1
|
Bao Y, Gu L, Chen J, Wang H, Wang Z, Wang H, Wang S, Wang L. Autoimmune diseases and cardiovascular risk: Mendelian randomization analysis for the impact of 19 autoimmune diseases on 14 cardiovascular conditions. J Transl Autoimmun 2024; 9:100259. [PMID: 39554254 PMCID: PMC11565429 DOI: 10.1016/j.jtauto.2024.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Backgroud Autoimmune diseases (AIDs) have been associated with various cardiovascular diseases (CVDs) in observational data. However, the causality of these associations remains uncertain. Therefore, a systematic assessment of the impact of AIDS on cardiovascular risk is required. Results We assessed the impact of 19 common AIDs on 14 CVDs using bidirectional Mendelian randomization (MR). Celiac disease (odds ratio [OR] = 2.949, 95 % confidence interval [CI]: 1.111-7.827, P = 0.030) and type 1 diabetes mellitus (T1DM) (OR = 1.044, 95 % CI: 1.021-1.068, P = 1.82e-4) were associated with an increased risk of peripheral arterial disease (PAD). Additionally, celiac disease was linked to an increased risk of arrhythmia (OR = 1.008, 95 % CI: 1.002-1.013, P = 0.004), multiple sclerosis to venous thromboembolism (OR = 1.001, 95 % CI: 1.000-1.001, P = 0.010), and psoriasis to heart failure (OR = 1.048, 95 % CI: 1.021-1.077, P = 0.001). Sensitivity analyses were conducted to enhance the robustness of these findings. Predominantly, immune response and inflammation-related pathways were enriched in the aforementioned associations. Mediation analysis identified human leukocyte antigen-DR positive myeloid dendritic cells as partially mediating the effect of T1DM on PAD, with a mediated proportion of 16.61 % (P = 0.028). Potential therapeutic agents, such as tumor necrosis factor-alpha inhibitors and interferon, may have efficacy in treating AID-related CVDs. Conclusions This study presents genetic evidence of certain AIDs impacting specific CVDs and identifies potential mediators and drugs.
Collapse
Affiliation(s)
- Yulin Bao
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, 210029, China
| | - Lingfeng Gu
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, 210029, China
| | - Jiayi Chen
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, 210029, China
| | - Hao Wang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, 210029, China
| | - Zemu Wang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, 210029, China
| | - Huijuan Wang
- Department of Immunology, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Sibo Wang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, 210029, China
| | - Liansheng Wang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, 210029, China
| |
Collapse
|
2
|
Țiburcă L, Zaha DC, Jurca MC, Severin E, Jurca A, Jurca AD. The Role of Aminopeptidase ERAP1 in Human Pathology-A Review. Curr Issues Mol Biol 2024; 46:1651-1667. [PMID: 38534723 DOI: 10.3390/cimb46030107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
Aminopeptidases are a group of enzymatic proteins crucial for protein digestion, catalyzing the cleavage of amino acids at the N-terminus of peptides. Among them are ERAP1 (coding for endoplasmic reticulum aminopeptidase 1), ERAP2 (coding for endoplasmic reticulum aminopeptidase 2), and LNPEP (coding for leucyl and cystinyl aminopeptidase). These genes encoding these enzymes are contiguous and located on the same chromosome (5q21); they share structural homology and functions and are associated with immune-mediated diseases. These aminopeptidases play a key role in immune pathology by cleaving peptides to optimal sizes for binding to the major histocompatibility complex (MHC) and contribute to cellular homeostasis. By their ability to remove the extracellular region of interleukin 2 and 6 receptors (IL2, IL6) and the tumor necrosis factor receptor (TNF), ERAP1 and ERAP2 are involved in regulating the innate immune response and, finally, in blood pressure control and angiogenesis. The combination of specific genetic variations in these genes has been linked to various conditions, including autoimmune and autoinflammatory diseases and cancer, as well as hematological and dermatological disorders. This literature review aims to primarily explore the impact of ERAP1 polymorphisms on its enzymatic activity and function. Through a systematic examination of the available literature, this review seeks to provide valuable insights into the role of ERAP1 in the pathogenesis of various diseases and its potential implications for targeted therapeutic interventions. Through an exploration of the complex interplay between ERAP1 and various disease states, this review contributes to the synthesis of current biomedical research findings and their implications for personalized medicine.
Collapse
Affiliation(s)
- Laura Țiburcă
- Faculty of Medicine and Pharmacy, University of Oradea, Universității Street 1, 410087 Oradea, Romania
| | - Dana Carmen Zaha
- Faculty of Medicine and Pharmacy, University of Oradea, Universității Street 1, 410087 Oradea, Romania
| | - Maria Claudia Jurca
- Faculty of Medicine and Pharmacy, University of Oradea, Universității Street 1, 410087 Oradea, Romania
- Regional Center of Medical Genetics Bihor, County Emergency Clinical Hospital, Bihor, 65-67, Gheorghe Doja Street, 410169 Oradea, Romania
| | - Emilia Severin
- Department of Genetics, Carol Davila University of Medicine and Pharmacy, Dionisie Lupu 37 Street, 020021 Bucharest, Romania
| | - Aurora Jurca
- Faculty of Medicine and Pharmacy, University of Oradea, Universității Street 1, 410087 Oradea, Romania
| | - Alexandru Daniel Jurca
- Faculty of Medicine and Pharmacy, University of Oradea, Universității Street 1, 410087 Oradea, Romania
| |
Collapse
|
3
|
Velasco-de Andrés M, Muñoz-Sánchez G, Carrillo-Serradell L, Gutiérrez-Hernández MDM, Català C, Isamat M, Lozano F. Chimeric antigen receptor-based therapies beyond cancer. Eur J Immunol 2023; 53:e2250184. [PMID: 36649259 DOI: 10.1002/eji.202250184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Adoptive cell transfer (ACT) therapies have gained renewed interest in the field of immunotherapy following the advent of chimeric antigen receptor (CAR) technology. This immunological breakthrough requires immune cell engineering with an artificial surface protein receptor for antigen-specific recognition coupled to an intracellular protein domain for cell activating functions. CAR-based ACT has successfully solved some hematological malignancies, and it is expected that other tumors may soon benefit from this approach. However, the potential of CAR technology is such that other immune-mediated disorders are beginning to profit from it. This review will focus on CAR-based ACT therapeutic areas other than oncology such as infection, allergy, autoimmunity, transplantation, and fibrotic repair. Herein, we discuss the results and limitations of preclinical and clinical studies in that regard.
Collapse
Affiliation(s)
| | - Guillermo Muñoz-Sánchez
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | | | - Cristina Català
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marcos Isamat
- Sepsia Therapeutics S.L., L'Hospitalet de Llobregat, Spain
| | - Francisco Lozano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
He D, Liu L, Shen D, Zou P, Cui L. The Effect of Peripheral Immune Cell Counts on the Risk of Multiple Sclerosis: A Mendelian Randomization Study. Front Immunol 2022; 13:867693. [PMID: 35619713 PMCID: PMC9128528 DOI: 10.3389/fimmu.2022.867693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Multiple sclerosis (MS) is a complex central nervous system (CNS) demyelinating disease, the etiology of which involves the interplay between genetic and environmental factors. We aimed to determine whether genetically predicted peripheral immune cell counts may have a causal effect on MS. Methods We used genetic variants strongly associated with cell counts of circulating leukocyte, lymphocyte, monocyte, neutrophil, eosinophil, and basophil, in addition to some subpopulations of T and B lymphocyte, as instrumental variables (IVs) to perform Mendelian randomization (MR) analyses. The effect of immune cell counts on MS risk was measured using the summary statistics from the International Multiple Sclerosis Genetics Consortium (IMSGC) genome-wide association studies (GWAS). Results Our findings indicated that higher leucocyte count [odds ratio (OR), 1.24; 95% confidence interval (CI), 1.07 - 1.43; p = 0.0039] and lymphocyte count (OR, 1.17; 95% CI, 1.01 – 1.35; p = 0.0317) were causally associated with MS susceptibility. In addition, we also found that increase of genetically predicted natural killer T (NKT) cell count is also associated with an increase MS risk (OR, 1.24; 95% CI, 1.06 - 1.45; p = 0.0082). Conclusions These findings show that the genetic predisposition to higher peripheral immune cell counts can exert a causal effect on MS risk, which confirms the crucial role played by peripheral immunity in MS. Particularly, the causal association between NKT cell count and MS underscores the relevance of exploring the functional roles of NKT cells in disease pathogenesis in future.
Collapse
Affiliation(s)
- Di He
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liyang Liu
- Peking Union Medical College M.D. Program, Peking Union Medical College, Beijing, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Peng Zou
- Department of Cardiac Surgery, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS), Beijing, China
| |
Collapse
|
5
|
Buckley CD, Chernajovsky L, Chernajovsky Y, Modis LK, O'Neill LA, Brown D, Connor R, Coutts D, Waterman EA, Tak PP. Immune-mediated inflammation across disease boundaries: breaking down research silos. Nat Immunol 2021; 22:1344-1348. [PMID: 34675389 DOI: 10.1038/s41590-021-01044-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Lorna Chernajovsky
- The Lorna and Yuti Chernajovsky Biomedical Research Foundation, Whitstable, UK
| | - Yuti Chernajovsky
- The Lorna and Yuti Chernajovsky Biomedical Research Foundation, Whitstable, UK.
- Queen Mary University of London, London, UK.
| | | | - Luke A O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Doug Brown
- British Society for Immunology, London, UK
| | | | | | | | - Paul P Tak
- The Lorna and Yuti Chernajovsky Biomedical Research Foundation, Whitstable, UK
- University of Cambridge, Cambridge, UK
- Candel Therapeutics, Needham, Massachusetts, USA
- Multimorbidity Steering Group, Strategic Priorities Fund, Swindon, UK
| |
Collapse
|
6
|
Tarhini AA, Kang N, Lee SJ, Hodi FS, Cohen GI, Hamid O, Hutchins LF, Sosman JA, Kluger HM, Eroglu Z, Koon HB, Lawrence DP, Kendra KL, Minor DR, Lee CB, Albertini MR, Flaherty LE, Petrella TM, Streicher H, Sondak VK, Kirkwood JM. Immune adverse events (irAEs) with adjuvant ipilimumab in melanoma, use of immunosuppressants and association with outcome: ECOG-ACRIN E1609 study analysis. J Immunother Cancer 2021; 9:jitc-2021-002535. [PMID: 33963015 PMCID: PMC8108687 DOI: 10.1136/jitc-2021-002535] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2021] [Indexed: 01/30/2023] Open
Abstract
Background The impact of immune-related adverse events (irAEs) occurring from adjuvant use of immunotherapy and of their management on relapse-free survival (RFS) and overall survival (OS) outcomes is currently not well understood. Patients and methods E1609 enrolled 1673 patients with resected high-risk melanoma and evaluated adjuvant ipilimumab 3 mg/kg (ipi3) and 10 mg/kg (ipi10) versus interferon-α. We investigated the association of irAEs and of use of immunosuppressants with RFS and OS for patients treated with ipilimumab (n=1034). Results Occurrence of grades 1–2 irAEs was associated with RFS (5 years: 52% (95% CI 47% to 56%) vs 41% (95% CI 31% to 50%) with no AE; p=0.006) and a trend toward improved OS (5 years: 75% (95% CI 71% to 79%) compared with 67% (95% CI 56% to 75%) with no AE; p=0.064). Among specific irAEs, grades 1–2 rash was most significantly associated with RFS (p=0.002) and OS (p=0.003). In multivariate models adjusting for prognostic factors, the most significant associations were seen for grades 1–2 rash with RFS (p<0.001, HR=0.70) and OS (p=0.01, HR=0.71) and for grades 1–2 endocrine+rash with RFS (p<0.001, HR=0.66) and OS (p=0.008, HR=0.7). Overall, grades 1–2 irAEs had the best prognosis in terms of RFS and OS and those with grades 3–4 had less RFS benefits and no OS advantage over no irAE. Patients experiencing grades 3–4 irAE had significantly higher exposure to corticosteroids and immunosuppressants than those with grades 1–2 (92% vs 60%; p<0.001), but no significant associations were found between corticosteroid and immunosuppressant use and RFS or OS. In investigating the impact of non-corticosteroid immunosuppressants, although there were trends toward better RFS and OS favoring cases who were not exposed, no significant associations were found. Conclusions Rash and endocrine irAEs were independent prognostic factors of RFS and OS in patients treated with adjuvant ipilimumab. Patients experiencing lower grade irAEs derived the most benefit, but we found no significant evidence supporting a negative impact of high dose corticosteroids and immunosuppressants more commonly used to manage grades 3–4 irAEs.
