1
|
Li J, Wang X, Cao G, Wu Y, Cheng M, Chen Y, Sun H, Sun R, Peng H, Tian Z. CD94 deficiency or blockade unleashes the anti-tumor immunity in mice and humanized murine models. Cancer Lett 2024; 605:217305. [PMID: 39424259 DOI: 10.1016/j.canlet.2024.217305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
NKG2 family members have emerged as promising targets in tumor immunotherapy. CD94 can dimerize with both inhibitory and activating NKG2 proteins, while the overall effect and value of targeting CD94 on anti-tumor immunity are unclear. Here, it is shown that the expression of CD94 is upregulated on tumor-infiltrating natural killer (NK) cells and CD8+ T cells, and is related to their exhausted characteristics. Tumor-bearing CD94 knockout (CD94-KO) mice exhibit delayed tumor growth, decreased lung metastases, and prolonged survival. Single cell RNA-seq reveals a remodeled tumor microenvironment in CD94-KO mice, with a reduction in immunosuppressive cells and an increase in anti-tumor immune cells. Moreover, NK cells and CD8+ T cells become proliferative and strongly tumoricidal in CD94-KO mice, thus contributing to the tumor inhibition effect of CD94 deficiency. Treatment with a humanized anti-CD94 blocking antibody (h15C10) alone, in tumor-bearing humanized mouse, delays tumor progression, and improves the therapeutic efficacy of PD-L1 blockade through combination therapy. Our study indicates that CD94 may work as a candidate target in checkpoint immunotherapy.
Collapse
Affiliation(s)
- Jiarui Li
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xianwei Wang
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Guoshuai Cao
- Hefei TG ImmunoPharma Corporation Limited, Hefei, China
| | - Yuwei Wu
- Hefei TG ImmunoPharma Corporation Limited, Hefei, China
| | - Ming Cheng
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yawen Chen
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Haoyu Sun
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rui Sun
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hui Peng
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhigang Tian
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Hefei TG ImmunoPharma Corporation Limited, Hefei, China.
| |
Collapse
|
2
|
Prades-Sagarra E, Yaromina A, Dubois L. Understanding the impact of radiation-induced lymphopenia: Preclinical and clinical research perspectives. Clin Transl Radiat Oncol 2024; 49:100852. [PMID: 39315059 PMCID: PMC11418132 DOI: 10.1016/j.ctro.2024.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapy has revolutionized the field of cancer treatment, changing the standard of care to the use of immune checkpoint inhibitors. Radiotherapy can boost anti-tumour immune responses by changing the tumour microenvironment, but it also can cause radiotherapy-induced lymphopenia (RIL), a decrease in circulating lymphocyte counts. RIL has been associated with lower survival in patients undergoing radiotherapy, and new studies have suggested that it can also affect immunotherapy outcome. To study RIL's effects and to explore mitigation treatment strategies, preclinical models closely mimicking the clinical situation are needed. State-of-the-art image-guided small animal irradiators now offer the possibility to target specific organs in small animals to induce RIL, aiding research on its molecular mechanisms and prevention. This review covers the relationship between radiotherapy and RIL, its impact on patient survival, and future directions to generate models to investigate and prevent RIL.
Collapse
Affiliation(s)
- E. Prades-Sagarra
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - A. Yaromina
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - L.J. Dubois
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
3
|
Anand S, Hasan T, Maytin EV. Treatment of nonmelanoma skin cancer with pro-differentiation agents and photodynamic therapy: Preclinical and clinical studies (Review). Photochem Photobiol 2024; 100:1541-1560. [PMID: 38310633 PMCID: PMC11297983 DOI: 10.1111/php.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024]
Abstract
Photodynamic therapy (PDT) is a nonscarring cancer treatment in which a pro-drug (5-aminolevulinic acid, ALA) is applied, converted into a photosensitizer (protoporphyrin IX, PpIX) which is then activated by visible light. ALA-PDT is now popular for treating nonmelanoma skin cancer (NMSC), but can be ineffective for larger skin tumors, mainly due to inadequate production of PpIX. Work over the past two decades has shown that differentiation-promoting agents, including methotrexate (MTX), 5-fluorouracil (5FU) and vitamin D (Vit D) can be combined with ALA-PDT as neoadjuvants to promote tumor-specific accumulation of PpIX, enhance tumor-selective cell death, and improve therapeutic outcome. In this review, we provide a historical perspective of how the combinations of differentiation-promoting agents with PDT (cPDT) evolved, including Initial discoveries, biochemical and molecular mechanisms, and clinical translation for the treatment of NMSCs. For added context, we also compare the differentiation-promoting neoadjuvants with some other clinical PDT combinations such as surgery, laser ablation, iron-chelating agents (CP94), and immunomodulators that do not induce differentiation. Although this review focuses mainly on the application of cPDT for NMSCs, the concepts and findings described here may be more broadly applicable towards improving the therapeutic outcomes of PDT treatment for other types of cancers.
Collapse
Affiliation(s)
- Sanjay Anand
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Dermatology and Plastic Surgery Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Edward V Maytin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Dermatology and Plastic Surgery Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
4
|
Kim CW, Kim HJ, Lee HK. Microbiome dynamics in immune checkpoint blockade. Trends Endocrinol Metab 2024; 35:996-1005. [PMID: 38705760 DOI: 10.1016/j.tem.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Immune checkpoint blockade (ICB) is one of the leading immunotherapies, although a variable extent of resistance has been observed among patients and across cancer types. Among the efforts underway to overcome this challenge, the microbiome has emerged as a factor affecting the responsiveness and efficacy of ICB. Active research, facilitated by advances in sequencing techniques, is assessing the predominant influence of the intestinal microbiome, as well as the effects of the presence of an intratumoral microbiome. In this review, we describe recent findings from clinical trials, observational studies of human patients, and animal studies on the impact of the microbiome on the efficacy of ICB, highlighting the role of the intestinal and tumor microbiomes and the contribution of methodological advances in their study.
Collapse
Affiliation(s)
- Chae Won Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Life Science Institute, KAIST, Daejeon 34141, Republic of Korea
| | - Hyun-Jin Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Life Science Institute, KAIST, Daejeon 34141, Republic of Korea
| | - Heung Kyu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Salah S, Kerob D, Pages Laurent C, Lacouture M, Sibaud V. Evaluation of anticancer therapy-related dermatologic adverse events: Insights from Food and Drug Administration's Adverse Event Reporting System dataset. J Am Acad Dermatol 2024; 91:863-871. [PMID: 39038557 DOI: 10.1016/j.jaad.2024.07.1456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/10/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND New anticancer therapies have improved patient outcomes but associated dermatologic adverse events (AEs) may cause morbidity and treatment discontinuation. A comprehensive estimation of associations between cancer drugs and skin AEs is lacking. METHODS This study utilized the Food and Drug Administartion (FDA)'s Adverse Event Reporting System database (January 2013-September 2022), with 3,399,830 reports involving 3084 drugs and 16,348 AEs. A nearest neighbor matching model was employed to select 10 controls for each case report, utilizing the cosine similarity of demographic and AE severity factors to minimize false positives/negatives. RESULTS There were 10,698 unique anticancer drugs (n = 212) to skin AE (n = 873) pairs, of which 676 had significant reporting odds ratios (ROR) > 1, comprising 113 drugs and 144 AEs. The minimum ROR was 1.25, and 50% of associations displayed a ROR >10. The most common were rash (51 agents) and dry skin (28 drugs). Methotrexate induced the most distinct AEs (34), then mechlorethamine (33), and vemurafenib (24). Targeted therapies accounted for 49% of pairs, cytotoxic chemotherapies for 35.9%, and immunotherapies for 11%. CONCLUSIONS A total of 113 anticancer drugs were identified as significantly associated with skin AEs, most frequently rash and dry skin. Data are likely under-reported but enable quick postmarketing identification of skin toxicity signals.
Collapse
Affiliation(s)
- Samir Salah
- La Roche-Posay Laboratoire Dermatologique, Levallois Perret, France.
| | - Delphine Kerob
- La Roche-Posay Laboratoire Dermatologique, Levallois Perret, France
| | - Cecile Pages Laurent
- Departments of Oncodermatology and Clinical Research, Institut Universitaire du Cancer, Toulouse Oncopole, France
| | - Mario Lacouture
- Department of Medicine, New York University Langone, New York, New York
| | - Vincent Sibaud
- Departments of Oncodermatology and Clinical Research, Institut Universitaire du Cancer, Toulouse Oncopole, France
| |
Collapse
|
6
|
Rebaudi F, De Franco F, Goda R, Obino V, Vita G, Baronti C, Iannone E, Pitto F, Massa B, Fenoglio D, Jandus C, Poggio F, Fregatti P, Melaiu O, Bozzo M, Candiani S, Papaccio F, Greppi M, Pesce S, Marcenaro E. The landscape of combining immune checkpoint inhibitors with novel Therapies: Secret alliances against breast cancer. Cancer Treat Rev 2024; 130:102831. [PMID: 39342797 DOI: 10.1016/j.ctrv.2024.102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
This review focuses on the immune checkpoint inhibitors (ICIs) in the context of breast cancer (BC) management. These innovative treatments, by targeting proteins expressed on both tumor and immune cells, aim to overcome tumor-induced immune suppression and reactivate the immune system. The potential of this approach is the subject of numerous clinical studies. Here, we explore the key studies and emerging therapies related to ICIs providing a detailed analysis of their specific and combined use in BC treatment.
Collapse
Affiliation(s)
- Federico Rebaudi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Fabiana De Franco
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Rayan Goda
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Valentina Obino
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Giorgio Vita
- Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy
| | - Camilla Baronti
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Eleonora Iannone
- Breast Surgery Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Pitto
- Department of Pathology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Barbara Massa
- Department of Pathology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniela Fenoglio
- Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland; Geneva Center for Inflammation Research, Geneva, Switzerland
| | - Francesca Poggio
- Department of Medical Oncology, Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Piero Fregatti
- Breast Surgery Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genoa, Genoa, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Matteo Bozzo
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Simona Candiani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Papaccio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Marco Greppi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy.
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
7
|
Holsboer F, Ising M. Precision Psychiatry Approach to Treat Depression and Anxiety Targeting the Stress Hormone System - V1b-antagonists as a Case in Point. PHARMACOPSYCHIATRY 2024; 57:263-274. [PMID: 39159843 DOI: 10.1055/a-2372-3549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The future of depression pharmacotherapy lies in a precision medicine approach that recognizes that depression is a disease where different causalities drive symptoms. That approach calls for a departure from current diagnostic categories, which are broad enough to allow adherence to the "one-size-fits-all" paradigm, which is complementary to the routine use of "broad-spectrum" mono-amine antidepressants. Similar to oncology, narrowing the overinclusive diagnostic window by implementing laboratory tests, which guide specifically targeted treatments, will be a major step forward in overcoming the present drug discovery crisis.A substantial subgroup of patients presents with signs and symptoms of hypothalamic-pituitary-adrenocortical (HPA) overactivity. Therefore, this stress hormone system was considered to offer worthwhile targets. Some promising results emerged, but in sum, the results achieved by targeting corticosteroid receptors were mixed.More specific are non-peptidergic drugs that block stress-responsive neuropeptides, corticotropin-releasing hormone (CRH), and arginine vasopressin (AVP) in the brain by antagonizing their cognate CRHR1-and V1b-receptors. If a patient's depressive symptomatology is driven by overactive V1b-signaling then a V1b-receptor antagonist should be first-line treatment. To identify the patient having this V1b-receptor overactivity, a neuroendocrine test, the so-called dex/CRH-test, was developed, which indicates central AVP release but is too complicated to be routinely used. Therefore, this test was transformed into a gene-based "near-patient" test that allows immediate identification if a depressed patient's symptomatology is driven by overactive V1b-receptor signaling. We believe that this precision medicine approach will be the next major innovation in the pharmacotherapy of depression.
