1
|
Zou H, Deng W, Xu L, Shi M, Liu L, Gong L, Cui D, Zhang F. CircRNA-0013747 Promotes Mesangial Cell Proliferation in Immunoglobulin A Nephropathy through Modulation of the Warburg Effect. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2025:02275668-990000000-00025. [PMID: 39904903 DOI: 10.4103/ejpi.ejpi-d-24-00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/20/2024] [Indexed: 02/06/2025]
Abstract
ABSTRACT Immunoglobulin A nephropathy (IgAN) is characterized by aberrant mesangial cell (MC) proliferation, which is a critical determinant of glomerular sclerosis and renal dysfunction. Previous studies have highlighted the role of pyruvate kinase M2 (PKM2)- mediated aerobic glycolysis in promoting MC growth and the progression of kidney diseases. However, the precise mechanisms underlying PKM2 dysregulation in IgAN remain unclear. Circular RNAs (circRNAs), a class of noncoding RNAs, have emerged as pivotal regulators in various diseases, yet their role in IgAN has not been fully elucidated. In this study, we investigated the expression and functional significance of circRNA_0013747 in IgAN, focusing on its interaction with microRNA-330-3p (miR-330-3p) and its downstream effects on PKM2-mediated aerobic glycolysis. Our results demonstrated a significant upregulation of circRNA_0013747 in kidney biopsy samples from IgAN patients. Functional analyses revealed that circRNA_0013747 promoted MC proliferation and activated PKM2-mediated aerobic glycolysis. Importantly, these effects were attenuated by the upregulation of miR-330-3p, which was found to physically interact with circRNA_0013747, thereby inhibiting its function. Mechanistically, circRNA_0013747 acted as a sponge for miR-330-3p, relieving its suppressive effects on PKM2 expression. These findings suggest that circRNA_0013747 enhances glycolysis and proliferation in MCs through modulation of the miR-330-3p/PKM2 signaling axis. These results offer novel insights into the pathogenesis of IgAN and could contribute to new therapeutic approaches for this disease. Specifically, targeting circRNA_0013747 or modulating its interaction with miR-330-3p may provide a means to inhibit MC proliferation and aerobic glycolysis, thereby slowing the progression of IgAN and preserving renal function. Such therapeutic strategies hold the promise of substantial benefits for patients with IgAN and could pave the path toward developing more potent treatments for a wider range of renal diseases.
Collapse
Affiliation(s)
- Huimei Zou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
- Department of Fundamental Nursing, School of Nursing, Guizhou Medical University, Guiyang, China
| | - Wenli Deng
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Lifen Xu
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Lingling Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Lei Gong
- School of Basic Medicine, Qujing Medical College, Qujing, China
| | - Daolin Cui
- School of Basic Medicine, Qujing Medical College, Qujing, China
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Yang F, He Y, Zhao L, Huang J, Du F, Tian S, Zhang Y, Liu X, Chen B, Ge J, Jiang Z. Leptin drives glucose metabolism to promote cardiac protection via OPA1-mediated HDAC5 translocation and Glut4 transcription. Funct Integr Genomics 2025; 25:28. [PMID: 39875704 PMCID: PMC11774999 DOI: 10.1007/s10142-024-01515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025]
Abstract
Metabolic reprogramming, the shifting from fatty acid oxidation to glucose utilization, improves cardiac function as heart failure (HF) progresses. Leptin plays an essential role in regulating glucose metabolism. However, the crosstalk between leptin and metabolic reprogramming is poorly understood. We tested the hypothesis that leptin improves cardiac function after myocardial infarction via enhancing glucose metabolism. In the isoproterenol (ISO)-induced heart failure model in vitro, H9c2 cell apoptosis was assessed by the TUNEL and Annexin V/PI staining assay. Leptin-mediated mitochondrial fusion was performed via TEM, and glucose oxidation was explored, as well as the ECAR, OCR, and protein expression of the vital metabolic enzymes. By blocking OPA1 expression or HDAC5 inhibition, the mitochondrial dynamic and glucose metabolic were detected to evaluate the role of OPA1 and HDAC5 in leptin-stimulated glucose metabolism. In the mouse model of HF in vivo, intraperitoneal leptin administration appreciably increased glucose oxidation and preserved cardiac function 56 days after coronary artery ligation. In vitro, we identified the OPA1-dependent HDAC5 nucleus export as a crucial process in boosting glucose utilization by activating MEF2 to upregulate Glut4 expression using the RNA interference technique in H9c2 cells. In vivo, leptin promotes glucose utilization and confers heart functional and survival benefits in chronic ischemic HF. The current study provided a novel insight into the role of leptin in metabolic reprogramming and revealed potential therapeutic targets for chronic HF.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China
- Guizhou University Medical College, Guizhou Province, China
| | - Youfu He
- Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China
- Guizhou University Medical College, Guizhou Province, China
| | - Ling Zhao
- Health Management Center, Guizhou International General Hospital, Guizhou Province, China
| | - Jing Huang
- Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China
- Guizhou University Medical College, Guizhou Province, China
| | - Fawang Du
- Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China
- Guizhou University Medical College, Guizhou Province, China
| | - Shui Tian
- Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China
- Guizhou University Medical College, Guizhou Province, China
| | - Yang Zhang
- Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China
- Guizhou University Medical College, Guizhou Province, China
| | - Xinghui Liu
- Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China
- Guizhou University Medical College, Guizhou Province, China
| | - Baolin Chen
- Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China
- Guizhou University Medical College, Guizhou Province, China
| | - Junhua Ge
- Department of Cardiology, Qingdao Municipal Key Laboratory of Hypertension (Key Laboratory of Cardiovascular Medicine), The Affiliated Hospital of Qingdao University, Shandong Province, China.
| | - Zhi Jiang
- Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China.
- Guizhou University Medical College, Guizhou Province, China.
| |
Collapse
|
3
|
Chen H, Liu C, Cui S, Xia Y, Zhang K, Cheng H, Peng J, Yu X, Li L, Yu H, Zhang J, Zheng JS, Zhang B. Intermittent fasting triggers interorgan communication to suppress hair follicle regeneration. Cell 2025; 188:157-174.e22. [PMID: 39674178 DOI: 10.1016/j.cell.2024.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/29/2024] [Accepted: 11/06/2024] [Indexed: 12/16/2024]
Abstract
Intermittent fasting has gained global popularity for its potential health benefits, although its impact on somatic stem cells and tissue biology remains elusive. Here, we report that commonly used intermittent fasting regimens inhibit hair follicle regeneration by selectively inducing apoptosis in activated hair follicle stem cells (HFSCs). This effect is independent of calorie reduction, circadian rhythm alterations, or the mTORC1 cellular nutrient-sensing mechanism. Instead, fasting activates crosstalk between adrenal glands and dermal adipocytes in the skin, triggering the rapid release of free fatty acids into the niche, which in turn disrupts the normal metabolism of HFSCs and elevates their cellular reactive oxygen species levels, causing oxidative damage and apoptosis. A randomized clinical trial (NCT05800730) indicates that intermittent fasting inhibits human hair growth. Our study uncovers an inhibitory effect of intermittent fasting on tissue regeneration and identifies interorgan communication that eliminates activated HFSCs and halts tissue regeneration during periods of unstable nutrient supply.
Collapse
Affiliation(s)
- Han Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Chao Liu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Shiyao Cui
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Yingqian Xia
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310000, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Ke Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Hanxiao Cheng
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Jingyu Peng
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Xiaoling Yu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Luyang Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Hualin Yu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Ju-Sheng Zheng
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China; School of Medicine, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Bing Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310000, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
4
|
Hemalatha A, Li Z, Gonzalez DG, Matte-Martone C, Tai K, Lathrop E, Gil D, Ganesan S, Gonzalez LE, Skala M, Perry RJ, Greco V. Metabolic rewiring in skin epidermis drives tolerance to oncogenic mutations. Nat Cell Biol 2025:10.1038/s41556-024-01574-w. [PMID: 39762578 DOI: 10.1038/s41556-024-01574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/01/2024] [Indexed: 02/06/2025]
Abstract
Skin epithelial stem cells correct aberrancies induced by oncogenic mutations. Oncogenes invoke different strategies of epithelial tolerance; while wild-type cells outcompete β-catenin-gain-of-function (βcatGOF) cells, HrasG12V cells outcompete wild-type cells. Here we ask how metabolic states change as wild-type stem cells interface with mutant cells and drive different cell-competition outcomes. By tracking the endogenous redox ratio (NAD(P)H/FAD) with single-cell resolution in the same mouse over time, we discover that βcatGOF and HrasG12V mutations, when interfaced with wild-type epidermal stem cells, lead to a rapid drop in redox ratios, indicating more oxidized cellular redox. However, the resultant redox differential persists through time in βcatGOF, whereas it is flattened rapidly in the HrasG12Vmodel. Using 13C liquid chromatography-tandem mass spectrometry, we find that the βcatGOF and HrasG12V mutant epidermis increase the fractional contribution of glucose through the oxidative tricarboxylic acid cycle. Treatment with metformin, a modifier of cytosolic redox, inhibits downstream mutant phenotypes and reverses cell-competition outcomes of both mutant models.
Collapse
Affiliation(s)
| | - Zongyu Li
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale School of Medicine, New Haven, CT, USA
| | - David G Gonzalez
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Karen Tai
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Daniel Gil
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Smirthy Ganesan
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melissa Skala
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Rachel J Perry
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale School of Medicine, New Haven, CT, USA.
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Departments of Cell Biology and Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute (HHMI), Chevy Chase, MD, USA.
| |
Collapse
|
5
|
Alqusayer AM, Ahmed WE, Althwab SA, Hamad EM. Assessing the impact of intermittent fasting and a low-carbohydrate-high-protein diet on metabolic health and pancreatic histopathology in type 2 diabetic rat model. Int J Health Sci (Qassim) 2025; 19:31-40. [PMID: 39760051 PMCID: PMC11699238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Objective The current study was conducted to investigate the effect of intermittent fasting (IF) with a low-carbohydrate-high-protein (LCHP) diet on blood glucose control in streptozotocin (STZ)-nicotinamide-induced type 2 diabetic rats (DR). Methods Thirty male Wistar rats were divided into six groups (n = 5) including a group of normal rats (NR) that received a control diet (CD) (50% carbohydrates, 17% protein, and 33% fat) with ad libitum (AL) feeding. The remaining 5 groups were DR injected with STZ and fed on CD or LCHP diet (40% carbohydrates, 30% protein, and 30% fat) for 6 weeks, either AL or IF (with a time-restricted feeding of 16 h followed by 8 h feeding period). There was a standard control group treated with metformin and fed on CD with AL feeding. A random blood glucose was measured. Changes in body weight and feed intake (FI) were monitored weekly. Results Feeding rats on LCHP and IF and their combination significantly reduced FI, body weight gain, blood glucose (P < 0.001), and improved insulin resistance (P < 0.05) with no effect on the insulin levels (P > 0.05). LCHP and IF decreased the levels of triglycerides and very-low-density lipoprotein and showed a possible protection against atherosclerosis by reducing the atherogenic index (P < 0.01). Furthermore, LCHP+IF greatly alleviates the pancreatic histopathological changes induced by STZ and showed the normal histological structure of the Langerhans islets. Conclusion IF with a LCHP diet could be effectively used in improving the indicators of glucose control, and reversing pancreatic histopathological alterations in type 2 diabetes.
Collapse
Affiliation(s)
- Arwa M. Alqusayer
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, 51452 Buraidah, Saudi Arabia
| | - Waheeba E. Ahmed
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, 51452 Buraidah, Saudi Arabia
| | - Sami A. Althwab
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, 51452 Buraidah, Saudi Arabia
| | - Essam M. Hamad
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, 51452 Buraidah, Saudi Arabia
| |
Collapse
|
6
|
Goedeke L, Ma Y, Gaspar RC, Nasiri A, Lee J, Zhang D, Galsgaard KD, Hu X, Zhang J, Guerrera N, Li X, LaMoia T, Hubbard BT, Haedersdal S, Wu X, Stack J, Dufour S, Butrico GM, Kahn M, Perry RJ, Cline GW, Young LH, Shulman GI. SGLT2 inhibition alters substrate utilization and mitochondrial redox in healthy and failing rat hearts. J Clin Invest 2024; 134:e176708. [PMID: 39680452 DOI: 10.1172/jci176708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/17/2024] [Indexed: 12/18/2024] Open
Abstract
Previous studies highlight the potential for sodium-glucose cotransporter type 2 (SGLT2) inhibitors (SGLT2i) to exert cardioprotective effects in heart failure by increasing plasma ketones and shifting myocardial fuel utilization toward ketone oxidation. However, SGLT2i have multiple in vivo effects and the differential impact of SGLT2i treatment and ketone supplementation on cardiac metabolism remains unclear. Here, using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology combined with infusions of [13C6]glucose or [13C4]βOHB, we demonstrate that acute SGLT2 inhibition with dapagliflozin shifts relative rates of myocardial mitochondrial metabolism toward ketone oxidation, decreasing pyruvate oxidation with little effect on fatty acid oxidation in awake rats. Shifts in myocardial ketone oxidation persisted when plasma glucose levels were maintained. In contrast, acute βOHB infusion similarly augmented ketone oxidation, but markedly reduced fatty acid oxidation and did not alter glucose uptake or pyruvate oxidation. After inducing heart failure, dapagliflozin increased relative rates of ketone and fatty acid oxidation, but decreased pyruvate oxidation. Dapagliflozin increased mitochondrial redox and reduced myocardial oxidative stress in heart failure, which was associated with improvements in left ventricular ejection fraction after 3 weeks of treatment. Thus, SGLT2i have pleiotropic effects on systemic and heart metabolism, which are distinct from ketone supplementation and may contribute to the long-term cardioprotective benefits of SGLT2i.
