1
|
Brajkovic V, Pocrnic I, Kaps M, Špehar M, Cubric-Curik V, Ristov S, Novosel D, Gorjanc G, Curik I. Quantifying the effects of the mitochondrial genome on milk production traits in dairy cows: Empirical results and modeling challenges. J Dairy Sci 2025; 108:664-678. [PMID: 39414016 DOI: 10.3168/jds.2024-25203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024]
Abstract
Substantial advances in livestock traits have been achieved primarily through selection strategies targeting variation in the nuclear genome, with little attention given to mitogenome variation. We analyzed the influence of the mitogenome on milk production traits of Holstein cattle in Croatia based on strategically generated next-generation sequencing data for 109 cows pedigree-linked to 7,115 milk production records (milk, fat, and protein yield) from 3,006 cows (first 5 lactations). Because little is known about the biology of the relationship between mitogenome variation and production traits, our quantitative genetic modeling was complex. Thus, the proportion of total variance explained by mitogenome inheritance was estimated using 5 different models: (1) a cytoplasmic model with maternal lineages (CYTO), (2) a haplotypic model with mitogenome sequences (HAPLO), (3) an amino acid model with unique amino acid sequences (AMINO), (4) an evolutionary model based on a phylogenetic analysis using Bayesian Evolutionary Analysis Sampling Trees phylogenetic analysis (EVOL), and (5) a mitogenome SNP model (SNPmt). The polygenic autosomal and X chromosome additive genetic effects based on pedigree were modeled, together with the effects of herd-year-season interaction, permanent environment, location, and age at first calving. The estimated proportions of phenotypic variance explained by mitogenome in 4 different models (CYTO, HAPLO, AMINO, and SNPmt) were found to be substantial given the size of mitogenome, ranging from 5% to 7% for all 3 milk traits. At the same time, a negligible proportion of the phenotypic variance was explained by mitogenome with the EVOL model. Similarly, in all models, no proportion of phenotypic variance was explained by the X chromosome. Although our results should be confirmed in other dairy cattle populations, including a large number of sequenced mitogenomes and nuclear genomes, the potential of utilizing mitogenome information in animal breeding is promising, especially as the acquisition of complete genome sequences becomes cost-effective.
Collapse
Affiliation(s)
- Vladimir Brajkovic
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb 10000, Croatia.
| | - Ivan Pocrnic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Miroslav Kaps
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb 10000, Croatia
| | - Marija Špehar
- Croatian Agency for Agriculture and Food, Zagreb 10000, Croatia
| | - Vlatka Cubric-Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb 10000, Croatia
| | | | - Dinko Novosel
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb 10000, Croatia; Croatian Veterinary Institute, Zagreb 10000, Croatia
| | - Gregor Gorjanc
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb 10000, Croatia; Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), 7400 Kaposvár, Hungary.
| |
Collapse
|
2
|
Rahimi Darehbagh R, Khanmohammadi S, Rezaei N. The role of mitochondrial DNA variants and dysfunction in the pathogenesis and progression of multiple sclerosis. Mitochondrion 2024; 81:102002. [PMID: 39732186 DOI: 10.1016/j.mito.2024.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/10/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS). The etiology of MS remains elusive, with a complex interplay of genetic and environmental factors contributing to its pathogenesis. Recent studies showed mitochondrial DNA (mtDNA) as a potential player in the development and progression of MS. These studies encompassed mtDNA variants, copy number variations, and haplogroups. This narrative review aims to synthesize the current understanding of the role of mtDNA's in MS. The findings of this review suggest that mtDNA may indeed play a role in the development and progression of MS. Several studies have reported an association between mtDNA variants and increased susceptibility to MS, while others have found a link between mtDNA copy number variations and disease severity. Furthermore, specific mtDNA haplogroups have been demonstrated to confer protection against MS. MtDNA alterations may make neurons and oligodendrocytes more susceptible to inflammatory and oxidative stress, causing demyelination and axonal degeneration in MS patients. In conclusion, this review underscores the potential significance of mtDNA in the pathogenesis of MS and highlights the need for further research to fully elucidate its role. A deeper understanding of mtDNA's involvement in MS may pave the way for the development of novel therapeutic strategies to combat this debilitating disease.
Collapse
Affiliation(s)
- Ramyar Rahimi Darehbagh
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran; Nanoclub Elites Association, Tehran, Iran; Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Universal Scientific Education and Research Network (USERN), Sanandaj, Kurdistan, Iran
| | - Shaghayegh Khanmohammadi
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Cavalcanti P, Nogueira TLS, Carvalho EFDE, Silva DADA. Forensic use of human mitochondrial DNA: A review. AN ACAD BRAS CIENC 2024; 96:e20231179. [PMID: 39570164 DOI: 10.1590/0001-3765202420231179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/03/2024] [Indexed: 11/22/2024] Open
Abstract
In forensics, genetic human identification is generally achieved by nuclear STR DNA typing. However, forensic samples often yield DNA in exiguous quantity and low quality, impairing the generation of conclusive DNA profiles by STR typing. In such cases, mitochondrial DNA (mtDNA) can be used as an alternative solution in forensic human identification. The high copy number, small circular DNA, high mutation rate, maternal inheritance, and absence of recombination are mtDNA's key features in forensics. In this work, we review mtDNA characteristics, forensic applications, sequencing methodologies and present some relevant examples in the forensic science literature.
Collapse
Affiliation(s)
- Pablo Cavalcanti
- State University of Rio de Janeiro (UERJ), DNA Diagnostic Laboratory (LDD), São Francisco Xavier St., 524, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
- State University of Rio de Janeiro (UERJ), Postgraduate Program in Biosciences, 28 de Setembro Ave., 87, 4th Floor, Vila Isabel, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Tatiana Lúcia S Nogueira
- Brazilian Army Institute of Biology, Francisco Manuel St., 102, Triagem, 20911-270 Rio de Janeiro, RJ, Brazil
| | - Elizeu F DE Carvalho
- State University of Rio de Janeiro (UERJ), DNA Diagnostic Laboratory (LDD), São Francisco Xavier St., 524, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
- State University of Rio de Janeiro (UERJ), Postgraduate Program in Biosciences, 28 de Setembro Ave., 87, 4th Floor, Vila Isabel, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Dayse A DA Silva
- State University of Rio de Janeiro (UERJ), DNA Diagnostic Laboratory (LDD), São Francisco Xavier St., 524, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil
- State University of Rio de Janeiro (UERJ), Postgraduate Program in Biosciences, 28 de Setembro Ave., 87, 4th Floor, Vila Isabel, 20551-030 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Salminen TS, Vesala L, Basikhina Y, Kutzer M, Tuomela T, Lucas R, Monteith K, Prakash A, Tietz T, Vale PF. A naturally occurring mitochondrial genome variant confers broad protection from infection in Drosophila. PLoS Genet 2024; 20:e1011476. [PMID: 39527645 PMCID: PMC11614270 DOI: 10.1371/journal.pgen.1011476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/03/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The role of mitochondria in immunity is increasingly recognized, but it is unclear how variation in mitochondrial DNA (mtDNA) contributes to variable infection outcomes. To quantify the effect of mtDNA variation on humoral and cell-mediated innate immune responses, we utilized a panel of fruit fly Drosophila melanogaster cytoplasmic hybrids (cybrids), where unique mtDNAs (mitotypes) were introgressed into a controlled isogenic nuclear background. We observed substantial heterogeneity in infection outcomes within the cybrid panel upon bacterial, viral and parasitoid infections, driven by the mitotype. One of the mitotypes, mtKSA2, protected against bacterial, parasitoid, and to a lesser extent, viral infections. Enhanced survival was not a result of improved bacterial clearance, suggesting mtKSA2 confers increased disease tolerance. Transcriptome sequencing showed that the mtKSA2 mitotype had an upregulation of genes related to mitochondrial respiration and phagocytosis in uninfected flies. Upon infection, mtKSA2 flies exhibited infection type and duration specific transcriptomic changes. Furthermore, uninfected mtKSA2 larvae showed immune activation of hemocytes (immune cells), increased hemocyte numbers and ROS production, and enhanced encapsulation response against parasitoid wasp eggs and larvae. Our results show that mtDNA variation acts as an immunomodulatory factor in both humoral and cell-mediated innate immunity and that specific mitotypes can provide broad protection against infections.
Collapse
Affiliation(s)
- Tiina S. Salminen
- Mitochondrial Immunometabolism research group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Vesala
- Mitochondrial Immunometabolism research group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Yuliya Basikhina
- Mitochondrial Immunometabolism research group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Megan Kutzer
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tea Tuomela
- Mitochondrial Immunometabolism research group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ryan Lucas
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Katy Monteith
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Arun Prakash
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tilman Tietz
- Mitochondrial Immunometabolism research group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Pedro F. Vale
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Sun X, Bulekova K, Yang J, Lai M, Pitsillides AN, Liu X, Zhang Y, Guo X, Yong Q, Raffield LM, Rotter JI, Rich SS, Abecasis G, Carson AP, Vasan RS, Bis JC, Psaty BM, Boerwinkle E, Fitzpatrick AL, Satizabal CL, Arking DE, Ding J, Levy D, Liu C. Association analysis of mitochondrial DNA heteroplasmic variants: Methods and application. Mitochondrion 2024; 79:101954. [PMID: 39245194 PMCID: PMC11568909 DOI: 10.1016/j.mito.2024.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
We rigorously assessed a comprehensive association testing framework for heteroplasmy, employing both simulated and real-world data. This framework employed a variant allele fraction (VAF) threshold and harnessed multiple gene-based tests for robust identification and association testing of heteroplasmy. Our simulation studies demonstrated that gene-based tests maintained an appropriate type I error rate at α = 0.001. Notably, when 5 % or more heteroplasmic variants within a target region were linked to an outcome, burden-extension tests (including the adaptive burden test, variable threshold burden test, and z-score weighting burden test) outperformed the sequence kernel association test (SKAT) and the original burden test. Applying this framework, we conducted association analyses on whole-blood derived heteroplasmy in 17,507 individuals of African and European ancestries (31 % of African Ancestry, mean age of 62, with 58 % women) with whole genome sequencing data. We performed both cohort- and ancestry-specific association analyses, followed by meta-analysis on both pooled samples and within each ancestry group. Our results suggest that mtDNA-encoded genes/regions are likely to exhibit varying rates in somatic aging, with the notably strong associations observed between heteroplasmy in the RNR1 and RNR2 genes (p < 0.001) and advance aging by the Original Burden test. In contrast, SKAT identified significant associations (p < 0.001) between diabetes and the aggregated effects of heteroplasmy in several protein-coding genes. Further research is warranted to validate these findings. In summary, our proposed statistical framework represents a valuable tool for facilitating association testing of heteroplasmy with disease traits in large human populations.
Collapse
Affiliation(s)
- Xianbang Sun
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Katia Bulekova
- Research Computing Services, Boston University, Boston, MA 02215, USA
| | - Jian Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Meng Lai
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Achilleas N Pitsillides
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Xue Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Yuankai Zhang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Qian Yong
- Longitudinal Studies Section, Translational Gerontology Branch, NIA/NIH, Baltimore, MD 21224, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Stephen S Rich
- Department of Public Health Services, Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Goncalo Abecasis
- TOPMed Informatics Research Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ramachandran S Vasan
- Sections of Preventive Medicine and Epidemiology, and Cardiovascular Medicine, Boston University School of Medicine, Boston, MA, 02118, USA; Framingham Heart Study, NHLBI/NIH, Framingham, MA 01702, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA; Departments of Epidemiology, and Health Services, University of Washington, Seattle, WA 98101, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Annette L Fitzpatrick
- Departments of Family Medicine, Epidemiology, and Global Health, University of Washington, Seattle, WA 98195, USA
| | - Claudia L Satizabal
- Framingham Heart Study, NHLBI/NIH, Framingham, MA 01702, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, MD 21205, USA
| | - Jun Ding
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Daniel Levy
- Framingham Heart Study, NHLBI/NIH, Framingham, MA 01702, USA; Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA; Framingham Heart Study, NHLBI/NIH, Framingham, MA 01702, USA.
| |
Collapse
|
6
|
Chen M, Jiang Y, Zhang Y, Chen X, Xie L, Xie L, Zeng T, Liu Y, Liu H, Wang M, Chen X, Zhang Z, He Y, Qin X, Lu C, Chen Q, Yang H. Visualization of Biomolecular Radiation Damage at the Single-Particle Level Using Lanthanide-Sensitized DNA Origami. NANO LETTERS 2024; 24:11690-11696. [PMID: 39225657 DOI: 10.1021/acs.nanolett.4c03307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Precise monitoring of biomolecular radiation damage is crucial for understanding X-ray-induced cell injury and improving the accuracy of clinical radiotherapy. We present the design and performance of lanthanide-DNA-origami nanodosimeters for directly visualizing radiation damage at the single-particle level. Lanthanide ions (Tb3+ or Eu3+) coordinated with DNA origami nanosensors enhance the sensitivity of X-ray irradiation. Atomic force microscopy (AFM) revealed morphological changes in Eu3+-sensitized DNA origami upon X-ray irradiation, indicating damage caused by ionization-generated electrons and free radicals. We further demonstrated the practical applicability of Eu3+-DNA-origami integrated chips in precisely monitoring radiation-mediated cancer radiotherapy. Quantitative results showed consistent trends with flow cytometry and histological examination under comparable X-ray irradiation doses, providing an affordable and user-friendly visualization tool for preclinical applications. These findings provide new insights into the impact of heavy metals on radiation-induced biomolecular damage and pave the way for future research in developing nanoscale radiation sensors for precise clinical radiography.