Collapse
Affiliation(s)
- Florian Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany
- HMNC Holding GmbH, Munich, Germany
| | - Marcus Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
8
|
Chen Q, Zheng X, Cheng W, Li J. Landscape of targeted therapies for lung squamous cell carcinoma. Front Oncol 2024; 14:1467898. [PMID: 39544292 PMCID: PMC11560903 DOI: 10.3389/fonc.2024.1467898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
Lung cancer, a common type of malignant neoplasm, has seen significant advancements in the treatment of lung adenocarcinoma (LUAD). However, the management of lung squamous cell carcinoma (LSCC) continues to pose challenges. Traditional treatment methods for LSCC encompass surgical resection, chemotherapy, and radiotherapy. The introduction of targeted therapy and immunotherapy has greatly benefited LSCC patients, but issues such as limited immune response rates and adverse reactions persist. Therefore, gaining a deeper comprehension of the underlying mechanisms holds immense importance. This review provides an in-depth overview of classical signaling pathways and therapeutic targets, including the PI3K signaling pathway, CDK4/6 pathway, FGFR1 pathway and EGFR pathway. Additionally, we delve into alternative signaling pathways and potential targets that could offer new therapeutic avenues for LSCC. Lastly, we summarize the latest advancements in targeted therapy combined with immune checkpoint blockade (ICB) therapy for LSCC and discuss the prospects and challenges in this field.
Collapse
Affiliation(s)
- Qiuxuan Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoshuo Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weiting Cheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jian Li
- Institude of Experimental Immunology, University Clinic of Rheinische Friedrich-Wihelms-University, Bonn, Germany
| |
Collapse
|
9
|
Tan H, Chen X, Chen Y, Ou X, Yang T, Yan X. Immune checkpoint inhibitor-associated bullous pemphigoid: A retrospective and real-world study based on the United States Food and Drug Administration adverse event reporting system. J Dermatol 2024. [PMID: 39460482 DOI: 10.1111/1346-8138.17517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
This study aimed to describe bullous pemphigoid (BP) associated with immune checkpoint inhibitors (ICIs) reported in the United States Food and Drug Administration adverse event reporting system (FAERS). We obtained reports of ICI-associated BP from the first quarter of 2011 to the first quarter of 2024 in the FAERS database. The reporting odds ratio (ROR) method of the disproportionality analysis was performed to assess the potential risk for ICI-associated BP. We also described the clinical characteristics of ICI-associated BP and evaluated the time to onset (TTO) of BP developed after treatment with ICIs. Eight hundred and six cases of ICI-associated BP were gathered, in which 56.58% of the patients were aged 65 years or older. The majority of patients were male, accounting for 68.49% of all cases. The prevalent potential cancer type was skin cancer (31.64%). The results of the disproportionality analysis showed that males (ROR = 2.10 [1.78-2.49]), patients aged 65 or older (ROR = 2.13 [1.79-2.55]), and patients with skin cancer (ROR = 2.08 [1.80-2.43]) were more likely to develop ICI-associated BP. In comparison to cytotoxic T-lymphocyte-associated antigen 4 inhibitor and programmed cell death ligand 1 inhibitor, programmed cell death 1 inhibitor-associated BP has a higher risk of development (ROR = 24.45 [22.52-26.56]). ICI-associated BP had a median TTO of 204 days (interquartile range 57-426 days). ICI-associated BP is a rare but important immune-related adverse event. Our study provided helpful information to help medical professionals further understand ICI-associated BP.
Collapse
Affiliation(s)
- Haowen Tan
- Office of Good Clinical Practice, Wuzhou Red Cross Hospital, Wuzhou, China
| | - Xiubi Chen
- Center for Adverse Drug Reaction Monitoring of Mianyang, Mianyang, China
| | - Ying Chen
- Office of Good Clinical Practice, Wuzhou Red Cross Hospital, Wuzhou, China
| | - Xuan Ou
- Office of Good Clinical Practice, Wuzhou Red Cross Hospital, Wuzhou, China
| | - Tao Yang
- Information Technology Center, Open University, Ziyang, China
| | - Xida Yan
- Department of Pharmacy, Central Hospital, Mianyang, China
| |
Collapse
|
10
|
Kim SH, Lee SH, Lee H. Determinants of immune checkpoint inhibitor use and factors linked to neurological adverse events in Korean lung cancer. Future Oncol 2024:1-12. [PMID: 39453025 DOI: 10.1080/14796694.2024.2416378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Aim: Studies on immune checkpoint inhibitor (ICI)-related potential neurological adverse events (pNAEs) in Korean lung cancer (LC) patients are scarce. We aimed to examine ICI prescription trends from 2018 to 2022, patient characteristics and factors associated with ICI prescription or concurrent pNAEs in LC.Research design & methods: This observational, cross-sectional study of Korean LC patients investigated four ICIs (pembrolizumab, nivolumab, atezolizumab and durvalumab). The annual ICI prescription rate was calculated by dividing the number of LC patients prescribed ICIs with the total annual number of LC patients. Factors associated with ICI prescriptions or concurrent pNAEs were assessed.Results: The annual ICI prescription rate increased from 3.29% to 9.74% (average: 6.20%). Higher Charlson Comorbidity Index (CCI) scores were associated with more ICI prescriptions (odds ratio [OR], 1.08; 95% confidence interval [CI], 1.07-1.08). Targeted therapy was associated with fewer prescriptions (OR: 0.45; 95% CI: 0.41-0.49). The anti-programmed cell death protein 1 (anti-PD-1) prescription rate was higher in patients with concurrent pNAEs than those without pNAEs (53.09% vs. 50.84%), and this was associated with higher pNAEs prevalence (OR: 1.10; 95% CI: 1.03-1.18).Conclusion: ICI prescription for LC has increased in Korea, CCI and anti-PD-1 increased pNAEs prevalence.
Collapse
Affiliation(s)
- Sang Hee Kim
- Department of Biohealth Regulatory Science, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Seung Hyeun Lee
- Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hankil Lee
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
11
|
Deng G, Wang P, Su R, Sun X, Wu Z, Huang Z, Gu L, Yu H, Zhao Z, He Y, Huo M, Zhang C, Yin S. SPI1 +CD68 + macrophages as a biomarker for gastric cancer metastasis: a rationale for combined antiangiogenic and immunotherapy strategies. J Immunother Cancer 2024; 12:e009983. [PMID: 39455096 PMCID: PMC11529461 DOI: 10.1136/jitc-2024-009983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) have been demonstrated to be associated with tumor progression. However, the different subpopulations of TAMs and their roles in gastric cancer (GC) remain poorly understood. This study aims to assess the effects of Spi-1 proto-oncogene (SPI1)+CD68+ TAMs in GC. METHODS The distribution of SPI1+CD68+ TAMs in GC tissue was estimated by immunohistochemistry, immunofluorescence, and flow cytometry. Single-cell transcriptome analysis and multiplex fluorescence immunohistochemistry were applied to explore the role of SPI1+CD68+ TAMs in an immune contexture. SPI1 overexpression or knockdown cells were constructed to evaluate its role in macrophage polarization and angiogenesis in vitro and in vivo. Chromatin immunoprecipitation was used to verify the mechanism of SPI1 transcriptional function. The effect of combined antiangiogenic and immunotherapy was further validated using mouse peritoneal metastasis models. RESULTS Single-cell transcriptome analysis and immunohistochemistry demonstrated that SPI1 was expressed in macrophages, with a higher enrichment in metastatic lesions than in primary tumors. Higher SPI1+CD68+ TAMs infiltration was associated with poor overall survival. Mechanically, SPI1 promoted the M2-type macrophage polarization. SPI1 could bind to the promoter of vascular endothelial growth factor A and facilitate angiogenesis. Moreover, the level of SPI1+CD68+ TAMs infiltration was closely related to the efficacy of immunotherapy, especially when combined with antiangiogenic therapy. CONCLUSIONS The present study showed that SPI1+CD68+ TAMs are a promising biomarker for predicting prognosis, antiangiogenic drug sensitivity, and combination target of immunotherapy in patients with GC.
Collapse
Affiliation(s)
- Guofei Deng
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Pengliang Wang
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rishun Su
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xuezeng Sun
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zizhen Wu
- Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing, China
| | - Zhangsen Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Liang Gu
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hong Yu
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhenzhen Zhao
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mingyu Huo
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Songcheng Yin
- Digestive Diseases Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Cai W, Sun T, Qiu C, Sheng H, Chen R, Xie C, Kou L, Yao Q. Stable triangle: nanomedicine-based synergistic application of phototherapy and immunotherapy for tumor treatment. J Nanobiotechnology 2024; 22:635. [PMID: 39420366 PMCID: PMC11488210 DOI: 10.1186/s12951-024-02925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
In recent decades, cancer has posed a challenging obstacle that humans strive to overcome. While phototherapy and immunotherapy are two emerging therapies compared to traditional methods, they each have their advantages and limitations. These limitations include easy metastasis and recurrence, low response rates, and strong side effects. To address these issues, researchers have increasingly focused on combining these two therapies by utilizing a nano-drug delivery system due to its superior targeting effect and high drug loading rate, yielding remarkable results. The combination therapy demonstrates enhanced response efficiency and effectiveness, leading to a preparation that is highly targeted, responsive, and with low recurrence rates. This paper reviews several main mechanisms of anti-tumor effects observed in combination therapy based on the nano-drug delivery system over the last five years. Furthermore, the challenges and future prospects of this combination therapy are also discussed.
Collapse
Affiliation(s)
- Wenjing Cai
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Tuyue Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chenyu Qiu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Huixiang Sheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Congying Xie
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou, 325000, China.
- Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou, 325000, China.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China.
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou, 325000, China.
- Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou, 325000, China.
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
13
|
Somri-Gannam L, Meisel-Sharon S, Hantisteanu S, Bar-Noy T, Sigal E, Groisman G, Hallak M, Werner H, Bruchim I. IGF1R inhibition and PD-1 blockade improve anti-tumor immune response in epithelial ovarian cancer. Front Oncol 2024; 14:1410447. [PMID: 39450263 PMCID: PMC11499063 DOI: 10.3389/fonc.2024.1410447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction The insulin-like growth factor (IGF) system plays a key role in regulating growth and invasiveness in epithelial ovarian cancer (EOC) and is considered a promising therapeutic target. EOC is an immunosuppressive disease, although there are limited data about the involvement of the IGF1R system in the anti-tumor immune response in the EOC microenvironment. Methods In the current study, we hypothesized that IGF 1 receptor (IGF1R) involvement in the maturation of dendritic cells (DC) with the co-inhibition of IGF1R and PD-1 would affect the EOC microenvironment. Results We found that DC pretreated with IGF1R inhibitor resulted in fewer EOC cells. Moreover, in vivo experiments conducted with an EOC mouse model, with anti-PD-1/IGF1R combined, resulted in lower tumor weight compared to individual treatments. Additionally, anti-PD-1/IGF1R treatment increased DC by 34% compared with AEW-541 and 40% with anti-PD-1. The combined treatment increased CD8+ T-cell levels compared to AEW-541 alone. RNA-seq data analysis indicated that anti-PD-1/IGF1R led to a more potent immune response, as reflected by altered gene expression levels related to anti-tumor immune response, compared with either treatment alone. Discussion These findings provide novel evidence that IGF1R axis inhibition combined with PD-1 blockade may be an effective therapeutic strategy for selected EOC patient populations.
