1
|
Martins SG, Ribeiro V, Melo C, Paulino-Cavaco C, Antonini D, Dayalan Naidu S, Murtinheira F, Fonseca I, Saget B, Pita M, Fernandes DR, Gameiro Dos Santos P, Rodrigues G, Zilhão R, Herrera F, Dinkova-Kostova AT, Carlos AR, Thorsteinsdóttir S. Laminin-α2 chain deficiency in skeletal muscle causes dysregulation of multiple cellular mechanisms. Life Sci Alliance 2024; 7:e202402829. [PMID: 39379105 PMCID: PMC11463332 DOI: 10.26508/lsa.202402829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
LAMA2, coding for the laminin-α2 chain, is a crucial ECM component, particularly abundant in skeletal muscle. Mutations in LAMA2 trigger the often-lethal LAMA2-congenital muscular dystrophy (LAMA2-CMD). Various phenotypes have been linked to LAMA2-CMD; nevertheless, the precise mechanisms that malfunction during disease onset in utero remain unknown. We generated Lama2-deficient C2C12 cells and found that Lama2-deficient myoblasts display proliferation, differentiation, and fusion defects, DNA damage, oxidative stress, and mitochondrial dysfunction. Moreover, fetal myoblasts isolated from the dy W mouse model of LAMA2-CMD display impaired differentiation and fusion in vitro. We also showed that disease onset during fetal development is characterized by a significant down-regulation of gene expression in muscle fibers, causing pronounced effects on cytoskeletal organization, muscle differentiation, and altered DNA repair and oxidative stress responses. Together, our findings provide unique insights into the critical importance of the laminin-α2 chain for muscle differentiation and muscle cell homeostasis.
Collapse
Affiliation(s)
- Susana G Martins
- https://ror.org/01c27hj86 Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/01c27hj86 Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Vanessa Ribeiro
- https://ror.org/01c27hj86 Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/01c27hj86 Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Melo
- https://ror.org/01c27hj86 Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/01c27hj86 Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia Paulino-Cavaco
- https://ror.org/01c27hj86 Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/01c27hj86 Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Dario Antonini
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Fernanda Murtinheira
- https://ror.org/01c27hj86 Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/01c27hj86 Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Fonseca
- https://ror.org/01c27hj86 Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/01c27hj86 Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Bérénice Saget
- https://ror.org/01c27hj86 Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/01c27hj86 Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mafalda Pita
- https://ror.org/01c27hj86 Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/01c27hj86 Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Diogo R Fernandes
- https://ror.org/01c27hj86 Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/01c27hj86 Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Gameiro Dos Santos
- https://ror.org/01c27hj86 Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/01c27hj86 Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Gabriela Rodrigues
- https://ror.org/01c27hj86 Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/01c27hj86 Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Zilhão
- https://ror.org/01c27hj86 Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/01c27hj86 Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Federico Herrera
- https://ror.org/01c27hj86 Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/01c27hj86 Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Ana Rita Carlos
- https://ror.org/01c27hj86 Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/01c27hj86 Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Sólveig Thorsteinsdóttir
- https://ror.org/01c27hj86 Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- https://ror.org/01c27hj86 Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Wang Q, Zhao Y, Tan G, Ai J. Single cell analysis revealed SFRP2 cancer associated fibroblasts drive tumorigenesis in head and neck squamous cell carcinoma. NPJ Precis Oncol 2024; 8:228. [PMID: 39384902 PMCID: PMC11464629 DOI: 10.1038/s41698-024-00716-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024] Open
Abstract
Understanding the mechanisms of invasion and metastasis in head and neck squamous cell carcinoma (HNSCC) is crucial for effective treatment, particularly in metastatic cases. In this study, we analyzed multicenter bulk sequencing and comprehensive single-cell data from 702,446 cells, leading to the identification of a novel subtype of cancer-associated fibroblasts (CAFs), termed Secreted Frizzled-Related Protein2 CAFs (SFRP2_CAFs). These cells, originating from smooth muscle cells, display unique characteristics resembling both myofibroblastic CAFs and inflammatory CAFs, and are linked to poorer survival outcomes in HNSCC patients. Our findings reveal significant interactions between SFRP2_CAFs and SPP1 tumor-associated macrophages, which facilitate tumor invasion and metastasis. Moreover, our research identifies Nuclear factor I/X (NFIX) as a key transcription factor regulating SFRP2_CAFs behavior, confirmed through gene regulatory network analysis and simulation perturbation.
Collapse
Affiliation(s)
- Qiwei Wang
- MD, Department of head and neck surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya school of medicine, Central South University, Changsha, Hunan, China
- MD, Department of otolaryngology head and neck surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yinan Zhao
- PhD, Xiangya school of nursing, Central South University, Changsha, Hunan, China
| | - Guolin Tan
- MD, PhD, Department of otolaryngology head and neck surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - JinGang Ai
- MD, Department of otolaryngology head and neck surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Saritas Erdogan S, Yilmaz AE, Kumbasar A. PIN1 is a novel interaction partner and a negative upstream regulator of the transcription factor NFIB. FEBS Lett 2024. [PMID: 39245791 DOI: 10.1002/1873-3468.15010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024]
Abstract
NFIB is a transcription factor of the Nuclear Factor One (NFI) family that is essential for embryonic development. Post-translational control of NFIB or its upstream regulators have not been well characterized. Here, we show that PIN1 binds NFIB in a phosphorylation-dependent manner, via its WW domain. PIN1 interacts with the well-conserved N-terminal domains of all NFIs. Moreover, PIN1 attenuates the transcriptional activity of NFIB; this attenuation requires substrate binding by PIN1 but not its isomerase activity. Paradoxically, we found stabilization of NFIB by PIN1. We propose that PIN1 represses NFIB function not by regulating its abundance but by inducing a conformational change. These results identify NFIB as a novel PIN1 target and posit a role for PIN1 in post-translational regulation of NFIB and other NFIs.
Collapse
Affiliation(s)
| | - Ahmet Erdal Yilmaz
- Department of Molecular Biology and Genetics, Istanbul Technical University, Turkey
| | - Asli Kumbasar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Turkey
| |
Collapse
|
4
|
Ronzio M, Bernardini A, Taglietti V, Ceribelli M, Donati G, Gallo A, Pavesi G, Dellabona P, Casorati G, Messina G, Mantovani R, Dolfini D. Genomic binding of NF-Y in mouse and human cells. Genomics 2024; 116:110895. [PMID: 39025317 DOI: 10.1016/j.ygeno.2024.110895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
NF-Y is a Transcription Factor that regulates transcription through binding to the CCAAT-box. To understand its strategy, we analyzed 16 ChIP-seq datasets from human and mouse cells. Shared loci, mostly located in promoters of expressed genes of cell cycle, metabolism and gene expression pathways, are associated with histone marks of active chromatin and specific modules of TFs. Other peaks are in enhancers and Transposable Elements -TE- of retroviral origin in human and mouse. We evaluated the relationship with USF1, a common synergistic partner in promoters and MLT1 TEs, upon NF-YB inactivation: USF1 binding decreases in promoters, modestly in MLT1, suggesting a pioneering role of NF-Y in formers, not in the latters. These data define a common set of NF-Y functional targets across different mammalian cell types, suggesting a pioneering role in promoters with respect to TEs.
Collapse
Affiliation(s)
- Mirko Ronzio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | | | - Michele Ceribelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Giacomo Donati
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Torino, Italy
| | - Alberto Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Giulio Pavesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit. Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Giulia Casorati
- Experimental Immunology Unit. Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Graziella Messina
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
5
|
Huynh TN, Delagrammatikas CG, Chiriatti L, Panfili A, Ventarola K, Menke LA, Tartaglia M, Huisman SA, Priolo M. Natural history in Malan syndrome: survey of 28 adults and literature review. Orphanet J Rare Dis 2024; 19:282. [PMID: 39075508 PMCID: PMC11288048 DOI: 10.1186/s13023-024-03288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/14/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Malan syndrome (MALNS), previously referred to as "Sotos syndrome 2" due to its resemblance to Sotos syndrome (SS), is an ultra-rare neurodevelopmental disorder characterized by overgrowth, typical craniofacial features, intellectual disability (ID), and a range of psychobehavioral, musculoskeletal, vision and neurological signs. As MALNS and SS partly overlap, it is essential to more accurately profile their clinical presentations and highlight their differences in order to improve syndrome specific management. An increasing number of individuals with MALNS reach adult-age though the natural history of the disorder is poorly characterized due to the small number of adult individuals described so far. As a consequence, current guidelines are limited to the pediatric population. Further delineation of MALNS is essential to optimize care in adulthood. RESULTS A mixed approach based on cross-sectional data collection with a survey disseminated to caregivers of adults with molecularly confirmed MALNS and literature review was conducted. Twenty-eight caregivers completed the survey. Clinical presentation in adulthood is multisystemic and defined by psychobehavioral comorbidities (96%), musculoskeletal involvement (96%), vision impairment (96%) and neurological complications (86%). The most common signs were anxiety (79%), hypotonia (75%), movement difficulty (75%), scoliosis (64%), problems with coordination (61%), strabismus (57%), constipation (54%), breastbone abnormalities (54%) and advanced bone age during childhood (54%). Impaired vision was complicated by vision decline (36%) and optic atrophy (32%). We report some previously unidentified features, including high pain threshold (46%), incontinence (25%), tremors (21%), muscle hypoplasia (18%) and tics (18%). CONCLUSIONS This survey in the adult population has allowed a more complete description of the natural history of MALNS. Our findings will contribute to the development and improvement of standards of care for adults with MALNS to assure optimal health monitoring and treatment of evolutive complications. We propose additional recommendations to the previous dataset of clinical evaluations specifically applied to adults. The comparison of MALNS and SS adult presentation highlights significant differences in terms of prevalence and severity of ID, behavioral issues, and vision problems, confirming that a proper differential diagnosis between the two conditions is indispensable to guide physicians and mental health professionals to syndrome specific management.
Collapse
Affiliation(s)
- T N Huynh
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | | | - L Chiriatti
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Viale di San Paolo 15, 00146, Rome, Italy
| | - A Panfili
- Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Medical Genetics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - K Ventarola
- Malan Syndrome Foundation, Old Bridge, NJ, USA
| | - L A Menke
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - M Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Viale di San Paolo 15, 00146, Rome, Italy
| | - S A Huisman
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Zodiak, Prinsenstichting, 1444 JE, Purmerend, The Netherlands.
| | - M Priolo
- Operative Unit of Medical Genetics and Laboratory of Genetics, AORN A.Cardarelli, Via Cardarelli 9, 80131, Naples, Italy.
| |
Collapse
|
6
|
Wang J, Guo J, Yu S, Yu H, Kuraz AB, Jilo DD, Cheng G, Li A, Jia C, Zan L. Knockdown of NFIC Promotes Bovine Myoblast Proliferation through the CENPF/CDK1 Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12641-12654. [PMID: 38780097 DOI: 10.1021/acs.jafc.4c01811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
As cellular transcription factors and DNA replicators, nuclear factor I (NFI) family members play an important role in mammalian development. However, there is still a lack of research on the muscle regeneration of NFI family members in cattle. In this study, the analysis of NFI family factors was conducted on their characterization, phylogenetics, and functional domains. We found that NFI family members were relatively conserved among different species, but there was heterogeneity in amino acid sequences, DNA coding sequences, and functional domain among members. Furthermore, among NFI family factors, we observed that NFIC exhibited highly expression in bovine muscle tissues, particularly influencing the expression of proliferation marker genes in myoblasts. To investigate the influence of NFIC on myoblast proliferation, we knocked down NFIC (si-NFIC) and found that the proliferation of myoblasts was significantly promoted. In terms of regulation mechanism, we identified that si-NFIC could counteract the inhibitory effect of the cell cycle inhibitor RO-3306. Interestingly, CENPF, as the downstream target gene of NFIC, could affect the expression of CDK1, CCNB1, and actively regulate the cell cycle pathway and cell proliferation. In addition, when CENPF was knocked down, the phosphorylation of p53 and the expression of Bax were increased, but the expression of Bcl2 was inhibited. Our findings mainly highlight the mechanism by which NFIC acts on the CENPF/CDK1 axis to regulate the proliferation of bovine myoblasts.