Collapse
Affiliation(s)
- Minle Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yijuan Jiang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yongjie Zhang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xiaoling Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Lei Xie
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Lili Xie
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Tao Zeng
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yana Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Hao Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Min Wang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xiaofeng Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Zhenzhen Zhang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yu He
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xian Qin
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China
| | - Chunhua Lu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Qiushui Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
7
|
Shan S, Chao S, Liu Z, Wang S, Liu Z, Zhang C, Cheng D, Su Z, Song F. TREM2 protects against inflammation by regulating the release of mito-DAMPs from hepatocytes during liver fibrosis. Free Radic Biol Med 2024; 220:154-165. [PMID: 38710340 DOI: 10.1016/j.freeradbiomed.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Liver fibrosis typically develops as a result of chronic liver injury, which involves inflammatory and regenerative processes. The triggering receptor expressed on myeloid cells 2 (TREM2), predominantly expressing in hepatic non-parenchymal cells, plays a crucial role in regulating the function of macrophages. However, its mechanism in liver fibrosis remains poorly defined. METHODS Experimental liver fibrosis models in wild type and TREM2-/- mice, and in vitro studies with AML-12 cells and Raw264.7 cells were conducted. The expression of TREM2 and related molecular mechanism were evaluated by using samples from patients with liver fibrosis. RESULTS We demonstrated that TREM2 was upregulated in murine model with liver fibrosis. Mice lacking TREM2 exhibited reduced phagocytosis activity in macrophages following carbon tetrachloride (CCl4) intoxication. As a result, there was an increased accumulation of necrotic apoptotic hepatocytes. Additionally, TREM2 knockout aggravated the release of mitochondrial damage-associated molecular patterns (mito-DAMPs) from dead hepatocytes during CCl4 exposure, and further promoted the occurrence of macrophage-mediated M1 polarization. Then, TREM2-/- mice showed more serious fibrosis pathological changes. In vitro, the necrotic apoptosis inhibitor GSK872 effectively alleviated the release of mito-DAMPs in AML-12 cells after CCl4 intoxication, which confirmed that mito-DAMPs originated from dead liver cells. Moreover, direct stimulation of Raw264.7 cells by mito-DAMPs from liver tissue can induce intracellular inflammatory response. More importantly, TREM2 was elevated and inflammatory factors were markedly accumulated surrounding dead cells in the livers of human patients with liver fibrosis. CONCLUSION Our study highlights that TREM2 serves as a negative regulator of liver fibrosis, suggesting its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Shulin Shan
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China; Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan, Shandong, 250014, China
| | - Shihua Chao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Zhidan Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Zhaoxiong Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Cuiqin Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Dong Cheng
- Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan, Shandong, 250014, China
| | - Zhenhui Su
- Department of Pathology, Shandong Provincial Hospital, 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
8
|
Chang X, Qu HQ, Liu Y, Glessner JT, Hakonarson H. Mitochondrial DNA Haplogroup K Is Protective Against Autism Spectrum Disorder Risk in Populations of European Ancestry. J Am Acad Child Adolesc Psychiatry 2024; 63:835-844. [PMID: 38072244 PMCID: PMC11186604 DOI: 10.1016/j.jaac.2023.09.550] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 09/23/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Accumulative evidence indicates a critical role of mitochondrial function in autism spectrum disorders (ASD), implying that ASD risk may be linked to mitochondrial dysfunction due to DNA (mtDNA) variations. Although a few studies have explored the association between mtDNA variations and ASD, the role of mtDNA in ASD is still unclear. Here, we aimed to investigate whether mitochondrial DNA haplogroups are associated with the risk of ASD. METHOD Two European cohorts and an Ashkenazi Jewish (AJ) cohort were analyzed, including 2,062 ASD patients in comparison with 4,632 healthy controls. DNA samples were genotyped using Illumina HumanHap550/610 and Illumina 1M arrays, inclusive of mitochondrial markers. Mitochondrial DNA (mtDNA) haplogroups were identified from genotyping data using HaploGrep2. A mitochondrial genome imputation pipeline was established to detect mtDNA variants. We conducted a case-control study to investigate potential associations of mtDNA haplogroups and variants with the susceptibility to ASD. RESULTS We observed that the ancient adaptive mtDNA haplogroup K was significantly associated with decreased risk of ASD by the investigation of 2 European cohorts including a total of 2,006 cases and 4,435 controls (odds ratio = 0.64, P=1.79 × 10-5), and we replicated this association in an Ashkenazi Jewish (AJ) cohort including 56 cases and 197 controls (odds ratio = 0.35, P = 9.46 × 10-3). Moreover, we demonstrate that the mtDNA variants rs28358571, rs28358584, and rs28358280 are significantly associated with ASD risk. Further expression quantitative trait loci (eQTLs) analysis indicated that the rs28358584 and rs28358280 genotypes are associated with expression levels of nearby genes in brain tissues, suggesting those mtDNA variants may confer risk for ASD via regulation of expression levels of genes encoded by the mitochondrial genome. CONCLUSION This study helps to shed light on the contribution of mitochondria in ASD and provides new insights into the genetic mechanism underlying ASD, suggesting the potential involvement of mtDNA-encoded proteins in the development of ASD. PLAIN LANGUAGE SUMMARY Increasing evidence indicates that mitochondrial dysfunction may be linked to autism spectrum disorder (ASD). This study investigated potential associations of mitochondrial DNA (mtDNA) variants in 2 European and Ashkenazi Jewish cohorts including 2,062 individuals with ASD and 4,632 healthy controls. Researchers found that the ancient mtDNA haplogroup K was linked to a reduced risk of ASD in both European and Ashkenazi Jewish populations. Additionally, specific mtDNA variants were associated with ASD risk and were shown to influence the expression of nearby genes in the brain. These findings highlight the potential involvement of mtDNA in ASD development, offering new insights into the genetic mechanisms underlying the disorder.
Collapse
Affiliation(s)
- Xiao Chang
- Children's Hospital of Philadelphia, Pennsylvania, United States; Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China.
| | - Hui-Qi Qu
- Children's Hospital of Philadelphia, Pennsylvania, United States
| | - Yichuan Liu
- Children's Hospital of Philadelphia, Pennsylvania, United States
| | | | - Hakon Hakonarson
- Children's Hospital of Philadelphia, Pennsylvania, United States; The Perelman School of Medicine, University of Pennsylvania, Pennsylvania, United States and Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
9
|
Rigobello L, Lugli F, Caporali L, Bartocci A, Fadanni J, Zerbetto F, Iommarini L, Carelli V, Ghelli AM, Musiani F. A computational study to assess the pathogenicity of single or combinations of missense variants on respiratory complex I. Int J Biol Macromol 2024; 273:133086. [PMID: 38871105 DOI: 10.1016/j.ijbiomac.2024.133086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Variants found in the respiratory complex I (CI) subunit genes encoded by mitochondrial DNA can cause severe genetic diseases. However, it is difficult to establish a priori whether a single or a combination of CI variants may impact oxidative phosphorylation. Here we propose a computational approach based on coarse-grained molecular dynamics simulations aimed at investigating new CI variants. One of the primary CI variants associated with the Leber hereditary optic neuropathy (m.14484T>C/MT-ND6) was used as a test case and was investigated alone or in combination with two additional rare CI variants whose role remains uncertain. We found that the primary variant positioned in the E-channel region, which is fundamental for CI function, stiffens the enzyme dynamics. Moreover, a new mechanism for the transition between π- and α-conformation in the helix carrying the primary variant is proposed. This may have implications for the E-channel opening/closing mechanism. Finally, our findings show that one of the rare variants, located next to the primary one, further worsens the stiffening, while the other rare variant does not affect CI function. This approach may be extended to other variants candidate to exert a pathogenic impact on CI dynamics, or to investigate the interaction of multiple variants.
Collapse
Affiliation(s)
- Laura Rigobello
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna I-40127, Italy
| | - Francesca Lugli
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna I-40126, Italy.
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna I-40124, Italy
| | - Alessio Bartocci
- Department of Physics, University of Trento, Trento I-38123, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento I-38123, Italy
| | - Jacopo Fadanni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna I-40126, Italy
| | - Francesco Zerbetto
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna I-40126, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna I-40127, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna I-40124, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna I-40123, Italy
| | - Anna Maria Ghelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna I-40127, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna I-40124, Italy
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna I-40127, Italy.
| |
Collapse
|
10
|
Olbrich M, Hartmann AM, Künzel S, Aherrahrou Z, Schilf P, Baines JF, Ibrahim SM, Hirose M. Mitochondrial DNA variants and microbiota: An experimental strategy to identify novel therapeutic potential in chronic inflammatory diseases. Pharmacol Res 2024; 205:107231. [PMID: 38815878 DOI: 10.1016/j.phrs.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/06/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
We previously demonstrated that mice carrying natural mtDNA variants of the FVB/NJ strain (m.7778 G>T in the mt-Atp8 gene in mitochondrial complex V), namely C57BL/6 J-mtFVB/NJ (B6-mtFVB), exhibited (i) partial protection from experimental skin inflammatory diseases in an anti-murine type VII collagen antibody-induced skin inflammation model and psoriasiform dermatitis model; (ii) significantly altered metabolites, including short-chain fatty acids, according to targeted metabolomics of liver, skin and lymph node samples; and (iii) a differential composition of the gut microbiota according to bacterial 16 S rRNA gene sequencing of stool samples compared to wild-type C57BL/6 J (B6) mice. To further dissect these disease-contributing factors, we induced an experimental antibody-induced skin inflammatory disease in gnotobiotic mice. We performed shotgun metagenomic sequencing of caecum contents and untargeted metabolomics of liver, CD4+ T cell, and caecum content samples from conventional B6-mtFVB and B6 mice. We identified D-glucosamine as a candidate mediator that ameliorated disease severity in experimental antibody-induced skin inflammation by modulating immune cell function in T cells, neutrophils and macrophages. Because mice carrying mtDNA variants of the FVB/NJ strain show differential disease susceptibility to a wide range of experimental diseases, including diet-induced atherosclerosis in low-density lipoprotein receptor knockout mice and collagen antibody-induced arthritis in DBA/1 J mice, this experimental approach is valuable for identifying novel therapeutic options for skin inflammatory conditions and other chronic inflammatory diseases to which mice carrying specific mtDNA variants show differential susceptibility.