Collapse
Affiliation(s)
- Lina Somri-Gannam
- Gynecology Oncology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shilhav Meisel-Sharon
- Gynecology Oncology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Shay Hantisteanu
- Gynecology Oncology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Tomer Bar-Noy
- Gynecology and Gynecologic Oncology Department, Hillel Yaffe Medical Center, Hadera, Israel
| | - Emiliya Sigal
- Gynecology and Gynecologic Oncology Department, Hillel Yaffe Medical Center, Hadera, Israel
| | - Gabriel Groisman
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Institute of Pathology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Mordechai Hallak
- Gynecology Oncology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Gynecology and Gynecologic Oncology Department, Hillel Yaffe Medical Center, Hadera, Israel
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Bruchim
- Gynecology Oncology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Gynecology and Gynecologic Oncology Department, Hillel Yaffe Medical Center, Hadera, Israel
| |
Collapse
|
14
|
Labib S, Bright RK, Liu J. Focused Ultrasound in Cancer Immunotherapy: A Review of Mechanisms and Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2024:S0301-5629(24)00353-3. [PMID: 39389856 DOI: 10.1016/j.ultrasmedbio.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/25/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Ultrasound is well-perceived for its diagnostic application. Meanwhile, ultrasound, especially focused ultrasound (FUS), has also demonstrated therapeutic capabilities, such as thermal tissue ablation, hyperthermia, and mechanical tissue ablation, making it a viable therapeutic approach for cancer treatment. Cancer immunotherapy is an emerging cancer treatment approach that boosts the immune system to fight cancer, and it has also exhibited enhanced effectiveness in treating previously considered untreatable conditions. Currently, cancer immunotherapy is regarded as one of the four pillars of cancer treatment because it has fewer adverse effects than radiation and chemotherapy. In recent years, the unique capabilities of FUS in ablating tumors, regulating the immune system, and enhancing anti-tumor responses have resulted in a new field of research known as FUS-induced/assisted cancer immunotherapy. In this work, we provide a comprehensive overview of this new research field by introducing the basics of focused ultrasound and cancer immunotherapy and providing the state-of-the-art applications of FUS in cancer immunotherapy: the mechanisms and preclinical and clinical studies. This review aims to offer the scientific community a reliable reference to the exciting field of FUS-induced/assisted cancer immunotherapy, hoping to foster the further development of related technology and expand its medical applications.
Collapse
Affiliation(s)
- Sadman Labib
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Robert K Bright
- Department of Immunology and Molecular Microbiology, School of Medicine & Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | - Jingfei Liu
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
15
|
Chudnovskiy A, Castro TBR, Nakandakari-Higa S, Cui A, Lin CH, Sade-Feldman M, Phillips BK, Pae J, Mesin L, Bortolatto J, Schweitzer LD, Pasqual G, Lu LF, Hacohen N, Victora GD. Proximity-dependent labeling identifies dendritic cells that drive the tumor-specific CD4 + T cell response. Sci Immunol 2024; 9:eadq8843. [PMID: 39365874 DOI: 10.1126/sciimmunol.adq8843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 10/06/2024]
Abstract
Dendritic cells (DCs) are uniquely capable of transporting tumor antigens to tumor-draining lymph nodes (tdLNs) and interact with effector T cells in the tumor microenvironment (TME) itself, mediating both natural antitumor immunity and the response to checkpoint blockade immunotherapy. Using LIPSTIC (Labeling Immune Partnerships by SorTagging Intercellular Contacts)-based single-cell transcriptomics, we identified individual DCs capable of presenting antigen to CD4+ T cells in both the tdLN and TME. Our findings revealed that DCs with similar hyperactivated transcriptional phenotypes interact with helper T cells both in tumors and in the tdLN and that checkpoint blockade drugs enhance these interactions. These findings show that a relatively small fraction of DCs is responsible for most of the antigen presentation in the tdLN and TME to both CD4+ and CD8+ tumor-specific T cells and that classical checkpoint blockade enhances CD40-driven DC activation at both sites.
Collapse
Affiliation(s)
- Aleksey Chudnovskiy
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Tiago B R Castro
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | | | - Ang Cui
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Chia-Hao Lin
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | - Brooke K Phillips
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Juhee Pae
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Juliana Bortolatto
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | | | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| |
Collapse
|
16
|
Dong Y, Zhang Z, Luan S, Zheng M, Wang Z, Chen Y, Chen X, Tong A, Yang H. Novel bispecific antibody-drug conjugate targeting PD-L1 and B7-H3 enhances antitumor efficacy and promotes immune-mediated antitumor responses. J Immunother Cancer 2024; 12:e009710. [PMID: 39357981 PMCID: PMC11448212 DOI: 10.1136/jitc-2024-009710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) offer a promising approach, combining monoclonal antibodies with chemotherapeutic drugs to target cancer cells effectively while minimizing toxicity. METHODS This study examined the therapeutic efficacy and potential mechanisms of a bispecific ADC (BsADC) in laryngeal squamous cell carcinoma. This BsADC selectively targets the immune checkpoints programmed cell death ligand-1 (PD-L1) and B7-H3, and the precise delivery of the small-molecule toxin monomethyl auristatin E. RESULTS Our findings demonstrated that the BsADC outperformed its bispecific antibody and PD-L1 or B7-H3 ADC counterparts, particularly in terms of in vitro/in vivo tumor cytotoxicity, demonstrating remarkable immune cytotoxicity. Additionally, we observed potent activation of tumor-specific immunity and significant induction of markers of immunogenic cell death (ICD) and potential endoplasmic reticulum stress. CONCLUSION In conclusion, this novel BsADC, through immune checkpoint inhibition and promotion of ICD, amplified durable tumor immune cytotoxicity, providing novel insights and potential avenues for future cancer treatments and overcoming resistance.
Collapse
Affiliation(s)
- Yijun Dong
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Luan
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Meijun Zheng
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongdong Chen
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui Yang
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Qin S, Liu Y, He G, Yang J, Zeng F, Lu Q, Wang M, He B, Song Y. Spatiotemporal Delivery of Dual Nanobodies by Engineered Probiotics to Reverse Tumor Immunosuppression via Targeting Tumor-Derived Exosomes. ACS NANO 2024; 18:26858-26871. [PMID: 39308426 DOI: 10.1021/acsnano.4c08117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The anti-PD-L1 and its bispecific antibodies have exhibited durable antitumor immunity but still elicit immunosuppression mainly caused by tumor-derived exosomes (TDEs), leading to difficulty in clinical transformation. Herein, engineered Escherichia coli Nissle 1917 (EcN) coexpressing anti-PD-L1 and anti-CD9 nanobodies (EcN-Nb) are developed and decorated with zinc-based metal-organic frameworks (MOFs) loaded with indocyanine green (ICG), to generate EcN-Nb-ZIF-8CHO-ICG (ENZC) for spatiotemporal lysis of bacteria for immunotherapy. The tumor-homing hybrid system can specifically release nanobodies in response to near-infrared (NIR) radiation, thereby targeting TDEs and changing their biological distribution, remodeling tumor-associated macrophages to M1 states, activating more effective and cytotoxic T lymphocytes, and finally, leading to the inhibition of tumor proliferation and metastasis. Altogether, the microfluidic-enabled MOF-modified engineered probiotics target TDEs and activate the antitumor immune response in a spatiotemporally manipulated manner, offering promising TDE-targeted immune therapy.
Collapse
Affiliation(s)
- Shurong Qin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yuta Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Guanzhong He
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jingjing Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fei Zeng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qianglan Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Meng Wang
- Department of Gastric and Hernia Surgery, Nanjing University Medical School Affiliated Drum Tower Hospital, Nanjing 210023, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Wang Y, Su L, Hu Z, Peng S, Li N, Fu H, Wang B, Wu H. Resveratrol suppresses liver cancer progression by downregulating AKR1C3: targeting HCC with HSA nanomaterial as a carrier to enhance therapeutic efficacy. Apoptosis 2024; 29:1429-1453. [PMID: 39023830 DOI: 10.1007/s10495-024-01995-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
The enzyme AKR1C3 plays a crucial role in hormone and drug metabolism and is associated with abnormal expression in liver cancer, leading to tumor progression and poor prognosis. Nanoparticles modified with HSA can modulate the tumor microenvironment by enhancing photodynamic therapy to induce apoptosis in tumor cells and alleviate hypoxia. Therefore, exploring the potential regulatory mechanisms of resveratrol on AKR1C3 through the construction of HSA-RSV NPs carriers holds significant theoretical and clinical implications for the treatment of liver cancer. The aim of this study is to investigate the targeted regulation of AKR1C3 expression through the loading of resveratrol (RSV) on nanomaterials HSA-RSV NPs (Nanoparticles) in order to alleviate tumor hypoxia and inhibit the progression of hepatocellular carcinoma (HCC), and to explore its molecular mechanism. PubChem database and PharmMapper server were used to screen the target genes of RSV. HCC-related differentially expressed genes (DEGs) were analyzed through the GEO dataset, and relevant genes were retrieved from the GeneCards database, resulting in the intersection of the three to obtain candidate DEGs. GO and KEGG enrichment analyses were performed on the candidate DEGs to analyze the potential cellular functions and molecular signaling pathways affected by the main target genes. The cytohubba plugin was used to screen the top 10 target genes ranked by Degree and further intersected the results of LASSO and Random Forest (RF) to obtain hub genes. The expression analysis of hub genes and the prediction of malignant tumor prognosis were conducted. Furthermore, a pharmacophore model was constructed using PharmMapper. Molecular docking simulations were performed using AutoDockTools 1.5.6 software, and ROC curve analysis was performed to determine the core target. In vitro cell experiments were carried out by selecting appropriate HCC cell lines, treating HCC cells with different concentrations of RSV, or silencing or overexpressing AKR1C3 using lentivirus. CCK-8, clone formation, flow cytometry, scratch experiment, and Transwell were used to measure cancer cell viability, proliferation, migration, invasion, and apoptosis, respectively. Cellular oxygen consumption rate was analyzed using the Seahorse XF24 analyzer. HSA-RSV NPs were prepared, and their characterization and cytotoxicity were evaluated. The biological functional changes of HCC cells after treatment were detected. An HCC subcutaneous xenograft model was established in mice using HepG2 cell lines. HSA-RSV NPs were injected via the tail vein, with a control group set, to observe changes in tumor growth, tumor targeting of NPs, and biological safety. TUNEL, Ki67, and APC-hypoxia probe staining were performed on excised tumor tissue to detect tumor cell proliferation, apoptosis, and hypoxia. Lentivirus was used to silence or overexpress AKR1C3 simultaneously with the injection of HSA-RSV NPs via the tail vein to assess the impact of AKR1C3 on the regulation of HSA-RSV NPs in HCC progression. Bioinformatics analysis revealed that AKR1C3 is an important target gene involved in the regulation of HCC by RSV, which is associated with the prognosis of HCC patients and upregulated in expression. In vitro cell experiments showed that RSV significantly inhibits the respiratory metabolism of HCC cells, suppressing their proliferation, migration, and invasion and promoting apoptosis. Silencing AKR1C3 further enhances the toxicity of RSV towards HCC cells. The characterization and cytotoxicity experiments of nanomaterials demonstrated the successful construction of HSA-RSV NPs, which exhibited stronger inhibitory effects on HCC cells. In vivo, animal experiments further confirmed that targeted downregulation of AKR1C3 by HSA-RSV NPs suppresses the progression of HCC and tumor hypoxia while exhibiting tumor targeting and biological safety. Targeted downregulation of AKR1C3 by HSA-RSV NPs can alleviate HCC tumor hypoxia and inhibit the progression of HCC.
