1
|
Gartly SC, Barretto LAF, Côté ACMT, Kosowan ZA, Fowler CC. A novel phospholipase A2 is a core component of the typhoid toxin genetic islet. J Biol Chem 2024; 300:107758. [PMID: 39260696 PMCID: PMC11525133 DOI: 10.1016/j.jbc.2024.107758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Salmonella Typhi, the cause of typhoid fever, is a bacterial pathogen of substantial global importance. Typhoid toxin is a secreted AB-type toxin that is a key S. Typhi virulence factor encoded within a 5-gene genetic islet. Four genes in this islet have well-defined roles in typhoid toxin biology; however, the function of the fifth gene is unknown. Here, we investigate the function of this gene, which we name ttaP. We show that ttaP is cotranscribed with the typhoid toxin subunit cdtB, and we perform genomic analyses that indicate that TtaP is very highly conserved in typhoid toxin islets found in diverse salmonellae. We show that TtaP is a distant homolog of group XIV secreted phospholipase A2 (PLA2) enzymes, and experimentally demonstrate that TtaP is a bona fide PLA2. Sequence and structural analyses indicate that TtaP differs substantially from characterized PLA2s, and thus represents a novel class of PLA2. Secretion assays revealed that TtaP is neither cosecreted with typhoid toxin, nor is it required for toxin secretion. Although TtaP is a phospholipase that remains associated with the S. Typhi cell, assays that probed for altered cell envelope integrity failed to identify any differences between WT S. Typhi and a ttaP deletion strain. Collectively, this study identifies a biochemical activity for the lone uncharacterized typhoid toxin islet gene and lays the groundwork for exploring how this gene factors into S. Typhi pathogenesis. This study further identifies a novel class of PLA2, enzymes that have a wide range of industrial applications.
Collapse
Affiliation(s)
- Sarah C Gartly
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Luke A F Barretto
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Zach A Kosowan
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Casey C Fowler
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Barber MF, Fitzgerald JR. Mechanisms of host adaptation by bacterial pathogens. FEMS Microbiol Rev 2024; 48:fuae019. [PMID: 39003250 PMCID: PMC11308195 DOI: 10.1093/femsre/fuae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/15/2024] Open
Abstract
The emergence of new infectious diseases poses a major threat to humans, animals, and broader ecosystems. Defining factors that govern the ability of pathogens to adapt to new host species is therefore a crucial research imperative. Pathogenic bacteria are of particular concern, given dwindling treatment options amid the continued expansion of antimicrobial resistance. In this review, we summarize recent advancements in the understanding of bacterial host species adaptation, with an emphasis on pathogens of humans and related mammals. We focus particularly on molecular mechanisms underlying key steps of bacterial host adaptation including colonization, nutrient acquisition, and immune evasion, as well as suggest key areas for future investigation. By developing a greater understanding of the mechanisms of host adaptation in pathogenic bacteria, we may uncover new strategies to target these microbes for the treatment and prevention of infectious diseases in humans, animals, and the broader environment.
Collapse
Affiliation(s)
- Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, United States
- Department of Biology, University of Oregon, Eugene, OR 97403, United States
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| |
Collapse
|
3
|
Lee GY, Song J. Single missense mutations in Vi capsule synthesis genes confer hypervirulence to Salmonella Typhi. Nat Commun 2024; 15:5258. [PMID: 38898034 PMCID: PMC11187135 DOI: 10.1038/s41467-024-49590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
Many bacterial pathogens, including the human exclusive pathogen Salmonella Typhi, express capsular polysaccharides as a crucial virulence factor. Here, through S. Typhi whole genome sequence analyses and functional studies, we found a list of single point mutations that make S. Typhi hypervirulent. We discovered a single point mutation in the Vi biosynthesis enzymes that control Vi polymerization or acetylation is enough to result in different capsule variants of S. Typhi. All variant strains are pathogenic, but the hyper Vi capsule variants are particularly hypervirulent, as demonstrated by the high morbidity and mortality rates observed in infected mice. The hypo Vi capsule variants have primarily been identified in Africa, whereas the hyper Vi capsule variants are distributed worldwide. Collectively, these studies increase awareness about the existence of different capsule variants of S. Typhi, establish a solid foundation for numerous future studies on S. Typhi capsule variants, and offer valuable insights into strategies to combat capsulated bacteria.
Collapse
Affiliation(s)
- Gi Young Lee
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Jeongmin Song
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Chemello AJ, Fowler CC. Alternate typhoid toxin assembly evolved independently in the two Salmonella species. mBio 2024; 15:e0340323. [PMID: 38501873 PMCID: PMC11005416 DOI: 10.1128/mbio.03403-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
AB5-type toxins are a diverse family of protein toxins composed of an enzymatic active (A) subunit and a pentameric delivery (B) subunit. Salmonella enterica serovar Typhi's typhoid toxin features two A subunits, CdtB and PltA, in complex with the B subunit PltB. Recently, it was shown that S. Typhi encodes a horizontally acquired B subunit, PltC, that also assembles with PltA/CdtB to produce a second form of typhoid toxin. S. Typhi therefore produces two AB5 toxins with the same A subunits but distinct B subunits, an evolutionary twist that is unique to typhoid toxin. Here, we show that, remarkably, the Salmonella bongori species independently evolved an analogous capacity to produce two typhoid toxins with distinct B subunits. S. bongori's alternate B subunit, PltD, is evolutionarily distant from both PltB and PltC and outcompetes PltB to form the predominant toxin. We show that, surprisingly, S. bongori elicits similar levels of CdtB-mediated intoxication as S. Typhi during infection of cultured human epithelial cells. This toxicity is exclusively due to the PltB toxin, and strains lacking pltD produce increased amounts of PltB toxin and exhibit increased toxicity compared to the wild type, suggesting that the acquisition of the PltD subunit potentially made S. bongori less virulent toward humans. Collectively, this study unveils a striking example of convergent evolution that highlights the importance of the poorly understood "two-toxin" paradigm for typhoid toxin biology and, more broadly, illustrates how the flexibility of A-B interactions has fueled the evolutionary diversification and expansion of AB5-type toxins. IMPORTANCE Typhoid toxin is an important Salmonella Typhi virulence factor and an attractive target for therapeutic interventions to combat typhoid fever. The recent discovery of a second version of this toxin has substantial implications for understanding S. Typhi pathogenesis and combating typhoid fever. In this study, we discover that a remarkably similar two-toxin paradigm evolved independently in Salmonella bongori, which strongly suggests that this is a critical aspect of typhoid toxin biology. We observe significant parallels between how the two toxins assemble and their capacity to intoxicate host cells during infection in S. Typhi and S. bongori, which provides clues to the biological significance of this unusual toxin arrangement. More broadly, AB5 toxins with diverse activities and mechanisms are essential virulence factors for numerous important bacterial pathogens. This study illustrates the capacity for novel A-B interactions to evolve and thus provides insight into how such a diverse arsenal of toxins might have emerged.
Collapse
Affiliation(s)
- Antonio J. Chemello
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Casey C. Fowler
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Lee GY, Song J. Single missense mutations in Vi capsule synthesis genes confer hypervirulence to Salmonella Typhi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.28.573590. [PMID: 38260632 PMCID: PMC10802248 DOI: 10.1101/2023.12.28.573590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Many bacterial pathogens, including the human exclusive pathogen Salmonella Typhi, express capsular polysaccharides as a crucial virulence factor. Here, through S. Typhi whole genome sequence analyses and functional studies, we found a list of single point mutations that make S . Typhi hypervirulent. We discovered a single point mutation in the Vi biosynthesis enzymes that control the length or acetylation of Vi is enough to create different capsule variants of S. Typhi. All variant strains are pathogenic, but the hyper-capsule variants are particularly hypervirulent, as demonstrated by the high morbidity and mortality rates observed in infected mice. The hypo-capsule variants have primarily been identified in Africa, whereas the hyper-capsule variants are distributed worldwide. Collectively, these studies increase awareness about the existence of different capsule variants of S. Typhi, establish a solid foundation for numerous future studies on S. Typhi capsule variants, and offer valuable insights into strategies to combat capsulated bacteria.
Collapse
|
6
|
Hulbert SW, Desai P, Jewett MC, DeLisa MP, Williams AJ. Glycovaccinology: The design and engineering of carbohydrate-based vaccine components. Biotechnol Adv 2023; 68:108234. [PMID: 37558188 DOI: 10.1016/j.biotechadv.2023.108234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/12/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Vaccines remain one of the most important pillars in preventative medicine, providing protection against a wide array of diseases by inducing humoral and/or cellular immunity. Of the many possible candidate antigens for subunit vaccine development, carbohydrates are particularly appealing because of their ubiquitous presence on the surface of all living cells, viruses, and parasites as well as their known interactions with both innate and adaptive immune cells. Indeed, several licensed vaccines leverage bacterial cell-surface carbohydrates as antigens for inducing antigen-specific plasma cells secreting protective antibodies and the development of memory T and B cells. Carbohydrates have also garnered attention in other aspects of vaccine development, for example, as adjuvants that enhance the immune response by either activating innate immune responses or targeting specific immune cells. Additionally, carbohydrates can function as immunomodulators that dampen undesired humoral immune responses to entire protein antigens or specific, conserved regions on antigenic proteins. In this review, we highlight how the interplay between carbohydrates and the adaptive and innate arms of the immune response is guiding the development of glycans as vaccine components that act as antigens, adjuvants, and immunomodulators. We also discuss how advances in the field of synthetic glycobiology are enabling the design, engineering, and production of this new generation of carbohydrate-containing vaccine formulations with the potential to prevent infectious diseases, malignancies, and complex immune disorders.
Collapse
Affiliation(s)
- Sophia W Hulbert
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Primit Desai
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Matthew P DeLisa
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA; Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA.
| | - Asher J Williams
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
7
|
ElGhazaly M, Collins MO, Ibler AEM, Humphreys D. Typhoid toxin hijacks Wnt5a to establish host senescence and Salmonella infection. Cell Rep 2023; 42:113181. [PMID: 37792529 DOI: 10.1016/j.celrep.2023.113181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/15/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023] Open
Abstract
Damage to our genome causes acute senescence in mammalian cells, which undergo growth arrest and release a senescence-associated secretory phenotype (SASP) that propagates the stress response to bystander cells. Thus, acute senescence is a powerful tumor suppressor. Salmonella enterica hijacks senescence through its typhoid toxin, which usurps unidentified factors in the stress secretome of senescent cells to mediate intracellular infections. Here, transcriptomics of toxin-induced senescent cells (TxSCs) and proteomics of their secretome identify the factors as Wnt5a, INHBA, and GDF15. Wnt5a establishes a positive feedback loop, driving INHBA and GDF15 expression. In fibroblasts, Wnt5a and INHBA mediate autocrine senescence in TxSCs and paracrine senescence in naive cells. Wnt5a synergizes with GDF15 to increase Salmonella invasion. Intestinal TxSCs undergo apoptosis without Wnt5a, which is required for establishing intestinal TxSCs. The study reveals how an innate defense against cancer is co-opted by a bacterial pathogen to cause widespread damage and mediate infections.
