_2022_312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although autism spectrum disorder (ASD) is defined by impaired social communication and restricted and repetitive behaviors and interests, ASD is also characterized by impaired motivational processes. The "social motivation theory of autism" describes how social motivation disruptions in ASD in early childhood may impede the drive to engage in reciprocal social behaviors and ultimately interfere with the development of neural networks critical for social communication (Chevallier et al., Trends Cogn Sci 16:231-239, 2012b). Importantly, clinical studies and preclinical research using model organisms for ASD indicate that motivational impairments in ASD are not constrained to social rewards but are evident in response to a range of nonsocial rewards as well. Additionally, translational studies on certain genetically defined neurodevelopmental disorders associated with ASD indicate that these syndromic forms of ASD are also characterized by motivational deficits and mesolimbic dopamine impairments. In this chapter we summarize clinical and preclinical research relevant to reward processing impairments in ASD and related neurodevelopmental disorders. We also propose a nosology to describe reward processing impairments in these disorders that uses a three-axes model. In this triaxial nosology, the first axis defines the direction of the reward response (i.e., anhedonic, hyperhedonic); the second axis defines the construct of the reward process (e.g., reward liking, reward wanting); and the third axis defines the context of the reward response (e.g., social, nonsocial). A more precise nosology for describing reward processing impairments in ASD and related neurodevelopmental disorders will aid in the translation of preclinical research to clinical investigations which will ultimately help to speed up the development of interventions that target motivational systems for ASD and related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Gabriel S Dichter
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jose Rodriguez-Romaguera
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
46
|
Hyperexcitable Phenotypes in Induced Pluripotent Stem Cell-Derived Neurons From Patients With 15q11-q13 Duplication Syndrome, a Genetic Form of Autism. Biol Psychiatry 2021; 90:756-765. [PMID: 34538422 PMCID: PMC8571044 DOI: 10.1016/j.biopsych.2021.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 06/04/2021] [Accepted: 07/10/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Chromosome 15q11-q13 duplication syndrome (Dup15q) is a neurogenetic disorder caused by duplications of the maternal copy of this region. In addition to hypotonia, motor deficits, and language impairments, patients with Dup15q commonly meet the criteria for autism spectrum disorder and have a high prevalence of seizures. It is known from mouse models that synaptic impairments are a strong component of Dup15q pathophysiology; however, cellular phenotypes that relate to seizures are less clear. The development of patient-derived induced pluripotent stem cells provides a unique opportunity to study human neurons with the exact genetic disruptions that cause Dup15q. METHODS Here, we explored electrophysiological phenotypes in induced pluripotent stem cell-derived neurons from 4 patients with Dup15q compared with 6 unaffected control subjects, 1 patient with a 15q11-q13 paternal duplication, and 3 patients with Angelman syndrome. RESULTS We identified several properties of Dup15q neurons that could contribute to neuronal hyperexcitability and seizure susceptibility. Compared with control neurons, Dup15q neurons had increased excitatory synaptic event frequency and amplitude, increased density of dendritic protrusions, increased action potential firing, and decreased inhibitory synaptic transmission. Dup15q neurons also showed impairments in activity-dependent synaptic plasticity and homeostatic synaptic scaling. Finally, Dup15q neurons showed an increased frequency of spontaneous action potential firing compared with control neurons, in part due to disruption of KCNQ2 potassium channels. CONCLUSIONS Together, these data point to multiple electrophysiological mechanisms of hyperexcitability that may provide new targets for the treatment of seizures and other phenotypes associated with Dup15q.
Collapse
|
47
|
Bosque Ortiz GM, Santana GM, Dietrich MO. Deficiency of the paternally inherited gene Magel2 alters the development of separation-induced vocalization and maternal behavior in mice. GENES, BRAIN, AND BEHAVIOR 2021; 21:e12776. [PMID: 34812568 PMCID: PMC9744533 DOI: 10.1111/gbb.12776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 01/15/2023]
Abstract
The behavior of offspring results from the combined expression of maternal and paternal genes. Genomic imprinting silences some genes in a parent-of-origin specific manner, a process that, among all animals, occurs only in mammals. How genomic imprinting affects the behavior of mammalian offspring, however, remains poorly understood. Here, we studied how the loss of the paternally inherited gene Magel2 in mouse pups affects the emission of separation-induced ultrasonic vocalizations (USV). Using quantitative analysis of more than 1000 USVs, we characterized the rate of vocalizations as well as their spectral features from postnatal days 6-12 (P6-P12), a critical phase of mouse development that covers the peak of vocal behavior in pups. Our analyses show that Magel2 deficient offspring emit separation-induced vocalizations at lower rates and with altered spectral features mainly at P8. We also show that dams display altered behavior towards their own Magel2 deficient offspring at this age. In a test to compare the retrieval of two pups, dams retrieve wildtype control pups first and faster than Magel2 deficient offspring. These results suggest that the loss of Magel2 impairs the expression of separation-induced vocalization in pups as well as maternal behavior at a specific age of postnatal development, both of which support the pups' growth and development.