Collapse
Affiliation(s)
- Ying Wang
- Operating Room, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Longxiang Su
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Zhansheng Hu
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning Province, 121001, China
| | - Shuang Peng
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning Province, 121001, China
| | - Na Li
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning Province, 121001, China
| | - Haiyan Fu
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning Province, 121001, China
| | - Baoquan Wang
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning Province, 121001, China
| | - Huiping Wu
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning Province, 121001, China.
| |
Collapse
|
19
|
Liu Y, Wu J, Najem H, Lin Y, Pang L, Khan F, Zhou F, Ali H, Heimberger AB, Chen P. Dual targeting macrophages and microglia is a therapeutic vulnerability in models of PTEN-deficient glioblastoma. J Clin Invest 2024; 134:e178628. [PMID: 39352749 PMCID: PMC11563674 DOI: 10.1172/jci178628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Tumor-associated macrophages and microglia (TAMs) are critical for tumor progression and therapy resistance in glioblastoma (GBM), a type of incurable brain cancer. We previously identified lysyl oxidase (LOX) and olfactomedin like-3 (OLFML3) as essential macrophage and microglia chemokines, respectively, in GBM. Here, single-cell transcriptomics and multiplex sequential immunofluorescence followed by functional studies demonstrate that macrophages negatively correlate with microglia in the GBM tumor microenvironment. LOX inhibition in PTEN-deficient GBM cells upregulates OLFML3 expression via the NF-κB-PATZ1 signaling pathway, inducing a compensatory increase of microglia infiltration. Dual targeting macrophages and microglia via inhibition of LOX and the CLOCK-OLFML3 axis generates potent antitumor effects and offers a complete tumor regression in more than 60% of animals when combined with anti-PD1 therapy in PTEN-deficient GBM mouse models. Thus, our findings provide a translational triple therapeutic strategy for this lethal disease.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Junyan Wu
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hinda Najem
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yiyun Lin
- Department of Genetics and
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lizhi Pang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Fei Zhou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Heba Ali
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peiwen Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| |
Collapse
|
20
|
Walmsley CS, Schoepflin Z, De Brabandt C, Rangachari D, Berwick S, Patell R. Hemophagocytic lymphohistiocytosis associated with immune checkpoint inhibitor use: A review of the current knowledge and future directions. Blood Cells Mol Dis 2024; 110:102896. [PMID: 39366077 DOI: 10.1016/j.bcmd.2024.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a severe and often lethal inflammatory syndrome characterized by excessive immune activation leading to fever, cytopenias, and multiorgan involvement. Immune checkpoint inhibitors (ICIs) are central to many contemporary cancer regimens, but their use is associated with immune-related adverse events. Here, we report a case of ICI-induced HLH successfully treated with single agent dexamethasone and provide a scoping review of the literature for cases of ICI-induced HLH with a focus on treatment strategies and outcomes. Using the Medline database, we searched for cases of ICI-associated HLH, with a total of 51 cases reported between 2017 and 2023. Our results underscore the severe nature of this disease, with a 13.7 % mortality rate across 51 case reports. Treatment strategies for ICI-induced HLH were variable: steroids alone (56.9 %), steroids with etoposide (17.6 %), steroids with tociluzumab (11.8 %), among other combinations. Our literature review indicates that steroids alone may be sufficient treatment in some cases of ICI-HLH, with comparable mortality with steroids alone (n = 29) (13.8 %) to that of cases treated with both steroids and immunomodulators (n = 15, 13.3 %). Moreover, all patients treated with steroids and tocilizumab survived (n = 6), suggesting that tocilizumab may be a reasonable next line of therapy when steroid monotherapy proves inadequate. We propose an outline for investigation and treatment of this rare complication of ICI use. Finally, we discuss possible future approaches to develop evidence-based strategies for the diagnosis and management of ICI-induced HLH including the importance of integrating the role of patient community involvement.
Collapse
Affiliation(s)
- Charlotte S Walmsley
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Zachary Schoepflin
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Charlotte De Brabandt
- Breast Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, United States of America; Patient Ambassador Program, American Cancer Society, Boston, MA, United States of America
| | - Deepa Rangachari
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Shana Berwick
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Rushad Patell
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America.
| |
Collapse
|
21
|
Di Y, Yang Z, Song G, Shen Q, Bai H, Huang Y, Lv F, Wang S. Biosynthesis of multifunctional transformable peptides for downregulation of PD-L1. Chem Commun (Camb) 2024; 60:10938-10941. [PMID: 39258452 DOI: 10.1039/d4cc03146f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Here, we present a biosynthesized material M1 for immune checkpoint blocking therapy. M1 could realize a morphological transformation from globular to fibrous in situ in the presence of cathepsin B (CtsB) after entering tumor cells. The GO203 peptides of M1 are exposed, which could bind to mucin 1 (MUC1) to suppress the homodimerization process of MUC1, thereby downregulating PD-L1 expression.
Collapse
Affiliation(s)
- Yufei Di
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Hountondji L, Faure S, Palassin P, Viel PWD, Dupuy M, Larrey D, Lamoureux A, Coustal C, Pureur D, Lesage C, Assenat É, Rivière B, Faillie JL, Quantin X, Pageaux GP, Maria ATJ, Meunier L. Time to use the right classification to predict the severity of checkpoint inhibitor-induced liver injury, as assessed for causality using the updated RUCAM. Aliment Pharmacol Ther 2024. [PMID: 39315730 DOI: 10.1111/apt.18276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND AND AIMS While immune checkpoint inhibitors (ICIs) are revolutionising cancer therapy, checkpoint inhibitor-induced liver injury is a significant immune-related side effect of this immunotherapy. This study focuses on the severity classifications and characteristics of patients with checkpoint inhibitor-induced hepatitis. METHODS A retrospective analysis of patients with severe Checkpoint Inhibitor-induced hepatitis grade 3 and 4 according to the recommended Common Terminology Criteria for Adverse Events (CTCAE) classification was conducted. Data on clinicobiological characteristics, treatment and outcomes were collected from 3 university hospitals, and causality was assessed by using the updated Roussel Uclaf Causality Assessment Method. The severity of hepatitis was assessed using the Model for End-stage Liver Disease score, the Drug-Induced Liver Injury Network, and the Drug-Induced Liver Injury International Expert Working Group classifications. RESULTS We retrospectively included 100 patients presenting various hepatitis patterns with a median time to onset of 20 days after checkpoint inhibitors. Severity grading varied significantly among the classifications used. A lower incidence of severe cases was observed when using the Drug-Induced Liver Injury classifications instead of the recommended CCTCAE classification, and this was correlated with outcomes. CONCLUSIONS This retrospective study challenges the efficacy of the CTCAE classification in defining the severity of Checkpoint Inhibitor-induced hepatitis and suggests that the traditional hepatology-focused scores may be more relevant. The CTCAE classification is inconsistent and gives equal weight to jaundice and elevated transaminases, which leads to steroid overtreatment and limits the rechallenge of ICIs.
Collapse
Affiliation(s)
- Lina Hountondji
- Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France
| | - Stéphanie Faure
- Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France
| | - Pascale Palassin
- Department of Medical Pharmacology and Toxicology, Lapeyronie Hospital, Montpellier University Hospital, Montpellier, France
| | - Philine Witkowski Durand Viel
- Department of Medical Oncology, Montpellier Cancer Institute, Montpellier University Hospital, Montpellier, France
- Internal Medicine, Beziers Hospital, Béziers, France
| | - Marie Dupuy
- Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France
- Department of Oncology, Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France
| | - Dominique Larrey
- Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France
- REFHEPS, Montpellier, France
| | - Anouck Lamoureux
- Department of Dermatology, Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France
| | - Cyrille Coustal
- Internal Medicine & Immuno-Oncology (MedI2O), Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France
| | - Dimitri Pureur
- Department of Oncology, Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France
| | - Candice Lesage
- Department of Dermatology, Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France
| | - Éric Assenat
- Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France
- Department of Oncology, Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France
- Montpellier University, Montpellier, France
| | - Benjamin Rivière
- Department of Pathology, Montpellier University Hospital, University of Montpellier, Montpellier, France
| | - Jean-Luc Faillie
- Department of Medical Pharmacology and Toxicology, Lapeyronie Hospital, Montpellier University Hospital, Montpellier, France
- Montpellier University, Montpellier, France
| | - Xavier Quantin
- Department of Medical Oncology, Montpellier Cancer Institute, Montpellier University Hospital, Montpellier, France
| | - Georges-Philippe Pageaux
- Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France
- Montpellier University, Montpellier, France
| | - Alexandre Thibault Jacques Maria
- Internal Medicine & Immuno-Oncology (MedI2O), Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France
- Montpellier University, Montpellier, France
- Internal Medicine & Immuno-Oncology (MedI2O), Institute for Regenerative Medicine and Biotherapy (IRMB), Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France
| | - Lucy Meunier
- Hepatology and Liver Transplantation Unit, Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France
- REFHEPS, Montpellier, France
- Internal Medicine & Immuno-Oncology (MedI2O), Institute for Regenerative Medicine and Biotherapy (IRMB), Saint Eloi Hospital, Montpellier University Hospital, Montpellier, France
| |
Collapse
|
23
|
Masubuchi T, Chen L, Marcel N, Wen GA, Caron C, Zhang J, Zhao Y, Morris GP, Chen X, Hedrick SM, Lu LF, Wu C, Zou Z, Bui JD, Hui E. Evolutionary fingerprint in rodent PD1 confers weakened activity and enhanced tumor immunity compared to human PD1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614250. [PMID: 39372757 PMCID: PMC11451736 DOI: 10.1101/2024.09.21.614250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Mechanistic understanding of the immune checkpoint receptor PD1 is largely based on mouse models, but human and mouse PD1 orthologs exhibit only 59.6% identity in amino acid sequences. Here we show that human PD1 is more inhibitory than mouse PD1 due to stronger interactions with the ligands PDL1 and PDL2 and with the effector phosphatase Shp2. A novel motif highly conserved among PD1 orthologs in vertebrates except in rodents is primarily responsible for the differential Shp2 recruitment. Evolutionary analysis suggested that rodent PD1 orthologs uniquely underwent functional relaxation, particularly during the K-Pg boundary. Humanization of the PD1 intracellular domain disrupted the anti-tumor activity of mouse T cells while increasing the magnitude of anti-PD1 response. Together, our study uncovers species-specific features of the PD1 pathway, with implications to PD1 evolution and differential anti-PD(L)1 responses in mouse models and human patients.
Collapse
|
24
|
Brugiapaglia S, Spagnolo F, Intonti S, Novelli F, Curcio C. Fighting Pancreatic Cancer with a Vaccine-Based Winning Combination: Hope or Reality? Cells 2024; 13:1558. [PMID: 39329742 PMCID: PMC11430323 DOI: 10.3390/cells13181558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Pancreatic adenocarcinoma (PDA) represents the fourth leading cause of cancer-related mortality in the USA. Only 20% of patients present surgically resectable and potentially curable tumors at diagnosis, while 80% are destined for poor survival and palliative chemotherapy. Accordingly, the advancement of innovative and effective therapeutic strategies represents a pivotal medical imperative. It has been demonstrated that targeting the immune system represents an effective approach against several solid tumors. The immunotherapy approach encompasses a range of strategies, including the administration of antibodies targeting checkpoint molecules (immune checkpoint inhibitors, ICIs) to disrupt tumor suppression mechanisms and active immunization approaches that aim to stimulate the host's immune system. While vaccines have proved effective against infectious agents, vaccines for cancer remain an unfulfilled promise. Vaccine-based therapy targeting tumor antigens has the potential to be a highly effective strategy for initiating and maintaining T cell recognition, enhancing the immune response, and ultimately promoting cancer treatment success. In this review, we examined the most recent clinical trials that employed diverse vaccine types to stimulate PDA patients' immune systems, either independently or in combination with chemotherapy, radiotherapy, ICIs, and monoclonal antibodies with the aim of ameliorating PDA patients' quality of life and extend their survival.
Collapse
Affiliation(s)
- Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, 10126 Turin, Italy
| | - Ferdinando Spagnolo
- School of Advanced Defence Studies, Defence Research & Analysis Institute, Piazza della Rovere 83, 00165 Rome, Italy
| | - Simona Intonti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, 10126 Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, 10126 Turin, Italy
| | - Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, 10126 Turin, Italy
| |
Collapse
|
25
|
Tellis JC, Wei B, Siu M, An L, Chan GK, Chen Y, Du X, Gazzard L, Hu B, Kiefer J, Kakiuchi-Kiyota S, Lainchbury M, Linehan JL, Luo X, Malhotra S, Mendonca R, Pang J, Ran Y, Sethuraman V, Seward E, Sneeringer C, Su D, Wang W, Wu P, Moffat JG, Heffron TP, Choo EF, Chan BK. Discovery of GNE-6893, a Potent, Selective, Orally Bioavailable Small Molecule Inhibitor of HPK1. ACS Med Chem Lett 2024; 15:1606-1614. [PMID: 39291002 PMCID: PMC11403726 DOI: 10.1021/acsmedchemlett.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) serves a key immunosuppressive role as a negative regulator of T-cell receptor (TCR) signaling. HPK1 loss-of-function is associated with augmentation of immune function and has demonstrated synergy with immune checkpoint inhibitors in syngeneic mouse cancer models. These data offer compelling evidence for the use of selective small molecule inhibitors of HPK1 in cancer immunotherapy. We identified a novel series of isoquinoline HPK1 inhibitors through fragment-based screening that displayed promising levels of biochemical potency and activity in functional cell-based assays. We used structure-based drug design to introduce key selectivity elements while simultaneously addressing pharmacokinetic liabilities. These efforts culminated in a molecule demonstrating subnanomolar biochemical inhibition of HPK1 and strong in vitro augmentation of TCR signaling in primary human T-cells. Further profiling of this molecule revealed excellent kinase selectivity (347/356 kinases <50% inhibition @ 0.1 μM), a favorable in vitro safety profile, and good projected human pharmacokinetics.