Collapse
Affiliation(s)
- Mohamed ElGhazaly
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Mark O Collins
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Angela E M Ibler
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Daniel Humphreys
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK.
| |
Collapse
|
8
|
Vaill M, Kawanishi K, Varki N, Gagneux P, Varki A. Comparative physiological anthropogeny: exploring molecular underpinnings of distinctly human phenotypes. Physiol Rev 2023; 103:2171-2229. [PMID: 36603157 PMCID: PMC10151058 DOI: 10.1152/physrev.00040.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Anthropogeny is a classic term encompassing transdisciplinary investigations of the origins of the human species. Comparative anthropogeny is a systematic comparison of humans and other living nonhuman hominids (so-called "great apes"), aiming to identify distinctly human features in health and disease, with the overall goal of explaining human origins. We begin with a historical perspective, briefly describing how the field progressed from the earliest evolutionary insights to the current emphasis on in-depth molecular and genomic investigations of "human-specific" biology and an increased appreciation for cultural impacts on human biology. While many such genetic differences between humans and other hominids have been revealed over the last two decades, this information remains insufficient to explain the most distinctive phenotypic traits distinguishing humans from other living hominids. Here we undertake a complementary approach of "comparative physiological anthropogeny," along the lines of the preclinical medical curriculum, i.e., beginning with anatomy and considering each physiological system and in each case considering genetic and molecular components that are relevant. What is ultimately needed is a systematic comparative approach at all levels from molecular to physiological to sociocultural, building networks of related information, drawing inferences, and generating testable hypotheses. The concluding section will touch on distinctive considerations in the study of human evolution, including the importance of gene-culture interactions.
Collapse
Affiliation(s)
- Michael Vaill
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| | - Kunio Kawanishi
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nissi Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Pascal Gagneux
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Ajit Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
9
|
Identification of collaborative cross mouse strains permissive to Salmonella enterica serovar Typhi infection. Sci Rep 2023; 13:393. [PMID: 36624251 PMCID: PMC9829673 DOI: 10.1038/s41598-023-27400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Salmonella enterica serovar Typhi is the causative agent of typhoid fever restricted to humans and does not replicate in commonly used inbred mice. Genetic variation in humans is far greater and more complex than that in a single inbred strain of mice. The Collaborative Cross (CC) is a large panel of recombinant inbred strains which has a wider range of genetic diversity than laboratory inbred mouse strains. We found that the CC003/Unc and CC053/Unc strains are permissive to intraperitoneal but not oral route of S. Typhi infection and show histopathological changes characteristic of human typhoid. These CC strains are immunocompetent, and immunization induces antigen-specific responses that can kill S. Typhi in vitro and control S. Typhi in vivo. Our results indicate that CC003/Unc and CC053/Unc strains can help identify the genetic basis for typhoid susceptibility, S. Typhi virulence mechanism(s) in vivo, and serve as a preclinical mammalian model system to identify effective vaccines and therapeutics strategies.
Collapse
|
10
|
Ojiakor A, Gibbs RN, Chen Z, Gao X, Fowler CC. The evolutionary diversification of the Salmonella artAB toxin locus. Front Microbiol 2022; 13:1016438. [PMID: 36504768 PMCID: PMC9732031 DOI: 10.3389/fmicb.2022.1016438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
Salmonella enterica is a diverse species of bacterial pathogens comprised of >2,500 serovars with variable host ranges and virulence properties. Accumulating evidence indicates that two AB5-type toxins, typhoid toxin and ArtAB toxin, contribute to the more severe virulence properties of the Salmonella strains that encode them. It was recently discovered that there are two distinct types of artAB-like genetic elements in Salmonella: those that encode ArtAB toxins (artAB elements) and those in which the artA gene is degraded and the ArtB homolog, dubbed PltC, serves as an alternative delivery subunit for typhoid toxin (pltC elements). Here, we take a multifaceted approach to explore the evolutionary diversification of artAB-like genetic elements in Salmonella. We identify 7 subtypes of ArtAB toxins and 4 different PltC sequence groups that are distributed throughout the Salmonella genus. Both artAB and pltC are encoded within numerous diverse prophages, indicating a central role for phages in their evolutionary diversification. Genetic and structural analyses revealed features that distinguish pltC elements from artAB and identified evolutionary adaptations that enable PltC to efficiently engage typhoid toxin A subunits. For both pltC and artAB, we find that the sequences of the B subunits are especially variable, particularly amongst amino acid residues that fine tune the chemical environment of their glycan binding pockets. This study provides a framework to delineate the remarkably complex collection of Salmonella artAB/pltC-like genetic elements and provides a window into the mechanisms of evolution for AB5-type toxins.
Collapse
Affiliation(s)
- Adaobi Ojiakor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Rachel N. Gibbs
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Zhe Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China,School of Life Sciences, Shandong University, Qingdao, China
| | - Casey C. Fowler
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada,*Correspondence: Casey C. Fowler,
| |
Collapse
|
11
|
Sasmal A, Khan N, Khedri Z, Kellman BP, Srivastava S, Verhagen A, Yu H, Bruntse AB, Diaz S, Varki N, Beddoe T, Paton AW, Paton JC, Chen X, Lewis NE, Varki A. Simple and practical sialoglycan encoding system reveals vast diversity in nature and identifies a universal sialoglycan-recognizing probe derived from AB5 toxin B subunits. Glycobiology 2022; 32:1101-1115. [PMID: 36048714 PMCID: PMC9680115 DOI: 10.1093/glycob/cwac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 01/07/2023] Open
Abstract
Vertebrate sialic acids (Sias) display much diversity in modifications, linkages, and underlying glycans. Slide microarrays allow high-throughput explorations of sialoglycan-protein interactions. A microarray presenting ~150 structurally defined sialyltrisaccharides with various Sias linkages and modifications still poses challenges in planning, data sorting, visualization, and analysis. To address these issues, we devised a simple 9-digit code for sialyltrisaccharides with terminal Sias and underlying two monosaccharides assigned from the nonreducing end, with 3 digits assigning a monosaccharide, its modifications, and linkage. Calculations based on the encoding system reveal >113,000 likely linear sialyltrisaccharides in nature. Notably, a biantennary N-glycan with 2 terminal sialyltrisaccharides could thus have >1010 potential combinations and a triantennary N-glycan with 3 terminal sequences, >1015 potential combinations. While all possibilities likely do not exist in nature, sialoglycans encode enormous diversity. While glycomic approaches are used to probe such diverse sialomes, naturally occurring bacterial AB5 toxin B subunits are simpler tools to track the dynamic sialome in biological systems. Sialoglycan microarray was utilized to compare sialoglycan-recognizing bacterial toxin B subunits. Unlike the poor correlation between B subunits and species phylogeny, there is stronger correlation with Sia-epitope preferences. Further supporting this pattern, we report a B subunit (YenB) from Yersinia enterocolitica (broad host range) recognizing almost all sialoglycans in the microarray, including 4-O-acetylated-Sias not recognized by a Yersinia pestis orthologue (YpeB). Differential Sia-binding patterns were also observed with phylogenetically related B subunits from Escherichia coli (SubB), Salmonella Typhi (PltB), Salmonella Typhimurium (ArtB), extra-intestinal E.coli (EcPltB), Vibrio cholera (CtxB), and cholera family homologue of E. coli (EcxB).
Collapse
Affiliation(s)
- Aniruddha Sasmal
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Naazneen Khan
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Zahra Khedri
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Benjamin P Kellman
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Saurabh Srivastava
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrea Verhagen
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Hai Yu
- Department of Chemistry, University of California Davis, CA 95616, USA
| | - Anders Bech Bruntse
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Sandra Diaz
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Nissi Varki
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Xi Chen
- Department of Chemistry, University of California Davis, CA 95616, USA
| | - Nathan E Lewis
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
12
|
Satur MJ, Urbanowicz PA, Spencer DIR, Rafferty J, Stafford GP. Structural and functional characterisation of a stable, broad-specificity multimeric sialidase from the oral pathogen Tannerella forsythia. Biochem J 2022; 479:1785-1806. [PMID: 35916484 PMCID: PMC9472817 DOI: 10.1042/bcj20220244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
Sialidases are glycosyl hydrolase enzymes targeting the glycosidic bond between terminal sialic acids and underlying sugars. The NanH sialidase of Tannerella forsythia, one of the bacteria associated with severe periodontal disease plays a role in virulence. Here, we show that this broad-specificity enzyme (but higher affinity for α2,3 over α2,6 linked sialic acids) digests complex glycans but not those containing Neu5,9Ac. Furthermore, we show it to be a highly stable dimeric enzyme and present a thorough structural analysis of the native enzyme in its apo-form and in complex with a sialic acid analogue/ inhibitor (Oseltamivir). We also use non-catalytic (D237A) variant to characterise molecular interactions while in complex with the natural substrates 3- and 6-siallylactose. This dataset also reveals the NanH carbohydrate-binding module (CBM, CAZy CBM 93) has a novel fold made of antiparallel beta-strands. The catalytic domain structure contains novel features that include a non-prolyl cis-peptide and an uncommon arginine sidechain rotamer (R306) proximal to the active site. Via a mutagenesis programme, we identified key active site residues (D237, R212 and Y518) and probed the effects of mutation of residues in proximity to the glycosidic linkage within 2,3 and 2,6-linked substrates. These data revealed that mutagenesis of R306 and residues S235 and V236 adjacent to the acid-base catalyst D237 influence the linkage specificity preference of this bacterial sialidase, opening up possibilities for enzyme engineering for glycotechology applications and providing key structural information that for in silico design of specific inhibitors of this enzyme for the treatment of periodontitis.
Collapse
Affiliation(s)
- Marianne J. Satur
- School of Clinical Dentistry, The University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, U.K
| | | | | | - John Rafferty
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K
| | - Graham P. Stafford
- School of Clinical Dentistry, The University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, U.K
| |
Collapse
|
13
|
Srivastava S, Verhagen A, Sasmal A, Wasik BR, Diaz S, Yu H, Bensing BA, Khan N, Khedri Z, Secrest P, Sullam P, Varki N, Chen X, Parrish CR, Varki A. Development and applications of sialoglycan-recognizing probes (SGRPs) with defined specificities: exploring the dynamic mammalian sialoglycome. Glycobiology 2022; 32:1116-1136. [PMID: 35926090 PMCID: PMC9680117 DOI: 10.1093/glycob/cwac050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 01/07/2023] Open
Abstract
Glycans that are abundantly displayed on vertebrate cell surface and secreted molecules are often capped with terminal sialic acids (Sias). These diverse 9-carbon-backbone monosaccharides are involved in numerous intrinsic biological processes. They also interact with commensals and pathogens, while undergoing dynamic changes in time and space, often influenced by environmental conditions. However, most of this sialoglycan complexity and variation remains poorly characterized by conventional techniques, which often tend to destroy or overlook crucial aspects of Sia diversity and/or fail to elucidate native structures in biological systems, i.e. in the intact sialome. To date, in situ detection and analysis of sialoglycans has largely relied on the use of plant lectins, sialidases, or antibodies, whose preferences (with certain exceptions) are limited and/or uncertain. We took advantage of naturally evolved microbial molecules (bacterial adhesins, toxin subunits, and viral hemagglutinin-esterases) that recognize sialoglycans with defined specificity to delineate 9 classes of sialoglycan recognizing probes (SGRPs: SGRP1-SGRP9) that can be used to explore mammalian sialome changes in a simple and systematic manner, using techniques common in most laboratories. SGRP candidates with specificity defined by sialoglycan microarray studies were engineered as tagged probes, each with a corresponding nonbinding mutant probe as a simple and reliable negative control. The optimized panel of SGRPs can be used in methods commonly available in most bioscience labs, such as ELISA, western blot, flow cytometry, and histochemistry. To demonstrate the utility of this approach, we provide examples of sialoglycome differences in tissues from C57BL/6 wild-type mice and human-like Cmah-/- mice.
