1
|
Matsuo T, Takeoka Y, Yurube T, Tsujimoto T, Kanda Y, Miyazaki K, Ohnishi H, Ryu M, Kumagai N, Kuroshima K, Hiranaka Y, Kuroda R, Kakutani K. Transient Receptor Potential Vanilloid 4 Knockdown Decreases Extracellular Matrix Synthesis via Autophagy Suppression in the Rat Intervertebral Disc. JOR Spine 2025; 8:e70046. [PMID: 39963549 PMCID: PMC11832302 DOI: 10.1002/jsp2.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/02/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025] Open
Abstract
Background Transient receptor potential vanilloid 4 (TRPV4) has been identified as a Ca2+-permeable channel and is activated under physiological mechanical stimulation in disc nucleus pulposus (NP) cells. Meanwhile, the Ca2+-dependent AMP-activated protein kinase (AMPK)/mTOR pathway activates autophagy in notochordal cells. We hypothesized that TRPV4 is involved in the maintenance of intradiscal homeostasis via autophagy. Our objective was to elucidate the role of TRPV4 in extracellular matrix (ECM) metabolism and autophagy in the rat intervertebral disc through a loss-of-function study with the RNA interference (RNAi) technique. Methods In vitro study: Small interfering RNA (siRNA) was applied to knockdown TRPV4 by the reverse transfection method in rat disc NP cells. Expression of TRPV4, AMPK/mTOR pathway-related markers, and autophagy markers were measured by Western blotting (WB). Next, ECM metabolism was assessed under serum starvation and/or proinflammatory interleukin-1 beta (IL-1β) stimulation. In vivo study: TRPV4 and control siRNAs were injected into rat discs. To confirm in vivo transfection, WB for TRPV4 was conducted in rat disc NP-tissue protein extracts 2, 28, and 56 days after injection. Furthermore, 24-h temporary static compression-induced disruption of TRPV4 siRNA-injected discs was observed by radiography, histomorphology, and immunofluorescence. Results In vitro study: In disc cells, three different TRPV4 siRNAs consistently suppressed autophagy with TRPV4 protein knockdown (mean 33.2% [95% CI: -50.8, -15.5], 44.1% [-61.7, -26.4], 58.3% [-76.0, -40.7]). ECM metabolism was significantly suppressed by TRPV4 RNAi under proinflammatory IL-1β stimulation. In vivo study: The WB displayed sustained decreases in TRPV4 protein expression 2, 28, and 56 days after injection. Under the loaded condition, TRPV4 siRNA-injected discs presented radiographic height loss ([-31.7, -7.75]), histomorphological damage ([0.300, 4.70]), and immunofluorescent suppression of autophagy ([1.61, 20.5]) and ECM metabolism ([-25.2, -6.41]) compared to control siRNA-injected discs at 56 days. Conclusions The TRPV4 could be a therapeutic target for intervertebral disc diseases via modulating autophagy.
Collapse
Affiliation(s)
- Tomoya Matsuo
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Yoshiki Takeoka
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Takashi Yurube
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Takeru Tsujimoto
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Yutaro Kanda
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Kunihiko Miyazaki
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Hiroki Ohnishi
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Masao Ryu
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Naotoshi Kumagai
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Kohei Kuroshima
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Yoshiaki Hiranaka
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Ryosuke Kuroda
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Kenichiro Kakutani
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
2
|
Fu Y, Hao X, Nie J, Shang P, Dong X, Zhang B, Yan D, Zhang H. Porcine transient receptor potential channel 1 promotes adipogenesis and lipid deposition. J Lipid Res 2025; 66:100718. [PMID: 39631563 PMCID: PMC11741951 DOI: 10.1016/j.jlr.2024.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
Adipose tissue, an important organ involved in energy metabolism and endocrine, is closely related to animal meat quality and human health. Transient receptor potential channel 1 (TRPC1), an ion transporter, is adipocytes' major Ca2+ entry channel. However, its function in fat deposition is poorly understood, particularly in pigs, which are both an ideal model for human obesity research and a primary meat source for human diets. In the present investigation, our findings demonstrate a prominent expression of TRPC1 within the adipose tissue of pigs with a strong fat deposition ability. Functional analysis showed that TRPC1 promotes primary preadipocyte proliferation and adipogenic differentiation. In vivo, transgenic mice expressing porcine TRPC1 exhibited aggravated high-fat diet-induced obesity, hepatic steatosis, and insulin resistance. Moreover, TRPC1 may facilitate adipogenesis via activating phosphatidylinositol 3 kinase/AKT and β-catenin signaling pathways. Our research underscores the pivotal role of porcine TRPC1 as a positive regulator in adipogenesis and lipid accumulation processes, providing a potential target for improving animal meat quality and treating obesity-related diseases in humans.
Collapse
Affiliation(s)
- Yu Fu
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China; State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Xin Hao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Jingru Nie
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Peng Shang
- College of Animal Science, Xizang Agricultural and Animal Husbandry College, Linzhi, China
| | - Xinxing Dong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Bo Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China; State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Dawei Yan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hao Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China; State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Shen YR, Cheng L, Zhang DF. TRPV1: A novel target for the therapy of diabetes and diabetic complications. Eur J Pharmacol 2024; 984:177021. [PMID: 39362389 DOI: 10.1016/j.ejphar.2024.177021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disease characterized by abnormally elevated blood glucose levels. Type II diabetes accounts for approximately 90% of all cases. Several drugs are available for hyperglycemia treatment. However, the current therapies for managing high blood glucose do not prevent or reverse the disease progression, which may result in complications and adverse effects, including diabetic neuropathy, retinopathy, and nephropathy. Hence, developing safer and more effective methods for lowering blood glucose levels is imperative. Transient receptor potential vanilloid-1 (TRPV1) is a significant member of the transient receptor potential family. It is present in numerous body tissues and organs and performs vital physiological functions. PURPOSE This review aimed to develop new targeted TRPV1 hypoglycemic drugs by systematically summarizing the mechanism of action of the TRPV1-based signaling pathway in preventing and treating diabetes and its complications. METHODS Literature searches were performed in the PubMed, Web of Science, Google Scholar, Medline, and Scopus databases for 10 years from 2013 to 2023. The search terms included "diabetes," "TRPV1," "diabetic complications," and "capsaicin." RESULTS TRPV1 is an essential potential target for treating diabetes mellitus and its complications. It reduces hepatic glucose production and food intake and promotes thermogenesis, metabolism, and insulin secretion. Activation of TRPV1 ameliorates diabetic nephropathy, retinopathy, myocardial infarction, vascular endothelial dysfunction, gastroparesis, and bladder dysfunction. Suppression of TRPV1 improves diabetes-related osteoporosis. However, the therapeutic effects of activating or suppressing TRPV1 may vary when treating diabetic neuropathy and periodontitis. CONCLUSION This review demonstrates that TRPV1 is a potential therapeutic target for diabetes and its complications. Additionally, it provides a theoretical basis for developing new hypoglycemic drugs that target TRPV1.
Collapse
Affiliation(s)
- Yu-Rong Shen
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Long Cheng
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Dong-Fang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
4
|
Kumar S, Acharya TK, Kumar S, Mahapatra P, Chang YT, Goswami C. TRPV4 modulation affects mitochondrial parameters in adipocytes and its inhibition upregulates lipid accumulation. Life Sci 2024; 358:123130. [PMID: 39413904 DOI: 10.1016/j.lfs.2024.123130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Enhanced lipid-droplet formation by adipocytes is a complex process and relevant for obesity. Using knock-out animals, involvement of TRPV4, a thermosensitive ion channel in the obesity has been proposed. However, exact role/s of TRPV4 in adipogenesis and obesity remain unclear and contradictory. Here we used in vitro culture of 3T3L-1 preadipocytes and primary murine-mesenchymal stem cells as model systems, and a series of live-cell-imaging to analyse the direct involvement of TRPV4 exclusively at the adipocytes that are free from other complex signalling as expected in in-vivo condition. Functional TRPV4 is endogenously expressed in pre- and in mature-adipocytes. Pharmacological inhibition of TRPV4 enhances differentiation of preadipocytes to mature adipocytes, increases expression of adipogenic and lipogenic genes, enhances cholesterol, promotes bigger lipid-droplet formation and reduces the lipid droplet temperature. On the other hand, TRPV4 activation enhanced the browning of adipocytes with increased UCP-1 levels. TRPV4 regulates mitochondrial-temperature, Ca2+-load, ATP, superoxides, cardiolipin, membrane potential (ΔΨm), and lipid-mitochondrial contact sites. TRPV4 also regulates the extent of actin fibres, affecting the cells mechanosensing ability. These findings link TRPV4-mediated mitochondrial changes in the context of lipid-droplet formation involved in adipogenesis and confirm the direct involvement of TRPV4 in adipogenesis. These findings may have broad implication in treating adipogenesis and obesity in future.
Collapse
Affiliation(s)
- Shamit Kumar
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Tusar Kanta Acharya
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Satish Kumar
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Parnasree Mahapatra
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Chandan Goswami
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
5
|
Mou A, Sun F, Tong D, Wang L, Lu Z, Cao T, Li L, You M, Zhou Q, Chen X, Xiang J, Liu D, Gao P, He H, Zhu Z. Dietary apigenin ameliorates obesity-related hypertension through TRPV4-dependent vasorelaxation and TRPV4-independent adiponectin secretion. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167488. [PMID: 39218272 DOI: 10.1016/j.bbadis.2024.167488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Obesity-related hypertension is a major cardiovascular risk factor. Apigenin, a natural flavonoid in celery, induces vascular dilation via endothelial transient receptor potential channel vanilla 4 (TRPV4) channels. This study aimed to explore apigenin's potential to alleviate obesity-related hypertension in mice and its underlying mechanisms. METHODS The C57BL/6 and TRPV4 knockout mice were fed a high-fat diet and subjected to dietary intervention with apigenin. Body weight and tail blood pressure of the mice were measured during the feeding. Vascular reactivity was assessed through a DMT wire myograph systems in vitro. The distribution and expression of adiponectin and pro-inflammatory markers in brown fat were detected. Injecting adeno-associated eight (AAV8) viruses into brown adipose tissue (BAT) to determine whether adiponectin is indispensable for the therapeutic effect of apigenin. Palmitic acid (PA) was used in mouse brown adipocytes to examine the detailed mechanisms regulating adiponectin secretion. RESULTS Apigenin improved vasodilation and reduced blood pressure in obese mice, effects partly blocked in TRPV4 knockout. It also reduced weight gain independently of TRPV4. Apigenin increased adiponectin secretion from BAT; knockdown of adiponectin weakened its benefits. Apigenin downregulated Cluster of differentiation 38 (CD38), restoring Nicotinamide adenine dinucleotide+ (NAD+) levels and activating the NAD+/Sirtuin 1 (SIRT1) pathway, enhancing adiponectin expression. CONCLUSIONS Our study indicates that dietary apigenin is suitable as a nonpharmaceutical intervention for obesity-related hypertension. In mechanism, in addition to improving vascular relaxation through the activation of endothelial TRPV4 channels, apigenin also directly alleviated adipose inflammation and increased adiponectin levels by inhibiting CD38.
Collapse
Affiliation(s)
- Aidi Mou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Fang Sun
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Dan Tong
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Mei You
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Qing Zhou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Xiaorong Chen
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Jie Xiang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China.
| | - Hongbo He
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing 400042, PR China.
| |
Collapse
|
6
|
Ying L, Fornes DD, Dobberfuhl AD, Ansari JR, Alvira CM, Cornfield DN. miR-203 modulates pregnant myometrium contractility via transient receptor potential vanilloid 4 channel expression. FASEB J 2024; 38:e70173. [PMID: 39545721 DOI: 10.1096/fj.202401783rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/13/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Preterm labor is the leading cause of neonatal death and major morbidity but remains a poorly understood process with no effective tocolytic therapies. Recent work has identified the transient receptor potential vanilloid 4 (TRPV4) channel, a membrane calcium channel upregulated in uterine smooth muscle through gestation, as integral in the transition from quiescence to contraction in the gravid uterus. The present study builds upon these findings and investigates regulation of the TRPV4 channel during pregnancy in the murine and human uterus by micro-RNA 203 (miR-203). We find a progressive decrease in miR-203 expression during gestation, accompanied by a reciprocal increase in TRPV4 mRNA and protein expression. In human uterine smooth muscle cells (UtSMC), miR-203 overexpression reduces, and si-RNA-mediated silencing increases, TRPV4 expression. Studies using murine UtSMC demonstrate that miR-203 expression modulates TRPV4-mediated cytosolic calcium entry and contractility. Consistent with these findings, the response to pharmacologic TRVP4 agonists is increased in myometrial tissue from miRNA203 -/- mice compared to control mice. Moreover, we demonstrate that miR-203 binds specifically on the promoter region of TRPV4 to decrease expression. In murine inflammatory models of preterm labor, miR-203 overexpression prolongs pregnancy. Estradiol (E2) decreases miR-203 and increases TRPV4 expression, providing a potential physiologic link for the unique reciprocal relationship in UtSMC. Taken together, these findings provide evidence that miR-203 modulates uterine contractility during pregnancy via negative regulation of TRPV4. These findings support the hypothesis that targeting miR-203 holds the promise of an entirely novel approach to prevent prematurity and treat preterm labor.