Collapse
Affiliation(s)
- Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Shengchen Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hengwei Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Abebe Belete Kuraz
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Diba Dedacha Jilo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Cunling Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- National Beef Cattle Improvement Center, Yangling 712100, China
| |
Collapse
|
7
|
Angelini G, Capra E, Rossi F, Mura G, Saclier M, Taglietti V, Rovetta G, Epis R, Careccia G, Bonfanti C, Messina G. MEK-inhibitors decrease Nfix in muscular dystrophy but induce unexpected calcifications, partially rescued with Cyanidin diet. iScience 2024; 27:108696. [PMID: 38205246 PMCID: PMC10777118 DOI: 10.1016/j.isci.2023.108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/03/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
Muscular dystrophies (MDs) are incurable genetic myopathies characterized by progressive degeneration of skeletal muscles. Dystrophic mice lacking the transcription factor Nfix display morphological and functional improvements of the disease. Recently, we demonstrated that MAPK signaling pathway positively regulates Nfix in muscle development and that Cyanidin, a natural antioxidant molecule, strongly ameliorates the pathology. To explore a synergistic approach aimed at treating MDs, we administered Trametinib, a clinically approved MEK inhibitor, alone or combined with Cyanidin to adult Sgca null mice. We observed that chronic treatment with Trametinib and Cyanidin reduced Nfix in myogenic cells but, unexpectedly, caused ectopic calcifications exclusively in dystrophic muscles. The combined treatment with Cyanidin resulted in histological improvements by preventing Trametinib-induced calcifications in Diaphragm and Soleus. Collectively, this first pilot study revealed that Nfix is modulated by the MAPK pathway in MDs, and that Cyanidin partly rescued the unexpected ectopic calcifications caused by MEK inhibition.
Collapse
Affiliation(s)
| | - Emanuele Capra
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Francesca Rossi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Giada Mura
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Marielle Saclier
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | | - Gabriele Rovetta
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Raffaele Epis
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Giorgia Careccia
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Chiara Bonfanti
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | |
Collapse
|
8
|
Bou Akar R, Lama C, Aubin D, Maruotti J, Onteniente B, Esteves de Lima J, Relaix F. Generation of highly pure pluripotent stem cell-derived myogenic progenitor cells and myotubes. Stem Cell Reports 2024; 19:84-99. [PMID: 38101399 PMCID: PMC10828960 DOI: 10.1016/j.stemcr.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Driving efficient and pure skeletal muscle cell differentiation from pluripotent stem cells (PSCs) has been challenging. Here, we report an optimized protocol that generates skeletal muscle progenitor cells with high efficiency and purity in a short period of time. Human induced PSCs (hiPSCs) and murine embryonic stem cells (mESCs) were specified into the mesodermal myogenic fate using distinct and species-specific protocols. We used a specific maturation medium to promote the terminal differentiation of both human and mouse myoblast populations, and generated myotubes associated with a large pool of cell-cycle arrested PAX7+ cells. We also show that myotube maturation is modulated by dish-coating properties, cell density, and percentage of myogenic progenitor cells. Given the high efficiency in the generation of myogenic progenitors and differentiated myofibers, this protocol provides an attractive strategy for tissue engineering, modeling of muscle dystrophies, and evaluation of new therapeutic approaches in vitro.
Collapse
Affiliation(s)
- Reem Bou Akar
- University Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, 94010 Creteil, France
| | - Chéryane Lama
- University Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, 94010 Creteil, France
| | | | | | | | | | - Frédéric Relaix
- University Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, 94010 Creteil, France.
| |
Collapse
|
9
|
Tung LW, Groppa E, Soliman H, Lin B, Chang C, Cheung CW, Ritso M, Guo D, Rempel L, Sinha S, Eisner C, Brassard J, McNagny K, Biernaskie J, Rossi F. Spatiotemporal signaling underlies progressive vascular rarefaction in myocardial infarction. Nat Commun 2023; 14:8498. [PMID: 38129410 PMCID: PMC10739910 DOI: 10.1038/s41467-023-44227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Therapeutic angiogenesis represents a promising avenue to revascularize the ischemic heart. Its limited success is partly due to our poor understanding of the cardiac stroma, specifically mural cells, and their response to ischemic injury. Here, we combine single-cell and positional transcriptomics to assess the behavior of mural cells within the healing heart. In response to myocardial infarction, mural cells adopt an altered state closely associated with the infarct and retain a distinct lineage from fibroblasts. This response is concurrent with vascular rarefaction and reduced vascular coverage by mural cells. Positional transcriptomics reveals that the infarcted heart is governed by regional-dependent and temporally regulated programs. While the remote zone acts as an important source of pro-angiogenic signals, the infarct zone is accentuated by chronic activation of anti-angiogenic, pro-fibrotic, and inflammatory cues. Together, our work unveils the spatiotemporal programs underlying cardiac repair and establishes an association between vascular deterioration and mural cell dysfunction.
Collapse
Affiliation(s)
- Lin Wei Tung
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Elena Groppa
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Borea Therapeutics, Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea, 265, 34136, Trieste, Italy
| | - Hesham Soliman
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Aspect Biosystems, 1781 W 75th Ave, Vancouver, BC, V6P 6P2, Canada
- Faculty of Pharmaceutical Sciences, Minia University, Minia, Egypt
| | - Bruce Lin
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Chihkai Chang
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Chun Wai Cheung
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Morten Ritso
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - David Guo
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Lucas Rempel
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Sarthak Sinha
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christine Eisner
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Julyanne Brassard
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kelly McNagny
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Jeff Biernaskie
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Fabio Rossi
- School of Biomedical Engineering & Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
10
|
Yao Z, van Velthoven CTJ, Kunst M, Zhang M, McMillen D, Lee C, Jung W, Goldy J, Abdelhak A, Aitken M, Baker K, Baker P, Barkan E, Bertagnolli D, Bhandiwad A, Bielstein C, Bishwakarma P, Campos J, Carey D, Casper T, Chakka AB, Chakrabarty R, Chavan S, Chen M, Clark M, Close J, Crichton K, Daniel S, DiValentin P, Dolbeare T, Ellingwood L, Fiabane E, Fliss T, Gee J, Gerstenberger J, Glandon A, Gloe J, Gould J, Gray J, Guilford N, Guzman J, Hirschstein D, Ho W, Hooper M, Huang M, Hupp M, Jin K, Kroll M, Lathia K, Leon A, Li S, Long B, Madigan Z, Malloy J, Malone J, Maltzer Z, Martin N, McCue R, McGinty R, Mei N, Melchor J, Meyerdierks E, Mollenkopf T, Moonsman S, Nguyen TN, Otto S, Pham T, Rimorin C, Ruiz A, Sanchez R, Sawyer L, Shapovalova N, Shepard N, Slaughterbeck C, Sulc J, Tieu M, Torkelson A, Tung H, Valera Cuevas N, Vance S, Wadhwani K, Ward K, Levi B, Farrell C, Young R, Staats B, Wang MQM, Thompson CL, Mufti S, Pagan CM, Kruse L, Dee N, Sunkin SM, Esposito L, Hawrylycz MJ, Waters J, Ng L, Smith K, Tasic B, Zhuang X, Zeng H. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 2023; 624:317-332. [PMID: 38092916 PMCID: PMC10719114 DOI: 10.1038/s41586-023-06812-z] [Citation(s) in RCA: 142] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties1-3. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.0 million cells passing quality control), and a spatial transcriptomic dataset of approximately 4.3 million cells using multiplexed error-robust fluorescence in situ hybridization (MERFISH). The atlas is hierarchically organized into 4 nested levels of classification: 34 classes, 338 subclasses, 1,201 supertypes and 5,322 clusters. We present an online platform, Allen Brain Cell Atlas, to visualize the mouse whole-brain cell-type atlas along with the single-cell RNA-sequencing and MERFISH datasets. We systematically analysed the neuronal and non-neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell-type organization in different brain regions-in particular, a dichotomy between the dorsal and ventral parts of the brain. The dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. Our study also uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types. Finally, we found that transcription factors are major determinants of cell-type classification and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole mouse brain transcriptomic and spatial cell-type atlas establishes a benchmark reference atlas and a foundational resource for integrative investigations of cellular and circuit function, development and evolution of the mammalian brain.
Collapse
Affiliation(s)
- Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA.
| | | | | | - Meng Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Won Jung
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Pamela Baker
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Eliza Barkan
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Daniel Carey
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Min Chen
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jennie Close
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Scott Daniel
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - James Gee
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - James Gray
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Mike Huang
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Madie Hupp
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Kelly Jin
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Kanan Lathia
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Arielle Leon
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Su Li
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Brian Long
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zach Madigan
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Zoe Maltzer
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Naomi Martin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Rachel McCue
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ryan McGinty
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nicholas Mei
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jose Melchor
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Sven Otto
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Lane Sawyer
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Noah Shepard
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Shane Vance
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Katelyn Ward
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Rob Young
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Brian Staats
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Shoaib Mufti
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Lauren Kruse
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA.
| |
Collapse
|
11
|
Mavrommatis L, Jeong HW, Kindler U, Gomez-Giro G, Kienitz MC, Stehling M, Psathaki OE, Zeuschner D, Bixel MG, Han D, Morosan-Puopolo G, Gerovska D, Yang JH, Kim JB, Arauzo-Bravo MJ, Schwamborn JC, Hahn SA, Adams RH, Schöler HR, Vorgerd M, Brand-Saberi B, Zaehres H. Human skeletal muscle organoids model fetal myogenesis and sustain uncommitted PAX7 myogenic progenitors. eLife 2023; 12:RP87081. [PMID: 37963071 PMCID: PMC10645425 DOI: 10.7554/elife.87081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
In vitro culture systems that structurally model human myogenesis and promote PAX7+ myogenic progenitor maturation have not been established. Here we report that human skeletal muscle organoids can be differentiated from induced pluripotent stem cell lines to contain paraxial mesoderm and neuromesodermal progenitors and develop into organized structures reassembling neural plate border and dermomyotome. Culture conditions instigate neural lineage arrest and promote fetal hypaxial myogenesis toward limb axial anatomical identity, with generation of sustainable uncommitted PAX7 myogenic progenitors and fibroadipogenic (PDGFRa+) progenitor populations equivalent to those from the second trimester of human gestation. Single-cell comparison to human fetal and adult myogenic progenitor /satellite cells reveals distinct molecular signatures for non-dividing myogenic progenitors in activated (CD44High/CD98+/MYOD1+) and dormant (PAX7High/FBN1High/SPRY1High) states. Our approach provides a robust 3D in vitro developmental system for investigating muscle tissue morphogenesis and homeostasis.