Collapse
Affiliation(s)
- Ahmad A Tarhini
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Ni Kang
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Sandra J Lee
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - F Stephen Hodi
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gary I Cohen
- Greater Baltimore Medical Center, Baltimore, Maryland, USA
| | - Omid Hamid
- The Angeles Clinic & Research Institute, A Cedars Sinai Affiliate, Los Angeles, California, USA
| | - Laura F Hutchins
- Department of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, Arkansas, USA
| | - Jeffrey A Sosman
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Harriet M Kluger
- Department of Medicine, Yale University, New Haven, Connecticut, USA
| | - Zeynep Eroglu
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Henry B Koon
- Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | - David R Minor
- Sutter-California Pacific Medical Center, San Francisco, California, USA
| | - Carrie B Lee
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Lawrence E Flaherty
- Wayne State University and Karmanos Cancer Institute, Detroit, Michigan, USA
| | | | | | - Vernon K Sondak
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | | |
Collapse
|
7
|
Bolton C. An evaluation of the recognised systemic inflammatory biomarkers of chronic sub-optimal inflammation provides evidence for inflammageing (IFA) during multiple sclerosis (MS). Immun Ageing 2021; 18:18. [PMID: 33853634 PMCID: PMC8045202 DOI: 10.1186/s12979-021-00225-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 03/12/2021] [Indexed: 01/11/2023]
Abstract
The pathogenesis of the human demyelinating disorder multiple sclerosis (MS) involves the loss of immune tolerance to self-neuroantigens. A deterioration in immune tolerance is linked to inherent immune ageing, or immunosenescence (ISC). Previous work by the author has confirmed the presence of ISC during MS. Moreover, evidence verified a prematurely aged immune system that may change the frequency and profile of MS through an altered decline in immune tolerance. Immune ageing is closely linked to a chronic systemic sub-optimal inflammation, termed inflammageing (IFA), which disrupts the efficiency of immune tolerance by varying the dynamics of ISC that includes accelerated changes to the immune system over time. Therefore, a shifting deterioration in immunological tolerance may evolve during MS through adversely-scheduled effects of IFA on ISC. However, there is, to date, no collective proof of ongoing IFA during MS. The Review addresses the constraint and provides a systematic critique of compelling evidence, through appraisal of IFA-related biomarker studies, to support the occurrence of a sub-optimal inflammation during MS. The findings justify further work to unequivocally demonstrate IFA in MS and provide additional insight into the complex pathology and developing epidemiology of the disease.
Collapse
|
8
|
Karaderi T, Bareke H, Kunter I, Seytanoglu A, Cagnan I, Balci D, Barin B, Hocaoglu MB, Rahmioglu N, Asilmaz E, Taneri B. Host Genetics at the Intersection of Autoimmunity and COVID-19: A Potential Key for Heterogeneous COVID-19 Severity. Front Immunol 2020; 11:586111. [PMID: 33414783 PMCID: PMC7783411 DOI: 10.3389/fimmu.2020.586111] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
COVID-19 presentation is very heterogeneous across cases, and host factors are at the forefront for the variables affecting the disease manifestation. The immune system has emerged as a key determinant in shaping the outcome of SARS-CoV-2 infection. It is mainly the deleterious unconstrained immune response, rather than the virus itself, which leads to severe cases of COVID-19 and the associated mortality. Genetic susceptibility to dysregulated immune response is highly likely to be among the host factors for adverse disease outcome. Given that such genetic susceptibility has also been observed in autoimmune diseases (ADs), a number of critical questions remain unanswered; whether individuals with ADs have a significantly different risk for COVID-19-related complications compared to the general population, and whether studies on the genetics of ADs can shed some light on the host factors in COVID-19. In this perspective, we discuss the host genetic factors, which have been under investigation in association with COVID-19 severity. We touch upon the intricate link between autoimmunity and COVID-19 pathophysiology. We put forth a number of autoimmune susceptibility genes, which have the potential to be additional host genetic factors for modifying the severity of COVID-19 presentation. In summary, host genetics at the intersection of ADs and COVID-19 may serve as a source for understanding the heterogeneity of COVID-19 severity, and hence, potentially holds a key in achieving effective strategies in risk group identification, as well as effective treatments.
Collapse
Affiliation(s)
- Tugce Karaderi
- Center for Health Data Science, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Halin Bareke
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Imge Kunter
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Adil Seytanoglu
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
| | - Ilgin Cagnan
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
| | - Deniz Balci
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
| | - Burc Barin
- Vaccines and Infectious Diseases Therapeutic Research Area, The Emmes Company, Rockville, MD, United States
| | - Mevhibe B. Hocaoglu
- Cicely Saunders Institute of Palliative Care, Policy & Rehabilitation, Florence Nightingale Faculty of Nursing, Midwifery & Palliative Care, King’s College London, London, United Kingdom
- Dr Fazil Kucuk Faculty of Medicine, Eastern Mediterranean University, Famagusta, Cyprus
| | - Nilufer Rahmioglu
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Esra Asilmaz
- Department of Gastroenterology, Homerton University Hospital, Clapton, United Kingdom
| | - Bahar Taneri
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
- Department of Genetics and Cell Biology, Faculty of Health, Medicine & Life Sciences, Institute for Public Health Genomics, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
9
|
Goodman WA, Erkkila IP, Pizarro TT. Sex matters: impact on pathogenesis, presentation and treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020; 17:740-754. [PMID: 32901108 PMCID: PMC7750031 DOI: 10.1038/s41575-020-0354-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD), as do most chronic inflammatory disorders, displays unique features and confers different risk factors in male and female patients. Importantly, sex-based differences in IBD exist for epidemiological incidence and prevalence among different age groups, with men and women developing distinct clinical symptoms and disparity in severity of disease. In addition, the presentation of comorbidities in IBD displays strong sex differences. Notably, particular issues exclusive to women's health, including pregnancy and childbirth, require specific considerations in female patients with IBD of childbearing age that can have a substantial influence on clinical outcomes. This Review summarizes the latest findings regarding sex-based differences in the epidemiology, clinical course, comorbidities and response to current therapies in patients with IBD. Importantly, the latest basic science discoveries in this area of investigation are evaluated to provide insight into potential mechanisms underlying the influence of sex on disease pathogenesis, as well as to design more personalized and efficacious care, in patients with IBD.
Collapse
Affiliation(s)
- Wendy A Goodman
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ian P Erkkila
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
10
|
Dyson JK, Blain A, Foster Shirley MD, Hudson M, Rushton S, Jeffreys Jones DE. Geo-epidemiology and environmental co-variate mapping of primary biliary cholangitis and primary sclerosing cholangitis. JHEP Rep 2020; 3:100202. [PMID: 33474546 PMCID: PMC7803647 DOI: 10.1016/j.jhepr.2020.100202] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/14/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Background & Aims Autoimmune liver disease (AILD) is thought to result from a complex interplay between genetics and the environment. Studies to date have focussed on primary biliary cholangitis (PBC) and demonstrated higher disease prevalence in more urban, polluted, and socially deprived areas. This study utilises a large cohort of patients with PBC and primary sclerosing cholangitis (PSC) to investigate potential environmental contributors to disease and to explore whether the geo-epidemiology of PBC and PSC are disease-specific or pertain to cholestatic AILD in general. Methods All adult patients with PBC and PSC in a tightly defined geographical area within the UK were identified. Point- and area-based analyses and structural equation modelling (SEM) were used to investigate for disease clustering and examine for relationships between prevalence, distribution of environmental contaminants, and socio-economic status. Results We identified 2,150 patients with PBC and 472 with PSC. Significant spatial clustering was seen for each disease. A high prevalence of PBC was found in urban, post-industrial areas with a strong coal-mining heritage and increased environmental cadmium levels, whereas a high PSC prevalence was found in rural areas and inversely associated with social deprivation. Conclusions This study demonstrates spatial clustering of PBC and PSC and adds to our understanding of potential environmental co-variates for both diseases. Disease clustering, within the same geographical area but over different scales, is confirmed for each disease with distinct risk profiles identified and associations with separate putative environmental factors and socio-economic status. This suggests that different triggers and alternative pathways determine phenotypic expression of autoimmunity in the affected population. Co-variate analysis points towards the existence of specific disease triggers. Lay summary This study looked for potential environmental triggers in patients with primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) living in the north-east of England and north Cumbria. We found that PBC was more common in urban areas with a history of coal mining and high levels of cadmium whereas PSC was more common in rural areas with lower levels of social deprivation. Clustering of PBC and PSC patients occurs with notable geographical differences. A high prevalence of PBC is seen in urban, post-industrial areas. PSC is more common in rural areas and inversely associated with social deprivation. PBC risk is associated with proximity to coal mines and environmental cadmium levels. Comprehensive epidemiological study can increase understanding of disease aetiology.
Collapse
Key Words
- AHSN NENC, Academic Health Science Network for the North East and North Cumbria
- AIH, autoimmune hepatitis
- AILD, autoimmune liver disease
- Autoimmune hepatitis
- BECs, biliary epithelial cells
- CFI, comparative fit index
- Cadmium
- DIC, deviance information criterion
- Geo-epidemiology
- IMD, Index of Multiple Deprivation
- PBC, primary biliary cholangitis
- PSC, primary sclerosing cholangitis
- Primary biliary cholangitis
- Primary sclerosing cholangitis
- RMSEA, root mean square error of association
- Rural
- SEM, structural equation modelling
- SFS, superfund toxic waste site
- Socio-economic status
- Urban
Collapse
Affiliation(s)
- Jessica Katharine Dyson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Alasdair Blain
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Mark Hudson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Steven Rushton
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - David Emrys Jeffreys Jones
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| |
Collapse
|
11
|
Halliday N, Dyson JK, Thorburn D, Lohse AW, Heneghan MA. Review article: experimental therapies in autoimmune hepatitis. Aliment Pharmacol Ther 2020; 52:1134-1149. [PMID: 32794592 DOI: 10.1111/apt.16035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/02/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Current therapeutic options for autoimmune hepatitis (AIH) are limited by adverse events associated with corticosteroids and thiopurines and the limited evidence base for second- and third-line treatment options. Furthermore, current treatment approaches require long-term exposure of patients to pharmacological agents. There have been significant advances in the understanding of the mechanisms underpinning autoimmunity and an expansion in the available therapeutic agents for suppressing autoimmune responses or potentially restoring self-tolerance. AIM To review the mechanisms and evidence for experimental therapies that are being actively explored in the management of AIH. METHODS We have reviewed the literature relating to a range of novel therapeutic immunomodulatory treatment strategies and drugs. RESULTS Drugs which block B cell-activating factor of the tumour necrosis factor family (BAFF) and tumour necrosis factor α are currently in clinical trials for the treatment of AIH. Experimental therapies and technologies to increase immune tolerance, such as pre-implantation factor and regulatory T cell therapies, are undergoing development for application in autoimmune disorders. There is also evidence for targeting inflammatory pathways to control other autoimmune conditions, such as blockade of IL1 and IL6 and Janus-associated kinase (JAK) inhibitors. CONCLUSIONS With the range of tools available to clinicians and patients increasing, it is likely that the therapeutic landscape of AIH will change over the coming years and treatment approaches offering lower corticosteroid use and aiming to restore immune self-tolerance should be sought.