Collapse
Affiliation(s)
- Lihua Ying
- Division of Pulmonary, Asthma, and Sleep Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Daiana D Fornes
- Division of Pulmonary, Asthma, and Sleep Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Amy D Dobberfuhl
- Department of Urology, Stanford University School of Medicine, Stanford, California, USA
| | - Jessica R Ansari
- Division of Obstetric Anesthesiology and Maternal Health, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Cristina M Alvira
- Division of Pulmonary, Asthma, and Sleep Medicine, Stanford University School of Medicine, Stanford, California, USA
- Division of Critical Care Medicine, Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, California, USA
| | - David N Cornfield
- Division of Pulmonary, Asthma, and Sleep Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
7
|
Wang T, Zhou D, Hong Z. Adipose tissue in older individuals: a contributing factor to sarcopenia. Metabolism 2024; 160:155998. [PMID: 39128607 DOI: 10.1016/j.metabol.2024.155998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Sarcopenia is a geriatric syndrome characterized by a functional decline in muscle. The prevalence of sarcopenia increases with natural aging, becoming a serious health problem among elderly individuals. Therefore, understanding the pathology of sarcopenia is critical for inhibiting age-related alterations and promoting health and longevity in elderly individuals. The development of sarcopenia may be influenced by interactions between visceral and subcutaneous adipose tissue and skeletal muscle, particularly under conditions of chronic low-grade inflammation and metabolic dysfunction. This hypothesis is supported by the following observations: (i) accumulation of senescent cells in both adipose tissue and skeletal muscle with age; (ii) gut dysbiosis, characterized by an imbalance in gut microbial communities as the main trigger for inflammation, sarcopenia, and aged adipose tissue; and (iii) microbial dysbiosis, which could impact the onset or progression of a senescent state. Moreover, adipose tissue acts as an endocrine organ, releasing molecules that participate in intricate communication networks between organs. Our discussion focuses on novel adipokines and their role in regulating adipose tissue and muscle, particularly those influenced by aging and obesity, emphasizing their contributions to disease development. On the basis of these findings, we propose that age-related adipose tissue and sarcopenia are disorders characterized by chronic inflammation and metabolic dysregulation. Finally, we explore new potential therapeutic strategies involving specialized proresolving mediator (SPM) G protein-coupled receptor (GPCR) agonists, non-SPM GPCR agonists, transient receptor potential (TRP) channels, antidiabetic drugs in conjunction with probiotics and prebiotics, and compounds designed to target senescent cells and mitigate their pro-inflammatory activity.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Osmanlıoğlu HÖ, Nazıroğlu M. Resveratrol Modulates Diabetes-Induced Neuropathic Pain, Apoptosis, and Oxidative Neurotoxicity in Mice Through TRPV4 Channel Inhibition. Mol Neurobiol 2024; 61:7269-7286. [PMID: 38976129 PMCID: PMC11339089 DOI: 10.1007/s12035-024-04311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is caused by several factors, including reactive free oxygen radicals (ROS)-induced excessive Ca2+ influx. Transient receptor potential (TRP) vanilloid 4 (TRPV4) is a member of the Ca2+-permeable TRP superfamily. Resveratrol (RESV) has been extensively utilized in TRP channel regulation due to its pharmacological properties, which include antioxidant and TRP inhibitory effects. The protective function of RESV and the contribution of TRPV4 to streptozotocin (STZ)-induced neuropathic pain in mice are still unclear. Here, we evaluated the effects of RESV through the modulation of TRPV4 on Ca2+ influx, ROS-mediated pain, apoptosis, and oxidative damage in the mouse dorsal root ganglion (DRGs). From the 32 mice, four groups were induced: control, RESV, STZ, and STZ + RESV. We found that the injection of RESV reduced the changes caused by the STZ-induced stimulation of TRPV4, which in turn increased mechanical/thermal neuropathic pain, cytosolic Ca2+ influx, TRPV4 current density, oxidants (lipid peroxidation, mitochondrial ROS, and cytosolic ROS), and apoptotic markers (caspase-3, -8, and -9). The RESV injection also increased the STZ-mediated reduction of viability of DRG and the amounts of glutathione, glutathione peroxidase, vitamin A, β-carotene, and vitamin E in the brain, erythrocytes, plasma, liver, and kidney. All of these findings suggest that TRPV4 stimulation generates oxidative neurotoxicity, neuropathic pain, and apoptosis in the STZ-induced diabetic mice. On the other hand, neurotoxicity and apoptosis were reduced due to the downregulation of TRPV4 carried out through the RESV injection.
Collapse
Affiliation(s)
- Haci Ömer Osmanlıoğlu
- Department of Anesthesiology and Reanimation, Medical Faculty, Suleyman Demirel University, 32260, Isparta, Türkiye
| | - Mustafa Nazıroğlu
- Neuroscience Application and Research Center (NOROBAM), Suleyman Demirel University, Isparta, Türkiye.
- BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture, and Industry Ltd, Isparta, Türkiye.
- Department of Biophysics, Medical Faculty, Suleyman Demirel University, Isparta, Türkiye.
| |
Collapse
|
9
|
Hu Y, Zou W, Zhang L, Zhang S, Hu L, Song Z, Kong S, Gao Y, Zhang J, Yang Y, Zheng J. TRPV3 facilitates lipolysis and attenuates diet-induced obesity via activation of the NRF2/FSP1 signaling axis. Free Radic Biol Med 2024; 221:155-168. [PMID: 38777204 DOI: 10.1016/j.freeradbiomed.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Transient receptor potential vanilloid (TRPV) ion channels play a crucial role in various cellular functions by regulating intracellular Ca2+ levels and have been extensively studied in the context of several metabolic diseases. However, the regulatory effects of TRPV3 in obesity and lipolysis are not well understood. In this study, utilizing a TRPV3 gain-of-function mouse model (TRPV3G568V/G568V), we assessed the metabolic phenotype of both TRPV3G568V/G568V mice and their control littermates, which were randomly assigned to either a 12-week high-fat diet or a control diet. We investigated the potential mechanisms underlying the role of TRPV3 in restraining obesity and promoting lipolysis both in vivo and in vitro. Our findings indicate that a high-fat diet led to significant obesity, characterized by increased epididymal and inguinal white adipose tissue weight and higher fat mass. However, the gain-of-function mutation in TRPV3 appeared to counteract these adverse effects by enhancing lipolysis in visceral fat through the upregulation of the major lipolytic enzyme, adipocyte triglyceride lipase (ATGL). In vitro experiments using carvacrol, a TRPV3 agonist, demonstrated the promotion of lipolysis and antioxidation in 3T3-L1 adipocytes after TRPV3 activation. Notably, carvacrol failed to stimulate Ca2+ influx, lipolysis, and antioxidation in 3T3-L1 adipocytes treated with BAPTA-AM, a cell-permeable calcium chelator. Our results revealed that TRPV3 activation induced the action of transcriptional factor nuclear factor erythroid 2-related factor 2 (NRF2), resulting in increased expression of ferroptosis suppressor protein 1 (FSP1) and superoxide dismutase2 (SOD2). Moreover, the inhibition of NRF2 impeded carvacrol-induced lipolysis and antioxidation in 3T3-L1 adipocytes, with downregulation of ATGL, FSP1, and SOD2. In summary, our study suggests that TRPV3 promotes visceral fat lipolysis and inhibits diet-induced obesity through the activation of the NRF2/FSP1 signaling axis. We propose that TRPV3 may be a potential therapeutic target in the treatment of obesity.
Collapse
Affiliation(s)
- Yongyan Hu
- Laboratory Animal Facility, Peking University First Hospital, Beijing, China
| | - Wenyu Zou
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Shixuan Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Linghan Hu
- Genetic Skin Disease Center, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Zhongya Song
- Genetic Skin Disease Center, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Shenshen Kong
- Laboratory Animal Facility, Peking University First Hospital, Beijing, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yong Yang
- Genetic Skin Disease Center, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
10
|
Nims R, Palmer DR, Kassab J, Zhang B, Guilak F. The chondrocyte "mechanome": Activation of the mechanosensitive ion channels TRPV4 and PIEZO1 drives unique transcriptional signatures. FASEB J 2024; 38:e23778. [PMID: 38959010 PMCID: PMC11327906 DOI: 10.1096/fj.202400883r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The mechanosensitive ion channels Transient Receptor Potential Vanilloid 4 (TRPV4) and PIEZO1 transduce physiologic and supraphysiologic magnitudes of mechanical signals in the chondrocyte, respectively. TRPV4 activation promotes chondrogenesis, while PIEZO1 activation by supraphysiologic deformations drives cell death. The mechanisms by which activation of these channels discretely drives changes in gene expression to alter cell behavior remain to be determined. To date, no studies have contrasted the transcriptomic response to activation of these channels nor has any published data attempted to correlate these transcriptomes to alterations in cellular function. This study used RNA sequencing to comprehensively investigate the transcriptomes associated with activation of TRPV4 or PIEZO1, revealing that TRPV4 and PIEZO drive distinct transcriptomes and also exhibit unique co-regulated clusters of genes. Notably, activation of PIEZO1 through supraphysiologic deformation induced a transient inflammatory profile that overlapped with the interleukin (IL)-1-responsive transcriptome and contained genes associated with cartilage degradation and osteoarthritis progression. However, both TRPV4 and PIEZO1 were also shown to elicit anabolic effects. PIEZO1 expression promoted a pro-chondrogenic transcriptome under unloaded conditions, and daily treatment with PIEZO1 agonist Yoda1 significantly increased sulfated glycosaminoglycan deposition in vitro. These findings emphasize the presence of a broad "mechanome" with distinct effects of TRPV4 and PIEZO1 activation in chondrocytes, suggesting complex roles for PIEZO1 in both the physiologic and pathologic responses of chondrocytes. The identification of transcriptomic profiles unique to or shared by PIEZO1 and TRPV4 (distinct from IL-1-induced inflammation) could inform future therapeutic designs targeting these channels for the management and treatment of osteoarthritis.
Collapse
Affiliation(s)
- Robert Nims
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Shriners Hospitals for Children-Saint Louis, St. Louis, Missouri, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel R Palmer
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Shriners Hospitals for Children-Saint Louis, St. Louis, Missouri, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Jordan Kassab
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Bo Zhang
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Shriners Hospitals for Children-Saint Louis, St. Louis, Missouri, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Orsini EM, Roychowdhury S, Gangadhariah M, Cross E, Abraham S, Reinhardt A, Grund ME, Zhou JY, Stuehr O, Pant B, Olman MA, Vachharajani V, Scheraga RG. TRPV4 Regulates the Macrophage Metabolic Response to Limit Sepsis-induced Lung Injury. Am J Respir Cell Mol Biol 2024; 70:457-467. [PMID: 38346220 PMCID: PMC11160412 DOI: 10.1165/rcmb.2023-0456oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024] Open
Abstract
Sepsis is a systemic inflammatory response that requires effective macrophage metabolic functions to resolve ongoing inflammation. Previous work showed that the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), mediates macrophage phagocytosis and cytokine production in response to lung infection. Here, we show that TRPV4 regulates glycolysis in a stiffness-dependent manner by augmenting macrophage glucose uptake by GLUT1. In addition, TRPV4 is required for LPS-induced phagolysosome maturation in a GLUT1-dependent manner. In a cecal slurry mouse model of sepsis, TRPV4 regulates sepsis-induced glycolysis as measured by BAL fluid (BALF) lactate and sepsis-induced lung injury as measured by BALF total protein and lung compliance. TRPV4 is necessary for bacterial clearance in the peritoneum to limit sepsis-induced lung injury. It is interesting that BALF lactate is increased in patients with sepsis compared with healthy control participants, supporting the relevance of lung cell glycolysis to human sepsis. These data show that macrophage TRPV4 is required for glucose uptake through GLUT1 for effective phagolysosome maturation to limit sepsis-induced lung injury. Our work presents TRPV4 as a potential target to protect the lung from injury in sepsis.
