1
|
Kuralay A, McDonough MC, Resch JM. Control of sodium appetite by hindbrain aldosterone-sensitive neurons. Mol Cell Endocrinol 2024; 592:112323. [PMID: 38936597 PMCID: PMC11381173 DOI: 10.1016/j.mce.2024.112323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Mineralocorticoids play a key role in hydromineral balance by regulating sodium retention and potassium wasting. Through favoring sodium, mineralocorticoids can cause hypertension from fluid overload under conditions of hyperaldosteronism, such as aldosterone-secreting tumors. An often-overlooked mechanism by which aldosterone functions to increase sodium is through stimulation of salt appetite. To drive sodium intake, aldosterone targets neurons in the hindbrain which uniquely express 11β-hydroxysteroid dehydrogenase type 2 (HSD2). This enzyme is a necessary precondition for aldosterone-sensing cells as it metabolizes glucocorticoids - preventing their activation of the mineralocorticoid receptor. In this review, we will consider the role of hindbrain HSD2 neurons in regulating sodium appetite by discussing HSD2 expression in the brain, regulation of hindbrain HSD2 neuron activity, and the circuitry mediating the effects of these aldosterone-sensitive neurons. Reducing the activity of hindbrain HSD2 neurons may be a viable strategy to reduce sodium intake and cardiovascular risk, particularly for conditions of hyperaldosteronism.
Collapse
Affiliation(s)
- Ahmet Kuralay
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA
| | - Miriam C McDonough
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Jon M Resch
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA; Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Crosson T, Bhat S, Wang JC, Salaun C, Fontaine E, Roversi K, Herzog H, Rafei M, Blunck R, Talbot S. Cytokines reprogram airway sensory neurons in asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525731. [PMID: 39345572 PMCID: PMC11429693 DOI: 10.1101/2023.01.26.525731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential dangers in the environment. However, this function can be detrimental during allergic reactions, since vagal nociceptors can contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance, in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we aimed to investigate the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identified a unique class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the NPY receptor Npy1r. A screening of cytokines and neurotrophins revealed that IL-1β, IL-13 and BDNF drive part of this reprogramming. IL-13 triggered Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, sympathetic neurons and macrophages release NPY in the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells has revealed that a cell-specific knockout of Npy1r in nociceptor neurons in asthmatic mice leads to an increase in airway inflammation mediated by T cells. Opposite findings were observed in asthmatic mice in which nociceptor neurons were chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits nociceptor neurons' activity.
Collapse
Affiliation(s)
- Théo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Shreyas Bhat
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Clara Salaun
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Eleanne Fontaine
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | | | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Rikard Blunck
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet. Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University. Canada
| |
Collapse
|
3
|
Park KT, Jo H, Jeon SH, Jeong K, Im M, Kim JW, Jung JP, Jung HC, Lee JH, Kim W. Analgesic Effect of Human Placenta Hydrolysate on CFA-Induced Inflammatory Pain in Mice. Pharmaceuticals (Basel) 2024; 17:1179. [PMID: 39338341 PMCID: PMC11435073 DOI: 10.3390/ph17091179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
To evaluate the efficacy of human placenta hydrolysate (HPH) in a mice model of CFA-induced inflammatory pain. TNF-α, IL-1β, and IL-6 are key pro-inflammatory cytokine factors for relieving inflammatory pain. Therefore, this study investigates whether HPH suppresses CFA-induced pain and attenuates the inflammatory process by regulating cytokines. In addition, the relationship between neuropathic pain and HPH was established by staining GFAP and Iba-1 in mice spinal cord tissues. This study was conducted for a total of day 28, and inflammatory pain was induced in mice by injecting CFA into the right paw at day 0 and day 14, respectively. 100 μL of 20% glucose and polydeoxyribonucleotide (PDRN) and 100, 200, and 300 μL of HPH were administered intraperitoneally twice a week. In the CFA-induced group, cold and mechanical allodynia and pro-inflammatory cytokine factors in the spinal cord and plantar tissue were significantly increased. The five groups of drugs evenly reduced pain and gene expression of inflammatory factors, and particularly excellent effects were confirmed in the HPH 200 and 300 groups. Meanwhile, the expression of GFAP and Iba-1 in the spinal cord was increased by CFA administration but decreased by HPH administration, which was confirmed to suppress damage to peripheral ganglia. The present study suggests that HPH attenuates CFA-induced inflammatory pain through inhibition of pro-inflammatory cytokine factors and protection of peripheral nerves.
Collapse
Affiliation(s)
- Keun-Tae Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Heejoon Jo
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - So-Hyun Jeon
- Research and Development Center, Green Cross Wellbeing Corporation, Yongin 16950, Republic of Korea
| | - Kyeongsoo Jeong
- Research and Development Center, Green Cross Wellbeing Corporation, Yongin 16950, Republic of Korea
| | - Minju Im
- Research and Development Center, Green Cross Wellbeing Corporation, Yongin 16950, Republic of Korea
| | - Jae-Won Kim
- Research and Development Center, Green Cross Wellbeing Corporation, Yongin 16950, Republic of Korea
| | - Jong-Pil Jung
- Nuke Medical Society of Pain Research, Daejeon 35002, Republic of Korea
| | - Hoe Chang Jung
- Nuke Medical Society of Pain Research, Daejeon 35002, Republic of Korea
| | - Jae Hun Lee
- Nuke Medical Society of Pain Research, Daejeon 35002, Republic of Korea
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| |
Collapse
|
4
|
Palmiter RD. Parabrachial neurons promote nociplastic pain. Trends Neurosci 2024; 47:722-735. [PMID: 39147688 DOI: 10.1016/j.tins.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The parabrachial nucleus (PBN) in the dorsal pons responds to bodily threats and transmits alarm signals to the forebrain. Parabrachial neuron activity is enhanced during chronic pain, and inactivation of PBN neurons in mice prevents the establishment of neuropathic, chronic pain symptoms. Chemogenetic or optogenetic activation of all glutamatergic neurons in the PBN, or just the subpopulation that expresses the Calca gene, is sufficient to establish pain phenotypes, including long-lasting tactile allodynia, that scale with the extent of stimulation, thereby promoting nociplastic pain, defined as diffuse pain without tissue inflammation or nerve injury. This review focuses on the role(s) of molecularly defined PBN neurons and the downstream nodes in the brain that contribute to establishing nociplastic pain.
Collapse
Affiliation(s)
- Richard D Palmiter
- Departments of Biochemistry and Genome Sciences, Investigator of the Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
5
|
Xiao Z, Zheng N, Chen H, Yang Z, Wang R, Liang Z. Identifying novel proteins underlying bipolar disorder via integrating pQTLs of the plasma, CSF, and brain with GWAS summary data. Transl Psychiatry 2024; 14:344. [PMID: 39191728 DOI: 10.1038/s41398-024-03056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Bipolar disorder (BD) presents a significant challenge due to its chronic and relapsing nature, with its underlying pathogenesis remaining elusive. This study employs Mendelian randomization (MR), a widely recognized genetic approach, to unveil intricate causal associations between proteins and BD, leveraging protein quantitative trait loci (pQTL) as key exposures. We integrate pQTL data from brain, cerebrospinal fluid (CSF), and plasma with genome-wide association study (GWAS) findings of BD within a comprehensive systems analysis framework. Our analyses, including two-sample MR, Steiger filtering, and Bayesian colocalization, reveal noteworthy associations. Elevated levels of AGRP, FRZB, and IL36A in CSF exhibit significant associations with increased BD_ALL risk, while heightened levels of CTSF and LRP8 in CSF, and FLRT3 in plasma, correlate with decreased BD_ALL risk. Specifically for Bipolar I disorder (BD_I), increased CSF AGRP levels are significantly linked to heightened BD_I risk, whereas elevated CSF levels of CTSF and LRP8, and plasma FLRT3, are associated with reduced BD_I risk. Notably, genes linked to BD-related proteins demonstrate substantial enrichment in functional pathways such as "antigen processing and presentation," "metabolic regulation," and "regulation of myeloid cell differentiation." In conclusion, our findings provide beneficial evidence to support the potential causal relationship between IL36A, AGRP, FRZB, LRP8 in cerebrospinal fluid, and FLRT3 in plasma, and BD and BD_I, providing insights for future mechanistic studies and therapeutic development.
Collapse
Affiliation(s)
- Zhehao Xiao
- Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nan Zheng
- Fujian Medical University Union Hospital, Fuzhou, China
- Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Haodong Chen
- Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhelun Yang
- Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rui Wang
- Fujian Medical University Union Hospital, Fuzhou, China.