Collapse
Affiliation(s)
- Saurabh Srivastava
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, San Diego, CA, USA,Glycobiology Research and Training Center, University of California at San Diego, San Diego, CA, USA
| | - Andrea Verhagen
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, San Diego, CA, USA,Glycobiology Research and Training Center, University of California at San Diego, San Diego, CA, USA
| | - Aniruddha Sasmal
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, San Diego, CA, USA,Glycobiology Research and Training Center, University of California at San Diego, San Diego, CA, USA
| | - Brian R Wasik
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sandra Diaz
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, San Diego, CA, USA,Glycobiology Research and Training Center, University of California at San Diego, San Diego, CA, USA
| | - Hai Yu
- Department of Chemistry, University of California at Davis, Davis, CA, USA
| | - Barbara A Bensing
- Department of Medicine, University of California, San Francisco, CA, USA,VA Medical Center, San Francisco, CA, USA
| | - Naazneen Khan
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, San Diego, CA, USA,Glycobiology Research and Training Center, University of California at San Diego, San Diego, CA, USA
| | - Zahra Khedri
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, San Diego, CA, USA,Glycobiology Research and Training Center, University of California at San Diego, San Diego, CA, USA
| | - Patrick Secrest
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, San Diego, CA, USA,Glycobiology Research and Training Center, University of California at San Diego, San Diego, CA, USA
| | - Paul Sullam
- Department of Medicine, University of California, San Francisco, CA, USA,VA Medical Center, San Francisco, CA, USA
| | - Nissi Varki
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, San Diego, CA, USA,Glycobiology Research and Training Center, University of California at San Diego, San Diego, CA, USA
| | - Xi Chen
- Department of Chemistry, University of California at Davis, Davis, CA, USA
| | - Colin R Parrish
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ajit Varki
- Corresponding author: UCSD School of Medicine, La Jolla, CA 92093-0687, USA.
| |
Collapse
|
14
|
Neupane DP, Ahn C, Yang YA, Lee GY, Song J. Malnutrition and maternal vaccination against typhoid toxin. PLoS Pathog 2022; 18:e1010731. [PMID: 35960787 PMCID: PMC9401117 DOI: 10.1371/journal.ppat.1010731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/24/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
Children are particularly susceptible to typhoid fever caused by the bacterial pathogen Salmonella Typhi. Typhoid fever is prevalent in developing countries where diets can be less well-balanced. Here, using a murine model, we investigated the role of the macronutrient composition of the diet in maternal vaccination efficacies of two subunit vaccines targeting typhoid toxin: ToxoidVac and PltBVac. We found that maternal vaccinations protected all offspring against a lethal-dose typhoid toxin challenge in a balanced, normal diet (ND) condition, but the declined protection in a malnourished diet (MD) condition was observed in the PltBVac group. Despite the comparable antibody titers in both MD and ND mothers, MD offspring had a significantly lower level of typhoid toxin neutralizing antibodies than their ND counterparts. We observed a lower expression of the neonatal Fc receptor on the yolk sac of MD mothers than in ND mothers, agreeing with the observed lower antibody titers in MD offspring. Protein supplementation to MD diets, but not fat supplementation, increased FcRn expression and protected all MD offspring from the toxin challenge. Similarly, providing additional typhoid toxin-neutralizing antibodies to MD offspring was sufficient to protect all MD offspring from the toxin challenge. These results emphasize the significance of balanced/normal diets for a more effective maternal vaccination transfer to their offspring.
Collapse
Affiliation(s)
- Durga P. Neupane
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, United States of America
| | - Changhwan Ahn
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, United States of America
| | - Yi-An Yang
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, United States of America
| | - Gi Young Lee
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, United States of America
| | - Jeongmin Song
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
15
|
Harada A, Tsutsuki H, Zhang T, Yahiro K, Sawa T, Niidome T. Controlled Delivery of an Anti-Inflammatory Toxin to Macrophages by Mutagenesis and Nanoparticle Modification. NANOMATERIALS 2022; 12:nano12132161. [PMID: 35807998 PMCID: PMC9268525 DOI: 10.3390/nano12132161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023]
Abstract
Advances in drug delivery systems (DDSs) have enabled the specific delivery of drugs to target cells. Subtilase cytotoxin (SubAB) produced by certain enterohemorrhagic Escherichia coli strains induces endoplasmic reticulum (ER) stress and suppresses nitric oxide generation in macrophages. We previously reported that modification of SubAB with poly(D,L-lactide-co-glycolic) acid (PLGA) nanoparticles (SubAB-PLGA NPs) increased intracellular uptake of SubAB and had an anti-inflammatory effect on macrophages. However, specific delivery of SubAB to macrophages could not be achieved because its effects on other cell types were not negligible. Therefore, to suppress non-specific SubAB binding, we used low-binding mutant SubABS35A (S35A) in which the 35th serine of the B subunit was mutated to alanine. In a macrophage cell line, PLGA NPs modified with S35A (S35A-PLGA NPs) induced ER stress and had anti-inflammatory effects similar to WT-PLGA NPs. However, in an epithelial cell line, S35A-PLGA NPs induced lower ER stress than WT-PLGA NPs. These results suggest that S35A is selectively delivered to macrophages rather than epithelial cells by modification with PLGA NPs and exerts anti-inflammatory effects. Our findings provide a useful technique for protein delivery to macrophages and encourage medical applications of DDSs for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ayaka Harada
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan;
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; (H.T.); (T.Z.); (T.S.)
| | - Tianli Zhang
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; (H.T.); (T.Z.); (T.S.)
| | - Kinnosuke Yahiro
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan;
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; (H.T.); (T.Z.); (T.S.)
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan;
- Correspondence:
| |
Collapse
|
16
|
Naito-Matsui Y. Physiological Significance of Animal- and Tissue-specific Sialic Acid Composition. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2036.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Naito-Matsui Y. Physiological Significance of Animal- and Tissue-specific Sialic Acid Composition. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2036.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Chang SJ, Hsu YT, Chen Y, Lin YY, Lara-Tejero M, Galan JE. Typhoid toxin sorting and exocytic transport from Salmonella Typhi-infected cells. eLife 2022; 11:e78561. [PMID: 35579416 PMCID: PMC9142146 DOI: 10.7554/elife.78561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/15/2022] [Indexed: 11/13/2022] Open
Abstract
Typhoid toxin is an essential virulence factor for Salmonella Typhi, the cause of typhoid fever in humans. This toxin has an unusual biology in that it is produced by Salmonella Typhi only when located within host cells. Once synthesized, the toxin is secreted to the lumen of the Salmonella-containing vacuole from where it is transported to the extracellular space by vesicle carrier intermediates. Here, we report the identification of the typhoid toxin sorting receptor and components of the cellular machinery that packages the toxin into vesicle carriers, and exports it to the extracellular space. We found that the cation-independent mannose-6-phosphate receptor serves as typhoid toxin sorting receptor and that the coat protein COPII and the GTPase Sar1 mediate its packaging into vesicle carriers. Formation of the typhoid toxin carriers requires the specific environment of the Salmonella Typhi-containing vacuole, which is determined by the activities of specific effectors of its type III protein secretion systems. We also found that Rab11B and its interacting protein Rip11 control the intracellular transport of the typhoid toxin carriers, and the SNARE proteins VAMP7, SNAP23, and Syntaxin 4 their fusion to the plasma membrane. Typhoid toxin's cooption of specific cellular machinery for its transport to the extracellular space illustrates the remarkable adaptation of an exotoxin to exert its function in the context of an intracellular pathogen.
Collapse
Affiliation(s)
- Shu-Jung Chang
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
- Graduate Institute of Microbiology, College of Medicine, National Taiwan UniversityTaipeiTaiwan
| | - Yu-Ting Hsu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan UniversityTaipeiTaiwan
| | - Yun Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan UniversityTaipeiTaiwan
| | - Yen-Yi Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan UniversityTaipeiTaiwan
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| | - Jorge E Galan
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
19
|
Khan N, Sasmal A, Khedri Z, Secrest P, Verhagen A, Srivastava S, Varki N, Chen X, Yu H, Beddoe T, Paton AW, Paton JC, Varki A. Sialoglycan binding patterns of bacterial AB5 toxin B subunits correlate with host range and toxicity, indicating evolution independent of A subunits. J Biol Chem 2022; 298:101900. [PMID: 35398357 PMCID: PMC9120245 DOI: 10.1016/j.jbc.2022.101900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 12/17/2022] Open
Abstract
Many pathogenic bacteria secrete AB5 toxins that can be virulence factors. Cytotoxic A subunits are delivered to the cytosol following B subunit binding to specific host cell surface glycans. Some B subunits are not associated with A subunits, for example, YpeB of Yersinia pestis, the etiologic agent of plague. Plague cannot be eradicated because of Y. pestis' adaptability to numerous hosts. We previously showed selective binding of other B5 pentamers to a sialoglycan microarray, with sialic acid (Sia) preferences corresponding to those prominently expressed by various hosts, for example, N-acetylneuraminic acid (Neu5Ac; prominent in humans) or N-glycolylneuraminic acid (Neu5Gc; prominent in ruminant mammals and rodents). Here, we report that A subunit phylogeny evolved independently of B subunits and suggest a future B subunit nomenclature based on bacterial species names. We also found via phylogenetic analysis of B subunits, which bind Sias, that homologous molecules show poor correlation with species phylogeny. These data indicate ongoing lateral gene transfers between species, including mixing of A and B subunits. Consistent with much broader host range of Y. pestis, we show that YpeB recognizes all mammalian Sia types, except for 4-O-acetylated ones. Notably, YpeB alone causes dose-dependent cytotoxicity, which is abolished by a mutation (Y77F) eliminating Sia recognition, suggesting that cell proliferation and death are promoted via lectin-like crosslinking of cell surface sialoglycoconjugates. These findings help explain the host range of Y. pestis and could be important for pathogenesis. Overall, our data indicate ongoing rapid evolution of both host Sias and pathogen toxin-binding properties.
Collapse
|
20
|
Impact of Infectious Disease on Humans and Our Origins. ANTHROPOLOGICAL REVIEW 2022. [DOI: 10.18778/1898-6773.85.1.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
On May 16, 2020, the Center for Academic Research and Training in Anthropogeny organized the symposium “Impact of Infectious Disease on Humans and Our Origins”. The symposium aimed to gather experts on infectious diseases in one place and discuss the interrelationship between different pathogens and humans in an evolutionary context. The talks discussed topics including SARS-CoV-2, dengue and Zika, the notion of human-specific diseases, streptococci, microbiome in the human reproductive tract, Salmonella enterica, malaria, and human immunological memory.
Collapse
|
21
|
Glycan-mediated molecular interactions in bacterial pathogenesis. Trends Microbiol 2022; 30:254-267. [PMID: 34274195 PMCID: PMC8758796 DOI: 10.1016/j.tim.2021.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
Glycans are expressed on the surface of nearly all host and bacterial cells. Not surprisingly, glycan-mediated molecular interactions play a vital role in bacterial pathogenesis and host responses against pathogens. Glycan-mediated host-pathogen interactions can benefit the pathogen, host, or both. Here, we discuss (i) bacterial glycans that play a critical role in bacterial colonization and/or immune evasion, (ii) host glycans that are utilized by bacteria for pathogenesis, and (iii) bacterial and host glycans involved in immune responses against pathogens. We further discuss (iv) opportunities and challenges for transforming these research findings into more effective antibacterial strategies, and (v) technological advances in glycoscience that have helped to accelerate progress in research. These studies collectively offer valuable insights into new perspectives on antibacterial strategies that may effectively tackle the drug-resistant pathogens that are rapidly spreading globally.