Collapse
Affiliation(s)
- John C Tellis
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - BinQing Wei
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Michael Siu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Le An
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Grace Kayan Chan
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yong Chen
- Pharmaron Beijing Co., No. 6 Tai He Road, BDA, Beijing 100176, P.R. China
| | - Xiangnan Du
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Lewis Gazzard
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Baihua Hu
- Pharmaron Beijing Co., No. 6 Tai He Road, BDA, Beijing 100176, P.R. China
| | - James Kiefer
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Michael Lainchbury
- Charles River Laboratories, 8-9 Spire Green, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Jonathan L Linehan
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xifeng Luo
- Pharmaron Beijing Co., No. 6 Tai He Road, BDA, Beijing 100176, P.R. China
| | - Sushant Malhotra
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rohan Mendonca
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jodie Pang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yinqing Ran
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Vijay Sethuraman
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Eileen Seward
- Charles River Laboratories, 8-9 Spire Green, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Chris Sneeringer
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Dian Su
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Weiru Wang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ping Wu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John G Moffat
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Timothy P Heffron
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Edna F Choo
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Bryan K Chan
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
26
|
Haq F, Sabari S, Háček J, Brisuda A, Ambite I, Cavalera M, Esmaeili P, Wan MLY, Ahmadi S, Babjuk M, Svanborg C. Clinical and molecular response to alpha1-oleate treatment in patients with bladder cancer. Cancer Med 2024; 13:e70149. [PMID: 39254154 PMCID: PMC11386334 DOI: 10.1002/cam4.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The tumoricidal complex alpha1-oleate targets bladder cancer cells, triggering rapid, apoptosis-like tumor cell death. Clinical effects of alpha1-oleate were recently observed in patients with non-muscle invasive bladder cancer (NMIBC), using a randomized, placebo-controlled study protocol. AIMS To investigate if there are dose-dependent effects of alpha1-oleate. MATERIALS AND METHODS Here, patients with NMIBC were treated by intravesical instillation of increasing concentrations of alpha1-oleate (1.7, 8.5, or 17 mM) and the treatment response was defined relative to a placebo group. RESULTS Strong, dose-dependent anti-tumor effects were detected in alpha1-oleate treated patients for a combination of molecular and clinical indicators; a complete or partial response was detected in 88% of tumors treated with 8.5 mM compared to 47% of tumors treated with 1.7 mM of alpha1-oleate. Uptake of alpha1-oleate by the tumor triggered rapid shedding of tumor cells into the urine and cell death by an apoptosis-like mechanism. RNA sequencing of tissue biopsies confirmed the activation of apoptotic cell death and strong inhibition of cancer gene networks, including bladder cancer related genes. Drug-related side effects were not recorded, except for local irritation at the site of instillation. DISCUSSION AND CONCLUSIONS These dose-dependent anti-tumor effects of alpha1-oleate are promising and support the potential of alpha1-oleate treatment in patients with NMIBC.
Collapse
Affiliation(s)
- Farhan Haq
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversitySweden
| | - Samudra Sabari
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversitySweden
| | - Jaromir Háček
- Department of Pathology and Molecular MedicineMotol University Hospital, 2nd Faculty of Medicine, Charles University PrahaPragueCzech Republic
| | - Antonín Brisuda
- Department of UrologyMotol University Hospital, 2nd Faculty of Medicine, Charles University PrahaPragueCzech Republic
| | - Ines Ambite
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversitySweden
| | - Michele Cavalera
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversitySweden
| | - Parisa Esmaeili
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversitySweden
| | - Murphy Lam Yim Wan
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversitySweden
| | - Shahram Ahmadi
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversitySweden
| | - Marek Babjuk
- Department of UrologyMotol University Hospital, 2nd Faculty of Medicine, Charles University PrahaPragueCzech Republic
| | - Catharina Svanborg
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversitySweden
| |
Collapse
|
27
|
Bowen CM, Sinha KM, Vilar E. Immunoprevention Strategies for Colorectal Cancer in Lynch Syndrome Carriers. Cancer J 2024; 30:352-356. [PMID: 39312455 PMCID: PMC11424018 DOI: 10.1097/ppo.0000000000000738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
ABSTRACT The immune revolution that swept the field of oncology in the mid-2010s with the advent of checkpoint inhibitors has led to a paradigm shift in approaches toward adapting new cancer prevention modalities. Cancer vaccines have emerged from this era with astounding potential as a durable intervention to prevent cancers especially for patients with hereditary susceptibilities such as Lynch syndrome carriers. This review covers new insights in the immunoprevention landscape for patients living with Lynch syndrome including highlights ranging from clinical trials exploring the use of chemoprevention agents to boost immune cellularity to investigative studies using novel vaccine approaches to induce long-term antitumor immunity.
Collapse
Affiliation(s)
- Charles M. Bowen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Krishna M. Sinha
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
28
|
Bector G, Trehan S, Toofantabrizi M, Singh G, Jain A, Arora N, Shrestha S, Panjwani GAR, Jain P, Kalra E. Association Between the Immune Checkpoint Inhibitor Durvalumab and Myasthenia Gravis: A Comprehensive Review. Cureus 2024; 16:e68542. [PMID: 39364500 PMCID: PMC11449196 DOI: 10.7759/cureus.68542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs), including Imfinzi (durvalumab), have revolutionized cancer treatment by stimulating the body's immune system to target cancerous cells. Although pharmaceuticals offer therapeutic benefits, several drugs have been associated with immune-related adverse events (irAEs), including the uncommon but serious condition known as myasthenia gravis (MG). This review synthesizes data from pertinent research to offer a thorough evaluation of the literature on the underlying mechanisms, clinical manifestations, and therapeutic approaches for durvalumab-induced MG. The incidence of MG in patients on durvalumab and other ICIs is typically low, with less than 1% documented, despite the potential for severe problems associated with the disease. Durvalumab disrupts immunological tolerance by stimulating autoreactive T-cells and inducing the production of autoantibodies. The clinical consequences of MG need meticulous monitoring, prompt identification, and suitable management to efficiently control the condition. Medical practitioners must carefully weigh the positive effects of ICIs against the possible hazards, emphasizing the necessity for more extensive investigation to improve patient results and establish uniform treatment protocols.
Collapse
Affiliation(s)
- Gaurav Bector
- Medicine and Surgery, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Shubam Trehan
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Mahyar Toofantabrizi
- Internal Medicine, Union Memorial Hospital, Medstar Health Baltimore, Baltimore, USA
| | - Gurjot Singh
- Internal Medicine, Adesh Institute of Medical Science and Research, Bathinda, IND
| | - Aayush Jain
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Nirav Arora
- Computer Science, Lamar University, Beaumont, USA
| | - Suchitra Shrestha
- Internal Medicine, Nepalese Army Institute of Health Sciences, Kathmandu, NPL
| | | | - Prateek Jain
- Internal Medicine, All India Institute of Medical Sciences, Rishikesh, IND
| | - Eva Kalra
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| |
Collapse
|
29
|
Jiang K, Wang Q, Chen XL, Wang X, Gu X, Feng S, Wu J, Shang H, Ba X, Zhang Y, Tang K. Nanodelivery Optimization of IDO1 Inhibitors in Tumor Immunotherapy: Challenges and Strategies. Int J Nanomedicine 2024; 19:8847-8882. [PMID: 39220190 PMCID: PMC11366248 DOI: 10.2147/ijn.s458086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/13/2024] [Indexed: 09/04/2024] Open
Abstract
Tryptophan (Trp) metabolism plays a vital role in cancer immunity. Indoleamine 2.3-dioxygenase 1 (IDO1), is a crucial enzyme in the metabolic pathway by which Trp is degraded to kynurenine (Kyn). IDO1-mediated Trp metabolites can inhibit tumor immunity and facilitate immune evasion by cancer cells; thus, targeting IDO1 is a potential tumor immunotherapy strategy. Recently, numerous IDO1 inhibitors have been introduced into clinical trials as immunotherapeutic agents for cancer treatment. However, drawbacks such as low oral bioavailability, slow onset of action, and high toxicity are associated with these drugs. With the continuous development of nanotechnology, medicine is gradually entering an era of precision healthcare. Nanodrugs carried by inorganic, lipid, and polymer nanoparticles (NPs) have shown great potential for tumor therapy, providing new ways to overcome tumor diversity and improve therapeutic efficacy. Compared to traditional drugs, nanomedicines offer numerous significant advantages, including a prolonged half-life, low toxicity, targeted delivery, and responsive release. Moreover, based on the physicochemical properties of these nanomaterials (eg, photothermal, ultrasonic response, and chemocatalytic properties), various combination therapeutic strategies have been developed to synergize the effects of IDO1 inhibitors and enhance their anticancer efficacy. This review is an overview of the mechanism by which the Trp-IDO1-Kyn pathway acts in tumor immune escape. The classification of IDO1 inhibitors, their clinical applications, and barriers for translational development are discussed, the use of IDO1 inhibitor-based nanodrug delivery systems as combination therapy strategies is summarized, and the issues faced in their clinical application are elucidated. We expect that this review will provide guidance for the development of IDO1 inhibitor-based nanoparticle nanomedicines that can overcome the limitations of current treatments, improve the efficacy of cancer immunotherapy, and lead to new breakthroughs in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Qing Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiao-Long Chen
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiaodong Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiaoya Gu
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Shuangshuang Feng
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Yanlong Zhang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
30
|
Sacristán C, Youngblood BA, Lu P, Bally APR, Xu JX, McGary K, Hewitt SL, Boss JM, Skok JA, Ahmed R, Dustin ML. Chronic viral infection alters PD-1 locus subnuclear localization in cytotoxic CD8 + T cells. Cell Rep 2024; 43:114547. [PMID: 39083377 PMCID: PMC11522508 DOI: 10.1016/j.celrep.2024.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/15/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
During chronic infection, virus-specific CD8+ cytotoxic T lymphocytes (CTLs) progressively lose their ability to mount effective antiviral responses. This "exhaustion" is coupled to persistent upregulation of inhibitory receptor programmed death-1 (PD-1) (Pdcd1)-key in suppressing antiviral CTL responses. Here, we investigate allelic Pdcd1 subnuclear localization and transcription during acute and chronic lymphocytic choriomeningitis virus (LCMV) infection in mice. Pdcd1 alleles dissociate from transcriptionally repressive chromatin domains (lamin B) in virus-specific exhausted CTLs but not in naive or effector CTLs. Relative to naive CTLs, nuclear positioning and Pdcd1-lamina dissociation in exhausted CTLs reflect loss of Pdcd1 promoter methylation and greater PD-1 upregulation, although a direct correlation is not observed in effector cells, 8 days post-infection. Genetic deletion of B lymphocyte-induced maturation protein 1 (Blimp-1) enhances Pdcd1-lamina dissociation in effector CTLs, suggesting that Blimp-1 contributes to maintaining Pdcd1 localization to repressive lamina. Our results identify mechanisms governing Pdcd1 subnuclear localization and the broader role of chromatin dynamics in T cell exhaustion.