Collapse
Affiliation(s)
- Neil Halliday
- Institute of Liver and Digestive Health, University College London, London, UK.,The Sheila Sherlock Liver Centre, Royal Free Hospital, London, UK
| | - Jessica Katharine Dyson
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.,Hepatology Department, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Douglas Thorburn
- Institute of Liver and Digestive Health, University College London, London, UK.,The Sheila Sherlock Liver Centre, Royal Free Hospital, London, UK
| | - Ansgar W Lohse
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
12
|
Chitrakar A, Budda SA, Henderson JG, Axtell RC, Zenewicz LA. E3 Ubiquitin Ligase Von Hippel-Lindau Protein Promotes Th17 Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1009-1023. [PMID: 32690659 PMCID: PMC8167928 DOI: 10.4049/jimmunol.2000243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022]
Abstract
Von Hippel-Lindau (VHL) is an E3 ubiquitin ligase that targets proteins, including HIF-1α, for proteasomal degradation. VHL and HIF regulate the balance between glycolysis and oxidative phosphorylation, which is critical in highly dynamic T cells. HIF-1α positively regulates Th17 differentiation, a complex process in which quiescent naive CD4 T cells undergo transcriptional changes to effector cells, which are commonly dysregulated in autoimmune diseases. The role of VHL in Th17 cells is not known. In this study, we hypothesized VHL negatively regulates Th17 differentiation and deletion of VHL in CD4 T cells would elevate HIF-1α and increase Th17 differentiation. Unexpectedly, we found that VHL promotes Th17 differentiation. Mice deficient in VHL in their T cells were resistant to an autoimmune disease, experimental autoimmune encephalomyelitis, often mediated by Th17 cells. In vitro Th17 differentiation was impaired in VHL-deficient T cells. In the absence of VHL, Th17 cells had decreased activation of STAT3 and SMAD2, suggesting that VHL indirectly or directly regulates these critical signaling molecules. Gene expression analysis revealed that in Th17 cells, VHL regulates many cellular pathways, including genes encoding proteins involved indirectly or directly in the glycolysis pathway. Compared with wild-type, VHL-deficient Th17 cells had elevated glycolysis and glycolytic capacity. Our finding has implications on the design of therapeutics targeting the distinct metabolic needs of T cells to combat chronic inflammatory diseases.
Collapse
Affiliation(s)
- Alisha Chitrakar
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Scott A Budda
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Jacob G Henderson
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Robert C Axtell
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Lauren A Zenewicz
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| |
Collapse
|
13
|
Mitsuiki N, Schwab C, Grimbacher B. What did we learn from CTLA-4 insufficiency on the human immune system? Immunol Rev 2019; 287:33-49. [PMID: 30565239 DOI: 10.1111/imr.12721] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/16/2018] [Indexed: 02/07/2023]
Abstract
Cytotoxic-T-lymphocyte-antigen-4 (CTLA-4) is a negative immune regulator constitutively expressed on regulatory T (Treg) cells and upregulated on activated T cells. CTLA-4 inhibits T cell activation by various suppressive functions including competition with CD28, regulation of the inhibitory function of Treg cells, such as transendocytosis, and the control of adhesion and motility. Intrinsic CTLA-4 signaling has been controversially discussed, but so far no distinct signaling pathway has been identified. The CTLA-4-mediated Treg suppression plays an important role in the maintenance of peripheral tolerance and the prevention of autoimmune diseases. Human CTLA-4 insufficiency is caused by heterozygous germline mutations in CTLA4 and characterized by a complex immune dysregulation syndrome. Clinical studies on CTLA4 mutation carriers showed a reduced penetrance and variable expressivity, suggesting modifying factor(s). One hundred and forty-eight CTLA4 mutation carriers have been reported; patients showed hypogammaglobulinemia, recurrent infectious diseases, various autoimmune diseases, and lymphocytic infiltration into multiple organs. The CTLA-4 expression level in Treg cells was reduced, while the frequency of Treg cells was increased in CTLA-4-insufficient patients. The transendocytosis assay is a specific functional test for the assessment of newly identified CTLA4 gene variants. Immunoglobulin substitution, corticosteroids, immunosuppressive therapy, and targeted therapy such as with CTLA-4 fusion proteins and mechanistic target of rapamycin (mTOR) inhibitors were applied; patients with life-threatening, treatment-resistant symptoms underwent hematopoietic stem cell transplantation. The fact that in humans CTLA-4 insufficiency causes severe disease taught us that the amount of CTLA-4 molecules present in/on T cells matters for immune homeostasis. However, whether the pathology-causing activated T lymphocytes in CTLA-4-insufficient patients are antigen-specific is an unsolved question. CTLA-4, in addition, has a role in autoimmune diseases and cancer. Anti-CTLA-4 drugs are employed as checkpoint inhibitors to target various forms of cancer. Thus, clinical research on human CTLA-4 insufficiency might provide us a deeper understanding of the mechanism(s) of the CTLA-4 molecule and immune dysregulation disorders.
Collapse
Affiliation(s)
- Noriko Mitsuiki
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte Schwab
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Immunogenicity of a rheumatoid arthritis protective sequence when acquired through microchimerism. Proc Natl Acad Sci U S A 2019; 116:19600-19608. [PMID: 31501349 DOI: 10.1073/pnas.1904779116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
HLA class II genes provide the strongest genetic contribution to rheumatoid arthritis (RA). HLA-DRB1 alleles encoding the sequence DERAA are RA-protective. Paradoxically, RA risk is increased in women with DERAA+ children born prior to onset. We developed a sensitive qPCR assay specific for DERAA, and found 53% of DERAA-/- women with RA had microchimerism (Mc; pregnancy-derived allogeneic cells) carrying DERAA (DERAA-Mc) vs. 6% of healthy women. DERAA-Mc quantities correlated with an RA-risk genetic background including DERAA-binding HLA-DQ alleles, early RA onset, and aspects of RA severity. CD4+ T cells showed stronger response against DERAA+ vs. DERAA- allogeneic cell lines in vitro, in line with an immunogenic role of allogeneic DERAA. Results indicate a model where DERAA-Mc activates DERAA-directed T cells that are naturally present in DERAA-/- individuals and can have cross-reactivity against joint antigens. Moreover, we provide an explanation for the enigmatic observation that the same HLA sequence differentially affects RA risk through Mendelian inheritance vs. microchimeric cell acquisition.
Collapse
|
15
|
Valoti E, Alberti M, Iatropoulos P, Piras R, Mele C, Breno M, Cremaschi A, Bresin E, Donadelli R, Alizzi S, Amoroso A, Benigni A, Remuzzi G, Noris M. Rare Functional Variants in Complement Genes and Anti-FH Autoantibodies-Associated aHUS. Front Immunol 2019; 10:853. [PMID: 31118930 PMCID: PMC6504697 DOI: 10.3389/fimmu.2019.00853] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/02/2019] [Indexed: 01/06/2023] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a rare disease characterized by microangiopathic hemolytic anemia, thrombocytopenia and renal failure. It is caused by genetic or acquired defects of the complement alternative pathway. Factor H autoantibodies (anti-FHs) have been reported in 10% of aHUS patients and are associated with the deficiency of factor H-related 1 (FHR1). However, FHR1 deficiency is not enough to cause aHUS, since it is also present in about 5% of Caucasian healthy subjects. In this study we evaluated the prevalence of genetic variants in CFH, CD46, CFI, CFB, C3, and THBD in aHUS patients with anti-FHs, using healthy subjects with FHR1 deficiency, here defined “supercontrols,” as a reference group. “Supercontrols” are more informative than general population because they share at least one risk factor (FHR1 deficiency) with aHUS patients. We analyzed anti-FHs in 305 patients and 30 were positive. The large majority were children (median age: 7.7 [IQR, 6.6–9.9] years) and 83% lacked FHR1 (n = 25, cases) due to the homozygous CFHR3-CFHR1 deletion (n = 20), or the compound heterozygous CFHR3-CFHR1 and CFHR1-CFHR4 deletions (n = 4), or the heterozygous CFHR3-CFHR1 deletion combined with a frameshift mutation in CFHR1 that generates a premature stop codon (n = 1). Of the 960 healthy adult subjects 48 had the FHR1 deficiency (“supercontrols”). Rare likely pathogenetic variants in CFH, THBD, and C3 were found in 24% of cases (n = 6) compared to 2.1% of the “supercontrols” (P-value = 0.005). We also found that the CFH H3 and the CD46GGAAC haplotypes are not associated with anti-FHs aHUS, whereas these haplotypes are enriched in aHUS patients without anti-FHs, which highlights the differences in the genetic basis of the two forms of the disease. Finally, we confirm that common infections are environmental factors that contribute to the development of anti-FHs aHUS in genetically predisposed individuals, which fits with the sharp peak of incidence during scholar-age. Further studies are needed to fully elucidate the complex genetic and environmental factors underlying anti-FHs aHUS and to establish whether the combination of anti-FHs with likely pathogenetic variants or other risk factors influences disease outcome and response to therapies.
Collapse
Affiliation(s)
- Elisabetta Valoti
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marta Alberti
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Paraskevas Iatropoulos
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Rossella Piras
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Caterina Mele
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Matteo Breno
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Alessandra Cremaschi
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Elena Bresin
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Roberta Donadelli
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Silvia Alizzi
- Azienda Ospedaliera-Universitaria, Città della Salute e della Scienza and Department of Medical Sciences, University of Turin, Turin, Italy
| | - Antonio Amoroso
- Azienda Ospedaliera-Universitaria, Città della Salute e della Scienza and Department of Medical Sciences, University of Turin, Turin, Italy
| | - Ariela Benigni
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,'L. Sacco' Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Marina Noris
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
16
|
Yang XK, Liu J, Chen SY, Li M, Zhang MM, Leng RX, Pan HF, Shen Y, Liu WX, Xu SQ, Ye DQ, Shuai ZW. UBASH3A gene polymorphisms and expression profile in rheumatoid arthritis. Autoimmunity 2019; 52:21-26. [PMID: 30822156 DOI: 10.1080/08916934.2019.1581773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Recent evidence has demonstrated that UBASH3A play a pivotal role in multiple autoimmune diseases. In this study, we explored the association between UBASH3A gene single-nucleotide polymorphisms (SNPs) and rheumatoid arthritis (RA) in a Chinese Han population. We also comparatively evaluated the UBASH3A expression profile in peripheral blood mononuclear cells (PBMCs) from patients with RA and healthy controls. METHODS Four UBASH3A polymorphisms (rs1893592, rs11203203, rs2277798, and rs3788013) were studied in 553 patients with RA and 587 controls in a Chinese population. Genotyping was performed using the Fluidigm 192.24 Dynamic Array Integrated Fluidic Circuit (IFC). For gene expression study, UBASH3A mRNA levels of 30 RA patients and 31 healthy individuals were assessed by real-time quantitative polymerase chain reaction (RT-qPCR). Data were analyzed by SPSS 19.0 software. RESULTS A significant association between rs1893592 polymorphism and RA was found under all genetic models (all p<.05). We also discovered a significant association between rs3788013 polymorphism and RA in the allele and genotype distributions, as well as the recessive model (all p<.05). Moreover, we found the genotype distribution and allele frequency of rs1893592 were significantly associated with RF phenotype in the RA patients (χ2 = 6.786, p=.034; χ2 = 4.534, p=.033; respectively). We also found the genotype distribution and allele frequency of rs2277798 were significantly associated with anti-CCP phenotype in the RA patients (χ2 = 7.873, p=.020; χ2 = 4.473, p=.034; respectively). However, we did not detect any significant associations between rs11203203 and RA susceptibility and autoantibody profiles (all p>.05). The mRNA expression of UBASH3A was increased in PBMCs of patients with RA when compared to healthy controls (p=.001). CONCLUSIONS Our observations suggested that the dysregulation of UBASH3A might be associated with the pathogenesis of RA, and UBASH3A gene polymorphisms (rs1893592 and rs3788013) might contribute to RA susceptibility in Chinese Han population.