Collapse
Affiliation(s)
- Leigh Goedeke
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Medicine (Cardiology) and The Cardiovascular Research Institute and
- Department of Medicine (Endocrinology) and The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yina Ma
- Department of Internal Medicine (Cardiovascular Medicine) and The Yale Cardiovascular Research Center, Yale School of Medicine, New Haven Connecticut, USA
| | - Rafael C Gaspar
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Ali Nasiri
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Jieun Lee
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Dongyan Zhang
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Katrine Douglas Galsgaard
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xiaoyue Hu
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Jiasheng Zhang
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Nicole Guerrera
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Xiruo Li
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven Connecticut, USA
| | - Traci LaMoia
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven Connecticut, USA
| | - Brandon T Hubbard
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven Connecticut, USA
| | - Sofie Haedersdal
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Clinical Research, Copenhagen University Hospital, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Xiaohong Wu
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - John Stack
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Sylvie Dufour
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Gina Marie Butrico
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Mario Kahn
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Rachel J Perry
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven Connecticut, USA
| | - Gary W Cline
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
| | - Lawrence H Young
- Department of Internal Medicine (Cardiovascular Medicine) and The Yale Cardiovascular Research Center, Yale School of Medicine, New Haven Connecticut, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven Connecticut, USA
| | - Gerald I Shulman
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, New Haven Connecticut, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven Connecticut, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
7
|
Perakakis N, Mantzoros CS. Evidence from clinical studies of leptin: current and future clinical applications in humans. Metabolism 2024; 161:156053. [PMID: 39490439 DOI: 10.1016/j.metabol.2024.156053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Leptin has been established as the prototype adipose tissue secreted hormone and as a major regulator of several human physiology functions. Here, we are primarily reviewing the findings from studies in humans involving leptin administration. We are describing the metabolic, endocrine and immunologic effects of leptin replacement in conditions of leptin deficiency, such as short-term fasting in healthy individuals, relative energy deficiency in sports (REDS), congenital leptin deficiency (CLD), generalized (GL) and partial lipodystrophy (PL), HIV-associated lipodystrophy (HIV-L) and of leptin treatment in conditions of leptin excess (common obesity, type 2 diabetes, steatotic liver disease). We are comparing the results with the findings from preclinical models and present the main conclusions regarding the role of leptin in human physiology, pathophysiology and therapeutics. We conclude that, in conditions of energy deficiency, leptin substitution effectively reduces body weight and fat mass through reduction of appetite, it improves hypertriglyceridemia, insulin resistance and hepatic steatosis (especially in GL and PL), it restores neuroendocrine function (especially the gonadotropic axis), it regulates adaptive immune system cell populations and it improves bone health. On the contrary, leptin treatment in conditions of leptin excess, such as common obesity and type 2 diabetes, does not improve any metabolic abnormalities. Strategies to overcome leptin tolerance/resistance in obesity and type 2 diabetes have provided promising results in animal studies, which should though be tested in humans in randomized clinical trials.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Division of Metabolic and Vascular Medicine, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| | - Christos S Mantzoros
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Goldberg D, Buchshtab N, Charni-Natan M, Goldstein I. Transcriptional cascades during fasting amplify gluconeogenesis and instigate a secondary wave of ketogenic gene transcription. Liver Int 2024; 44:2964-2982. [PMID: 39162082 DOI: 10.1111/liv.16077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND AIMS During fasting, bodily homeostasis is maintained due to hepatic production of glucose (gluconeogenesis) and ketone bodies (ketogenesis). The main hormones governing hepatic fuel production are glucagon and glucocorticoids that initiate transcriptional programs aimed at supporting gluconeogenesis and ketogenesis. METHODS Using primary mouse hepatocytes as an ex vivo model, we employed transcriptomic analysis (RNA-seq), genome-wide profiling of enhancer dynamics (ChIP-seq), perturbation experiments (inhibitors, shRNA), hepatic glucose production measurements and computational analyses. RESULTS We found that in addition to the known metabolic genes transcriptionally induced by glucagon and glucocorticoids, these hormones induce a set of genes encoding transcription factors (TFs) thereby initiating transcriptional cascades. Upon activation by glucocorticoids, the glucocorticoid receptor (GR) induced the genes encoding two TFs: CCAAT/enhancer-binding protein beta (C/EBPβ) and peroxisome proliferator-activated receptor alpha (PPARα). We found that the GR-C/EBPβ cascade mainly serves as a secondary amplifier of primary hormone-induced gene programs. C/EBPβ augmented gluconeogenic gene expression and hepatic glucose production. Conversely, the GR-PPARα cascade initiated a secondary transcriptional wave of genes supporting ketogenesis. The cascade led to synergistic induction of ketogenic genes which is dependent on protein synthesis. Genome-wide analysis of enhancer dynamics revealed numerous enhancers activated by the GR-PPARα cascade. These enhancers were proximal to ketogenic genes, enriched for the PPARα response element and showed increased PPARα binding. CONCLUSION This study reveals abundant transcriptional cascades occurring during fasting. These cascades serve two separated purposes: the amplification of the gluconeogenic transcriptional program and the induction of a gene program aimed at enhancing ketogenesis.
Collapse
Affiliation(s)
- Dana Goldberg
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nufar Buchshtab
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
9
|
Chang X, Wang L, Sun H, Wang Z, Yang Z, Chen S. Electroacupuncture at different frequencies improves visceral pain in IBS rats through different pathways. Neurogastroenterol Motil 2024; 36:e14874. [PMID: 39031023 DOI: 10.1111/nmo.14874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/12/2024] [Accepted: 07/11/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND The aim of this study was to investigate the frequency dependence of electroacupuncture (EA) in alleviating chronic visceral pain in patients with irritable bowel syndrome (IBS) and the differences in the gut microbiota and metabolites as potential mechanisms to explain frequency dependence. METHODS A visceral hyperalgesia model was established by colorectal instillation of 2,4,6-trinitrobenzene sulfonic acid in rats, and EA treatment at 2/10 Hz, 2/50 Hz and 2/100 Hz was applied at ST25. Visceral sensation was quantified by the abdominal withdrawal reflex score and the area under the curve of the rectus abdominis electromyogram in response to colorectal distension. Ultrastructural morphological damage of colonic tissue of the rats was examined by transmission electron microscopy. 16S rRNA gene sequencing and 1H-nuclear magnetic resonance spectroscopy were applied to study the differences in the gut microbiota and to perform metabonomic profiling of the colonic tissue. KEY RESULTS EA at ST25 at different frequencies attenuated chronic visceral pain, ultrastructural morphological damage to colonic tissue and disruption of the gut microbiota in IBS rats. The frequency of 2/100 Hz has more regulatory pathways than 2/10 Hz and 2/50 Hz. In addition, IBS rats exhibited colonic metabolic disorders, and pantothenate was significantly upregulated after EA treatment at different frequencies. Very low-density lipoprotein and 2-hydroxybutyrate were significantly increased in the 2/10 Hz group, while low density lipoprotein, very low-density lipoprotein, 2-hydroxybutyrate, methylmalonate and alpha-hydroxyisobutyric acid were significantly increased in the 2/100 Hz group. CONCLUSIONS AND INFERENCES EA at ST25 at different frequencies attenuated chronic visceral pain through different gut microbiota and metabolic pathways.
Collapse
Affiliation(s)
- Xiaoli Chang
- College of Acupuncture and moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijun Wang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Hongwei Sun
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Wang
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zongbao Yang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Shaozong Chen
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Li M, Wang Y, Wei X, Cai WF, Wu J, Zhu M, Wang Y, Liu YH, Xiong J, Qu Q, Chen Y, Tian X, Yao L, Xie R, Li X, Chen S, Huang X, Zhang C, Xie C, Wu Y, Xu Z, Zhang B, Jiang B, Wang ZC, Li Q, Li G, Lin SY, Yu L, Piao HL, Deng X, Han J, Zhang CS, Lin SC. AMPK targets PDZD8 to trigger carbon source shift from glucose to glutamine. Cell Res 2024; 34:683-706. [PMID: 38898113 PMCID: PMC11442470 DOI: 10.1038/s41422-024-00985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The shift of carbon utilization from primarily glucose to other nutrients is a fundamental metabolic adaptation to cope with decreased blood glucose levels and the consequent decline in glucose oxidation. AMP-activated protein kinase (AMPK) plays crucial roles in this metabolic adaptation. However, the underlying mechanism is not fully understood. Here, we show that PDZ domain containing 8 (PDZD8), which we identify as a new substrate of AMPK activated in low glucose, is required for the low glucose-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527) and promotes the interaction of PDZD8 with and activation of glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis. In vivo, the AMPK-PDZD8-GLS1 axis is required for the enhancement of glutaminolysis as tested in the skeletal muscle tissues, which occurs earlier than the increase in fatty acid utilization during fasting. The enhanced glutaminolysis is also observed in macrophages in low glucose or under acute lipopolysaccharide (LPS) treatment. Consistent with a requirement of heightened glutaminolysis, the PDZD8-T527A mutation dampens the secretion of pro-inflammatory cytokines in macrophages in mice treated with LPS. Together, we have revealed an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis ahead of increased fatty acid utilization under glucose shortage.
Collapse
Affiliation(s)
- Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei-Feng Cai
- Xiamen Key Laboratory of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Xiamen, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yongliang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jinye Xiong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Luming Yao
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Renxiang Xie
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaomin Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siwei Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xi Huang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changchuan Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaying Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zheni Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bin Jiang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhi-Chao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qinxi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
11
|
Wang T, Zhang Y, Jia L, Li Y, Wang L, Zhu Y, Jiang Y, Zhao F, Wang S, Song D. LC-MS/MS-based bioanalysis of branched-chain and aromatic amino acids in human serum. Bioanalysis 2024; 16:693-704. [PMID: 39157863 PMCID: PMC11389736 DOI: 10.1080/17576180.2024.2387467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Aim: Branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) were suggested as potential biomarkers in liver disease. This study aimed to develop and validate a simple and rapid LC-MS/MS method to simultaneously measure serum BCAAs and AAAs levels in patients with liver injury, and further establish reference intervals of Chinese healthy adult populations.Patients & methods: Samples were prepared by a one-step protein precipitation and analysis time was 4 min per run.Results: The validation results showed good linearity (r2 >0.9969), satisfactory accuracy (94.44% - 107.75%) and precision (0.10% - 5.90%).Conclusion: This method proved to be suitable for high-throughput routine clinical use and could be a valuable adjunct diagnosis tool for liver injury and other clinical applications.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of GCP, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, P.R. China
| | - Yalian Zhang
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
| | - Luan Jia
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
| | - Ying Li
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
| | - Lu Wang
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
| | - Yanru Zhu
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
| | - Yuxin Jiang
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
- Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian, P.R. China
| | - Furong Zhao
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
- Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian, P.R. China
- Liaoning Provincial Key Laboratory of Clinical Oncology Metabonomics, Jinzhou Medical University, Jinzhou, P.R. China
| | - Shuang Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, P.R. China
| | - Dan Song
- Dalian Boyuan Medical Technology Co. Ltd, Dalian, P.R. China
- Liaoning Provincial Key Laboratory of Clinical Oncology Metabonomics, Jinzhou Medical University, Jinzhou, P.R. China
| |
Collapse
|
12
|
Martyshina AV, Sirotkina AG, Gosteva IV. Temporal multiscale modeling of biochemical regulatory networks: Calcium-regulated hepatocyte lipid and glucose metabolism. Biosystems 2024; 240:105227. [PMID: 38718915 DOI: 10.1016/j.biosystems.2024.105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Hepatocyte lipid and glucose metabolism is regulated not only by major hormones like insulin and glucagon but also by many other factors, including calcium ions. Recently, mitochondria-associated membrane (MAM) dysfunction combined with incorrect IP3-receptor regulation has been shown to result in abnormal calcium signaling in hepatocytes. This dysfunction could further lead to hepatic metabolism pathology. However, the exact contribution of MAM dysfunction, incorrect IP3-receptor regulation and insulin resistance to the calcium-insulin-glucagon interplay is not understood yet. In this work, we analyze the role of abnormal calcium signaling and insulin dysfunction in hepatocytes by proposing a model of hepatocyte metabolic regulatory network with a detailed focus on the model construction details besides the biological aspect. In this work, we analyze the role of abnormal calcium signaling and insulin dysfunction in hepatocytes by proposing a model of hepatocyte metabolic regulatory network. We focus on the model construction details, model validation, and predictions. We describe the dynamic regulation of signaling processes by sigmoid Hill function. In particular, we study the effect of both the Hill function slope and the distance between Hill function extremes on metabolic processes in hepatocytes as a model of nonspecific insulin dysfunction. We also address the significant time difference between characteristic time of glucose hepatic processing and a typical calcium oscillation period in hepatocytes. Our modeling results show that calcium signaling dysfunction results in an abnormal increase in postprandial glucose levels, an abnormal glucose decrease in fasting, and a decreased amount of stored glycogen. An insulin dysfunction of glucose phosphorylation, glucose dephosphorylation, and glycogen breakdown also cause a noticeable effect. We also get some insight into the so-called hepatic insulin resistance paradox, confirming the hypothesis regarding indirect insulin action on hepatocytes via dysfunctional adipocyte lipolysis.