Collapse
Affiliation(s)
- Catarina Sacristán
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Ben A Youngblood
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA; Immunology Department, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Peiyuan Lu
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Alexander P R Bally
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Jean Xiaojin Xu
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Katelyn McGary
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Susannah L Hewitt
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jeremy M Boss
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Rafi Ahmed
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; The Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
31
|
Malone K, Dugas M, Earl N, Alain T, LaCasse EC, Beug ST. Astrocytes and the tumor microenvironment inflammatory state dictate the killing of glioblastoma cells by Smac mimetic compounds. Cell Death Dis 2024; 15:592. [PMID: 39147758 PMCID: PMC11327263 DOI: 10.1038/s41419-024-06971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Smac mimetic compounds (SMCs) are small molecule drugs that sensitize cancer cells to TNF-α-induced cell death and have multiple immunostimulatory effects through alterations in NF-κB signaling. The combination of SMCs with immunotherapies has been reported to result in durable cures of up to 40% in syngeneic, orthotopic murine glioblastoma (GBM) models. Herein, we find that SMC resistance is not due to a cell-intrinsic mechanism of resistance. We thus evaluated the contribution of GBM and brain stromal components to identify parameters leading to SMC efficacy and resistance. The common physiological features of GBM tumors, such as hypoxia, hyaluronic acid, and glucose deprivation were found not to play a significant role in SMC efficacy. SMCs induced the death of microglia and macrophages, which are the major immune infiltrates in the tumor microenvironment. This death of microglia and macrophages then enhances the ability of SMCs to induce GBM cell death. Conversely, astrocytes promoted GBM cell growth and abrogated the ability of SMCs to induce death of GBM cells. The astrocyte-mediated resistance can be overcome in the presence of exogenous TNF-α. Overall, our results highlight that SMCs can induce death of microglia and macrophages, which then provides a source of death ligands for GBM cells, and that the targeting of astrocytes is a potential mechanism for overcoming SMC resistance for the treatment of GBM.
Collapse
Affiliation(s)
- Kyle Malone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Melanie Dugas
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Nathalie Earl
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Tommy Alain
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Eric C LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
32
|
Maksoud S, Schweiger MW, Tabet EI, Xiao T, Hokayem JE, Zinter M, Carvalho LA, Breyne K, Noske DP, Chiocca EA, Tannous BA. Arming AAV9 with a Single-Chain Fragment Variable Antibody Against PD-1 for Systemic Glioblastoma Therapy. Mol Neurobiol 2024:10.1007/s12035-024-04406-y. [PMID: 39138760 DOI: 10.1007/s12035-024-04406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive brain cancer with a low survival rate, prompting the exploration of novel therapeutic strategies. Immune checkpoint inhibitors have shown promise in cancer treatment but are associated with immune-related toxicities and brain penetration. Here, we present a targeted approach using an adeno-associated virus serotype 9 (AAV9) to systemically deliver a single-chain fragment variable antibody against PD-1 (scFv-PD-1) into the tumor microenvironment (TME). Single-cell RNA sequencing analysis revealed robust PD-1 expression in GBM TME, predominantly on T cells. AAV9-scFv-PD-1 expressed and secreted scFv-PD-1, which effectively binds to PD-1. Systemic administration of AAV9-scFv-PD-1 in an immunocompetent GBM mouse model resulted in a robust cytolytic T-cell activation at the tumor site, marked by accumulation of IFN-γ and Granzyme B, leading to a significant reduction in tumor growth. Importantly, AAV9-scFv-PD-1 treatment conferred a survival benefit, highlighting its therapeutic potential. This study demonstrates the feasibility of systemically delivered AAV9-mediated local expression of scFv-PD-1 for targeted immunotherapy in GBM and warrants further investigation for clinical translation.
Collapse
Affiliation(s)
- Semer Maksoud
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA.
- Present Address: Early Oncology R&D, ICC, AstraZeneca, Waltham, MA, 02451, USA.
| | - Markus W Schweiger
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA
- Department of Neurosurgery, Amsterdam , UMC Location Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Brain Tumor Center and Liquid Biopsy Center, 1081 HV, Amsterdam, the Netherlands
| | - Elie I Tabet
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA
| | - Tianhe Xiao
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA
| | - Joelle El Hokayem
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA
| | - Max Zinter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA
| | - Litia A Carvalho
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA
| | - Koen Breyne
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA
| | - David P Noske
- Department of Neurosurgery, Amsterdam , UMC Location Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Brain Tumor Center and Liquid Biopsy Center, 1081 HV, Amsterdam, the Netherlands
| | | | - Bakhos A Tannous
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA.
- Present Address: Early Oncology R&D, ICC, AstraZeneca, Waltham, MA, 02451, USA.
| |
Collapse
|
33
|
Wei Y, Weng X, Wang Y, Yang W. Stimuli-Responsive Polymersomes: Reshaping the Immunosuppressive Tumor Microenvironment. Biomacromolecules 2024; 25:4663-4676. [PMID: 39054960 DOI: 10.1021/acs.biomac.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The progression of cancer involves mutations in normal cells, leading to uncontrolled division and tissue destruction, highlighting the complexity of tumor microenvironments (TMEs). Immunotherapy has emerged as a transformative approach, yet the balance between efficacy and safety remains a challenge. Nanoparticles such as polymersomes offer the possibility to precisely target tumors, deliver drugs in a controlled way, effectively modulate the antitumor immunity, and notably reduce side effects. Herein, stimuli-responsive polymersomes, with capabilities for carrying multiple therapeutics, are highlighted for their potential in enhancing antitumor immunity through mechanisms like inducing immunogenic cell death and activating STING (stimulator of interferon genes), etc. The recent progress of utilizing stimuli-responsive polymersomes to reshape the TME is reviewed here. The advantages and limitations to applied stimuli-responsive polymersomes are outlined. Additionally, challenges and future prospects in leveraging polymersomes for cancer therapy are discussed, emphasizing the need for future research and clinical translation.
Collapse
Affiliation(s)
- Yaohua Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiao Weng
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Yayun Wang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| | - Weijing Yang
- School of Pharmaceutical Sciences, Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan 450001 China
| |
Collapse
|
34
|
Chong X, Madeti Y, Cai J, Li W, Cong L, Lu J, Mo L, Liu H, He S, Yu C, Zhou Z, Wang B, Cao Y, Wang Z, Shen L, Wang Y, Zhang X. Recent developments in immunotherapy for gastrointestinal tract cancers. J Hematol Oncol 2024; 17:65. [PMID: 39123202 PMCID: PMC11316403 DOI: 10.1186/s13045-024-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The past few decades have witnessed the rise of immunotherapy for Gastrointestinal (GI) tract cancers. The role of immune checkpoint inhibitors (ICIs), particularly programmed death protein 1 (PD-1) and PD ligand-1 antibodies, has become increasingly pivotal in the treatment of advanced and perioperative GI tract cancers. Currently, anti-PD-1 plus chemotherapy is considered as first-line regimen for unselected advanced gastric/gastroesophageal junction adenocarcinoma (G/GEJC), mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer (CRC), and advanced esophageal cancer (EC). In addition, the encouraging performance of claudin18.2-redirected chimeric antigen receptor T-cell (CAR-T) therapy in later-line GI tract cancers brings new hope for cell therapy in solid tumour treatment. Nevertheless, immunotherapy for GI tumour remains yet precise, and researchers are dedicated to further maximising and optimising the efficacy. This review summarises the important research, latest progress, and future directions of immunotherapy for GI tract cancers including EC, G/GEJC, and CRC.
Collapse
Affiliation(s)
- Xiaoyi Chong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yelizhati Madeti
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jieyuan Cai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Wenfei Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Cong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jialin Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Liyang Mo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Huizhen Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Siyi He
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Chao Yu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhiruo Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Boya Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yakun Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
35
|
Li C, Ren Z, Yang G, Lei J. Mathematical Modeling of Tumor Immune Interactions: The Role of Anti-FGFR and Anti-PD-1 in the Combination Therapy. Bull Math Biol 2024; 86:116. [PMID: 39107447 DOI: 10.1007/s11538-024-01329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/13/2024] [Indexed: 08/21/2024]
Abstract
Bladder cancer poses a significant global health burden with high incidence and recurrence rates. This study addresses the therapeutic challenges in advanced bladder cancer, focusing on the competitive mechanisms of ligand or drug binding to receptors. We developed a refined mathematical model that integrates the dynamics of tumor cells and immune responses, particularly targeting fibroblast growth factor receptor 3 (FGFR3) and immune checkpoint inhibitors (ICIs). This study contributes to understanding combination therapies by elucidating the competitive binding dynamics and quantifying the synergistic effects. The findings highlight the importance of personalized immunotherapeutic strategies, considering factors such as drug dosage, dosing schedules, and patient-specific parameters. Our model further reveals that ligand-independent activated-state receptors are the most essential drivers of tumor proliferation. Moreover, we found that PD-L1 expression rate was more important than PD-1 in driving the dynamic evolution of tumor and immune cells. The proposed mathematical model provides a comprehensive framework for unraveling the complexities of combination therapies in advanced bladder cancer. As research progresses, this multidisciplinary approach contributes valuable insights toward optimizing therapeutic strategies and advancing cancer treatment paradigms.
Collapse
Affiliation(s)
- Chenghang Li
- School of Mathematical Sciences, Tiangong University, Tianjin, 300387, China
| | - Zonghang Ren
- School of Mathematical Sciences, Tiangong University, Tianjin, 300387, China
| | - Guiyu Yang
- School of Computer Science and Technology, Tiangong University, Tianjin, 300387, China
| | - Jinzhi Lei
- School of Mathematical Sciences, Tiangong University, Tianjin, 300387, China.
- Center for Applied Mathematics, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
36
|
Wen L, Hu W, Hou S, Luo C, Jin Y, Zeng Z, Zhang Z, Meng Y. GRB7 Plays a Vital Role in Promoting the Progression and Mediating Immune Evasion of Ovarian Cancer. Pharmaceuticals (Basel) 2024; 17:1043. [PMID: 39204147 PMCID: PMC11357674 DOI: 10.3390/ph17081043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/31/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Despite breakthroughs in treatment, ovarian cancer (OC) remains one of the most lethal gynecological malignancies, with an increasing age-standardized mortality rate. This underscores an urgent need for novel biomarkers and therapeutic targets. Although growth factor receptor-bound protein 7 (GRB7) is implicated in cell signaling and tumorigenesis, its expression pattern and clinical implications in OC remain poorly characterized. METHODS To systematically investigate GRB7's expression in OC, our study utilized extensive datasets from TCGA, GTEx, CCLE, and GEO. The prognostic significance of GRB7 was evaluated by means of Kaplan-Meier and Cox regression analyses. Using a correlation analysis and gene set enrichment analysis, relationships between GRB7's expression and gene networks, immune cell infiltration and immunotherapy response were investigated. In vitro experiments were conducted to confirm GRB7's function in the biology of OC. RESULTS Compared to normal tissues, OC tissues exhibited a substantial upregulation of GRB7. Reduced overall survival, disease-specific survival, and disease-free interval were all connected with high GRB7 mRNA levels. The network study demonstrated that GRB7 is involved in pathways relevant to the course of OC and has a positive connection with several key driver genes. Notably, GRB7's expression was linked to the infiltration of M2 macrophage and altered response to immunotherapy. Data from single-cell RNA sequencing data across multiple cancer types indicated GRB7's predominant expression in malignant cells. Moreover, OC cells with GRB7 deletion showed decreased proliferation and migration, as well as increased susceptibility to T cell-mediated cytotoxicity. CONCLUSION With respect to OC, our results validated GRB7 as a viable prognostic biomarker and a promising therapeutic target, providing information about its function in tumorigenesis and immune modulation. GRB7's preferential expression in malignant cells highlights its significance in the biology of cancer and bolsters the possibility that it could be useful in enhancing the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Liang Wen
- Chinese People’s Liberation Army (PLA) Medical School, Beijing 100853, China;
| | - Wei Hu
- Department of Emergency, The Fifth Medical Center of Chinese PLA Hospital, Beijing 100039, China;
| | - Sen Hou
- Department of Gastrointestinal Surgery, Peking University People’s Hospital, Beijing 100032, China;
| | - Ce Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100091, China; (C.L.); (Y.J.); (Z.Z.)
| | - Yiteng Jin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100091, China; (C.L.); (Y.J.); (Z.Z.)
| | - Zexian Zeng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100091, China; (C.L.); (Y.J.); (Z.Z.)
| | - Zhe Zhang
- Department of Obstetrics and Gynecology, Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Yuanguang Meng
- Chinese People’s Liberation Army (PLA) Medical School, Beijing 100853, China;
- Department of Obstetrics and Gynecology, Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| |
Collapse
|
37
|
Wu X, Feng N, Wang C, Jiang H, Guo Z. Small molecule inhibitors as adjuvants in cancer immunotherapy: enhancing efficacy and overcoming resistance. Front Immunol 2024; 15:1444452. [PMID: 39161771 PMCID: PMC11330769 DOI: 10.3389/fimmu.2024.1444452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Adjuvant therapy is essential in cancer treatment to enhance primary treatment effectiveness, reduce adverse effects, and prevent recurrence. Small molecule inhibitors as adjuvants in cancer immunotherapy aim to harness their immunomodulatory properties to optimize treatment outcomes. By modulating the tumor microenvironment, enhancing immune cell function, and increasing tumor sensitivity to immunotherapy, small molecule inhibitors have the potential to improve patient responses. This review discusses the evolving use of small molecule inhibitors as adjuvants in cancer treatment, highlighting their role in enhancing the efficacy of immunotherapy and the opportunities for advancing cancer therapies in the future.