Collapse
Affiliation(s)
- Erica M. Orsini
- Department of Pulmonary and Critical Care, Integrated Hospital Care Institute, and
| | - Sanjoy Roychowdhury
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Mahesha Gangadhariah
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Emily Cross
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Susamma Abraham
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Amanda Reinhardt
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Megan E. Grund
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Julie Y. Zhou
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Olivia Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Bishnu Pant
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Mitchell A. Olman
- Department of Pulmonary and Critical Care, Integrated Hospital Care Institute, and
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Vidula Vachharajani
- Department of Pulmonary and Critical Care, Integrated Hospital Care Institute, and
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Rachel G. Scheraga
- Department of Pulmonary and Critical Care, Integrated Hospital Care Institute, and
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
12
|
Xu S, Lu F, Gao J, Yuan Y. Inflammation-mediated metabolic regulation in adipose tissue. Obes Rev 2024; 25:e13724. [PMID: 38408757 DOI: 10.1111/obr.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/04/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Chronic inflammation of adipose tissue is a prominent characteristic of many metabolic diseases. Lipid metabolism in adipose tissue is consistently dysregulated during inflammation, which is characterized by substantial infiltration by proinflammatory cells and high cytokine concentrations. Adipose tissue inflammation is caused by a variety of endogenous factors, such as mitochondrial dysfunction, reactive oxygen species (ROS) production, endoplasmic reticulum (ER) stress, cellular senescence, ceramides biosynthesis and mediators of lipopolysaccharides (LPS) signaling. Additionally, the gut microbiota also plays a crucial role in regulating adipose tissue inflammation. Essentially, adipose tissue inflammation arises from an imbalance in adipocyte metabolism and the regulation of immune cells. Specific inflammatory signals, including nuclear factor-κB (NF-κB) signaling, inflammasome signaling and inflammation-mediated autophagy, have been shown to be involved in the metabolic regulation. The pathogenesis of metabolic diseases characterized by chronic inflammation (obesity, insulin resistance, atherosclerosis and nonalcoholic fatty liver disease [NAFLD]) and recent research regarding potential therapeutic targets for these conditions are also discussed in this review.
Collapse
Affiliation(s)
- Shujie Xu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhua Gao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Yuan
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Hou YJ, Yang XX, He L, Meng HX. Pathological mechanisms of cold and mechanical stress in modulating cancer progression. Hum Cell 2024; 37:593-606. [PMID: 38538930 DOI: 10.1007/s13577-024-01049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 04/15/2024]
Abstract
Environmental temperature and cellular mechanical force are the inherent factors that participate in various biological processes and regulate cancer progress, which have been hot topics worldwide. They occupy a dominant part in the cancer tissues through different approaches. However, extensive investigation regarding pathological mechanisms in the carcinogenic field. After research, we found cold stress via two means to manipulate tumors: neuroscience and mechanically sensitive ion channels (MICHs) such as TRP families to regulate the physiological and pathological activities. Excessive cold stimulation mediated neuroscience acting on every cancer stage through the hypothalamus-pituitary-adrenocorticoid (HPA) to reach the target organs. Comparatively speaking, mechanical force via Piezo of MICHs controls cancer development. The progression of cancer depends on the internal activation of proto-oncogenes and the external tumorigenic factors; the above two means eventually lead to genetic disorders at the molecular level. This review summarizes the interaction of bidirectional communication between them and the tumor. It covers the main processes from cytoplasm to nucleus related to metastasis cascade and tumor immune escape.
Collapse
Affiliation(s)
- Yun-Jing Hou
- Harbin Medical University, Harbin, China
- Department of Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin-Xin Yang
- Harbin Medical University, Harbin, China
- Department of Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin He
- Department of Stomatology, Heilongjiang Provincial Hospital, Harbin, China
| | - Hong-Xue Meng
- Harbin Medical University, Harbin, China.
- Department of Pathology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, China.
| |
Collapse
|
14
|
Zhang Y, Xue J, Zhu W, Wang H, Xi P, Tian D. TRPV4 in adipose tissue ameliorates diet-induced obesity by promoting white adipocyte browning. Transl Res 2024; 266:16-31. [PMID: 37926276 DOI: 10.1016/j.trsl.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/12/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
The induction of adipocyte browning to increase energy expenditure is a promising strategy to combat obesity. Transient receptor potential channel V4 (TRPV4) functions as a nonselective cation channel in various cells and plays physiological roles in osmotic and thermal sensations. However, the function of TRPV4 in energy metabolism remains controversial. This study revealed the role of TRPV4 in adipose tissue in the development of obesity. Adipose-specific TRPV4 overexpression protected mice against diet-induced obesity (DIO) and promoted white fat browning. TRPV4 overexpression was also associated with decreased adipose inflammation and improved insulin sensitivity. Mechanistically, TRPV4 could directly promote white adipocyte browning via the AKT pathway. Consistently, adipose-specific TRPV4 knockout exacerbated DIO with impaired thermogenesis and activated inflammation. Corroborating our findings in mice, TRPV4 expression was low in the white adipose tissue of obese people. Our results positioned TRPV4 as a potential regulator of obesity and energy expenditure in mice and humans.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin 300203, China
| | - Jie Xue
- Department of Pathology, Handan Central Hospital, Handan, Hebei 057150, China
| | - Wenjuan Zhu
- Department of Nuclear Medicine, Third Hospital of Nanchang, Nanchang, Jiangxi 330008, China
| | - Haomin Wang
- Department of Human Anatomy and Histology, Tianjin Medical University, Tianjin 300070, China
| | - Pengjiao Xi
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin 300203, China.
| | - Derun Tian
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin 300203, China; Department of Human Anatomy and Histology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
15
|
Zhang Y, Yuan X, Wang J, Han M, Lu H, Wang Y, Liu S, Yang S, Xing HC, Cheng J. TRPV4 promotes HBV replication and capsid assembly via methylation modification of H3K4 and HBc ubiquitin. J Med Virol 2024; 96:e29510. [PMID: 38573018 DOI: 10.1002/jmv.29510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024]
Abstract
Hepatitis B virus (HBV) infection poses a significant burden on global public health. Unfortunately, current treatments cannot fully alleviate this burden as they have limited effect on the transcriptional activity of the tenacious covalently closed circular DNA (cccDNA) responsible for viral persistence. Consequently, the HBV life cycle should be further investigated to develop new anti-HBV pharmaceutical targets. Our previous study discovered that the host gene TMEM203 hinders HBV replication by participating in calcium ion regulation. The involvement of intracellular calcium in HBV replication has also been confirmed. In this study, we found that transient receptor potential vanilloid 4 (TRPV4) notably enhances HBV reproduction by investigating the effects of several calcium ion-related molecules on HBV replication. The in-depth study showed that TRPV4 promotes hepatitis B core/capsid protein (HBc) protein stability through the ubiquitination pathway and then promotes the nucleocapsid assembly. HBc binds to cccDNA and reduces the nucleosome spacing of the cccDNA-histones complex, which may regulate HBV transcription by altering the nucleosome arrangement of the HBV genome. Moreover, our results showed that TRPV4 promotes cccDNA-dependent transcription by accelerating the methylation modification of H3K4. In conclusion, TRPV4 could interact with HBV core protein and regulate HBV during transcription and replication. These data suggest that TRPV4 exerts multifaceted HBV-related synergistic factors and may serve as a therapeutic target for CHB.
Collapse
Affiliation(s)
- Yu Zhang
- Peking University Ditan Teaching Hospital, Beijing, China
- Department of Hepatology, Beijing Ditan Hospital of Capital Medical University, Beijing, China
| | - Xiaoxue Yuan
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jun Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, China
| | - Ming Han
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongping Lu
- Beijing Pan-Asia Tongze Institute of Biomedicine Co, Ltd, Beijing, China
| | - Yun Wang
- Department of Hepatology, Beijing Ditan Hospital of Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, The First Section of Liver Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shunai Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Song Yang
- Department of Hepatology, Beijing Ditan Hospital of Capital Medical University, Beijing, China
| | - Hui-Chun Xing
- Department of Hepatology, Beijing Ditan Hospital of Capital Medical University, Beijing, China
| | - Jun Cheng
- Peking University Ditan Teaching Hospital, Beijing, China
- Department of Hepatology, Beijing Ditan Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Cui SJ, Yang FJ, Wang XD, Mao ZB, Gu Y. Mechanical overload induces TMJ disc degeneration via TRPV4 activation. Oral Dis 2024; 30:1416-1428. [PMID: 37103670 DOI: 10.1111/odi.14595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/07/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
OBJECTIVE The temporomandibular joint (TMJ) disc cushions intraarticular stress during mandibular movements. While mechanical overloading is related to cartilage degeneration, the pathogenesis of TMJ disc degeneration is unclear. Here, we determined the regulatory role of mechanoinductive transient receptor potential vanilloid 4 (TRPV4) in mechanical overload-induced TMJ disc degeneration. METHODS We explored the effect of mechanical overload on the TMJ discs in a rat occlusal interference model in vivo, and by applying sustained compressive force in vitro. TRPV4 inhibition was delivered by small interfering RNA or GSK2193874; TRPV4 activation was delivered by GSK1016790A. The protective effect of TRPV4 inhibition was validated in the rat occlusal interference model. RESULTS Occlusal interference induced TMJ disc degeneration with enhanced extracellular matrix degradation in vivo and mechanical overload promoted inflammatory responses in the TMJ disc cells via Ca2+ influx with significantly upregulated TRPV4. TRPV4 inhibition reversed mechanical overload-induced inflammatory responses; TRPV4 activation simulated mechanical overload-induced inflammatory responses. Moreover, TRPV4 inhibition alleviated TMJ disc degeneration in the rat occlusal interference model. CONCLUSION Our findings suggest TRPV4 plays a pivotal role in the pathogenesis of mechanical overload-induced TMJ disc degeneration and may be a promising target for the treatment of degenerative changes of the TMJ disc.
Collapse
Affiliation(s)
- Sheng-Jie Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Fu-Jia Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xue-Dong Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Ze-Bin Mao
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, China
| | - Yan Gu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
17
|
Benzi A, Heine M, Spinelli S, Salis A, Worthmann A, Diercks B, Astigiano C, Pérez Mato R, Memushaj A, Sturla L, Vellone V, Damonte G, Jaeckstein MY, Koch-Nolte F, Mittrücker HW, Guse AH, De Flora A, Heeren J, Bruzzone S. The TRPM2 ion channel regulates metabolic and thermogenic adaptations in adipose tissue of cold-exposed mice. Front Endocrinol (Lausanne) 2024; 14:1251351. [PMID: 38390373 PMCID: PMC10882718 DOI: 10.3389/fendo.2023.1251351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/16/2023] [Indexed: 02/24/2024] Open
Abstract
Introduction During thermogenesis, adipose tissue (AT) becomes more active and enhances oxidative metabolism. The promotion of this process in white AT (WAT) is called "browning" and, together with the brown AT (BAT) activation, is considered as a promising approach to counteract obesity and metabolic diseases. Transient receptor potential cation channel, subfamily M, member 2 (TRPM2), is an ion channel that allows extracellular Ca2+ influx into the cytosol, and is gated by adenosine diphosphate ribose (ADPR), produced from NAD+ degradation. The aim of this study was to investigate the relevance of TRPM2 in the regulation of energy metabolism in BAT, WAT, and liver during thermogenesis. Methods Wild type (WT) and Trpm2-/- mice were exposed to 6°C and BAT, WAT and liver were collected to evaluate mRNA, protein levels and ADPR content. Furthermore, O2 consumption, CO2 production and energy expenditure were measured in these mice upon thermogenic stimulation. Finally, the effect of the pharmacological inhibition of TRPM2 was assessed in primary adipocytes, evaluating the response upon stimulation with the β-adrenergic receptor agonist CL316,243. Results Trpm2-/- mice displayed lower expression of browning markers in AT and lower energy expenditure in response to thermogenic stimulus, compared to WT animals. Trpm2 gene overexpression was observed in WAT, BAT and liver upon cold exposure. In addition, ADPR levels and mono/poly-ADPR hydrolases expression were higher in mice exposed to cold, compared to control mice, likely mediating ADPR generation. Discussion Our data indicate TRPM2 as a fundamental player in BAT activation and WAT browning. TRPM2 agonists may represent new pharmacological strategies to fight obesity.