Collapse
Affiliation(s)
- Arina V Martyshina
- Sarov Physics and Technology Institute, National Research Nuclear University MEPhI, Sarov, Russian Federation
| | - Anna G Sirotkina
- Sarov Physics and Technology Institute, National Research Nuclear University MEPhI, Sarov, Russian Federation
| | - Irina V Gosteva
- Sarov Physics and Technology Institute, National Research Nuclear University MEPhI, Sarov, Russian Federation.
| |
Collapse
|
13
|
Sun C, Zhao S, Pan Z, Li J, Wang Y, Kuang H. The Role Played by Mitochondria in Polycystic Ovary Syndrome. DNA Cell Biol 2024; 43:158-174. [PMID: 38588493 DOI: 10.1089/dna.2023.0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) refers to an endocrine disorder syndrome that are correlated with multiple organs and systems. PCOS has an effect on women at all stages of their lives, and it has an incidence nearly ranging from 6% to 20% worldwide. Mitochondrial dysfunctions (e.g., oxidative stress, dynamic imbalance, and abnormal quality control system) have been identified in patients and animal models of PCOS, and the above processes may play a certain role in the development of PCOS and its associated complications. However, their specific pathogenic roles should be investigated in depth. In this review, recent studies on the mechanisms of action of mitochondrial dysfunction in PCOS and its associated clinical manifestations are summarized from the perspective of tissues and organs, and some studies on the treatment of the disease by improving mitochondrial function are reviewed to highlight key role of mitochondrial dysfunction in this syndrome.
Collapse
Affiliation(s)
- Chang Sun
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shanshan Zhao
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zimeng Pan
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Li
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yasong Wang
- Department of Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongying Kuang
- Second Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
14
|
Sun J, Esplugues E, Bort A, Cardelo MP, Ruz-Maldonado I, Fernández-Tussy P, Wong C, Wang H, Ojima I, Kaczocha M, Perry R, Suárez Y, Fernández-Hernando C. Fatty acid binding protein 5 suppression attenuates obesity-induced hepatocellular carcinoma by promoting ferroptosis and intratumoral immune rewiring. Nat Metab 2024; 6:741-763. [PMID: 38664583 DOI: 10.1038/s42255-024-01019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/26/2024] [Indexed: 04/28/2024]
Abstract
Due to the rise in overnutrition, the incidence of obesity-induced hepatocellular carcinoma (HCC) will continue to escalate; however, our understanding of the obesity to HCC developmental axis is limited. We constructed a single-cell atlas to interrogate the dynamic transcriptomic changes during hepatocarcinogenesis in mice. Here we identify fatty acid binding protein 5 (FABP5) as a driver of obesity-induced HCC. Analysis of transformed cells reveals that FABP5 inhibition and silencing predispose cancer cells to lipid peroxidation and ferroptosis-induced cell death. Pharmacological inhibition and genetic ablation of FABP5 ameliorates the HCC burden in male mice, corresponding to enhanced ferroptosis in the tumour. Moreover, FABP5 inhibition induces a pro-inflammatory tumour microenvironment characterized by tumour-associated macrophages with increased expression of the co-stimulatory molecules CD80 and CD86 and increased CD8+ T cell activation. Our work unravels the dual functional role of FABP5 in diet-induced HCC, inducing the transformation of hepatocytes and an immunosuppressive phenotype of tumour-associated macrophages and illustrates FABP5 inhibition as a potential therapeutic approach.
Collapse
Affiliation(s)
- Jonathan Sun
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Enric Esplugues
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Alicia Bort
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Magdalena P Cardelo
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Inmaculada Ruz-Maldonado
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Pablo Fernández-Tussy
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Clara Wong
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Hehe Wang
- Department of Chemistry, Stony Brook University, New York, NY, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, New York, NY, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, New York, NY, USA
| | - Martin Kaczocha
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, New York, NY, USA
- Department of Anesthesiology, Renaissance School of Medicine. Stony Brook University, New York, NY, USA
| | - Rachel Perry
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine (Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
15
|
Hu H, Luo S, Lai P, Lai M, Mao L, Zhang S, Jiang Y, Wen J, Zhou W, Liu X, Wang L, Huang M, Hu Y, Zhao X, Xia L, Zhou W, Jiang Y, Zou Z, Liu A, Guo B, Bai X. ANGPTL4 binds to the leptin receptor to regulate ectopic bone formation. Proc Natl Acad Sci U S A 2024; 121:e2310685120. [PMID: 38147550 PMCID: PMC10769826 DOI: 10.1073/pnas.2310685120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023] Open
Abstract
Leptin protein was thought to be unique to leptin receptor (LepR), but the phenotypes of mice with mutation in LepR [db/db (diabetes)] and leptin [ob/ob (obese)] are not identical, and the cause remains unclear. Here, we show that db/db, but not ob/ob, mice had defect in tenotomy-induced heterotopic ossification (HO), implicating alternative ligand(s) for LepR might be involved. Ligand screening revealed that ANGPTL4 (angiopoietin-like protein 4), a stress and fasting-induced factor, was elicited from brown adipose tissue after tenotomy, bound to LepR on PRRX1+ mesenchymal cells at the HO site, thus promotes chondrogenesis and HO development. Disruption of LepR in PRRX1+ cells, or lineage ablation of LepR+ cells, or deletion of ANGPTL4 impeded chondrogenesis and HO in mice. Together, these findings identify ANGPTL4 as a ligand for LepR to regulate the formation of acquired HO.
Collapse
Affiliation(s)
- Hongling Hu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong528300, China
| | - Sheng Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Pinglin Lai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Mingqiang Lai
- Department of Orthopaedics, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong510900, China
| | - Linlin Mao
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Sheng Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Yuanjun Jiang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Jiaxin Wen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Wu Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Xiaolin Liu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Minjun Huang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Yanjun Hu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Laixin Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Zhipeng Zou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Anling Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Bin Guo
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
- Department of Orthopaedics, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong523018, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| |
Collapse
|
16
|
Su T, He Y, Huang Y, Ye M, Guo Q, Xiao Y, Cai G, Chen L, Li C, Zhou H, Luo X. Myeloid-derived grancalcin instigates obesity-induced insulin resistance and metabolic inflammation in male mice. Nat Commun 2024; 15:97. [PMID: 38167327 PMCID: PMC10762069 DOI: 10.1038/s41467-023-43787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
The crosstalk between the bone and adipose tissue is known to orchestrate metabolic homeostasis, but the underlying mechanisms are largely unknown. Herein, we find that GCA + (grancalcin) immune cells accumulate in the bone marrow and release a considerable amount of GCA into circulation during obesity. Genetic deletion of Gca in myeloid cells attenuates metabolic dysfunction in obese male mice, whereas injection of recombinant GCA into male mice causes adipose tissue inflammation and insulin resistance. Mechanistically, we found that GCA binds to the Prohibitin-2 (PHB2) receptor on adipocytes and activates the innate and adaptive immune response of adipocytes via the PAK1-NF-κB signaling pathway, thus provoking the infiltration of inflammatory immune cells. Moreover, we show that GCA-neutralizing antibodies improve adipose tissue inflammation and insulin sensitivity in obese male mice. Together, these observations define a mechanism whereby bone marrow factor GCA initiates adipose tissue inflammation and insulin resistance, showing that GCA could be a potential target to treat metainflammation.
Collapse
Affiliation(s)
- Tian Su
- Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yue He
- Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yan Huang
- Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Mingsheng Ye
- Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Qi Guo
- Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Ye Xiao
- Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Guangping Cai
- Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Linyun Chen
- Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Changjun Li
- Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Haiyan Zhou
- Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China.
| | - Xianghang Luo
- Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, 410008, China.
| |
Collapse
|
17
|
Liao L, Xu H, Zhao Y, Zheng X. Metabolic interventions combined with CTLA-4 and PD-1/PD-L1 blockade for the treatment of tumors: mechanisms and strategies. Front Med 2023; 17:805-822. [PMID: 37897562 DOI: 10.1007/s11684-023-1025-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/16/2023] [Indexed: 10/30/2023]
Abstract
Immunotherapies based on immune checkpoint blockade (ICB) have significantly improved patient outcomes and offered new approaches to cancer therapy over the past decade. To date, immune checkpoint inhibitors (ICIs) of CTLA-4 and PD-1/PD-L1 represent the main class of immunotherapy. Blockade of CTLA-4 and PD-1/PD-L1 has shown remarkable efficacy in several specific types of cancers, however, a large subset of refractory patients presents poor responsiveness to ICB therapy; and the underlying mechanism remains elusive. Recently, numerous studies have revealed that metabolic reprogramming of tumor cells restrains immune responses by remodeling the tumor microenvironment (TME) with various products of metabolism, and combination therapies involving metabolic inhibitors and ICIs provide new approaches to cancer therapy. Nevertheless, a systematic summary is lacking regarding the manner by which different targetable metabolic pathways regulate immune checkpoints to overcome ICI resistance. Here, we demonstrate the generalized mechanism of targeting cancer metabolism at three crucial immune checkpoints (CTLA-4, PD-1, and PD-L1) to influence ICB therapy and propose potential combined immunotherapeutic strategies co-targeting tumor metabolic pathways and immune checkpoints.
Collapse
Affiliation(s)
- Liming Liao
- State Key Laboratory of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Huilin Xu
- State Key Laboratory of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuhan Zhao
- State Key Laboratory of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
18
|
Wang C, Cui C, Xu P, Zhu L, Xue H, Chen B, Jiang P. Targeting PDK2 rescues stress-induced impaired brain energy metabolism. Mol Psychiatry 2023; 28:4138-4150. [PMID: 37188779 DOI: 10.1038/s41380-023-02098-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
Depression is a mental illness frequently accompanied by disordered energy metabolism. A dysregulated hypothalamus pituitary adrenal axis response with aberrant glucocorticoids (GCs) release is often observed in patients with depression. However, the associated etiology between GCs and brain energy metabolism remains poorly understood. Here, using metabolomic analysis, we showed that the tricarboxylic acid (TCA) cycle was inhibited in chronic social defeat stress (CSDS)-exposed mice and patients with first-episode depression. Decreased mitochondrial oxidative phosphorylation was concomitant with the impairment of the TCA cycle. In parallel, the activity of pyruvate dehydrogenase (PDH), the gatekeeper of mitochondrial TCA flux, was suppressed, which is associated with the CSDS-induced neuronal pyruvate dehydrogenase kinase 2 (PDK2) expression and consequently enhanced PDH phosphorylation. Considering the well-acknowledged role of GCs in energy metabolism, we further demonstrated that glucocorticoid receptors (GR) stimulated PDK2 expression by directly binding to its promoter region. Meanwhile, silencing PDK2 abrogated glucocorticoid-induced PDH inhibition, restored the neuronal oxidative phosphorylation, and improved the flux of isotope-labeled carbon (U-13C] glucose) into the TCA cycle. Additionally, in vivo, pharmacological inhibition and neuron-specific silencing of GR or PDK2 restored CSDS-induced PDH phosphorylation and exerted antidepressant activities against chronic stress exposure. Taken together, our findings reveal a novel mechanism of depression manifestation, whereby elevated GCs levels regulate PDK2 transcription via GR, thereby impairing brain energy metabolism and contributing to the onset of this condition.