Collapse
Affiliation(s)
- Gabriela M. Bosque Ortiz
- Laboratory of Physiology of Behavior, Department of Comparative MedicineYale School of MedicineNew HavenConnecticutUSA,Interdepartmental Neuroscience Program, Biological and Biomedical Sciences Program, Graduate School in Arts and SciencesYale UniversityNew HavenConnecticutUSA
| | - Gustavo M. Santana
- Laboratory of Physiology of Behavior, Department of Comparative MedicineYale School of MedicineNew HavenConnecticutUSA,Interdepartmental Neuroscience Program, Biological and Biomedical Sciences Program, Graduate School in Arts and SciencesYale UniversityNew HavenConnecticutUSA,Graduate Program in Biological Sciences‐BiochemistryFederal University of Rio Grande do SulPorto AlegreBrazil
| | - Marcelo O. Dietrich
- Laboratory of Physiology of Behavior, Department of Comparative MedicineYale School of MedicineNew HavenConnecticutUSA,Interdepartmental Neuroscience Program, Biological and Biomedical Sciences Program, Graduate School in Arts and SciencesYale UniversityNew HavenConnecticutUSA,Yale Center for Molecular and Systems MetabolismYale School of MedicineNew HavenConnecticutUSA,Department of NeuroscienceYale School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
48
|
Nakamura M, Ye K, E Silva MB, Yamauchi T, Hoeppner DJ, Fayyazuddin A, Kang G, Yuda EA, Nagashima M, Enomoto S, Hiramoto T, Sharp R, Kaneko I, Tajinda K, Adachi M, Mihara T, Tokuno S, Geyer MA, Broin PÓ, Matsumoto M, Hiroi N. Computational identification of variables in neonatal vocalizations predictive for postpubertal social behaviors in a mouse model of 16p11.2 deletion. Mol Psychiatry 2021; 26:6578-6588. [PMID: 33859357 PMCID: PMC8517042 DOI: 10.1038/s41380-021-01089-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
Autism spectrum disorder (ASD) is often signaled by atypical cries during infancy. Copy number variants (CNVs) provide genetically identifiable cases of ASD, but how early atypical cries predict a later onset of ASD among CNV carriers is not understood in humans. Genetic mouse models of CNVs have provided a reliable tool to experimentally isolate the impact of CNVs and identify early predictors for later abnormalities in behaviors relevant to ASD. However, many technical issues have confounded the phenotypic characterization of such mouse models, including systematically biased genetic backgrounds and weak or absent behavioral phenotypes. To address these issues, we developed a coisogenic mouse model of human proximal 16p11.2 hemizygous deletion and applied computational approaches to identify hidden variables within neonatal vocalizations that have predictive power for postpubertal dimensions relevant to ASD. After variables of neonatal vocalizations were selected by least absolute shrinkage and selection operator (Lasso), random forest, and Markov model, regression models were constructed to predict postpubertal dimensions relevant to ASD. While the average scores of many standard behavioral assays designed to model dimensions did not differentiate a model of 16p11.2 hemizygous deletion and wild-type littermates, specific call types and call sequences of neonatal vocalizations predicted individual variability of postpubertal reciprocal social interaction and olfactory responses to a social cue in a genotype-specific manner. Deep-phenotyping and computational analyses identified hidden variables within neonatal social communication that are predictive of postpubertal behaviors.