Collapse
Affiliation(s)
- Andrea Benzi
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Annalisa Salis
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Diercks
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecilia Astigiano
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Raúl Pérez Mato
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Adela Memushaj
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Laura Sturla
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Valerio Vellone
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genova, Italy
- Pathology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Gianluca Damonte
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Michelle Y Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Guse
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonio De Flora
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Santina Bruzzone
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
18
|
Babaniamansour P, Jacho D, Niedzielski S, Rabino A, Garcia-Mata R, Yildirim-Ayan E. Modulating TRPV4 Channel Activity in Pro-Inflammatory Macrophages within the 3D Tissue Analog. Biomedicines 2024; 12:230. [PMID: 38275401 PMCID: PMC10813551 DOI: 10.3390/biomedicines12010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Investigating macrophage plasticity emerges as a promising strategy for promoting tissue regeneration and can be exploited by regulating the transient receptor potential vanilloid 4 (TRPV4) channel. The TRPV4 channel responds to various stimuli including mechanical, chemical, and selective pharmacological compounds. It is well documented that treating cells such as epithelial cells and fibroblasts with a TRPV4 agonist enhances the Ca2+ influx to the cells, which leads to secretion of pro-inflammatory cytokines, while a TRPV4 antagonist reduces both Ca2+ influx and pro-inflammatory cytokine secretion. In this work, we investigated the effect of selective TRPV4 modulator compounds on U937-differentiated macrophages encapsulated within three-dimensional (3D) matrices. Despite offering a more physiologically relevant model than 2D cultures, pharmacological treatment of macrophages within 3D collagen matrices is largely overlooked in the literature. In this study, pro-inflammatory macrophages were treated with an agonist, 500 nM of GSK1016790A (TRPV4(+)), and an antagonist, 10 mM of RN-1734 (TRPV4(-)), to elucidate the modulation of the TRPV4 channel at both cellular and extracellular levels. To evaluate macrophage phenotypic alterations within 3D collagen matrices following TRPV4 modulator treatment, we employed structural techniques (SEM, Masson's trichrome, and collagen hybridizing peptide (CHP) staining), quantitative morphological measures for phenotypic assessment, and genotypic methods such as quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). Our data reveal that pharmacological modulation of the macrophage TRPV4 channel alters the cytoskeletal structure of macrophages and influences the 3D structure encapsulating them. Moreover, we proved that treating macrophages with a TRPV4 agonist and antagonist enhances the expression of pro- and anti-inflammatory genes, respectively, leading to the upregulation of surface markers CD80 and CD206. In the TRPV4(-) group, the CD206 gene and CD206 surface marker were significantly upregulated by 9- and 2.5-fold, respectively, compared to the control group. These findings demonstrate that TRPV4 modulation can be utilized to shift macrophage phenotype within the 3D matrix toward a desired state. This is an innovative approach to addressing inflammation in musculoskeletal tissues.
Collapse
Affiliation(s)
- Parto Babaniamansour
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (P.B.); (S.N.)
| | - Diego Jacho
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (P.B.); (S.N.)
| | - Skyler Niedzielski
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (P.B.); (S.N.)
| | - Agustin Rabino
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (P.B.); (S.N.)
| |
Collapse
|
19
|
Wu F, Bu S, Wang H. Role of TRP Channels in Metabolism-Related Diseases. Int J Mol Sci 2024; 25:692. [PMID: 38255767 PMCID: PMC10815096 DOI: 10.3390/ijms25020692] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome (MetS), with its high prevalence and significant impact on cardiovascular disease, poses a substantial threat to human health. The early identification of pathological abnormalities related to MetS and prevention of the risk of associated diseases is of paramount importance. Transient Receptor Potential (TRP) channels, a type of nonselective cation channel, are expressed in a variety of tissues and have been implicated in the onset and progression of numerous metabolism-related diseases. This study aims to review and discuss the expression and function of TRP channels in metabolism-related tissues and blood vessels, and to elucidate the interactions and mechanisms between TRP channels and metabolism-related diseases. A comprehensive literature search was conducted using keywords such as TRP channels, metabolic syndrome, pancreas, liver, oxidative stress, diabetes, hypertension, and atherosclerosis across various academic databases including PubMed, Google Scholar, Elsevier, Web of Science, and CNKI. Our review of the current research suggests that TRP channels may be involved in the development of metabolism-related diseases by regulating insulin secretion and release, lipid metabolism, vascular functional activity, oxidative stress, and inflammatory response. TRP channels, as nonselective cation channels, play pivotal roles in sensing various intra- and extracellular stimuli and regulating ion homeostasis by osmosis. They present potential new targets for the diagnosis or treatment of metabolism-related diseases.
Collapse
Affiliation(s)
| | | | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing 210009, China; (F.W.); (S.B.)
| |
Collapse
|
20
|
Zou W, Zhang L, Hu Y, Gao Y, Zhang J, Zheng J. The role of TRPV ion channels in adipocyte differentiation: What is the evidence? Cell Biochem Funct 2024; 42:e3933. [PMID: 38269518 DOI: 10.1002/cbf.3933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Obesity is a complex disorder, and the incidence of obesity continues to rise at an alarming rate worldwide. In particular, the growing incidence of overweight and obesity in children is a major health concern. However, the underlying mechanisms of obesity remain unclear and the efficacy of several approaches for weight loss is limited. As an important calcium-permeable temperature-sensitive cation channel, transient receptor potential vanilloid (TRPV) ion channels directly participate in thermo-, mechano-, and chemosensory responses. Modulation of TRPV ion channel activity can alter the physiological function of the ion channel, leading to neurodegenerative diseases, chronic pain, cancer, and skin disorders. In recent years, increasing studies have demonstrated that TRPV ion channels are abundantly expressed in metabolic organs, including the liver, adipose tissue, skeletal muscle, pancreas, and central nervous system, which has been implicated in various metabolic diseases, including obesity and diabetes mellitus. In addition, as an important process for the pathophysiology of adipocyte metabolism, adipocyte differentiation plays a critical role in obesity. In this review, we focus on the role of TRPV ion channels in adipocyte differentiation to broaden the ideas for prevention and control strategies for obesity.
Collapse
Affiliation(s)
- Wenyu Zou
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yongyan Hu
- Laboratory Animal Facility, Peking University First Hospital, Beijing, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
21
|
Xi P, Zhu W, Zhang Y, Wang M, Liang H, Wang H, Tian D. Upregulation of hypothalamic TRPV4 via S100a4/AMPKα signaling pathway promotes the development of diet-induced obesity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166883. [PMID: 37683711 DOI: 10.1016/j.bbadis.2023.166883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Obesity is associated with abnormal regulation of energy metabolism in the hypothalamus. Transient receptor potential vanilloid 4 (TRPV4) is involved in regulating osmotic pressure, temperature and mechanical force transmission, but little is known about its role in obesity. Herein, the present study aimed to elucidate the effect of hypothalamic TRPV4 on high-fat diet-induced obesity (DIO) and evaluate its potential for regulating energy metabolism. Here we show that hypothalamic TRPV4 content is increased in DIO rats. Central administration of adeno-associated virus expressing TRPV4 in these animals remarkably increased body weight and fat mass by activating the S100a4/AMPKα signaling pathway, thereby promoting positive energy metabolism. Overexpressed hypothalamic TRPV4 impaired glucose tolerance, while promoting the accumulation of fat in liver cells, resulting in hepatic steatosis. In addition, the upregulation of hypothalamic TRPV4 reduces high-fat induced central inflammation. This study provides evidence that hypothalamic TRPV4 plays a significant role in regulating homeostasis. Hypothalamic TRPV4 emerges as a target for therapeutic intervention against obesity.
Collapse
Affiliation(s)
- Pengjiao Xi
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin 300203, China
| | - Wenjuan Zhu
- Department of Nuclear Medicine, Third Hospital of Nanchang, Nanchang, Jiangxi 330008, China
| | - Yan Zhang
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin 300203, China
| | - Meng Wang
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin 300203, China
| | - Huimin Liang
- Department of School of Nursing, Tianjin Medical University, Tianjin 300070, China
| | - Haomin Wang
- Department of Human Anatomy and Histology, Tianjin Medical University, Tianjin 300070, China.
| | - Derun Tian
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin 300203, China; Department of Human Anatomy and Histology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
22
|
Tranter JD, Kumar A, Nair VK, Sah R. Mechanosensing in Metabolism. Compr Physiol 2023; 14:5269-5290. [PMID: 38158369 PMCID: PMC11681368 DOI: 10.1002/cphy.c230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Electrical mechanosensing is a process mediated by specialized ion channels, gated directly or indirectly by mechanical forces, which allows cells to detect and subsequently respond to mechanical stimuli. The activation of mechanosensitive (MS) ion channels, intrinsically gated by mechanical forces, or mechanoresponsive (MR) ion channels, indirectly gated by mechanical forces, results in electrical signaling across lipid bilayers, such as the plasma membrane. While the functions of mechanically gated channels within a sensory context (e.g., proprioception and touch) are well described, there is emerging data demonstrating functions beyond touch and proprioception, including mechanoregulation of intracellular signaling and cellular/systemic metabolism. Both MR and MS ion channel signaling have been shown to contribute to the regulation of metabolic dysfunction, including obesity, insulin resistance, impaired insulin secretion, and inflammation. This review summarizes our current understanding of the contributions of several MS/MR ion channels in cell types implicated in metabolic dysfunction, namely, adipocytes, pancreatic β-cells, hepatocytes, and skeletal muscle cells, and discusses MS/MR ion channels as possible therapeutic targets. © 2024 American Physiological Society. Compr Physiol 14:5269-5290, 2024.
Collapse
Affiliation(s)
- John D. Tranter
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ashutosh Kumar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Vinayak K. Nair
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Cardiovascular Research, Washington University, St. Louis, Missouri, USA
- St. Louis VA Medical Center, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Wu W, Zheng J, Wang R, Wang Y. Ion channels regulate energy homeostasis and the progression of metabolic disorders: Novel mechanisms and pharmacology of their modulators. Biochem Pharmacol 2023; 218:115863. [PMID: 37863328 DOI: 10.1016/j.bcp.2023.115863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
The progression of metabolic diseases, featured by dysregulated metabolic signaling pathways, is orchestrated by numerous signaling networks. Among the regulators, ion channels transport ions across the membranes and trigger downstream signaling transduction. They critically regulate energy homeostasis and pathogenesis of metabolic diseases and are potential therapeutic targets for treating metabolic disorders. Ion channel blockers have been used to treat diabetes for decades by stimulating insulin secretion, yet with hypoglycemia and other adverse effects. It calls for deeper understanding of the largely elusive regulatory mechanisms, which facilitates the identification of new therapeutic targets and safe drugs against ion channels. In the article, we critically assess the two principal regulatory mechanisms, protein-channel interaction and post-translational modification on the activities of ion channels to modulate energy homeostasis and metabolic disorders through multiple novel mechanisms. Moreover, we discuss the multidisciplinary methods that provide the tools for elucidation of the regulatory mechanisms mediating metabolic disorders by ion channels. In terms of translational perspective, the mechanistic analysis of recently validated ion channels that regulate insulin resistance, body weight control, and adverse effects of current ion channel antagonists are discussed in details. Their small molecule modulators serve as promising new drug candidates to combat metabolic disorders.