Collapse
Affiliation(s)
- Michael Olbrich
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates; University Heart Centre Lübeck, Lübeck, Germany
| | | | - Sven Künzel
- Max Plank Institute of Evolutionary Biology, Plön, Germany; University Heart Centre Lübeck, Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg / Kiel / Lübeck, Germany; University Heart Centre Lübeck, Lübeck, Germany
| | - Paul Schilf
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; University Heart Centre Lübeck, Lübeck, Germany
| | - John F Baines
- Max Plank Institute of Evolutionary Biology, Plön, Germany; University Heart Centre Lübeck, Lübeck, Germany; Institute of Experimental Medicine, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Saleh M Ibrahim
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates; University Heart Centre Lübeck, Lübeck, Germany; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Misa Hirose
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; University Heart Centre Lübeck, Lübeck, Germany; Lübeck Institute of Neurobiology, University of Lübeck, Germany.
| |
Collapse
|
11
|
Ferreira LL, Gonçalves ABR, Adiala IJB, Loiola S, Dias A, Azulay RS, Silva DA, Gomes MB. A pilot study of mitochondrial genomic ancestry in admixed Brazilian patients with type 1 diabetes. Diabetol Metab Syndr 2024; 16:130. [PMID: 38879575 PMCID: PMC11179274 DOI: 10.1186/s13098-024-01342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/01/2024] [Indexed: 06/19/2024] Open
Abstract
Interactions between multiple genes and environmental factors could be related to the pathogenesis of type 1 diabetes (T1D). The Brazilian population results from different historical miscegenation events, resulting in a highly diverse genetic pool. This study aimed to analyze the mtDNA of patients with T1D and to investigate whether there is a relationship between maternal ancestry, self-reported color and the presence of T1D. The mtDNA control region of 204 patients with T1D residing in three geographic regions of Brazil was sequenced following the International Society for Forensic Genetics (ISFG) recommendations. We obtained a frequency of Native American matrilineal origin (43.6%), African origin (38.2%), and European origin (18.1%). For self-declared color, 42.6% of the patients with diabetes reported that they were White, 50.9% were Brown, and 5.4% were Black. Finally, when we compared the self-declaration data with maternal ancestral origin, we found that for the self-declared White group, there was a greater percentage of haplogroups of Native American origin (50.6%); for the self-declared Black group, there was a greater percentage of African haplogroups (90.9%); and for the Brown group, there was a similar percentage of Native American and African haplogroups (42.3% and 45.2%, respectively). The Brazilian population with diabetic has a maternal heritage of more than 80% Native American and African origin, corroborating the country's colonization history.
Collapse
Affiliation(s)
- Lívia Leite Ferreira
- DNA Diagnostic Laboratory, IBRAG, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Silvia Loiola
- DNA Diagnostic Laboratory, IBRAG, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra Dias
- Forensic Science and Technology Laboratory, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rossana Sousa Azulay
- Service of Endocrinology, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Dayse Aparecida Silva
- DNA Diagnostic Laboratory, IBRAG, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marília Brito Gomes
- Department of Internal Medicine, Diabetes Unit, Rio de Janeiro State University (UERJ), Boulevard 28 Setembro 77, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Guarnieri JW, Haltom JA, Albrecht YES, Lie T, Olali AZ, Widjaja GA, Ranshing SS, Angelin A, Murdock D, Wallace DC. SARS-CoV-2 mitochondrial metabolic and epigenomic reprogramming in COVID-19. Pharmacol Res 2024; 204:107170. [PMID: 38614374 DOI: 10.1016/j.phrs.2024.107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
To determine the effects of SARS-CoV-2 infection on cellular metabolism, we conducted an exhaustive survey of the cellular metabolic pathways modulated by SARS-CoV-2 infection and confirmed their importance for SARS-CoV-2 propagation by cataloging the effects of specific pathway inhibitors. This revealed that SARS-CoV-2 strongly inhibits mitochondrial oxidative phosphorylation (OXPHOS) resulting in increased mitochondrial reactive oxygen species (mROS) production. The elevated mROS stabilizes HIF-1α which redirects carbon molecules from mitochondrial oxidation through glycolysis and the pentose phosphate pathway (PPP) to provide substrates for viral biogenesis. mROS also induces the release of mitochondrial DNA (mtDNA) which activates innate immunity. The restructuring of cellular energy metabolism is mediated in part by SARS-CoV-2 Orf8 and Orf10 whose expression restructures nuclear DNA (nDNA) and mtDNA OXPHOS gene expression. These viral proteins likely alter the epigenome, either by directly altering histone modifications or by modulating mitochondrial metabolite substrates of epigenome modification enzymes, potentially silencing OXPHOS gene expression and contributing to long-COVID.
Collapse
Affiliation(s)
- Joseph W Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jeffrey A Haltom
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yentli E Soto Albrecht
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy Lie
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arnold Z Olali
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gabrielle A Widjaja
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sujata S Ranshing
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Deborah Murdock
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Bruck O, Pandit LM. Pulmonary Hypertension and Hyperglycemia-Not a Sweet Combination. Diagnostics (Basel) 2024; 14:1119. [PMID: 38893645 PMCID: PMC11171670 DOI: 10.3390/diagnostics14111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Hyperglycemia and pulmonary hypertension (PH) share common pathological pathways that lead to vascular dysfunction and resultant cardiovascular complications. These shared pathologic pathways involve endothelial dysfunction, inflammation, oxidative stress, and hormonal imbalances. Individuals with hyperglycemia or pulmonary hypertension also possess shared clinical factors that contribute to increased morbidity from both diseases. This review aims to explore the relationship between PH and hyperglycemia, highlighting the mechanisms underlying their association and discussing the clinical implications. Understanding these common pathologic and clinical factors will enable early detection for those at-risk for complications from both diseases, paving the way for improved research and targeted therapeutics.
Collapse
Affiliation(s)
- Or Bruck
- Section of Pulmonary, Critical Care, Sleep Medicine, Baylor College of Medicine, Houston, TX 77024, USA;
| | - L. M. Pandit
- Section of Pulmonary, Critical Care, Sleep Medicine, Baylor College of Medicine, Houston, TX 77024, USA;
- Michael E. DeBakey Veterans Affairs Medical Center, Center for Translational Research on Inflammatory Diseases (CTRID), Houston, TX 77030, USA
| |
Collapse
|
14
|
Ferreira T, Rodriguez S. Mitochondrial DNA: Inherent Complexities Relevant to Genetic Analyses. Genes (Basel) 2024; 15:617. [PMID: 38790246 PMCID: PMC11121663 DOI: 10.3390/genes15050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Mitochondrial DNA (mtDNA) exhibits distinct characteristics distinguishing it from the nuclear genome, necessitating specific analytical methods in genetic studies. This comprehensive review explores the complex role of mtDNA in a variety of genetic studies, including genome-wide, epigenome-wide, and phenome-wide association studies, with a focus on its implications for human traits and diseases. Here, we discuss the structure and gene-encoding properties of mtDNA, along with the influence of environmental factors and epigenetic modifications on its function and variability. Particularly significant are the challenges posed by mtDNA's high mutation rate, heteroplasmy, and copy number variations, and their impact on disease susceptibility and population genetic analyses. The review also highlights recent advances in methodological approaches that enhance our understanding of mtDNA associations, advocating for refined genetic research techniques that accommodate its complexities. By providing a comprehensive overview of the intricacies of mtDNA, this paper underscores the need for an integrated approach to genetic studies that considers the unique properties of mitochondrial genetics. Our findings aim to inform future research and encourage the development of innovative methodologies to better interpret the broad implications of mtDNA in human health and disease.
Collapse
Affiliation(s)
- Tomas Ferreira
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SL, UK
| | - Santiago Rodriguez
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| |
Collapse
|
15
|
Das S, Russon MP, Zea MP, Xing Z, Torregrosa-Allen S, Cervantes HE, Harper HA, Elzey BD, Tran EJ. WITHDRAWN: Supinoxin blocks Small Cell Lung Cancer Progression by Inhibiting Mitochondrial Respiration through the RNA Helicase DDX5. RESEARCH SQUARE 2024:rs.3.rs-4169007. [PMID: 38699339 PMCID: PMC11065055 DOI: 10.21203/rs.3.rs-4169007/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The authors have requested that this preprint be removed from Research Square.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Biochemistry, Purdue University, BCHM A343, 175 S.
University Street, West Lafayette, Indiana 47907-2063
- Purdue University Institute for Cancer Research, Purdue
University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West
Lafayette, Indiana 47907-2064
| | - Matthew P. Russon
- Department of Biochemistry, Purdue University, BCHM A343, 175 S.
University Street, West Lafayette, Indiana 47907-2063
| | - Maria P. Zea
- Department of Biochemistry, Purdue University, BCHM A343, 175 S.
University Street, West Lafayette, Indiana 47907-2063
| | - Zheng Xing
- Department of Biochemistry, Purdue University, BCHM A343, 175 S.
University Street, West Lafayette, Indiana 47907-2063
| | - Sandra Torregrosa-Allen
- Purdue University Institute for Cancer Research, Purdue
University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West
Lafayette, Indiana 47907-2064
| | - Heidi E. Cervantes
- Purdue University Institute for Cancer Research, Purdue
University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West
Lafayette, Indiana 47907-2064
| | - Haley Ann Harper
- Purdue University Institute for Cancer Research, Purdue
University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West
Lafayette, Indiana 47907-2064
| | - Bennett D. Elzey
- Purdue University Institute for Cancer Research, Purdue
University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West
Lafayette, Indiana 47907-2064
- Department of Comparative Pathobiology, Purdue University, West
Lafayette, IN, USA
| | - Elizabeth J. Tran
- Department of Biochemistry, Purdue University, BCHM A343, 175 S.
University Street, West Lafayette, Indiana 47907-2063
- Purdue University Institute for Cancer Research, Purdue
University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West
Lafayette, Indiana 47907-2064
| |
Collapse
|
16
|
Vaurs M, Dolu EB, Decottignies A. Mitochondria and telomeres: hand in glove. Biogerontology 2024; 25:289-300. [PMID: 37864609 DOI: 10.1007/s10522-023-10074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
Born as an endosymbiont, the bacteria engulfed by the proto-eukaryotic cell more than 1.45 billion years ago progressively evolved as an important organelle with multiple interactions with the host cell. In particular, strong connections between mitochondria and the chromosome ends, the telomeres, led to propose a new theory of ageing in which dysfunctional telomeres and mitochondria are the main actors of a vicious circle reducing cell fitness and promoting cellular ageing. We review the evidences that oxidative stress and dysfunctional mitochondria damage telomeres and further discuss the interrelationship between telomere biology and mitochondria through the lens of telomerase which shuttles between the nucleus and mitochondria. Finally, we elaborate on the possible role of the mitochondrial genome on the inheritance of human telomere length through the expression of mitochondrial gene variants.
Collapse
Affiliation(s)
- Mélina Vaurs
- de Duve Institute, UCLouvain, Avenue Hippocrate, 1200, Brussels, Belgium.
| | - Elif Beyza Dolu
- de Duve Institute, UCLouvain, Avenue Hippocrate, 1200, Brussels, Belgium
| | | |
Collapse
|
17
|
Ruprecht NA, Singhal S, Schaefer K, Panda O, Sens D, Singhal SK. A Review: Multi-Omics Approach to Studying the Association between Ionizing Radiation Effects on Biological Aging. BIOLOGY 2024; 13:98. [PMID: 38392316 PMCID: PMC10886797 DOI: 10.3390/biology13020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Multi-omics studies have emerged as powerful tools for tailoring individualized responses to various conditions, capitalizing on genome sequencing technologies' increasing affordability and efficiency. This paper delves into the potential of multi-omics in deepening our understanding of biological age, examining the techniques available in light of evolving technology and computational models. The primary objective is to review the relationship between ionizing radiation and biological age, exploring a wide array of functional, physiological, and psychological parameters. This comprehensive review draws upon an extensive range of sources, including peer-reviewed journal articles, government documents, and reputable websites. The literature review spans from fundamental insights into radiation effects to the latest developments in aging research. Ionizing radiation exerts its influence through direct mechanisms, notably single- and double-strand DNA breaks and cross links, along with other critical cellular events. The cumulative impact of DNA damage forms the foundation for the intricate process of natural aging, intersecting with numerous diseases and pivotal biomarkers. Furthermore, there is a resurgence of interest in ionizing radiation research from various organizations and countries, reinvigorating its importance as a key contributor to the study of biological age. Biological age serves as a vital reference point for the monitoring and mitigation of the effects of various stressors, including ionizing radiation. Ionizing radiation emerges as a potent candidate for modeling the separation of biological age from chronological age, offering a promising avenue for tailoring protocols across diverse fields, including the rigorous demands of space exploration.