Collapse
Affiliation(s)
- Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, China
| | - Pengfei Xu
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Li Zhu
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Hongjia Xue
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Beibei Chen
- ADFA School of Science, University of New South Wales, Canberra, ACT, Australia
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China.
| |
Collapse
|
19
|
Chai J, Long X, Wu P, Wang J, Wu X, Tu Z, Wei M, Guo Z, Zhang T, Chen L. Lactobacillus sp. participated in the adaptation of Rongchang piglets to cold stress. VET MED-CZECH 2023; 68:392-402. [PMID: 38028206 PMCID: PMC10666660 DOI: 10.17221/54/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
Rongchang piglets were easily induced to cold stress and diarrhoea in the winter when raised in an open hog house. However, they also gradually recovered under mid-cold stress. Other studies have suggested gut microbiome might be involved in the host energy metabolism to relieve stress. To study how to adapt Rongchang piglets to cold stress by gut microbiome, thirty Rongchang piglets were randomly divided into a mild cold stress group and a control group for 30 consecutive days. The findings revealed that the piglets had low growth performance and a high diarrhoea rate and mortality rate during the first half of the cold treatment, but subsequently stabilised. The level of cortisol (COR) also displayed a similar trend. In the mild cold stress group, the relative abundance of Muribaculaceae significantly increased on day 15, and the predominant bacterial on day 30 was Lactobacillus sp. Our results indicated that the Rongchang piglet's production performance and health were impaired at the start of the mild cold stress. However, as time passed, the body could progressively adapt to the low temperature, and Lactobacillus sp. participated in this process. This study provides new insight into how to alleviate health damage caused by cold stress.
Collapse
Affiliation(s)
- Jie Chai
- Chongqing Academy of Animal Science, Chong Qing, Rongchang, P.R. China
- National Center of Technology Innovation for Pigs, Chong Qing, Rongchang, P.R. China
| | - Xi Long
- Chongqing Academy of Animal Science, Chong Qing, Rongchang, P.R. China
- National Center of Technology Innovation for Pigs, Chong Qing, Rongchang, P.R. China
| | - Pingxian Wu
- Chongqing Academy of Animal Science, Chong Qing, Rongchang, P.R. China
- National Center of Technology Innovation for Pigs, Chong Qing, Rongchang, P.R. China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chong Qing, Rongchang, P.R. China
- National Center of Technology Innovation for Pigs, Chong Qing, Rongchang, P.R. China
| | - Xiaoqian Wu
- Chongqing Academy of Animal Science, Chong Qing, Rongchang, P.R. China
- National Center of Technology Innovation for Pigs, Chong Qing, Rongchang, P.R. China
| | - Zhi Tu
- Chongqing Academy of Animal Science, Chong Qing, Rongchang, P.R. China
- National Center of Technology Innovation for Pigs, Chong Qing, Rongchang, P.R. China
| | - Minghong Wei
- Chongqing Academy of Animal Science, Chong Qing, Rongchang, P.R. China
- National Center of Technology Innovation for Pigs, Chong Qing, Rongchang, P.R. China
| | - Zongyi Guo
- Chongqing Academy of Animal Science, Chong Qing, Rongchang, P.R. China
- National Center of Technology Innovation for Pigs, Chong Qing, Rongchang, P.R. China
| | - Tinghuan Zhang
- Chongqing Academy of Animal Science, Chong Qing, Rongchang, P.R. China
- National Center of Technology Innovation for Pigs, Chong Qing, Rongchang, P.R. China
| | - Li Chen
- Chongqing Academy of Animal Science, Chong Qing, Rongchang, P.R. China
- National Center of Technology Innovation for Pigs, Chong Qing, Rongchang, P.R. China
| |
Collapse
|
20
|
Gonzalez-Rellan MJ, Fernández U, Parracho T, Novoa E, Fondevila MF, da Silva Lima N, Ramos L, Rodríguez A, Serrano-Maciá M, Perez-Mejias G, Chantada-Vazquez P, Riobello C, Veyrat-Durebex C, Tovar S, Coppari R, Woodhoo A, Schwaninger M, Prevot V, Delgado TC, Lopez M, Diaz-Quintana A, Dieguez C, Guallar D, Frühbeck G, Diaz-Moreno I, Bravo SB, Martinez-Chantar ML, Nogueiras R. Neddylation of phosphoenolpyruvate carboxykinase 1 controls glucose metabolism. Cell Metab 2023; 35:1630-1645.e5. [PMID: 37541251 PMCID: PMC10487638 DOI: 10.1016/j.cmet.2023.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/08/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
Neddylation is a post-translational mechanism that adds a ubiquitin-like protein, namely neural precursor cell expressed developmentally downregulated protein 8 (NEDD8). Here, we show that neddylation in mouse liver is modulated by nutrient availability. Inhibition of neddylation in mouse liver reduces gluconeogenic capacity and the hyperglycemic actions of counter-regulatory hormones. Furthermore, people with type 2 diabetes display elevated hepatic neddylation levels. Mechanistically, fasting or caloric restriction of mice leads to neddylation of phosphoenolpyruvate carboxykinase 1 (PCK1) at three lysine residues-K278, K342, and K387. We find that mutating the three PCK1 lysines that are neddylated reduces their gluconeogenic activity rate. Molecular dynamics simulations show that neddylation of PCK1 could re-position two loops surrounding the catalytic center into an open configuration, rendering the catalytic center more accessible. Our study reveals that neddylation of PCK1 provides a finely tuned mechanism of controlling glucose metabolism by linking whole nutrient availability to metabolic homeostasis.
Collapse
Affiliation(s)
- María J Gonzalez-Rellan
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Uxía Fernández
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Tamara Parracho
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Eva Novoa
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Marcos F Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Natalia da Silva Lima
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Lucía Ramos
- Department of Biochemistry, CIMUS, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Amaia Rodríguez
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Endocrinology & Nutrition, Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra, IdiSNA, Pamplona, Navarra, Spain
| | - Marina Serrano-Maciá
- Liver Disease Lab, BRTA CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Gonzalo Perez-Mejias
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-CSIC. Avda. Americo Vespucio 49, 41092 Sevilla, Spain
| | - Pilar Chantada-Vazquez
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15705, A Coruña, Spain
| | - Cristina Riobello
- Gene Regulatory Control in Disease, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Christelle Veyrat-Durebex
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sulay Tovar
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Roberto Coppari
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ashwin Woodhoo
- Gene Regulatory Control in Disease, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| | - Markus Schwaninger
- University of Lübeck, Institute for Experimental and Clinical Pharmacology and Toxicology, Lübeck, Germany
| | - Vincent Prevot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, European Genomic Institute for Diabetes (EGID), 59000 Lille, France
| | - Teresa C Delgado
- Liver Disease Lab, BRTA CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Miguel Lopez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Antonio Diaz-Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-CSIC. Avda. Americo Vespucio 49, 41092 Sevilla, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Diana Guallar
- Department of Biochemistry, CIMUS, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Gema Frühbeck
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Endocrinology & Nutrition, Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra, IdiSNA, Pamplona, Navarra, Spain
| | - Irene Diaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-CSIC. Avda. Americo Vespucio 49, 41092 Sevilla, Spain
| | - Susana B Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15705, A Coruña, Spain
| | - Maria L Martinez-Chantar
- Liver Disease Lab, BRTA CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain.
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| |
Collapse
|
21
|
Douglass AM, Resch JM, Madara JC, Kucukdereli H, Yizhar O, Grama A, Yamagata M, Yang Z, Lowell BB. Neural basis for fasting activation of the hypothalamic-pituitary-adrenal axis. Nature 2023; 620:154-162. [PMID: 37495689 PMCID: PMC11168300 DOI: 10.1038/s41586-023-06358-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 06/21/2023] [Indexed: 07/28/2023]
Abstract
Fasting initiates a multitude of adaptations to allow survival. Activation of the hypothalamic-pituitary-adrenal (HPA) axis and subsequent release of glucocorticoid hormones is a key response that mobilizes fuel stores to meet energy demands1-5. Despite the importance of the HPA axis response, the neural mechanisms that drive its activation during energy deficit are unknown. Here, we show that fasting-activated hypothalamic agouti-related peptide (AgRP)-expressing neurons trigger and are essential for fasting-induced HPA axis activation. AgRP neurons do so through projections to the paraventricular hypothalamus (PVH), where, in a mechanism not previously described for AgRP neurons, they presynaptically inhibit the terminals of tonically active GABAergic afferents from the bed nucleus of the stria terminalis (BNST) that otherwise restrain activity of corticotrophin-releasing hormone (CRH)-expressing neurons. This disinhibition of PVHCrh neurons requires γ-aminobutyric acid (GABA)/GABA-B receptor signalling and potently activates the HPA axis. Notably, stimulation of the HPA axis by AgRP neurons is independent of their induction of hunger, showing that these canonical 'hunger neurons' drive many distinctly different adaptations to the fasted state. Together, our findings identify the neural basis for fasting-induced HPA axis activation and uncover a unique means by which AgRP neurons activate downstream neurons: through presynaptic inhibition of GABAergic afferents. Given the potency of this disinhibition of tonically active BNST afferents, other activators of the HPA axis, such as psychological stress, may also work by reducing BNST inhibitory tone onto PVHCrh neurons.
Collapse
Affiliation(s)
- Amelia M Douglass
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jon M Resch
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hakan Kucukdereli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ofer Yizhar
- Departments of Brain Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Abhinav Grama
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Masahito Yamagata
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Zongfang Yang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Leitner BP, Lee WD, Zhu W, Zhang X, Gaspar RC, Li Z, Rabinowitz JD, Perry RJ. Tissue-specific reprogramming of glutamine metabolism maintains tolerance to sepsis. PLoS One 2023; 18:e0286525. [PMID: 37410734 PMCID: PMC10325078 DOI: 10.1371/journal.pone.0286525] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 07/08/2023] Open
Abstract
Reprogramming metabolism is of great therapeutic interest for reducing morbidity and mortality during sepsis-induced critical illness. Disappointing results from randomized controlled trials targeting glutamine and antioxidant metabolism in patients with sepsis have begged a deeper understanding of the tissue-specific metabolic response to sepsis. The current study sought to fill this gap. We analyzed skeletal muscle transcriptomics of critically ill patients, versus elective surgical controls, which revealed reduced expression of genes involved in mitochondrial metabolism and electron transport, with increases in glutathione cycling, glutamine, branched chain, and aromatic amino acid transport. We then performed untargeted metabolomics and 13C isotope tracing to analyze systemic and tissue specific metabolic phenotyping in a murine polymicrobial sepsis model. We found an increased number of correlations between the metabolomes of liver, kidney, and spleen, with loss of correlations between the heart and quadriceps and all other organs, pointing to a shared metabolic signature within vital abdominal organs, and unique metabolic signatures for muscles during sepsis. A lowered GSH:GSSG and elevated AMP:ATP ratio in the liver underlie the significant upregulation of isotopically labeled glutamine's contribution to TCA cycle anaplerosis and glutamine-derived glutathione biosynthesis; meanwhile, the skeletal muscle and spleen were the only organs where glutamine's contribution to the TCA cycle was significantly suppressed. These results highlight tissue-specific mitochondrial reprogramming to support liver energetic demands and antioxidant synthesis, rather than global mitochondrial dysfunction, as a metabolic consequence of sepsis.
Collapse
Affiliation(s)
- Brooks P. Leitner
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Won D. Lee
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
| | - Wanling Zhu
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Xinyi Zhang
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Rafael C. Gaspar
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Zongyu Li
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Joshua D. Rabinowitz
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, New Jersey, United States of America
| | - Rachel J. Perry
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
23
|
Zhang S, Chen J, Li Q, Zeng W. Opioid growth factor receptor promotes adipose tissue thermogenesis via enhancing lipid oxidation. LIFE METABOLISM 2023; 2:load018. [PMID: 39872016 PMCID: PMC11749475 DOI: 10.1093/lifemeta/load018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 01/29/2025]
Abstract
The thermogenic brown and beige adipocytes consume fatty acids and generate heat to maintain core body temperature in the face of cold challenges. Since their validated presence in humans, the activation of thermogenic fat has been an attractive target for treating obesity and related metabolic diseases. Here, we reported that the opioid growth factor receptor (Ogfr) was highly expressed in adipocytes and promoted thermogenesis. The mice with genetic deletion of Ogfr in adipocytes displayed an impaired capacity to counter environmental cold challenges. Meanwhile, Ogfr ablation in adipocytes led to reduced fatty acid oxidation, enhanced lipid accumulation, impaired glucose tolerance, and exacerbated tissue inflammation under chronic high-fat diet (HFD)-fed conditions. At the cellular level, OGFr enhanced the production of mitochondrial trifunctional protein subunit α (MTPα) and also interacted with MTPα, thus promoting fatty acid oxidation. Together, our study demonstrated the important role of OGFr in fatty acid metabolism and adipose thermogenesis.