Collapse
Affiliation(s)
- Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Jianan Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China.
| |
Collapse
|
24
|
Li X, Hu J, Yin P, Liu L, Chen Y. Mechanotransduction in the urothelium: ATP signalling and mechanoreceptors. Heliyon 2023; 9:e19427. [PMID: 37674847 PMCID: PMC10477517 DOI: 10.1016/j.heliyon.2023.e19427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
The urothelium, which covers the inner surface of the bladder, is continuously exposed to a complex physical environment where it is stimulated by, and responds to, a wide range of mechanical cues. Mechanically activated ion channels endow the urothelium with functioning in the conversion of mechanical stimuli into biochemical events that influence the surface of the urothelium itself as well as suburothelial tissues, including afferent nerve fibres, interstitial cells of Cajal and detrusor smooth muscle cells, to ensure normal urinary function during the cycle of filling and voiding. However, under prolonged and abnormal loading conditions, the urothelial sensory system can become maladaptive, leading to the development of bladder dysfunction. In this review, we summarize developments in the understanding of urothelial mechanotransduction from two perspectives: first, with regard to the functions of urothelial mechanotransduction, particularly stretch-mediated ATP signalling and the regulation of urothelial surface area; and secondly, with regard to the mechanoreceptors present in the urothelium, primarily transient receptor potential channels and mechanosensitive Piezo channels, and the potential pathophysiological role of these channels in the bladder. A more thorough understanding of urothelial mechanotransduction function may inspire the development of new therapeutic strategies for lower urinary tract diseases.
Collapse
Affiliation(s)
| | | | - Ping Yin
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lumin Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuelai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
25
|
Afzoon S, Amiri MA, Mohebbi M, Hamedani S, Farshidfar N. A systematic review of the impact of Porphyromonas gingivalis on foam cell formation: Implications for the role of periodontitis in atherosclerosis. BMC Oral Health 2023; 23:481. [PMID: 37442956 PMCID: PMC10347812 DOI: 10.1186/s12903-023-03183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND The current literature suggests the significant role of foam cells in the initiation of atherosclerosis through the formation of a necrotic core in atherosclerotic plaques. Moreover, an important periodontal pathogen called Porphyromonas gingivalis (P. gingivalis) is indicated to play a significant role in this regard. Thus, the aim of this systematic review was to comprehensively study the pathways by which P. gingivalis as a prominent bacterial species in periodontal disease, can induce foam cells that would initiate the process of atherosclerosis formation. METHODS An electronic search was undertaken in three databases (Pubmed, Scopus, and Web of Science) to identify the studies published from January 2000 until March 2023. The risk of bias in each study was also assessed using the QUIN risk of bias assessment tool. RESULTS After the completion of the screening process, 11 in-vitro studies met the inclusion criteria and were included for further assessments. Nine of these studies represented a medium risk of bias, while the other two had a high risk of bias. All of the studies have reported that P. gingivalis can significantly induce foam cell formation by infecting the macrophages and induction of oxidized low-density lipoprotein (oxLDL) uptake. This process is activated through various mediators and pathways. The most important factors in this regard are the lipopolysaccharide of P. gingivalis and its outer membrane vesicles, as well as the changes in the expression rate of transmembrane lipid transportation channels, including transient receptor potential channel of the vanilloid subfamily 4 (TRPV4), lysosomal integral protein 2 (LIMP2), CD36, etc. The identified molecular pathways involved in this process include but are not limited to NF-κB, ERK1/2, p65. CONCLUSION Based on the results of this study, it can be concluded that P. gingivalis can effectively promote foam cell formation through various pathogenic elements and this bacterial species can affect the expression rate of various genes and the function of specific receptors in the cellular and lysosomal membranes. However, due to the moderate to high level of risk of bias among the studies, further studies are required in this regard.
Collapse
Affiliation(s)
- Saeed Afzoon
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mostafa Mohebbi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Hamedani
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
26
|
Wu J, Li Z, Deng Y, Lu X, Luo C, Mu X, Zhang T, Liu Q, Tang S, Li J, An Q, Fan D, Xiang Y, Wu X, Hu Y, Du Q, Xu J, Xie R. Function of TRP channels in monocytes/macrophages. Front Immunol 2023; 14:1187890. [PMID: 37404813 PMCID: PMC10315479 DOI: 10.3389/fimmu.2023.1187890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
The transient receptor potential channel (TRP channel) family is a kind of non- specific cation channel widely distributed in various tissues and organs of the human body, including the respiratory system, cardiovascular system, immune system, etc. It has been reported that various TRP channels are expressed in mammalian macrophages. TRP channels may be involved in various signaling pathways in the development of various systemic diseases through changes in intracellular concentrations of cations such as calcium and magnesium. These TRP channels may also intermingle with macrophage activation signals to jointly regulate the occurrence and development of diseases. Here, we summarize recent findings on the expression and function of TRP channels in macrophages and discuss their role as modulators of macrophage activation and function. As research on TRP channels in health and disease progresses, it is anticipated that positive or negative modulators of TRP channels for treating specific diseases may be promising therapeutic options for the prevention and/or treatment of disease.
Collapse
Affiliation(s)
- Jiangbo Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Zhuo Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Ya Deng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Xianmin Lu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Chen Luo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Xingyi Mu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Qi Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Siqi Tang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Jiajing Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Qimin An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Dongdong Fan
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Yiwei Xiang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Xianli Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Yanxia Hu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
27
|
Li M, Wei X, Xiong J, Feng JW, Zhang CS, Lin SC. Hierarchical inhibition of mTORC1 by glucose starvation-triggered AXIN lysosomal translocation and by AMPK. LIFE METABOLISM 2023; 2:load005. [PMID: 39872013 PMCID: PMC11749110 DOI: 10.1093/lifemeta/load005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 02/20/2023] [Indexed: 01/29/2025]
Abstract
When glucose is replete, mammalian/mechanistic target of rapamycin complex 1 (mTORC1) is active and anchored to the lysosomal surface via the two GTPases, Ras-related GTPase (RAG) and Ras homolog enriched in brain (Rheb), which are regulated by Ragulator and tuberous sclerosis complex 2 (TSC2), respectively. When glucose is low, aldolase senses low fructose-1,6-bisphosphate level and promotes the translocation of AXIN-liver kinase B1 (LKB1) to the lysosomal surface, which leads to the activation of AMP-activated protein kinase (AMPK) and the inhibition of RAGs, sundering mTORC1 from the lysosome and causing its inactivation. AMPK can also inactivate mTORC1 by phosphorylating Raptor and TSC2. However, the hierarchy of AXIN- and AMPK-mediated inhibition of mTORC1 remains poorly defined. Here, we show that AXIN translocation does not require AMPK expression or activity. In glucose starvation conditions, knockout of AXIN extended the half-life of mTORC1 inhibition from 15 to 60 min, whereas knockout of AMPK only extended it to 30 min. RAGBGTP (constitutively active RAGB) almost entirely blocked the lysosomal dissociation and inhibition of mTORC1 under glucose starvation, but it did not inhibit AMPK, indicating that under these conditions, it is AXIN lysosomal translocation that inhibits mTORC1, and it does so via inhibition of RAGs. 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a mimetic of AMP, which activates both cytosolic AMPK and lysosomal AMPK, fully inhibited mTORC1 even when it is stably anchored to the lysosome by RAGBGTP, whereas glucose starvation mildly inhibited such anchored mTORC1. Together, we demonstrate that the lysosomal translocation of AXIN plays a primary role in glucose starvation-triggered inhibition of mTORC1 by inhibiting RAGs, and that AMPK activity inhibits mTORC1 through phosphorylating Raptor and TSC2, especially under severe stress.
Collapse
Affiliation(s)
- Mengqi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoyan Wei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jinye Xiong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jin-Wei Feng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
28
|
Wang Y, Ye L. Somatosensory innervation of adipose tissues. Physiol Behav 2023; 265:114174. [PMID: 36965573 PMCID: PMC11537203 DOI: 10.1016/j.physbeh.2023.114174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
The increasing prevalence of obesity and type 2 diabetes has led to a greater interest in adipose tissue physiology. Adipose tissue is now understood as an organ with endocrine and thermogenic capacities in addition to its role in fat storage. It plays a critical role in systemic metabolism and energy regulation, and its activity is tightly regulated by the nervous system. Fat is now recognized to receive sympathetic innervation, which transmits information from the brain, as well as sensory innervation, which sends information into the brain. The role of sympathetic innervation in adipose tissue has been extensively studied. However, the extent and the functional significance of sensory innervation have long been unclear. Recent studies have started to reveal that sensory neurons robustly innervate adipose tissue and play an important role in regulating fat activity. This brief review will discuss both historical evidence and recent advances, as well as important remaining questions about the sensory innervation of adipose tissue.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Li Ye
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
29
|
Luo ZH, Ma JX, Zhang W, Tian AX, Gong SW, Li Y, Lai YX, Ma XL. Alterations in the microenvironment and the effects produced of TRPV5 in osteoporosis. J Transl Med 2023; 21:327. [PMID: 37198647 DOI: 10.1186/s12967-023-04182-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
The pathogenesis of osteoporosis involves multiple factors, among which alterations in the bone microenvironment play a crucial role in disrupting normal bone metabolic balance. Transient receptor potential vanilloid 5 (TRPV5), a member of the TRPV family, is an essential determinant of the bone microenvironment, acting at multiple levels to influence its properties. TRPV5 exerts a pivotal influence on bone through the regulation of calcium reabsorption and transportation while also responding to steroid hormones and agonists. Although the metabolic consequences of osteoporosis, such as loss of bone calcium, reduced mineralization capacity, and active osteoclasts, have received significant attention, this review focuses on the changes in the osteoporotic microenvironment and the specific effects of TRPV5 at various levels.
Collapse
Affiliation(s)
- Zhi-Heng Luo
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Jian-Xiong Ma
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Wei Zhang
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xue Yuan Avenue, Shenzhen University Town, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Ai-Xian Tian
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Shu-Wei Gong
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Yan Li
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China
| | - Yu-Xiao Lai
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xue Yuan Avenue, Shenzhen University Town, Shenzhen, 518055, Guangdong, People's Republic of China.
| | - Xin-Long Ma
- Tianjin Hospital, Tianjin University, Jie Fang Nan Road 406, Tianjin, 300211, People's Republic of China.
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin Hospital, Tianjin, 300050, People's Republic of China.
| |
Collapse
|
30
|
Gunasekar SK, Heebink J, Carpenter DH, Kumar A, Xie L, Zhang H, Schilling JD, Sah R. Adipose-targeted SWELL1 deletion exacerbates obesity- and age-related nonalcoholic fatty liver disease. JCI Insight 2023; 8:e154940. [PMID: 36749637 PMCID: PMC10077479 DOI: 10.1172/jci.insight.154940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Healthy expansion of adipose tissue is critical for the maintenance of metabolic health, providing an optimized reservoir for energy storage in the form of triacylglycerol-rich lipoproteins. Dysfunctional adipocytes that are unable to efficiently store lipid can result in lipodystrophy and contribute to nonalcoholic fatty liver disease (NAFLD) and metabolic syndrome. Leucine-rich repeat containing protein 8a/SWELL1 functionally encodes the volume-regulated anion channel complex in adipocytes, is induced in early obesity, and is required for normal adipocyte expansion during high-fat feeding. Adipose-specific SWELL1 ablation (Adipo KO) leads to insulin resistance and hyperglycemia during caloric excess, both of which are associated with NAFLD. Here, we show that Adipo-KO mice exhibited impaired adipose depot expansion and excess lipolysis when raised on a variety of high-fat diets, resulting in increased diacylglycerides and hepatic steatosis, thereby driving liver injury. Liver lipidomic analysis revealed increases in oleic acid-containing hepatic triacylglycerides and injurious hepatic diacylglyceride species, with reductions in hepatocyte-protective phospholipids and antiinflammatory free fatty acids. Aged Adipo-KO mice developed hepatic steatosis on a regular chow diet, and Adipo-KO male mice developed spontaneous, aggressive hepatocellular carcinomas (HCCs). These data highlight the importance of adipocyte SWELL1 for healthy adipocyte expansion to protect against NAFLD and HCC in the setting of overnutrition and with aging.