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Zeyan Liang
- Fujian Medical University Union Hospital, Fuzhou, China.
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
6
|
Wu H, Xie L, Chen Q, Xu F, Dai A, Ma X, Xie S, Li H, Zhu F, Jiao C, Sun L, Xu Q, Zhou Y, Shen Y, Chen X. Activation of GABAergic neurons in the dorsal raphe nucleus alleviates hyperalgesia induced by ovarian hormone withdrawal. Pain 2024:00006396-990000000-00678. [PMID: 39106454 DOI: 10.1097/j.pain.0000000000003362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/25/2024] [Indexed: 08/09/2024]
Abstract
ABSTRACT Menopausal and postmenopausal women, characterized by a significant reduction in ovarian hormones, have a high prevalence of chronic pain with great pain intensity. However, the underlying mechanism of hyperalgesia induced by ovarian hormone withdrawal remains poorly understood. Here, we report that decreases in the activity and excitability of GABAergic neurons in the dorsal raphe nucleus (DRN) are associated with hyperalgesia induced by ovariectomy in mice. Supplementation with 17β-estradiol, but not progesterone, is sufficient to increase the mechanical pain threshold in ovariectomized (OVX) mice and the excitability of DRN GABAergic (DRNGABA) neurons. Moreover, activation of the DRNGABA neurons projecting to the lateral parabrachial nucleus was critical for alleviating hyperalgesia in OVX mice. These findings show the essential role of DRNGABA neurons and their modulation by estrogen in regulating hyperalgesia induced by ovarian hormone withdrawal, providing therapeutic basis for the treatment of chronic pain in physiological or surgical menopausal women.
Collapse
Affiliation(s)
- Hui Wu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linghua Xie
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Xu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ange Dai
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolin Ma
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Shulan Xie
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Li
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangfang Zhu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cuicui Jiao
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihong Sun
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Xu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yudong Zhou
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yi Shen
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xinzhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Huang KP, Acosta AA, Ghidewon MY, McKnight AD, Almeida MS, Nyema NT, Hanchak ND, Patel N, Gbenou YSK, Adriaenssens AE, Bolding KA, Alhadeff AL. Dissociable hindbrain GLP1R circuits for satiety and aversion. Nature 2024; 632:585-593. [PMID: 38987598 DOI: 10.1038/s41586-024-07685-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/06/2024] [Indexed: 07/12/2024]
Abstract
The most successful obesity therapeutics, glucagon-like peptide-1 receptor (GLP1R) agonists, cause aversive responses such as nausea and vomiting1,2, effects that may contribute to their efficacy. Here, we investigated the brain circuits that link satiety to aversion, and unexpectedly discovered that the neural circuits mediating these effects are functionally separable. Systematic investigation across drug-accessible GLP1R populations revealed that only hindbrain neurons are required for the efficacy of GLP1-based obesity drugs. In vivo two-photon imaging of hindbrain GLP1R neurons demonstrated that most neurons are tuned to either nutritive or aversive stimuli, but not both. Furthermore, simultaneous imaging of hindbrain subregions indicated that area postrema (AP) GLP1R neurons are broadly responsive, whereas nucleus of the solitary tract (NTS) GLP1R neurons are biased towards nutritive stimuli. Strikingly, separate manipulation of these populations demonstrated that activation of NTSGLP1R neurons triggers satiety in the absence of aversion, whereas activation of APGLP1R neurons triggers strong aversion with food intake reduction. Anatomical and behavioural analyses revealed that NTSGLP1R and APGLP1R neurons send projections to different downstream brain regions to drive satiety and aversion, respectively. Importantly, GLP1R agonists reduce food intake even when the aversion pathway is inhibited. Overall, these findings highlight NTSGLP1R neurons as a population that could be selectively targeted to promote weight loss while avoiding the adverse side effects that limit treatment adherence.
Collapse
Affiliation(s)
| | | | - Misgana Y Ghidewon
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron D McKnight
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Nisha Patel
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | | | - Alice E Adriaenssens
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Kevin A Bolding
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Amber L Alhadeff
- Monell Chemical Senses Center, Philadelphia, PA, USA.
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Alcantara IC, Li C, Mickelsen LE, Mazzone CM, de Araujo Salgado I, Gao C, Papas BN, Xiao C, Karolczak EO, Goldschmidt AI, Gonzalez SR, Piñol RA, Li JL, Cui G, Reitman ML, Krashes MJ. A Hypothalamic Circuit that Modulates Feeding and Parenting Behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604437. [PMID: 39091749 PMCID: PMC11291030 DOI: 10.1101/2024.07.22.604437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Across mammalian species, new mothers undergo considerable behavioral changes to nurture their offspring and meet the caloric demands of milk production1-5. While many neural circuits underlying feeding and parenting behaviors are well characterized6-9, it is unclear how these different circuits interact and adapt during lactation. Here, we characterized the transcriptomic changes in the arcuate nucleus (ARC) and the medial preoptic area (MPOA) of the mouse hypothalamus in response to lactation and hunger. Furthermore, we showed that heightened appetite in lactating mice was accompanied by increased activity of hunger-promoting agouti-related peptide (AgRP) neurons in the ARC. To assess the strength of hunger versus maternal drives, we designed a conflict assay where female mice chose between a food source or a chamber containing pups and nesting material. Although food-deprived lactating mothers prioritized parenting over feeding, hunger reduced the duration and disrupted the sequences of parenting behaviors in both lactating and virgin females. We discovered that ARCAgRP neurons directly inhibit bombesin receptor subtype-3 (BRS3) neurons in the MPOA, a population that governs both parenting and satiety. Selective activation of this ARCAgRP to MPOABRS3 circuit shifted behaviors from parenting to food-seeking. Thus, hypothalamic networks are modulated by physiological states and work antagonistically during the prioritization of competing motivated behaviors.
Collapse
Affiliation(s)
- Ivan C. Alcantara
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
- Department of Neuroscience, Brown University, Providence, RI, USA 20912
| | - Chia Li
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Laura E. Mickelsen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Christopher M. Mazzone
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA 27709
| | - Isabel de Araujo Salgado
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Claire Gao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Brian N. Papas
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA 27709
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Eva O. Karolczak
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Abigail I. Goldschmidt
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Shakira Rodriguez Gonzalez
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Ramón A. Piñol
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Jian-Liang Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA 27709
| | - Guohong Cui
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA 27709
| | - Marc L. Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| | - Michael J. Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA 20892
| |
Collapse
|
9
|
Kucukdereli H, Amsalem O, Pottala T, Lim M, Potgieter L, Hasbrouck A, Lutas A, Andermann ML. Repeated stress triggers seeking of a starvation-like state in anxiety-prone female mice. Neuron 2024; 112:2130-2141.e7. [PMID: 38642553 PMCID: PMC11287784 DOI: 10.1016/j.neuron.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/28/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
Elevated anxiety often precedes anorexia nervosa and persists after weight restoration. Patients with anorexia nervosa often describe self-starvation as pleasant, potentially because food restriction can be anxiolytic. Here, we tested whether repeated stress can cause animals to prefer a starvation-like state. We developed a virtual reality place preference paradigm in which head-fixed mice can voluntarily seek a starvation-like state induced by optogenetic stimulation of hypothalamic agouti-related peptide (AgRP) neurons. Prior to stress exposure, males but not females showed a mild aversion to AgRP stimulation. Strikingly, following multiple days of stress, a subset of females developed a strong preference for AgRP stimulation that was predicted by high baseline anxiety. Such stress-induced changes in preference were reflected in changes in facial expressions during AgRP stimulation. Our study suggests that stress may cause females predisposed to anxiety to seek a starvation state and provides a powerful experimental framework for investigating the underlying neural mechanisms.