Collapse
Affiliation(s)
- Nathan A Ruprecht
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND 58202, USA
| | - Sonalika Singhal
- Department of Pathology, University of North Dakota, Grand Forks, ND 58202, USA
| | - Kalli Schaefer
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND 58202, USA
| | - Om Panda
- Department of Public Health, University of California Irvine, Irvine, CA 92697, USA
| | - Donald Sens
- Department of Pathology, University of North Dakota, Grand Forks, ND 58202, USA
| | - Sandeep K Singhal
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Pathology, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
18
|
Byappanahalli AM, Omoniyi V, Noren Hooten N, Smith JT, Mode NA, Ezike N, Zonderman AB, Evans MK. Extracellular vesicle mitochondrial DNA levels are associated with race and mitochondrial DNA haplogroup. iScience 2024; 27:108724. [PMID: 38226163 PMCID: PMC10788249 DOI: 10.1016/j.isci.2023.108724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/08/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024] Open
Abstract
Circulating cell-free mitochondrial DNA (ccf-mtDNA) acts as a damage-associated molecular pattern molecule and may be cargo within extracellular vesicles (EVs). ccf-mtDNA and select mitochondrial DNA (mtDNA) haplogroups are associated with cardiovascular disease. We hypothesized that ccf-mtDNA and plasma EV mtDNA would be associated with hypertension, sex, self-identified race, and mtDNA haplogroup ancestry. Participants were normotensive (n = 107) and hypertensive (n = 108) African American and White adults from the Healthy Aging in Neighborhoods of Diversity across the Life Span study. ccf-mtDNA levels were higher in African American participants compared with White participants in both plasma and EVs, but ccf-mtDNA levels were not related to hypertension. EV mtDNA levels were highest in African American participants with African mtDNA haplogroup. Circulating inflammatory protein levels were altered with mtDNA haplogroup, race, and EV mtDNA. Our findings highlight that race is a social construct and that ancestry is crucial when examining health and biomarker differences between groups.
Collapse
Affiliation(s)
- Anjali M. Byappanahalli
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Victor Omoniyi
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Jessica T. Smith
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Nicolle A. Mode
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Ngozi Ezike
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
19
|
Sun X, Bulekova K, Yang J, Lai M, Pitsillides AN, Liu X, Zhang Y, Guo X, Yong Q, Raffield LM, Rotter JI, Rich SS, Abecasis G, Carson AP, Vasan RS, Bis JC, Psaty BM, Boerwinkle E, Fitzpatrick AL, Satizabal CL, Arking DE, Ding J, Levy D, Liu C. Association analysis of mitochondrial DNA heteroplasmic variants: methods and application. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.12.24301233. [PMID: 38260412 PMCID: PMC10802757 DOI: 10.1101/2024.01.12.24301233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We rigorously assessed a comprehensive association testing framework for heteroplasmy, employing both simulated and real-world data. This framework employed a variant allele fraction (VAF) threshold and harnessed multiple gene-based tests for robust identification and association testing of heteroplasmy. Our simulation studies demonstrated that gene-based tests maintained an appropriate type I error rate at α=0.001. Notably, when 5% or more heteroplasmic variants within a target region were linked to an outcome, burden-extension tests (including the adaptive burden test, variable threshold burden test, and z-score weighting burden test) outperformed the sequence kernel association test (SKAT) and the original burden test. Applying this framework, we conducted association analyses on whole-blood derived heteroplasmy in 17,507 individuals of African and European ancestries (31% of African Ancestry, mean age of 62, with 58% women) with whole genome sequencing data. We performed both cohort- and ancestry-specific association analyses, followed by meta-analysis on both pooled samples and within each ancestry group. Our results suggest that mtDNA-encoded genes/regions are likely to exhibit varying rates in somatic aging, with the notably strong associations observed between heteroplasmy in the RNR1 and RNR2 genes (p<0.001) and advance aging by the Original Burden test. In contrast, SKAT identified significant associations (p<0.001) between diabetes and the aggregated effects of heteroplasmy in several protein-coding genes. Further research is warranted to validate these findings. In summary, our proposed statistical framework represents a valuable tool for facilitating association testing of heteroplasmy with disease traits in large human populations.
Collapse
Affiliation(s)
- Xianbang Sun
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Katia Bulekova
- Research Computing Services, Boston University, Boston, MA 02215, USA
| | - Jian Yang
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Meng Lai
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | | | - Xue Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Yuankai Zhang
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Qian Yong
- Longitudinal Studies Section, Translational Gerontology Branch, NIA/NIH, Baltimore, MD 21224, USA
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Stephen S. Rich
- Department of Public Health Services, Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Goncalo Abecasis
- TOPMed Informatics Research Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - April P. Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ramachandran S. Vasan
- Sections of Preventive Medicine and Epidemiology, and Cardiovascular Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
- Framingham Heart Study, NHLBI/NIH, Framingham, MA 01702, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
- Departments of Epidemiology, and Health Services, University of Washington, Seattle, WA 98101, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Annette L. Fitzpatrick
- Departments of Family Medicine, Epidemiology, and Global Health, University of Washington, Seattle, WA 98195, USA
| | - Claudia L. Satizabal
- Framingham Heart Study, NHLBI/NIH, Framingham, MA 01702, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, MD 21205, USA
| | - Jun Ding
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Daniel Levy
- Framingham Heart Study, NHLBI/NIH, Framingham, MA 01702, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Chunyu Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
- Framingham Heart Study, NHLBI/NIH, Framingham, MA 01702, USA
| |
Collapse
|
20
|
Alabsy MT, Abbas MI, El-Khatib AY, El-Khatib AM. Attenuation properties of poly methyl methacrylate reinforced with micro/nano ZrO 2 as gamma-ray shields. Sci Rep 2024; 14:1279. [PMID: 38218742 PMCID: PMC10787785 DOI: 10.1038/s41598-024-51551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024] Open
Abstract
This research aimed to examine the radiation shielding properties of unique polymer composites for medical and non-medical applications. For this purpose, polymer composites, based on poly methyl methacrylate (PMMA) as a matrix, were prepared and reinforced with micro- and nanoparticles of ZrO2 fillers at a loading of 15%, 30%, and 45% by weight. Using the high purity germanium (HPGe) detector, the suggested polymer composites' shielding characteristics were assessed for various radioactive sources. The experimental values of the mass attenuation coefficients (MAC) of the produced composites agreed closely with those obtained theoretically from the XCOM database. Different shielding parameters were estimated at a broad range of photon energies, including the linear attenuation coefficient (μ), tenth value layer (TVL), half value layer (HVL), mean free path (MFP), effective electron density (Neff), effective atomic number (Zeff), and equivalent atomic number (Zeq), as well as exposure buildup factor (EBF) and energy absorption buildup factor (EABF) to provide more shielding information about the penetration of γ-rays into the chosen composites. The results showed that increasing the content of micro and nano ZrO2 particles in the PMMA matrix increases μ values and decreases HVL, TVL, and MFP values. P-45nZ sample with 45 wt% of ZrO2 nanoparticles had the highest μ values, which varied between 2.6546 and 0.0991 cm-1 as γ-ray photon energy increased from 0.0595 to 1.408 MeV, respectively. Furthermore, the highest relative increase rate in μ values between nano and micro composites was 17.84%, achieved for the P-45nZ sample at 59.53 keV. These findings demonstrated that ZrO2 nanoparticles shield radiation more effectively than micro ZrO2 even at the same photon energy and filler wt%. Thus, the proposed nano ZrO2/PMMA composites can be used as effective shielding materials to lessen the transmitted radiation dose in radiation facilities.
Collapse
Affiliation(s)
- Mahmoud T Alabsy
- Physics Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Mahmoud I Abbas
- Physics Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Alaa Y El-Khatib
- Physics Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Ahmed M El-Khatib
- Physics Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| |
Collapse
|
21
|
Hayman J, Fortune DW. Sexual Orientation in Twins: Evidence That Human Sexual Identity May Be Determined Five Days Following Fertilization. Cureus 2023; 15:e51346. [PMID: 38161549 PMCID: PMC10757681 DOI: 10.7759/cureus.51346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2023] [Indexed: 01/03/2024] Open
Abstract
Human same-sex sexual attraction has been recorded from the beginning of written history. It remains a controversial topic, but recent theories favor prenatal influences. A paradox is the occurrence of same-sex orientation in twins in that there is a higher level of concordance in monozygous twins compared to that in dizygous twins or non-twin siblings. If sexual orientation was entirely genetically determined monozygous twins would be expected to have identical sexual inclinations. Monozygous twins have twice the incidence of sexual concordance in comparison to dizygous twins but a third of these pairs have different sexual identities. An explanation for this disparity may lie in the time an embryo splits to form two separate fetuses. If splitting occurs early in twin development each twin may develop his or her own sexual identity; splitting occurring later results in twins that have the same sexual dispositions. A possible process for such determination may be in the mitochondria, with universal maternal inheritance of a proportion of normal functioning but alternate mitochondria. Variation in the distribution of these mitochondria in neural precursor cells becomes a mechanism for the development of intrinsic sexual orientation and for the spectrum of human sexual inclinations. The timing of embryonic splitting may be determined from the examination of fetal membranes, and the concept of early fetal sexual orientation is open to support or disproval.
Collapse
Affiliation(s)
- John Hayman
- Clinical Pathology, The University of Melbourne, Melbourne, AUS
| | | |
Collapse
|
22
|
Shastry A, Dunham-Snary K. Metabolomics and mitochondrial dysfunction in cardiometabolic disease. Life Sci 2023; 333:122137. [PMID: 37788764 DOI: 10.1016/j.lfs.2023.122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Circulating metabolites are indicators of systemic metabolic dysfunction and can be detected through contemporary techniques in metabolomics. These metabolites are involved in numerous mitochondrial metabolic processes including glycolysis, fatty acid β-oxidation, and amino acid catabolism, and changes in the abundance of these metabolites is implicated in the pathogenesis of cardiometabolic diseases (CMDs). Epigenetic regulation and direct metabolite-protein interactions modulate metabolism, both within cells and in the circulation. Dysfunction of multiple mitochondrial components stemming from mitochondrial DNA mutations are implicated in disease pathogenesis. This review will summarize the current state of knowledge regarding: i) the interactions between metabolites found within the mitochondrial environment during CMDs, ii) various metabolites' effects on cellular and systemic function, iii) how harnessing the power of metabolomic analyses represents the next frontier of precision medicine, and iv) how these concepts integrate to expand the clinical potential for translational cardiometabolic medicine.
Collapse
Affiliation(s)
- Abhishek Shastry
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Kimberly Dunham-Snary
- Department of Medicine, Queen's University, Kingston, ON, Canada; Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
23
|
Catheline SE, Kaiser E, Eliseev RA. Mitochondrial Genetics and Function as Determinants of Bone Phenotype and Aging. Curr Osteoporos Rep 2023; 21:540-551. [PMID: 37542684 DOI: 10.1007/s11914-023-00816-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 08/07/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the recently published scientific literature regarding the effects of mitochondrial function and mitochondrial genome mutations on bone phenotype and aging. RECENT FINDINGS While aging and sex steroid levels have traditionally been considered the most important risk factors for development of osteoporosis, mitochondrial function and genetics are being increasingly recognized as important determinants of bone health. Recent studies indicate that mitochondrial genome variants found in different human populations determine the risk of complex degenerative diseases. We propose that osteoporosis should be among such diseases. Studies have shown the deleterious effects of mitochondrial DNA mutations and mitochondrial dysfunction on bone homeostasis. Mediators of such effects include oxidative stress, mitochondrial permeability transition, and dysregulation of autophagy. Mitochondrial health plays an important role in bone homeostasis and aging, and understanding underlying mechanisms is critical in leveraging this relationship clinically for therapeutic benefit.
Collapse
Affiliation(s)
- Sarah E Catheline
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Ethan Kaiser
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, USA.
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, USA.
| |
Collapse
|
24
|
Uricoechea Patiño D, Collins A, García OJR, Santos Vecino G, Cuenca JVR, Bernal JE, Benavides Benítez E, Vergara Muñoz S, Briceño Balcázar I. High Mitochondrial Haplotype Diversity Found in Three Pre-Hispanic Groups from Colombia. Genes (Basel) 2023; 14:1853. [PMID: 37895202 PMCID: PMC10606881 DOI: 10.3390/genes14101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
The analysis of mitochondrial DNA (mtDNA) hypervariable region (HVR) sequence data from ancient human remains provides valuable insights into the genetic structure and population dynamics of ancient populations. mtDNA is particularly useful in studying ancient populations, because it is maternally inherited and has a higher mutation rate compared to nuclear DNA. To determine the genetic structure of three Colombian pre-Hispanic populations and compare them with current populations, we determined the haplotypes from human bone remains by sequencing several mitochondrial DNA segments. A wide variety of mitochondrial polymorphisms were obtained from 33 samples. Our results support a high population heterogeneity among pre-Hispanic populations in Colombia.