Collapse
Affiliation(s)
- Susheel K. Gunasekar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John Heebink
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Danielle H. Carpenter
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Ashutosh Kumar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Litao Xie
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Haixia Zhang
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joel D. Schilling
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| |
Collapse
|
31
|
Chen L, Mao M, Liu D, Liu W, Wang Y, Xie L, Deng Y, Lin Y, Xu Y, Zhong X, Cao W. HC067047 as a potent TRPV4 inhibitor repairs endotoxemia colonic injury. Int Immunopharmacol 2023; 116:109648. [PMID: 36706595 DOI: 10.1016/j.intimp.2022.109648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 01/26/2023]
Abstract
Colonic injury causes severe inflammation during systemic infections in patients with endotoxemia. The prevention of colonic injury could effectively reduce the progression of endotoxemia. We investigated the protective effects and detailed mechanisms of the TRPV4 inhibitor HC067047 in the treatment of colonic injury caused by endotoxemia. An LPS-induced endotoxemia colonic injury model was used to assess the in vivo effects of HC067047. Colon slices were detected by hematoxylin and eosin (HE) staining and immunofluorescence assays. Spectrophotometry was used to determine the levels of MDA, calcium, GSH, and GSSG. Alterations in oxidative stress/mitophagy/inflammatory pyroptosis-related markers were evaluated by Q-PCR and western blot assays. HC067047 reduced the body weight loss and spleen weight index of endotoxemic mice and partly recovered the normal morphology of the colonic mucous layer. As an inhibitor of the calcium permeant cation channel, HC067047 suppressed the phosphorylation of the CAMKIIɑ protein and levels of MDA and calcium, upregulated the ratio of GSH/GSSG, shortened the expression of oxidative stress-related proteins, and enhanced the expression of the anti-oxidative protein CAT in damaged colon tissues. Additionally, HC067047 maintained normal mitochondrial functions in endotoxemia colons by promoting mitochondrial fusion and biosynthesis and suppressing mitochondrial fission and the PINK/Parkin/mitophagy pathway. HC067047 potently blocked inflammatory pyroptosis and protected the colonic tight junction barrier. HC067047 restores endotoxemia colons against oxidative stress, mitophagy, inflammatory pyroptosis, and colonic barrier dysfunction. Hence, HC067047 therapy may be potentially useful in the treatment of colonic injury in endotoxemia.
Collapse
Affiliation(s)
- Ling Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Mingli Mao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Dandan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wenjia Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yajuan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Lihua Xie
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yingcheng Deng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yi Lin
- Cancer Research Institute, Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yang Xu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaolin Zhong
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Wenyu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
32
|
Wang Y. Multidisciplinary Advances Address the Challenges in Developing Drugs against Transient Receptor Potential Channels to Treat Metabolic Disorders. ChemMedChem 2023; 18:e202200562. [PMID: 36530131 DOI: 10.1002/cmdc.202200562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Transient receptor potential (TRP) channels are cation channels that regulate key physiological and pathological processes in response to a broad range of stimuli. Moreover, they systemically regulate the release of hormones, metabolic homeostasis, and complications of diabetes, which positions them as promising therapeutic targets to combat metabolic disorders. Nevertheless, there are significant challenges in the design of TRP ligands with high potency and durability. Herein we summarize the four challenges as hydrophobicity, selectivity, mono-target therapy, and interspecies discrepancy. We present 1134 TRP ligands with diversified modes of TRP-ligand interaction and provide a detailed discussion of the latest strategies, especially cryogenic electron microscopy (cryo-EM) and computational methods. We propose solutions to address the challenges with a critical analysis of advances in membrane partitioning, polypharmacology, biased agonism, and biochemical screening of transcriptional modulators. They are fueled by the breakthrough from cryo-EM, chemoinformatics and bioinformatics. The discussion is aimed to shed new light on designing next-generation drugs to treat obesity, diabetes and its complications, with optimal hydrophobicity, higher mode selectivity, multi-targeting and consistent activities between human and rodents.
Collapse
Affiliation(s)
- Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, P. R. China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, 200438, P. R. China
| |
Collapse
|
33
|
Zhang Y, Zhu W, Wang M, Xi P, Wang H, Tian D. Nicotinamide mononucleotide alters body composition and ameliorates metabolic disorders induced by a high-fat diet. IUBMB Life 2023; 75:548-562. [PMID: 36785893 DOI: 10.1002/iub.2707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023]
Abstract
Obesity is caused by an imbalance between calorie intake and energy expenditure, leading to excessive adipose tissue accumulation. Nicotinamide adenine dinucleotide (NAD+ ) is an important molecule in energy and signal transduction, and NAD+ supplementation therapy is a new treatment for obesity in recent years. Liver kinase B1 (LKB1) is an energy metabolism regulator. The relationship between NAD+ and LKB1 has only been studied in the heart and has not yet been reported in obesity. Nicotinamide mononucleotide (NMN), as a direct precursor of NAD+ , can effectively enhance the level of NAD+ . In the current study, we showed that NMN intervention altered body composition in obese mice, characterized by a reduction in fat mass and an increase in lean mass. NMN reversed high-fat diet-induced blood lipid levels then contributed to reducing hepatic steatosis. NMN also improved glucose tolerance and alleviated adipose tissue inflammation. Moreover, our data suggested that NMN supplementation may be depends on the NAD+ /SIRT6/LKB1 pathway to regulate brown adipose metabolism. These results provided new evidence for NMN in obesity treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin, China
| | - Wenjuan Zhu
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin, China
| | - Meng Wang
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin, China
| | - Pengjiao Xi
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin, China
| | - Haomin Wang
- Department of Human Anatomy and Histology, Tianjin Medical University, Tianjin, China
| | - Derun Tian
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin, China.,Department of Human Anatomy and Histology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
34
|
Raj RR, Lofquist S, Lee MJ. Remodeling of Adipose Tissues by Fatty Acids: Mechanistic Update on Browning and Thermogenesis by n-3 Polyunsaturated Fatty Acids. Pharm Res 2023; 40:467-480. [PMID: 36050546 DOI: 10.1007/s11095-022-03377-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Enhancing thermogenesis by increasing the amount and activity of brown and brite adipocytes is a potential therapeutic target for obesity and its associated diseases. Diet plays important roles in energy metabolism and a myriad of dietary components including lipids are known to regulate thermogenesis through recruitment and activation of brown and brite adipocytes. Depending on types of fatty acids (FAs), the major constituent in lipids, their health benefits differ. Long-chain polyunsaturated FAs (PUFAs), especially n-3 PUFAs remodel adipose tissues in a healthier manner with reduced inflammation and enhanced thermogenesis, while saturated FAs exhibit contrasting effects. Lipid mediators derived from FAs act as autocrine/paracrine as well as endocrine factors to regulate thermogenesis. We discuss lipid mediators that may contribute to the differential effects of FAs on adipose tissue remodeling and hence, cardiometabolic diseases. We also discuss current understanding of molecular and cellular mechanisms through which n-3 PUFAs enhance thermogenesis. Elucidating molecular details of beneficial effects of n-3 PUFAs on thermogenesis is expected to provide information that can be used for development of novel therapeutics for obesity and its associated diseases.
Collapse
Affiliation(s)
- Radha Raman Raj
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 98622, USA
| | - Sydney Lofquist
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 98622, USA
| | - Mi-Jeong Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 98622, USA.
| |
Collapse
|
35
|
Lv J, Tang L, Zhang X, Wang D. Thermo-TRP channels are involved in BAT thermoregulation in cold-acclimated Brandt's voles. Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110794. [PMID: 35964792 DOI: 10.1016/j.cbpb.2022.110794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Transient receptor potential (TRP) channels, which can sense temperature, pressure and mechanical stimuli, were involved in many physiological and biochemical reactions. Whether thermosensitive TRP channels (Thermo-TRPs) are involved in thermoregulation in small mammals is still not clear. We measured the changes of thermo-TRPs at 4 °C, 23 °C and 30 °C in Brandt's voles (Lasiopodomys brandtii) to test the hypothesis that Thermo-TRPs are involved in cold-induced thermogenesis of brown adipose tissue (BAT) in small mammals. Results showed that air temperatures had no effect on body mass and rectal temperature, but the food intake and basal metabolic rate (BMR) in the 4 °C group were significantly higher than in the 30 °C group. Compared with 30 °C group, the protein contents of uncoupling protein 1(UCP1), TRP vanilloid 2 (TRPV2), TRP ankyrin 1 (TRPA1), TRP melastatin 2 (TRPM2), silent Information Regulator T1 (SIRT1), AMP-activated protein kinase (AMPK) and Calcium/calmodulin-dependent protein kinase II (CaMKII) in BAT increased significantly in 4 °C group, but there was no significant difference in the protein content of Thermo-TRPs in the hypothalamus among groups. Further, the expression of PRDM16 (PR domain containing 16) in inguinal white adipose tissue (iWAT) at 4 °C was significantly higher than that at 30 °C, but no difference was observed in the expression of other browning-related genes or TRPV2. In conclusion, TRP channels may participate in BAT thermoregulation through the CaMKII, AMPK, SIRT1 and UCP1 pathway in cold-acclimated Brandt's voles.
Collapse
Affiliation(s)
- Jinzhen Lv
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; Chengdu Institute of Food Inspection, Chengdu 611100, China
| | - Liqiu Tang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dehua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Shandong University, Qingdao 266237, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
36
|
Yang C, Zhao X, An X, Zhang Y, Sun W, Zhang Y, Duan Y, Kang X, Sun Y, Jiang L, Lian F. Axonal transport deficits in the pathogenesis of diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2023; 14:1136796. [PMID: 37056668 PMCID: PMC10086245 DOI: 10.3389/fendo.2023.1136796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a chronic and prevalent metabolic disease that gravely endangers human health and seriously affects the quality of life of hyperglycemic patients. More seriously, it can lead to amputation and neuropathic pain, imposing a severe financial burden on patients and the healthcare system. Even with strict glycemic control or pancreas transplantation, peripheral nerve damage is difficult to reverse. Most current treatment options for DPN can only treat the symptoms but not the underlying mechanism. Patients with long-term diabetes mellitus (DM) develop axonal transport dysfunction, which could be an important factor in causing or exacerbating DPN. This review explores the underlying mechanisms that may be related to axonal transport impairment and cytoskeletal changes caused by DM, and the relevance of the latter with the occurrence and progression of DPN, including nerve fiber loss, diminished nerve conduction velocity, and impaired nerve regeneration, and also predicts possible therapeutic strategies. Understanding the mechanisms of diabetic neuronal injury is essential to prevent the deterioration of DPN and to develop new therapeutic strategies. Timely and effective improvement of axonal transport impairment is particularly critical for the treatment of peripheral neuropathies.
Collapse
|
37
|
Guo H, Zhang Y, Ma H, Gong P, Shi Y, Zhao W, Wang A, Liu M, Sun Z, Wang F, Wang Q, Ba X. T-stage-specific abdominal visceral fat, haematological nutrition indicators and inflammation as prognostic factors in patients with clear renal cell carcinoma. Adipocyte 2022; 11:133-142. [PMID: 35285399 PMCID: PMC8920171 DOI: 10.1080/21623945.2022.2048546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Clear cell renal carcinoma (ccRCC) is the most common histological type of renal cancer and has the highest mortality. Several studies have been conducted on the relationship between adipose tissue and ccRCC prognosis, however, the results have been inconsistent to date. The current study aimed at establishing a link between abdominal fat composition and short-term prognosis in patients with ccRCC after T-stage stratification. We retrospectively analysed 250 patients with pathologically confirmed ccRCC (173 low T-stage and 77 high T-stage) in our hospital. The computed tomography (CT) images were evaluated using ImageJ. Then, subcutaneous and visceral fat areas (SFA and VFA), total fat areas (TFA) and the relative VFA (rVFA) were measured and computed. Meanwhile, biochemical indices of blood serum were analysed. The results showed that rVFA in low T-stage cohort who had a history of short-term postoperative complications were significantly lower than those who did not. No such association was observed in the high T-stage cohort. Further investigation revealed that the correlations between biochemical indexes and fat area-related variables varied across T-stage groups. As a result, rVFA is a reliable independent predictor of short-term prognosis in patients with low T-stage ccRCC but not in patients with high T-stage ccRCC.