Collapse
Affiliation(s)
- Hakan Kucukdereli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Oren Amsalem
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Trent Pottala
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michelle Lim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Leilani Potgieter
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Amanda Hasbrouck
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew Lutas
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Dodt S, Widdershooven NV, Dreisow ML, Weiher L, Steuernagel L, Wunderlich FT, Brüning JC, Fenselau H. NPY-mediated synaptic plasticity in the extended amygdala prioritizes feeding during starvation. Nat Commun 2024; 15:5439. [PMID: 38937485 PMCID: PMC11211344 DOI: 10.1038/s41467-024-49766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
Efficient control of feeding behavior requires the coordinated adjustment of complex motivational and affective neurocircuits. Neuropeptides from energy-sensing hypothalamic neurons are potent feeding modulators, but how these endogenous signals shape relevant circuits remains unclear. Here, we examine how the orexigenic neuropeptide Y (NPY) adapts GABAergic inputs to the bed nucleus of the stria terminalis (BNST). We find that fasting increases synaptic connectivity between agouti-related peptide (AgRP)-expressing 'hunger' and BNST neurons, a circuit that promotes feeding. In contrast, GABAergic input from the central amygdala (CeA), an extended amygdala circuit that decreases feeding, is reduced. Activating NPY-expressing AgRP neurons evokes these synaptic adaptations, which are absent in NPY-deficient mice. Moreover, fasting diminishes the ability of CeA projections in the BNST to suppress food intake, and NPY-deficient mice fail to decrease anxiety in order to promote feeding. Thus, AgRP neurons drive input-specific synaptic plasticity, enabling a selective shift in hunger and anxiety signaling during starvation through NPY.
Collapse
Affiliation(s)
- Stephan Dodt
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Noah V Widdershooven
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Marie-Luise Dreisow
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
| | - Lisa Weiher
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Lukas Steuernagel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - F Thomas Wunderlich
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany.
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany.
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany.
| |
Collapse
|
11
|
Costa A, Lucarini E. Treating chronic stress and chronic pain by manipulating gut microbiota with diet: can we kill two birds with one stone? Nutr Neurosci 2024:1-24. [PMID: 38889540 DOI: 10.1080/1028415x.2024.2365021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Background: Chronic stress and chronic pain are closely linked by the capacity to exacerbate each other, sharing common roots in the brain and in the gut. The strict intersection between these two neurological diseases makes important to have a therapeutic strategy aimed at preventing both to maintain mental health in patients. Diet is an modifiable lifestyle factor associated with gut-brain axis diseases and there is growing interest in its use as adjuvant to main therapies. Several evidence attest the impact of specific diets or nutrients on chronic stress-related disorders and pain with a good degree of certainty. A daily adequate intake of foods containing micronutrients such as amino acids, minerals and vitamins, as well as the reduction in the consumption of processed food products can have a positive impact on microbiota and gut health. Many nutrients are endowed of prebiotic, anti-inflammatory, immunomodulatory and neuroprotective potential which make them useful tools helping the management of chronic stress and pain in patients. Dietary regimes, as intermittent fasting or caloric restriction, are promising, although further studies are needed to optimize protocols according to patient's medical history, age and sex. Moreover, by supporting gut microbiota health with diet is possible to attenuate comorbidities such as obesity, gastrointestinal dysfunction and mood disorders, thus reducing healthcare costs related to chronic stress or pain.Objective: This review summarize the most recent evidence on the microbiota-mediated beneficial effects of macro- and micronutrients, dietary-related factors, specific nutritional regimens and dietary intervention on these pathological conditions.
Collapse
Affiliation(s)
- Alessia Costa
- Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
12
|
Singh Alvarado J, Lutas A, Madara JC, Isaac J, Lommer C, Massengill C, Andermann ML. Transient cAMP production drives rapid and sustained spiking in brainstem parabrachial neurons to suppress feeding. Neuron 2024; 112:1416-1425.e5. [PMID: 38417435 PMCID: PMC11065603 DOI: 10.1016/j.neuron.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/01/2024]
Abstract
Brief stimuli can trigger longer-lasting brain states. G-protein-coupled receptors (GPCRs) could help sustain such states by coupling slow-timescale molecular signals to neuronal excitability. Brainstem parabrachial nucleus glutamatergic (PBNGlut) neurons regulate sustained brain states such as pain and express Gs-coupled GPCRs that increase cAMP signaling. We asked whether cAMP in PBNGlut neurons directly influences their excitability and effects on behavior. Both brief tail shocks and brief optogenetic stimulation of cAMP production in PBNGlut neurons drove minutes-long suppression of feeding. This suppression matched the duration of prolonged elevations in cAMP, protein kinase A (PKA) activity, and calcium activity in vivo and ex vivo, as well as sustained, PKA-dependent increases in action potential firing ex vivo. Shortening this elevation in cAMP reduced the duration of feeding suppression following tail shocks. Thus, molecular signaling in PBNGlut neurons helps prolong neural activity and behavioral states evoked by brief, salient bodily stimuli.
Collapse
Affiliation(s)
- Jonnathan Singh Alvarado
- Division of Endocrinology, Metabolism, and Diabetes, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Lutas
- Division of Endocrinology, Metabolism, and Diabetes, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Diabetes, Endocrinology, and Obesity Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Joseph C Madara
- Division of Endocrinology, Metabolism, and Diabetes, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremiah Isaac
- Diabetes, Endocrinology, and Obesity Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caroline Lommer
- Division of Endocrinology, Metabolism, and Diabetes, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | - Mark L Andermann
- Division of Endocrinology, Metabolism, and Diabetes, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Condon LF, Yu Y, Park S, Cao F, Pauli JL, Nelson TS, Palmiter RD. Parabrachial Calca neurons drive nociplasticity. Cell Rep 2024; 43:114057. [PMID: 38583149 PMCID: PMC11210282 DOI: 10.1016/j.celrep.2024.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/16/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Pain that persists beyond the time required for tissue healing and pain that arises in the absence of tissue injury, collectively referred to as nociplastic pain, are poorly understood phenomena mediated by plasticity within the central nervous system. The parabrachial nucleus (PBN) is a hub that relays aversive sensory information and appears to play a role in nociplasticity. Here, by preventing PBN Calca neurons from releasing neurotransmitters, we demonstrate that activation of Calca neurons is necessary for the manifestation and maintenance of chronic pain. Additionally, by directly stimulating Calca neurons, we demonstrate that Calca neuron activity is sufficient to drive nociplasticity. Aversive stimuli of multiple sensory modalities, such as exposure to nitroglycerin, cisplatin, or lithium chloride, can drive nociplasticity in a Calca-neuron-dependent manner. Aversive events drive nociplasticity in Calca neurons in the form of increased activity and excitability; however, neuroplasticity also appears to occur in downstream circuitry.
Collapse
Affiliation(s)
- Logan F Condon
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Ying Yu
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sekun Park
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Feng Cao
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jordan L Pauli
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Tyler S Nelson
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
14
|
von der Beck B, Wissmann A, Tolba RH, Dammann P, Hilken G. What Can Laboratory Animal Facility Managers Do to Improve the Welfare of Laboratory Animals and Laboratory Animal Facility Staff? A German Perspective. Animals (Basel) 2024; 14:1136. [PMID: 38612375 PMCID: PMC11010866 DOI: 10.3390/ani14071136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Laboratory animal facility managers must ensure that animal experiments can be carried out under optimal scientific conditions, that all legal requirements are met, and that animal welfare is maximized. Animal experimentation is stressful not only for the animals involved but also for the people who maintain these animals or carry out the experiments. Many of those involved find themselves in a constant conflict between scientific necessity, care, and harm. Under the term Culture of Care, procedures have been developed to reduce the burden of animal experimentation on the animals and the staff involved. The focus here is on what laboratory animal facility managers can do to improve the welfare of laboratory animals and the people working with them. Exemplary measures are the improvement of the housing conditions of laboratory animals, the introduction of uniform handling measures, clear and transparent structures via a quality management system, implementation of a no-blame culture of error (e.g., via Critical Incident Reporting System in Laboratory Animal Science [CIRS-LAS]), and open and respectful communication with all parties involved in animal experimentation, including the public and representatives of the authorities (public webpage, open house policy). The 6 Rs must be considered at all times: replacement, reduction, refinement, respect, responsibility, and reproducibility. We are writing this article from the perspective of laboratory animal facility managers in Germany.