Collapse
Affiliation(s)
- Shan Zhang
- Institute for Immunology, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Jianhui Chen
- Institute for Immunology, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Qingqing Li
- Institute for Immunology, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Wenwen Zeng
- Institute for Immunology, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
24
|
Akingbesote ND, Leitner BP, Jovin DG, Desrouleaux R, Owusu D, Zhu W, Li Z, Pollak MN, Perry RJ. Gene and protein expression and metabolic flux analysis reveals metabolic scaling in liver ex vivo and in vivo. eLife 2023; 12:e78335. [PMID: 37219930 PMCID: PMC10205083 DOI: 10.7554/elife.78335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Metabolic scaling, the inverse correlation of metabolic rates to body mass, has been appreciated for more than 80 years. Studies of metabolic scaling have largely been restricted to mathematical modeling of caloric intake and oxygen consumption, and mostly rely on computational modeling. The possibility that other metabolic processes scale with body size has not been comprehensively studied. To address this gap in knowledge, we employed a systems approach including transcriptomics, proteomics, and measurement of in vitro and in vivo metabolic fluxes. Gene expression in livers of five species spanning a 30,000-fold range in mass revealed differential expression according to body mass of genes related to cytosolic and mitochondrial metabolic processes, and to detoxication of oxidative damage. To determine whether flux through key metabolic pathways is ordered inversely to body size, we applied stable isotope tracer methodology to study multiple cellular compartments, tissues, and species. Comparing C57BL/6 J mice with Sprague-Dawley rats, we demonstrate that while ordering of metabolic fluxes is not observed in in vitro cell-autonomous settings, it is present in liver slices and in vivo. Together, these data reveal that metabolic scaling extends beyond oxygen consumption to other aspects of metabolism, and is regulated at the level of gene and protein expression, enzyme activity, and substrate supply.
Collapse
Affiliation(s)
- Ngozi D Akingbesote
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Brooks P Leitner
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Daniel G Jovin
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Reina Desrouleaux
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Comparative Medicine, Yale UniversityNew HavenUnited States
| | - Dennis Owusu
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Wanling Zhu
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Zongyu Li
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Michael N Pollak
- Lady Davis Institute for Medical Research, Jewish General HospitalMontrealCanada
- Department of Oncology, McGill UniversityMontrealCanada
| | - Rachel J Perry
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| |
Collapse
|
25
|
Li Z, Zhang X, Zhu W, Zhang C, Sadak K, Halberstam AA, Brown JR, Perry CJ, Bunn A, Braun DA, Adeniran A, Lee S, Wang A, Perry RJ. FGF-21 Conducts a Liver-Brain-Kidney Axis to Promote Renal Cell Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536558. [PMID: 37090652 PMCID: PMC10120688 DOI: 10.1101/2023.04.12.536558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Metabolic homeostasis is one of the most exquisitely tuned systems in mammalian physiology. Metabolic homeostasis requires multiple redundant systems to cooperate to maintain blood glucose concentrations in a narrow range, despite a multitude of physiological and pathophysiological pressures. Cancer is one of the canonical pathophysiological settings in which metabolism plays a key role. In this study, we utilized REnal Gluconeogenesis Analytical Leads (REGAL), a liquid chromatography-mass spectrometry/mass spectrometry-based stable isotope tracer method that we developed to show that in conditions of metabolic stress, the fasting hepatokine fibroblast growth factor-21 (FGF-21)1,2 coordinates a liver-brain-kidney axis to promote renal gluconeogenesis. FGF-21 promotes renal gluconeogenesis by enhancing β2 adrenergic receptor (Adrb2)-driven, adipose triglyceride lipase (ATGL)-mediated intrarenal lipolysis. Further, we show that this liver-brain-kidney axis promotes gluconeogenesis in the renal parenchyma in mice and humans with renal cell carcinoma (RCC). This increased gluconeogenesis is, in turn, associated with accelerated RCC progression. We identify Adrb2 blockade as a new class of therapy for RCC in mice, with confirmatory data in human patients. In summary, these data reveal a new metabolic function of FGF-21 in driving renal gluconeogenesis, and demonstrate that inhibition of renal gluconeogenesis by FGF-21 antagonism deserves attention as a new therapeutic approach to RCC.
Collapse
Affiliation(s)
- Zongyu Li
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
| | - Xinyi Zhang
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
| | - Wanling Zhu
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
| | - Cuiling Zhang
- Department of Internal Medicine, Yale University School of Medicine
- Department of Immunobiology, Yale University School of Medicine
| | - Katherine Sadak
- Department of Internal Medicine, Yale University School of Medicine
| | - Alexandra A Halberstam
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
| | - Jason R Brown
- Department of Internal Medicine, Division of Medical Oncology, University Hospitals Seidman Cancer Center
- Case Western Reserve University
| | - Curtis J Perry
- Department of Internal Medicine, Yale University School of Medicine
| | - Azia Bunn
- Department of Internal Medicine, Yale University School of Medicine
- Yale Cancer Center, Yale University School of Medicine
| | - David A Braun
- Department of Internal Medicine, Yale University School of Medicine
- Yale Cancer Center, Yale University School of Medicine
| | | | - Sangwon Lee
- Department of Pharmacology, Yale University School of Medicine
| | - Andrew Wang
- Department of Internal Medicine, Yale University School of Medicine
- Department of Immunobiology, Yale University School of Medicine
| | - Rachel J Perry
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
- Yale Cancer Center, Yale University School of Medicine
| |
Collapse
|
26
|
Huang B, Luo YL, Huang JL, Li GZ, Qiu SY, Huang CC. FAM3D inhibits gluconeogenesis in high glucose environment via DUSP1/ZFP36/SIK1 axis. Kaohsiung J Med Sci 2023; 39:254-265. [PMID: 36524461 DOI: 10.1002/kjm2.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Hyperglycemia is the most important factor leading to the complications of type 2 diabetes mellitus (T2DM). The primary condition for the treatment of T2DM is to change the glucose and lipid metabolism disorders in the liver and other insulin-sensitive tissues. The current study aims to unearth the potential molecular mechanism of inhibiting liver gluconeogenesis to provide a new theoretical basis for the treatment of T2DM. High glucose (HG) induction of HepG2 cells followed by treatment with sequence-similar family 3 member D (FAM3D). Dual specificity phosphatases 1 (DUSP1), zinc finger protein 36 (ZFP36), salt-induced kinase 1 (SIK1), p-SIK1, posphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) gene and protein expression level were detected by quantitative real-time polymerase chain reaction and western blot. The PEPCK and G6Pase activities were detected by enzyme linked immunosorbent assay. Glucose production assay to determine glucose content. The RNA binding protein immunoprecipitation assay was used to detect the binding of ZFP36 to SIK1. FAM3D facilitated the expression of DUSP1 but suppressed the expression of gluconeogenesis-related factors in an HG environment. The expression of ZFP36 was up-regulated in an HG environment. ZFP36 could reverse the inhibition of gluconeogenesis caused by FAM3D. HG-induced upregulation of ZFP36 was downregulated by overexpression of DUSP1. ZFP36 bound to SIK1, and downregulation of ZFP36 promoted SIK1 expression and inhibits gluconeogenesis. Our study demonstrated FAM3D inhibited gluconeogenesis through the DUSP1/ZFP36/SIK1 axis in an HG environment, which provided a new theoretical basis for exploring the pathogenesis and treatment strategy of T2DM.
Collapse
Affiliation(s)
- Bin Huang
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Yue-Ling Luo
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Jun-Ling Huang
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Guang-Zhi Li
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Shi-Yuan Qiu
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Chun-Chun Huang
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| |
Collapse
|
27
|
Gaspar RC, Lyu K, Hubbard BT, Leitner BP, Luukkonen PK, Hirabara SM, Sakuma I, Nasiri A, Zhang D, Kahn M, Cline GW, Pauli JR, Perry RJ, Petersen KF, Shulman GI. Distinct subcellular localisation of intramyocellular lipids and reduced PKCε/PKCθ activity preserve muscle insulin sensitivity in exercise-trained mice. Diabetologia 2023; 66:567-578. [PMID: 36456864 PMCID: PMC11194860 DOI: 10.1007/s00125-022-05838-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/30/2022] [Indexed: 12/03/2022]
Abstract
AIMS/HYPOTHESIS Athletes exhibit increased muscle insulin sensitivity, despite increased intramuscular triacylglycerol content. This phenomenon has been coined the 'athlete's paradox' and is poorly understood. Recent findings suggest that the subcellular distribution of sn-1,2-diacylglycerols (DAGs) in the plasma membrane leading to activation of novel protein kinase Cs (PKCs) is a crucial pathway to inducing insulin resistance. Here, we hypothesised that regular aerobic exercise would preserve muscle insulin sensitivity by preventing increases in plasma membrane sn-1,2-DAGs and activation of PKCε and PKCθ despite promoting increases in muscle triacylglycerol content. METHODS C57BL/6J mice were allocated to three groups (regular chow feeding [RC]; high-fat diet feeding [HFD]; RC feeding and running wheel exercise [RC-EXE]). We used a novel LC-MS/MS/cellular fractionation method to assess DAG stereoisomers in five subcellular compartments (plasma membrane [PM], endoplasmic reticulum, mitochondria, lipid droplets and cytosol) in the skeletal muscle. RESULTS We found that the HFD group had a greater content of sn-DAGs and ceramides in multiple subcellular compartments compared with the RC mice, which was associated with an increase in PKCε and PKCθ translocation. However, the RC-EXE mice showed, of particular note, a reduction in PM sn-1,2-DAG and ceramide content when compared with HFD mice. Consistent with the PM sn-1,2-DAG-novel PKC hypothesis, we observed an increase in phosphorylation of threonine1150 on the insulin receptor kinase (IRKT1150), and reductions in insulin-stimulated IRKY1162 phosphorylation and IRS-1-associated phosphoinositide 3-kinase activity in HFD compared with RC and RC-EXE mice, which are sites of PKCε and PKCθ action, respectively. CONCLUSIONS/INTERPRETATION These results demonstrate that lower PKCθ/PKCε activity and sn-1,2-DAG content, especially in the PM compartment, can explain the preserved muscle insulin sensitivity in RC-EXE mice.
Collapse
Affiliation(s)
- Rafael C Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- School of Applied Science, University of Campinas, Limeira, SP, Brazil
| | - Kun Lyu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Brandon T Hubbard
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Brooks P Leitner
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Panu K Luukkonen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Sandro M Hirabara
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Institute of Physical Activity Science and Sports, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Ikki Sakuma
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ali Nasiri
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Gary W Cline
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Rachel J Perry
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Kitt F Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
28
|
Xiang Y, Huang R, Wang Y, Han S, Qin X, Li Z, Wang X, Han Y, Wang T, Xia B, Wu J, Yang G. Protocatechuic Acid Ameliorates High Fat Diet-Induced Obesity and Insulin Resistance in Mice. Mol Nutr Food Res 2023; 67:e2200244. [PMID: 36285395 DOI: 10.1002/mnfr.202200244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/05/2022] [Indexed: 11/09/2022]
Abstract
SCOPE Insulin resistance is a common feature of obesity and type 2 diabetes and partly results from an imbalance between food intake and energy expenditure. Therefore, efficient and safe insulin resistance treatment therapies are warranted. This work is aim to access the impact of protocatechuic acid (PCA), a catechol-type O-diphenol phenolic acid, in high fat diet (HFD)-induced glucose, and lipid dysregulation. METHODS AND RESULTS Five-week-old male C57BL/6 mice are fed with HFD for 4 weeks and then are randomly divided into two cohorts: one cohort feed with HFD is free access to sterile water for 4 weeks, another cohort is free access to PCA-containing water (2.7 mM) for 4 weeks with HFD. In this study, using a hyperinsulinemic-euglycemic mouse clamp, it is showed that PCA-treated mice display improved systemic insulin resistance via enhanced fatty acid mobilization and utilization, thereby reducing ectopic lipid accumulation and promoting hepatic and peripheral insulin action. CONCLUSIONS This study provides insights on the potent pharmacological effects of PCA from food sources on improving high fat diet (HFD)-induced whole-body insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Yuyao Xiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Ruolan Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yongliang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Shanshan Han
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, Shaanxi, 710000, P. R. China
| | - Xiaochen Qin
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Zhenzhen Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Xu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yuqing Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Tao Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.,Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, Shaanxi, 710000, P. R. China
| | - Jiangwei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.,Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, Shaanxi, 710000, P. R. China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| |
Collapse
|
29
|
Zhao L, Jiang H. Growth hormone stimulates lipolysis in mice but not in adipose tissue or adipocyte culture. Front Endocrinol (Lausanne) 2023; 13:1028191. [PMID: 36686475 PMCID: PMC9846043 DOI: 10.3389/fendo.2022.1028191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
The inhibitory effect of growth hormone (GH) on adipose tissue growth and the stimulatory effect of GH on lipolysis are well known, but the mechanisms underlying these effects are not completely understood. In this study, we revisited the effects of GH on adipose tissue growth and lipolysis in the lit/lit mouse model. The lit/lit mice are GH deficient because of a mutation in the GH releasing hormone receptor gene. We found that the lit/lit mice had more subcutaneous fat and larger adipocytes than their heterozygous lit/+ littermates and that these differences were partially reversed by 4-week GH injection. We also found that GH injection to the lit/lit mice caused the mature adipose tissue and adipocytes to reduce in size. These results demonstrate that GH inhibits adipose tissue growth at least in part by stimulating lipolysis. To determine the mechanism by which GH stimulates lipolysis, we cultured adipose tissue explants and adipocytes derived from lit/lit mice with GH and/or isoproterenol, an agonist of the beta-adrenergic receptors. These experiments showed that whereas isoproterenol, expectedly, stimulated potent lipolysis, GH, surprisingly, had no effect on basal lipolysis or isoproterenol-induced lipolysis in adipose tissue explants or adipocytes. We also found that both isoproterenol-induced lipolysis and phosphorylation of hormone-sensitive lipase were not different between lit/lit and lit/+ mice. Taken together, these results support the conclusion that GH has lipolytic effect in mice but argue against the notion that GH stimulates lipolysis by directly acting on adipocytes or by enhancing β-adrenergic receptors-mediated lipolysis.