Collapse
Affiliation(s)
- Mitsuteru Nakamura
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kenny Ye
- Department of Epidemiology and Health Science, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mariel Barbachan E Silva
- School of Mathematics, Statistics & Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Takahira Yamauchi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Daniel J Hoeppner
- La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
| | - Amir Fayyazuddin
- La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
| | - Gina Kang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Emi A Yuda
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Masako Nagashima
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shingo Enomoto
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Takeshi Hiramoto
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Richard Sharp
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Itaru Kaneko
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Katsunori Tajinda
- La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
| | - Megumi Adachi
- La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
| | - Takuma Mihara
- Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | - Shinichi Tokuno
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Graduate School of Health Innovation, Kanagawa University of Human Services, Kawasaki-shi, Kanagawa, Japan
| | - Mark A Geyer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Pilib Ó Broin
- School of Mathematics, Statistics & Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Mitsuyuki Matsumoto
- La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
- Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | - Noboru Hiroi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Cell Systems Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
49
|
Qian K, Koike T, Tamada K, Takumi T, Schuller BW, Yamamoto Y. Sensing the Sounds of Silence: A Pilot Study on the Detection of Model Mice of Autism Spectrum Disorder from Ultrasonic Vocalisations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:68-71. [PMID: 34891241 DOI: 10.1109/embc46164.2021.9630793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Studying the animal models of human neuropsychiatric disorders can facilitate the understanding of mechanisms of symptoms both physiologically and genetically. Previous studies have shown that ultrasonic vocalisations (USVs) of mice might be efficient markers to distinguish the wild type group and the model of autism spectrum disorder (mASD). Nevertheless, in-depth analysis of these 'silence' sounds by leveraging the power of advanced computer audition technologies (e. g., deep learning) is limited. To this end, we propose a pilot study on using a large-scale pre-trained audio neural network to extract high-level representations from the USVs of mice for the task on detection of mASD. Experiments have shown a best result reaching an unweighted average recall of 79.2 % for the binary classification task in a rigorous subject-independent scenario. To the best of our knowledge, this is the first time to analyse the sounds that cannot be heard by human beings for the detection of mASD mice. The novel findings can be significant to motivate future works with according means on studying animal models of human patients.
Collapse
|
50
|
Petkova-Tuffy A, Gödecke N, Viotti J, Korte M, Dresbach T. Neuroligin-1 mediates presynaptic maturation through brain-derived neurotrophic factor signaling. BMC Biol 2021; 19:215. [PMID: 34579720 PMCID: PMC8474808 DOI: 10.1186/s12915-021-01145-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Background Maturation is a process that allows synapses to acquire full functionality, optimizing their activity to diverse neural circuits, and defects in synaptic maturation may contribute to neurodevelopmental disorders. Neuroligin-1 (NL1) is a postsynaptic cell adhesion molecule essential for synapse maturation, a role typically attributed to binding to pre-synaptic ligands, the neurexins. However, the pathways underlying the action of NL1 in synaptic maturation are incompletely understood, and some of its previously observed effects seem reminiscent of those described for the neurotrophin brain-derived neurotrophic factor (BDNF). Here, we show that maturational increases in active zone stability and synaptic vesicle recycling rely on the joint action of NL1 and brain-derived neurotrophic factor (BDNF). Results Applying BDNF to hippocampal neurons in primary cultures or organotypical slice cultures mimicked the effects of overexpressing NL1 on both structural and functional maturation. Overexpressing a NL1 mutant deficient in neurexin binding still induced presynaptic maturation. Like NL1, BDNF increased synaptic vesicle recycling and the augmentation of transmitter release by phorbol esters, both hallmarks of presynaptic maturation. Mimicking the effects of NL1, BDNF also increased the half-life of the active zone marker bassoon at synapses, reflecting increased active zone stability. Overexpressing NL1 increased the expression and synaptic accumulation of BDNF. Inhibiting BDNF signaling pharmacologically or genetically prevented the effects of NL1 on presynaptic maturation. Applying BDNF to NL1-knockout mouse cultures rescued defective presynaptic maturation, indicating that BDNF acts downstream of NL1 and can restore presynaptic maturation at late stages of network development. Conclusions Our data introduce BDNF as a novel and essential component in a transsynaptic pathway linking NL1-mediated cell adhesion, neurotrophin action, and presynaptic maturation. Our findings connect synaptic cell adhesion and neurotrophin signaling and may provide a therapeutic approach to neurodevelopmental disorders by targeting synapse maturation. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01145-7.
Collapse
Affiliation(s)
- Andonia Petkova-Tuffy
- Institute for Anatomy and Embryology, University Medical Center Göttingen, Kreuzbergring 36, 37075, Göttingen, Germany
| | - Nina Gödecke
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Julio Viotti
- Institute for Anatomy and Embryology, University Medical Center Göttingen, Kreuzbergring 36, 37075, Göttingen, Germany
| | - Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.,Helmholtz Centre for Infection Research, Research group Neuroinflammation and Neurodegeneration, Imhoffenstr. 7, 38104, Braunschweig, Germany
| | - Thomas Dresbach
- Institute for Anatomy and Embryology, University Medical Center Göttingen, Kreuzbergring 36, 37075, Göttingen, Germany.
| |
Collapse
|