Collapse
Affiliation(s)
- Daniel Uricoechea Patiño
- Doctoral Program in Biosciences, Human Genetics Group, Faculty of Medicine, University of La Sabana, Chía 250001, Colombia;
| | - Andrew Collins
- Human Genetics & Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| | | | - Gustavo Santos Vecino
- Department of Anthropology, Faculty of Social and Human Science, Universidad de Antioquia, Medellín 050010, Colombia;
| | | | - Jaime E. Bernal
- Faculty of Medicine, University of Sinú, Cartagena de Indias 130011, Colombia; (J.E.B.); (E.B.B.); (S.V.M.)
| | - Escilda Benavides Benítez
- Faculty of Medicine, University of Sinú, Cartagena de Indias 130011, Colombia; (J.E.B.); (E.B.B.); (S.V.M.)
| | - Saray Vergara Muñoz
- Faculty of Medicine, University of Sinú, Cartagena de Indias 130011, Colombia; (J.E.B.); (E.B.B.); (S.V.M.)
| | - Ignacio Briceño Balcázar
- Doctoral Program in Biosciences, Human Genetics Group, Faculty of Medicine, University of La Sabana, Chía 250001, Colombia;
| |
Collapse
|
25
|
Piotrowska-Nowak A, Safranow K, Adamczyk JG, Sołtyszewski I, Cięszczyk P, Tońska K, Żekanowski C, Borzemska B. Mitochondrial Genome Variation in Polish Elite Athletes. Int J Mol Sci 2023; 24:12992. [PMID: 37629173 PMCID: PMC10454803 DOI: 10.3390/ijms241612992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Energy efficiency is one of the fundamental athletic performance-affecting features of the cell and the organism as a whole. Mitochondrial DNA (mtDNA) variants and haplogroups have been linked to the successful practice of various sports, but despite numerous studies, understanding of the correlation is far from being comprehensive. In this study, the mtDNA sequence and copy number were determined for 99 outstanding Polish male athletes performing in power (n = 52) or endurance sports (n = 47) and 100 controls. The distribution of haplogroups, single nucleotide variant association, heteroplasmy, and mtDNA copy number were analyzed in the blood and saliva. We found no correlation between any haplogroup, single nucleotide variant, especially rare or non-synonymous ones, and athletic performance. Interestingly, heteroplasmy was less frequent in the study group, especially in endurance athletes. We observed a lower mtDNA copy number in both power and endurance athletes compared to controls. This could result from an inactivity of compensatory mechanisms activated by disadvantageous variants present in the general population and indicates a favorable genetic makeup of the athletes. The results emphasize a need for a more comprehensive analysis of the involvement of the mitochondrial genome in physical performance, combining nucleotide and copy number analysis in the context of nuclear gene variants.
Collapse
Affiliation(s)
- Agnieszka Piotrowska-Nowak
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Street, 02-106 Warszawa, Poland; (A.P.-N.); (K.T.)
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Jakub G. Adamczyk
- Department of Theory of Sport, Józef Piłsudski University of Physical Education, Marymoncka 34 Street, 00-968 Warszawa, Poland;
| | - Ireneusz Sołtyszewski
- Department of Forensic Medicine, Medical University of Warsaw, Oczki 1 Street, 02-007 Warszawa, Poland;
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland; (P.C.); (C.Ż.)
| | - Katarzyna Tońska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Street, 02-106 Warszawa, Poland; (A.P.-N.); (K.T.)
| | - Cezary Żekanowski
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland; (P.C.); (C.Ż.)
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 Street, 02-106 Warszawa, Poland
| | - Beata Borzemska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland; (P.C.); (C.Ż.)
| |
Collapse
|
26
|
Jain S, Pei L, Spraggins JM, Angelo M, Carson JP, Gehlenborg N, Ginty F, Gonçalves JP, Hagood JS, Hickey JW, Kelleher NL, Laurent LC, Lin S, Lin Y, Liu H, Naba A, Nakayasu ES, Qian WJ, Radtke A, Robson P, Stockwell BR, Van de Plas R, Vlachos IS, Zhou M, Börner K, Snyder MP. Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP). Nat Cell Biol 2023; 25:1089-1100. [PMID: 37468756 PMCID: PMC10681365 DOI: 10.1038/s41556-023-01194-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023]
Abstract
The Human BioMolecular Atlas Program (HuBMAP) aims to create a multi-scale spatial atlas of the healthy human body at single-cell resolution by applying advanced technologies and disseminating resources to the community. As the HuBMAP moves past its first phase, creating ontologies, protocols and pipelines, this Perspective introduces the production phase: the generation of reference spatial maps of functional tissue units across many organs from diverse populations and the creation of mapping tools and infrastructure to advance biomedical research.
Collapse
Affiliation(s)
- Sanjay Jain
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Liming Pei
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jeffrey M Spraggins
- Department of Cell and Developmental Biology and the Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Michael Angelo
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - James P Carson
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX, USA
| | - Nils Gehlenborg
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Joana P Gonçalves
- Department of Intelligent Systems, Delft University of Technology, Delft, Netherlands
| | - James S Hagood
- Department of Pediatrics (Pulmonology) and Program for Rare and Interstitial Lung Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John W Hickey
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Neil L Kelleher
- Departments of Medicine, Chemistry and Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Shin Lin
- Division of Cardiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Yiing Lin
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Huiping Liu
- Departments of Pharmacology, Medicine (Hematology and Oncology), Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Andrea Radtke
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Raf Van de Plas
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
| | - Ioannis S Vlachos
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Katy Börner
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA.
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
27
|
Hernández CL. Mitochondrial DNA in Human Diversity and Health: From the Golden Age to the Omics Era. Genes (Basel) 2023; 14:1534. [PMID: 37628587 PMCID: PMC10453943 DOI: 10.3390/genes14081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is a small fraction of our hereditary material. However, this molecule has had an overwhelming presence in scientific research for decades until the arrival of high-throughput studies. Several appealing properties justify the application of mtDNA to understand how human populations are-from a genetic perspective-and how individuals exhibit phenotypes of biomedical importance. Here, I review the basics of mitochondrial studies with a focus on the dawn of the field, analysis methods and the connection between two sides of mitochondrial genetics: anthropological and biomedical. The particularities of mtDNA, with respect to inheritance pattern, evolutionary rate and dependence on the nuclear genome, explain the challenges of associating mtDNA composition and diseases. Finally, I consider the relevance of this single locus in the context of omics research. The present work may serve as a tribute to a tool that has provided important insights into the past and present of humankind.
Collapse
Affiliation(s)
- Candela L Hernández
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
28
|
Todosenko N, Khaziakhmatova O, Malashchenko V, Yurova K, Bograya M, Beletskaya M, Vulf M, Gazatova N, Litvinova L. Mitochondrial Dysfunction Associated with mtDNA in Metabolic Syndrome and Obesity. Int J Mol Sci 2023; 24:12012. [PMID: 37569389 PMCID: PMC10418437 DOI: 10.3390/ijms241512012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Metabolic syndrome (MetS) is a precursor to the major health diseases associated with high mortality in industrialized countries: cardiovascular disease and diabetes. An important component of the pathogenesis of the metabolic syndrome is mitochondrial dysfunction, which is associated with tissue hypoxia, disruption of mitochondrial integrity, increased production of reactive oxygen species, and a decrease in ATP, leading to a chronic inflammatory state that affects tissues and organ systems. The mitochondrial AAA + protease Lon (Lonp1) has a broad spectrum of activities. In addition to its classical function (degradation of misfolded or damaged proteins), enzymatic activity (proteolysis, chaperone activity, mitochondrial DNA (mtDNA)binding) has been demonstrated. At the same time, the spectrum of Lonp1 activity extends to the regulation of cellular processes inside mitochondria, as well as outside mitochondria (nuclear localization). This mitochondrial protease with enzymatic activity may be a promising molecular target for the development of targeted therapy for MetS and its components. The aim of this review is to elucidate the role of mtDNA in the pathogenesis of metabolic syndrome and its components as a key component of mitochondrial dysfunction and to describe the promising and little-studied AAA + LonP1 protease as a potential target in metabolic disorders.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Bograya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Beletskaya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Natalia Gazatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
29
|
Singh L, Atilano S, Chwa M, Singh MK, Ozgul M, Nesburn A, Kenney MC. Using Human 'Personalized' Cybrids to Identify Drugs/Agents That Can Regulate Chronic Lymphoblastic Leukemia Mitochondrial Dysfunction. Int J Mol Sci 2023; 24:11025. [PMID: 37446202 PMCID: PMC10341973 DOI: 10.3390/ijms241311025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
This study uses personalized chronic lymphoblastic leukemia (CLL) cybrid cells to test various drugs/agents designed to improve mitochondrial function and cell longevity. Age-matched control (NL) and CLL cybrids were created. The NL and CLL cybrids were treated with ibrutinib (Ibr-10 μM), mitochondrial-targeted nutraceuticals such as alpha lipoic acid (ALA-1 mM), amla (Aml-300 μg), melatonin (Mel-1 mM), resveratrol (Res-100 μM) alone, or a combination of ibrutinib with nutraceuticals (Ibr + ALA, Ibr + Aml, Ibr + Mel, or Ibr + Res) for 48 h. MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide), H2DCFDA(2',7' Dichlorodihydrofluorescein diacetate), and JC1 assays were used to measure the cellular metabolism, intracellular ROS levels, and mitochondrial membrane potential (∆ψm), respectively. The expression levels of genes associated with antioxidant enzymes (SOD2, GPX3, and NOX4), apoptosis (BAX and CASP3), and inflammation (IL6, IL-1β, TNFα, and TGFβ) were measured using quantitative real-time PCR (qRT-PCR). CLL cybrids treated with Ibr + ALA, Ibr + Aml, Ibr + Mel, and Ibr + Res had (a) reduced cell survivability, (b) increased ROS production, (c) increased ∆ψm levels, (d) decreased antioxidant gene expression levels, and (e) increased apoptotic and inflammatory genes in CLL cybrids when compared with ibrutinib-alone-treated CLL cybrids. Our findings show that the addition of nutraceuticals makes the CLL cybrids more pro-apoptotic with decreased cell survival compared with CLL cybrids exposed to ibrutinib alone.
Collapse
MESH Headings
- Humans
- Antioxidants/metabolism
- Antioxidants/pharmacology
- Antioxidants/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/pathology
- Reactive Oxygen Species/metabolism
- Drug Resistance, Neoplasm/drug effects
- Hybrid Cells
- Dietary Supplements
- Membrane Potential, Mitochondrial/drug effects
- Gene Expression/drug effects
Collapse
Affiliation(s)
- Lata Singh
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (L.S.); (S.A.); (M.C.); (M.K.S.); (M.O.); (A.N.)
- Department of Pediatrics, All India Institute of Medical Institute, New Delhi 110029, India
| | - Shari Atilano
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (L.S.); (S.A.); (M.C.); (M.K.S.); (M.O.); (A.N.)
| | - Marilyn Chwa
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (L.S.); (S.A.); (M.C.); (M.K.S.); (M.O.); (A.N.)
| | - Mithalesh K. Singh
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (L.S.); (S.A.); (M.C.); (M.K.S.); (M.O.); (A.N.)
| | - Mustafa Ozgul
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (L.S.); (S.A.); (M.C.); (M.K.S.); (M.O.); (A.N.)
| | - Anthony Nesburn
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (L.S.); (S.A.); (M.C.); (M.K.S.); (M.O.); (A.N.)
| | - M. Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (L.S.); (S.A.); (M.C.); (M.K.S.); (M.O.); (A.N.)