Collapse
Affiliation(s)
| | - Honglin Jiang
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
30
|
Hubbard BT, LaMoia TE, Goedeke L, Gaspar RC, Galsgaard KD, Kahn M, Mason GF, Shulman GI. Q-Flux: A method to assess hepatic mitochondrial succinate dehydrogenase, methylmalonyl-CoA mutase, and glutaminase fluxes in vivo. Cell Metab 2023; 35:212-226.e4. [PMID: 36516861 PMCID: PMC9887731 DOI: 10.1016/j.cmet.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/14/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
The mammalian succinate dehydrogenase (SDH) complex has recently been shown as capable of operating bidirectionally. Here, we develop a method (Q-Flux) capable of measuring absolute rates of both forward (VSDH(F)) and reverse (VSDH(R)) flux through SDH in vivo while also deconvoluting the amount of glucose derived from four discreet carbon sources in the liver. In validation studies, a mitochondrial uncoupler increased net SDH flux by >100% in awake rodents but also increased SDH cycling. During hyperglucagonemia, attenuated pyruvate cycling enhances phosphoenolpyruvate carboxykinase efficiency to drive increased gluconeogenesis, which is complemented by increased glutaminase (GLS) flux, methylmalonyl-CoA mutase (MUT) flux, and glycerol conversion to glucose. During hyperinsulinemic-euglycemic clamp, both pyruvate carboxylase and GLS are suppressed, while VSDH(R) is increased. Unstimulated MUT is a minor anaplerotic reaction but is readily induced by small amounts of propionate, which elicits glucagon-like metabolic rewiring. Taken together, Q-Flux yields a comprehensive picture of hepatic mitochondrial metabolism and should be broadly useful to researchers.
Collapse
Affiliation(s)
- Brandon T Hubbard
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Traci E LaMoia
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Leigh Goedeke
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Rafael C Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Katrine D Galsgaard
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Graeme F Mason
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Psychiatry & Biomedical Engineering, Yale School of Medicine, New Haven, CT 06510, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
31
|
Zhang X, Halberstam AA, Zhu W, Leitner BP, Thakral D, Bosenberg MW, Perry RJ. Isotope tracing reveals distinct substrate preference in murine melanoma subtypes with differing anti-tumor immunity. Cancer Metab 2022; 10:21. [PMID: 36457136 PMCID: PMC9714036 DOI: 10.1186/s40170-022-00296-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Research about tumor "metabolic flexibility"-the ability of cells to toggle between preferred nutrients depending on the metabolic context-has largely focused on obesity-associated cancers. However, increasing evidence for a key role for nutrient competition in the tumor microenvironment, as well as for substrate regulation of immune function, suggests that substrate metabolism deserves reconsideration in immunogenic tumors that are not strongly associated with obesity. METHODS We compare two murine models: immunologically cold YUMM1.7 and immunologically-hot YUMMER1.7. We utilize stable isotope and radioisotope tracer-based metabolic flux studies as well as gas and liquid chromatography-based metabolomics analyses to comprehensively probe substrate preference in YUMM1.7 and YUMMER1.7 cells, with a subset of studies on the impact of available metabolites across a panel of five additional melanoma cell lines. We analyze bulk RNA-seq data and identify increased expression of amino acid and glucose metabolism genes in YUMMER1.7. Finally, we analyze melanoma patient RNA-seq data to identify potential prognostic predictors rooted in metabolism. RESULTS We demonstrate using stable isotope tracer-based metabolic flux studies as well as gas and liquid chromatography-based metabolomics that immunologically-hot melanoma utilizes more glutamine than immunologically-cold melanoma in vivo and in vitro. Analyses of human melanoma RNA-seq data demonstrate that glutamine transporter and other anaplerotic gene expression positively correlates with lymphocyte infiltration and function. CONCLUSIONS Here, we highlight the importance of understanding metabolism in non-obesity-associated cancers, such as melanoma. This work advances the understanding of the correlation between metabolism and immunogenicity in the tumor microenvironment and provides evidence supporting metabolic gene expression as potential prognostic factors of melanoma progression and may inform investigations of adjunctive metabolic therapy in melanoma. TRIAL REGISTRATION Deidentified data from The Cancer Genome Atlas were analyzed.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, P.O. Box 208026, 333 Cedar St., SHM BE36-B, New Haven, CT, 06520-8026, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, USA
| | - Alexandra A Halberstam
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, P.O. Box 208026, 333 Cedar St., SHM BE36-B, New Haven, CT, 06520-8026, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, USA
| | - Wanling Zhu
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, P.O. Box 208026, 333 Cedar St., SHM BE36-B, New Haven, CT, 06520-8026, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, USA
| | - Brooks P Leitner
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, P.O. Box 208026, 333 Cedar St., SHM BE36-B, New Haven, CT, 06520-8026, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, USA
| | - Durga Thakral
- Department of Pathology, Yale School of Medicine, New Haven, USA
| | - Marcus W Bosenberg
- Department of Pathology, Yale School of Medicine, New Haven, USA
- Department of Dermatology, Yale School of Medicine, New Haven, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Yale Stem Cell Center, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
- Yale Center for Immuno-Oncology, New Haven, CT, USA
| | - Rachel J Perry
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, P.O. Box 208026, 333 Cedar St., SHM BE36-B, New Haven, CT, 06520-8026, USA.
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, USA.
| |
Collapse
|
32
|
Tang J, Wu Y, Zhang B, Liang S, Guo Z, Hu J, Zhou Z, Xie M, Hou S. Integrated liver proteomics and metabolomics identify metabolic pathways affected by pantothenic acid deficiency in Pekin ducks. ANIMAL NUTRITION 2022; 11:1-14. [PMID: 35950191 PMCID: PMC9356036 DOI: 10.1016/j.aninu.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 02/07/2022] [Accepted: 03/18/2022] [Indexed: 10/25/2022]
|
33
|
The circadian rhythm regulates branched-chain amino acids metabolism in fast muscle of Chinese perch ( Siniperca chuatsi) during short-term fasting by Clock-KLF15-Bcat2 pathway. Br J Nutr 2022:1-12. [PMID: 36373572 DOI: 10.1017/s0007114522003646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As an internal time-keeping mechanism, circadian rhythm plays crucial role in maintaining homoeostasis when in response to nutrition change; meanwhile, branched-chain amino acids (BCAA) in skeletal muscle play an important role in preserving energy homoeostasis during fasting. Previous results from our laboratory suggested that fasting can influence peripheral circadian rhythm and BCAA metabolism in fish, but the relationship between circadian rhythm and BCAA metabolism, and whether circadian rhythm regulates BCAA metabolism to maintain physiological homoeostasis during fasting remains unclear. This study shows that the expression of fifteen core clock genes as well as KLF15 and Bcat2 is highly responsive to short-term fasting in fast muscle of Siniperca chuatsi, and the correlation coefficient between Clock and KLF15 expression is enhanced after fasting treatment. Furthermore, we demonstrate that the transcriptional expression of KLF15 is regulated by Clock, and the transcriptional expression of Bcat2 is regulated by KLF15 by using dual-luciferase reporter gene assay and Vivo-morpholinos-mediated gene knockdown technique. Therefore, fasting imposes a dynamic coordination of transcription between the circadian rhythm and BCAA metabolic pathways. The findings highlight the interaction between circadian rhythm and BCAA metabolism and suggest that fasting induces a switch in KLF15 expression through affecting the rhythmic expression of Clock, and then KLF15 promotes the transcription of Bcat2 to enhance the metabolism of BCAA, thus maintaining energy homoeostasis and providing energy for skeletal muscle as well as other tissues.
Collapse
|
34
|
Meriin AB, Zaarur N, Roy D, Kandror KV. Egr1 plays a major role in the transcriptional response of white adipocytes to insulin and environmental cues. Front Cell Dev Biol 2022; 10:1003030. [PMID: 36246998 PMCID: PMC9554007 DOI: 10.3389/fcell.2022.1003030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
It is believed that insulin regulates metabolic functions of white adipose tissue primarily at the post-translational level via the PI3K-Akt-mediated pathway. Still, changes in transcription also play an important role in the response of white adipocytes to insulin and environmental signals. One transcription factor that is dramatically and rapidly induced in adipocytes by insulin and nutrients is called Early Growth Response 1, or Egr1. Among other functions, it directly binds to promoters of leptin and ATGL stimulating the former and inhibiting the latter. Furthermore, expression of Egr1 in adipocytes demonstrates cell autonomous circadian pattern suggesting that Egr1 not only mediates the effect of insulin and nutrients on lipolysis and leptin production but also, coordinates insulin action with endogenous circadian rhythms of adipose tissue.
Collapse
Affiliation(s)
- A. B. Meriin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - N. Zaarur
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - D. Roy
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - K. V. Kandror
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: K. V. Kandror,
| |
Collapse
|
35
|
Tracing metabolic flux in vivo: motion pictures differ from snapshots. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1309-1310. [PMID: 36075946 PMCID: PMC9534848 DOI: 10.1038/s12276-022-00842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022]
|
36
|
Tracing metabolic flux in vivo: basic model structures of tracer methodology. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1311-1322. [PMID: 36075950 PMCID: PMC9534847 DOI: 10.1038/s12276-022-00814-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 12/25/2022]
Abstract
Molecules in living organisms are in a constant state of turnover at varying rates, i.e., synthesis, breakdown, oxidation, and/or conversion to different compounds. Despite the dynamic nature of biomolecules, metabolic research has focused heavily on static, snapshot information such as the abundances of mRNA, protein, and metabolites and/or (in)activation of molecular signaling, often leading to erroneous conclusions regarding metabolic status. Over the past century, stable, non-radioactive isotope tracers have been widely used to provide critical information on the dynamics of specific biomolecules (metabolites and polymers including lipids, proteins, and DNA), in studies in vitro in cells as well as in vivo in both animals and humans. In this review, we discuss (1) the historical background of the use of stable isotope tracer methodology in metabolic research; (2) the importance of obtaining kinetic information for a better understanding of metabolism; and (3) the basic principles and model structures of stable isotope tracer methodology using 13C-, 15N-, or 2H-labeled tracers. Tagging biomolecules with stable isotopes of specific atoms can reveal details of the molecular inter-conversions of metabolism. The masses of the tracer isotopes used are greater than those of the more common atomic forms. This allows their movement through different metabolic pathways to be detected using mass spectrometry and modeling. Il-Young Kim at Gachon University School of Medicine in South Korea and colleagues focus their review on the use of stable, non-radioactive isotope tracers, especially, of carbon, nitrogen, and hydrogen, to study metabolism in live humans and other animals. They cover the basic model structures of tracer methodology that serve as the fundamental basis for various tracer methods available and the most recent applications. Their procedure is especially useful for monitoring the rates of metabolic inter-conversions, which can reveal aspects of health and disease.