Collapse
|
22
|
Jennings MP, Day CJ, Atack JM. How bacteria utilize sialic acid during interactions with the host: snip, snatch, dispatch, match and attach. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001157. [PMID: 35316172 PMCID: PMC9558349 DOI: 10.1099/mic.0.001157] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022]
Abstract
N -glycolylneuraminic acid (Neu5Gc), and its precursor N-acetylneuraminic acid (Neu5Ac), commonly referred to as sialic acids, are two of the most common glycans found in mammals. Humans carry a mutation in the enzyme that converts Neu5Ac into Neu5Gc, and as such, expression of Neu5Ac can be thought of as a 'human specific' trait. Bacteria can utilize sialic acids as a carbon and energy source and have evolved multiple ways to take up sialic acids. In order to generate free sialic acid, many bacteria produce sialidases that cleave sialic acid residues from complex glycan structures. In addition, sialidases allow escape from innate immune mechanisms, and can synergize with other virulence factors such as toxins. Human-adapted pathogens have evolved a preference for Neu5Ac, with many bacterial adhesins, and major classes of toxin, specifically recognizing Neu5Ac containing glycans as receptors. The preference of human-adapted pathogens for Neu5Ac also occurs during biosynthesis of surface structures such as lipo-oligosaccharide (LOS), lipo-polysaccharide (LPS) and polysaccharide capsules, subverting the human host immune system by mimicking the host. This review aims to provide an update on the advances made in understanding the role of sialic acid in bacteria-host interactions made in the last 5-10 years, and put these findings into context by highlighting key historical discoveries. We provide a particular focus on 'molecular mimicry' and incorporation of sialic acid onto the bacterial outer-surface, and the role of sialic acid as a receptor for bacterial adhesins and toxins.
Collapse
Affiliation(s)
- Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - John M. Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
- School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
23
|
Abstract
Typhoid toxin is an A2B5 protein toxin and an important virulence factor for the human-adapted bacterial pathogen Salmonella enterica serovar Typhi, the causative agent of typhoid fever. Typhoid toxin contains two enzymatic subunits, PltA and CdtB, which dock onto a pentameric delivery platform composed of the protein PltB. It was recently reported that the same enzymatic subunits can assemble with a different delivery platform composed of the protein PltC, forming a distinct version of typhoid toxin. However, the differences in structure and receptor specificity between the PltC and PltB typhoid toxins remain unknown. Here, we determined atomic-level structures of the pentameric PltC subunit, the fully assembled PltC typhoid toxin, and the PltC pentamers in complex with glycan receptors. Biochemical and structural analyses indicate that PltB and PltC are unable to form heteromeric delivery complexes due to electrostatic repulsion at the subunit interface and thus form separate toxins only. We further observed that, despite low sequence similarity between PltB and PltC, they interact with PltA in a similar manner but that PltC exhibits stronger electrostatic interactions with PltA, enabling it to outcompete PltB in toxin assembly. The ligand-bound atomic structures of PltC show an additional glycan binding site not found in PltB and glycan array analysis indicates that PltB and PltC exhibit significant differences in glycan binding specificity. Collectively, this study offers atomic-level insights into how S. Typhi produces two distinct versions of typhoid toxin, thereby generating functional diversity in this key virulence factor. IMPORTANCE Typhoid fever is a devastating disease that kills more than 115,000 people every year and is caused by Salmonella Typhi. Typhoid toxin, exclusively produced by S. Typhi, was demonstrated to be responsible for the pathogenesis of typhoid fever. Typhoid toxin consists of a pentameric delivery B subunit to transport the catalytic A subunits into the host cell through binding of the glycan receptors. Recent study shows that S. Typhi encodes two homologous delivery B subunits that are able to associate with the same active subunits to produce alternative toxins with distinct functional characteristics. Here, we show that the two delivery subunits can form only homopentameric delivery platforms that compete to associate with typhoid toxin's active subunits and that the two resulting toxins have distinct glycan-binding properties that confer distinct functional traits. These findings highlight the unique assembly and functional diversification of typhoid toxins.
Collapse
|
24
|
Neutralization of typhoid toxin by alpaca-derived, single-domain antibodies targeting the PltB and CdtB subunits. Infect Immun 2021; 90:e0051521. [PMID: 34898253 PMCID: PMC8852740 DOI: 10.1128/iai.00515-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Typhoid toxin is secreted by the typhoid fever-causing bacterial pathogen Salmonella enterica serovar Typhi and has tropism for immune cells and brain endothelial cells. Here, we generated a camelid single-domain antibody (VHH) library from typhoid toxoid-immunized alpacas and identified 41 VHHs selected on the glycan receptor-binding PltB and nuclease CdtB. VHHs exhibiting potent in vitro neutralizing activities from each sequence-based family were epitope binned via competition enzyme-linked immunosorbent assays (ELISAs), leading to 6 distinct VHHs, 2 anti-PltBs (T2E7 and T2G9), and 4 anti-CdtB VHHs (T4C4, T4C12, T4E5, and T4E8), whose in vivo neutralizing activities and associated toxin-neutralizing mechanisms were investigated. We found that T2E7, T2G9, and T4E5 effectively neutralized typhoid toxin in vivo, as demonstrated by 100% survival of mice administered a lethal dose of typhoid toxin and with little to no typhoid toxin-mediated upper motor function defect. Cumulatively, these results highlight the potential of the compact antibodies to neutralize typhoid toxin by targeting the glycan-binding and/or nuclease subunits.
Collapse
|
25
|
Nguyen T, Richards AF, Neupane DP, Feathers JR, Yang YA, Sim JH, Byun H, Lee S, Ahn C, Van Slyke G, Fromme JC, Mantis NJ, Song J. The structural basis of Salmonella A 2B 5 toxin neutralization by antibodies targeting the glycan-receptor binding subunits. Cell Rep 2021; 36:109654. [PMID: 34496256 PMCID: PMC8459933 DOI: 10.1016/j.celrep.2021.109654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/02/2021] [Accepted: 08/11/2021] [Indexed: 11/15/2022] Open
Abstract
Many bacterial pathogens secrete A(2)B5 toxins comprising two functionally distinct yet complementary “A” and “B” subunits to benefit the pathogens during infection. The lectin-like pentameric B subunits recognize specific sets of host glycans to deliver the toxin into target host cells. Here, we offer the molecular mechanism by which neutralizing antibodies, which have the potential to bind to all glycan-receptor binding sites and thus completely inhibit toxin binding to host cells, are inhibited from exerting this action. Cryogenic electron microscopy (cryo-EM)-based analyses indicate that the skewed positioning of the toxin A subunit(s) toward one side of the toxin B pentamer inhibited neutralizing antibody binding to the laterally located epitopes, rendering some glycan-receptor binding sites that remained available for the toxin binding and endocytosis process, which is strikingly different from the counterpart antibodies recognizing the far side-located epitopes. These results highlight additional features of the toxin-antibody interactions and offer important insights into anti-toxin strategies. Nguyen et al. find that toxin-neutralizing antibodies targeting glycan-receptor binding B subunits can be split into two classes based on their epitope locations. They describe how these two classes exhibit significantly different neutralizing efficacies, a feature that appears to be shared among A(2)B5 toxins, and thus they provide insights into anti-toxin strategies.
Collapse
Affiliation(s)
- Tri Nguyen
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Angelene F Richards
- Department of Biomedical Sciences, University at Albany, Albany, NY 12222, USA
| | - Durga P Neupane
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - J Ryan Feathers
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yi-An Yang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Ji Hyun Sim
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Haewon Byun
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Sohyoung Lee
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Changhwan Ahn
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Greta Van Slyke
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - J Christopher Fromme
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Nicholas J Mantis
- Department of Biomedical Sciences, University at Albany, Albany, NY 12222, USA; Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Jeongmin Song
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
26
|
Overgaard E, Morris B, Mohammad Mousa O, Price E, Rodriguez A, Cufurovic L, Beard RS, Tinker JK. Cellular Activity of Salmonella Typhimurium ArtAB Toxin and Its Receptor-Binding Subunit. Toxins (Basel) 2021; 13:toxins13090599. [PMID: 34564603 PMCID: PMC8472264 DOI: 10.3390/toxins13090599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/07/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022] Open
Abstract
Salmonellosis is among the most reported foodborne illnesses in the United States. The Salmonellaenterica Typhimurium DT104 phage type, which is associated with multidrug-resistant disease in humans and animals, possesses an ADP-ribosylating toxin called ArtAB. Full-length artAB has been found on a number of broad-host-range non-typhoidal Salmonella species and serovars. ArtAB is also homologous to many AB5 toxins from diverse Gram-negative pathogens, including cholera toxin (CT) and pertussis toxin (PT), and may be involved in Salmonella pathogenesis, however, in vitro cellular toxicity of ArtAB has not been characterized. artAB was cloned into E. coli and initially isolated using a histidine tag (ArtABHIS) and nickel chromatography. ArtABHIS was found to bind to African green monkey kidney epithelial (Vero) cells using confocal microscopy and to interact with glycans present on fetuin and monosialotetrahexosylganglioside (GM1) using ELISA. Untagged, or native, holotoxin (ArtAB), and the pentameric receptor-binding subunit (ArtB) were purified from E. coli using fetuin and d-galactose affinity chromatography. ArtAB and ArtB metabolic and cytotoxic activities were determined using Vero and Chinese hamster ovary (CHO) epithelial cells. Vero cells were more sensitive to ArtAB, however, incubation with both cell types revealed only partial cytotoxicity over 72 h, similar to that induced by CT. ArtAB induced a distinctive clustering phenotype on CHO cells over 72 h, similar to PT, and an elongated phenotype on Vero cells, similar to CT. The ArtB binding subunit alone also had a cytotoxic effect on CHO cells and induced morphological rounding. Results indicate that this toxin induces distinctive cellular outcomes. Continued biological characterization of ArtAB will advance efforts to prevent disease caused by non-typhoidal Salmonella.
Collapse
Affiliation(s)
- Elise Overgaard
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA;
| | - Brad Morris
- Department of Biology, Boise State University, Boise, ID 83725, USA; (B.M.); (O.M.M.); (A.R.); (L.C.)
| | - Omid Mohammad Mousa
- Department of Biology, Boise State University, Boise, ID 83725, USA; (B.M.); (O.M.M.); (A.R.); (L.C.)
| | - Emily Price
- Idaho Veterans Research and Education Foundation, Infectious Diseases Section, Boise, ID 83702, USA;
| | - Adriana Rodriguez
- Department of Biology, Boise State University, Boise, ID 83725, USA; (B.M.); (O.M.M.); (A.R.); (L.C.)
| | - Leyla Cufurovic
- Department of Biology, Boise State University, Boise, ID 83725, USA; (B.M.); (O.M.M.); (A.R.); (L.C.)
| | - Richard S. Beard
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA;
| | - Juliette K. Tinker
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA;
- Department of Biology, Boise State University, Boise, ID 83725, USA; (B.M.); (O.M.M.); (A.R.); (L.C.)