Collapse
Affiliation(s)
- Birte von der Beck
- Central Animal Laboratory, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (B.v.d.B.); (A.W.)
| | - Andreas Wissmann
- Central Animal Laboratory, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (B.v.d.B.); (A.W.)
| | - Rene H. Tolba
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, RWTH Aachen University, 52062 Aachen, Germany
| | - Philip Dammann
- Central Animal Laboratory, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (B.v.d.B.); (A.W.)
| | - Gero Hilken
- Central Animal Laboratory, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (B.v.d.B.); (A.W.)
| |
Collapse
|
15
|
Goldstein N, Maes A, Allen HN, Nelson TS, Kruger KA, Kindel M, Smith NK, Carty JRE, Villari RE, Cho E, Marble EL, Khanna R, Taylor BK, Kennedy A, Betley JN. A parabrachial hub for the prioritization of survival behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582069. [PMID: 38464066 PMCID: PMC10925167 DOI: 10.1101/2024.02.26.582069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Long-term sustained pain in the absence of acute physical injury is a prominent feature of chronic pain conditions. While neurons responding to noxious stimuli have been identified, understanding the signals that persist without ongoing painful stimuli remains a challenge. Using an ethological approach based on the prioritization of adaptive survival behaviors, we determined that neuropeptide Y (NPY) signaling from multiple sources converges on parabrachial neurons expressing the NPY Y1 receptor to reduce sustained pain responses. Neural activity recordings and computational modeling demonstrate that activity in Y1R parabrachial neurons is elevated following injury, predicts functional coping behavior, and is inhibited by competing survival needs. Taken together, our findings suggest that parabrachial Y1 receptor-expressing neurons are a critical hub for endogenous analgesic pathways that suppress sustained pain states.
Collapse
|
16
|
Zhang Y, Pool AH, Wang T, Liu L, Kang E, Zhang B, Ding L, Frieda K, Palmiter R, Oka Y. Parallel neural pathways control sodium consumption and taste valence. Cell 2023; 186:5751-5765.e16. [PMID: 37989313 PMCID: PMC10761003 DOI: 10.1016/j.cell.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 09/04/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023]
Abstract
The hedonic value of salt fundamentally changes depending on the internal state. High concentrations of salt induce innate aversion under sated states, whereas such aversive stimuli transform into appetitive ones under sodium depletion. Neural mechanisms underlying this state-dependent salt valence switch are poorly understood. Using transcriptomics state-to-cell-type mapping and neural manipulations, we show that positive and negative valences of salt are controlled by anatomically distinct neural circuits in the mammalian brain. The hindbrain interoceptive circuit regulates sodium-specific appetitive drive , whereas behavioral tolerance of aversive salts is encoded by a dedicated class of neurons in the forebrain lamina terminalis (LT) expressing prostaglandin E2 (PGE2) receptor, Ptger3. We show that these LT neurons regulate salt tolerance by selectively modulating aversive taste sensitivity, partly through a PGE2-Ptger3 axis. These results reveal the bimodal regulation of appetitive and tolerance signals toward salt, which together dictate the amount of sodium consumption under different internal states.
Collapse
Affiliation(s)
- Yameng Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Allan-Hermann Pool
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Departments of Neuroscience and Anesthesia and Pain Management and Peter O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tongtong Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lu Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Elin Kang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bei Zhang
- Spatial Genomics, Inc., Pasadena, CA, USA
| | - Liang Ding
- Spatial Genomics, Inc., Pasadena, CA, USA
| | | | - Richard Palmiter
- Departments of Biochemistry and Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
17
|
Nyema NT, McKnight AD, Vargas-Elvira AG, Schneps HM, Gold EG, Myers KP, Alhadeff AL. AgRP neuron activity promotes associations between sensory and nutritive signals to guide flavor preference. Mol Metab 2023; 78:101833. [PMID: 37925021 PMCID: PMC10665654 DOI: 10.1016/j.molmet.2023.101833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
OBJECTIVE The learned associations between sensory cues (e.g., taste, smell) and nutritive value (e.g., calories, post-ingestive signaling) of foods powerfully influences our eating behavior [1], but the neural circuits that mediate these associations are not well understood. Here, we examined the role of agouti-related protein (AgRP)-expressing neurons - neurons which are critical drivers of feeding behavior [2; 3] - in mediating flavor-nutrient learning (FNL). METHODS Because mice prefer flavors associated with AgRP neuron activity suppression [4], we examined how optogenetic stimulation of AgRP neurons during intake influences FNL, and used fiber photometry to determine how endogenous AgRP neuron activity tracks associations between flavors and nutrients. RESULTS We unexpectedly found that tonic activity in AgRP neurons during FNL potentiated, rather than prevented, the development of flavor preferences. There were notable sex differences in the mechanisms for this potentiation. Specifically, in male mice, AgRP neuron activity increased flavor consumption during FNL training, thereby strengthening the association between flavors and nutrients. In female mice, AgRP neuron activity enhanced flavor-nutrient preferences independently of consumption during training, suggesting that AgRP neuron activity enhances the reward value of the nutrient-paired flavor. Finally, in vivo neural activity analyses demonstrated that acute AgRP neuron dynamics track the association between flavors and nutrients in both sexes. CONCLUSIONS Overall, these data (1) demonstrate that AgRP neuron activity enhances associations between flavors and nutrients in a sex-dependent manner and (2) reveal that AgRP neurons track and rapidly update these associations. Taken together, our findings provide new insight into the role of AgRP neurons in assimilating sensory and nutritive signals for food reinforcement.
Collapse
Affiliation(s)
- Nathaniel T Nyema
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron D McKnight
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Heather M Schneps
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Amber L Alhadeff
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA; University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Liu L, Luo Z, Mai Y, Lu Y, Sun Z, Chen J, Zeng T, Chen L, Liu Z, Yang H, Xu Q, Lan L, Tang C. Dexmedetomidine relieves inflammatory pain by enhancing GABAergic synaptic activity in pyramidal neurons of the anterior cingulate cortex. Neuropharmacology 2023; 240:109710. [PMID: 37683885 DOI: 10.1016/j.neuropharm.2023.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
Pyramidal neuron (Pyn) hyperactivity in the anterior cingulate cortex (ACC) is involved in the modulation of pain. Previous studies indicate that the activation of α2 adrenoceptors (α2-ARs) by dexmedetomidine (DEX) is a safe and effective means of alleviating multiple types of pain. Here, we showed that systemically administered DEX can ameliorate the inflammatory pain induced by hindpaw injection of formalin (FA) and further examined the molecular and synaptic mechanisms of this DEX-elicited antinociceptive effect. We found that FA caused an increase in c-Fos expression in contralateral layer 2/3 (L2/3) ACC, and that intra-ACC infusion of DEX could also relieve phase 2 inflammatory pain behavior. DEX elicited an increase in the amplitude and frequency of miniature inhibitory post-synaptic currents (mIPSCs) and evoked IPSC amplitude, as well as a reduction in the hyperexcitability and both paired-pulse and excitation/inhibition ratios in contralateral L2/3 ACC Pyns of FA mice. These electrophysiological effects were associated with the upregulation of GABA A receptor (GABAAR) subunits. The interaction of phosphorylated Akt (p-Akt) with GABAAR subunits increased in the ACC following administration of DEX. These results suggest that DEX treatment reduces hyperactivity and enhances GABAergic inhibitory synaptic transmission in ACC Pyns, which produces analgesic effects by increasing GABAAR levels and activating the Akt signaling pathway.
Collapse
Affiliation(s)
- Ling Liu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhihao Luo
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuanying Mai
- Department of Nursing, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yi Lu
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, 510130, China
| | - Zhaoxia Sun
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jianfeng Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Tianyu Zeng
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Lei Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zihao Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hanyu Yang
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Qin Xu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Lan Lan
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Chunzhi Tang
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
19
|
So WL, Hu J, Jeffs L, Dempsey H, Lockie SH, Zigman JM, Stark R, Reichenbach A, Andrews ZB. Ghrelin signalling in AgRP neurons links metabolic state to the sensory regulation of AgRP neural activity. Mol Metab 2023; 78:101826. [PMID: 37898450 PMCID: PMC10643323 DOI: 10.1016/j.molmet.2023.101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/30/2023] Open
Abstract
OBJECTIVE The sensory detection of food and food cues suppresses Agouti related peptide (AgRP) neuronal activity prior to consumption with greatest suppression occurring in response to highly caloric food or interoceptive energy need. However, the interoceptive mechanisms priming an appropriate AgRP neural response to external sensory information of food availability remain unexplored. Since hunger increases plasma ghrelin, we hypothesized that ghrelin receptor (GHSR) signalling on AgRP neurons is a key interoceptive mechanism integrating energy need with external sensory cues predicting caloric availability. METHODS We used in vivo photometry to measure the effects of ghrelin administration or fasting on AgRP neural activity with GCaMP6s and dopamine release in the nucleus accumbens with GRAB-DA in mice lacking ghrelin receptors in AgRP neurons. RESULTS The deletion of GHSR on AgRP neurons prevented ghrelin-induced food intake, motivation and AgRP activity. The presentation of food (peanut butter pellet) or a wooden dowel suppressed AgRP activity in fasted WT but not mice lacking GHSRs in AgRP neurons. Similarly, peanut butter and a wooden dowel increased dopamine release in the nucleus accumbens after ip ghrelin injection in WT but not mice lacking GHSRs in AgRP neurons. No difference in dopamine release was observed in fasted mice. Finally, ip ghrelin administration did not directly increase dopamine neural activity in the ventral tegmental area. CONCLUSIONS Our results suggest that AgRP GHSRs integrate an interoceptive state of energy need with external sensory information to produce an optimal change in AgRP neural activity. Thus, ghrelin signalling on AgRP neurons is more than just a feedback signal to increase AgRP activity during hunger.