Collapse
|
37
|
Zhu J, Liu W, Zhang B, Zhou D, Fan X, Wang X, Liu X. Carbon Dots Embedded Hybrid Microgel with Phenylboronic Acid as Monomer for Fluorescent Glucose Sensing and Glucose-Triggered Insulin Release at Physiological pH. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3065. [PMID: 36080102 PMCID: PMC9457936 DOI: 10.3390/nano12173065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/14/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
A multifunctional and biocompatible hybrid microgel (poly(VPBA-AAm)-CD) using N, S-doped carbon dots (CDs) and ethylene glycol dimethacrylate (EGDMA) as cross-linking agents, and 4-vinylbenzene boronic acid (VPBA) and acrylamide (AAm) as monomers, was designed in this work. This microgel can be easily prepared by a simple one-pot radical dispersion polymerization of the reactants using a rationally designed hydrogen-bonded complex method. The hybrid microgels were spherical particles with a smooth surface and an average particle size of 234 ± 8 nm. The poly(VPBA-AAm)-CD microgel displayed the glucose-responsive swelling within a clinically concerned range at a physiological pH and could realize the controllable release of insulin. In addition, the release rate of insulin in the hybrid microgel (poly(VPBA-AAm)-CD) could be triggered by glucose concentrations in the solution, and the increasing glucose concentrations can accelerate the insulin release. Further in vitro cytotoxicity studies showed that the microgel had good biocompatibility and no obvious toxicity to the cells. These indicate that the prepared microgel (poly(VPBA-AAm)-CD) may supply a new pattern for the self-regulating therapy of insulin deficiency in diabetes.
Collapse
Affiliation(s)
- Jinhua Zhu
- Correspondence: (J.Z.); (X.L.); Tel.: +86-371-23881589 (J.Z.)
| | | | | | | | | | | | - Xiuhua Liu
- Correspondence: (J.Z.); (X.L.); Tel.: +86-371-23881589 (J.Z.)
| |
Collapse
|
38
|
Perry RJ. Regulation of Hepatic Lipid and Glucose Metabolism by INSP3R1. Diabetes 2022; 71:1834-1841. [PMID: 35657697 PMCID: PMC9450566 DOI: 10.2337/dbi22-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022]
Abstract
With the rising epidemics of obesity and nonalcoholic fatty liver disease (NAFLD) and its downstream consequences including steatohepatitis, cirrhosis, and type 2 diabetes in the U.S. and worldwide, new therapeutic approaches are urgently needed to treat these devastating conditions. Glucagon, known for a century to be a glucose-raising hormone and clearly demonstrated to contribute to fasting and postprandial hyperglycemia in both type 1 and type 2 diabetes, represents an unlikely target to improve health in those with metabolic syndrome. However, recent work from our group and others' identifies an unexpected role for glucagon as a potential means of treating NAFLD, improving insulin sensitivity, and improving the lipid profile. We propose a unifying, calcium-dependent mechanism for glucagon's effects both to stimulate hepatic gluconeogenesis and to enhance hepatic mitochondrial oxidation: signaling through the inositol 1,4,5-trisphosphate receptor type 1 (INSP3R1), glucagon activates phospholipase C (PKC)/protein kinase A (PKA) signaling to enhance adipose triglyceride lipase (ATGL)-dependent intrahepatic lipolysis and, in turn, increase cytosolic gluconeogenesis by allosteric activation of pyruvate carboxylase. Simultaneously in the mitochondria, calcium transferred through mitochondria-associated membranes activates several dehydrogenases in the tricarboxylic acid cycle, correlated with an increase in mitochondrial energy expenditure and reduction in ectopic lipid. This model suggests that short-term, cyclic treatment with glucagon or other INSP3R1 antagonists could hold promise as a means to reset lipid homeostasis in patients with NAFLD.
Collapse
Affiliation(s)
- Rachel J. Perry
- Section of Endocrinology & Metabolism, Department of Internal Medicine, and Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
39
|
Ding Y, Haks MC, van den Eeden SJF, Ottenhoff THM, Harms AC, Hankemeier T, Eeza MNH, Matysik J, Alia A, Spaink HP. Leptin mutation and mycobacterial infection lead non-synergistically to a similar metabolic syndrome. Metabolomics 2022; 18:67. [PMID: 35933481 PMCID: PMC9356939 DOI: 10.1007/s11306-022-01921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The leptin signaling pathway plays an important role as a key regulator of glucose homeostasis, metabolism control and systemic inflammatory responses. However, the metabolic effects of leptin on infectious diseases, for example tuberculosis (TB), are still little known. OBJECTIVES In this study, we aim to investigate the role of leptin on metabolism in the absence and presence of mycobacterial infection in zebrafish larvae and mice. METHODS Metabolites in entire zebrafish larvae and the blood of mice were studied using high-resolution magic-angle-spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and mass spectrometry, respectively. For transcriptome studies of zebrafish larvae, deep RNA sequencing was used. RESULTS The results show that leptin mutation leads to a similar metabolic syndrome as caused by mycobacterial infection in the two species, characterized by the decrease of 11 amine metabolites. In both species, this metabolic syndrome was not aggravated further when the leptin mutant was infected by mycobacteria. Therefore, we conclude that leptin and mycobacterial infection are both impacting metabolism non-synergistically. In addition, we studied the transcriptomes of lepbibl54 mutant zebrafish larvae and wild type (WT) siblings after mycobacterial infection. These studies showed that mycobacteria induced a very distinct transcriptome signature in the lepbibl54 mutant zebrafish compared to WT sibling control larvae. Furthermore, lepbibl55 Tg (pck1:luc1) zebrafish line was constructed and confirmed this difference in transcriptional responses. CONCLUSIONS Leptin mutation and TB lead non-synergistically to a similar metabolic syndrome. Moreover, different transcriptomic responses in the lepbibl54 mutant and TB can lead to the similar metabolic end states.
Collapse
Affiliation(s)
- Yi Ding
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Mariëlle C Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Susan J F van den Eeden
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Amy C Harms
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Muhamed N H Eeza
- Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Jörg Matysik
- Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - A Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
40
|
Huang X, He Q, Zhu H, Fang Z, Che L, Lin Y, Xu S, Zhuo Y, Hua L, Wang J, Zou Y, Huang C, Li L, Xu H, Wu D, Feng B. Hepatic Leptin Signaling Improves Hyperglycemia by Stimulating MAPK Phosphatase-3 Protein Degradation via STAT3. Cell Mol Gastroenterol Hepatol 2022; 14:983-1001. [PMID: 35863745 PMCID: PMC9490031 DOI: 10.1016/j.jcmgh.2022.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Obesity-related hyperglycemia, with hepatic insulin resistance, has become an epidemic disease. Central neural leptin signaling was reported to improve hyperglycemia. The aim of this study was to investigate the effect of hepatic leptin signaling on controlling hyperglycemia. METHODS First, the effect of leptin signaling on gluconeogenesis was investigated in primary mouse hepatocytes and hepatoma cells. Second, glucose tolerance, insulin tolerance, blood glucose levels, and hepatic gluconeogenic gene expression were analyzed in obese mice overexpressing hepatic OBRb. Third, expression of mitogen-activated protein kinase phosphatase (MKP)-3, phosphorylation level of signal transducer and activator of transcription (STAT) 3, and extracellular regulated protein kinase (ERK) were analyzed in hepatocytes and mouse liver. Fourth, the role of MKP-3 in hepatic leptin signaling regulating gluconeogenesis was analyzed. Lastly, the role of ERK and STAT3 in the regulation of MKP-3 protein by leptin signaling was analyzed. RESULTS Activation of hepatic leptin signaling suppressed gluconeogenesis in both hepatocytes and obese mouse liver, and improved hyperglycemia, insulin tolerance, and glucose tolerance in obese mice. The protein level of MKP-3, which can promote gluconeogenesis, was decreased by leptin signaling in both hepatocytes and mouse liver. Mkp-3 deficiency abolished the effect of hepatic leptin signaling on suppressing gluconeogenesis in hepatocytes. STAT3 decreased the MKP-3 protein level, while inactivation of STAT3 abolished the effect of leptin signaling on reducing the MKP-3 protein level in hepatocytes. Moreover, STAT3 could combine with MKP-3 and phospho-ERK1/2, which induced the degradation of MKP-3, and leptin signaling enhanced the combination. CONCLUSIONS Hepatic leptin signaling could suppress gluconeogenesis at least partially by decreasing the MKP-3 protein level via STAT3-enhanced MKP-3 and ERK1/2 combination.
Collapse
Affiliation(s)
- Xiaohua Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qin He
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island,School of international education, Xihua University, Chengdu, Sichuan, China
| | - Heng Zhu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory for Food Science and Human Health, College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haiyan Xu
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island,Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China,Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island,Key Laboratory for Food Science and Human Health, College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China,Correspondence Address correspondence to: Bin Feng, PhD, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China. fax: (86) 028-82652669.
| |
Collapse
|
41
|
Gasser E, Sancar G, Downes M, Evans RM. Metabolic Messengers: fibroblast growth factor 1. Nat Metab 2022; 4:663-671. [PMID: 35681108 PMCID: PMC9624216 DOI: 10.1038/s42255-022-00580-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 11/09/2022]
Abstract
While fibroblast growth factor (FGF) 1 is expressed in multiple tissues, only adipose-derived and brain FGF1 have been implicated in the regulation of metabolism. Adipose FGF1 production is upregulated in response to dietary stress and is essential for adipose tissue plasticity in these conditions. Similarly, in the brain, FGF1 secretion into the ventricular space and the adjacent parenchyma is increased after a hypercaloric challenge induced by either feeding or glucose infusion. Potent anorexigenic properties have been ascribed to both peripheral and centrally injected FGF1. The ability of recombinant FGF1 and variants with reduced mitogenicity to lower glucose, suppress adipose lipolysis and promote insulin sensitization elevates their potential as candidates in the treatment of type 2 diabetes mellitus and associated comorbidities. Here, we provide an overview of the known metabolic functions of endogenous FGF1 and discuss its therapeutic potential, distinguishing between peripherally or centrally administered FGF1.
Collapse
Affiliation(s)
- Emanuel Gasser
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Gencer Sancar
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
42
|
Görigk S, Ouwens DM, Kuhn T, Altenhofen D, Binsch C, Damen M, Khuong JMA, Kaiser K, Knebel B, Vogel H, Schürmann A, Chadt A, Al-Hasani H. Nudix hydrolase NUDT19 regulates mitochondrial function and ATP production in murine hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159153. [PMID: 35367353 DOI: 10.1016/j.bbalip.2022.159153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023]
Abstract
Changes in intracellular CoA levels are known to contribute to the development of non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes (T2D) in human and rodents. However, the underlying genetic basis is still poorly understood. Due to their diverse susceptibility towards metabolic diseases, mouse inbred strains have been proven to serve as powerful tools for the identification of novel genetic factors that underlie the pathophysiology of NAFLD and diabetes. Transcriptome analysis of mouse liver samples revealed the nucleoside diphosphate linked moiety X-type motif Nudt19 as novel candidate gene responsible for NAFLD and T2D development. Knockdown (KD) of Nudt19 increased mitochondrial and glycolytic ATP production rates in Hepa 1-6 cells by 41% and 10%, respectively. The enforced utilization of glutamine or fatty acids as energy substrate reduced uncoupled respiration by 41% and 47%, respectively, in non-target (NT) siRNA transfected cells. This reduction was prevented upon Nudt19 KD. Furthermore, incubation with palmitate or oleate respectively increased mitochondrial ATP production by 31% and 20%, and uncoupled respiration by 23% and 30% in Nudt19 KD cells, but not in NT cells. The enhanced fatty acid oxidation in Nudt19 KD cells was accompanied by a 1.3-fold increased abundance of Pdk4. This study is the first to describe Nudt19 as regulator of hepatic lipid metabolism and potential mediator of NAFLD and T2D development.