- Correspondence: ; Tel.: +1-208-426-5472
| |
Collapse
|
27
|
Khan N, de Manuel M, Peyregne S, Do R, Prufer K, Marques-Bonet T, Varki N, Gagneux P, Varki A. Multiple Genomic Events Altering Hominin SIGLEC Biology and Innate Immunity Predated the Common Ancestor of Humans and Archaic Hominins. Genome Biol Evol 2021; 12:1040-1050. [PMID: 32556248 PMCID: PMC7379906 DOI: 10.1093/gbe/evaa125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Human-specific pseudogenization of the CMAH gene eliminated the mammalian sialic acid (Sia) Neu5Gc (generating an excess of its precursor Neu5Ac), thus changing ubiquitous cell surface “self-associated molecular patterns” that modulate innate immunity via engagement of CD33-related-Siglec receptors. The Alu-fusion-mediated loss-of-function of CMAH fixed ∼2–3 Ma, possibly contributing to the origins of the genus Homo. The mutation likely altered human self-associated molecular patterns, triggering multiple events, including emergence of human-adapted pathogens with strong preference for Neu5Ac recognition and/or presenting Neu5Ac-containing molecular mimics of human glycans, which can suppress immune responses via CD33-related-Siglec engagement. Human-specific alterations reported in some gene-encoding Sia-sensing proteins suggested a “hotspot” in hominin evolution. The availability of more hominid genomes including those of two extinct hominins now allows full reanalysis and evolutionary timing. Functional changes occur in 8/13 members of the human genomic cluster encoding CD33-related Siglecs, all predating the human common ancestor. Comparisons with great ape genomes indicate that these changes are unique to hominins. We found no evidence for strong selection after the Human–Neanderthal/Denisovan common ancestor, and these extinct hominin genomes include almost all major changes found in humans, indicating that these changes in hominin sialobiology predate the Neanderthal–human divergence ∼0.6 Ma. Multiple changes in this genomic cluster may also explain human-specific expression of CD33rSiglecs in unexpected locations such as amnion, placental trophoblast, pancreatic islets, ovarian fibroblasts, microglia, Natural Killer(NK) cells, and epithelia. Taken together, our data suggest that innate immune interactions with pathogens markedly altered hominin Siglec biology between 0.6 and 2 Ma, potentially affecting human evolution.
Collapse
Affiliation(s)
- Naazneen Khan
- Glycobiology Research and Training Center, Department of Medicine, University of California San Diego.,Center for Academic Research and Training in Anthropogeny (CARTA),University of California San Diego
| | - Marc de Manuel
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
| | - Stephane Peyregne
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Raymond Do
- Glycobiology Research and Training Center, Department of Medicine, University of California San Diego.,Center for Academic Research and Training in Anthropogeny (CARTA),University of California San Diego
| | - Kay Prufer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Barcelona, Spain
| | - Nissi Varki
- Glycobiology Research and Training Center, Department of Medicine, University of California San Diego.,Center for Academic Research and Training in Anthropogeny (CARTA),University of California San Diego
| | - Pascal Gagneux
- Glycobiology Research and Training Center, Department of Medicine, University of California San Diego.,Center for Academic Research and Training in Anthropogeny (CARTA),University of California San Diego
| | - Ajit Varki
- Glycobiology Research and Training Center, Department of Medicine, University of California San Diego.,Center for Academic Research and Training in Anthropogeny (CARTA),University of California San Diego
| |
Collapse
|
28
|
Abstract
Radiation is a known immune modulator that drives both local and systemic immunologic effects. There is increasing interest and investigation into harnessing the pro-immunogenic effects of radiation for patients with metastatic cancer to improve systemic disease control and clinical outcomes. Here, we review fundamental immunology concepts in the context of our current understanding of both the pro-immunogenic and the less well-appreciated immunosuppressive effects of radiation therapy. Our aim is to offer the radiation oncology community a lens into the progress the field has made understanding the complex interaction between tumor-directed irradiation and immune-mediated tumor control, thus promoting further discovery and translation of radio-immuno-oncology innovation.
Collapse
Affiliation(s)
- Catherine S Spina
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Charles G Drake
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY; Department of Urology, Columbia University Irving Medical Center, New York, NY; Department of Hematology Oncology, Columbia University Irving Medical Center, New York, NY.
| |
Collapse
|
29
|
Schultz BM, Melo-Gonzalez F, Salazar GA, Porto BN, Riedel CA, Kalergis AM, Bueno SM. New Insights on the Early Interaction Between Typhoid and Non-typhoid Salmonella Serovars and the Host Cells. Front Microbiol 2021; 12:647044. [PMID: 34276584 PMCID: PMC8282409 DOI: 10.3389/fmicb.2021.647044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is a common source of food and water-borne infections, causing a wide range of clinical ailments in both human and animal hosts. Immunity to Salmonella involves an interplay between different immune responses, which are rapidly initiated to control bacterial burden. However, Salmonella has developed several strategies to evade and modulate the host immune responses. In this sense, the main knowledge about the pathogenicity of this bacterium has been obtained by the study of mouse models with non-typhoidal serovars. However, this knowledge is not representative of all the pathologies caused by non-typhoidal serovars in the human. Here we review the most important features of typhoidal and non-typhoidal serovars and the diseases they cause in the human host, describing the virulence mechanisms used by these pathogens that have been identified in different models of infection.
Collapse
Affiliation(s)
- Bárbara M Schultz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-Gonzalez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Geraldyne A Salazar
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara N Porto
- Laboratory of Clinical and Experimental Immunology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
30
|
Lopez Chiloeches M, Bergonzini A, Frisan T. Bacterial Toxins Are a Never-Ending Source of Surprises: From Natural Born Killers to Negotiators. Toxins (Basel) 2021; 13:426. [PMID: 34204481 PMCID: PMC8235270 DOI: 10.3390/toxins13060426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The idea that bacterial toxins are not only killers but also execute more sophisticated roles during bacteria-host interactions by acting as negotiators has been highlighted in the past decades. Depending on the toxin, its cellular target and mode of action, the final regulatory outcome can be different. In this review, we have focused on two families of bacterial toxins: genotoxins and pore-forming toxins, which have different modes of action but share the ability to modulate the host's immune responses, independently of their capacity to directly kill immune cells. We have addressed their immuno-suppressive effects with the perspective that these may help bacteria to avoid clearance by the host's immune response and, concomitantly, limit detrimental immunopathology. These are optimal conditions for the establishment of a persistent infection, eventually promoting asymptomatic carriers. This immunomodulatory effect can be achieved with different strategies such as suppression of pro-inflammatory cytokines, re-polarization of the immune response from a pro-inflammatory to a tolerogenic state, and bacterial fitness modulation to favour tissue colonization while preventing bacteraemia. An imbalance in each of those effects can lead to disease due to either uncontrolled bacterial proliferation/invasion, immunopathology, or both.
Collapse
Affiliation(s)
| | | | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden; (M.L.C.); (A.B.)
| |
Collapse
|
31
|
Ahn C, Yang YA, Neupane DP, Nguyen T, Richards AF, Sim JH, Mantis NJ, Song J. Mechanisms of typhoid toxin neutralization by antibodies targeting glycan receptor binding and nuclease subunits. iScience 2021; 24:102454. [PMID: 34113815 PMCID: PMC8169802 DOI: 10.1016/j.isci.2021.102454] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/09/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Nearly all clinical isolates of Salmonella Typhi, the cause of typhoid fever, are antibiotic resistant. All S. Typhi isolates secrete an A2B5 exotoxin called typhoid toxin to benefit the pathogen during infection. Here, we demonstrate that antibiotic-resistant S. Typhi secretes typhoid toxin continuously during infection regardless of antibiotic treatment. We characterize typhoid toxin antibodies targeting glycan-receptor-binding PltB or nuclease CdtB, which neutralize typhoid toxin in vitro and in vivo, as demonstrated by using typhoid toxin secreted by antibiotic-resistant S. Typhi during human cell infection and lethal dose typhoid toxin challenge to mice. TyTx11 generated in this study neutralizes typhoid toxin effectively, comparable to TyTx4 that binds to all PltB subunits available per holotoxin. Cryoelectron microscopy explains that the binding of TyTx11 to CdtB makes this subunit inactive through CdtB catalytic-site conformational change. The identified toxin-neutralizing epitopes are conserved across all S. Typhi clinical isolates, offering critical insights into typhoid toxin-neutralizing strategies.
Collapse
Affiliation(s)
- Changhwan Ahn
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Yi-An Yang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Durga P. Neupane
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Tri Nguyen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | - Ji Hyun Sim
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Nicholas J. Mantis
- Department of Biomedical Sciences, University at Albany, Albany, NY 12222, USA
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Jeongmin Song
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
32
|
Benton ML, Abraham A, LaBella AL, Abbot P, Rokas A, Capra JA. The influence of evolutionary history on human health and disease. Nat Rev Genet 2021; 22:269-283. [PMID: 33408383 PMCID: PMC7787134 DOI: 10.1038/s41576-020-00305-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/29/2023]
Abstract
Nearly all genetic variants that influence disease risk have human-specific origins; however, the systems they influence have ancient roots that often trace back to evolutionary events long before the origin of humans. Here, we review how advances in our understanding of the genetic architectures of diseases, recent human evolution and deep evolutionary history can help explain how and why humans in modern environments become ill. Human populations exhibit differences in the prevalence of many common and rare genetic diseases. These differences are largely the result of the diverse environmental, cultural, demographic and genetic histories of modern human populations. Synthesizing our growing knowledge of evolutionary history with genetic medicine, while accounting for environmental and social factors, will help to achieve the promise of personalized genomics and realize the potential hidden in an individual's DNA sequence to guide clinical decisions. In short, precision medicine is fundamentally evolutionary medicine, and integration of evolutionary perspectives into the clinic will support the realization of its full potential.
Collapse
Affiliation(s)
- Mary Lauren Benton
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Computer Science, Baylor University, Waco, TX, USA
| | - Abin Abraham
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Antonis Rokas
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - John A Capra
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| |
Collapse
|
33
|
Pimenta AI, Kilcoyne M, Bernardes N, Mil-Homens D, Joshi L, Fialho AM. Burkholderia cenocepacia BCAM2418-induced antibody inhibits bacterial adhesion, confers protection to infection and enables identification of host glycans as adhesin targets. Cell Microbiol 2021; 23:e13340. [PMID: 33822465 DOI: 10.1111/cmi.13340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
Trimeric Autotransporter Adhesins (TAA) found in Gram-negative bacteria play a key role in virulence. This is the case of Burkholderia cepacia complex (Bcc), a group of related bacteria able to cause infections in patients with cystic fibrosis. These bacteria use TAAs, among other virulence factors, to bind to host protein receptors and their carbohydrate ligands. Blocking such contacts is an attractive approach to inhibit Bcc infections. In this study, using an antibody produced against the TAA BCAM2418 from the epidemic strain Burkholderia cenocepacia K56-2, we were able to uncover its roles as an adhesin and the type of host glycan structures that serve as recognition targets. The neutralisation of BCAM2418 was found to cause a reduction in the adhesion of the bacteria to bronchial cells and mucins. Moreover, in vivo studies have shown that the anti-BCAM2418 antibody exerted an inhibitory effect during infection in Galleria mellonella. Finally, inferred by glycan arrays, we were able to predict for the first time, host glycan epitopes for a TAA. We show that BCAM2418 favoured binding to 3'sialyl-3-fucosyllactose, histo-blood group A, α-(1,2)-linked Fuc-containing structures, Lewis structures and GM1 gangliosides. In addition, the glycan microarrays demonstrated similar specificities of Burkholderia species for their most intensely binding carbohydrates.