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
30
|
Ju WK, Perkins GA, Kim KY, Bastola T, Choi WY, Choi SH. Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res 2023; 95:101136. [PMID: 36400670 DOI: 10.1016/j.preteyeres.2022.101136] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by a slow, progressive, and multifactorial degeneration of retinal ganglion cells (RGCs) and their axons, resulting in vision loss. Despite its high prevalence in individuals 60 years of age and older, the causing factors contributing to glaucoma progression are currently not well characterized. Intraocular pressure (IOP) is the only proven treatable risk factor. However, lowering IOP is insufficient for preventing disease progression. One of the significant interests in glaucoma pathogenesis is understanding the structural and functional impairment of mitochondria in RGCs and their axons and synapses. Glaucomatous risk factors such as IOP elevation, aging, genetic variation, neuroinflammation, neurotrophic factor deprivation, and vascular dysregulation, are potential inducers for mitochondrial dysfunction in glaucoma. Because oxidative phosphorylation stress-mediated mitochondrial dysfunction is associated with structural and functional impairment of mitochondria in glaucomatous RGCs, understanding the underlying mechanisms and relationship between structural and functional alterations in mitochondria would be beneficial to developing mitochondria-related neuroprotection in RGCs and their axons and synapses against glaucomatous neurodegeneration. Here, we review the current studies focusing on mitochondrial dynamics-based structural and functional alterations in the mitochondria of glaucomatous RGCs and therapeutic strategies to protect RGCs against glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Won-Kyu Ju
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tonking Bastola
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Woo-Young Choi
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA; Department of Plastic Surgery, College of Medicine, Chosun University, Gwang-ju, South Korea
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
31
|
Picca A, Guerra F, Calvani R, Coelho-Júnior HJ, Leeuwenburgh C, Bucci C, Marzetti E. The contribution of mitochondrial DNA alterations to aging, cancer, and neurodegeneration. Exp Gerontol 2023; 178:112203. [PMID: 37172915 DOI: 10.1016/j.exger.2023.112203] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Mitochondrial DNA (mtDNA) is as a double-stranded molecule existing in hundreds to thousands copies in cells depending on cell metabolism and exposure to endogenous and/or environmental stressors. The coordination of mtDNA replication and transcription regulates the pace of mitochondrial biogenesis to guarantee the minimum number of organelles per cell. mtDNA inheritance follows a maternal lineage, although bi-parental inheritance has been reported in some species and in the case of mitochondrial diseases in humans. mtDNA mutations (e.g., point mutations, deletions, copy number variations) have been identified in the setting of several human diseases. For instance, sporadic and inherited rare disorders involving the nervous system as well higher risk of developing cancer and neurodegenerative conditions, including Parkinson's and Alzheimer's disease, have been associated with polymorphic mtDNA variants. An accrual of mtDNA mutations has also been identified in several tissues and organs, including heart and muscle, of old experimental animals and humans, which may contribute to the development of aging phenotypes. The role played by mtDNA homeostasis and mtDNA quality control pathways in human health is actively investigated for the possibility of developing targeted therapeutics for a wide range of conditions.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
32
|
Xia C, Pickett SJ, Liewald DCM, Weiss A, Hudson G, Hill WD. The contributions of mitochondrial and nuclear mitochondrial genetic variation to neuroticism. Nat Commun 2023; 14:3146. [PMID: 37253732 PMCID: PMC10229642 DOI: 10.1038/s41467-023-38480-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Neuroticism is a heritable trait composed of separate facets, each conferring different levels of protection or risk, to health. By examining mitochondrial DNA in 269,506 individuals, we show mitochondrial haplogroups explain 0.07-0.01% of variance in neuroticism and identify five haplogroup and 15 mitochondria-marker associations across a general factor of neuroticism, and two special factors of anxiety/tension, and worry/vulnerability with effect sizes of the same magnitude as autosomal variants. Within-haplogroup genome-wide association studies identified H-haplogroup-specific autosomal effects explaining 1.4% variance of worry/vulnerability. These H-haplogroup-specific autosomal effects show a pleiotropic relationship with cognitive, physical and mental health that differs from that found when assessing autosomal effects across haplogroups. We identify interactions between chromosome 9 regions and mitochondrial haplogroups at P < 5 × 10-8, revealing associations between general neuroticism and anxiety/tension with brain-specific gene co-expression networks. These results indicate that the mitochondrial genome contributes toward neuroticism and the autosomal links between neuroticism and health.
Collapse
Affiliation(s)
- Charley Xia
- Lothian Birth Cohort studies, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research and Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - David C M Liewald
- Lothian Birth Cohort studies, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Alexander Weiss
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research and Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - W David Hill
- Lothian Birth Cohort studies, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.
| |
Collapse
|
33
|
Atlante A, Valenti D. Mitochondria Have Made a Long Evolutionary Path from Ancient Bacteria Immigrants within Eukaryotic Cells to Essential Cellular Hosts and Key Players in Human Health and Disease. Curr Issues Mol Biol 2023; 45:4451-4479. [PMID: 37232752 PMCID: PMC10217700 DOI: 10.3390/cimb45050283] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Mitochondria have made a long evolutionary path from ancient bacteria immigrants within the eukaryotic cell to become key players for the cell, assuming crucial multitasking skills critical for human health and disease. Traditionally identified as the powerhouses of eukaryotic cells due to their central role in energy metabolism, these chemiosmotic machines that synthesize ATP are known as the only maternally inherited organelles with their own genome, where mutations can cause diseases, opening up the field of mitochondrial medicine. More recently, the omics era has highlighted mitochondria as biosynthetic and signaling organelles influencing the behaviors of cells and organisms, making mitochondria the most studied organelles in the biomedical sciences. In this review, we will especially focus on certain 'novelties' in mitochondrial biology "left in the shadows" because, although they have been discovered for some time, they are still not taken with due consideration. We will focus on certain particularities of these organelles, for example, those relating to their metabolism and energy efficiency. In particular, some of their functions that reflect the type of cell in which they reside will be critically discussed, for example, the role of some carriers that are strictly functional to the typical metabolism of the cell or to the tissue specialization. Furthermore, some diseases in whose pathogenesis, surprisingly, mitochondria are involved will be mentioned.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
34
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
35
|
Lorca R, Aparicio A, Gómez J, Álvarez-Velasco R, Pascual I, Avanzas P, González-Urbistondo F, Alen A, Vázquez-Coto D, González-Fernández M, García-Lago C, Cuesta-Llavona E, Morís C, Coto E. Mitochondrial Heteroplasmy as a Marker for Premature Coronary Artery Disease: Analysis of the Poly-C Tract of the Control Region Sequence. J Clin Med 2023; 12:jcm12062133. [PMID: 36983136 PMCID: PMC10053235 DOI: 10.3390/jcm12062133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Mitochondrial DNA (mtDNA) differs from the nuclear genome in many aspects: a maternal inheritance pattern; being more prone to acquire somatic de novo mutations, accumulative with age; and the possible coexistence of different mtDNA alleles (heteroplasmy). Mitochondria are key cellular organelles responsible for energy production and involved in complex mechanisms, including atherosclerosis. In this scenario, we aimed to evaluate mtDNA variants that could be associated with premature cardiovascular disease. We evaluated 188 consecutive patients presenting with premature myocardial infarction with ST elevation (STEMI) confirmed by coronary angiogram. mtDNA polymorphisms and clinical data were evaluated and compared with 271 individuals from the same population (control group). Tobacco consumption (80.85% vs. 21.21%, p < 0.01) and dyslipidemia (38.83% vs. 28.41%, p = 0.02) were significantly more frequent among STEMI patients. Moreover, C16223T mtDNA mutation and poly-C heteroplasmy were significantly more frequent among premature STEMI male patients than in controls. The OR associated C16223T mtDNA with the increased presence of cardiovascular risk factors. Our data suggest that mtDNA 16223T and heteroplasmy may be associated with unstable premature atherosclerosis disease in men. Moreover, the presence of cardiovascular risk factors (CVRFs) was associated with C16223T mtDNA, with a cumulative effect. Protective mitochondrial pathways are potential therapeutic targets. Preventing exposure to the damaging mechanisms associated with CVRFs is of utmost importance.
Collapse
Affiliation(s)
- Rebeca Lorca
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33003 Oviedo, Spain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain
| | - Andrea Aparicio
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| | - Juan Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain
- CIBER-Enfermedades Respiratorias, 28029 Madrid, Spain
- Laboratorio de Genética, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Correspondence:
| | - Rut Álvarez-Velasco
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
| | - Isaac Pascual
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Pablo Avanzas
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain
- CIBER-Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | | | - Alberto Alen
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| | - Daniel Vázquez-Coto
- Laboratorio de Genética, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| | | | - Claudia García-Lago
- Laboratorio de Genética, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| | - Elías Cuesta-Llavona
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Laboratorio de Genética, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| | - César Morís
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Eliecer Coto
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain
- Laboratorio de Genética, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain
| |
Collapse
|
36
|
Parkinson's Disease, Parkinsonisms, and Mitochondria: the Role of Nuclear and Mitochondrial DNA. Curr Neurol Neurosci Rep 2023; 23:131-147. [PMID: 36881253 DOI: 10.1007/s11910-023-01260-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Overwhelming evidence indicates that mitochondrial dysfunction is a central factor in Parkinson's disease (PD) pathophysiology. This paper aims to review the latest literature published, focusing on genetic defects and expression alterations affecting mitochondria-associated genes, in support of their key role in PD pathogenesis. RECENT FINDINGS Thanks to the use of new omics approaches, a growing number of studies are discovering alterations affecting genes with mitochondrial functions in patients with PD and parkinsonisms. These genetic alterations include pathogenic single-nucleotide variants, polymorphisms acting as risk factors, and transcriptome modifications, affecting both nuclear and mitochondrial genes. We will focus on alterations of mitochondria-associated genes described by studies conducted on patients or on animal/cellular models of PD or parkinsonisms. We will comment how these findings can be taken into consideration for improving the diagnostic procedures or for deepening our knowledge on the role of mitochondrial dysfunctions in PD.
Collapse
|
37
|
Mitochondria: Emerging Consequential in Sickle Cell Disease. J Clin Med 2023; 12:jcm12030765. [PMID: 36769414 PMCID: PMC9917941 DOI: 10.3390/jcm12030765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Advanced mitochondrial multi-omics indicate a multi-facet involvement of mitochondria in the physiology of the cell, changing the perception of mitochondria from being just the energy-generating organelles to organelles that highly influence cell structure, function, signaling, and cell fate. This sets mitochondrial dysfunction in the centerstage of numerous acquired and genetic diseases. Sickle cell disease is also being increasingly associated with mitochondrial anomalies and the pathophysiology of sickle cell disease finds mitochondria at crucial intersections in the pathological cascade. Altered mitophagy, increased ROS, and mitochondrial DNA all contribute to the condition and its severity. Such mitochondrial aberrations lead to consequent mitochondrial retention in red blood cells in sickle cell diseases, increased oxidation in the cellular environment, inflammation, worsened vaso-occlusive crisis, etc. There are increasing studies indicating mitochondrial significance in sickle cell disease, consequently providing an opportunity to target it for improving the outcomes of treatment. Identification of the impaired mitochondrial attributes in sickle cell disease and their modulation by therapeutic interventions can impart a better management of the disease. This review aims to describe the mitochondria in the perspective of sicke cell disease so as to provide the reader an overview of the emerging mitochondrial stance in sickle cell disease.
Collapse
|
38
|
Combination of common mtDNA variants results in mitochondrial dysfunction and a connective tissue dysregulation. Proc Natl Acad Sci U S A 2022; 119:e2212417119. [PMID: 36322731 PMCID: PMC9659340 DOI: 10.1073/pnas.2212417119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial dysfunction can be associated with a range of clinical manifestations. Here, we report a family with a complex phenotype including combinations of connective tissue, neurological, and metabolic symptoms that were passed on to all surviving children. Analysis of the maternally inherited mtDNA revealed a novel genotype encompassing the haplogroup J - defining mitochondrial DNA (mtDNA) ND5 m.13708G>A (A458T) variant arising on the mtDNA haplogroup H7A background, an extremely rare combination. Analysis of transmitochondrial cybrids with the 13708A-H7 mtDNA revealed a lower mitochondrial respiration, increased reactive oxygen species production (mROS), and dysregulation of connective tissue gene expression. The mitochondrial dysfunction was exacerbated by histamine, explaining why all eight surviving children inherited the dysfunctional histidine decarboxylase allele (W327X) from the father. Thus, certain combinations of common mtDNA variants can cause mitochondrial dysfunction, mitochondrial dysfunction can affect extracellular matrix gene expression, and histamine-activated mROS production can augment the severity of mitochondrial dysfunction. Most important, we have identified a previously unreported genetic cause of mitochondrial disorder arising from the incompatibility of common, nonpathogenic mtDNA variants.