Collapse
Affiliation(s)
- Wang Lok So
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Jiachen Hu
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Lotus Jeffs
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Harry Dempsey
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
| | - Sarah H Lockie
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Alex Reichenbach
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia.
| |
Collapse
|
20
|
Klima ML, Kruger KA, Goldstein N, Pulido S, Low AYT, Assenmacher CA, Alhadeff AL, Betley JN. Anti-inflammatory effects of hunger are transmitted to the periphery via projection-specific AgRP circuits. Cell Rep 2023; 42:113338. [PMID: 37910501 DOI: 10.1016/j.celrep.2023.113338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/31/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Caloric restriction has anti-inflammatory effects. However, the coordinated physiological actions that lead to reduced inflammation in a state of caloric deficit (hunger) are largely unknown. Using a mouse model of injury-induced peripheral inflammation, we find that food deprivation reduces edema, temperature, and cytokine responses that occur after injury. The magnitude of the anti-inflammatory effect that occurs during hunger is more robust than that of non-steroidal anti-inflammatory drugs. The effects of hunger are recapitulated centrally by activity in nutrient-sensing hypothalamic agouti-related protein (AgRP)-expressing neurons. We find that AgRP neurons projecting to the paraventricular nucleus of the hypothalamus rapidly and robustly reduce inflammation and mediate the majority of hunger's anti-inflammatory effects. Intact vagal efferent signaling is required for the anti-inflammatory action of hunger, revealing a brain-to-periphery pathway for this reduction in inflammation. Taken together, these data begin to unravel a potent anti-inflammatory pathway engaged by hypothalamic AgRP neurons to reduce inflammation.
Collapse
Affiliation(s)
- Michelle L Klima
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kayla A Kruger
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nitsan Goldstein
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Santiago Pulido
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aloysius Y T Low
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles-Antoine Assenmacher
- Comparative Pathology Core, Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Amber L Alhadeff
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Monell Chemical Senses Center, Philadelphia, PA 19104, USA.
| | - J Nicholas Betley
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Wang H, Qian T, Zhao Y, Zhuo Y, Wu C, Osakada T, Chen P, Chen Z, Ren H, Yan Y, Geng L, Fu S, Mei L, Li G, Wu L, Jiang Y, Qian W, Zhang L, Peng W, Xu M, Hu J, Jiang M, Chen L, Tang C, Zhu Y, Lin D, Zhou JN, Li Y. A tool kit of highly selective and sensitive genetically encoded neuropeptide sensors. Science 2023; 382:eabq8173. [PMID: 37972184 PMCID: PMC11205257 DOI: 10.1126/science.abq8173] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/02/2023] [Indexed: 11/19/2023]
Abstract
Neuropeptides are key signaling molecules in the endocrine and nervous systems that regulate many critical physiological processes. Understanding the functions of neuropeptides in vivo requires the ability to monitor their dynamics with high specificity, sensitivity, and spatiotemporal resolution. However, this has been hindered by the lack of direct, sensitive, and noninvasive tools. We developed a series of GRAB (G protein-coupled receptor activation‒based) sensors for detecting somatostatin (SST), corticotropin-releasing factor (CRF), cholecystokinin (CCK), neuropeptide Y (NPY), neurotensin (NTS), and vasoactive intestinal peptide (VIP). These fluorescent sensors, which enable detection of specific neuropeptide binding at nanomolar concentrations, establish a robust tool kit for studying the release, function, and regulation of neuropeptides under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Tongrui Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yulin Zhao
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yizhou Zhuo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Chunling Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Takuya Osakada
- Department of Psychiatry and Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Peng Chen
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zijun Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huixia Ren
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yuqi Yan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lan Geng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Shengwei Fu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Long Mei
- Department of Psychiatry and Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Ling Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yiwen Jiang
- Department of Psychiatry and Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Weiran Qian
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Li Zhang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wanling Peng
- Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min Xu
- Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Man Jiang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liangyi Chen
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chao Tang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dayu Lin
- Department of Psychiatry and Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Jiang-Ning Zhou
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Mirabella PN, Fenselau H. Advanced neurobiological tools to interrogate metabolism. Nat Rev Endocrinol 2023; 19:639-654. [PMID: 37674015 DOI: 10.1038/s41574-023-00885-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/08/2023]
Abstract
Engineered neurobiological tools for the manipulation of cellular activity, such as chemogenetics and optogenetics, have become a cornerstone of modern neuroscience research. These tools are invaluable for the interrogation of the central control of metabolism as they provide a direct means to establish a causal relationship between brain activity and biological processes at the cellular, tissue and organismal levels. The utility of these methods has grown substantially due to advances in cellular-targeting strategies, alongside improvements in the resolution and potency of such tools. Furthermore, the potential to recapitulate endogenous cellular signalling has been enriched by insights into the molecular signatures and activity dynamics of discrete brain cell types. However, each modulatory tool has a specific set of advantages and limitations; therefore, tool selection and suitability are of paramount importance to optimally interrogate the cellular and circuit-based underpinnings of metabolic outcomes within the organism. Here, we describe the key principles and uses of engineered neurobiological tools. We also highlight inspiring applications and outline critical considerations to be made when using these tools within the field of metabolism research. We contend that the appropriate application of these biotechnological advances will enable the delineation of the central circuitry regulating systemic metabolism with unprecedented potential.
Collapse
Affiliation(s)
- Paul Nicholas Mirabella
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
23
|
Reed F, Reichenbach A, Dempsey H, Clarke RE, Mequinion M, Stark R, Rawlinson S, Foldi CJ, Lockie SH, Andrews ZB. Acute inhibition of hunger-sensing AgRP neurons promotes context-specific learning in mice. Mol Metab 2023; 77:101803. [PMID: 37690518 PMCID: PMC10523265 DOI: 10.1016/j.molmet.2023.101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE An environmental context, which reliably predicts food availability, can increase the appetitive food drive within the same environment context. However, hunger is required for the development of such a context-induced feeding (CIF) response, suggesting the neural circuits sensitive to hunger link an internal energy state with a particular environment context. Since Agouti related peptide (AgRP) neurons are activated by energy deficit, we hypothesised that AgRP neurons are both necessary and sufficient to drive CIF. METHODS To examine the role of AgRP neurons in the CIF process, we used fibre photometry with GCaMP7f, chemogenetic activation of AgRP neurons, as well as optogenetic control of AgRP neurons to facilitate acute temporal control not permitted with chemogenetics. RESULTS A CIF response at test was only observed when mice were fasted during context training and AgRP population activity at test showed an attenuated inhibitory response to food, suggesting increased food-seeking and/or decreased satiety signalling drives the increased feeding response at test. Intriguingly, chemogenetic activation of AgRP neurons during context training did not increase CIF, suggesting precise temporal firing properties may be required. Indeed, termination of AgRP neuronal photostimulation during context training (ON-OFF in context), in the presence or absence of food, increased CIF. Moreover, photoinhibition of AgRP neurons during context training in fasted mice was sufficient to drive a subsequent CIF in the absence of food. CONCLUSIONS Our results suggest that AgRP neurons regulate the acquisition of CIF when the acute inhibition of AgRP activity is temporally matched to context exposure. These results establish acute AgRP inhibition as a salient neural event underscoring the effect of hunger on associative learning.