Collapse
Affiliation(s)
- Sarah Görigk
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - D Margriet Ouwens
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Tanja Kuhn
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Delsi Altenhofen
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Christian Binsch
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Mareike Damen
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Jenny Minh-An Khuong
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Katharina Kaiser
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Heike Vogel
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, D-14558 Nuthetal, Germany; Research Group Genetics of Obesity, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Brandenburg, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, D-14558 Nuthetal, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
43
|
Zhao G, Straub RH, Meyer-Hermann M. The transition between acute and chronic infections in light of energy control: a mathematical model of energy flow in response to infection. J R Soc Interface 2022; 19:20220206. [PMID: 35730176 PMCID: PMC9214282 DOI: 10.1098/rsif.2022.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/19/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Different parts of an organism like the gut, endocrine, nervous and immune systems constantly exchange information. Understanding the pathogenesis of various systemic chronic diseases increasingly relies on understanding how these subsystems orchestrate their activities. METHODS We started from the working hypothesis that energy is a fundamental quantity that governs activity levels of all subsystems and that interactions between subsystems control the distribution of energy according to acute needs. Based on physiological knowledge, we constructed a mathematical model for the energy flow between subsystems and analysed the resulting organismal responses to in silico infections. RESULTS The model reproduces common behaviour in acute infections and suggests several host parameters that modulate infection duration and therapeutic responsiveness. Moreover, the model allows the formulation of conditions for the induction of chronic infections and predicts that alterations in energy released from fat can lead to the transition from clearance of acute infections to a chronic inflammatory state. IMPACT These results suggest a fundamental role for brain and fat in controlling immune response through systemic energy control. In particular, it suggests that lipolysis resistance, which is known to be involved in obesity and ageing, might be a survival programme for coping with chronic infections.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Rebenring 56, 38106 Braunschweig, Germany
| | - Rainer H. Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Rebenring 56, 38106 Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
44
|
Akingbesote ND, Norman A, Zhu W, Halberstam AA, Zhang X, Foldi J, Lustberg MB, Perry RJ. A precision medicine approach to metabolic therapy for breast cancer in mice. Commun Biol 2022; 5:478. [PMID: 35595952 PMCID: PMC9122928 DOI: 10.1038/s42003-022-03422-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023] Open
Abstract
Increasing evidence highlights approaches targeting metabolism as potential adjuvants to cancer therapy. Sodium-glucose transport protein 2 (SGLT2) inhibitors are the newest class of antihyperglycemic drugs. To our knowledge, SGLT2 inhibitors have not been applied in the neoadjuvant setting as a precision medicine approach for this devastating disease. Here, we treat lean breast tumor-bearing mice with the SGLT2 inhibitor dapagliflozin as monotherapy and in combination with paclitaxel chemotherapy. We show that dapagliflozin enhances the efficacy of paclitaxel, reducing tumor glucose uptake and prolonging survival. Further, the ability of dapagliflozin to enhance the efficacy of chemotherapy correlates with its effect to reduce circulating insulin in some but not all breast tumors. Our data suggest a genetic signature for breast tumors more likely to respond to dapagliflozin in combination with paclitaxel. In the current study, tumors driven by mutations upstream of canonical insulin signaling pathways responded to this combined treatment, whereas tumors driven by mutations downstream of canonical insulin signaling did not. These data demonstrate that dapagliflozin enhances the response to chemotherapy in mice with breast cancer and suggest that patients with driver mutations upstream of canonical insulin signaling may be most likely to benefit from this neoadjuvant approach.
Collapse
Affiliation(s)
- Ngozi D Akingbesote
- Department of Celullar and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Internal Medicine (Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Aaron Norman
- Department of Celullar and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Internal Medicine (Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Wanling Zhu
- Department of Celullar and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Internal Medicine (Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Alexandra A Halberstam
- Department of Celullar and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Internal Medicine (Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Xinyi Zhang
- Department of Celullar and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Internal Medicine (Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Julia Foldi
- Department of Internal Medicine (Hematology/Oncology), Yale University School of Medicine, New Haven, CT, USA
| | - Maryam B Lustberg
- Department of Internal Medicine (Hematology/Oncology), Yale University School of Medicine, New Haven, CT, USA
| | - Rachel J Perry
- Department of Celullar and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Internal Medicine (Endocrinology), Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
45
|
Norwitz NG, Soto-Mota A, Kaplan B, Ludwig DS, Budoff M, Kontush A, Feldman D. The Lipid Energy Model: Reimagining Lipoprotein Function in the Context of Carbohydrate-Restricted Diets. Metabolites 2022; 12:metabo12050460. [PMID: 35629964 PMCID: PMC9147253 DOI: 10.3390/metabo12050460] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022] Open
Abstract
When lean people adopt carbohydrate-restricted diets (CRDs), they may develop a lipid profile consisting of elevated LDL-cholesterol (LDL-C) and HDL-cholesterol (HDL-C) with low triglycerides (TGs). The magnitude of this lipid profile correlates with BMI such that those with lower BMI exhibit larger increases in both LDL-C and HDL-C. The inverse association between BMI and LDL-C and HDL-C change on CRD contributed to the discovery of a subset of individuals—termed Lean Mass Hyper-Responders (LMHR)—who, despite normal pre-diet LDL-C, as compared to non-LMHR (mean levels of 148 and 145 mg/dL, respectively), exhibited a pronounced hyperlipidemic response to a CRD, with mean LDL-C and HDL-C levels increasing to 320 and 99 mg/dL, respectively, in the context of mean TG of 47 mg/dL. In some LMHR, LDL-C levels may be in excess of 500 mg/dL, again, with relatively normal pre-diet LDL-C and absent of genetic findings indicative of familial hypercholesterolemia in those who have been tested. The Lipid Energy Model (LEM) attempts to explain this metabolic phenomenon by positing that, with carbohydrate restriction in lean persons, the increased dependence on fat as a metabolic substrate drives increased hepatic secretion and peripheral uptake of TG contained within very low-density lipoproteins (VLDL) by lipoprotein lipase, resulting in marked elevations of LDL-C and HDL-C, and low TG. Herein, we review the core features of the LEM. We review several existing lines of evidence supporting the model and suggest ways to test the model’s predictions.
Collapse
Affiliation(s)
- Nicholas G. Norwitz
- Harvard Medical School, Boston, MA 02115, USA;
- Correspondence: (N.G.N.); (D.F.)
| | - Adrian Soto-Mota
- Metabolic Diseases Research Unit, National Institute for Medical Sciences and Nutrition Salvador Zubiran, Tlalpan, CDMX 14080, Mexico;
| | - Bob Kaplan
- Citizen Science Foundation, Las Vegas, NV 89139, USA;
| | - David S. Ludwig
- Harvard Medical School, Boston, MA 02115, USA;
- New Balance Foundation Obesity Prevention Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Matthew Budoff
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
| | - Anatol Kontush
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, 75013 Paris, France;
| | - David Feldman
- Citizen Science Foundation, Las Vegas, NV 89139, USA;
- Correspondence: (N.G.N.); (D.F.)
| |
Collapse
|
46
|
Goldberg D, Charni-Natan M, Buchshtab N, Bar-Shimon M, Goldstein I. Hormone-controlled cooperative binding of transcription factors drives synergistic induction of fasting-regulated genes. Nucleic Acids Res 2022; 50:5528-5544. [PMID: 35556130 PMCID: PMC9177981 DOI: 10.1093/nar/gkac358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
During fasting, hepatocytes produce glucose in response to hormonal signals. Glucagon and glucocorticoids are principal fasting hormones that cooperate in regulating glucose production via gluconeogenesis. However, how these hormone signals are integrated and interpreted to a biological output is unknown. Here, we use genome-wide profiling of gene expression, enhancer dynamics and transcription factor (TF) binding in primary mouse hepatocytes to uncover the mode of cooperation between glucagon and glucocorticoids. We found that compared to a single treatment with each hormone, a dual treatment directs hepatocytes to a pro-gluconeogenic gene program by synergistically inducing gluconeogenic genes. The cooperative mechanism driving synergistic gene expression is based on ‘assisted loading’ whereby a glucagon-activated TF (cAMP responsive element binding protein; CREB) leads to enhancer activation which facilitates binding of the glucocorticoid receptor (GR) upon glucocorticoid stimulation. Glucagon does not only activate single enhancers but also activates enhancer clusters, thereby assisting the loading of GR also across enhancer units within the cluster. In summary, we show that cells integrate extracellular signals by an enhancer-specific mechanism: one hormone-activated TF activates enhancers, thereby assisting the loading of a TF stimulated by a second hormone, leading to synergistic gene induction and a tailored transcriptional response to fasting.
Collapse
Affiliation(s)
- Dana Goldberg
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. POB 12, Rehovot 7610001, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. POB 12, Rehovot 7610001, Israel
| | - Nufar Buchshtab
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. POB 12, Rehovot 7610001, Israel
| | - Meirav Bar-Shimon
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. POB 12, Rehovot 7610001, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. POB 12, Rehovot 7610001, Israel
| |
Collapse
|
47
|
Linehan V, Hirasawa M. Short-term fasting induces alternate activation of orexin and melanin-concentrating hormone neurons in rats. Neuroscience 2022; 491:156-165. [DOI: 10.1016/j.neuroscience.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/27/2022]
|
48
|
Mankiewicz JL, Picklo MJ, Idso J, Cleveland BM. Leptin Receptor Deficiency Results in Hyperphagia and Increased Fatty Acid Mobilization during Fasting in Rainbow Trout (Oncorhynchus mykiss). Biomolecules 2022; 12:biom12040516. [PMID: 35454105 PMCID: PMC9028016 DOI: 10.3390/biom12040516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 12/19/2022] Open
Abstract
Leptin is a pleiotropic hormone known for regulating appetite and metabolism. To characterize the role of leptin signaling in rainbow trout, we used CRISPR/Cas9 genome editing to disrupt the leptin receptor (LepR) genes, lepra1 and lepra2. We compared wildtype (WT) and mutant fish that were either fed to satiation or feed deprived for six weeks. The LepR mutants exhibited a hyperphagic phenotype, which led to heavier body weight, faster specific growth rate, increased viscero- and hepatosomatic indices, and greater condition factor. Muscle glycogen, plasma leptin, and leptin transcripts (lepa1) were also elevated in fed LepR mutant fish. Expression levels of several hypothalamic genes involved in feed regulation were analyzed (agrp, npy, orexin, cart-1, cart-2, pomc-a1, pomc-b). No differences were detected between fed WT and mutants except for pomc-b (proopiomelanocortin-b), where levels were 7.5-fold higher in LepR fed mutants, suggesting that pomc-b expression is regulated by leptin signaling. Fatty acid (FA) content did not statistically differ in muscle of fed mutant fish compared to WT. However, fasted mutants exhibited significantly lower muscle FA concentrations, suggesting that LepR mutants exhibit increased FA mobilization during fasting. These data demonstrate a key role for leptin signaling in lipid and energy mobilization in a teleost fish.
Collapse
Affiliation(s)
- Jamie L. Mankiewicz
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, Kearneysville, WV 25430, USA;
| | - Matthew J. Picklo
- Human Nutrition Research Center, USDA/ARS, 2420 2nd Ave. North, Grand Forks, ND 58203, USA; (M.J.P.); (J.I.)
| | - Joseph Idso
- Human Nutrition Research Center, USDA/ARS, 2420 2nd Ave. North, Grand Forks, ND 58203, USA; (M.J.P.); (J.I.)
| | - Beth M. Cleveland
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, Kearneysville, WV 25430, USA;
- Correspondence:
| |
Collapse
|
49
|
Babaei P, Hoseini R. Exercise training modulates adipokine dysregulations in metabolic syndrome. SPORTS MEDICINE AND HEALTH SCIENCE 2022; 4:18-28. [PMID: 35782776 PMCID: PMC9219261 DOI: 10.1016/j.smhs.2022.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of risk factors for various metabolic diseases, and it is characterized by central obesity, dyslipidemia, hypertension, and insulin resistance. The core component for MetS is adipose tissue, which releases adipokines and influences physical health. Adipokines consist of pro and anti-inflammatory cytokines and contribute to various physiological functions. Generally, a sedentary lifestyle promotes fat accumulation and secretion of pro-inflammatory adipokines. However, regular exercise has been known to exert various beneficial effects on metabolic and cognitive disorders. Although the mechanisms underlying exercise beneficial effects in MetS are not fully understood, changes in energy expenditure, fat accumulation, circulatory level of myokines, and adipokines might be involved. This review article focuses on some of the selected adipokines in MetS, and their responses to exercise training considering possible mechanisms.
Collapse
Affiliation(s)
- Parvin Babaei
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Rastegar Hoseini
- Department of Sports Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
50
|
DeVito LM, Dennis EA, Kahn BB, Shulman GI, Witztum JL, Sadhu S, Nickels J, Spite M, Smyth S, Spiegel S. Bioactive lipids and metabolic syndrome-a symposium report. Ann N Y Acad Sci 2022; 1511:87-106. [PMID: 35218041 DOI: 10.1111/nyas.14752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
Abstract
Recent research has shed light on the cellular and molecular functions of bioactive lipids that go far beyond what was known about their role as dietary lipids. Bioactive lipids regulate inflammation and its resolution as signaling molecules. Genetic studies have identified key factors that can increase the risk of cardiovascular diseases and metabolic syndrome through their effects on lipogenesis. Lipid scientists have explored how these signaling pathways affect lipid metabolism in the liver, adipose tissue, and macrophages by utilizing a variety of techniques in both humans and animal models, including novel lipidomics approaches and molecular dynamics models. Dissecting out these lipid pathways can help identify mechanisms that can be targeted to prevent or treat cardiometabolic conditions. Continued investigation of the multitude of functions mediated by bioactive lipids may reveal additional components of these pathways that can provide a greater understanding of metabolic homeostasis.
Collapse
Affiliation(s)
| | | | - Barbara B Kahn
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Joseph Nickels
- Genesis Biotechnology Group, Hamilton Township, New Jersey
| | - Matthew Spite
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Susan Smyth
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarah Spiegel
- Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|