Collapse
Affiliation(s)
- Xiaolin Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nuan Feng
- Department of Nutrition, Peking University People’s Hospital, Qingdao, China
- Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhu Guo
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
38
|
Huang X, Zhang W. Overcoming T Cell Exhaustion in Tumor Microenvironment via Immune Checkpoint Modulation with Nano-Delivery Systems for Enhanced Immunotherapy. SMALL METHODS 2024; 8:e2301326. [PMID: 38040834 DOI: 10.1002/smtd.202301326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/12/2023] [Indexed: 12/03/2023]
Abstract
Immune checkpoint blockade (ICB) therapy for tumors has arisen in growing interest. However, the low response rate of tumors to ICB is mainly attributed to the inhibitory infiltration of immune cells in the tumor microenvironment (TME). Despite the promising benefits of ICB, the therapeutic effects of antibodies are dependent on a high dose and long-term usage in the clinic, thereby leading to immune-related adverse effects. Accordingly, ICB combined with nano-delivery systems could be used to overcome T cell exhaustion, which reduces the side effects and the usage of antibodies with higher response rates in patients. In this review, the authors aim to overcome T cell exhaustion in TME via immune checkpoint modulation with nano-delivery systems for enhanced immunotherapy. Several strategies are summarized to combine ICB and nano-delivery systems to further enhance immunotherapy: a) expressing immune checkpoint on the surface of nano-delivery systems; b) loading immune checkpoint inhibitors into nano-delivery systems; c) loading gene-editing technology into nano-delivery systems; and d) nano-delivery systems mediated immune checkpoint modulation. Taken together, ICB combined with nano-delivery systems might be a promising strategy to overcome T cell exhaustion in TME for enhanced immunotherapy.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weiyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
39
|
Savage WM, Yeary MD, Tang AJ, Sperring CP, Argenziano MG, Adapa AR, Yoh N, Canoll P, Bruce JN. Biomarkers of immunotherapy in glioblastoma. Neurooncol Pract 2024; 11:383-394. [PMID: 39006524 PMCID: PMC11241363 DOI: 10.1093/nop/npae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Glioblastoma (GBM) is the most common primary brain cancer, comprising half of all malignant brain tumors. Patients with GBM have a poor prognosis, with a median survival of 14-15 months. Current therapies for GBM, including chemotherapy, radiotherapy, and surgical resection, remain inadequate. Novel therapies are required to extend patient survival. Although immunotherapy has shown promise in other cancers, including melanoma and non-small lung cancer, its efficacy in GBM has been limited to subsets of patients. Identifying biomarkers of immunotherapy response in GBM could help stratify patients, identify new therapeutic targets, and develop more effective treatments. This article reviews existing and emerging biomarkers of clinical response to immunotherapy in GBM. The scope of this review includes immune checkpoint inhibitor and antitumoral vaccination approaches, summarizing the variety of molecular, cellular, and computational methodologies that have been explored in the setting of anti-GBM immunotherapies.
Collapse
Affiliation(s)
- William M Savage
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Mitchell D Yeary
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Anthony J Tang
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Colin P Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Arjun R Adapa
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Nina Yoh
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
40
|
Abdel-Wahab N, Suarez-Almazor ME. Rheumatic adverse events of immune checkpoint inhibitors in cancer immunotherapy. Expert Rev Clin Immunol 2024; 20:873-893. [PMID: 38400840 PMCID: PMC11449381 DOI: 10.1080/1744666x.2024.2323966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
INTRODUCTION The advent of immune checkpoint inhibitors (ICIs) in cancer treatment has marked a transformative era, albeit tempered by immune-related adverse events (irAEs), including those impacting the musculoskeletal system. The lack of precise epidemiologic data on rheumatic irAEs is attributed to factors such as potential underrecognition, underreporting in clinical trials, and the tendency to overlook manifestations without immediate life-threatening implications, further complicating the determination of accurate incidence rates, while the complete understanding of the mechanisms driving rheumatic irAEs remains elusive. AREAS COVERED This literature review comprehensively examines rheumatic irAEs in cancer patients undergoing ICI therapy, encompassing epidemiology, risk factors, mechanisms, clinical manifestations, and current management guidance for prevalent conditions such as inflammatory arthritis, polymyalgia rheumatica, and myositis. Less frequent rheumatic and musculoskeletal irAEs are also explored, alongside insights into ongoing clinical trials testing therapeutic and preventive strategies for irAEs. A thorough literature search on Medline and the National Cancer Institute Clinical Trials Database was conducted up to October 2023 to compile relevant information. EXPERT OPINION In light of the evolving landscape of cancer immunotherapy, there is a compelling need for prospective longitudinal studies to enhance understanding and inform clinical management strategies for rheumatic irAEs.
Collapse
Affiliation(s)
- Noha Abdel-Wahab
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine; and Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Rheumatology and Rehabilitation, Assiut University Faculty of Medicine, Assiut University Hospitals, Assiut, Egypt
| | - Maria E Suarez-Almazor
- Department of Health Services Research; and Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
41
|
Al Assaad M, Safa H, Mercinelli C, Spiess PE, Necchi A, Chahoud J. Immune-based Therapies for Penile Cancer. Urol Clin North Am 2024; 51:355-365. [PMID: 38925738 DOI: 10.1016/j.ucl.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
This article reviews penile squamous cell carcinoma (PSCC), a rare genitourinary cancer that has been increasing in prevalence. It discusses emerging therapies, focusing on immunotherapy, vaccine therapy, and cell-based treatments, especially in the context of human papillomavirus-related PSCC. Factors influencing these therapies are discussed. These include the immune microenvironment, programmed cell death ligand-1 expression, and tumor immune cell infiltration. This article also highlights immune checkpoint inhibitors and related clinical trials. This review supports the use of personalized medicine in treating PSCC. It stresses the need for collaborative studies and data sharing to create specific treatment plans and achieve better outcomes.
Collapse
Affiliation(s)
- Majd Al Assaad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 413 East 69th Street, Belfer Research Building, New York, NY 10021, USA.
| | - Houssein Safa
- Department of Hematology/Oncology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Chiara Mercinelli
- Department of Medical Oncology, IRCCS San Raffaele Hospital; Medical Oncology Unit 2, Azienda Ospedaliero-Universitaria Pisana, Via Olgettina 60, Milan 20132, Italy
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive office 12538, Tampa, FL 33612, USA
| | - Andrea Necchi
- Department of Medical Oncology, IRCCS San Raffaele Hospital; Vita-Salute San Raffaele University, Via Olgettina 60, Milan 20132, Italy
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive office 12538, Tampa, FL 33612, USA.
| |
Collapse
|
42
|
Pangilinan C, Klionsky DJ, Liang C. Emerging dimensions of autophagy in melanoma. Autophagy 2024; 20:1700-1711. [PMID: 38497492 PMCID: PMC11262229 DOI: 10.1080/15548627.2024.2330261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 03/10/2024] [Indexed: 03/19/2024] Open
Abstract
Macroautophagy/autophagy has previously been regarded as simply a way for cells to deal with nutrient emergency. But explosive work in the last 15 years has given increasingly new knowledge to our understanding of this process. Many of the functions of autophagy that are unveiled from recent studies, however, cannot be reconciled with this conventional view of cell survival but, instead, point to autophagy being integrally involved at a deeper level of cell biology, playing a critical role in maintaining homeostasis and promoting an integrated stress/immune response. The new appreciation of the role of autophagy in the evolutionary trajectory of cancer and cancer interaction with the immune system provides a mechanistic framework for understanding the clinical benefits of autophagy-based therapies. Here, we examine current knowledge of the mechanisms and functions of autophagy in highly plastic and aggressive melanoma as a model disease of human malignancy, while highlighting emerging dimensions indicating that autophagy is at play beyond its classical face.Abbreviation: AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ATF4: activating transcription factor 4; ATG: autophagy related; BRAF: B-Raf proto-oncogene, serine/threonine kinase; CAFs: cancer-associated fibroblasts; CCL5: C-C motif chemokine ligand 5; CQ: chloroquine; CRISPR: clustered regularly interspaced short palindromic repeats; CTLA4: cytotoxic T-lymphocyte associated protein 4; CTL: cytotoxic T lymphocyte; DAMPs: danger/damage-associated molecular patterns; EGFR: epidermal growth factor receptor; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; FITM2: fat storage inducing transmembrane protein 2; HCQ: hydroxychloroquine; ICB: immune checkpoint blockade; ICD: immunogenic cell death; LDH: lactate dehydrogenase; MAPK: mitogen-activated protein kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; NDP52: nuclear dot protein 52; NFKB/NF-κ B: nuclear factor kappa B; NBR1: the neighbor of BRCA1; NK: natural killer; NRF1: nuclear respiratory factor 1; NSCLC: non-small-cell lung cancer; OPTN: optineurin; PDAC: pancreatic ductal adenocarcinoma; PDCD1/PD-1: programmed cell death 1; PPT1: palmitoyl-protein thioesterase 1; PTEN: phosphatase and tensin homolog; PTK2/FAK1: protein tyrosine kinase 2; RAS: rat sarcoma; SQSTM1/p62: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TGFB/TGF-β: transforming growth factor beta; TMB: tumor mutational burden; TME: tumor microenvironment; TSC1: TSC complex subunit 1; TSC2: TSC complex subunit 2; ULK1: unc-51 like autophagy activating kinase 1; UVRAG: UV radiation resistance associated.
Collapse
Affiliation(s)
- Christian Pangilinan
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | | | - Chengyu Liang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
43
|
Xi X, Yan X, Chen Y, Li W, Dong J, Ou X, Tan H. Cytokine release syndrome associated with immune checkpoint inhibitors: a pharmacovigilance study based on spontaneous reports in FAERS. Expert Opin Drug Saf 2024:1-8. [PMID: 39051882 DOI: 10.1080/14740338.2024.2385489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To describe cytokine release syndrome (CRS) associated with immune checkpoint inhibitors (ICIs) reported in the FDA Adverse Event Reporting System (FAERS). METHODS We obtained ICIs adverse event (AE) reports from January 2011 to September 2023 from the FAERS database. The preferred term (PT) 'cytokine release syndrome' from the Medical Dictionary for Regulatory Activities (MedDRA) 26.1 was used to identify cases with ICIs-related CRS. The reporting odds ratio (ROR) of the disproportionality method was performed to quantify the association between CRS and ICIs treatment strategy. RESULTS Three hundred and ninety-five cases were gathered. 42.03% of the patients were aged 18 to 65. Male patients outnumbered female patients (53.67% vs. 34.94%). The prevalent potential cancer types were lung cancer (33.42%) and skin cancer (20.51%). Japanese were responsible for the majority of ICIs-related CRS cases (176 cases). The combination of nivolumab and ipilimumab resulted in the most CRS cases (138 cases), and the ICIs combination therapy had the highest ROR signal value (ROR = 11.95 [10.14-14.06]). ICIs-related CRS had a median time to onset of 14 days (interquartile range [IQR] 7-43.25). CONCLUSIONS ICIs-related CRS is an increasingly important immune-related AE. Our study provided helpful information to help medical professionals learn more about ICIs-related CRS.