Collapse
Affiliation(s)
- Andreia I Pimenta
- iBB-Institute for Bioengineering and Biosciences, and Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Michelle Kilcoyne
- Carbohydrate Signalling Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Nuno Bernardes
- iBB-Institute for Bioengineering and Biosciences, and Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Dalila Mil-Homens
- iBB-Institute for Bioengineering and Biosciences, and Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Lokesh Joshi
- Glycoscience Group, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Arsenio M Fialho
- iBB-Institute for Bioengineering and Biosciences, and Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
34
|
Kellman BP, Lewis NE. Big-Data Glycomics: Tools to Connect Glycan Biosynthesis to Extracellular Communication. Trends Biochem Sci 2021; 46:284-300. [PMID: 33349503 PMCID: PMC7954846 DOI: 10.1016/j.tibs.2020.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Characteristically, cells must sense and respond to environmental cues. Despite the importance of cell-cell communication, our understanding remains limited and often lacks glycans. Glycans decorate proteins and cell membranes at the cell-environment interface, and modulate intercellular communication, from development to pathogenesis. Providing further challenges, glycan biosynthesis and cellular behavior are co-regulating systems. Here, we discuss how glycosylation contributes to extracellular responses and signaling. We further organize approaches for disentangling the roles of glycans in multicellular interactions using newly available datasets and tools, including glycan biosynthesis models, omics datasets, and systems-level analyses. Thus, emerging tools in big data analytics and systems biology are facilitating novel insights on glycans and their relationship with multicellular behavior.
Collapse
Affiliation(s)
- Benjamin P Kellman
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego School of Medicine, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego School of Medicine, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California San Diego School of Medicine, La Jolla, CA, USA; Novo Nordisk Foundation Center for Biosustainability at the University of California San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
35
|
The Majority of Typhoid Toxin-Positive Salmonella Serovars Encode ArtB, an Alternate Binding Subunit. mSphere 2021; 6:6/1/e01255-20. [PMID: 33408236 PMCID: PMC7845599 DOI: 10.1128/msphere.01255-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While previous reports had suggested that the typhoid toxin (TT) could potentially use ArtB as an alternate binding subunit, this was thought to play a minor role in the evolution and biology of the toxin. In this study, we establish that both TT genes and artB are widespread among Salmonella enterica subsp. enterica, suggesting that TT likely plays a broader role in Salmonella virulence that extends beyond its proposed role in typhoid fever. Salmonella enterica encodes a wide array of virulence factors. One novel virulence factor, an A2B5 toxin known as the typhoid toxin (TT), was recently identified among a variety of S. enterica serovars. While past studies have shown that some serovars encode both the TT (active subunits CdtB and PltA and binding subunit PltB) and a second binding subunit (ArtB), these serovars were thought to be the exception. Here, we show that genes encoding the TT are detected in more than 100 serovars representing distinct phylogenetic lineages of S. enterica subsp. enterica, although clade B and section Typhi are significantly more likely to encode TT genes than serovars from other clades. Furthermore, we show that 81% of these TT-positive serovars also encode artB, suggesting that the cooccurrence of both toxin binding subunits is considerably more common than previously thought. A combination of in silico modeling, bacterial two-hybrid system screening, and tandem affinity purification (TAP) of toxin subunits suggests that ArtB and PltB interact in vitro, at least under some growth conditions. While different growth conditions yielded slightly higher transcript abundances of artB and pltB, both genes had their highest relative transcript abundances when Salmonella was grown under low-Mg2+ conditions, suggesting that ArtB and PltB may compete for inclusion in the TT. Together, our results suggest that ArtB likely plays an important and previously underappreciated role in the biology of the TT produced by typhoidal and nontyphoidal Salmonella. IMPORTANCE While previous reports had suggested that the typhoid toxin (TT) could potentially use ArtB as an alternate binding subunit, this was thought to play a minor role in the evolution and biology of the toxin. In this study, we establish that both TT genes and artB are widespread among Salmonella enterica subsp. enterica, suggesting that TT likely plays a broader role in Salmonella virulence that extends beyond its proposed role in typhoid fever. Furthermore, our data suggest the selective maintenance of both toxin binding subunits, which may compete for inclusion in the holotoxin. Last, our data support the importance of characterizing diverse nontyphoidal Salmonella (NTS) serovars, as the presence of classically defined typhoidal virulence factors among NTS serovars continues to challenge the typhoid-nontyphoid Salmonella paradigm.
Collapse
|
36
|
Generation and Characterization of Typhoid Toxin-Neutralizing Human Monoclonal Antibodies. Infect Immun 2020; 88:IAI.00292-20. [PMID: 32661121 DOI: 10.1128/iai.00292-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
Typhoid toxin is a virulence factor of Salmonella enterica serovar Typhi, the causative agent of typhoid fever, and is thought to be responsible for the symptoms of severe disease. This toxin has a unique A2B5 architecture with two active subunits, the ADP ribosyl transferase PltA and the DNase CdtB, linked to a pentameric B subunit, which is alternatively made of PltB or PltC. Here, we describe the generation and characterization of typhoid toxin-neutralizing human monoclonal antibodies by immunizing genetically engineered mice that have a full set of human immunoglobulin variable region genes. We identified several monoclonal antibodies with strong in vitro and in vivo toxin-neutralizing activity and different mechanisms of toxin neutralization. These antibodies could serve as the basis for the development of novel therapeutic strategies against typhoid fever.
Collapse
|
37
|
Li X, Liu J, Zhang W, Wu Y, Li J, Foda MF, Han H. Biogenic Hybrid Nanosheets Activated Photothermal Therapy and Promoted Anti-PD-L1 Efficacy for Synergetic Antitumor Strategy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29122-29132. [PMID: 32501679 DOI: 10.1021/acsami.0c09111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bacteria show promise for use in the field of combination cancer therapy because of their abilities to accumulate in tumors and their roles as natural immunologic adjuvants. However, the huge size of bacteria decreases their chances of being delivered into tumor cells. Moreover, their toxins may cause systemic toxicity in living organisms. Here, we proposed a method to in situ synthesize Au nanoparticles on the surface of Escherichia coli (E. coli), followed by sonication to acquire Au nanoparticles loaded membrane nanosheets (AuMNs) for use in photothermal and combination cancer therapy. Compared to E. coli-loaded Au nanoparticles (E. coli@Au), the small size of membrane nanosheets can be successfully delivered into tumor cells. In addition, the enrichment of AuMNs in tumor site is significantly enhanced via EPR effect, facilitating to activate photothermal conversion under 808 nm laser. Besides, the function of bacteria as natural immunologic adjuvants to promote anti-PD-L1 efficacy is still retained in AuMNs, while the inflammation and damage to viscera caused by AuMNs were milder than E. coli@Au. This study aims to decrease the systemic toxicity of bacteria and promote anti-PD-L1 efficacy in bacteria-mediated combination therapy, so as to open up a new avenue for drug delivery via natural processes.
Collapse
Affiliation(s)
- Xuyu Li
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawei Liu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiyun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Wu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinjie Li
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mohamed F Foda
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor Toukh 13736, Egypt
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
38
|
Lee S, Yang YA, Milano SK, Nguyen T, Ahn C, Sim JH, Thompson AJ, Hillpot EC, Yoo G, Paulson JC, Song J. Salmonella Typhoid Toxin PltB Subunit and Its Non-typhoidal Salmonella Ortholog Confer Differential Host Adaptation and Virulence. Cell Host Microbe 2020; 27:937-949.e6. [PMID: 32396840 DOI: 10.1016/j.chom.2020.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/18/2020] [Accepted: 04/03/2020] [Indexed: 01/19/2023]
Abstract
Typhoidal and non-typhoidal Salmonelleae (NTS) cause typhoid fever and gastroenteritis, respectively, in humans. Salmonella typhoid toxin contributes to typhoid disease progression and chronic infection, but little is known about the role of its NTS ortholog. We found that typhoid toxin and its NTS ortholog induce different clinical presentations. The PltB subunit of each toxin exhibits different glycan-binding preferences that correlate with glycan expression profiles of host cells targeted by each bacterium at the primary infection or intoxication sites. Through co-crystal structures of PltB subunits bound to specific glycan receptor moieties, we show that they induce markedly different glycan-binding preferences and virulence outcomes. Furthermore, immunization with the NTS S. Javiana or its toxin offers cross-reactive protection against lethal-dose typhoid toxin challenge. Cumulatively, these results offer insights into the evolution of host adaptations in Salmonella AB toxins, their cell and tissue tropisms, and the design for improved typhoid vaccines and therapeutics.
Collapse
Affiliation(s)
- Sohyoung Lee
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Yi-An Yang
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Shawn K Milano
- Department of Molecular Medicine, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Tri Nguyen
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Changhwan Ahn
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Ji Hyun Sim
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Andrew J Thompson
- Department of Molecular Medicine, the Scripps Research Institute, La Jolla, CA 92121, USA
| | - Eric C Hillpot
- Department of Molecular Medicine, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Gyeongshik Yoo
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - James C Paulson
- Department of Molecular Medicine, the Scripps Research Institute, La Jolla, CA 92121, USA
| | - Jeongmin Song
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA.
| |
Collapse
|
39
|
Nguyen T, Lee S, Yang YA, Ahn C, Sim JH, Kei TG, Barnard KN, Yu H, Millano SK, Chen X, Parrish CR, Song J. The role of 9-O-acetylated glycan receptor moieties in the typhoid toxin binding and intoxication. PLoS Pathog 2020; 16:e1008336. [PMID: 32084237 PMCID: PMC7055914 DOI: 10.1371/journal.ppat.1008336] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/04/2020] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
Typhoid toxin is an A2B5 toxin secreted from Salmonella Typhi-infected cells during human infection and is suggested to contribute to typhoid disease progression and the establishment of chronic infection. To deliver the enzymatic 'A' subunits of the toxin to the site of action in host cells, the receptor-binding 'B' subunit PltB binds to the trisaccharide glycan receptor moieties terminated in N-acetylneuraminic acid (Neu5Ac) that is α2-3 or α2-6 linked to the underlying disaccharide, galactose (Gal) and N-acetylglucosamine (GlcNAc). Neu5Ac is present in both unmodified and modified forms, with 9-O-acetylated Neu5Ac being the most common modification in humans. Here we show that host cells associated with typhoid toxin-mediated clinical signs express both unmodified and 9-O-acetylated glycan receptor moieties. We found that PltB binds to 9-O-acetylated α2-3 glycan receptor moieties with a markedly increased affinity, while the binding affinity to 9-O-acetylated α2-6 glycans is only slightly higher, as compared to the affinities of PltB to the unmodified counterparts, respectively. We also present X-ray co-crystal structures of PltB bound to related glycan moieties, which supports the different effects of 9-O-acetylated α2-3 and α2-6 glycan receptor moieties on the toxin binding. Lastly, we demonstrate that the cells exclusively expressing unmodified glycan receptor moieties are less susceptible to typhoid toxin than the cells expressing 9-O-acetylated counterparts, although typhoid toxin intoxicates both cells. These results reveal a fine-tuning mechanism of a bacterial toxin that exploits specific chemical modifications of its glycan receptor moieties for virulence and provide useful insights into the development of therapeutics against typhoid fever.