Collapse
Affiliation(s)
- Xiao-Ke Yang
- a Department of Rheumatology and Immunology , the First Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Juan Liu
- b Wuxi Center for Disease Control and Prevention , Wuxi , Jiangsu , China
| | - Shan-Yu Chen
- a Department of Rheumatology and Immunology , the First Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Mu Li
- a Department of Rheumatology and Immunology , the First Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Ming-Ming Zhang
- a Department of Rheumatology and Immunology , the First Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Rui-Xue Leng
- c Department of Epidemiology and Biostatistics, School of Public Health , Anhui Medical University , Hefei , Anhui , China
| | - Hai-Feng Pan
- c Department of Epidemiology and Biostatistics, School of Public Health , Anhui Medical University , Hefei , Anhui , China
| | - Yuan Shen
- b Wuxi Center for Disease Control and Prevention , Wuxi , Jiangsu , China
| | - Wen-Xue Liu
- d Wuxi Emergency Medical Centre , Wuxi , Jiangsu , China
| | - Sheng-Qian Xu
- a Department of Rheumatology and Immunology , the First Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Dong-Qing Ye
- c Department of Epidemiology and Biostatistics, School of Public Health , Anhui Medical University , Hefei , Anhui , China
| | - Zong-Wen Shuai
- a Department of Rheumatology and Immunology , the First Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| |
Collapse
|
17
|
Hellesen A, Bratland E. The potential role for infections in the pathogenesis of autoimmune Addison's disease. Clin Exp Immunol 2018; 195:52-63. [PMID: 30144040 DOI: 10.1111/cei.13207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022] Open
Abstract
Autoimmune Addison's disease (AAD), or primary adrenocortical insufficiency, is a classical organ-specific autoimmune disease with 160 years of history. AAD is remarkably homogeneous with one major dominant self-antigen, the cytochrome P450 21-hydroxylase enzyme, which is targeted by both autoantibodies and autoreactive T cells. Like most autoimmune diseases, AAD is thought to be caused by an unfortunate combination of genetic and environmental factors. While the number of genetic associations with AAD is increasing, almost nothing is known about environmental factors. A major environmental factor commonly proposed for autoimmune diseases, based partly on experimental and clinical data and partly on shared pathways between anti-viral immunity and autoimmunity, is viral infections. However, there are few reports associating viral infections to AAD, and it has proved difficult to establish which immunological processes that could link any viral infection with the initiation or progression of AAD. In this review, we will summarize the current knowledge on the underlying mechanisms of AAD and take a closer look on the potential involvement of viruses.
Collapse
Affiliation(s)
- A Hellesen
- Department of Clinical Science, University of Bergen, Bergen, Norway.,K.G. Jebsen Senter for Autoimmune Sykdommer, University of Bergen, Bergen, Norway
| | - E Bratland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,K.G. Jebsen Senter for Autoimmune Sykdommer, University of Bergen, Bergen, Norway
| |
Collapse
|
18
|
The role of polymorphic ERAP1 in autoinflammatory disease. Biosci Rep 2018; 38:BSR20171503. [PMID: 30054427 PMCID: PMC6131210 DOI: 10.1042/bsr20171503] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 01/29/2023] Open
Abstract
Autoimmune and autoinflammatory conditions represent a group of disorders characterized by self-directed tissue damage due to aberrant changes in innate and adaptive immune responses. These disorders possess widely varying clinical phenotypes and etiology; however, they share a number of similarities in genetic associations and environmental influences. Whilst the pathogenic mechanisms of disease remain poorly understood, genome wide association studies (GWAS) have implicated a number of genetic loci that are shared between several autoimmune and autoinflammatory conditions. Association of particular HLA alleles with disease susceptibility represents one of the strongest genetic associations. Furthermore, recent GWAS findings reveal strong associations with single nucleotide polymorphisms in the endoplasmic reticulum aminopeptidase 1 (ERAP1) gene and susceptibility to a number of these HLA-associated conditions. ERAP1 plays a major role in regulating the repertoire of peptides presented on HLA class I alleles at the cell surface, with the presence of single nucleotide polymorphisms in ERAP1 having a significant impact on peptide processing function and the repertoire of peptides presented. The impact of this dysfunctional peptide generation on CD8+ T-cell responses has been proposed as a mechanism of pathogenesis diseases where HLA and ERAP1 are associated. More recently, studies have highlighted a role for ERAP1 in innate immune-mediated pathways involved in inflammatory responses. Here, we discuss the role of polymorphic ERAP1 in various immune cell functions, and in the context of autoimmune and autoinflammatory disease pathogenesis.
Collapse
|
19
|
Roved J, Hansson B, Tarka M, Hasselquist D, Westerdahl H. Evidence for sexual conflict over major histocompatibility complex diversity in a wild songbird. Proc Biol Sci 2018; 285:rspb.2018.0841. [PMID: 30068671 PMCID: PMC6111173 DOI: 10.1098/rspb.2018.0841] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/06/2018] [Indexed: 12/24/2022] Open
Abstract
Sex differences in parasite load and immune responses are found across a wide range of animals, with females generally having lower parasite loads and stronger immune responses than males. Intrigued by these general patterns, we investigated if there was any sign of sex-specific selection on an essential component of adaptive immunity that is known to affect fitness, the major histocompatibility complex class I (MHC-I) genes, in a 20-year study of great reed warblers. Our analyses on fitness related to MHC-I diversity showed a highly significant interaction between MHC-I diversity and sex, where males with higher, and females with lower, MHC-I diversity were more successful in recruiting offspring. Importantly, mean MHC-I diversity did not differ between males and females, and consequently neither sex reached its MHC-I fitness optimum. Thus, there is an unresolved genetic sexual conflict over MHC-I diversity in great reed warblers. Selection from pathogens is known to maintain MHC diversity, but previous theory ignores that the immune environments are considerably different in males and females. Our results suggest that sexually antagonistic selection is an important, previously neglected, force in the evolution of vertebrate adaptive immunity, and have implications for evolutionary understanding of costs of immune responses and autoimmune diseases.
Collapse
Affiliation(s)
- Jacob Roved
- Department of Biology, Molecular Ecology and Evolution Lab, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Bengt Hansson
- Department of Biology, Molecular Ecology and Evolution Lab, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Maja Tarka
- Department of Biology, Molecular Ecology and Evolution Lab, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Dennis Hasselquist
- Department of Biology, Molecular Ecology and Evolution Lab, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Helena Westerdahl
- Department of Biology, Molecular Ecology and Evolution Lab, Lund University, Ecology Building, 223 62 Lund, Sweden
| |
Collapse
|
20
|
Han J, Li J, Achour I, Pesce L, Foster I, Li H, Lussier YA. Convergent downstream candidate mechanisms of independent intergenic polymorphisms between co-classified diseases implicate epistasis among noncoding elements. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2018; 23:524-535. [PMID: 29218911 PMCID: PMC5730078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eighty percent of DNA outside protein coding regions was shown biochemically functional by the ENCODE project, enabling studies of their interactions. Studies have since explored how convergent downstream mechanisms arise from independent genetic risks of one complex disease. However, the cross-talk and epistasis between intergenic risks associated with distinct complex diseases have not been comprehensively characterized. Our recent integrative genomic analysis unveiled downstream biological effectors of disease-specific polymorphisms buried in intergenic regions, and we then validated their genetic synergy and antagonism in distinct GWAS. We extend this approach to characterize convergent downstream candidate mechanisms of distinct intergenic SNPs across distinct diseases within the same clinical classification. We construct a multipartite network consisting of 467 diseases organized in 15 classes, 2,358 disease-associated SNPs, 6,301 SNPassociated mRNAs by eQTL, and mRNA annotations to 4,538 Gene Ontology mechanisms. Functional similarity between two SNPs (similar SNP pairs) is imputed using a nested information theoretic distance model for which p-values are assigned by conservative scale-free permutation of network edges without replacement (node degrees constant). At FDR≤5%, we prioritized 3,870 intergenic SNP pairs associated, among which 755 are associated with distinct diseases sharing the same disease class, implicating 167 intergenic SNPs, 14 classes, 230 mRNAs, and 134 GO terms. Co-classified SNP pairs were more likely to be prioritized as compared to those of distinct classes confirming a noncoding genetic underpinning to clinical classification (odds ratio ∼3.8; p≤10-25). The prioritized pairs were also enriched in regions bound to the same/interacting transcription factors and/or interacting in long-range chromatin interactions suggestive of epistasis (odds ratio ∼ 2,500; p≤10-25). This prioritized network implicates complex epistasis between intergenic polymorphisms of co-classified diseases and offers a roadmap for a novel therapeutic paradigm: repositioning medications that target proteins within downstream mechanisms of intergenic disease-associated SNPs. Supplementary information and software: http://lussiergroup.org/publications/disease_class.
Collapse
Affiliation(s)
- Jiali Han
- Center for Biomedical Informatics and Biostatistics (CB2) and Departments of Medicine and of Systems and Industrial Engineering, The University of Arizona, Tucson, AZ 85721, USA,
| | | | | | | | | | | | | |
Collapse
|
21
|
Yu C, Xi J, Li M, An M, Liu H. Bioconjugate Strategies for the Induction of Antigen-Specific Tolerance in Autoimmune Diseases. Bioconjug Chem 2017; 29:719-732. [PMID: 29165988 DOI: 10.1021/acs.bioconjchem.7b00632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antigen-specific immunotherapy (ASI) holds great promise for the treatment of autoimmune diseases. In mice, administration of major histocompatibility complex (MHC) binding synthetic peptides which modulate T cell receptor (TCR) signaling under subimmunogenic conditions induces selective tolerance without suppressing the global immune responses. However, clinical translation has yielded limited success. It has become apparent that the TCR signaling pathway via synthetic peptide antigen alone is inadequate to induce an effective tolerogenic immunity in autoimmune diseases. Bioconjugate strategies combining additional immunomodulatory functions with TCR signaling can amplify the antigen-specific immune tolerance and possibly lead to the development of new treatments in autoimmune diseases. In this review, we provide a summary of recent advances in the development of bioconjugates to achieve antigen-specific immune tolerance in vivo, with the discussion focused on the underlying design principles and challenges that must be overcome to target these therapies to patients suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Chunsong Yu
- Department of Chemical Engineering and Materials Science , Wayne State University , Detroit , Michigan 48202 , United States
| | - Jingchao Xi
- Department of Chemical Engineering and Materials Science , Wayne State University , Detroit , Michigan 48202 , United States
| | - Meng Li
- Department of Chemical Engineering and Materials Science , Wayne State University , Detroit , Michigan 48202 , United States
| | - Myunggi An
- Department of Chemical Engineering and Materials Science , Wayne State University , Detroit , Michigan 48202 , United States
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science , Wayne State University , Detroit , Michigan 48202 , United States.,Department of Oncology , Wayne State University , Detroit , Michigan 48201 , United States.,Tumor Biology and Microenvironment Program , Barbara Ann Karmanos Cancer Institute , Detroit , Michigan 48201 , United States
| |
Collapse
|
22
|
Wekerle H. Nature, nurture, and microbes: The development of multiple sclerosis. Acta Neurol Scand 2017; 136 Suppl 201:22-25. [PMID: 29068487 DOI: 10.1111/ane.12843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
This paper argues that multiple sclerosis (MS) is the result of an autoimmune attack against components of the central nervous system (CNS). The effector cells involved in the pathogenic process are CNS-autoreactive T cells present in the healthy immune system in a resting state. Upon activation, these cells cross the blood-brain barrier and attack the CNS target tissue. Recent evidence indicates that autoimmune activation may happen in the intestine, following an interaction of bacterial components of the gut flora with local CNS autoreactive T cells. The consequences of this concept are discussed.