Collapse
Affiliation(s)
- Felicia Reed
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Alex Reichenbach
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Harry Dempsey
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Rachel E Clarke
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Mathieu Mequinion
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Sasha Rawlinson
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Claire J Foldi
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Sarah H Lockie
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, 3800, Victoria, Australia.
| |
Collapse
|
24
|
Condon LF, Yu Y, Park S, Cao F, Pauli JL, Nelson TS, Palmiter RD. Parabrachial Calca neurons drive nociplasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564223. [PMID: 37961621 PMCID: PMC10634894 DOI: 10.1101/2023.10.26.564223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pain that persists beyond the time required for tissue healing and pain that arises in the absence of tissue injury are poorly understood phenomena mediated by plasticity within the central nervous system. The parabrachial nucleus (PBN) is a hub that relays aversive sensory information and appears to play a role in nociplasticity. Here, by preventing PBN Calca neurons from releasing neurotransmitter or directly stimulating them we demonstrate that activation of Calca neurons is both necessary for the manifestation of chronic pain after nerve ligation and is sufficient to drive nociplasticity in wild-type mice. Aversive stimuli such as exposure to nitroglycerin, cisplatin, or LiCl can drive nociplasticity in a Calca-neuron-dependent manner. Calcium fluorescence imaging reveals that nitroglycerin activates PBN Calca neurons and potentiates their responses to mechanical stimulation. The activity and excitability of Calca neurons increased for several days after aversive events, but prolonged nociplasticity likely occurs in downstream circuitry.
Collapse
Affiliation(s)
- Logan F Condon
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Ying Yu
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sekun Park
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Feng Cao
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jordan L Pauli
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Tyler S Nelson
- Department of Molecular Pathobiology, College of Dentistry, New York University, NY 10010, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
- Lead Contact
| |
Collapse
|
25
|
Nakamizo-Dojo M, Ishii K, Yoshino J, Tsuji M, Emoto K. Descending GABAergic pathway links brain sugar-sensing to peripheral nociceptive gating in Drosophila. Nat Commun 2023; 14:6515. [PMID: 37845214 PMCID: PMC10579361 DOI: 10.1038/s41467-023-42202-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Although painful stimuli elicit defensive responses including escape behavior for survival, starved animals often prioritize feeding over escape even in a noxious environment. This behavioral priority is typically mediated by suppression of noxious inputs through descending control in the brain, yet underlying molecular and cellular mechanisms are incompletely understood. Here we identify a cluster of GABAergic neurons in Drosophila larval brain, designated as SEZ-localized Descending GABAergic neurons (SDGs), that project descending axons onto the axon terminals of the peripheral nociceptive neurons and prevent presynaptic activity through GABAB receptors. Remarkably, glucose feeding to starved larvae causes sustained activation of SDGs through glucose-sensing neurons and subsequent insulin signaling in SDGs, which attenuates nociception and thereby suppresses escape behavior in response to multiple noxious stimuli. These findings illustrate a neural mechanism by which sugar sensing neurons in the brain engages descending GABAergic neurons in nociceptive gating to achieve hierarchical interaction between feeding and escape behavior.
Collapse
Affiliation(s)
- Mami Nakamizo-Dojo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kenichi Ishii
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jiro Yoshino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masato Tsuji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
26
|
Reddy P, Vasudeva J, Shah D, Prajapati JN, Harikumar N, Barik A. A Deep-Learning Driven Investigation of the Circuit Basis for Reflexive Hypersensitivity to Thermal Pain. Neuroscience 2023; 530:158-172. [PMID: 37640138 DOI: 10.1016/j.neuroscience.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Objectively measuring animal behavior is vital to understanding the neural circuits underlying pain. Recent progress in machine vision has presented unprecedented scope in behavioral analysis. Here, we apply DeepLabCut (DLC) to dissect mouse behavior on the thermal-plate test - a commonly used paradigm to ascertain supraspinal contributions to noxious thermal sensation and pain hypersensitivity. We determine the signature characteristics of the pattern of mouse movement and posture in 3D in response to a range of temperatures from innocuous to noxious on the thermal-plate test. Next, we test how acute chemical and chronic inflammatory injuries sensitize mouse behaviors. Repeated exposure to noxious temperatures on the thermal plate can induce learning. In this study, we design a novel assay and formulate an analytical pipeline to facilitate the dissection of plasticity mechanisms in pain circuits in the brain. Last, we record and test how activating Tacr1 expressing PBN neurons (PBNTacr1) - a population responsive to sustained noxious stimuli- affects mouse behavior on the thermal plate test. Taken together, we demonstrate that by tracking a single body part of a mouse, we can reveal the behavioral signatures of mice exposed to noxious surface temperatures, report the alterations of the same when injured, and determine if a molecularly and anatomically defined pain-responsive circuit plays a role in the reflexive hypersensitivity to thermal pain.
Collapse
Affiliation(s)
- Prannay Reddy
- Center for Neuroscience, Division of Biological Sciences, Indian Institute of Science, Gulmohar Marg, Bengaluru, Karnataka 560012, India
| | - Jayesh Vasudeva
- Center for Neuroscience, Division of Biological Sciences, Indian Institute of Science, Gulmohar Marg, Bengaluru, Karnataka 560012, India
| | - Devanshi Shah
- Center for Neuroscience, Division of Biological Sciences, Indian Institute of Science, Gulmohar Marg, Bengaluru, Karnataka 560012, India
| | - Jagat Narayan Prajapati
- Center for Neuroscience, Division of Biological Sciences, Indian Institute of Science, Gulmohar Marg, Bengaluru, Karnataka 560012, India
| | - Nikhila Harikumar
- Center for Neuroscience, Division of Biological Sciences, Indian Institute of Science, Gulmohar Marg, Bengaluru, Karnataka 560012, India
| | - Arnab Barik
- Center for Neuroscience, Division of Biological Sciences, Indian Institute of Science, Gulmohar Marg, Bengaluru, Karnataka 560012, India.
| |
Collapse
|
27
|
Cai B, Wu D, Xie H, Chen Y, Wang H, Jin S, Song Y, Li A, Huang S, Wang S, Lu Y, Bao L, Xu F, Gong H, Li C, Zhang X. A direct spino-cortical circuit bypassing the thalamus modulates nociception. Cell Res 2023; 33:775-789. [PMID: 37311832 PMCID: PMC10542357 DOI: 10.1038/s41422-023-00832-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
Nociceptive signals are usually transmitted to layer 4 neurons in somatosensory cortex via the spinothalamic-thalamocortical pathway. The layer 5 corticospinal neurons in sensorimotor cortex are reported to receive the output of neurons in superficial layers; and their descending axons innervate the spinal cord to regulate basic sensorimotor functions. Here, we show that a subset of layer 5 neurons receives spinal inputs through a direct spino-cortical circuit bypassing the thalamus, and thus define these neurons as spino-cortical recipient neurons (SCRNs). Morphological studies revealed that the branches from spinal ascending axons formed a kind of disciform structure with the descending axons from SCRNs in the basilar pontine nucleus (BPN). Electron microscopy and calcium imaging further confirmed that the axon terminals from spinal ascending neurons and SCRNs made functional synaptic contacts in the BPN, linking the ascending sensory pathway to the descending motor control pathway. Furthermore, behavioral tests indicated that the spino-cortical connection in the BPN was involved in nociceptive responses. In vivo calcium imaging showed that SCRNs responded to peripheral noxious stimuli faster than neighboring layer 4 cortical neurons in awake mice. Manipulating activities of SCRNs could modulate nociceptive behaviors. Therefore, this direct spino-cortical circuit represents a noncanonical pathway, allowing a fast sensory-motor transition of the brain in response to noxious stimuli.
Collapse
Affiliation(s)
- Bing Cai
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Hengqin, Zhuhai, Guangdong, China
| | - Dan Wu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, CAS, Shanghai, China
| | - Hong Xie
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China
- Institute of Photonic Chips; School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yan Chen
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Hengqin, Zhuhai, Guangdong, China
| | - Huadong Wang
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
| | - Sen Jin
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
| | - Yuran Song
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Hengqin, Zhuhai, Guangdong, China
| | - Anan Li
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu, China
| | - Shiqi Huang
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Sashuang Wang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong, China
| | - Yingjin Lu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
| | - Lan Bao
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, CAS, Shanghai, China
| | - Fuqiang Xu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu, China
| | - Changlin Li
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China.
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong, China.
| | - Xu Zhang
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China.
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China.