Collapse
Affiliation(s)
- Lampros Mavrommatis
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular EmbryologyBochumGermany
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental BiologyMünsterGermany
- Department of Neurology with Heimer Institute for Muscle Research, University Hospital BergmannsheilBochumGermany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Sequencing Core FacilityMünsterGermany
| | - Urs Kindler
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular EmbryologyBochumGermany
| | - Gemma Gomez-Giro
- Luxembourg Centre for Systems Biomedicine, LCSB, Developmental and Cellular Biology, University of LuxembourgBelvauxLuxembourg
| | - Marie-Cecile Kienitz
- Ruhr University Bochum, Medical Faculty, Department of Cellular PhysiologyBochumGermany
| | - Martin Stehling
- Max Planck Institute for Molecular Biomedicine, Flow Cytometry UnitMünsterGermany
| | - Olympia E Psathaki
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental BiologyMünsterGermany
- Center for Cellular Nanoanalytics Osnabrück, CellNanOs, University of OsnabrückOsnabrückGermany
| | - Dagmar Zeuschner
- Max Planck Institute for Molecular Biomedicine, Electron Microscopy UnitMünsterGermany
| | - M Gabriele Bixel
- Max Planck Institute for Molecular Biomedicine, Department of Tissue MorphogenesisMünsterGermany
| | - Dong Han
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental BiologyMünsterGermany
| | - Gabriela Morosan-Puopolo
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular EmbryologyBochumGermany
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research InstituteSan SebastiánSpain
| | - Ji Hun Yang
- School of Mechanical Engineering, Korea UniversitySeoulRepublic of Korea
- R&D Research Center, Next & Bio IncSeoulRepublic of Korea
| | - Jeong Beom Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
| | - Marcos J Arauzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research InstituteSan SebastiánSpain
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine, LCSB, Developmental and Cellular Biology, University of LuxembourgBelvauxLuxembourg
| | - Stephan A Hahn
- Ruhr University Bochum, Medical Faculty, Department of Molecular GI OncologyBochumGermany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue MorphogenesisMünsterGermany
- Westphalian Wilhelms University Münster, Medical FacultyMünsterGermany
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental BiologyMünsterGermany
| | - Matthias Vorgerd
- Department of Neurology with Heimer Institute for Muscle Research, University Hospital BergmannsheilBochumGermany
| | - Beate Brand-Saberi
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular EmbryologyBochumGermany
| | - Holm Zaehres
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Anatomy and Molecular EmbryologyBochumGermany
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental BiologyMünsterGermany
| |
Collapse
|
12
|
Choi J, Lee H. NFIB-MLL1 complex is required for the stemness and Dlx5-dependent osteogenic differentiation of C3H10T1/2 mesenchymal stem cells. J Biol Chem 2023; 299:105193. [PMID: 37633334 PMCID: PMC10519831 DOI: 10.1016/j.jbc.2023.105193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023] Open
Abstract
Despite significant progress in our understanding of the molecular mechanism of mesenchymal stem cell (MSC) differentiation, less is known about the factors maintaining the stemness and plasticity of MSCs. Here, we show that the NFIB-MLL1 complex plays key roles in osteogenic differentiation and stemness of C3H10T1/2 MSCs. We find that depletion of either NFIB or MLL1 results in a severely hampered osteogenic potential and failed activation of key osteogenic transcription factors, such as Dlx5, Runx2, and Osx, following osteogenic stimuli. In addition, the NFIB-MLL1 complex binds directly to the promoter of Dlx5, and exogenous expression of Myc-Dlx5, but not the activation of either the BMP- or the Wnt-signaling pathway, is sufficient to restore the osteogenic potential of cells depleted of NFIB or MLL1. Moreover, chromatin immunoprecipitation (ChIP) and ChIP-sequencing analysis showed that the NFIB-MLL1 complex mediates the deposition of trimethylated histone H3K4 at both Dlx5 and Cebpa, key regulator genes that function at the early stages of osteogenic and adipogenic differentiation, respectively, in uncommitted C3H10T1/2 MSCs. Surprisingly, the depletion of either NFIB or MLL1 leads to decreased trimethylated histone H3K4 and results in elevated trimethylated histone H3K9 at those developmental genes. Furthermore, gene expression profiling and ChIP-sequencing analysis revealed lineage-specific changes in chromatin landscape and gene expression in response to osteogenic stimuli. Taken together, these data provide evidence for the hitherto unknown role of the NFIB-MLL1 complex in the maintenance and lineage-specific differentiation of C3H10T1/2 MSCs and support the epigenetic regulatory mechanism underlying the stemness and plasticity of MSCs.
Collapse
Affiliation(s)
- Janghyun Choi
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon, South Korea.
| | - Hansol Lee
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon, South Korea.
| |
Collapse
|
13
|
Landi S, Giannetti F, Benzoni P, Campostrini G, Rossi G, Piantoni C, Bertoli G, Bonfanti C, Carnevali L, Bucchi A, Baruscotti M, Careccia G, Messina G, Barbuti A. Lack of the transcription factor Nfix causes tachycardia in mice sinus node and rats neonatal cardiomyocytes. Acta Physiol (Oxf) 2023; 239:e13981. [PMID: 37186371 DOI: 10.1111/apha.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/17/2023]
Abstract
AIMS Nfix is a transcription factor belonging to the Nuclear Factor I (NFI) family comprising four members (Nfia, b, c, x). Nfix plays important roles in the development and function of several organs. In muscle development, Nfix controls the switch from embryonic to fetal myogenesis by promoting fast twitching fibres. In the adult muscle, following injury, lack of Nfix impairs regeneration, inducing higher content of slow-twitching fibres. Nfix is expressed also in the heart, but its function has been never investigated before. We studied Nfix role in this organ. METHODS Using Nfix-null and wild type (WT) mice we analyzed: (1) the expression pattern of Nfix during development by qPCR and (2) the functional alterations caused by its absence, by in vivo telemetry and in vitro patch clamp analysis. RESULTS AND CONCLUSIONS Nfix expression start in the heart from E12.5. Adult hearts of Nfix-null mice show a hearts morphology and sarcomeric proteins expression similar to WT. However, Nfix-null animals show tachycardia that derives form an intrinsic higher beating rate of the sinus node (SAN). Molecular and functional analysis revealed that sinoatrial cells of Nfix-null mice express a significantly larger L-type calcium current (Cacna1d + Cacna1c). Interestingly, downregulation of Nfix by sh-RNA in primary cultures of neonatal rat ventricular cardiomyocytes induced a similar increase in their spontaneous beating rate and in ICaL current. In conclusion, our data provide the first demonstration of a role of Nfix that, increasing the L-type calcium current, modulates heart rate.
Collapse
Affiliation(s)
- Sara Landi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Federica Giannetti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Benzoni
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Giulia Campostrini
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Giuliana Rossi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Piantoni
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Giorgia Bertoli
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Bonfanti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Luca Carnevali
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Annalisa Bucchi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Mirko Baruscotti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Giorgia Careccia
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Graziella Messina
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Andrea Barbuti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Mesirca P. Nfix: a transcription factor with an important functional role in cardiac automaticity. Acta Physiol (Oxf) 2023; 239:e14034. [PMID: 37596765 DOI: 10.1111/apha.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023]
Affiliation(s)
- Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, Montpellier, France
- LabEx, Ion ChannelsScience and Therapeutics, Montpellier, France
| |
Collapse
|
15
|
Walker M, Li Y, Morales-Hernandez A, Qi Q, Parupalli C, Brown S, Christian C, Clements WK, Cheng Y, McKinney-Freeman S. An NFIX-mediated regulatory network governs the balance of hematopoietic stem and progenitor cells during hematopoiesis. Blood Adv 2023; 7:4677-4689. [PMID: 36478187 PMCID: PMC10468369 DOI: 10.1182/bloodadvances.2022007811] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/07/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
The transcription factor (TF) nuclear factor I-X (NFIX) is a positive regulator of hematopoietic stem and progenitor cell (HSPC) transplantation. Nfix-deficient HSPCs exhibit a severe loss of repopulating activity, increased apoptosis, and a loss of colony-forming potential. However, the underlying mechanism remains elusive. Here, we performed cellular indexing of transcriptomes and epitopes by high-throughput sequencing (CITE-seq) on Nfix-deficient HSPCs and observed a loss of long-term hematopoietic stem cells and an accumulation of megakaryocyte and myelo-erythroid progenitors. The genome-wide binding profile of NFIX in primitive murine hematopoietic cells revealed its colocalization with other hematopoietic TFs, such as PU.1. We confirmed the physical interaction between NFIX and PU.1 and demonstrated that the 2 TFs co-occupy super-enhancers and regulate genes implicated in cellular respiration and hematopoietic differentiation. In addition, we provide evidence suggesting that the absence of NFIX negatively affects PU.1 binding at some genomic loci. Our data support a model in which NFIX collaborates with PU.1 at super-enhancers to promote the differentiation and homeostatic balance of hematopoietic progenitors.
Collapse
Affiliation(s)
- Megan Walker
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yichao Li
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Qian Qi
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Scott Brown
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Claiborne Christian
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wilson K. Clements
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yong Cheng
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | | |
Collapse
|
16
|
Bohuslavova R, Fabriciova V, Smolik O, Lebrón-Mora L, Abaffy P, Benesova S, Zucha D, Valihrach L, Berkova Z, Saudek F, Pavlinkova G. NEUROD1 reinforces endocrine cell fate acquisition in pancreatic development. Nat Commun 2023; 14:5554. [PMID: 37689751 PMCID: PMC10492842 DOI: 10.1038/s41467-023-41306-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
NEUROD1 is a transcription factor that helps maintain a mature phenotype of pancreatic β cells. Disruption of Neurod1 during pancreatic development causes severe neonatal diabetes; however, the exact role of NEUROD1 in the differentiation programs of endocrine cells is unknown. Here, we report a crucial role of the NEUROD1 regulatory network in endocrine lineage commitment and differentiation. Mechanistically, transcriptome and chromatin landscape analyses demonstrate that Neurod1 inactivation triggers a downregulation of endocrine differentiation transcription factors and upregulation of non-endocrine genes within the Neurod1-deficient endocrine cell population, disturbing endocrine identity acquisition. Neurod1 deficiency altered the H3K27me3 histone modification pattern in promoter regions of differentially expressed genes, which resulted in gene regulatory network changes in the differentiation pathway of endocrine cells, compromising endocrine cell potential, differentiation, and functional properties.
Collapse
Affiliation(s)
- Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Ondrej Smolik
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Laura Lebrón-Mora
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Zuzana Berkova
- Diabetes Centre, Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Frantisek Saudek
- Diabetes Centre, Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia.
| |
Collapse
|
17
|
Ren Y, Zhao Y, Shan Y, Li S, Su N, Cui Z, Yin Z. Circular RNA hsa_circ_0049657 as a Potential Biomarker in Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:13237. [PMID: 37686043 PMCID: PMC10487531 DOI: 10.3390/ijms241713237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common lung disorder. In this study, we applied bioinformatics methods to analyze and investigate the role of the NFIX gene in NSCLC. Hsa_circ_0049657 is derived from the NFIX gene, this research aimed to verify the potential role of hsa_circ_0049657 in the development of NSCLC. The results suggested that NFIX was downregulated in most cancers. In addition, the NFIX expression in lung adenocarcinoma (LUAD) was associated with the clinicopathological stage. In LUAD, NFIX expression was associated with the degree of infiltration of most immune cells. The expression levels of hsa_circ_0049657 were significantly lower in cancerous tissues than in paracancerous tissues. Moreover, the results showed that hsa_circ_0049657 expression was downregulated in NSCLC cells. After overexpression of hsa_circ_0049657, the proliferation and migration ability of NSCLC cells were significantly inhibited and the level of apoptosis was increased. We could suppress the proliferation and invasion abilities and promote apoptosis of NSCLC cells by up-regulating hsa_circ_0049657, which might be a potential biomarker for NSCLC.
Collapse
Affiliation(s)
- Yihong Ren
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China; (Y.R.); (Y.Z.); (Y.S.); (S.L.); (N.S.)
| | - Yuxin Zhao
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China; (Y.R.); (Y.Z.); (Y.S.); (S.L.); (N.S.)
| | - Yanan Shan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China; (Y.R.); (Y.Z.); (Y.S.); (S.L.); (N.S.)
| | - Sixuan Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China; (Y.R.); (Y.Z.); (Y.S.); (S.L.); (N.S.)
| | - Nan Su
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China; (Y.R.); (Y.Z.); (Y.S.); (S.L.); (N.S.)
| | - Zhigang Cui
- School of Nursing, China Medical University, Shenyang 110122, China;
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China; (Y.R.); (Y.Z.); (Y.S.); (S.L.); (N.S.)
| |
Collapse
|
18
|
Dos Santos M, Shah AM, Zhang Y, Bezprozvannaya S, Chen K, Xu L, Lin W, McAnally JR, Bassel-Duby R, Liu N, Olson EN. Opposing gene regulatory programs governing myofiber development and maturation revealed at single nucleus resolution. Nat Commun 2023; 14:4333. [PMID: 37468485 DOI: 10.1038/s41467-023-40073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Skeletal muscle fibers express distinct gene programs during development and maturation, but the underlying gene regulatory networks that confer stage-specific myofiber properties remain unknown. To decipher these distinctive gene programs and how they respond to neural activity, we generated a combined multi-omic single-nucleus RNA-seq and ATAC-seq atlas of mouse skeletal muscle development at multiple stages of embryonic, fetal, and postnatal life. We found that Myogenin, Klf5, and Tead4 form a transcriptional complex that synergistically activates the expression of muscle genes in developing myofibers. During myofiber maturation, the transcription factor Maf acts as a transcriptional switch to activate the mature fast muscle gene program. In skeletal muscles of mutant mice lacking voltage-gated L-type Ca2+ channels (Cav1.1), Maf expression and myofiber maturation are impaired. These findings provide a transcriptional atlas of muscle development and reveal genetic links between myofiber formation, maturation, and contraction.