Collapse
Affiliation(s)
- Tri Nguyen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Sohyoung Lee
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Yi-An Yang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Changhwan Ahn
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ji Hyun Sim
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Tiffany G. Kei
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Karen N. Barnard
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Hai Yu
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Shawn K. Millano
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California, United States of America
| | - Colin R. Parrish
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Jeongmin Song
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
40
|
Wasik BR, Voorhees IEH, Barnard KN, Alford-Lawrence BK, Weichert WS, Hood G, Nogales A, Martínez-Sobrido L, Holmes EC, Parrish CR. Influenza Viruses in Mice: Deep Sequencing Analysis of Serial Passage and Effects of Sialic Acid Structural Variation. J Virol 2019; 93:e01039-19. [PMID: 31511393 PMCID: PMC6854484 DOI: 10.1128/jvi.01039-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022] Open
Abstract
Influenza A viruses have regularly jumped to new host species to cause epidemics or pandemics, an evolutionary process that involves variation in the viral traits necessary to overcome host barriers and facilitate transmission. Mice are not a natural host for influenza virus but are frequently used as models in studies of pathogenesis, often after multiple passages to achieve higher viral titers that result in clinical disease such as weight loss or death. Here, we examine the processes of influenza A virus infection and evolution in mice by comparing single nucleotide variations of a human H1N1 pandemic virus, a seasonal H3N2 virus, and an H3N2 canine influenza virus during experimental passage. We also compared replication and sequence variation in wild-type mice expressing N-glycolylneuraminic acid (Neu5Gc) with those seen in mice expressing only N-acetylneuraminic acid (Neu5Ac). Viruses derived from plasmids were propagated in MDCK cells and then passaged in mice up to four times. Full-genome deep sequencing of the plasmids, cultured viruses, and viruses from mice at various passages revealed only small numbers of mutational changes. The H3N2 canine influenza virus showed increases in frequency of sporadic mutations in the PB2, PA, and NA segments. The H1N1 pandemic virus grew well in mice, and while it exhibited the maintenance of some minority mutations, there was no clear evidence for adaptive evolution. The H3N2 seasonal virus did not establish in the mice. Finally, there were no clear sequence differences associated with the presence or absence of Neu5Gc.IMPORTANCE Mice are commonly used as a model to study the growth and virulence of influenza A viruses in mammals but are not a natural host and have distinct sialic acid receptor profiles compared to humans. Using experimental infections with different subtypes of influenza A virus derived from different hosts, we found that evolution of influenza A virus in mice did not necessarily proceed through the linear accumulation of host-adaptive mutations, that there was variation in the patterns of mutations detected in each repetition, and that the mutation dynamics depended on the virus examined. In addition, variation in the viral receptor, sialic acid, did not affect influenza virus evolution in this model. Overall, our results show that while mice provide a useful animal model for influenza virus pathology, host passage evolution will vary depending on the specific virus tested.
Collapse
Affiliation(s)
- Brian R Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Ian E H Voorhees
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Karen N Barnard
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brynn K Alford-Lawrence
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Wendy S Weichert
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Grace Hood
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- College of Veterinary Medicine, University of Queensland, Gatton, Queensland, Australia
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
41
|
Cheng B, Dong L, Zhu Y, Huang R, Sun Y, You Q, Song Q, Paton JC, Paton AW, Chen X. 9-Azido Analogues of Three Sialic Acid Forms for Metabolic Remodeling of Cell-Surface Sialoglycans. ACS Chem Biol 2019; 14:2141-2147. [PMID: 31584261 DOI: 10.1021/acschembio.9b00556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neu5Ac, Neu5Gc, and KDN are three forms of sialic acids in vertebrates that possess distinct biological functions. Herein, we report the synthesis and metabolic incorporation of the 9-azido analogues of three sialic acid forms in mammalian cells. The incorporated sialic acid analogues enable fluorescent imaging of cell-surface sialoglycans and proteomic profiling of sialoglycoproteins. Furthermore, we apply them to metabolically engineer cell surfaces with sialoglycans terminated with distinct sialic acids or their 9-azido analogues. The remodeled cells expressing specific cell-surface sialoglycoforms show distinct binding affinity toward subtilase cytotoxin (SubAB), a toxin secreted by Shiga toxigenic Escherichia coli. The 9-azido analogues of sialic acid forms developed in this work provide a versatile tool for metabolic remodeling of cell-surface properties and modulating pathogen-host interactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide SA 5005, Australia
| | - Adrienne W. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide SA 5005, Australia
| | | |
Collapse
|
42
|
Virion Z, Doly S, Saha K, Lambert M, Guillonneau F, Bied C, Duke RM, Rudd PM, Robbe-Masselot C, Nassif X, Coureuil M, Marullo S. Sialic acid mediated mechanical activation of β 2 adrenergic receptors by bacterial pili. Nat Commun 2019; 10:4752. [PMID: 31628314 PMCID: PMC6800425 DOI: 10.1038/s41467-019-12685-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 09/21/2019] [Indexed: 01/14/2023] Open
Abstract
Meningococcus utilizes β-arrestin selective activation of endothelial cell β2 adrenergic receptor (β2AR) to cause meningitis in humans. Molecular mechanisms of receptor activation by the pathogen and of its species selectivity remained elusive. We report that β2AR activation requires two asparagine-branched glycan chains with terminally exposed N-acetyl-neuraminic acid (sialic acid, Neu5Ac) residues located at a specific distance in its N-terminus, while being independent of surrounding amino-acid residues. Meningococcus triggers receptor signaling by exerting direct and hemodynamic-promoted traction forces on β2AR glycans. Similar activation is recapitulated with beads coated with Neu5Ac-binding lectins, submitted to mechanical stimulation. This previously unknown glycan-dependent mode of allosteric mechanical activation of a G protein-coupled receptor contributes to meningococcal species selectivity, since Neu5Ac is only abundant in humans due to the loss of CMAH, the enzyme converting Neu5Ac into N-glycolyl-neuraminic acid in other mammals. It represents an additional mechanism of evolutionary adaptation of a pathogen to its host.
Collapse
Affiliation(s)
- Zoe Virion
- Inserm, U1151, CNRS UMR 8253, Institut-Necker-Enfants-Malades, Université de Paris, Paris, France
| | - Stéphane Doly
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | - Kusumika Saha
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | - Mireille Lambert
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | | | - Camille Bied
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | - Rebecca M Duke
- NIBRT GlycoScience Group, NIBRT - The National Institute for Bioprocessing Research and Training, Blackrock, Co., Mount Merrion, Fosters Avenue, Dublin, Ireland
| | - Pauline M Rudd
- NIBRT GlycoScience Group, NIBRT - The National Institute for Bioprocessing Research and Training, Blackrock, Co., Mount Merrion, Fosters Avenue, Dublin, Ireland
| | - Catherine Robbe-Masselot
- CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Université Lille, 59000, Lille, France
| | - Xavier Nassif
- Inserm, U1151, CNRS UMR 8253, Institut-Necker-Enfants-Malades, Université de Paris, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Mathieu Coureuil
- Inserm, U1151, CNRS UMR 8253, Institut-Necker-Enfants-Malades, Université de Paris, Paris, France.
| | - Stefano Marullo
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France.
| |
Collapse
|
43
|
Abstract
Many important interactions between bacterial pathogens and their hosts are highly specific binding events that involve host or pathogen carbohydrate structures (glycans). Glycan interactions can mediate adhesion, invasion and immune evasion and can act as receptors for toxins. Several bacterial pathogens can also enzymatically alter host glycans to reveal binding targets, degrade the host cell glycans or alter the function of host glycoproteins. In recent years, high-throughput screening technologies, such as lectin, glycan and mucin microarrays, have transformed the field by identifying new bacterial-host glycointeractions, which are crucial for colonization, persistence and disease. In this Review, we discuss interactions involving both host and bacterial glycans that have a role in bacterial pathogenesis. We also highlight recent technological advances that have illuminated the glycoscience of microbial pathogenesis.
Collapse
|
44
|
Gibani MM, Jones E, Barton A, Jin C, Meek J, Camara S, Galal U, Heinz E, Rosenberg-Hasson Y, Obermoser G, Jones C, Campbell D, Black C, Thomaides-Brears H, Darlow C, Dold C, Silva-Reyes L, Blackwell L, Lara-Tejero M, Jiao X, Stack G, Blohmke CJ, Hill J, Angus B, Dougan G, Galán J, Pollard AJ. Investigation of the role of typhoid toxin in acute typhoid fever in a human challenge model. Nat Med 2019; 25:1082-1088. [PMID: 31270506 PMCID: PMC6892374 DOI: 10.1038/s41591-019-0505-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/30/2019] [Indexed: 11/09/2022]
Abstract
Salmonella Typhi is a human host-restricted pathogen that is responsible for typhoid fever in approximately 10.9 million people annually1. The typhoid toxin is postulated to have a central role in disease pathogenesis, the establishment of chronic infection and human host restriction2–6. However, its precise role in typhoid disease in humans is not fully defined. We studied the role of typhoid toxin in acute infection using a randomized, double-blind S. Typhi human challenge model7. Forty healthy volunteers were randomized (1:1) to oral challenge with 104 colony-forming units of wild-type or an isogenic typhoid toxin deletion mutant (TN) of S. Typhi. We observed no significant difference in the rate of typhoid infection (fever ≥38 °C for ≥12 h and/or S. Typhi bacteremia) between participants challenged with wild-type or TN S. Typhi (15 out of 21 (71%) versus 15 out of 19 (79%); P = 0.58). The duration of bacteremia was significantly longer in participants challenged with the TN strain compared with wild-type (47.6 hours (28.9–97.0) versus 30.3(3.6–49.4); P ≤ 0.001). The clinical syndrome was otherwise indistinguishable between wild-type and TN groups. These data suggest that the typhoid toxin is not required for infection and the development of early typhoid fever symptoms within the context of a human challenge model. Further clinical data are required to assess the role of typhoid toxin in severe disease or the establishment of bacterial carriage. Typhoid toxin is not essential for the pathogenesis of typhoid fever in healthy humans challenged with Salmonella Typhi.