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Hengqin, Zhuhai, Guangdong, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
28
|
Nyema NT, McKnight AD, Vargas-Elvira AG, Schneps HM, Gold EG, Myers KP, Alhadeff AL. AgRP neuron activity promotes associations between sensory and nutritive signals to guide flavor preference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558483. [PMID: 37786670 PMCID: PMC10541598 DOI: 10.1101/2023.09.19.558483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Objective The learned associations between sensory cues (e.g., taste, smell) and nutritive value (e.g., calories, post-ingestive signaling) of foods powerfully influences our eating behavior [1], but the neural circuits that mediate these associations are not well understood. Here, we examined the role of agouti-related protein (AgRP)-expressing neurons - neurons which are critical drivers of feeding behavior [2; 3] - in mediating flavor-nutrient learning (FNL). Methods Because mice prefer flavors associated with AgRP neuron activity suppression [4], we examined how optogenetic stimulation of AgRP neurons during intake influences FNL, and used fiber photometry to determine how endogenous AgRP neuron activity tracks associations between flavors and nutrients. Results We unexpectedly found that tonic activity in AgRP neurons during FNL potentiated, rather than prevented, the development of flavor preferences. There were notable sex differences in the mechanisms for this potentiation. Specifically, in male mice, AgRP neuron activity increased flavor consumption during FNL training, thereby strengthening the association between flavors and nutrients. In female mice, AgRP neuron activity enhanced flavor-nutrient preferences independently of consumption during training, suggesting that AgRP neuron activity enhances the reward value of the nutrient-paired flavor. Finally, in vivo neural activity analyses demonstrated that acute AgRP neuron dynamics track the association between flavors and nutrients in both sexes. Conclusions Overall, these data (1) demonstrate that AgRP neuron activity enhances associations between flavors and nutrients in a sex-dependent manner and (2) reveal that AgRP neurons track and update these associations on fast timescales. Taken together, our findings provide new insight into the role of AgRP neurons in assimilating sensory and nutritive signals for food reinforcement.
Collapse
Affiliation(s)
- Nathaniel T. Nyema
- Monell Chemical Senses Center, Philadelphia PA 19104, USA
- University of Pennsylvania, Philadelphia PA 19104, USA
| | - Aaron D. McKnight
- Monell Chemical Senses Center, Philadelphia PA 19104, USA
- University of Pennsylvania, Philadelphia PA 19104, USA
| | | | - Heather M. Schneps
- Monell Chemical Senses Center, Philadelphia PA 19104, USA
- University of Pennsylvania, Philadelphia PA 19104, USA
| | | | | | - Amber L. Alhadeff
- Monell Chemical Senses Center, Philadelphia PA 19104, USA
- University of Pennsylvania, Philadelphia PA 19104, USA
| |
Collapse
|
29
|
de Araujo Salgado I, Li C, Burnett CJ, Rodriguez Gonzalez S, Becker JJ, Horvath A, Earnest T, Kravitz AV, Krashes MJ. Toggling between food-seeking and self-preservation behaviors via hypothalamic response networks. Neuron 2023; 111:2899-2917.e6. [PMID: 37442130 PMCID: PMC10528369 DOI: 10.1016/j.neuron.2023.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/02/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Motivated behaviors are often studied in isolation to assess labeled lines of neural connections underlying innate actions. However, in nature, multiple systems compete for expression of goal-directed behaviors via complex neural networks. Here, we examined flexible survival decisions in animals tasked with food seeking under predation threat. We found that predator exposure rapidly induced physiological, neuronal, and behavioral adaptations in mice highlighted by reduced food seeking and consumption contingent on current threat level. Diminishing conflict via internal state or external environment perturbations shifted feeding strategies. Predator introduction and/or selective manipulation of danger-responsive cholecystokinin (Cck) cells of the dorsal premammilary nucleus (PMd) suppressed hunger-sensitive Agouti-related peptide (AgRP) neurons, providing a mechanism for threat-evoked hypophagia. Increased caloric need enhanced food seeking under duress through AgRP pathways to the bed nucleus of the stria terminalis (BNST) and/or lateral hypothalamus (LH). Our results suggest oscillating interactions between systems underlying self-preservation and food seeking to promote optimal behavior.
Collapse
Affiliation(s)
- Isabel de Araujo Salgado
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chia Li
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - C Joseph Burnett
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shakira Rodriguez Gonzalez
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordan J Becker
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Allison Horvath
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas Earnest
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Alexxai V Kravitz
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
30
|
Sweeney P, Gimenez LE, Hernandez CC, Cone RD. Targeting the central melanocortin system for the treatment of metabolic disorders. Nat Rev Endocrinol 2023; 19:507-519. [PMID: 37365323 DOI: 10.1038/s41574-023-00855-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
A large body of preclinical and clinical data shows that the central melanocortin system is a promising therapeutic target for treating various metabolic disorders such as obesity and cachexia, as well as anorexia nervosa. Setmelanotide, which functions by engaging the central melanocortin circuitry, was approved by the FDA in 2020 for use in certain forms of syndromic obesity. Furthermore, the FDA approvals in 2019 of two peptide drugs targeting melanocortin receptors for the treatment of generalized hypoactive sexual desire disorder (bremelanotide) and erythropoietic protoporphyria-associated phototoxicity (afamelanotide) demonstrate the safety of this class of peptides. These approvals have also renewed excitement in the development of therapeutics targeting the melanocortin system. Here, we review the anatomy and function of the melanocortin system, discuss progress and challenges in developing melanocortin receptor-based therapeutics, and outline potential metabolic and behavioural disorders that could be addressed using pharmacological agents targeting these receptors.
Collapse
Affiliation(s)
- Patrick Sweeney
- School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Luis E Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular, Cellular, and Developmental Biology, College of Literature Science and the Arts, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Gao X, Lin J, Sun L, Hu J, Gao W, Yu J. Activation of the N-methyl-D-aspartate receptor and calcium/calmodulin-dependent protein kinase IIα signal in the rostral anterior cingulate cortex is involved in pain-related aversion in rats with peripheral nerve injury. Behav Brain Res 2023; 452:114560. [PMID: 37394125 DOI: 10.1016/j.bbr.2023.114560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/28/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
The rostral anterior cingulate cortex (rACC) of rat brain is associated with pain-related emotions. However, the underlying molecular mechanism remains unclear. Here, we investigated the effects of the N-methyl-D-aspartate (NMDA) receptor and Ca2+/Calmodulin-dependent protein kinase type II (CaMKII)α signal on pain-related aversion in the rACC of a rat model of neuropathic pain (NP). Mechanical and thermal hyperalgesia were examined using von Frey and hot plate tests in a rat model of NP induced by spared nerve injury (SNI) of the unilateral sciatic nerve. Bilateral rACC pretreatment with the CaMKII inhibitor tat-CN21 (derived from the cell-penetrating tat sequence and CaM-KIIN amino acids 43-63) or tat-Ctrl (the tat sequence and the scrambled sequence of CN21) was performed on postoperative days 29-35 in Sham rats or rats with SNI. Spatial memory performance was tested using an eight-arm radial maze on postoperative days 34-35. Pain-related negative emotions (aversions) were evaluated using the place escape/avoidance paradigm on postoperative day 35 following the spatial memory performance test. The percentage of time spent in the light area was used to assess pain-related negative emotions (i.e., aversion). The expression levels of the NMDA receptor GluN2B subunit, CaMKIIα, and CaMKII-Threonine at position 286 (Thr286) phosphorylation in contralateral rACC specimens were detected by Western blot or real time PCR following the aversion test. Our data showed that pretreatment of the rACC with tat-CN21 increased determinate behavior but did not alter hyperalgesia or spatial memory performance in rats with SNI. In addition, tat-CN21 reversed the enhanced CaMKII-Thr286 phosphorylation and had no effect on the upregulated expression of GluN2B, CaMKIIα protein, and mRNA. Our data suggested that activation of the NMDA receptor-CaMKIIα signal in rACC is associated with pain-related aversion in rats with NP. These data may provide a new approach for the development of drugs that modulate cognitive and emotional pain aspects.