Collapse
Affiliation(s)
- Matthieu Dos Santos
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Akansha M Shah
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Yichi Zhang
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, 5323 Harry Hines Boulevard, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, 5323 Harry Hines Boulevard, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Weichun Lin
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - John R McAnally
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Ning Liu
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
19
|
Chaand M, Fiore C, Johnston B, D'Ippolito A, Moon DH, Carulli JP, Shearstone JR. Erythroid lineage chromatin accessibility maps facilitate identification and validation of NFIX as a fetal hemoglobin repressor. Commun Biol 2023; 6:640. [PMID: 37316562 DOI: 10.1038/s42003-023-05025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
Human genetics has validated de-repression of fetal gamma globin (HBG) in adult erythroblasts as a powerful therapeutic paradigm in diseases involving defective adult beta globin (HBB)1. To identify factors involved in the switch from HBG to HBB expression, we performed Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq)2 on sorted erythroid lineage cells derived from bone marrow (BM) or cord blood (CB), representing adult and fetal states, respectively. BM to CB cell ATAC-seq profile comparisons revealed genome-wide enrichment of NFI DNA binding motifs and increased NFIX promoter chromatin accessibility, suggesting that NFIX may repress HBG. NFIX knockdown in BM cells increased HBG mRNA and fetal hemoglobin (HbF) protein levels, coincident with increased chromatin accessibility and decreased DNA methylation at the HBG promoter. Conversely, overexpression of NFIX in CB cells reduced HbF levels. Identification and validation of NFIX as a new target for HbF activation has implications in the development of therapeutics for hemoglobinopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jeffrey R Shearstone
- Syros Pharmaceuticals, Cambridge, MA, USA
- Scientific and Medical Writing Partners, Cambridge, MA, USA
| |
Collapse
|
20
|
Hoh JFY. Developmental, physiologic and phylogenetic perspectives on the expression and regulation of myosin heavy chains in mammalian skeletal muscles. J Comp Physiol B 2023:10.1007/s00360-023-01499-0. [PMID: 37277594 DOI: 10.1007/s00360-023-01499-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
The kinetics of myosin controls the speed and power of muscle contraction. Mammalian skeletal muscles express twelve kinetically different myosin heavy chain (MyHC) genes which provides a wide range of muscle speeds to meet different functional demands. Myogenic progenitors from diverse craniofacial and somitic mesoderm specify muscle allotypes with different repertoires for MyHC expression. This review provides a brief synopsis on the historical and current views on how cell lineage, neural impulse patterns, and thyroid hormone influence MyHC gene expression in muscles of the limb allotype during development and in adult life and the molecular mechanisms thereof. During somitic myogenesis, embryonic and foetal myoblast lineages form slow and fast primary and secondary myotube ontotypes which respond differently to postnatal neural and thyroidal influences to generate fully differentiated fibre phenotypes. Fibres of a given phenotype may arise from myotubes of different ontotypes which retain their capacity to respond differently to neural and thyroidal influences during postnatal life. This gives muscles physiological plasticity to adapt to fluctuations in thyroid hormone levels and patterns of use. The kinetics of MyHC isoforms vary inversely with animal body mass. Fast 2b fibres are specifically absent in muscles involved in elastic energy saving in hopping marsupials and generally absent in large eutherian mammals. Changes in MyHC expression are viewed in the context of the physiology of the whole animal. The roles of myoblast lineage and thyroid hormone in regulating MyHC gene expression are phylogenetically the most ancient while that of neural impulse patterns the most recent.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- , PO Box 152, Killara, NSW, 2071, Australia.
| |
Collapse
|
21
|
Yao Z, van Velthoven CTJ, Kunst M, Zhang M, McMillen D, Lee C, Jung W, Goldy J, Abdelhak A, Baker P, Barkan E, Bertagnolli D, Campos J, Carey D, Casper T, Chakka AB, Chakrabarty R, Chavan S, Chen M, Clark M, Close J, Crichton K, Daniel S, Dolbeare T, Ellingwood L, Gee J, Glandon A, Gloe J, Gould J, Gray J, Guilford N, Guzman J, Hirschstein D, Ho W, Jin K, Kroll M, Lathia K, Leon A, Long B, Maltzer Z, Martin N, McCue R, Meyerdierks E, Nguyen TN, Pham T, Rimorin C, Ruiz A, Shapovalova N, Slaughterbeck C, Sulc J, Tieu M, Torkelson A, Tung H, Cuevas NV, Wadhwani K, Ward K, Levi B, Farrell C, Thompson CL, Mufti S, Pagan CM, Kruse L, Dee N, Sunkin SM, Esposito L, Hawrylycz MJ, Waters J, Ng L, Smith KA, Tasic B, Zhuang X, Zeng H. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531121. [PMID: 37034735 PMCID: PMC10081189 DOI: 10.1101/2023.03.06.531121] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The mammalian brain is composed of millions to billions of cells that are organized into numerous cell types with specific spatial distribution patterns and structural and functional properties. An essential step towards understanding brain function is to obtain a parts list, i.e., a catalog of cell types, of the brain. Here, we report a comprehensive and high-resolution transcriptomic and spatial cell type atlas for the whole adult mouse brain. The cell type atlas was created based on the combination of two single-cell-level, whole-brain-scale datasets: a single-cell RNA-sequencing (scRNA-seq) dataset of ~7 million cells profiled, and a spatially resolved transcriptomic dataset of ~4.3 million cells using MERFISH. The atlas is hierarchically organized into five nested levels of classification: 7 divisions, 32 classes, 306 subclasses, 1,045 supertypes and 5,200 clusters. We systematically analyzed the neuronal, non-neuronal, and immature neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell type organization in different brain regions, in particular, a dichotomy between the dorsal and ventral parts of the brain: the dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. We also systematically characterized cell-type specific expression of neurotransmitters, neuropeptides, and transcription factors. The study uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types across the brain, suggesting they mediate a myriad of modes of intercellular communications. Finally, we found that transcription factors are major determinants of cell type classification in the adult mouse brain and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole-mouse-brain transcriptomic and spatial cell type atlas establishes a benchmark reference atlas and a foundational resource for deep and integrative investigations of cell type and circuit function, development, and evolution of the mammalian brain.
Collapse
Affiliation(s)
- Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Meng Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Won Jung
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Pamela Baker
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Eliza Barkan
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Daniel Carey
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Min Chen
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jennie Close
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Scott Daniel
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - James Gee
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - James Gray
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Kelly Jin
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Kanan Lathia
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Arielle Leon
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Brian Long
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zoe Maltzer
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Naomi Martin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Rachel McCue
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | | | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Katelyn Ward
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Shoaib Mufti
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Lauren Kruse
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| |
Collapse
|
22
|
Kawamoto S, Hani T, Fujita K, Taya Y, Sasaki Y, Kudo T, Sato K, Soeno Y. Nuclear factor 1 X-type-associated regulation of myogenesis in developing mouse tongue. J Oral Biosci 2023; 65:88-96. [PMID: 36669698 DOI: 10.1016/j.job.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The tongue contains skeletal myofibers that differ from those in the trunk, limbs, and other orofacial muscles. However, the molecular basis of myogenic differentiation in the tongue muscles remains unclear. In this study, we conducted comprehensive gene expression profiling of the developing murine tongue. METHODS Tongue primordia were dissected from mouse embryos at embryonic day (E)10.5-E18.5, while myogenic markers were detected via microarray analysis and quantitative polymerase chain reaction (PCR). In addition to common myogenic regulatory factors such as Myf5, MyoD, myogenin, and Mrf4, we focused on Nfix, which acts as a unique molecular switch triggering the shift from embryonic to fetal myoblast lineage during limb myogenesis. Nfix inhibition was performed using a specific antisense oligonucleotide in the organ culture of tongue primordia. RESULTS Microarray and ingenuity pathway analyses confirmed the significant upregulation of myogenic signaling molecules, including Nfix, associated with the differentiation of myoblasts from myogenic progenitor cells during E10.5-E11.5. Quantitative PCR confirmed that Nfix expression started at E10.5 and peaked at E14.5. Fetal myoblast-specific genes, such as Mck and Myh8, were upregulated after E14.5, whereas embryonic myoblast-specific genes, such as Myh3 and Myh7, were downregulated. When Nfix was inhibited in the organ culture of tongue primordia, subtle morphological differences were noted in the tongue. Such an observation was only noted in the cultures of E10.5-derived tongue primordia. CONCLUSIONS These results reveal the contribution of Nfix to tongue myogenesis. Nfix expression during early tongue development may play a vital role in tongue muscle development.
Collapse
Affiliation(s)
- Sayaka Kawamoto
- Department of Pathology, The Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| | - Taisuke Hani
- Department of Pathology, The Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| | - Kazuya Fujita
- Department of Pathology, The Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| | - Yuji Taya
- Department of Pathology, The Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| | - Yasunori Sasaki
- Department of Dentistry, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa, Minami-ku, Yokohama, 232-8555, Japan.
| | - Tomoo Kudo
- Department of Pathology, The Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| | - Kaori Sato
- Department of Pathology, The Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| | - Yuuichi Soeno
- Department of Pathology, The Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| |
Collapse
|
23
|
Ribeiro V, Martins SG, Lopes AS, Thorsteinsdóttir S, Zilhão R, Carlos AR. NFIXing Cancer: The Role of NFIX in Oxidative Stress Response and Cell Fate. Int J Mol Sci 2023; 24:ijms24054293. [PMID: 36901722 PMCID: PMC10001739 DOI: 10.3390/ijms24054293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
NFIX, a member of the nuclear factor I (NFI) family of transcription factors, is known to be involved in muscle and central nervous system embryonic development. However, its expression in adults is limited. Similar to other developmental transcription factors, NFIX has been found to be altered in tumors, often promoting pro-tumorigenic functions, such as leading to proliferation, differentiation, and migration. However, some studies suggest that NFIX can also have a tumor suppressor role, indicating a complex and cancer-type dependent role of NFIX. This complexity may be linked to the multiple processes at play in regulating NFIX, which include transcriptional, post-transcriptional, and post-translational processes. Moreover, other features of NFIX, including its ability to interact with different NFI members to form homodimers or heterodimers, therefore allowing the transcription of different target genes, and its ability to sense oxidative stress, can also modulate its function. In this review, we examine different aspects of NFIX regulation, first in development and then in cancer, highlighting the important role of NFIX in oxidative stress and cell fate regulation in tumors. Moreover, we propose different mechanisms through which oxidative stress regulates NFIX transcription and function, underlining NFIX as a key factor for tumorigenesis.
Collapse
Affiliation(s)
- Vanessa Ribeiro
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Susana G. Martins
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana Sofia Lopes
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Centro Hospitalar de Lisboa Ocidental (CHLO), 1449-005 Lisbon, Portugal
| | - Sólveig Thorsteinsdóttir
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Rita Zilhão
- cE3c-CHANGE, Department of Plant Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana Rita Carlos
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
24
|
Zhao L, Liu X, Gomez NA, Gao Y, Son JS, Chae SA, Zhu MJ, Du M. Stage-specific nutritional management and developmental programming to optimize meat production. J Anim Sci Biotechnol 2023; 14:2. [PMID: 36597116 PMCID: PMC9809060 DOI: 10.1186/s40104-022-00805-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/23/2022] [Indexed: 01/04/2023] Open
Abstract
Over the past few decades, genetic selection and refined nutritional management have extensively been used to increase the growth rate and lean meat production of livestock. However, the rapid growth rates of modern breeds are often accompanied by a reduction in intramuscular fat deposition and increased occurrences of muscle abnormalities, impairing meat quality and processing functionality. Early stages of animal development set the long-term growth trajectory of offspring. However, due to the seasonal reproductive cycles of ruminant livestock, gestational nutrient deficiencies caused by seasonal variations, frequent droughts, and unfavorable geological locations negatively affect fetal development and their subsequent production efficiency and meat quality. Therefore, enrolling livestock in nutritional intervention strategies during gestation is effective for improving the body composition and meat quality of the offspring at harvest. These crucial early developmental stages include embryonic, fetal, and postnatal stages, which have stage-specific effects on subsequent offspring development, body composition, and meat quality. This review summarizes contemporary research in the embryonic, fetal, and neonatal development, and the impacts of maternal nutrition on the early development and programming effects on the long-term growth performance of livestock. Understanding the developmental and metabolic characteristics of skeletal muscle, adipose, and fibrotic tissues will facilitate the development of stage-specific nutritional management strategies to optimize production efficiency and meat quality.