Collapse
|
39
|
Florez I, Pirrone I, Casique L, Domínguez CL, Mahfoud A, Rodríguez T, Rodríguez D, De Lucca M, Ramírez JL. Independent origin for m.3243A>G mitochondrial mutation in three Venezuelan cases of MELAS syndrome. Clin Biochem 2022; 109-110:98-101. [PMID: 36130631 DOI: 10.1016/j.clinbiochem.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 01/04/2023]
Abstract
Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a multisystem and progressive neurodegenerative mitochondrial disease, caused by point nucleotide changes in the mtDNA where 80 % of cases have the mutation m.3243A>G in the MT-TL1 gene. In this work, we described the clinical, biochemical and molecular analysis of three Venezuelan patients affected with MELAS syndrome. All cases showed lactic acidosis, cortical cerebral atrophy on magnetic resonance imaging and muscular system deficit, and in two of the cases alteration of urine organic acid levels was also registered. A screening for the mutation m.3243A>G in different patients' body samples confirmed the presence of this mutation with variable degrees of heteroplasmy (blood = 7-41 %, buccal mucosa = 14-53 %, urine = 58-94 %). The mitochondrial haplogroups for the three patients were different (H, C1b, and A2), indicating an independent origin for the mutation.
Collapse
Affiliation(s)
- Ingrid Florez
- Biotechnology Center, Fundación Instituto de Estudios Avanzados IDEA, Caracas, Venezuela
| | - Irune Pirrone
- Biotechnology Center, Fundación Instituto de Estudios Avanzados IDEA, Caracas, Venezuela; Laboratory of Human Metabolism, Department of Cell Biology, Universidad Simón Bolívar, Caracas, Venezuela
| | - Liliana Casique
- Biotechnology Center, Fundación Instituto de Estudios Avanzados IDEA, Caracas, Venezuela; Laboratory of Human Metabolism, Department of Cell Biology, Universidad Simón Bolívar, Caracas, Venezuela.
| | - Carmen Luisa Domínguez
- Inborn Errors of Metabolism Unit, Bioscience Center, Fundación Instituto de Estudios Avanzados IDEA, Caracas, Venezuela
| | - Antonieta Mahfoud
- Inborn Errors of Metabolism Unit, Bioscience Center, Fundación Instituto de Estudios Avanzados IDEA, Caracas, Venezuela
| | - Tania Rodríguez
- Inborn Errors of Metabolism Unit, Bioscience Center, Fundación Instituto de Estudios Avanzados IDEA, Caracas, Venezuela
| | - Daniel Rodríguez
- Inborn Errors of Metabolism Unit, Bioscience Center, Fundación Instituto de Estudios Avanzados IDEA, Caracas, Venezuela
| | - Marisel De Lucca
- Inborn Errors of Metabolism Unit, Bioscience Center, Fundación Instituto de Estudios Avanzados IDEA, Caracas, Venezuela; Department of Biological Sciences, Faculty of Health Sciences, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| | - José Luis Ramírez
- Biotechnology Center, Fundación Instituto de Estudios Avanzados IDEA, Caracas, Venezuela
| |
Collapse
|
40
|
Kaneva K, Schurr TG, Tatarinova TV, Buckley J, Merkurjev D, Triska P, Liu X, Done J, Maglinte DT, Deapen D, Hwang A, Schiffman JD, Triche TJ, Biegel JA, Gai X. Mitochondrial DNA haplogroup, genetic ancestry, and susceptibility to Ewing sarcoma. Mitochondrion 2022; 67:6-14. [PMID: 36115539 PMCID: PMC9997094 DOI: 10.1016/j.mito.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 01/11/2023]
Abstract
Based on current studies, the incidence of Ewing sarcoma (ES) varies significantly by race and ethnicity, with the disease being most common in patients of European ancestry. However, race/ethnicity has generally been self-reported rather than formally evaluated at a population level using DNA evidence. Additionally, mitochondrial dysfunction is a hallmark of ES, yet there have been no reported studies of mitochondrial genetics in ES. Thus, we evaluated both the mitochondrial and nuclear ancestries of 420 pediatric ES patients in the United States using whole-genome sequencing. We found that the mitochondrial DNA (mtDNA) genomes of only six (1.4 %) patients belonged to African L haplogroups, while those of 90 % of the patients belonged to macrohaplogroup R, which includes haplogroup H, the most common maternal lineage in Europe. Compared to the general US population, European haplogroups were significantly enriched in ES patients (p < 2.2e-16) and the African haplogroups are significantly impoverished (p < 4.6e-16). Using the ancestry informative markers defined in a National Genographic study, the vast majority of patients exhibited significant nuclear ancestry originating from the Mediterranean, Northern Europe, and Southwest Asia, including all six patients with African L mtDNAs. Very few had primarily African nuclear ancestry. This is the first genomic epidemiology study to simultaneously interrogate the mitochondrial and nuclear ancestries of ES patients. While supporting previous findings of enriched European ancestry in ES patients, these results also suggest alternative hypotheses for the significant contribution of mitochondrial ancestry in ES patients, as well as the protective role of African ancestry.
Collapse
Affiliation(s)
- Kristiyana Kaneva
- Division of Hematology, Oncology, and Blood and Marrow Transplant Program, Children's Center for Cancer and Blood Diseases, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jonathan Buckley
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daria Merkurjev
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Petr Triska
- Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Xiyu Liu
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - James Done
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Dennis T Maglinte
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Dennis Deapen
- Cancer Surveillance Program, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amie Hwang
- Cancer Surveillance Program, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joshua D Schiffman
- Department of Pediatrics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; PEEL Therapeutics, Inc., Salt Lake City, UT, USA
| | - Timothy J Triche
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jaclyn A Biegel
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaowu Gai
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
41
|
|
42
|
Chiaratti MR, Chinnery PF. Modulating mitochondrial DNA mutations: factors shaping heteroplasmy in the germ line and somatic cells. Pharmacol Res 2022; 185:106466. [PMID: 36174964 DOI: 10.1016/j.phrs.2022.106466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Abstract
Until recently it was thought that most humans only harbor one type of mitochondrial DNA (mtDNA), however, deep sequencing and single-cell analysis has shown the converse - that mixed populations of mtDNA (heteroplasmy) are the norm. This is important because heteroplasmy levels can change dramatically during transmission in the female germ line, leading to high levels causing severe mitochondrial diseases. There is also emerging evidence that low level mtDNA mutations contribute to common late onset diseases such as neurodegenerative disorders and cardiometabolic diseases because the inherited mutation levels can change within developing organs and non-dividing cells over time. Initial predictions suggested that the segregation of mtDNA heteroplasmy was largely stochastic, with an equal tendency for levels to increase or decrease. However, transgenic animal work and single-cell analysis have shown this not to be the case during germ-line transmission and in somatic tissues during life. Mutation levels in specific mtDNA regions can increase or decrease in different contexts and the underlying molecular mechanisms are starting to be unraveled. In this review we provide a synthesis of recent literature on the mechanisms of selection for and against mtDNA variants. We identify the most pertinent gaps in our understanding and suggest ways these could be addressed using state of the art techniques.
Collapse
Affiliation(s)
- Marcos R Chiaratti
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil.
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
43
|
Nucleotide-based genetic networks: Methods and applications. J Biosci 2022. [PMID: 36226367 PMCID: PMC9554864 DOI: 10.1007/s12038-022-00290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genomic variations have been acclaimed as among the key players in understanding the biological mechanisms behind migration, evolution, and adaptation to extreme conditions. Due to stochastic evolutionary forces, the frequency of polymorphisms is affected by changes in the frequency of nearby polymorphisms in the same DNA sample, making them connected in terms of evolution. This article presents all the ingredients to understand the cumulative effects and complex behaviors of genetic variations in the human mitochondrial genome by analyzing co-occurrence networks of nucleotides, and shows key results obtained from such analyses. The article emphasizes recent investigations of these co-occurrence networks, describing the role of interactions between nucleotides in fundamental processes of human migration and viral evolution. The corresponding co-mutation-based genetic networks revealed genetic signatures of human adaptation in extreme environments. This article provides the methods of constructing such networks in detail, along with their graph-theoretical properties, and applications of the genomic networks in understanding the role of nucleotide co-evolution in evolution of the whole genome.
Collapse
|
44
|
Agnoletto C, Volinia S. Mitochondria dysfunction in circulating tumor cells. Front Oncol 2022; 12:947479. [PMID: 35992829 PMCID: PMC9386562 DOI: 10.3389/fonc.2022.947479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
Circulating tumor cells (CTCs) represent a subset of heterogeneous cells, which, once released from a tumor site, have the potential to give rise to metastasis in secondary sites. Recent research focused on the attempt to detect and characterize these rare cells in the circulation, and advancements in defining their molecular profile have been reported in diverse tumor species, with potential implications for clinical applications. Of note, metabolic alterations, involving mitochondria, have been implicated in the metastatic process, as key determinants in the transition of tumor cells to a mesenchymal or stemness-like phenotype, in drug resistance, and in induction of apoptosis. This review aimed to briefly analyse the most recent knowledge relative to mitochondria dysfunction in CTCs, and to envision implications of altered mitochondria in CTCs for a potential utility in clinics.
Collapse
Affiliation(s)
- Chiara Agnoletto
- Rete Oncologica Veneta (ROV), Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Stefano Volinia
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Biological and Chemical Research Centre (CNBCh UW), University of Warsaw, Warsaw, Poland
- Center of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
45
|
Andreeva TV, Manakhov AD, Gusev FE, Patrikeev AD, Golovanova LV, Doronichev VB, Shirobokov IG, Rogaev EI. Genomic analysis of a novel Neanderthal from Mezmaiskaya Cave provides insights into the genetic relationships of Middle Palaeolithic populations. Sci Rep 2022; 12:13016. [PMID: 35906446 PMCID: PMC9338269 DOI: 10.1038/s41598-022-16164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
The Mezmaiskaya cave is located on the North Caucasus near the border that divides Europe and Asia. Previously, fossil remains for two Neanderthals were reported from Mezmaiskaya Cave. A tooth from the third archaic hominin specimen (Mezmaiskaya 3) was retrieved from layer 3 in Mezmaiskaya Cave. We performed genome sequencing of Mezmaiskaya 3. Analysis of partial nuclear genome sequence revealed that it belongs to a Homo sapiens neanderthalensis female. Based on a high-coverage mitochondrial genome sequence, we demonstrated that the relationships of Mezmaiskaya 3 to Mezmaiskaya 1 and Stajnia S5000 individuals were closer than those to other Neanderthals. Our data demonstrate the close genetic connections between the early Middle Palaeolithic Neanderthals that were replaced by genetically distant later group in the same geographic areas. Based on mitochondrial DNA (mtDNA) data, we suggest that Mezmaiskaya 3 was the latest Neanderthal individual from the early Neanderthal’s branches. We proposed a hierarchical nomenclature for the mtDNA haplogroups of Neanderthals. In addition, we retrieved ancestral mtDNA mutations in presumably functional sites fixed in the Neanderthal clades, and also provided the first data showing mtDNA heteroplasmy in Neanderthal specimen.