Collapse
Affiliation(s)
- Xin Xi
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xida Yan
- Department of Pharmacy, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Ying Chen
- Office of Good Clinical Practice, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, China
| | - Wenjun Li
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Dong
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Ou
- Office of Good Clinical Practice, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, China
| | - Haowen Tan
- Office of Good Clinical Practice, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, China
| |
Collapse
|
44
|
Tao J, Dhanjee HH, Gribble MW, Kottisch V, Rodriguez J, Brown JS, Schmidt H, Juneja J, Denhez F, Lee PS, Lipovšek D, Krystek S, Zhang Y, Bousquet P, Zhang Y, Pentelute BL, Buchwald SL. Site-Specific Antibody Prodrugs via S-Arylation: a Bioconjugation Approach Toward Masked Tyrosine Analogues. J Am Chem Soc 2024; 146:20080-20085. [PMID: 39001844 DOI: 10.1021/jacs.4c04035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
The utility of antibody therapeutics is hampered by potential cross-reactivity with healthy tissue. Over the past decade, significant advances have been made in the design of activatable antibodies, which increase, or create altogether, the therapeutic window of a parent antibody. Of these, antibody prodrugs (pro-antibodies) are masked antibodies that have advanced the most for therapeutic use. They are designed to reveal the active, parent antibody only when encountering proteases upregulated in the microenvironment of the targeted disease tissue, thereby minimizing off-target activity. However, current pro-antibody designs are relegated to fusion proteins that append masking groups restricted to the use of only canonical amino acids, offering excellent control of the site of introduction, but with no authority over where the masking group is installed other than the N-terminus of the antibody. Here, we present a palladium-based bioconjugation approach for the site-specific introduction of a masked tyrosine mimic in the complementary determining region of the FDA approved antibody therapeutic ipilimumab used as a model system. The approach enables the introduction of a protease cleavable group tethered to noncanonical polymers (polyethylene glycol (PEG)) resulting in 47-fold weaker binding to cells expressing CTLA-4, the target antigen of ipilimumab. Upon exposure to tumor-associated proteases, the masking group is cleaved, unveiling a tyrosine-mimic (dubbed hydroxyphenyl cysteine (HPC)) that restores (>90% restoration) binding affinity to its target antigen.
Collapse
Affiliation(s)
- Jason Tao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Heemal H Dhanjee
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael W Gribble
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Veronika Kottisch
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jacob Rodriguez
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Joseph S Brown
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Holly Schmidt
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Juhi Juneja
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Fabienne Denhez
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Peter S Lee
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Daša Lipovšek
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Stanley Krystek
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Yihong Zhang
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Patrick Bousquet
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Yong Zhang
- Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08544, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
45
|
Xia J, Zhang L, Peng X, Tu J, Li S, He X, Li F, Qiang J, Dong H, Deng Q, Liu C, Xu J, Zhang R, Liu Q, Hu G, Liu C, Jiang YZ, Shao ZM, Chen C, Liu S. IL1R2 Blockade Alleviates Immunosuppression and Potentiates Anti-PD-1 Efficacy in Triple-Negative Breast Cancer. Cancer Res 2024; 84:2282-2296. [PMID: 38657120 DOI: 10.1158/0008-5472.can-23-3429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. IL1 receptor type 2 (IL1R2) promotes breast tumor-initiating cell (BTIC) self-renewal and tumor growth in TNBC, indicating that targeting it could improve patient treatment. In this study, we observed that IL1R2 blockade strongly attenuated macrophage recruitment and the polarization of tumor-associated macrophages (TAM) to inhibit BTIC self-renewal and CD8+ T-cell exhaustion, which resulted in reduced tumor burden and prolonged survival in TNBC mouse models. IL1R2 activation by TAM-derived IL1β increased PD-L1 expression by interacting with the transcription factor Yin Yang 1 (YY1) and inducing YY1 ubiquitination and proteasomal degradation in both TAMs and TNBC cells. Loss of YY1 alleviated the transcriptional repression of c-Fos, which is a transcriptional activator of PDL-1. Combined treatment with an IL1R2-neutralizing antibodies and anti-PD-1 led to enhanced antitumor efficacy and reduced TAMs, BTICs, and exhausted CD8+ T cells. These results suggest that IL1R2 blockade might be a strategy to potentiate immune checkpoint blockade efficacy in TNBC to improve patient outcomes. Significance: IL1R2 in both macrophages and breast cancer cells orchestrates an immunosuppressive tumor microenvironment by upregulating PD-L1 expression and can be targeted to enhance the efficacy of anti-PD-1 in triple-negative breast cancer.
Collapse
Affiliation(s)
- Jie Xia
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xilei Peng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Siqin Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xueyan He
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fengkai Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiankun Qiang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haonan Dong
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiaodan Deng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cuicui Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiahui Xu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Zhang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chong Liu
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Precision Cancer Medical Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Precision Cancer Medical Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Academy of Biomedical Engineering and The Third Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
46
|
Uher O, Hadrava Vanova K, Taïeb D, Calsina B, Robledo M, Clifton-Bligh R, Pacak K. The Immune Landscape of Pheochromocytoma and Paraganglioma: Current Advances and Perspectives. Endocr Rev 2024; 45:521-552. [PMID: 38377172 PMCID: PMC11244254 DOI: 10.1210/endrev/bnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues and extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically "cold" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting "cold" tumors into immunologically active or "hot" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.
Collapse
Affiliation(s)
- Ondrej Uher
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - Katerina Hadrava Vanova
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - David Taïeb
- Department of Nuclear Medicine, CHU de La Timone, Marseille 13005, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Familiar Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney 2065, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney 2065, NSW, Australia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| |
Collapse
|
47
|
Hu S, Han P, Wang M, Cao X, Liu H, Zhang S, Zhang S, Liu J, Han Y, Xiao J, Chen Q, Miao K, Qi J, Tan S, Gao GF, Wang H. Structural basis for the immune recognition and selectivity of the immune receptor PVRIG for ligand Nectin-2. Structure 2024; 32:918-929.e4. [PMID: 38626767 DOI: 10.1016/j.str.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 06/27/2024]
Abstract
Nectin and nectin-like (Necl) co-receptor axis, comprised of receptors DNAM-1, TIGIT, CD96, PVRIG, and nectin/Necl ligands, is gaining prominence in immuno-oncology. Within this axis, the inhibitory receptor PVRIG recognizes Nectin-2 with high affinity, but the underlying molecular basis remains unknown. By determining the crystal structure of PVRIG in complex with Nectin-2, we identified a unique CC' loop in PVRIG, which complements the double-lock-and-key binding mode and contributes to its high affinity for Nectin-2. The association of the corresponding charged residues in the F-strands explains the ligand selectivity of PVRIG toward Nectin-2 but not for Necl-5. Moreover, comprehensive comparisons of the binding capacities between co-receptors and ligands provide innovative insights into the intra-axis immunoregulatory mechanism. Taken together, these findings broaden our understanding of immune recognition and regulation mediated by nectin/Necl co-receptors and provide a rationale for the development of immunotherapeutic strategies targeting the nectin/Necl axis.
Collapse
Affiliation(s)
- Songtao Hu
- Institutes of Physical Science and Information Technology, Anhui University, Anhui 230601, China; Cancer Center, Faculty of Health Sciences, University of Macau, Taipa Macau SAR, China; Beijing Life Science Academy, Beijing 102200, China
| | - Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Meiyu Wang
- Institutes of Physical Science and Information Technology, Anhui University, Anhui 230601, China
| | - Xiaoqing Cao
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101125, China
| | - Hao Liu
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa Macau SAR, China
| | - Shuailong Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Anhui 230601, China
| | - Shuijun Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yi Han
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101125, China
| | - Jinhe Xiao
- Department of Prevention and Treatment of Breast Disease, Haidian District Maternal and Child Health Care Hospital, Beijing 100080, China
| | - Qiang Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa Macau SAR, China
| | - Kai Miao
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa Macau SAR, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Han Wang
- Beijing Life Science Academy, Beijing 102200, China; Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100080, China.
| |
Collapse
|
48
|
Yuan C, Wang Y, Guo ZS. Editorial: Recent advances in gene modified immune cells and oncolytic virus for cancer immunotherapy. Front Immunol 2024; 15:1454183. [PMID: 39026671 PMCID: PMC11254808 DOI: 10.3389/fimmu.2024.1454183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Affiliation(s)
- Cunzhong Yuan
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yao Wang
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zong Sheng Guo
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
49
|
Chae YJ, Lee KG, Oh D, Lee SK, Park Y, Kim J. Antibody-Conjugated Nanogel with Two Immune Checkpoint Inhibitors for Enhanced Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2400235. [PMID: 38569198 DOI: 10.1002/adhm.202400235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/01/2024] [Indexed: 04/05/2024]
Abstract
Cancer immunotherapy by immune checkpoint inhibitors (ICIs) acts on antitumor responses by stimulating the immune system to attack cancer cells. However, this powerful therapy is hampered by its high treatment cost and limited efficacy. Here, it is shown that the development of an antibody-conjugated nanogel (ANGel), consisting of N-isopropylacrylamide-co-acrylic acid and antibody-binding protein (protein A), potentiates the efficacy of two ICI monoclonal antibodies (mAbs) (cytotoxic-T-lymphocyte-associated antigen 4 and programmed death ligand-1 mAbs). Compared with mAb treatment alone, treatment with a bispecific ANGel surface-conjugated with the mAbs significantly decreases both the survival of Michigan Cancer Foundation-7 (MCF-7) and M D Anderson-Metastatic Breast-231 (MDA-MB-231) breast cancer cells in vitro and the burden of 4T1-luciferase-2-derived orthotopic syngeneic tumors in vivo. The bispecific ANGel is also more potent than the conventional treatment at prolonging survival in animals with triple-negative breast cancer. The advantage of the bispecific ANGel over other engineered bispecific antibodies arises not only from the adaptability to link multiple antibodies quickly and easily, but also from the capability to maintain the anticancer effect steadily at subcutaneously delivered tumor site. This finding has an important implication for cancer immunotherapy, opening a new paradigm to treat solid tumors.
Collapse
Affiliation(s)
- Yun Jin Chae
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul, 02796, Republic of Korea
| | - Kang-Gon Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Doogie Oh
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul, 02796, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Su-Kyoung Lee
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul, 02796, Republic of Korea
| | - Yongdoo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jongseong Kim
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul, 02796, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
50
|
Kono K, Nakajima S, Mimura K. Biomarker-oriented chemo-immunotherapy for advanced gastric cancer. Int J Clin Oncol 2024; 29:865-872. [PMID: 38647874 DOI: 10.1007/s10147-024-02525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
The biomarker-oriented chemo-immunotherapy is useful and promising in the development of new anticancer agents, since the responders can be enriched by selecting patients with biomarkers. Compared to colorectal and lung cancers, the development of biomarker-driven molecular-targeted therapeutics for gastric cancers has been straggled. However, several new biomarkers in gastric cancers have been discovered and clinical trials in enrichment design with certain biomarkers have been conducted. Therefore, there are currently several treatment options to treat gastric cancer patients based on individual biomarker-oriented strategies. In the present review, we describe the useful biomarkers in gastric cancer, with focusing on HER2, PD-L1, and Claudin18.2, in relation to their clinical significance and associated targeted agents.
Collapse
Affiliation(s)
- Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan.
| | - Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan
- Department of Multidisciplinary Treatment of Cancer and Regional Medical Support, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima, 960-1295, Japan
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 960-1295, Japan
| |
Collapse
|