Collapse
Affiliation(s)
- Liang Zhao
- grid.27871.3b0000 0000 9750 7019College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, PR China ,grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Xiangdong Liu
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Noe A Gomez
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Yao Gao
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Jun Seok Son
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA ,grid.411024.20000 0001 2175 4264Laboratory of Perinatal Kinesioepigenetics, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, MD 21201 Baltimore, USA
| | - Song Ah Chae
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| | - Mei-Jun Zhu
- grid.30064.310000 0001 2157 6568School of Food Science, Washington State University, WA Pullman, USA
| | - Min Du
- grid.30064.310000 0001 2157 6568Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, WA 99164 Pullman, USA
| |
Collapse
|
25
|
Zhang Z, Lin S, Luo W, Ren T, Huang X, Li W, Zhang X. Sox6 Differentially Regulates Inherited Myogenic Abilities and Muscle Fiber Types of Satellite Cells Derived from Fast- and Slow-Type Muscles. Int J Mol Sci 2022; 23:ijms231911327. [PMID: 36232654 PMCID: PMC9569562 DOI: 10.3390/ijms231911327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/11/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Adult skeletal muscle is primarily divided into fast and slow-type muscles, which have distinct capacities for regeneration, metabolism and contractibility. Satellite cells plays an important role in adult skeletal muscle. However, the underlying mechanisms of satellite cell myogenesis are poorly understood. We previously found that Sox6 was highly expressed in adult fast-type muscle. Therefore, we aimed to validate the satellite cell myogenesis from different muscle fiber types and investigate the regulation of Sox6 on satellite cell myogenesis. First, we isolated satellite cells from fast- and slow-type muscles individually. We found that satellite cells derived from different muscle fiber types generated myotubes similar to their origin types. Further, we observed that cells derived from fast muscles had a higher efficiency to proliferate but lower potential to self-renew compared to the cells derived from slow muscles. Then we demonstrated that Sox6 facilitated the development of satellite cells-derived myotubes toward their inherent muscle fiber types. We revealed that higher expression of Nfix during the differentiation of fast-type muscle-derived myogenic cells inhibited the transcription of slow-type isoforms (MyH7B, Tnnc1) by binding to Sox6. On the other hand, Sox6 activated Mef2C to promote the slow fiber formation in slow-type muscle-derived myogenic cells with Nfix low expression, showing a different effect of Sox6 on the regulation of satellite cell development. Our findings demonstrated that satellite cells, the myogenic progenitor cells, tend to develop towards the fiber type similar to where they originated. The expression of Sox6 and Nfix partially explain the developmental differences of myogenic cells derived from fast- and slow-type muscles.
Collapse
Affiliation(s)
- Zihao Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shudai Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524000, China
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Tuanhui Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xing Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wangyu Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
26
|
Hughes SM, Escaleira RC, Wanders K, Koth J, Wilkinson DG, Xu Q. Clonal behaviour of myogenic precursor cells throughout the vertebrate lifespan. Biol Open 2022; 11:276275. [PMID: 35972050 PMCID: PMC9399818 DOI: 10.1242/bio.059476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
To address questions of stem cell diversity during skeletal myogenesis, a Brainbow-like genetic cell lineage tracing method, dubbed Musclebow2, was derived by enhancer trapping in zebrafish. It is shown that, after initial formation of the primary myotome, at least 15 muscle precursor cells (mpcs) seed each somite, where they proliferate but contribute little to muscle growth prior to hatching. Thereafter, dermomyotome-derived mpc clones rapidly expand while some progeny undergo terminal differentiation, leading to stochastic clonal drift within the mpc pool. No evidence of cell-lineage-based clonal fate diversity was obtained. Neither fibre nor mpc death was observed in uninjured animals. Individual marked muscle fibres persist across much of the lifespan indicating low rates of nuclear turnover. In adulthood, early-marked mpc clones label stable blocks of tissue comprising a significant fraction of either epaxial or hypaxial somite. Fusion of cells from separate early-marked clones occurs in regions of clone overlap. Wounds are regenerated from several local mpcs; no evidence for specialised stem mpcs was obtained. In conclusion, our data indicate that most mpcs in muscle tissue contribute to local growth and repair and suggest that cellular turnover is low in the absence of trauma.
Collapse
Affiliation(s)
- Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Roberta C Escaleira
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Kees Wanders
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Jana Koth
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | | | - Qiling Xu
- Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
27
|
Hammelman J, Patel T, Closser M, Wichterle H, Gifford D. Ranking reprogramming factors for cell differentiation. Nat Methods 2022; 19:812-822. [PMID: 35710610 PMCID: PMC10460539 DOI: 10.1038/s41592-022-01522-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/13/2022] [Indexed: 12/16/2022]
Abstract
Transcription factor over-expression is a proven method for reprogramming cells to a desired cell type for regenerative medicine and therapeutic discovery. However, a general method for the identification of reprogramming factors to create an arbitrary cell type is an open problem. Here we examine the success rate of methods and data for differentiation by testing the ability of nine computational methods (CellNet, GarNet, EBseq, AME, DREME, HOMER, KMAC, diffTF and DeepAccess) to discover and rank candidate factors for eight target cell types with known reprogramming solutions. We compare methods that use gene expression, biological networks and chromatin accessibility data, and comprehensively test parameter and preprocessing of input data to optimize performance. We find the best factor identification methods can identify an average of 50-60% of reprogramming factors within the top ten candidates, and methods that use chromatin accessibility perform the best. Among the chromatin accessibility methods, complex methods DeepAccess and diffTF have higher correlation with the ranked significance of transcription factor candidates within reprogramming protocols for differentiation. We provide evidence that AME and diffTF are optimal methods for transcription factor recovery that will allow for systematic prioritization of transcription factor candidates to aid in the design of new reprogramming protocols.
Collapse
Affiliation(s)
- Jennifer Hammelman
- Computational and Systems Biology, MIT, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
| | - Tulsi Patel
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation and Regenerative Medicine (in Neurology), Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael Closser
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation and Regenerative Medicine (in Neurology), Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation and Regenerative Medicine (in Neurology), Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - David Gifford
- Computational and Systems Biology, MIT, Cambridge, MA, USA.
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.
- Department of Biological Engineering, MIT, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA.
| |
Collapse
|
28
|
Macchiaiolo M, Panfili FM, Vecchio D, Gonfiantini MV, Cortellessa F, Caciolo C, Zollino M, Accadia M, Seri M, Chinali M, Mammì C, Tartaglia M, Bartuli A, Alfieri P, Priolo M. A deep phenotyping experience: up to date in management and diagnosis of Malan syndrome in a single center surveillance report. Orphanet J Rare Dis 2022; 17:235. [PMID: 35717370 PMCID: PMC9206304 DOI: 10.1186/s13023-022-02384-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022] Open
Abstract
Background Malan syndrome (MALNS) is a recently described ultrarare syndrome lacking guidelines for diagnosis, management and monitoring of evolutive complications. Less than 90 patients are reported in the literature and limited clinical information are available to assure a proper health surveillance.
Results A multidisciplinary team with high expertise in MALNS has been launched at the “Ospedale Pediatrico Bambino Gesù”, Rome, Italy. Sixteen Italian MALNS individuals with molecular confirmed clinical diagnosis of MALNS were enrolled in the program. For all patients, 1-year surveillance in a dedicated outpatient Clinic was attained. The expert panel group enrolled 16 patients and performed a deep phenotyping analysis directed to clinically profiling the disorder and performing critical revision of previously reported individuals. Some evolutive complications were also assessed. Previously unappreciated features (e.g., high risk of bone fractures in childhood, neurological/neurovegetative symptoms, noise sensitivity and Chiari malformation type 1) requiring active surveillance were identified. A second case of neoplasm was recorded. No major cardiovascular anomalies were noticed. An accurate clinical description of 9 new MALNS cases was provided. Conclusions Deep phenotyping has provided a more accurate characterization of the main clinical features of MALNS and allows broadening the spectrum of disease. A minimal dataset of clinical evaluations and follow-up timeline has been proposed for proper management of patients affected by this ultrarare disorder. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02384-9.
Collapse
Affiliation(s)
- Marina Macchiaiolo
- Rare Diseases and Medical Genetics Unit, University-Hospital Pediatric Department (DPUO), Bambino Gesù Children's Hospital, IRCSS, Piazza di Sant'Onofrio, 4, 00165, Rome, Italy.
| | - Filippo M Panfili
- University of Rome Tor Vergata, Rome, Italy.,Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Davide Vecchio
- Rare Diseases and Medical Genetics Unit, University-Hospital Pediatric Department (DPUO), Bambino Gesù Children's Hospital, IRCSS, Piazza di Sant'Onofrio, 4, 00165, Rome, Italy
| | - Michaela V Gonfiantini
- Rare Diseases and Medical Genetics Unit, University-Hospital Pediatric Department (DPUO), Bambino Gesù Children's Hospital, IRCSS, Piazza di Sant'Onofrio, 4, 00165, Rome, Italy
| | - Fabiana Cortellessa
- Rare Diseases and Medical Genetics Unit, University-Hospital Pediatric Department (DPUO), Bambino Gesù Children's Hospital, IRCSS, Piazza di Sant'Onofrio, 4, 00165, Rome, Italy
| | - Cristina Caciolo
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marcella Zollino
- Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
| | - Maria Accadia
- Medical Genetics Service, Hospital "Cardinale G. Panico", Tricase, Lecce, Italy
| | - Marco Seri
- Unit of Medical Genetics, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Marcello Chinali
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital IRCSS, Rome, Italy
| | - Corrado Mammì
- Operative Unit of Medical Genetics, Bianchi-Melacrino-Morelli Hospital, V. Melacrino, 89100, Reggio Calabria, Italy
| | - Marco Tartaglia
- Genetics and Rare Disease Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Bartuli
- Rare Diseases and Medical Genetics Unit, University-Hospital Pediatric Department (DPUO), Bambino Gesù Children's Hospital, IRCSS, Piazza di Sant'Onofrio, 4, 00165, Rome, Italy
| | - Paolo Alfieri
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manuela Priolo
- Operative Unit of Medical Genetics, Bianchi-Melacrino-Morelli Hospital, V. Melacrino, 89100, Reggio Calabria, Italy.
| |
Collapse
|
29
|
Bioinformatics and Experimental Analyses Reveal NFIC as an Upstream Transcriptional Regulator for Ischemic Cardiomyopathy. Genes (Basel) 2022; 13:genes13061051. [PMID: 35741813 PMCID: PMC9222441 DOI: 10.3390/genes13061051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic cardiomyopathy (ICM) caused by coronary artery disease always leads to myocardial infarction and heart failure. Identification of novel transcriptional regulators in ICM is an effective method to establish new diagnostic and therapeutic strategies. In this study, we used two RNA-seq datasets and one microarray dataset from different studies, including 25 ICM and 21 non-failing control (NF) samples of human left ventricle tissues for further analysis. In total, 208 differentially expressed genes (DEGs) were found by combining two RNA-seq datasets with batch effects removed. GO and KEGG analyses of DEGs indicated that the response to wounding, positive regulation of smooth muscle contraction, chromatin, PI3K-Akt signaling pathway, and transporters pathways are involved in ICM. Simple Enrichment Analysis found that NFIC-binding motifs are enriched in promoter regions of downregulated genes. The Gene Importance Calculator further proved that NFIC is vital. NFIC and its downstream genes were verified in the validating microarray dataset. Meanwhile, in rat cardiomyocyte cell line H9C2 cells, two genes (Tspan1 and Hopx) were confirmed, which decreased significantly along with knocking down Nfic expression. In conclusion, NFIC participates in the ICM process by regulating TSPAN1 and HOPX. NFIC and its downstream genes may be marker genes and potential diagnostic and therapeutic targets for ICM.
Collapse
|
30
|
Wille CK, Sridharan R. Connecting the DOTs on Cell Identity. Front Cell Dev Biol 2022; 10:906713. [PMID: 35733849 PMCID: PMC9207516 DOI: 10.3389/fcell.2022.906713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/18/2022] [Indexed: 01/04/2023] Open
Abstract
DOT1-Like (DOT1L) is the sole methyltransferase of histone H3K79, a modification enriched mainly on the bodies of actively transcribing genes. DOT1L has been extensively studied in leukemia were some of the most frequent onco-fusion proteins contain portions of DOT1L associated factors that mislocalize H3K79 methylation and drive oncogenesis. However, the role of DOT1L in non-transformed, developmental contexts is less clear. Here we assess the known functional roles of DOT1L both in vitro cell culture and in vivo models of mammalian development. DOT1L is evicted during the 2-cell stage when cells are totipotent and massive epigenetic and transcriptional alterations occur. Embryonic stem cell lines that are derived from the blastocyst tolerate the loss of DOT1L, while the reduction of DOT1L protein levels or its catalytic activity greatly enhances somatic cell reprogramming to induced pluripotent stem cells. DOT1L knockout mice are embryonically lethal when organogenesis commences. We catalog the rapidly increasing studies of total and lineage specific knockout model systems that show that DOT1L is broadly required for differentiation. Reduced DOT1L activity is concomitant with increased developmental potential. Contrary to what would be expected of a modification that is associated with active transcription, loss of DOT1L activity results in more upregulated than downregulated genes. DOT1L also participates in various epigenetic networks that are both cell type and developmental stage specific. Taken together, the functions of DOT1L during development are pleiotropic and involve gene regulation at the locus specific and global levels.