Collapse
Affiliation(s)
- H. Wekerle
- Max-Planck-Institute of Neurobiology; Martinsried Germany
| |
Collapse
|
23
|
Bliddal S, Nielsen CH, Feldt-Rasmussen U. Recent advances in understanding autoimmune thyroid disease: the tallest tree in the forest of polyautoimmunity. F1000Res 2017; 6:1776. [PMID: 29043075 PMCID: PMC5621109 DOI: 10.12688/f1000research.11535.1] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 12/17/2022] Open
Abstract
Autoimmune thyroid disease (AITD) is often observed together with other autoimmune diseases. The coexistence of two or more autoimmune diseases in the same patient is referred to as polyautoimmunity, and AITD is the autoimmune disease most frequently involved. The occurrence of polyautoimmunity has led to the hypothesis that the affected patients suffer from a generalized dysregulation of their immune system. The present review summarizes recent discoveries unravelling the immunological mechanisms involved in autoimmunity, ranging from natural autoimmunity to disease-specific autoimmunity. Furthermore, the clinical grounds for considering AITD in a setting of polyautoimmunity are explored. A better understanding of these may pave the way for designing new treatment modalities targeting the underlying immune dysregulation when AITD appears in the context of polyautoimmunity.
Collapse
Affiliation(s)
- Sofie Bliddal
- Department of Medical Endocrinology, Section 2132, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Claus Henrik Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, section 7521, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Ulla Feldt-Rasmussen
- Department of Medical Endocrinology, Section 2132, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
24
|
A functional genomics predictive network model identifies regulators of inflammatory bowel disease. Nat Genet 2017; 49:1437-1449. [PMID: 28892060 PMCID: PMC5660607 DOI: 10.1038/ng.3947] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 08/11/2017] [Indexed: 02/07/2023]
Abstract
A major challenge in inflammatory bowel disease (IBD) is the integration of diverse IBD data sets to construct predictive models of IBD. We present a predictive model of the immune component of IBD that informs causal relationships among loci previously linked to IBD through genome-wide association studies (GWAS) using functional and regulatory annotations that relate to the cells, tissues, and pathophysiology of IBD. Our model consists of individual networks constructed using molecular data generated from intestinal samples isolated from three populations of patients with IBD at different stages of disease. We performed key driver analysis to identify genes predicted to modulate network regulatory states associated with IBD, prioritizing and prospectively validating 12 of the top key drivers experimentally. This validated key driver set not only introduces new regulators of processes central to IBD but also provides the integrated circuits of genetic, molecular, and clinical traits that can be directly queried to interrogate and refine the regulatory framework defining IBD.
Collapse
|
25
|
Jerram ST, Leslie RD. The Genetic Architecture of Type 1 Diabetes. Genes (Basel) 2017; 8:genes8080209. [PMID: 28829396 PMCID: PMC5575672 DOI: 10.3390/genes8080209] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes (T1D) is classically characterised by the clinical need for insulin, the presence of disease-associated serum autoantibodies, and an onset in childhood. The disease, as with other autoimmune diseases, is due to the interaction of genetic and non-genetic effects, which induce a destructive process damaging insulin-secreting cells. In this review, we focus on the nature of this interaction, and how our understanding of that gene-environment interaction has changed our understanding of the nature of the disease. We discuss the early onset of the disease, the development of distinct immunogenotypes, and the declining heritability with increasing age at diagnosis. Whilst Human Leukocyte Antigens (HLA) have a major role in causing T1D, we note that some of these HLA genes have a protective role, especially in children, whilst other non-HLA genes are also important. In adult-onset T1D, the disease is often not insulin-dependent at diagnosis, and has a dissimilar immunogenotype with reduced genetic predisposition. Finally, we discuss the putative nature of the non-genetic factors and how they might interact with genetic susceptibility, including preliminary studies of the epigenome associated with T1D.
Collapse
Affiliation(s)
- Samuel T Jerram
- Bart's and the London School of Medicine and Dentistry, QMUL, London E1 2AT, UK.
| | - Richard David Leslie
- Bart's and the London School of Medicine and Dentistry, QMUL, London E1 2AT, UK.
| |
Collapse
|
26
|
Vilela EM, Bettencourt-Silva R, da Costa JT, Barbosa AR, Silva MP, Teixeira M, Primo J, Gama Ribeiro V, Nunes JPL. Anti-cardiac troponin antibodies in clinical human disease: a systematic review. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:307. [PMID: 28856147 DOI: 10.21037/atm.2017.07.40] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anti-cardiac troponin antibodies have been studied in different types of clinical diseases and in healthy populations. A systematic review of published data on anti-troponin antibodies was carried out (search performed on PubMed, ISI Web of Knowledge and Scopus databases). From title and abstract analysis, thirty-three articles were included that met the pre-specified criteria; after full-text analysis, nine articles were excluded. Most studies assessed anti-troponin I antibodies. The prevalence of anti-cardiac troponin antibodies in healthy individuals ranged from 0.0% to 20.0%. The prevalence of anti-troponin I autoantibodies in dilated cardiomyopathy (DCM) ranged from 7.0% to 22.2%. Other conditions under study were myocardial infarction, ischemic cardiomyopathy (ICM), peripartum cardiomyopathy (PPCM), Chagas disease, Emery-Dreifuss muscular dystrophy (EDMD) and renal transplantation. In the different patient populations studied, anti-cardiac troponin antibodies have been shown to be either positively or negatively associated with prognostic and clinical features. In what concerns a possible value as biomarkers, these assays have not emerged up to the present moment as important aids for practical clinical decisions in cardiac or other types of patients. In what concerns pathophysiology, anti-cardiac troponin autoantibodies may play a role in different diseases. It can be speculated that these antibodies could be involved in perpetuating some degree of cardiac injury after an event, such as myocardial infarction or PPCM.
Collapse
Affiliation(s)
- Eduardo M Vilela
- Department of Cardiology, Centro Hospitalar V.N. Gaia/Espinho, Gaia, Portugal
| | | | - J Torres da Costa
- Centro Hospitalar São João, Porto, Portugal.,Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Ana Raquel Barbosa
- Department of Cardiology, Centro Hospitalar V.N. Gaia/Espinho, Gaia, Portugal
| | - Marisa P Silva
- Department of Cardiology, Centro Hospitalar V.N. Gaia/Espinho, Gaia, Portugal
| | - Madalena Teixeira
- Department of Cardiology, Centro Hospitalar V.N. Gaia/Espinho, Gaia, Portugal
| | - João Primo
- Department of Cardiology, Centro Hospitalar V.N. Gaia/Espinho, Gaia, Portugal
| | - Vasco Gama Ribeiro
- Department of Cardiology, Centro Hospitalar V.N. Gaia/Espinho, Gaia, Portugal
| | - José Pedro L Nunes
- Centro Hospitalar São João, Porto, Portugal.,Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
27
|
Kumar N, Chugh H, Tomar R, Tomar V, Singh VK, Chandra R. Exploring the interplay between autoimmunity and cancer to find the target therapeutic hotspots. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:658-668. [PMID: 28687059 DOI: 10.1080/21691401.2017.1350188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Autoimmunity arises when highly active immune responses are developed against the tissues or substances of one's own body. It is one of the most prevalent disorders among the old-age population with prospects increasing with age. The major cause of autoimmunity and associated diseases is the dysregulation of host immune surveillance. Impaired repairment of immune system and apoptosis regulation can be seen as major landmarks in autoimmune disorders such as the mutation of p53 gene which results in rheumatoid arthritis, bowel disease which consequently lead to tissue destruction, inflammation and dysfunctioning of body organs. Cytokines mediated apoptosis and proliferation of cells plays a regulatory role in cell cycle and further in cancer development. Anti-TNF therapy, Treg therapy and stem cell therapy have been used for autoimmune diseases, however, with the increase in the use of immunomodulatory therapies and their development for autoimmune diseases and cancer, the understanding of human immune system tends to become an increasing requirement. Hence, the findings associated with the relationship between autoimmune diseases and cancer may prove to be beneficial for the improvement in the health of suffering patients. Here in, we are eliciting the underlying mechanisms which result in autoimmune disorders causing the onset of cancer, exploration of interactome to find the pathways which are mutual to both, and recognition of hotspots which might play important role in autoimmunity mediated therapeutics with different therapies such as anti-TNF therapy, Treg therapy and stem cell therapy.
Collapse
Affiliation(s)
- Neeraj Kumar
- a Department of Chemistry, Drug Discovery and Development Laboratory , University of Delhi , Delhi , India.,b Department of Biotechnology, Stem Cell Research Laboratory , Delhi Technological University , Delhi , India
| | - Heerak Chugh
- a Department of Chemistry, Drug Discovery and Development Laboratory , University of Delhi , Delhi , India
| | - Ravi Tomar
- a Department of Chemistry, Drug Discovery and Development Laboratory , University of Delhi , Delhi , India
| | - Vartika Tomar
- a Department of Chemistry, Drug Discovery and Development Laboratory , University of Delhi , Delhi , India
| | - Vimal Kishor Singh
- b Department of Biotechnology, Stem Cell Research Laboratory , Delhi Technological University , Delhi , India
| | - Ramesh Chandra
- a Department of Chemistry, Drug Discovery and Development Laboratory , University of Delhi , Delhi , India.,c Dr. B. R. Ambedkar Center for Biomedical Research , University of Delhi , Delhi , India
| |
Collapse
|
28
|
Shooshtari P, Huang H, Cotsapas C. Integrative Genetic and Epigenetic Analysis Uncovers Regulatory Mechanisms of Autoimmune Disease. Am J Hum Genet 2017; 101:75-86. [PMID: 28686857 DOI: 10.1016/j.ajhg.2017.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/31/2017] [Indexed: 12/18/2022] Open
Abstract
Genome-wide association studies in autoimmune and inflammatory diseases (AID) have uncovered hundreds of loci mediating risk. These associations are preferentially located in non-coding DNA regions and in particular in tissue-specific DNase I hypersensitivity sites (DHSs). While these analyses clearly demonstrate the overall enrichment of disease risk alleles on gene regulatory regions, they are not designed to identify individual regulatory regions mediating risk or the genes under their control, and thus uncover the specific molecular events driving disease risk. To do so we have departed from standard practice by identifying regulatory regions which replicate across samples and connect them to the genes they control through robust re-analysis of public data. We find significant evidence of regulatory potential in 78/301 (26%) risk loci across nine autoimmune and inflammatory diseases, and we find that individual genes are targeted by these effects in 53/78 (68%) of these. Thus, we are able to generate testable mechanistic hypotheses of the molecular changes that drive disease risk.