Collapse
Affiliation(s)
- Hao Guo
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong province, Jinan, China
- Department of Radiology, Yantai Yuhuangding Hospital, Shandong province, Yantai, China
| | - Yumei Zhang
- Department of Radiology, Lanshan Branch of Yantai Yuhuangding Hospital, Shandong province, Yantai, China
| | - Heng Ma
- Department of Radiology, Yantai Yuhuangding Hospital, Shandong province, Yantai, China
| | - Peiyou Gong
- Department of Radiology, Yantai Yuhuangding Hospital, Shandong province, Yantai, China
| | - Yinghong Shi
- Department of Radiology, Yantai Yuhuangding Hospital, Shandong province, Yantai, China
| | - Wenlei Zhao
- Department of Radiology, Yantai Yuhuangding Hospital, Shandong province, Yantai, China
| | - Aijie Wang
- Department of Radiology, Yaitai Shan Hospital, Shandong province, Yantai, China
| | - Ming Liu
- Department of Radiology, Yantai Yuhuangding Hospital, Shandong province, Yantai, China
| | - Zehua Sun
- Department of Radiology, Yantai Yuhuangding Hospital, Shandong province, Yantai, China
| | - Fang Wang
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong province, Jinan, China
| | - Qing Wang
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong province, Jinan, China
| | - Xinru Ba
- Department of Radiology, Yaitai Shan Hospital, Shandong province, Yantai, China
| |
Collapse
|
38
|
Wang X, Li Y, Qiang G, Wang K, Dai J, McCann M, Munoz MD, Gil V, Yu Y, Li S, Yang Z, Xu S, Cordoba-Chacon J, De Jesus DF, Sun B, Chen K, Wang Y, Liu X, Miao Q, Zhou L, Hu R, Ding Q, Kulkarni RN, Gao D, Blüher M, Liew CW. Secreted EMC10 is upregulated in human obesity and its neutralizing antibody prevents diet-induced obesity in mice. Nat Commun 2022; 13:7323. [PMID: 36443308 PMCID: PMC9705309 DOI: 10.1038/s41467-022-34259-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
Secreted isoform of endoplasmic reticulum membrane complex subunit 10 (scEMC10) is a poorly characterized secreted protein of largely unknown physiological function. Here we demonstrate that scEMC10 is upregulated in people with obesity and is positively associated with insulin resistance. Consistent with a causal role for scEMC10 in obesity, Emc10-/- mice are resistant to diet-induced obesity due to an increase in energy expenditure, while scEMC10 overexpression decreases energy expenditure, thus promoting obesity in mouse. Furthermore, neutralization of circulating scEMC10 using a monoclonal antibody reduces body weight and enhances insulin sensitivity in obese mice. Mechanistically, we provide evidence that scEMC10 can be transported into cells where it binds to the catalytic subunit of PKA and inhibits its stimulatory action on CREB while ablation of EMC10 promotes thermogenesis in adipocytes via activation of the PKA signalling pathway and its downstream targets. Taken together, our data identify scEMC10 as a circulating inhibitor of thermogenesis and a potential therapeutic target for obesity and its cardiometabolic complications.
Collapse
Affiliation(s)
- Xuanchun Wang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yanliang Li
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, USA
| | - Guifen Qiang
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaihua Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiarong Dai
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Maximilian McCann
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, USA
| | - Marcos D Munoz
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Victoria Gil
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Yifei Yu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shengxian Li
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihong Yang
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Department of Transplant Surgery, Mass General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shanshan Xu
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Jose Cordoba-Chacon
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Dario F De Jesus
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Kuangyang Chen
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yahao Wang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoxia Liu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Miao
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Linuo Zhou
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Renming Hu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Rohit N Kulkarni
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Daming Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Chong Wee Liew
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
39
|
Lee B, An HJ, Kim DH, Lee MK, Jeong HH, Chung KW, Go Y, Seo AY, Kim IY, Seong JK, Yu BP, Lee J, Im E, Lee IK, Lee MS, Yamada KI, Chung HY. SMP30-mediated synthesis of vitamin C activates the liver PPARα/FGF21 axis to regulate thermogenesis in mice. Exp Mol Med 2022; 54:2036-2046. [PMID: 36434042 PMCID: PMC9723126 DOI: 10.1038/s12276-022-00888-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 08/11/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
The vitamin-C-synthesizing enzyme senescent marker protein 30 (SMP30) is a cold resistance gene in Drosophila, and vitamin C concentration increases in brown adipose tissue post-cold exposure. However, the roles of SMP30 in thermogenesis are unknown. Here, we tested the molecular mechanism of thermogenesis using wild-type (WT) and vitamin C-deficient SMP30-knockout (KO) mice. SMP30-KO mice gained more weight than WT mice without a change in food intake in response to short-term high-fat diet feeding. Indirect calorimetry and cold-challenge experiments indicated that energy expenditure is lower in SMP30-KO mice, which is associated with decreased thermogenesis in adipose tissues. Therefore, SMP30-KO mice do not lose weight during cold exposure, whereas WT mice lose weight markedly. Mechanistically, the levels of serum FGF21 were notably lower in SMP30-KO mice, and vitamin C supplementation in SMP30-KO mice recovered FGF21 expression and thermogenesis, with a marked reduction in body weight during cold exposure. Further experiments revealed that vitamin C activates PPARα to upregulate FGF21. Our findings demonstrate that SMP30-mediated synthesis of vitamin C activates the PPARα/FGF21 axis, contributing to the maintenance of thermogenesis in mice.
Collapse
Affiliation(s)
- Bonggi Lee
- grid.412576.30000 0001 0719 8994Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan, South Korea
| | - Hye Jin An
- grid.262229.f0000 0001 0719 8572Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241 South Korea
| | - Dae Hyun Kim
- grid.262229.f0000 0001 0719 8572Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241 South Korea ,grid.262229.f0000 0001 0719 8572Molecular Inflammation Research Center for Ageing Intervention (MRCA), Pusan National University, Busan, 46241 South Korea
| | - Min-Kyeong Lee
- grid.412576.30000 0001 0719 8994Department of Food Science and Nutrition, Pukyong National University, Daeyeon-dong, Nam-gu, Busan, South Korea
| | - Hyeon Hak Jeong
- grid.412576.30000 0001 0719 8994Department of Smart Green Technology Engineering, Pukyong National University, Daeyeon-dong, Nam-gu, Busan, 48513 South Korea
| | - Ki Wung Chung
- grid.262229.f0000 0001 0719 8572Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241 South Korea
| | - Younghoon Go
- grid.418980.c0000 0000 8749 5149Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| | - Arnold Y. Seo
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Il Yong Kim
- grid.31501.360000 0004 0470 5905Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Plus Program for Creative Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea
| | - Je Kyung Seong
- grid.31501.360000 0004 0470 5905Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Plus Program for Creative Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX Institute, Seoul National University, Seoul, South Korea
| | - Byung Pal Yu
- grid.267309.90000 0001 0629 5880Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Jaewon Lee
- grid.262229.f0000 0001 0719 8572Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241 South Korea ,grid.262229.f0000 0001 0719 8572Molecular Inflammation Research Center for Ageing Intervention (MRCA), Pusan National University, Busan, 46241 South Korea
| | - Eunok Im
- grid.262229.f0000 0001 0719 8572Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241 South Korea ,grid.262229.f0000 0001 0719 8572Molecular Inflammation Research Center for Ageing Intervention (MRCA), Pusan National University, Busan, 46241 South Korea
| | - In-Kyu Lee
- grid.258803.40000 0001 0661 1556Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Myung-Shik Lee
- grid.15444.300000 0004 0470 5454Severance Biomedical Science Institute and Department of Internal Medicine Yonsei University College of Medicine, Seoul, South Korea
| | - Ken-ichi Yamada
- grid.177174.30000 0001 2242 4849Department of Bio-functional Science, Kyushu University, Fukuoka, Japan
| | - Hae Young Chung
- grid.262229.f0000 0001 0719 8572Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241 South Korea ,grid.262229.f0000 0001 0719 8572Molecular Inflammation Research Center for Ageing Intervention (MRCA), Pusan National University, Busan, 46241 South Korea
| |
Collapse
|
40
|
Li Q, Spalding KL. The regulation of adipocyte growth in white adipose tissue. Front Cell Dev Biol 2022; 10:1003219. [PMID: 36483678 PMCID: PMC9723158 DOI: 10.3389/fcell.2022.1003219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/03/2022] [Indexed: 10/25/2023] Open
Abstract
Adipocytes can increase in volume up to a thousand-fold, storing excess calories as triacylglycerol in large lipid droplets. The dramatic morphological changes required of adipocytes demands extensive cytoskeletal remodeling, including lipid droplet and plasma membrane expansion. Cell growth-related signalling pathways are activated, stimulating the production of sufficient amino acids, functional lipids and nucleotides to meet the increasing cellular needs of lipid storage, metabolic activity and adipokine secretion. Continued expansion gives rise to enlarged (hypertrophic) adipocytes. This can result in a failure to maintain growth-related homeostasis and an inability to cope with excess nutrition or respond to stimuli efficiently, ultimately leading to metabolic dysfunction. We summarize recent studies which investigate the functional and cellular structure remodeling of hypertrophic adipocytes. How adipocytes adapt to an enlarged cell size and how this relates to cellular dysfunction are discussed. Understanding the healthy and pathological processes involved in adipocyte hypertrophy may shed light on new strategies for promoting healthy adipose tissue expansion.
Collapse
Affiliation(s)
- Qian Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kirsty L. Spalding
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
41
|
Physiological Cooperation between Aquaporin 5 and TRPV4. Int J Mol Sci 2022; 23:ijms231911634. [PMID: 36232935 PMCID: PMC9570067 DOI: 10.3390/ijms231911634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Aquaporins—among them, AQP5—are responsible for transporting water across biological membranes, which is an important process in all living organisms. The transient receptor potential channel 4 (TRPV4) is a cation channel that is mostly calcium-permeable and can also be activated by osmotic stimuli. It plays a role in a number of different functions in the body, e.g., the development of bones and cartilage, and it is involved in the body’s osmoregulation, the generation of certain types of sensation (pain), and apoptosis. Our earlier studies on the uterus and the literature data aroused our interest in the physiological role of the cooperation of AQP5 and TRPV4. In this review, we focus on the co-expression and cooperation of AQP5 and TRPV4 in the lung, salivary glands, uterus, adipose tissues, and lens. Understanding the cooperation between AQP5 and TRPV4 may contribute to the development of new drug candidates and the therapy of several disorders (e.g., preterm birth, cataract, ischemia/reperfusion-induced edema, exercise- or cold-induced asthma).
Collapse
|
42
|
Chen X, Zhang L, Zheng L, Tuo B. Role of Ca 2+ channels in non-alcoholic fatty liver disease and their implications for therapeutic strategies (Review). Int J Mol Med 2022; 50:113. [PMID: 35796003 PMCID: PMC9282635 DOI: 10.3892/ijmm.2022.5169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/07/2022] [Indexed: 01/10/2023] Open
Affiliation(s)
- Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
43
|
Sajid S, Zariwala MG, Mackenzie R, Turner M, Nell T, Bellary S, Renshaw D. Suppression of Anti-Inflammatory Mediators in Metabolic Disease May Be Driven by Overwhelming Pro-Inflammatory Drivers. Nutrients 2022; 14:2360. [PMID: 35684160 PMCID: PMC9182642 DOI: 10.3390/nu14112360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/07/2022] Open
Abstract
Obesity is a multifactorial disease and is associated with an increased risk of developing metabolic syndrome and co-morbidities. Dysregulated expansion of the adipose tissue during obesity induces local tissue hypoxia, altered secretory profile of adipokines, cytokines and chemokines, altered profile of local tissue inflammatory cells leading to the development of low-grade chronic inflammation. Low grade chronic inflammation is considered to be the underlying mechanism that increases the risk of developing obesity associated comorbidities. The glucocorticoid induced protein annexin A1 and its N-terminal peptides are anti-inflammatory mediators involved in resolving inflammation. The aim of the current study was to investigate the role of annexin A1 in obesity and associated inflammation. To achieve this aim, the current study analysed data from two feasibility studies in clinical populations: (1) bariatric surgery patients (Pre- and 3 months post-surgery) and (2) Lipodystrophy patients. Plasma annexin A1 levels were increased at 3-months post-surgery compared to pre-surgery (1.2 ± 0.1 ng/mL, n = 19 vs. 1.6 ± 0.1 ng/mL, n = 9, p = 0.009) and positively correlated with adiponectin (p = 0.009, r = 0.468, n = 25). Plasma annexin A1 levels were decreased in patients with lipodystrophy compared to BMI matched controls (0.2 ± 0.1 ng/mL, n = 9 vs. 0.97 ± 0.1 ng/mL, n = 30, p = 0.008), whereas CRP levels were significantly elevated (3.3 ± 1.0 µg/mL, n = 9 vs. 1.4 ± 0.3 µg/mL, n = 31, p = 0.0074). The roles of annexin A1 were explored using an in vitro cell based model (SGBS cells) mimicking the inflammatory status that is observed in obesity. Acute treatment with the annexin A1 N-terminal peptide, AC2-26 differentially regulated gene expression (including PPARA (2.8 ± 0.7-fold, p = 0.0303, n = 3), ADIPOQ (2.0 ± 0.3-fold, p = 0.0073, n = 3), LEP (0.6 ± 0.2-fold, p = 0.0400, n = 3), NAMPT (0.4 ± 0.1-fold, p = 0.0039, n = 3) and RETN (0.1 ± 0.03-fold, p < 0.0001, n = 3) in mature obesogenic adipocytes indicating that annexin A1 may play a protective role in obesity and inflammation. However, this effect may be overshadowed by the continued increase in systemic inflammation associated with rapid tissue expansion in obesity.