Collapse
Affiliation(s)
- Coral K. Wille
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Coral K. Wille, , Rupa Sridharan,
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Coral K. Wille, , Rupa Sridharan,
| |
Collapse
|
31
|
Qin K, Huang P, Feng R, Keller CA, Peslak SA, Khandros E, Saari MS, Lan X, Mayuranathan T, Doerfler PA, Abdulmalik O, Giardine B, Chou ST, Shi J, Hardison RC, Weiss MJ, Blobel GA. Dual function NFI factors control fetal hemoglobin silencing in adult erythroid cells. Nat Genet 2022; 54:874-884. [PMID: 35618846 PMCID: PMC9203980 DOI: 10.1038/s41588-022-01076-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/08/2022] [Indexed: 12/13/2022]
Abstract
The mechanisms by which the fetal-type β-globin-like genes HBG1 and HBG2 are silenced in adult erythroid precursor cells remain a fundamental question in human biology and have therapeutic relevance to sickle cell disease (SCD) and β-thalassemia. Here, we identify via a CRISPR-Cas9 genetic screen two members of the NFI transcription factor family – NFIA and NFIX – as HBG1/2 repressors. NFIA and NFIX are expressed at elevated levels in adult erythroid cells compared to fetal cells, and function cooperatively to repress HBG1/2 in cultured cells and in human-to-mouse xenotransplants. Genomic profiling, genome editing, and DNA binding assays demonstrate that the potent concerted activity of NFIA and NFIX is explained in part by their ability to stimulate the expression of BCL11A, a known silencer of the HBG1/2 genes, and in part by directly repressing the HBG1/2 genes. Thus, NFI factors emerge as versatile regulators of the fetal-to-adult switch in β-globin production.
Collapse
Affiliation(s)
- Kunhua Qin
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peng Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ruopeng Feng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Scott A Peslak
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Hematology/Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Eugene Khandros
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Megan S Saari
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xianjiang Lan
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | | | - Phillip A Doerfler
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Osheiza Abdulmalik
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Stella T Chou
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Xiao D, Caldow M, Kim HJ, Blazev R, Koopman R, Manandi D, Parker BL, Yang P. Time-resolved Phosphoproteome and Proteome Analysis Reveals Kinase Signalling on Master Transcription Factors During Myogenesis. iScience 2022; 25:104489. [PMID: 35721465 PMCID: PMC9198430 DOI: 10.1016/j.isci.2022.104489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/14/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
Myogenesis is governed by signaling networks that are tightly regulated in a time-dependent manner. Although different protein kinases have been identified, knowledge of the global signaling networks and their downstream substrates during myogenesis remains incomplete. Here, we map the myogenic differentiation of C2C12 cells using phosphoproteomics and proteomics. From these data, we infer global kinase activity and predict the substrates that are involved in myogenesis. We found that multiple mitogen-activated protein kinases (MAPKs) mark the initial wave of signaling cascades. Further phosphoproteomic and proteomic profiling with MAPK1/3 and MAPK8/9 specific inhibitions unveil their shared and distinctive roles in myogenesis. Lastly, we identified and validated the transcription factor nuclear factor 1 X-type (NFIX) as a novel MAPK1/3 substrate and demonstrated the functional impact of NFIX phosphorylation on myogenesis. Altogether, these data characterize the dynamics, interactions, and downstream control of kinase signaling networks during myogenesis on a global scale. Phosphoproteomic and proteomic maps of myogenic differentiation of C2C12 cells Myogenic kinome activity and kinase-substrates prediction using machine learning MAPK1/3 and MAPK8/9 inhibition unveil shared and distinctive effects on myogenesis Validation of NFIX phosphorylation by MAPK1/3 and its impact on myogenesis
Collapse
Affiliation(s)
- Di Xiao
- Computational Systems Biology Group, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Charles Perkins Centre, School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marissa Caldow
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hani Jieun Kim
- Computational Systems Biology Group, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Charles Perkins Centre, School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ronnie Blazev
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Rene Koopman
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Deborah Manandi
- Computational Systems Biology Group, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Benjamin L. Parker
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
- Corresponding author
| | - Pengyi Yang
- Computational Systems Biology Group, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Charles Perkins Centre, School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
- Corresponding author
| |
Collapse
|
33
|
Saclier M, Angelini G, Bonfanti C, Mura G, Temponi G, Messina G. Selective ablation of Nfix in macrophages attenuates muscular dystrophy by inhibiting fibro-adipogenic progenitor-dependent fibrosis. J Pathol 2022; 257:352-366. [PMID: 35297529 PMCID: PMC9322546 DOI: 10.1002/path.5895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 11/10/2022]
Abstract
Muscular dystrophies are genetic diseases characterized by chronic inflammation and fibrosis. Macrophages are immune cells that sustain muscle regeneration upon acute injury but seem deleterious in the context of chronic muscle injury such as in muscular dystrophies. Here, we observed that the number of macrophages expressing the transcription factor Nfix increases in two distinct mouse models of muscular dystrophies. We showed that the deletion of Nfix in macrophages in dystrophic mice delays the establishment of fibrosis and muscle wasting, and increases grasp force. Macrophages lacking Nfix expressed more TNFα and less TGFβ1, thus promoting apoptosis of fibro‐adipogenic progenitors. Moreover, pharmacological treatment of dystrophic mice with a ROCK inhibitor accelerated fibrosis through the increase of Nfix expression by macrophages. Thus, we have identified Nfix as a macrophage profibrotic factor in muscular dystrophies, whose inhibition could be a therapeutic route to reduce severity of the dystrophic disease. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | | | - Chiara Bonfanti
- Department of Biosciences, University of Milan, Milan, Italy
| | - Giada Mura
- Department of Biosciences, University of Milan, Milan, Italy
| | - Giulia Temponi
- Department of Biosciences, University of Milan, Milan, Italy
| | | |
Collapse
|
34
|
Uluca B, Lektemur Esen C, Saritas Erdogan S, Kumbasar A. NFI transcriptionally represses CDON and is required for SH-SY5Y cell survival. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194798. [PMID: 35151899 DOI: 10.1016/j.bbagrm.2022.194798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Nuclear Factor One (NFI) family of transcription factors regulate proliferation and multiple aspects of differentiation, playing analogous roles in embryonic development and various types of cancer. While all NFI family members are expressed in the developing brain and are involved in progression of brain cancers, their role in neuroblastoma has not been studied. Here we show that NFIB is required for the survival and proliferation of SH-SY5Y neuroblastoma cells, assessed by viability and colony formation assays. Cdon, an Ig superfamily member, is a SHH dependence receptor that acts as a tumor suppressor in neuroblastoma. In the absence of NFI, Cdon is upregulated in the developing mouse brain, however the mechanisms by which its transcription is regulated remains unknown. We report CDON as a downstream target of NFIs in SH-SY5Y cells. There are three putative NFI binding sites within the one kb CDON promoter, two of which are occupied by NFIs in SH-SY5Y cells and human neural stem cells. In dual-luciferase assays, Nfib directly represses CDON proximal promoter activity. Moreover, silencing NFIB leads to upregulation of CDON in SH-SY5Y cells, however, decreased cell proliferation in NFIB silenced cells could not be rescued by concomitantly silencing CDON, suggesting other molecular players are involved. For instance, p21, an NFI target in glioblastoma and breast cancer cells, is also upregulated upon NFIB knock-down. We propose that NFIB is indispensable for SH-SY5Y cells which may involve regulation of apoptosis inducer proteins CDON and p21.
Collapse
Affiliation(s)
- Betül Uluca
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; Department of Molecular Biotechnology, Turkish-German University, Beykoz, Istanbul 34820, Turkey
| | - Cemre Lektemur Esen
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Sinem Saritas Erdogan
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Asli Kumbasar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
| |
Collapse
|
35
|
Guo D, Daman K, Chen JJC, Shi MJ, Yan J, Matijasevic Z, Rickard AM, Bennett MH, Kiselyov A, Zhou H, Bang AG, Wagner KR, Maehr R, King OD, Hayward LJ, Emerson CP. iMyoblasts for ex vivo and in vivo investigations of human myogenesis and disease modeling. eLife 2022; 11:e70341. [PMID: 35076017 PMCID: PMC8789283 DOI: 10.7554/elife.70341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle myoblasts (iMyoblasts) were generated from human induced pluripotent stem cells (iPSCs) using an efficient and reliable transgene-free induction and stem cell selection protocol. Immunofluorescence, flow cytometry, qPCR, digital RNA expression profiling, and scRNA-Seq studies identify iMyoblasts as a PAX3+/MYOD1+ skeletal myogenic lineage with a fetal-like transcriptome signature, distinct from adult muscle biopsy myoblasts (bMyoblasts) and iPSC-induced muscle progenitors. iMyoblasts can be stably propagated for >12 passages or 30 population doublings while retaining their dual commitment for myotube differentiation and regeneration of reserve cells. iMyoblasts also efficiently xenoengrafted into irradiated and injured mouse muscle where they undergo differentiation and fetal-adult MYH isoform switching, demonstrating their regulatory plasticity for adult muscle maturation in response to signals in the host muscle. Xenograft muscle retains PAX3+ muscle progenitors and can regenerate human muscle in response to secondary injury. As models of disease, iMyoblasts from individuals with Facioscapulohumeral Muscular Dystrophy revealed a previously unknown epigenetic regulatory mechanism controlling developmental expression of the pathological DUX4 gene. iMyoblasts from Limb-Girdle Muscular Dystrophy R7 and R9 and Walker Warburg Syndrome patients modeled their molecular disease pathologies and were responsive to small molecule and gene editing therapeutics. These findings establish the utility of iMyoblasts for ex vivo and in vivo investigations of human myogenesis and disease pathogenesis and for the development of muscle stem cell therapeutics.
Collapse
Affiliation(s)
- Dongsheng Guo
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Katelyn Daman
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Jennifer JC Chen
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Meng-Jiao Shi
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Jing Yan
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Zdenka Matijasevic
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Transgenic Animal Modeling Core, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | | | | | | | - Haowen Zhou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Kathryn R Wagner
- Center for Genetic Muscle Disorders, Kennedy Krieger InstituteBaltimoreUnited States
| | - René Maehr
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Oliver D King
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Lawrence J Hayward
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
36
|
Angelini G, Mura G, Messina G. Therapeutic approaches to preserve the musculature in Duchenne Muscular Dystrophy: The importance of the secondary therapies. Exp Cell Res 2022; 410:112968. [PMID: 34883113 DOI: 10.1016/j.yexcr.2021.112968] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/15/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023]
Abstract
Muscular dystrophies (MDs) are heterogeneous diseases, characterized by primary wasting of skeletal muscle, which in severe cases, such as Duchenne Muscular Dystrophy (DMD), leads to wheelchair dependency, respiratory failure, and premature death. Research is ongoing to develop efficacious therapies, particularly for DMD. Most of the efforts, currently focusing on correcting or restoring the primary defect of MDs, are based on gene-addition, exon-skipping, stop codon read-through, and genome-editing. Although promising, most of them revealed several practical limitations. Shared knowledge in the field is that, in order to be really successful, any therapeutic approach has to rely on spared functional muscle tissue, restricting the number of patients eligible for clinical trials to the youngest and less compromised individuals. In line with this, many therapeutic strategies aim to preserve muscle tissue and function. This Review outlines the most interesting and recent studies addressing the secondary outcomes of DMD and how to better deliver the therapeutic agents. In the future, the effective treatment of DMD will likely require combinations of therapies addressing both the primary genetic defect and its consequences.