Collapse
Affiliation(s)
- Tatiana V Andreeva
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia, 354340. .,Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, 119333. .,Faculty of Biology, Centre for Genetics and Genetic Technologies, Lomonosov Moscow State University, Moscow, Russia, 119192.
| | - Andrey D Manakhov
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia, 354340.,Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, 119333.,Faculty of Biology, Centre for Genetics and Genetic Technologies, Lomonosov Moscow State University, Moscow, Russia, 119192
| | - Fedor E Gusev
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia, 354340.,Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, 119333.,Faculty of Biology, Centre for Genetics and Genetic Technologies, Lomonosov Moscow State University, Moscow, Russia, 119192
| | - Anton D Patrikeev
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, 119333
| | | | | | - Ivan G Shirobokov
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, St. Petersburg, Russia, 199034
| | - Evgeny I Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia, 354340. .,Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, 119333. .,Faculty of Biology, Centre for Genetics and Genetic Technologies, Lomonosov Moscow State University, Moscow, Russia, 119192. .,Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 01604, USA.
| |
Collapse
|
46
|
Chang X, Liu Y, Glessner J, Hou C, Qu H, Nguyen K, Sleiman P, Lee L, Diskin SJ, Maris JM, Hakonarson H. Identification of Mitochondrial DNA Variants Associated With Risk of Neuroblastoma. J Natl Cancer Inst 2022; 114:910-913. [PMID: 35134187 PMCID: PMC9194614 DOI: 10.1093/jnci/djac012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/20/2021] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroblastoma is a childhood cancer that originates in the developing sympathetic nervous system. We previously reported a crucial role of mitochondrial DNA haplogroups in the pathology of neuroblastoma. To pinpoint mitochondrial DNA variants associated with neuroblastoma risk, we applied a mitochondrial genome imputation pipeline to the single nucleotide polymorphisms array data of 2 pediatric cohorts containing a total of 2404 neuroblastoma patients and 9310 cancer-free controls. All statistical tests were 2-sided. The single nucleotide variant, rs2853493, was statistically significantly associated with neuroblastoma risk in the discovery cohort (odds ratio = 0.62, 95% confidence interval = 0.53 to 0.72, P < .001) and further confirmed in the replication cohort (odds ratio = 0.75, 95% confidence interval = 0.62 to 0.90, P = .002). Further, expression quantitative trait loci analysis indicated genotypes of rs2853493 were associated with expression levels of MT-CYB gene expression in neuroblastoma cells, suggesting rs2853493 may confer risk to neuroblastoma via regulating the expression level of its nearby genes.
Collapse
Affiliation(s)
- Xiao Chang
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yichuan Liu
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph Glessner
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cuiping Hou
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Huiqi Qu
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kenny Nguyen
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patrick Sleiman
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lobin Lee
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sharon J Diskin
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Oncology and Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - John M Maris
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA , USA
- Division of Oncology and Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania School of Medicine , Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Ph iladelphia, PA, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
47
|
Bousquet PA, Meltzer S, Fuglestad AJ, Lüders T, Esbensen Y, Juul HV, Johansen C, Lyckander LG, Bjørnetrø T, Inderberg EM, Kersten C, Redalen KR, Ree AH. The mitochondrial DNA constitution shaping T-cell immunity in patients with rectal cancer at high risk of metastatic progression. Clin Transl Oncol 2022; 24:1157-1167. [PMID: 34961902 PMCID: PMC9107448 DOI: 10.1007/s12094-021-02756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/09/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE A significant percentage of colorectal cancer patients proceeds to metastatic disease. We hypothesised that mitochondrial DNA (mtDNA) polymorphisms, generated by the high mtDNA mutation rate of energy-demanding clonal immune cell expansions and assessable in peripheral blood, reflect how efficiently systemic immunity impedes metastasis. PATIENTS AND METHODS We studied 44 rectal cancer patients from a population-based prospective biomarker study, given curative-intent neoadjuvant radiation and radical surgery for high-risk tumour stage and followed for metastatic failure. Blood specimens were sampled at the time of diagnosis and analysed for the full-length mtDNA sequence, composition of immune cell subpopulations and damaged serum mtDNA. RESULTS Whole blood total mtDNA variant number above the median value for the study cohort, coexisting with an mtDNA non-H haplogroup, was representative for the mtDNA of circulating immune cells and associated with low risk of a metastatic event. Abundant mtDNA variants correlated with proliferating helper T cells and cytotoxic effector T cells in the circulation. Patients without metastatic progression had high relative levels of circulating tumour-targeting effector T cells and, of note, the naïve (LAG-3+) helper T-cell population, with the proportion of LAG-3+ cells inversely correlating with cell-free damaged mtDNA in serum known to cause antagonising inflammation. CONCLUSION Numerous mtDNA polymorphisms in peripheral blood reflected clonal expansion of circulating helper and cytotoxic T-cell populations in patients without metastatic failure. The statistical associations suggested that patient's constitutional mtDNA manifests the helper T-cell capacity to mount immunity that controls metastatic susceptibility. TRIAL REGISTRATION ClinicalTrials.gov NCT01816607; registration date: 22 March 2013.
Collapse
Affiliation(s)
- P A Bousquet
- Department of Oncology, Akershus University Hospital, Lorenskog, Norway
| | - S Meltzer
- Department of Oncology, Akershus University Hospital, Lorenskog, Norway
| | - A J Fuglestad
- Department of Oncology, Akershus University Hospital, Lorenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Cancer Treatment, Sørlandet Hospital, Kristiansand, Norway
| | - T Lüders
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Molecular Biology, Akershus University Hospital, Lorenskog, Norway
| | - Y Esbensen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Molecular Biology, Akershus University Hospital, Lorenskog, Norway
| | - H V Juul
- Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - C Johansen
- Department of Oncology, Akershus University Hospital, Lorenskog, Norway
| | - L G Lyckander
- Department of Pathology, Akershus University Hospital, Lorenskog, Norway
| | - T Bjørnetrø
- Department of Oncology, Akershus University Hospital, Lorenskog, Norway
| | - E M Inderberg
- Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - C Kersten
- Department of Oncology, Akershus University Hospital, Lorenskog, Norway
- Centre for Cancer Treatment, Sørlandet Hospital, Kristiansand, Norway
| | - K R Redalen
- Department of Oncology, Akershus University Hospital, Lorenskog, Norway
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - A H Ree
- Department of Oncology, Akershus University Hospital, Lorenskog, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
48
|
Mitochondrial mutations alter endurance exercise response and determinants in mice. Proc Natl Acad Sci U S A 2022; 119:e2200549119. [PMID: 35482926 PMCID: PMC9170171 DOI: 10.1073/pnas.2200549119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Primary mitochondrial diseases (PMDs) are the most prevalent inborn metabolic disorders, affecting an estimated 1 in 4,200 individuals. Endurance exercise is generally known to improve mitochondrial function, but its indication in the heterogeneous group of PMDs is unclear. We determined the relationship between mitochondrial mutations, endurance exercise response, and the underlying molecular pathways in mice with distinct mitochondrial mutations. This revealed that mitochondria are crucial regulators of exercise capacity and exercise response. Endurance exercise proved to be mostly beneficial across the different mitochondrial mutant mice with the exception of a worsened dilated cardiomyopathy in ANT1-deficient mice. Thus, therapeutic exercises, especially in patients with PMDs, should take into account the physical and mitochondrial genetic status of the patient. Primary mitochondrial diseases (PMDs) are a heterogeneous group of metabolic disorders that can be caused by hundreds of mutations in both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) genes. Current therapeutic approaches are limited, although one approach has been exercise training. Endurance exercise is known to improve mitochondrial function in heathy subjects and reduce risk for secondary metabolic disorders such as diabetes or neurodegenerative disorders. However, in PMDs the benefit of endurance exercise is unclear, and exercise might be beneficial for some mitochondrial disorders but contraindicated in others. Here we investigate the effect of an endurance exercise regimen in mouse models for PMDs harboring distinct mitochondrial mutations. We show that while an mtDNA ND6 mutation in complex I demonstrated improvement in response to exercise, mice with a CO1 mutation affecting complex IV showed significantly fewer positive effects, and mice with an ND5 complex I mutation did not respond to exercise at all. For mice deficient in the nDNA adenine nucleotide translocase 1 (Ant1), endurance exercise actually worsened the dilated cardiomyopathy. Correlating the gene expression profile of skeletal muscle and heart with the physiologic exercise response identified oxidative phosphorylation, amino acid metabolism, matrisome (extracellular matrix [ECM]) structure, and cell cycle regulation as key pathways in the exercise response. This emphasizes the crucial role of mitochondria in determining the exercise capacity and exercise response. Consequently, the benefit of endurance exercise in PMDs strongly depends on the underlying mutation, although our results suggest a general beneficial effect.
Collapse
|
49
|
Cabrera-Alarcon JL, Martinez JG, Enríquez JA, Sánchez-Cabo F. Variant pathogenic prediction by locus variability: the importance of the current picture of evolution. Eur J Hum Genet 2022; 30:555-559. [PMID: 35079159 PMCID: PMC9091277 DOI: 10.1038/s41431-021-01034-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Accurate detection of pathogenic single nucleotide variants (SNVs) is a key challenge in whole exome and whole genome sequencing studies. To date, several in silico tools have been developed to predict deleterious variants from this type of data. However, these tools have limited power to detect new pathogenic variants, especially in non-coding regions. In this study, we evaluate the use of a new metric, the Shannon Entropy of Locus Variability (SELV), calculated as the Shannon entropy of the variant frequencies reported in genome-wide population studies at a given locus, as a new predictor of potentially pathogenic variants in non-coding nuclear and mitochondrial DNA and also in coding regions with a selective pressure other than that imposed by the genetic code, e.g splice-sites. For benchmarking, SELV was compared to predictors of pathogenicity in different genomic contexts. In nuclear non-coding DNA, SELV outperformed CDTS (AUCSELV = 0.97 in ROC curve and PR-AUCSELV = 0.96 in Precision-recall curve). For non-coding mitochondrial variants (AUCSELV = 0.98 in ROC curve and PR-AUCSELV = 1.00 in Precision-recall curve) SELV outperformed HmtVar. Moreover, SELV was compared against two state-of-the-art ensemble predictors of pathogenicity in splice-sites, ada-score, and rf-score, matching their overall performance both in ROC (AUCSELV = 0.95) and Precision-recall curves (PR-AUC = 0.97), with the advantage that SELV can be easily calculated for every position in the genome, as opposite to ada-score and rf-score. Therefore, we suggest that the information about the observed genetic variability in a locus reported from large scale population studies could improve the prioritization of SNVs in splice-sites and in non-coding regions.
Collapse
Affiliation(s)
- José Luis Cabrera-Alarcon
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Jorge García Martinez
- Data Analysis Unit, Instituto de Investigación Sanitaria, Hospital de la Princesa, Madrid, Spain
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, 28029, Madrid, Spain. .,Centro de Investigaciones Biomédicas en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), Melchor Fernandez Almagro 3, 28029, Madrid, Spain.
| | - Fátima Sánchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
50
|
Richardson KK, Ling W, Krager K, Fu Q, Byrum SD, Pathak R, Aykin-Burns N, Kim HN. Ionizing Radiation Activates Mitochondrial Function in Osteoclasts and Causes Bone Loss in Young Adult Male Mice. Int J Mol Sci 2022; 23:675. [PMID: 35054859 PMCID: PMC8775597 DOI: 10.3390/ijms23020675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
The damaging effects of ionizing radiation (IR) on bone mass are well-documented in mice and humans and are most likely due to increased osteoclast number and function. However, the mechanisms leading to inappropriate increases in osteoclastic bone resorption are only partially understood. Here, we show that exposure to multiple fractions of low-doses (10 fractions of 0.4 Gy total body irradiation [TBI]/week, i.e., fractionated exposure) and/or a single exposure to the same total dose of 4 Gy TBI causes a decrease in trabecular, but not cortical, bone mass in young adult male mice. This damaging effect was associated with highly activated bone resorption. Both osteoclast differentiation and maturation increased in cultures of bone marrow-derived macrophages from mice exposed to either fractionated or singular TBI. IR also increased the expression and enzymatic activity of mitochondrial deacetylase Sirtuin-3 (Sirt3)-an essential protein for osteoclast mitochondrial activity and bone resorption in the development of osteoporosis. Osteoclast progenitors lacking Sirt3 exposed to IR exhibited impaired resorptive activity. Taken together, targeting impairment of osteoclast mitochondrial activity could be a novel therapeutic strategy for IR-induced bone loss, and Sirt3 is likely a major mediator of this effect.
Collapse
Affiliation(s)
- Kimberly K. Richardson
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.R.); (W.L.); (Q.F.)
| | - Wen Ling
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.R.); (W.L.); (Q.F.)
| | - Kimberly Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.); (R.P.); (N.A.-B.)
| | - Qiang Fu
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.R.); (W.L.); (Q.F.)
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.); (R.P.); (N.A.-B.)
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.); (R.P.); (N.A.-B.)
| | - Ha-Neui Kim
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (K.K.R.); (W.L.); (Q.F.)
| |
Collapse
|