Collapse
|
29
|
Hedl M, Abraham C. A TPL2 (MAP3K8) disease-risk polymorphism increases TPL2 expression thereby leading to increased pattern recognition receptor-initiated caspase-1 and caspase-8 activation, signalling and cytokine secretion. Gut 2016; 65. [PMID: 26215868 PMCID: PMC5106344 DOI: 10.1136/gutjnl-2014-308922] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE IBD is characterised by dysregulated intestinal immune homeostasis and cytokine secretion. In the intestine, properly regulating pattern recognition receptor (PRR)-mediated signalling and cytokines is crucial given the ongoing host-microbial interactions. TPL2 (MAP3K8, COT) contributes to PRR-initiated pathways, yet the mechanisms for TPL2 signalling contributions in primary human myeloid cells are incompletely understood and its role in intestinal myeloid cells is poorly defined. Furthermore, functional consequences for the IBD-risk locus rs1042058 in TPL2 are unknown. METHODS We analysed protein, cytokine and RNA expression, and signalling in human monocyte-derived macrophages (MDMs) through western blot, ELISA, real-time PCR and flow cytometry. RESULTS PRR-induced cytokine secretion was increased in MDMs from rs1042058 TPL2 GG risk individuals. TPL2 activation by the Crohn's disease-associated PRR nucleotide-oligomerisation domain (NOD)2 required PKC, and IKKβ, IKKα and IKKγ signalling. TPL2, in turn, significantly enhanced NOD2-induced ERK, JNK and NFκB signalling. We found that another major mechanism for the TPL2 contribution to NOD2 signalling was through ERK-dependent and JNK-dependent caspase-1 and caspase-8 activation, which in turn, led to early autocrine interleukin (IL)-1β and IL-18 secretion and amplification of long-term cytokines. Importantly, Salmonella typhimurium-induced cytokines from human intestinal myeloid-derived cells required TPL2 as well as autocrine IL-1β and IL-18. Finally, rs1042058 GG risk carrier MDMs from healthy individuals and patients with Crohn's disease had increased TPL2 expression and NOD2-initiated TPL2 phosphorylation, ERK, JNK and NFκB activation, and early autocrine IL-1β and IL-18 secretion. CONCLUSIONS Taken together, the rs1042058 GG IBD-risk polymorphism in TPL2 results in a gain-of-function by increasing TPL2 expression and signalling, thereby amplifying PRR-initiated outcomes.
Collapse
Affiliation(s)
- Matija Hedl
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
30
|
Abstract
The development of multiple disease-relevant autoantibodies is a hallmark of autoimmune diseases. In autoimmune type 1 diabetes (T1D), a variable time frame of autoimmunity precedes the clinically overt disease. The relevance of T follicular helper (TFH) cells for the immune system is increasingly recognized. Their pivotal contribution to antibody production by providing help to germinal center (GC) B cells facilitates the development of a long-lived humoral immunity. Their complex differentiation process, involving various stages and factors like B cell lymphoma 6 (Bcl6), is strictly controlled, as anomalous regulation of TFH cells is connected with immunopathologies. While the adverse effects of a TFH cell-related insufficient humoral immunity are obvious, the role of increased TFH frequencies in autoimmune diseases like T1D is currently highlighted. High levels of autoantigen trigger an excessive induction of TFH cells, consequently resulting in the production of autoantibodies. Therefore, TFH cells might provide promising approaches for novel therapeutic strategies.
Collapse
Affiliation(s)
- Martin G Scherm
- Institute for Diabetes Research, Independent Young Investigator Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Heidemannstrasse 1, Munich, 80939, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), am Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
| | - Verena B Ott
- Deutsches Zentrum für Diabetesforschung (DZD), am Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München and Division of Metabolic Diseases, Technische Universität München, Parkring 13, Garching, 85748, Germany
- Institute for Advanced Study, Technische Universität München, Lichtenbergstr. 2a, Garching, 85748, Germany
| | - Carolin Daniel
- Institute for Diabetes Research, Independent Young Investigator Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Heidemannstrasse 1, Munich, 80939, Germany.
- Deutsches Zentrum für Diabetesforschung (DZD), am Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany.
| |
Collapse
|
31
|
Zheng WY, Zheng WX, Hua L. Detecting shared pathways linked to rheumatoid arthritis with other autoimmune diseases in a in silico analysis. Mol Biol 2016. [DOI: 10.1134/s0026893316030146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Addobbati C, de Azevêdo Silva J, Tavares NAC, Monticielo O, Xavier RM, Brenol JCT, Crovella S, Chies JAB, Sandrin-Garcia P. Ficolin Gene Polymorphisms in Systemic Lupus Erythematosus and Rheumatoid Arthritis. Ann Hum Genet 2016; 80:1-6. [PMID: 26464189 DOI: 10.1111/ahg.12129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/31/2015] [Accepted: 06/04/2015] [Indexed: 12/16/2022]
Abstract
Systemic lupus erythemathosus (SLE) and rheumatoid arthritis (RA) are complex autoimmune diseases characterized by an immune balance breakdown and by chronic inflammation. Several findings link SLE and RA development with the complement system and ficolin components have emerged as candidates for disease development. Since genetic association studies with ficolin genes in SLE and RA have not yet been conducted in a Brazilian population, the aim of this study was to determine whether polymorphisms of ficolin-1(FCN1) and ficolin-2 (FCN2) genes are associated with SLE and RA susceptibility as well as disease manifestation. Two SNPs within FCN1 (rs2989727 and 1071583) and three in FCN2 (rs17514136, rs3124954, and rs7851696) were studied in 208 SLE and184 RA patients as well as 264 healthy individuals in a Southeast Brazilian population. For SLE patients, the FCN2 rs17514136 SNP was associated with a more severe disease (SLICC) (p = 0.0067). Furthermore, an association between the occurrence of nephritis and the T/T genotype for FCN2 rs3124954 SNP (p = 0.047, OR = 3.17, 95%CI = 1.34-7.5) was observed. No association was observed between the studied polymorphisms and RA development. Thus, our data support involvement of the FCN2 gene in the SLE phenotype.
Collapse
Affiliation(s)
- Catarina Addobbati
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Jaqueline de Azevêdo Silva
- Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Nathália A C Tavares
- Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Odirlei Monticielo
- Division of Rheumatology, Clinical Hospital, Federal University of Rio Grande do Sul, Brazil
| | - Ricardo M Xavier
- Division of Rheumatology, Clinical Hospital, Federal University of Rio Grande do Sul, Brazil
| | - João Carlos T Brenol
- Division of Rheumatology, Clinical Hospital, Federal University of Rio Grande do Sul, Brazil
| | - Sergio Crovella
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - José Artur B Chies
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paula Sandrin-Garcia
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
33
|
Stanciu AE, Serdarevic N, Hurduc AE, Stanciu MM. IL-4, IL-10 and high sensitivity-CRP as potential serum biomarkers of persistent/recurrent disease in papillary thyroid carcinoma with/without Hashimoto's thyroiditis. Scandinavian Journal of Clinical and Laboratory Investigation 2015; 75:539-48. [PMID: 26305420 DOI: 10.3109/00365513.2015.1057895] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To investigate the potential role of interleukin 4 (IL-4), interleukin 10 (IL-10) and high-sensitivity C-reactive protein (hs-CRP) as serum biomarkers of persistent/recurrent disease in papillary thyroid carcinoma (PTC) with/without Hashimoto's thyroiditis (HT). METHODS Eighty consecutive patients (64 F/16 M, 43.2 ± 12.7 years) with PTC and 40 (37 F/3 M, 40.6 ± 12.3 years) with papillary thyroid carcinoma associated with Hashimoto's thyroiditis (PTC + HT) were evaluated before radioiodine therapy. A control group of 20 patients with HT without thyroid cancer (18 F/2 M, 47.3 ± 2.8 years) was included in the study for the comparison of cytokine levels. RESULTS No meaningful differences were found in clinical outcomes between PTC and PTC + HT groups (47.5% vs. 45% persistent/recurrent disease). Serum IL-4, IL-10 and hs-CRP levels were higher in patients with persistent/recurrent disease compared to those without recurrence (p < 0.001). IL-4, IL-10 and hs-CRP were also found in substantially higher concentrations in PTC + HT patients with persistent/recurrent disease than in patients with HT or PTC (with or without recurrence) (p < 0.01). Positive correlations were observed between IL-4, IL-10, hs-CRP and thyroglobulin (Tg) (r between 0.48 and 0.56, p < 0.005) or antithyroglobulin antibodies (TgAb) (r between 0.63 and 0.80, p < 0.002) in PTC and PTC + HT patients with persistent/recurrent disease. CONCLUSIONS Increased levels of serum IL-4, IL-10 and hs-CRP are associated with persistent/recurrent disease in PTC and PTC + HT patients. Our results suggest that these biomarkers might be used to improve patient stratification according to the risk of recurrence, especially in patients with PTC + HT, where Tg levels are not reliable due to presence of TgAb.
Collapse
Affiliation(s)
- Adina E Stanciu
- a Department of Carcinogenesis and Molecular Biology , Institute of Oncology Bucharest , Bucharest , Romania
| | | | | | | |
Collapse
|
34
|
Procaccini C, De Rosa V, Pucino V, Formisano L, Matarese G. Animal models of Multiple Sclerosis. Eur J Pharmacol 2015; 759:182-91. [PMID: 25823807 PMCID: PMC7094661 DOI: 10.1016/j.ejphar.2015.03.042] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 01/30/2015] [Accepted: 03/12/2015] [Indexed: 12/26/2022]
Abstract
Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) which involves a complex interaction between immune system and neural cells. Animal modeling has been critical for addressing MS pathogenesis. The three most characterized animal models of MS are (1) the experimental autoimmune/allergic encephalomyelitis (EAE); (2) the virally-induced chronic demyelinating disease, known as Theiler׳s murine encephalomyelitis virus (TMEV) infection and (3) the toxin-induced demyelination. All these models, in a complementary way, have allowed to reach a good knowledge of the pathogenesis of MS. Specifically, EAE is the model which better reflects the autoimmune pathogenesis of MS and is extremely useful to study potential experimental treatments. Furthermore, both TMEV and toxin-induced demyelination models are suitable for characterizing the role of the axonal injury/repair and the remyelination process in MS. In conclusion, animal models, despite their limitations, remain the most useful instrument for implementing the study of MS.
Collapse
MESH Headings
- Animals
- Cardiovirus Infections/pathology
- Cardiovirus Infections/virology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Humans
- Mice
- Mice, Transgenic
- Multiple Sclerosis/etiology
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Theilovirus/pathogenicity
Collapse
Affiliation(s)
- Claudio Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy; Unità di NeuroImmunologia, IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| | - Valentina Pucino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli Federico II, 80131 Napoli, Italy
| | - Luigi Formisano
- Divisione di Farmacologia, Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, 82100 Benevento, Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Salerno, Baronissi Campus, 84081 Baronissi, Salerno, Italy; IRCCS Multimedica, 20138 Milano, Italy.
| |
Collapse
|
35
|
Watkin LB, Jessen B, Wiszniewski W, Vece T, Jan M, Sha Y, Thamsen M, Santos-Cortez RLP, Lee K, Gambin T, Forbes L, Law CS, Stray-Petersen A, Cheng MH, Mace EM, Anderson MS, Liu D, Tang LF, Nicholas SK, Nahmod K, Makedonas G, Canter D, Kwok PY, Hicks J, Jones KD, Penney S, Jhangiani SN, Rosenblum MD, Dell SD, Waterfield MR, Papa FR, Muzny DM, Zaitlen N, Leal SM, Gonzaga-Jauregui C, Boerwinkle E, Eissa NT, Gibbs RA, Lupski JR, Orange JS, Shum AK. COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat Genet 2015; 47:654-60. [PMID: 25894502 PMCID: PMC4513663 DOI: 10.1038/ng.3279] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/19/2015] [Indexed: 12/12/2022]
Abstract
Unbiased genetic studies have uncovered surprising molecular mechanisms in human cellular immunity and autoimmunity. We performed whole-exome sequencing and targeted sequencing in five families with an apparent mendelian syndrome of autoimmunity characterized by high-titer autoantibodies, inflammatory arthritis and interstitial lung disease. We identified four unique deleterious variants in the COPA gene (encoding coatomer subunit α) affecting the same functional domain. Hypothesizing that mutant COPA leads to defective intracellular transport via coat protein complex I (COPI), we show that COPA variants impair binding to proteins targeted for retrograde Golgi-to-ER transport. Additionally, expression of mutant COPA results in ER stress and the upregulation of cytokines priming for a T helper type 17 (TH17) response. Patient-derived CD4(+) T cells also demonstrate significant skewing toward a TH17 phenotype that is implicated in autoimmunity. Our findings uncover an unexpected molecular link between a vesicular transport protein and a syndrome of autoimmunity manifested by lung and joint disease.