Collapse
Affiliation(s)
- Giuseppe Angelini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Giada Mura
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Graziella Messina
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
37
|
Rodríguez-Fdez S, Bustelo XR. Rho GTPases in Skeletal Muscle Development and Homeostasis. Cells 2021; 10:cells10112984. [PMID: 34831205 PMCID: PMC8616218 DOI: 10.3390/cells10112984] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Rho guanosine triphosphate hydrolases (GTPases) are molecular switches that cycle between an inactive guanosine diphosphate (GDP)-bound and an active guanosine triphosphate (GTP)-bound state during signal transduction. As such, they regulate a wide range of both cellular and physiological processes. In this review, we will summarize recent work on the role of Rho GTPase-regulated pathways in skeletal muscle development, regeneration, tissue mass homeostatic balance, and metabolism. In addition, we will present current evidence that links the dysregulation of these GTPases with diseases caused by skeletal muscle dysfunction. Overall, this information underscores the critical role of a number of members of the Rho GTPase subfamily in muscle development and the overall metabolic balance of mammalian species.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence: or
| | - Xosé R. Bustelo
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
38
|
Rodriguez-Outeiriño L, Hernandez-Torres F, Ramírez-de Acuña F, Matías-Valiente L, Sanchez-Fernandez C, Franco D, Aranega AE. Muscle Satellite Cell Heterogeneity: Does Embryonic Origin Matter? Front Cell Dev Biol 2021; 9:750534. [PMID: 34722534 PMCID: PMC8554119 DOI: 10.3389/fcell.2021.750534] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Muscle regeneration is an important homeostatic process of adult skeletal muscle that recapitulates many aspects of embryonic myogenesis. Satellite cells (SCs) are the main muscle stem cells responsible for skeletal muscle regeneration. SCs reside between the myofiber basal lamina and the sarcolemma of the muscle fiber in a quiescent state. However, in response to physiological stimuli or muscle trauma, activated SCs transiently re-enter the cell cycle to proliferate and subsequently exit the cell cycle to differentiate or self-renew. Recent evidence has stated that SCs display functional heterogeneity linked to regenerative capability with an undifferentiated subgroup that is more prone to self-renewal, as well as committed progenitor cells ready for myogenic differentiation. Several lineage tracing studies suggest that such SC heterogeneity could be associated with different embryonic origins. Although it has been established that SCs are derived from the central dermomyotome, how a small subpopulation of the SCs progeny maintain their stem cell identity while most progress through the myogenic program to construct myofibers is not well understood. In this review, we synthesize the works supporting the different developmental origins of SCs as the genesis of their functional heterogeneity.
Collapse
Affiliation(s)
- Lara Rodriguez-Outeiriño
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Francisco Hernandez-Torres
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
| | - F. Ramírez-de Acuña
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Lidia Matías-Valiente
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Cristina Sanchez-Fernandez
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Amelia Eva Aranega
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| |
Collapse
|
39
|
Esteves de Lima J, Relaix F. Master regulators of skeletal muscle lineage development and pluripotent stem cells differentiation. CELL REGENERATION 2021; 10:31. [PMID: 34595600 PMCID: PMC8484369 DOI: 10.1186/s13619-021-00093-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022]
Abstract
In vertebrates, the skeletal muscles of the body and their associated stem cells originate from muscle progenitor cells, during development. The specification of the muscles of the trunk, head and limbs, relies on the activity of distinct genetic hierarchies. The major regulators of trunk and limb muscle specification are the paired-homeobox transcription factors PAX3 and PAX7. Distinct gene regulatory networks drive the formation of the different muscles of the head. Despite the redeployment of diverse upstream regulators of muscle progenitor differentiation, the commitment towards the myogenic fate requires the expression of the early myogenic regulatory factors MYF5, MRF4, MYOD and the late differentiation marker MYOG. The expression of these genes is activated by muscle progenitors throughout development, in several waves of myogenic differentiation, constituting the embryonic, fetal and postnatal phases of muscle growth. In order to achieve myogenic cell commitment while maintaining an undifferentiated pool of muscle progenitors, several signaling pathways regulate the switch between proliferation and differentiation of myoblasts. The identification of the gene regulatory networks operating during myogenesis is crucial for the development of in vitro protocols to differentiate pluripotent stem cells into myoblasts required for regenerative medicine.
Collapse
Affiliation(s)
| | - Frédéric Relaix
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, 94010, Creteil, France.
| |
Collapse
|
40
|
Al Tanoury Z, Zimmerman JF, Rao J, Sieiro D, McNamara HM, Cherrier T, Rodríguez-delaRosa A, Hick-Colin A, Bousson F, Fugier-Schmucker C, Marchiano F, Habermann B, Chal J, Nesmith AP, Gapon S, Wagner E, Gupta VA, Bassel-Duby R, Olson EN, Cohen AE, Parker KK, Pourquié O. Prednisolone rescues Duchenne muscular dystrophy phenotypes in human pluripotent stem cell-derived skeletal muscle in vitro. Proc Natl Acad Sci U S A 2021; 118:e2022960118. [PMID: 34260377 PMCID: PMC8285911 DOI: 10.1073/pnas.2022960118] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating genetic disease leading to degeneration of skeletal muscles and premature death. How dystrophin absence leads to muscle wasting remains unclear. Here, we describe an optimized protocol to differentiate human induced pluripotent stem cells (iPSC) to a late myogenic stage. This allows us to recapitulate classical DMD phenotypes (mislocalization of proteins of the dystrophin-associated glycoprotein complex, increased fusion, myofiber branching, force contraction defects, and calcium hyperactivation) in isogenic DMD-mutant iPSC lines in vitro. Treatment of the myogenic cultures with prednisolone (the standard of care for DMD) can dramatically rescue force contraction, fusion, and branching defects in DMD iPSC lines. This argues that prednisolone acts directly on myofibers, challenging the largely prevalent view that its beneficial effects are caused by antiinflammatory properties. Our work introduces a human in vitro model to study the onset of DMD pathology and test novel therapeutic approaches.
Collapse
Affiliation(s)
- Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67411 Illkirch Graffenstaden, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - John F Zimmerman
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA 02134
| | - Jyoti Rao
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - Daniel Sieiro
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - Harold M McNamara
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Department of Physics, Harvard University, Cambridge, MA 02138
| | - Thomas Cherrier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67411 Illkirch Graffenstaden, France
| | - Alejandra Rodríguez-delaRosa
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | | | - Fanny Bousson
- Anagenesis Biotechnologies, 67400 Illkirch Graffenstaden, France
| | | | - Fabio Marchiano
- Aix-Marseille University, CNRS, Institut de Biologie du Développement de Marseille UMR 7288, The Turing Center for Living Systems, 13009 Marseille, France
| | - Bianca Habermann
- Aix-Marseille University, CNRS, Institut de Biologie du Développement de Marseille UMR 7288, The Turing Center for Living Systems, 13009 Marseille, France
| | - Jérome Chal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67411 Illkirch Graffenstaden, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - Alexander P Nesmith
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA 02134
| | - Svetlana Gapon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | - Erica Wagner
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | - Vandana A Gupta
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Department of Physics, Harvard University, Cambridge, MA 02138
| | - Kevin Kit Parker
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA 02134
| | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67411 Illkirch Graffenstaden, France;
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| |
Collapse
|
41
|
Yuan R, Zhang J, Wang Y, Zhu X, Hu S, Zeng J, Liang F, Tang Q, Chen Y, Chen L, Zhu W, Li M, Mo D. Reorganization of chromatin architecture during prenatal development of porcine skeletal muscle. DNA Res 2021; 28:6261936. [PMID: 34009337 PMCID: PMC8154859 DOI: 10.1093/dnares/dsab003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022] Open
Abstract
Myofibres (primary and secondary myofibre) are the basic structure of muscle and the determinant of muscle mass. To explore the skeletal muscle developmental processes from primary myofibres to secondary myofibres in pigs, we conducted an integrative three-dimensional structure of genome and transcriptomic characterization of longissimus dorsi muscle of pig from primary myofibre formation stage [embryonic Day 35 (E35)] to secondary myofibre formation stage (E80). In the hierarchical genomic structure, we found that 11.43% of genome switched compartment A/B status, 14.53% of topologically associating domains are changed intradomain interactions (D-scores) and 2,730 genes with differential promoter–enhancer interactions and (or) enhancer activity from E35 to E80. The alterations of genome architecture were found to correlate with expression of genes that play significant roles in neuromuscular junction, embryonic morphogenesis, skeletal muscle development or metabolism, typically, NEFL, MuSK, SLN, Mef2D and GCK. Significantly, Sox6 and MATN2 play important roles in the process of primary to secondary myofibres formation and increase the regulatory potential score and genes expression in it. In brief, we reveal the genomic reorganization from E35 to E80 and construct genome-wide high-resolution interaction maps that provide a resource for studying long-range control of gene expression from E35 to E80.
Collapse
Affiliation(s)
- Renqiang Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaman Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yujie Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingxing Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianhua Zeng
- Guangdong YIHAO Food Co., Ltd, Guangzhou 510620, China
| | - Feng Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Luxi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wei Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
42
|
Retinal Genomic Fabric Remodeling after Optic Nerve Injury. Genes (Basel) 2021; 12:genes12030403. [PMID: 33799827 PMCID: PMC7999523 DOI: 10.3390/genes12030403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a multifactorial neurodegenerative disease, characterized by degeneration of the retinal ganglion cells (RGCs). There has been little progress in developing efficient strategies for neuroprotection in glaucoma. We profiled the retina transcriptome of Lister Hooded rats at 2 weeks after optic nerve crush (ONC) and analyzed the data from the genomic fabric paradigm (GFP) to bring additional insights into the molecular mechanisms of the retinal remodeling after induction of RGC degeneration. GFP considers three independent characteristics for the expression of each gene: level, variability, and correlation with each other gene. Thus, the 17,657 quantified genes in our study generated a total of 155,911,310 values to analyze. This represents 8830x more data per condition than a traditional transcriptomic analysis. ONC led to a 57% reduction in RGC numbers as detected by retrograde labeling with 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI). We observed a higher relative expression variability after ONC. Gene expression stability was used as a measure of transcription control and disclosed a robust reduction in the number of very stably expressed genes. Predicted protein-protein interaction (PPI) analysis with STRING revealed axon and neuron projection as mostly decreased processes, consistent with RGC degeneration. Conversely, immune response PPIs were found among upregulated genes. Enrichment analysis showed that complement cascade and Notch signaling pathway, as well as oxidative stress and kit receptor pathway were affected after ONC. To expand our studies of altered molecular pathways, we examined the pairwise coordination of gene expressions within each pathway and within the entire transcriptome using Pearson correlations. ONC increased the number of synergistically coordinated pairs of genes and the number of similar profiles mainly in complement cascade and Notch signaling pathway. This deep bioinformatic study provided novel insights beyond the regulation of individual gene expression and disclosed changes in the control of expression of complement cascade and Notch signaling functional pathways that may be relevant for both RGC degeneration and remodeling of the retinal tissue after ONC.
Collapse
|
43
|
Sitbon YH, Yadav S, Kazmierczak K, Szczesna-Cordary D. Insights into myosin regulatory and essential light chains: a focus on their roles in cardiac and skeletal muscle function, development and disease. J Muscle Res Cell Motil 2020; 41:313-327. [PMID: 31131433 PMCID: PMC6879809 DOI: 10.1007/s10974-019-09517-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
The activity of cardiac and skeletal muscles depends upon the ATP-coupled actin-myosin interactions to execute the power stroke and muscle contraction. The goal of this review article is to provide insight into the function of myosin II, the molecular motor of the heart and skeletal muscles, with a special focus on the role of myosin II light chain (MLC) components. Specifically, we focus on the involvement of myosin regulatory (RLC) and essential (ELC) light chains in striated muscle development, isoform appearance and their function in normal and diseased muscle. We review the consequences of isoform switching and knockout of specific MLC isoforms on cardiac and skeletal muscle function in various animal models. Finally, we discuss how dysregulation of specific RLC/ELC isoforms can lead to cardiac and skeletal muscle diseases and summarize the effects of most studied mutations leading to cardiac or skeletal myopathies.
Collapse
Affiliation(s)
- Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
44
|
Matuzelski E, Essebier A, Harris L, Gronostajski RM, Harvey TJ, Piper M. Alterations in gene expression in the spinal cord of mice lacking Nfix. BMC Res Notes 2020; 13:437. [PMID: 32938475 PMCID: PMC7493862 DOI: 10.1186/s13104-020-05278-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/09/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Nuclear Factor One X (NFIX) is a transcription factor expressed by neural stem cells within the developing mouse brain and spinal cord. In order to characterise the pathways by which NFIX may regulate neural stem cell biology within the developing mouse spinal cord, we performed an microarray-based transcriptomic analysis of the spinal cord of embryonic day (E)14.5 Nfix-/- mice in comparison to wild-type controls. DATA DESCRIPTION Using microarray and differential gene expression analyses, we were able to identify differentially expressed genes in the spinal cords of E14.5 Nfix-/- mice compared to wild-type controls. We performed microarray-based sequencing on spinal cords from n = 3 E14.5 Nfix-/- mice and n = 3 E14.5 Nfix+/+ mice. Differential gene expression analysis, using a false discovery rate (FDR) p-value of p < 0.05, and a fold change cut-off for differential expression of > ± 1.5, revealed 1351 differentially regulated genes in the spinal cord of Nfix-/- mice. Of these, 828 were upregulated, and 523 were downregulated. This resource provides a tool to interrogate the role of this transcription factor in spinal cord development.