Collapse
Affiliation(s)
- Sehar Sajid
- Centre for Sport, Exercise and Life Sciences, Institute for Health and Wellbeing, Coventry University, Priory Street, Coventry CV1 5FB, UK; (S.S.); (M.T.)
| | - Mohammed Gulrez Zariwala
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK;
| | - Richard Mackenzie
- School of Life & Health Sciences, University of Roehampton, London SW15 4DJ, UK;
| | - Mark Turner
- Centre for Sport, Exercise and Life Sciences, Institute for Health and Wellbeing, Coventry University, Priory Street, Coventry CV1 5FB, UK; (S.S.); (M.T.)
| | - Theo Nell
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University Main Campus, Stellenbosch 7600, South Africa;
| | - Srikanth Bellary
- The Diabetes Centre, Birmingham Heartlands Hospital, Birmingham B9 5SS, UK;
| | - Derek Renshaw
- Centre for Sport, Exercise and Life Sciences, Institute for Health and Wellbeing, Coventry University, Priory Street, Coventry CV1 5FB, UK; (S.S.); (M.T.)
| |
Collapse
|
44
|
Mukherjee P, Rahaman SG, Goswami R, Dutta B, Mahanty M, Rahaman SO. Role of mechanosensitive channels/receptors in atherosclerosis. Am J Physiol Cell Physiol 2022; 322:C927-C938. [PMID: 35353635 PMCID: PMC9109792 DOI: 10.1152/ajpcell.00396.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
Mechanical forces are critical physical cues that can affect numerous cellular processes regulating the development, tissue maintenance, and functionality of cells. The contribution of mechanical forces is especially crucial in the vascular system where it is required for embryogenesis and for maintenance of physiological function in vascular cells including aortic endothelial cells, resident macrophages, and smooth muscle cells. Emerging evidence has also identified a role of these mechanical cues in pathological conditions of the vascular system such as atherosclerosis and associated diseases like hypertension. Of the different mechanotransducers, mechanosensitive ion channels/receptors are gaining prominence due to their involvement in numerous physiological and pathological conditions. However, only a handful of potential mechanosensory ion channels/receptors have been shown to be involved in atherosclerosis, and their precise role in disease development and progression remains poorly understood. Here, we provide a comprehensive account of recent studies investigating the role of mechanosensitive ion channels/receptors in atherosclerosis. We discuss the different groups of mechanosensitive proteins and their specific roles in inflammation, endothelial dysfunction, macrophage foam cell formation, and lesion development, which are crucial for the development and progression of atherosclerosis. Results of the studies discussed here will help in developing an understanding of the current state of mechanobiology in vascular diseases, specifically in atherosclerosis, which may be important for the development of innovative and targeted therapeutics for this disease.
Collapse
Affiliation(s)
- Pritha Mukherjee
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | | | - Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - Bidisha Dutta
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - Manisha Mahanty
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| |
Collapse
|
45
|
Takeda Y, Dai P. Capsaicin directly promotes adipocyte browning in the chemical compound-induced brown adipocytes converted from human dermal fibroblasts. Sci Rep 2022; 12:6612. [PMID: 35459786 PMCID: PMC9033854 DOI: 10.1038/s41598-022-10644-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/12/2022] [Indexed: 01/01/2023] Open
Abstract
Human brown fat is a potential therapeutic target for preventing obesity and related metabolic diseases by dissipating energy as heat through uncoupling protein 1 (UCP1). We have previously reported a method to obtain chemical compound-induced brown adipocytes (ciBAs) converted from human dermal fibroblasts under serum-free conditions. However, pharmacological responses to bioactive molecules have been poorly characterised in ciBAs. This study showed that the treatment with Capsaicin, an agonist of transient receptor potential vanilloid 1, directly activated adipocyte browning such as UCP1 expression, mitochondrial biogenesis, energy consumption rates, and glycerol recycling in ciBAs. Furthermore, genome-wide transcriptome analysis indicated that Capsaicin activated a broad range of metabolic genes including glycerol kinase and glycerol 3-phosphate dehydrogenase 1, which could be associated with the activation of glycerol recycling and triglyceride synthesis. Capsaicin also activated UCP1 expression in immortalised human brown adipocytes but inhibited its expression in mesenchymal stem cell-derived adipocytes. Altogether, ciBAs successfully reflected the direct effects of Capsaicin on adipocyte browning. These findings suggested that ciBAs could serve as a promising cell model for screening of small molecules and dietary bioactive compounds targeting human brown adipocytes.
Collapse
Affiliation(s)
- Yukimasa Takeda
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Ping Dai
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
46
|
Li M, Zheng J, Wu T, He Y, Guo J, Xu J, Gao C, Qu S, Zhang Q, Zhao J, Cheng W. Activation of TRPV4 Induces Exocytosis and Ferroptosis in Human Melanoma Cells. Int J Mol Sci 2022; 23:ijms23084146. [PMID: 35456964 PMCID: PMC9030060 DOI: 10.3390/ijms23084146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022] Open
Abstract
TRPV4 (transient receptor potential vanilloid 4), a calcium permeable TRP ion channel, is known to play a key role in endocytosis. However, whether it contributes to exocytosis remains unclear. Here, we report that activation of TRPV4 induced massive exocytosis in both melanoma A375 cell and heterologous expression systems. We show here that, upon application of TRPV4-specific agonists, prominent vesicle priming from endoplasmic reticulum (ER) was observed, followed by morphological changes of mitochondrial crista may lead to cell ferroptosis. We further identified interactions between TRPV4 and folding/vesicle trafficking proteins, which were triggered by calcium entry through activated TRPV4. This interplay, in turn, enhanced TRPV4-mediated activation of folding and vesicle trafficking proteins to promote exocytosis. Our study revealed a signaling mechanism underlying stimulus-triggered exocytosis in melanoma and highlighted the role of cellular sensor TRPV4 ion channel in mediating ferroptosis.
Collapse
|
47
|
Blockage of transient receptor potential vanilloid 4 prevents postoperative atrial fibrillation by inhibiting NLRP3-inflammasome in sterile pericarditis mice. Cell Calcium 2022; 104:102590. [DOI: 10.1016/j.ceca.2022.102590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
|
48
|
Nguyen TN, Siddiqui G, Veldhuis NA, Poole DP. Diverse Roles of TRPV4 in Macrophages: A Need for Unbiased Profiling. Front Immunol 2022; 12:828115. [PMID: 35126384 PMCID: PMC8811046 DOI: 10.3389/fimmu.2021.828115] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a non-selective mechanosensitive ion channel expressed by various macrophage populations. Recent reports have characterized the role of TRPV4 in shaping the activity and phenotype of macrophages to influence the innate immune response to pathogen exposure and inflammation. TRPV4 has been studied extensively in the context of inflammation and inflammatory pain. Although TRPV4 activity has been generally described as pro-inflammatory, emerging evidence suggests a more complex role where this channel may also contribute to anti-inflammatory activities. However, detailed understanding of how TRPV4 may influence the initiation, maintenance, and resolution of inflammatory disease remains limited. This review highlights recent insights into the cellular processes through which TRPV4 contributes to pathological conditions and immune processes, with a focus on macrophage biology. The potential use of high-throughput and omics methods as an unbiased approach for studying the functional outcomes of TRPV4 activation is also discussed.
Collapse
Affiliation(s)
- Thanh-Nhan Nguyen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Nicholas A. Veldhuis
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
- *Correspondence: Daniel P. Poole, ; Nicholas A. Veldhuis,
| | - Daniel P. Poole
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
- *Correspondence: Daniel P. Poole, ; Nicholas A. Veldhuis,
| |
Collapse
|
49
|
Nisembaum LG, Loentgen G, L’Honoré T, Martin P, Paulin CH, Fuentès M, Escoubeyrou K, Delgado MJ, Besseau L, Falcón J. Transient Receptor Potential-Vanilloid (TRPV1-TRPV4) Channels in the Atlantic Salmon, Salmo salar. A Focus on the Pineal Gland and Melatonin Production. Front Physiol 2022; 12:784416. [PMID: 35069244 PMCID: PMC8782258 DOI: 10.3389/fphys.2021.784416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Fish are ectotherm, which rely on the external temperature to regulate their internal body temperature, although some may perform partial endothermy. Together with photoperiod, temperature oscillations, contribute to synchronizing the daily and seasonal variations of fish metabolism, physiology and behavior. Recent studies are shedding light on the mechanisms of temperature sensing and behavioral thermoregulation in fish. In particular, the role of some members of the transient receptor potential channels (TRP) is being gradually unraveled. The present study in the migratory Atlantic salmon, Salmo salar, aims at identifying the tissue distribution and abundance in mRNA corresponding to the TRP of the vanilloid subfamilies, TRPV1 and TRPV4, and at characterizing their putative role in the control of the temperature-dependent modulation of melatonin production-the time-keeping hormone-by the pineal gland. In Salmo salar, TRPV1 and TRPV4 mRNA tissue distribution appeared ubiquitous; mRNA abundance varied as a function of the month investigated. In situ hybridization and immunohistochemistry indicated specific labeling located in the photoreceptor cells of the pineal gland and the retina. Additionally, TRPV analogs modulated the production of melatonin by isolated pineal glands in culture. The TRPV1 agonist induced an inhibitory response at high concentrations, while evoking a bell-shaped response (stimulatory at low, and inhibitory at high, concentrations) when added with an antagonist. The TRPV4 agonist was stimulatory at the highest concentration used. Altogether, the present results agree with the known widespread distribution and role of TRPV1 and TRPV4 channels, and with published data on trout (Oncorhynchus mykiss), leading to suggest these channels mediate the effects of temperature on S. salar pineal melatonin production. We discuss their involvement in controlling the timing of daily and seasonal events in this migratory species, in the context of an increasing warming of water temperatures.
Collapse
Affiliation(s)
- Laura Gabriela Nisembaum
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Guillaume Loentgen
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Thibaut L’Honoré
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage, Chanteuges, France
| | - Charles-Hubert Paulin
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Michael Fuentès
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Karine Escoubeyrou
- SU, CNRS Fédération 3724, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - María Jesús Delgado
- Departamento de Genética, Fisiología y Microbiologia, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Laurence Besseau
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Jack Falcón
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| |
Collapse
|
50
|
Guney E, Arruda AP, Parlakgul G, Cagampan E, Min N, Lee GY, Greene L, Tsaousidou E, Inouye K, Han MS, Davis RJ, Hotamisligil GS. Aberrant Ca 2+ signaling by IP 3Rs in adipocytes links inflammation to metabolic dysregulation in obesity. Sci Signal 2021; 14:eabf2059. [PMID: 34905386 PMCID: PMC10130146 DOI: 10.1126/scisignal.abf2059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic metabolic inflammation is a key feature of obesity, insulin resistance, and diabetes. Here, we showed that altered regulation of the Ca2+ channel inositol trisphosphate receptor (IP3R) was an adipocyte-intrinsic event involved in the emergence and propagation of inflammatory signaling and the resulting insulin resistance. Inflammation induced by cytokine exposure in vitro or by obesity in vivo led to increases in the abundance and activity of IP3Rs and in the phosphorylation of the Ca2+-dependent kinase CaMKII in adipocytes in a manner dependent on the kinase JNK. In mice, adipocyte-specific loss of IP3R1/2 protected against adipose tissue inflammation and insulin resistance, despite the mice exhibiting substantial diet-induced weight gain. Thus, this work suggests that increased IP3R activity is a key link between obesity, inflammation, and insulin resistance. These data also suggest that approaches to target IP3R-mediated Ca2+ homeostasis in adipocytes may offer new therapeutic opportunities against metabolic diseases, especially because GWAS studies also implicate this locus in human obesity.
Collapse
Affiliation(s)
- Ekin Guney
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ana Paula Arruda
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Günes Parlakgul
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Erika Cagampan
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nina Min
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Grace Yankun Lee
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lily Greene
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Eva Tsaousidou
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Karen Inouye
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Myoung Sook Han
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Gökhan S Hotamisligil
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|