Collapse
Affiliation(s)
- Levi B. Watkin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Birthe Jessen
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Wojciech Wiszniewski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Timothy Vece
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Max Jan
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Youbao Sha
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Maike Thamsen
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | | | - Kwanghyuk Lee
- Center for Statistical Genetics, Baylor College of Medicine, Houston, TX
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Lisa Forbes
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Christopher S. Law
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Asbjørg Stray-Petersen
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Mickie H. Cheng
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Emily M. Mace
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Mark S. Anderson
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Dongfang Liu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Ling Fung Tang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA
| | - Sarah K. Nicholas
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Karen Nahmod
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - George Makedonas
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Debra Canter
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA
- Department of Dermatology, University of California San Francisco, San Francisco, CA
| | - John Hicks
- Department of Pathology, Texas Children’s Hospital, Houston, TX
| | - Kirk D. Jones
- Department of Pathology, University of California San Francisco, San Francisco, CA
| | - Samantha Penney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | - Michael D. Rosenblum
- Department of Dermatology, University of California San Francisco, San Francisco, CA
| | - Sharon D. Dell
- Division of Respiratory Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Feroz R. Papa
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Noah Zaitlen
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Suzanne M. Leal
- Center for Statistical Genetics, Baylor College of Medicine, Houston, TX
| | | | | | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Human Genetics Center and Institute of Molecular Medicine, University of Texas-Houston Health Science Center, Houston, TX
| | - N. Tony Eissa
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genetics Center and Institute of Molecular Medicine, University of Texas-Houston Health Science Center, Houston, TX
| | - James R. Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Jordan S. Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX
| | - Anthony K. Shum
- Department of Medicine, University of California San Francisco, San Francisco, CA
| |
Collapse
|
36
|
Abstract
Autoimmune reactions reflect an imbalance between effector and regulatory immune responses, typically develop through stages of initiation and propagation, and often show phases of resolution (indicated by clinical remissions) and exacerbations (indicated by symptomatic flares). The fundamental underlying mechanism of autoimmunity is defective elimination and/or control of self-reactive lymphocytes. Studies in humans and experimental animal models are revealing the genetic and environmental factors that contribute to autoimmunity. A major goal of research in this area is to exploit this knowledge to better understand the pathogenesis of autoimmune diseases and to develop strategies for reestablishing the normal balance between effector and regulatory immune responses.
Collapse
|
37
|
Wert KJ, Bassuk AG, Wu WH, Gakhar L, Coglan D, Mahajan M, Wu S, Yang J, Lin CS, Tsang SH, Mahajan VB. CAPN5 mutation in hereditary uveitis: the R243L mutation increases calpain catalytic activity and triggers intraocular inflammation in a mouse model. Hum Mol Genet 2015; 24:4584-98. [PMID: 25994508 DOI: 10.1093/hmg/ddv189] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022] Open
Abstract
A single amino acid mutation near the active site of the CAPN5 protease was linked to the inherited blinding disorder, autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV, OMIM #193235). In homology modeling with other calpains, this R243L CAPN5 mutation was situated in a mobile loop that gates substrate access to the calcium-regulated active site. In in vitro activity assays, the mutation increased calpain protease activity and made it far more active at low concentrations of calcium. To test whether the disease allele could yield an animal model of ADNIV, we created transgenic mice expressing human (h) CAPN5(R243L) only in the retina. The resulting hCAPN5(R243L) transgenic mice developed a phenotype consistent with human uveitis and ADNIV, at the clinical, histological and molecular levels. The fundus of hCAPN5(R243L) mice showed enhanced autofluorescence (AF) and pigment changes indicative of reactive retinal pigment epithelial cells and photoreceptor degeneration. Electroretinography showed mutant mouse eyes had a selective loss of the b-wave indicating an inner-retina signaling defect. Histological analysis of mutant mouse eyes showed protein extravasation from dilated vessels into the anterior chamber and vitreous, vitreous inflammation, vitreous and retinal fibrosis and retinal degeneration. Analysis of gene expression changes in the hCAPN5(R243L) mouse retina showed upregulation of several markers, including members of the Toll-like receptor pathway, chemokines and cytokines, indicative of both an innate and adaptive immune response. Since many forms of uveitis share phenotypic characteristics of ADNIV, this mouse offers a model with therapeutic testing utility for ADNIV and uveitis patients.
Collapse
Affiliation(s)
- Katherine J Wert
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine and Bernard and Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, Institute of Human Nutrition, College of Physicians and Surgeons
| | | | - Wen-Hsuan Wu
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine and Bernard and Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute
| | - Lokesh Gakhar
- Department of Biochemistry, Protein Crystallography Facility
| | - Diana Coglan
- Omics Laboratory and Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - MaryAnn Mahajan
- Omics Laboratory and Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Shu Wu
- Department of Pediatrics and Neurology
| | - Jing Yang
- Protein Crystallography Facility, Omics Laboratory and
| | | | - Stephen H Tsang
- Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine and Bernard and Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, Institute of Human Nutrition, College of Physicians and Surgeons, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA,
| | - Vinit B Mahajan
- Omics Laboratory and Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
38
|
Decreased UBASH3A mRNA Expression Levels in Peripheral Blood Mononuclear Cells from Patients with Systemic Lupus Erythematosus. Inflammation 2015; 38:1903-10. [DOI: 10.1007/s10753-015-0170-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Medici M, Visser WE, Visser TJ, Peeters RP. Genetic determination of the hypothalamic-pituitary-thyroid axis: where do we stand? Endocr Rev 2015; 36:214-44. [PMID: 25751422 DOI: 10.1210/er.2014-1081] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
For a long time it has been known that both hypo- and hyperthyroidism are associated with an increased risk of morbidity and mortality. In recent years, it has also become clear that minor variations in thyroid function, including subclinical dysfunction and variation in thyroid function within the reference range, can have important effects on clinical endpoints, such as bone mineral density, depression, metabolic syndrome, and cardiovascular mortality. Serum thyroid parameters show substantial interindividual variability, whereas the intraindividual variability lies within a narrow range. This suggests that every individual has a unique hypothalamus-pituitary-thyroid axis setpoint that is mainly determined by genetic factors, and this heritability has been estimated to be 40-60%. Various mutations in thyroid hormone pathway genes have been identified in persons with thyroid dysfunction or altered thyroid function tests. Because these causes are rare, many candidate gene and linkage studies have been performed over the years to identify more common variants (polymorphisms) associated with thyroid (dys)function, but only a limited number of consistent associations have been found. However, in the past 5 years, advances in genetic research have led to the identification of a large number of new candidate genes. In this review, we provide an overview of the current knowledge about the polygenic basis of thyroid (dys)function. This includes new candidate genes identified by genome-wide approaches, what insights these genes provide into the genetic basis of thyroid (dys)function, and which new techniques will help to further decipher the genetic basis of thyroid (dys)function in the near future.
Collapse
Affiliation(s)
- Marco Medici
- Rotterdam Thyroid Center, Department of Internal Medicine, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
40
|
Jackson SW, Kolhatkar NS, Rawlings DJ. B cells take the front seat: dysregulated B cell signals orchestrate loss of tolerance and autoantibody production. Curr Opin Immunol 2015; 33:70-7. [PMID: 25679954 DOI: 10.1016/j.coi.2015.01.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/15/2015] [Accepted: 01/28/2015] [Indexed: 01/06/2023]
Abstract
A significant proportion of autoimmune-associated genetic variants are expressed in B cells, suggesting that B cells may play multiple roles in autoimmune pathogenesis. In this review, we highlight recent studies demonstrating that even modest alterations in B cell signaling are sufficient to promote autoimmunity. First, we describe several examples of genetic variations promoting B cell-intrinsic initiation of autoimmune germinal centers and autoantibody production. We highlight how dual antigen receptor/toll-like receptor signals greatly facilitate this process and how activated, self-reactive B cells may function as antigen presenting cells, leading to loss of T cell tolerance. Further, we propose that B cell-derived cytokines may initiate and/or sustain autoimmune germinal centers, likely also contributing, in parallel, to programing of self-reactive T cells.
Collapse
Affiliation(s)
- Shaun W Jackson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States; Seattle Children's Research Institute, Seattle, WA, United States
| | - Nikita S Kolhatkar
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States; Seattle Children's Research Institute, Seattle, WA, United States
| | - David J Rawlings
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States; Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States; Seattle Children's Research Institute, Seattle, WA, United States.
| |
Collapse
|
41
|
Association of the late cornified envelope-3 genes with psoriasis and psoriatic arthritis: a systematic review. J Genet Genomics 2015; 42:49-56. [PMID: 25697099 DOI: 10.1016/j.jgg.2015.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/28/2014] [Accepted: 01/04/2015] [Indexed: 01/10/2023]
Abstract
Psoriasis (Ps) and psoriatic arthritis (PsA) are genetically complex diseases with strong genetic evidence. Recently, susceptibility genes for Ps and PsA have been identified within the late cornified envelop (LCE) gene cluster, especially the cluster 3 (LCE3) genes. It is noteworthy that the deletion of LCE3B and LCE3C (LCE3C_LCE3B-del) is significantly associated with these two diseases. Gene-gene interactions between LCE3 genes and other genes are associated with Ps and PsA. LCE3 genes also have pleiotropic effect on some autoimmune diseases, such as rheumatoid arthritis, atopic dermatitis and systemic lupus erythematosus. Further studies need to focus on the potential function of LCE3 genes in the pathogenesis of Ps and PsA in the future.
Collapse
|
42
|
van de Stolpe A, Kauffmann RH. Innovative human-specific investigational approaches to autoimmune disease. RSC Adv 2015. [DOI: 10.1039/c4ra15794j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
An organ-on-chip disease model approach, including “pre-clinical trial-on-chip” is introduced for understanding of human autoimmune disease pathophysiology and drug development.