Collapse
Affiliation(s)
- Elise Matuzelski
- School of Biomedical Sciences, The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alexandra Essebier
- School of Chemistry and Molecular Bioscience Sciences, The Faculty of Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lachlan Harris
- School of Biomedical Sciences, The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Tracey J Harvey
- School of Biomedical Sciences, The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Michael Piper
- School of Biomedical Sciences, The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
45
|
Zhao M, Tazumi A, Takayama S, Takenaka-Ninagawa N, Nalbandian M, Nagai M, Nakamura Y, Nakasa M, Watanabe A, Ikeya M, Hotta A, Ito Y, Sato T, Sakurai H. Induced Fetal Human Muscle Stem Cells with High Therapeutic Potential in a Mouse Muscular Dystrophy Model. Stem Cell Reports 2020; 15:80-94. [PMID: 32619494 PMCID: PMC7363940 DOI: 10.1016/j.stemcr.2020.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive and fatal muscle-wasting disease caused by DYSTROPHIN deficiency. Cell therapy using muscle stem cells (MuSCs) is a potential cure. Here, we report a differentiation method to generate fetal MuSCs from human induced pluripotent stem cells (iPSCs) by monitoring MYF5 expression. Gene expression profiling indicated that MYF5-positive cells in the late stage of differentiation have fetal MuSC characteristics, while MYF5-positive cells in the early stage of differentiation have early myogenic progenitor characteristics. Moreover, late-stage MYF5-positive cells demonstrated good muscle regeneration potential and produced DYSTROPHIN in vivo after transplantation into DMD model mice, resulting in muscle function recovery. The engrafted cells also generated PAX7-positive MuSC-like cells under the basal lamina of DYSTROPHIN-positive fibers. These findings suggest that MYF5-positive fetal MuSCs induced in the late stage of iPSC differentiation have cell therapy potential for DMD. Wnt agonists at high dose and long term induces dermomyotome cells effectively MYF5+ cell characteristics vary between early- and late-stage differentiation Late-stage MYF5+ cells acquire characteristics resembling fetal muscle stem cells MYF5+ cells recover dystrophin and improves muscular function
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Atsutoshi Tazumi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Asahi Kasei Co., Ltd., 1-105 Jinbo-cho, Kanda, Chiyoda-ku, Tokyo, Japan
| | - Satoru Takayama
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Asahi Kasei Co., Ltd., 1-105 Jinbo-cho, Kanda, Chiyoda-ku, Tokyo, Japan
| | - Nana Takenaka-Ninagawa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Minas Nalbandian
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Miki Nagai
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yumi Nakamura
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masanori Nakasa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akira Watanabe
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akitsu Hotta
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuta Ito
- Faculty of Rehabilitation Science, Nagoya Gakuin University, 1350 Kamishinano-cho, Seto City, Aichi 480-1298, Japan
| | - Takahiko Sato
- Department of Anatomy, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
46
|
Florkowska A, Meszka I, Zawada M, Legutko D, Proszynski TJ, Janczyk-Ilach K, Streminska W, Ciemerych MA, Grabowska I. Pax7 as molecular switch regulating early and advanced stages of myogenic mouse ESC differentiation in teratomas. Stem Cell Res Ther 2020; 11:238. [PMID: 32552916 PMCID: PMC7301568 DOI: 10.1186/s13287-020-01742-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
Background Pluripotent stem cells present the ability to self-renew and undergo differentiation into any cell type building an organism. Importantly, a lot of evidence on embryonic stem cell (ESC) differentiation comes from in vitro studies. However, ESCs cultured in vitro do not necessarily behave as cells differentiating in vivo. For this reason, we used teratomas to study early and advanced stages of in vivo ESC myogenic differentiation and the role of Pax7 in this process. Pax7 transcription factor plays a crucial role in the formation and differentiation of skeletal muscle precursor cells during embryonic development. It controls the expression of other myogenic regulators and also acts as an anti-apoptotic factor. It is also involved in the formation and maintenance of satellite cell population. Methods In vivo approach we used involved generation and analysis of pluripotent stem cell-derived teratomas. Such model allows to analyze early and also terminal stages of tissue differentiation, for example, terminal stages of myogenesis, including the formation of innervated and vascularized mature myofibers. Results We determined how the lack of Pax7 function affects the generation of different myofiber types. In Pax7−/− teratomas, the skeletal muscle tissue occupied significantly smaller area, as compared to Pax7+/+ ones. The proportion of myofibers expressing Myh3 and Myh2b did not differ between Pax7+/+ and Pax7−/− teratomas. However, the area of Myh7 and Myh2a myofibers was significantly lower in Pax7−/− ones. Molecular characteristic of skeletal muscles revealed that the levels of mRNAs coding Myh isoforms were significantly lower in Pax7−/− teratomas. The level of mRNAs encoding Pax3 was significantly higher, while the expression of Nfix, Eno3, Mck, Mef2a, and Itga7 was significantly lower in Pax7−/− teratomas, as compared to Pax7+/+ ones. We proved that the number of satellite cells in Pax7−/− teratomas was significantly reduced. Finally, analysis of neuromuscular junction localization in samples prepared with the iDISCO method confirmed that the organization of neuromuscular junctions in Pax7−/− teratomas was impaired. Conclusions Pax7−/− ESCs differentiate in vivo to embryonic myoblasts more readily than Pax7+/+ cells. In the absence of functional Pax7, initiation of myogenic differentiation is facilitated, and as a result, the expression of mesoderm embryonic myoblast markers is upregulated. However, in the absence of functional Pax7 neuromuscular junctions, formation is abnormal, what results in lower differentiation potential of Pax7−/− ESCs during advanced stages of myogenesis.
Collapse
Affiliation(s)
- Anita Florkowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Igor Meszka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Zawada
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Diana Legutko
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz J Proszynski
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Present Address: Lukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Katarzyna Janczyk-Ilach
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
47
|
Mariani L, Weinand K, Gisselbrecht SS, Bulyk ML. MEDEA: analysis of transcription factor binding motifs in accessible chromatin. Genome Res 2020; 30:736-748. [PMID: 32424069 PMCID: PMC7263192 DOI: 10.1101/gr.260877.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022]
Abstract
Deciphering the interplay between chromatin accessibility and transcription factor (TF) binding is fundamental to understanding transcriptional regulation, control of cellular states, and the establishment of new phenotypes. Recent genome-wide chromatin accessibility profiling studies have provided catalogs of putative open regions, where TFs can recognize their motifs and regulate gene expression programs. Here, we present motif enrichment in differential elements of accessibility (MEDEA), a computational tool that analyzes high-throughput chromatin accessibility genomic data to identify cell-type-specific accessible regions and lineage-specific motifs associated with TF binding therein. To benchmark MEDEA, we used a panel of reference cell lines profiled by ENCODE and curated by the ENCODE Project Consortium for the ENCODE-DREAM Challenge. By comparing results with RNA-seq data, ChIP-seq peaks, and DNase-seq footprints, we show that MEDEA improves the detection of motifs associated with known lineage specifiers. We then applied MEDEA to 610 ENCODE DNase-seq data sets, where it revealed significant motifs even when absolute enrichment was low and where it identified novel regulators, such as NRF1 in kidney development. Finally, we show that MEDEA performs well on both bulk and single-cell ATAC-seq data. MEDEA is publicly available as part of our Glossary-GENRE suite for motif enrichment analysis.
Collapse
Affiliation(s)
- Luca Mariani
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kathryn Weinand
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.,Bioinformatics and Integrative Genomics PhD Program, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Stephen S Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.,Bioinformatics and Integrative Genomics PhD Program, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
48
|
Xi H, Langerman J, Sabri S, Chien P, Young CS, Younesi S, Hicks M, Gonzalez K, Fujiwara W, Marzi J, Liebscher S, Spencer M, Van Handel B, Evseenko D, Schenke-Layland K, Plath K, Pyle AD. A Human Skeletal Muscle Atlas Identifies the Trajectories of Stem and Progenitor Cells across Development and from Human Pluripotent Stem Cells. Cell Stem Cell 2020; 27:158-176.e10. [PMID: 32396864 PMCID: PMC7367475 DOI: 10.1016/j.stem.2020.04.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/12/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
The developmental trajectory of human skeletal myogenesis and the transition between progenitor and stem cell states are unclear. We used single-cell RNA sequencing to profile human skeletal muscle tissues from embryonic, fetal, and postnatal stages. In silico, we identified myogenic as well as other cell types and constructed a "roadmap" of human skeletal muscle ontogeny across development. In a similar fashion, we also profiled the heterogeneous cell cultures generated from multiple human pluripotent stem cell (hPSC) myogenic differentiation protocols and mapped hPSC-derived myogenic progenitors to an embryonic-to-fetal transition period. We found differentially enriched biological processes and discovered co-regulated gene networks and transcription factors present at distinct myogenic stages. This work serves as a resource for advancing our knowledge of human myogenesis. It also provides a tool for a better understanding of hPSC-derived myogenic progenitors for translational applications in skeletal muscle-based regenerative medicine.
Collapse
Affiliation(s)
- Haibin Xi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Justin Langerman
- Deparment of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shan Sabri
- Deparment of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peggie Chien
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Courtney S Young
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shahab Younesi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Hicks
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Karen Gonzalez
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wakana Fujiwara
- Department of Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julia Marzi
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Simone Liebscher
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Melissa Spencer
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ben Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany; Department of Medicine/Cardiology, Cardiovascular Research Laboratories, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kathrin Plath
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Deparment of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
| | - April D Pyle
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Yang Z, Zhang L, Hu J, Wang J, Bao Z, Wang S. The evo-devo of molluscs: Insights from a genomic perspective. Evol Dev 2020; 22:409-424. [PMID: 32291964 DOI: 10.1111/ede.12336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Molluscs represent one of ancient and evolutionarily most successful groups of marine invertebrates, with a tremendous diversity of morphology, behavior, and lifestyle. Molluscs are excellent subjects for evo-devo studies; however, understanding of the evo-devo of molluscs has been largely hampered by incomplete fossil records and limited molecular data. Recent advancement of genomics and other technologies has greatly fueled the molluscan "evo-devo" field, and decoding of several molluscan genomes provides unprecedented insights into molluscan biology and evolution. Here, we review the recent progress of molluscan genome sequencing as well as novel insights gained from their genomes, by emphasizing how molluscan genomics enhances our understanding of the evo-devo of molluscs.
Collapse
Affiliation(s)
- Zhihui Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,The Sars-Fang Centre, Ocean University of China, Qingdao, China
| |
Collapse
|
50
|
Nuclear factor IX promotes glioblastoma development through transcriptional activation of Ezrin. Oncogenesis 2020; 9:39. [PMID: 32291386 PMCID: PMC7156762 DOI: 10.1038/s41389-020-0223-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Enhanced migration is pivotal for the malignant development of glioblastoma (GBM), but the underlying molecular mechanism that modulates the migration of the GBM cells remains obscure. Here we show that nuclear factor IX (NFIX) is significantly upregulated in human GBM lesions compared with normal or low-grade gliomas. NFIX deficiency impairs the migration of GBM cells and inhibits the tumor growth in the hippocampus of immunodeficient nude mice. Mechanistically, NFIX silencing suppresses the expression of Ezrin, a protein that crosslinks actin cytoskeleton and plasma membrane, which is also positively correlated with GBM malignancy. NFIX depletion induced migration inhibition of GBM cells can be rescued by the replenishment of Ezrin. Furthermore, we identify a NFIX response element (RE) between −840 and −825 bp in the promoter region of the Ezrin gene. Altogether, our findings show, for the first time that NFIX can transcriptionally upregulate the expression of Ezrin and contribute to the enhanced migration of GBM cells, suggesting that NFIX is a potential target for GBM therapy.
Collapse
|