Collapse
Affiliation(s)
- Malick M Gibani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK. .,Department of Medicine, Imperial College London, London, UK.
| | - Elizabeth Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Amber Barton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Celina Jin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Juliette Meek
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Susana Camara
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Ushma Galal
- Nuffield Department of Primary Care Health Sciences, Clinical Trials Unit, University of Oxford, Oxford, UK
| | - Eva Heinz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Yael Rosenberg-Hasson
- Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Gerlinde Obermoser
- Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Danielle Campbell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Charlotte Black
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Helena Thomaides-Brears
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Christopher Darlow
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Laura Silva-Reyes
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Luke Blackwell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Xuyao Jiao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Gabrielle Stack
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Christoph J Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Brian Angus
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gordon Dougan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,Department of Medicine, University of Cambridge, Hinxton, UK
| | - Jorge Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
45
|
Lima NCB, Tanmoy AM, Westeel E, de Almeida LGP, Rajoharison A, Islam M, Endtz HP, Saha SK, de Vasconcelos ATR, Komurian-Pradel F. Analysis of isolates from Bangladesh highlights multiple ways to carry resistance genes in Salmonella Typhi. BMC Genomics 2019; 20:530. [PMID: 31253105 PMCID: PMC6599262 DOI: 10.1186/s12864-019-5916-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Background Typhoid fever, caused by Salmonella Typhi, follows a fecal-oral transmission route and is a major global public health concern, especially in developing countries like Bangladesh. Increasing emergence of antimicrobial resistance (AMR) is a serious issue; the list of treatments for typhoid fever is ever-decreasing. In addition to IncHI1-type plasmids, Salmonella genomic island (SGI) 11 has been reported to carry AMR genes. Although reports suggest a recent reduction in multidrug resistance (MDR) in the Indian subcontinent, the corresponding genomic changes in the background are unknown. Results Here, we assembled and annotated complete closed chromosomes and plasmids for 73 S. Typhi isolates using short-length Illumina reads. S. Typhi had an open pan-genome, and the core genome was smaller than previously reported. Considering AMR genes, we identified five variants of SGI11, including the previously reported reference sequence. Five plasmids were identified, including the new plasmids pK91 and pK43; pK43and pHCM2 were not related to AMR. The pHCM1, pPRJEB21992 and pK91 plasmids carried AMR genes and, along with the SGI11 variants, were responsible for resistance phenotypes. pK91 also contained qnr genes, conferred high ciprofloxacin resistance and was related to the H58-sublineage Bdq, which shows the same phenotype. The presence of plasmids (pHCM1 and pK91) and SGI11 were linked to two H58-lineages, Ia and Bd. Loss of plasmids and integration of resistance genes in genomic islands could contribute to the fitness advantage of lineage Ia isolates. Conclusions Such events may explain why lineage Ia is globally widespread, while the Bd lineage is locally restricted. Further studies are required to understand how these S. Typhi AMR elements spread and generate new variants. Preventive measures such as vaccination programs should also be considered in endemic countries; such initiatives could potentially reduce the spread of AMR. Electronic supplementary material The online version of this article (10.1186/s12864-019-5916-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicholas Costa Barroso Lima
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.,Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Arif M Tanmoy
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands.,Fondation Mérieux - Laboratoire des Pathogènes Emergents, Lyon, France.,Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, 1207, Bangladesh
| | - Emilie Westeel
- Fondation Mérieux - Laboratoire des Pathogènes Emergents, Lyon, France
| | | | - Alain Rajoharison
- Fondation Mérieux - Laboratoire des Pathogènes Emergents, Lyon, France
| | - Maksuda Islam
- Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, 1207, Bangladesh
| | - Hubert P Endtz
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands.,Fondation Mérieux - Laboratoire des Pathogènes Emergents, Lyon, France
| | - Samir K Saha
- Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, 1207, Bangladesh.,Bangladesh Institute of Child Health, Dhaka Shishu Hospital, Dhaka, 1207, Bangladesh
| | | | | |
Collapse
|
46
|
Rakov AV, Mastriani E, Liu SL, Schifferli DM. Association of Salmonella virulence factor alleles with intestinal and invasive serovars. BMC Genomics 2019; 20:429. [PMID: 31138114 PMCID: PMC6540521 DOI: 10.1186/s12864-019-5809-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The role of Salmonella virulence factor (VF) allelic variation in modulating pathogenesis or host specificity has only been demonstrated in a few cases, mostly through serendipitous findings. Virulence factor (VF) alleles from Salmonella enterica subsp. enterica genomes were compared to identify potential associations with the host-adapted invasive serovars Typhi, Dublin, Choleraesuis, and Gallinarum, and with the broad host-range intestinal serovars Typhimurium, Enteritidis, and Newport. RESULTS Through a bioinformatics analysis of 500 Salmonella genomes, we have identified allelic variants of 70 VFs, many of which are associated with either one of the four host-adapted invasive Salmonella serovars or one of the three broad host-range intestinal serovars. In addition, associations between specific VF alleles and intra-serovar clusters, sequence types (STs) and/or host-adapted FimH adhesins were identified. Moreover, new allelic VF associations with non-typhoidal S. Enteritidis and S. Typhimurium (NTS) or invasive NTS (iNTS) were detected. CONCLUSIONS By analogy to the previously shown association of specific FimH adhesin alleles with optimal binding by host adapted Salmonella serovars, lineages or strains, we predict that some of the identified association of other VF alleles with host-adapted serovars, lineages or strains will reflect specific contributions to host adaptation and/or pathogenesis. The identification of these allelic associations will support investigations of the biological impact of VF alleles and better characterize the role of allelic variation in Salmonella pathogenesis. Most relevant functional experiments will test the potential causal contribution of the detected FimH-associated VF variants in host adapted virulence.
Collapse
Affiliation(s)
- Alexey V. Rakov
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania USA
- Present Address: Somov Institute of Epidemiology and Microbiology, Vladivostok, Russia
| | - Emilio Mastriani
- Systemomics Center, College of Pharmacy, Genomics Research Center, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shu-Lin Liu
- Systemomics Center, College of Pharmacy, Genomics Research Center, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Dieter M. Schifferli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania USA
| |
Collapse
|
47
|
Feng Y, Lin E, Zou S, Chen CL, Chiu CH. Complete genome sequence of Salmonella enterica serovar Sendai shows H antigen convergence with S. Miami and recent divergence from S. Paratyphi A. BMC Genomics 2019; 20:398. [PMID: 31117944 PMCID: PMC6530103 DOI: 10.1186/s12864-019-5798-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
Background Salmonella enterica consists of over 2500 serovars and displays dichotomy in disease manifestations and host range. Except for the enrichment of pseudogenes in genomes for human-restricted serovars, no hallmark has been identified to distinguish those with host-generalist serovars. The serovar Sendai is rare and human-restricted. Notably, it exhibits an O, H antigen formula as the host-generalist serovar Miami. Results We sequenced the complete genomes of the two serovars Sendai and Miami. Analysis at both nucleotide identity and gene content level demonstrates the same high degree of similarity between Sendai and Paratyphi A, but their distinct CRISPR spacers suggests a recent divergence history. A frameshift mutation occurred in rfbE for the entire lineage of Paratyphi A but not in Sendai, which may explain their distinct O antigens. The nucleotide sequence of Miami’s fliC is nearly identical to Sendai’s. The incongruent phylogeny of this gene with that of the adjacent genes suggests a recombination event responsible for Sendai and Miami possessing the same H antigen. Sendai’s even greater number of pseudogenes than that of Paratyphi A and Typhi indicates its undergoing continued genomic degradation. The phylogenetically distinct human-restricted serovars/strains share pseudogenes with the same inactivation mutations, therefore suggesting that recombination may have occurred and have been facilitated by their overlap in niches. Conclusions Analysis of Sendai’s genome and comparison with others reflect the finer evolutionary signatures of Salmonella in the process of niches changing from facultative to obligate parasite. Electronic supplementary material The online version of this article (10.1186/s12864-019-5798-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Institute for Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China. .,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| | - Enze Lin
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute for Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengmei Zou
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute for Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan. .,Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
48
|
Abstract
The molecular evolution of virulence factors is a central theme in our understanding of bacterial pathogenesis and host-microbe interactions. Using bioinformatics and genome data mining, recent studies have shed light on the evolution of important virulence factor families and the mechanisms by which they have adapted and diversified in function. This perspective highlights three complementary approaches useful for studying the molecular evolution of virulence factors: identification and analysis of virulence factor homologs, detection of adaptations or functional shifts, and computational prediction of novel virulence factor families. Each of these research directions is associated with distinct questions, approaches, and challenges for future work. Moving forward, bioinformatics will continue to play a critical role in exploring the evolution of virulence factors, including those that target humans. By reconstructing past processes and events, we will be able to better interpret newly sequenced microbial genomes and detect future pathoadaptations.
Collapse
|
49
|
Parrish JM, Soni M, Mittal R. Subversion of host immune responses by otopathogens during otitis media. J Leukoc Biol 2019; 106:943-956. [PMID: 31075181 PMCID: PMC7166519 DOI: 10.1002/jlb.4ru0119-003r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/11/2019] [Accepted: 04/05/2019] [Indexed: 12/26/2022] Open
Abstract
Otitis media (OM) is one of the most common ear diseases affecting humans. Children are at greater risk and suffer most frequently from OM, which can cause serious deterioration in the quality of life. OM is generally classified into two main types: acute and chronic OM (AOM and COM). AOM is characterized by tympanic membrane swelling or otorrhea and is accompanied by signs or symptoms of ear infection. In COM, there is a tympanic membrane perforation and purulent discharge. The most common pathogens that cause AOM are Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis whereas Pseudomonas aeruginosa and Staphylococcus aureus are commonly associated with COM. Innate and adaptive immune responses provide protection against OM. However, pathogens employ a wide arsenal of weapons to evade potent immune responses and these mechanisms likely contribute to AOM and COM. Immunologic evasion is multifactorial, and involves damage to host mucociliary tract, genetic polymorphisms within otopathogens, the number and variety of different otopathogens in the nasopharynx as well as the interaction between the host's innate and adaptive immune responses. Otopathogens utilize host mucin production, phase variation, biofilm production, glycans, as well as neutrophil and eosinophilic extracellular traps to induce OM. The objective of this review article is to discuss our current understanding about the mechanisms through which otopathogens escape host immunity to induce OM. A better knowledge about the molecular mechanisms leading to subversion of host immune responses will provide novel clues to develop effective treatment modalities for OM.
Collapse
Affiliation(s)
- James M Parrish
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Manasi Soni
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
50
|
Nontypeable Haemophilus influenzae Has Evolved Preferential Use of N-Acetylneuraminic Acid as a Host Adaptation. mBio 2019; 10:mBio.00422-19. [PMID: 31064827 PMCID: PMC6509186 DOI: 10.1128/mbio.00422-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Host-adapted bacterial pathogens such as NTHi cannot survive out of their host environment and have evolved host-specific mechanisms to obtain nutrients and evade the immune response. Relatively few of these host adaptations have been characterized at the molecular level. NTHi utilizes sialic acid as a nutrient and also incorporates this sugar into LOS, which is important in biofilm formation and immune evasion. In the present study, we showed that NTHi has evolved to preferentially utilize the Neu5Ac form of sialic acid. This adaptation is due to the substrate preference of the enzyme CMP-Neu5Ac synthetase, which synthesizes the activated form of Neu5Ac for macromolecule biosynthesis. This adaptation allows NTHi to evade killing by a human antibody response against the nonhuman sialic acid Neu5Gc. Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative bacterial pathogen that is adapted exclusively to human hosts. NTHi utilizes sialic acid from the host as a carbon source and as a terminal sugar on the outer membrane glycolipid lipooligosaccharide (LOS). Sialic acid expressed on LOS is critical in NTHi biofilm formation and immune evasion. There are two major forms of sialic acids in most mammals, N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), the latter of which is derived from Neu5Ac. Humans lack the enzyme to convert Neu5Ac to Neu5Gc and do not express Neu5Gc in normal tissues; instead, Neu5Gc is recognized as a foreign antigen. A recent study showed that dietary Neu5Gc can be acquired by NTHi colonizing humans and then presented on LOS, which acts as an antigen for the initial induction of anti-Neu5Gc antibodies. Here we examined Neu5Gc uptake and presentation on NTHi LOS. We show that, although Neu5Gc and Neu5Ac are utilized equally well as sole carbon sources, Neu5Gc is not incorporated efficiently into LOS. When equal amounts of Neu5Gc and Neu5Ac are provided in culture media, there is ∼4-fold more Neu5Ac incorporated into LOS, suggesting a bias in a step of the LOS biosynthetic pathway. CMP-Neu5Ac synthetase (SiaB) was shown to have ∼4,000-fold-higher catalytic efficiency for Neu5Ac than for Neu5Gc. These data suggest that NTHi has adapted preferential utilization of Neu5Ac, thus avoiding presentation of the nonhuman Neu5Gc in the bacterial cell surface. The selective pressure for this adaptation may represent the human antibody response to the Neu5Gc xenoantigen.
Collapse
|