Collapse
Affiliation(s)
- Anja van de Stolpe
- Precision & Decentralized Diagnostics
- Philips Research
- Eindhoven
- The Netherlands
| | | |
Collapse
|
43
|
Ghavimi R, Pourhossein M, Ghaedi K, Alesahebfosoul F, Honardoost MA, Maracy MR. Genetic association of rs1520333 G/A polymorphism in the IL7 gene with multiple sclerosis susceptibility in Isfahan population. Adv Biomed Res 2014; 3:238. [PMID: 25538924 PMCID: PMC4260277 DOI: 10.4103/2277-9175.145742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 04/17/2014] [Indexed: 12/04/2022] Open
Abstract
Background: Multiple sclerosis (MS) is an inflammatory neurodegenerative disease in which the insulating membrane of central nervous system is damaged. The etiology of MS includes both genetic and environmental causes. A Genome — Wide Association Study (GWAS) recognized genetic single nucleotide polymorphisms (SNP) linked with MS predisposition among which immunologically related genes are considerably over signified. The purpose of the present study is to explore the association of rs1520333 C/T polymorphism in the IL7 gene variants with the risk of MS in a subset of Iranian population. Materials and Methods: In this case — control study, 110 cases with MS and 110 controls were contributed. DNA was extracted from blood samples and to amplify the fragment of interest contain rs1520333 SNP, polymerase chain reaction — restriction fragment length polymorphism method was implemented for genotyping of the DNA samples with a specific restriction enzyme (MwoI). SPSS for Windows software (version 18.0; SPSS, Chicago, IL, USA) was used for statistical analysis. Result: We demonstrated the important association between G allele [odds ratio (OR) =1.6614, confidence interval (CI) =1.12-2.47, P = 0.0124] and GG genotype (OR = 7.45, 95% CI = 2.13-25.97, P 0.0016) of the rs1520333 SNP for susceptibility to MS after adjustment for age, and gender. OR adjusted for age, gender, and body mass index has displayed similar outcomes. Conclusion: These results indicate that the rs1520333 SNP is a significant susceptibility gene variant for development of MS in the Iranian population. Nevertheless, functional studies are required to completely elucidate how this SNP contributed to MS pathogenesis.
Collapse
Affiliation(s)
- Reza Ghavimi
- Departments of Genetics and Molecular Biology, University of Isfahan, Isfahan, Iran
| | - Meraj Pourhossein
- Departments of Genetics and Molecular Biology, University of Isfahan, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran
| | | | | | - Mohamad Reza Maracy
- Department of Epidemiology and Biostatistics, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
44
|
Iranzo J, Villoslada P. Autoimmunity and tumor immunology: two facets of a probabilistic immune system. BMC SYSTEMS BIOLOGY 2014; 8:120. [PMID: 25385554 PMCID: PMC4236429 DOI: 10.1186/s12918-014-0120-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/13/2014] [Indexed: 12/17/2022]
Abstract
Background The immune system of vertebrates has evolved the ability to mount highly elaborate responses to a broad range of pathogen-driven threats. Accordingly, it is quite a challenge to understand how a primitive adaptive immune system that probably lacked much of its present complexity could provide its bearers with significant evolutionary advantage, and therefore, continue to be selected for. Results We have developed a very simple model of the immune system that captures the probabilistic communication between its innate and adaptive components. Probabilistic communication arises specifically from the fact that antigen presenting cells collect and present a range of antigens from which the adaptive immune system must (probabilistically) identify its target. Our results show that although some degree of self-reactivity in the immune repertoire is unavoidable, the system is generally able to correctly target pathogens rather than self-antigens. Particular circumstances that impair correct targeting and that may lead to infection-induced autoimmunity can be predicted within this framework. Notably, the probabilistic immune system exhibits the remarkable ability to detect sudden increases in the abundance of rare self-antigens, which represents a first step towards developing anti-tumoral responses. Conclusion A simple probabilistic model of the communication between the innate and adaptive immune system provides a robust immune response, including targeting tumors, but at the price of being at risk of developing autoimmunity.
Collapse
Affiliation(s)
- Jaime Iranzo
- Centro de Astrobiología, INTA - CSIC, Madrid, Spain. .,Current address: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Pablo Villoslada
- Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Hospital Clinic of Barcelona, Casanova 145, Cellex Center 3A, 08036, Barcelona, Spain.
| |
Collapse
|
45
|
|
46
|
Abstract
BACKGROUND Many aspects of autoimmune disease are not well understood, including the specificities of autoimmune targets, and patterns of co-morbidity and cross-heritability across diseases. Prior work has provided evidence that somatic mutation caused by gene conversion and deletion at segmentally duplicated loci is relevant to several diseases. Simple tandem repeat (STR) sequence is highly mutable, both somatically and in the germ-line, and somatic STR mutations are observed under inflammation. RESULTS Protein-coding genes spanning STRs having markers of mutability, including germ-line variability, high total length, repeat count and/or repeat similarity, are evaluated in the context of autoimmunity. For the initiation of autoimmune disease, antigens whose autoantibodies are the first observed in a disease, termed primary autoantigens, are informative. Three primary autoantigens, thyroid peroxidase (TPO), phogrin (PTPRN2) and filaggrin (FLG), include STRs that are among the eleven longest STRs spanned by protein-coding genes. This association of primary autoantigens with long STR sequence is highly significant (p<3.0x10(-7)). Long STRs occur within twenty genes that are associated with sixteen common autoimmune diseases and atherosclerosis. The repeat within the TTC34 gene is an outlier in terms of length and a link with systemic lupus erythematosus is proposed. CONCLUSIONS The results support the hypothesis that many autoimmune diseases are triggered by immune responses to proteins whose DNA sequence mutates somatically in a coherent, consistent fashion. Other autoimmune diseases may be caused by coherent somatic mutations in immune cells. The coherent somatic mutation hypothesis has the potential to be a comprehensive explanation for the initiation of many autoimmune diseases.
Collapse
Affiliation(s)
- Kenneth Andrew Ross
- Department of Computer Science, Columbia University, New York, New York, United States of America
| |
Collapse
|
47
|
Hedl M, Zheng S, Abraham C. The IL18RAP region disease polymorphism decreases IL-18RAP/IL-18R1/IL-1R1 expression and signaling through innate receptor-initiated pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:5924-32. [PMID: 24842757 PMCID: PMC4146459 DOI: 10.4049/jimmunol.1302727] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fine-tuning of cytokine-inducing pathways is essential for immune homeostasis. Consistently, a dysregulated increase or decrease in pattern-recognition receptor (PRR)-induced signaling and cytokine secretion can lead to inflammatory bowel disease. Multiple gene loci are associated with inflammatory bowel disease, but their functional effects are largely unknown. One such region in chromosome 2q12 (rs917997), also associated with other immune-mediated diseases, encompasses IL18RAP. We found that human monocyte-derived macrophages (MDMs) from rs917997 AA risk carriers secrete significantly less cytokines than G carriers upon stimulation of multiple PRRs, including nucleotide-binding oligomerization domain 2 (NOD2). We identified that IL-18 signaling through IL-18RAP was critical in amplifying PRR-induced cytokine secretion in MDMs. IL-18RAP responded to NOD2-initiated early, caspase-1-dependent autocrine IL-18, which dramatically enhanced MAPK, NF-κB, PI3K, and calcium signaling. Reconstituting MAPK activation was sufficient to rescue decreased cytokines in NOD2-stimulated IL-18RAP-deficient MDMs. Relative to GG carriers, MDM from rs917997 AA carriers had decreased expression of cell-surface IL-18RAP protein, as well as of IL-18R1 and IL-1R1, genes also located in the IL18RAP region. Accordingly, these risk-carrier MDMs show diminished PRR-, IL-18-, and IL-1-induced MAPK and NF-κB signaling. Taken together, our results demonstrate clear functional consequences of the rs917997 risk polymorphism; this polymorphism leads to a loss-of-function through decreased IL-18RAP, IL-18R1, and IL-1R1 protein expression, which impairs autocrine IL-18 and IL-1 signaling, thereby leading to decreased cytokine secretion in MDMs upon stimulation of a broad range of PRRs.
Collapse
Affiliation(s)
- Matija Hedl
- Department of Internal Medicine, Yale University, New Haven, CT 06510
| | - Shasha Zheng
- Department of Internal Medicine, Yale University, New Haven, CT 06510
| | - Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, CT 06510
| |
Collapse
|
48
|
Abstract
Autoimmune diseases have increased dramatically worldwide since World War II. This is coincidental with the increased production and use of chemicals both in industrial countries and agriculture, as well as the ease of travel from region to region and continent to continent, making the transfer of a pathogen or pathogens from one part of the world to another much easier than ever before. In this review, triggers of autoimmunity are examined, principally environmental. The number of possible environmental triggers is vast and includes chemicals, bacteria, viruses, and molds. Examples of these triggers are given and include the mechanism of action and method by which they bring about autoimmunity.
Collapse
|
49
|
Fuji S, Kapp M, Einsele H. Possible implication of bacterial infection in acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Front Oncol 2014; 4:89. [PMID: 24795865 PMCID: PMC4006055 DOI: 10.3389/fonc.2014.00089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/10/2014] [Indexed: 12/24/2022] Open
Abstract
Graft-versus-host disease (GVHD) is still one of the major causes of morbidity and mortality in allogeneic hematopoietic stem cell transplantation (HSCT). In the pathogenesis of acute GVHD, it has been established that donor-derived T-cells activated in the recipient play a major role in GVHD in initiation and maintenance within an inflammatory cascade. To reduce the risk of GVHD, intensification of GVHD prophylaxis like T-cell depletion is effective, but it inevitably increases the risk of infectious diseases and abrogates beneficial graft-versus-leukemia effects. Although various cytokines are considered to play an important role in the pathogenesis of GVHD, GVHD initiation is such a complex process that cannot be prevented by means of single inflammatory cytokine inhibition. Thus, efficient methods to control the whole inflammatory milieu both on cellular and humoral view are needed. In this context, infectious diseases can theoretically contribute to an elevation of inflammatory cytokines after allogeneic HSCT and activation of various subtypes of immune effector cells, which might in summary lead to an aggravation of acute GVHD. The appropriate treatments or prophylaxis of bacterial infection during the early phase after allogeneic HSCT might be beneficial to reduce not only infectious-related but also GVHD-related mortality. Here, we aim to review the literature addressing the interactions of bacterial infections and GVHD after allogeneic HSCT.
Collapse
Affiliation(s)
- Shigeo Fuji
- Division of Hematology, Department of Internal Medicine II, University Hospital of Würzburg , Würzburg , Germany ; Division of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital , Tokyo , Japan
| | - Markus Kapp
- Division of Hematology, Department of Internal Medicine II, University Hospital of Würzburg , Würzburg , Germany
| | - Hermann Einsele
- Division of Hematology, Department of Internal Medicine II, University Hospital of Würzburg , Würzburg , Germany
| |
Collapse
|
50
|
Kobayashi T, Steinbach EC, Russo SM, Matsuoka K, Nochi T, Maharshak N, Borst LB, Hostager B, Garcia-Martinez JV, Rothman PB, Kashiwada M, Sheikh SZ, Murray PJ, Plevy SE. NFIL3-deficient mice develop microbiota-dependent, IL-12/23-driven spontaneous colitis. THE JOURNAL OF IMMUNOLOGY 2014; 192:1918-27. [PMID: 24442434 DOI: 10.4049/jimmunol.1301819] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
NFIL3 is a transcription factor that regulates multiple immunologic functions. In myeloid cells, NFIL3 is IL-10 inducible and has a key role as a repressor of IL-12p40 transcription. NFIL3 is a susceptibility gene for the human inflammatory bowel diseases. In this article, we describe spontaneous colitis in Nfil3(-/-) mice. Mice lacking both Nfil3 and Il10 had severe early-onset colitis, suggesting that NFIL3 and IL-10 independently regulate mucosal homeostasis. Lymphocytes were necessary for colitis, because Nfil3/Rag1 double-knockout mice were protected from disease. However, Nfil3/Rag1 double-knockout mice adoptively transferred with wild-type CD4(+) T cells developed severe colitis compared with Rag1(-/-) recipients, suggesting that colitis was linked to defects in innate immune cells. Colitis was abrogated in Nfil3/Il12b double-deficient mice, identifying Il12b dysregulation as a central pathogenic event. Finally, germ-free Nfil3(-/-) mice do not develop colonic inflammation. Thus, NFIL3 is a microbiota-dependent, IL-10-independent regulator of mucosal homeostasis via IL-12p40.
Collapse
Affiliation(s)
- Taku Kobayashi
- Center for Gastrointestinal Biology and Diseases, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|