Collapse
Affiliation(s)
- Xueqi Gao
- Experimental Center for Medical Research, School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Jinhai Lin
- Experimental Center for Medical Research, School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Lin Sun
- School of Psychology, Weifang Medical University, Weifang 261053, China
| | - Jun Hu
- Department of Anesthesiology, Weifang People's Hospital, Weifang 261044, China
| | - Wenjie Gao
- Department of Anesthesiology, Weifang People's Hospital, Weifang 261044, China
| | - Jianfeng Yu
- Experimental Center for Medical Research, School of Anesthesiology, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
32
|
Smith JA, Ji Y, Lorsung R, Breault MS, Koenig J, Cramer N, Masri R, Keller A. Parabrachial Nucleus Activity in Nociception and Pain in Awake Mice. J Neurosci 2023; 43:5656-5667. [PMID: 37451980 PMCID: PMC10401640 DOI: 10.1523/jneurosci.0587-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
The parabrachial nuclear complex (PBN) is a nexus for aversion and for the sensory and affective components of pain perception. We have previously shown that during chronic pain PBN neurons in anesthetized rodents have amplified activity. We report a method to record from PBN neurons of behaving, head-restrained mice while applying reproducible noxious stimuli. We find that both spontaneous and evoked activity are higher in awake animals compared with urethane anesthetized mice. Fiber photometry of calcium responses from calcitonin-gene-related peptide-expressing PBN neurons demonstrates that these neurons respond to noxious stimuli. In both males and females with neuropathic or inflammatory pain, responses of PBN neurons remain amplified for at least 5 weeks, in parallel with increased pain metrics. We also show that PBN neurons can be rapidly conditioned to respond to innocuous stimuli after pairing with noxious stimuli. Finally, we demonstrate that changes in PBN neuronal activity are correlated with changes in arousal, measured as changes in pupil area.SIGNIFICANCE STATEMENT The parabrachial complex is a nexus of aversion, including pain. We report a method to record from parabrachial nucleus neurons of behaving mice while applying reproducible noxious stimuli. This allowed us to track parabrachial activity over time in animals with neuropathic or inflammatory pain. It also allowed us to show that the activity of these neurons correlates with arousal states and that these neurons can be conditioned to respond to innocuous stimuli.
Collapse
Affiliation(s)
- Jesse A Smith
- Program in Neuroscience, Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Yadong Ji
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, Maryland 21201-1786
| | - Rebecca Lorsung
- Program in Neuroscience, Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Macauley S Breault
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jeffrey Koenig
- Program in Molecular Medicine, Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Nathan Cramer
- Program in Neuroscience, Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Radi Masri
- Program in Neuroscience, Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, Maryland 21201-1786
| | - Asaf Keller
- Program in Neuroscience, Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
33
|
Yang C, Gong Z, Zhang X, Miao S, Li B, Xie W, Wang T, Han X, Wang L, Dong Z, Yu S. Neuropeptide Y in the medial habenula alleviates migraine-like behaviors through the Y1 receptor. J Headache Pain 2023; 24:61. [PMID: 37231359 DOI: 10.1186/s10194-023-01596-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Migraine is a highly disabling health burden with multiple symptoms; however, it remains undertreated because of an inadequate understanding of its neural mechanisms. Neuropeptide Y (NPY) has been demonstrated to be involved in the modulation of pain and emotion, and may play a role in migraine pathophysiology. Changes in NPY levels have been found in patients with migraine, but whether and how these changes contribute to migraine is unknown. Therefore, the purpose of this study was to investigate the role of NPY in migraine-like phenotypes. METHODS Here, we used intraperitoneal injection of glyceryl trinitrate (GTN, 10 mg/kg) as a migraine mouse model, which was verified by light-aversive test, von Frey test, and elevated plus maze test. We then performed whole-brain imaging with NPY-GFP mice to explore the critical regions where NPY was changed by GTN treatment. Next, we microinjected NPY into the medial habenula (MHb), and further infused Y1 or Y2 receptor agonists into the MHb, respectively, to detect the effects of NPY in GTN-induced migraine-like behaviors. RESULTS GTN effectively triggered allodynia, photophobia, and anxiety-like behaviors in mice. After that, we found a decreased level of GFP+ cells in the MHb of GTN-treated mice. Microinjection of NPY attenuated GTN-induced allodynia and anxiety without affecting photophobia. Furthermore, we found that activation of Y1-but not Y2-receptors attenuated GTN-induced allodynia and anxiety. CONCLUSIONS Taken together, our data support that the NPY signaling in the MHb produces analgesic and anxiolytic effects through the Y1 receptor. These findings may provide new insights into novel therapeutic targets for the treatment of migraine.
Collapse
Affiliation(s)
- Chunxiao Yang
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Zihua Gong
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Medical Oncology, 980th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei, 050082, China
| | - Xiaochen Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Shuai Miao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Bozhi Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Wei Xie
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Tao Wang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Xun Han
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Liang Wang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Zhao Dong
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Shengyuan Yu
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
34
|
Ziegler K, Folkard R, Gonzalez AJ, Burghardt J, Antharvedi-Goda S, Martin-Cortecero J, Isaías-Camacho E, Kaushalya S, Tan LL, Kuner T, Acuna C, Kuner R, Mease RA, Groh A. Primary somatosensory cortex bidirectionally modulates sensory gain and nociceptive behavior in a layer-specific manner. Nat Commun 2023; 14:2999. [PMID: 37225702 DOI: 10.1038/s41467-023-38798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
The primary somatosensory cortex (S1) is a hub for body sensation of both innocuous and noxious signals, yet its role in somatosensation versus pain is debated. Despite known contributions of S1 to sensory gain modulation, its causal involvement in subjective sensory experiences remains elusive. Here, in mouse S1, we reveal the involvement of cortical output neurons in layers 5 (L5) and 6 (L6) in the perception of innocuous and noxious somatosensory signals. We find that L6 activation can drive aversive hypersensitivity and spontaneous nocifensive behavior. Linking behavior to neuronal mechanisms, we find that L6 enhances thalamic somatosensory responses, and in parallel, strongly suppresses L5 neurons. Directly suppressing L5 reproduced the pronociceptive phenotype induced by L6 activation, suggesting an anti-nociceptive function for L5 output. Indeed, L5 activation reduced sensory sensitivity and reversed inflammatory allodynia. Together, these findings reveal a layer-specific and bidirectional role for S1 in modulating subjective sensory experiences.
Collapse
Affiliation(s)
- Katharina Ziegler
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Ross Folkard
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Antonio J Gonzalez
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jan Burghardt
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Sailaja Antharvedi-Goda
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jesus Martin-Cortecero
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Emilio Isaías-Camacho
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Sanjeev Kaushalya
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Linette Liqi Tan
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Thomas Kuner
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Claudio Acuna
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Department of Molecular Pharmacology, Institute for Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rebecca Audrey Mease
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.
| | - Alexander Groh
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
35
|
Kucukdereli H, Amsalem O, Pottala T, Lim M, Potgieter L, Hasbrouck A, Lutas A, Andermann ML. Chronic stress triggers seeking of a starvation-like state in anxiety-prone female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541013. [PMID: 37292650 PMCID: PMC10245771 DOI: 10.1101/2023.05.16.541013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Elevated anxiety often precedes anorexia nervosa and persists after weight restoration. Patients with anorexia nervosa often describe hunger as pleasant, potentially because food restriction can be anxiolytic. Here, we tested whether chronic stress can cause animals to prefer a starvation-like state. We developed a virtual reality place preference paradigm in which head-fixed mice can voluntarily seek a starvation-like state induced by optogenetic stimulation of hypothalamic agouti-related peptide (AgRP) neurons. Prior to stress induction, male but not female mice showed mild aversion to AgRP stimulation. Strikingly, following chronic stress, a subset of females developed a strong preference for AgRP stimulation that was predicted by high baseline anxiety. Such stress-induced changes in preference were reflected in changes in facial expressions during AgRP stimulation. Our study suggests that stress may cause females predisposed to anxiety to seek a starvation state, and provides a powerful experimental framework for investigating the underlying neural mechanisms.
Collapse
|
36
|
Pozo M, Milà-Guasch M, Haddad-Tóvolli R, Boudjadja M, Chivite I, Toledo M, Gómez-Valadés A, Eyre E, Ramírez S, Obri A, Ben-Ami Bartal I, D'Agostino G, Costa-Font J, Claret M. Negative energy balance hinders prosocial helping behavior. Proc Natl Acad Sci U S A 2023; 120:e2218142120. [PMID: 37023123 PMCID: PMC10104524 DOI: 10.1073/pnas.2218142120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/02/2023] [Indexed: 04/07/2023] Open
Abstract
The internal state of an animal, including homeostatic requirements, modulates its behavior. Negative energy balance stimulates hunger, thus promoting a range of actions aimed at obtaining food. While these survival actions are well established, the influence of the energy status on prosocial behavior remains unexplored. We developed a paradigm to assess helping behavior in which a free mouse was faced with a conspecific trapped in a restrainer. We measured the willingness of the free mouse to liberate the confined mouse under diverse metabolic conditions. Around 42% of ad libitum-fed mice exhibited a helping behavior, as evidenced by the reduction in the latencies to release the trapped cagemate. This behavior was independent of subsequent social contact reward and was associated with changes in corticosterone indicative of emotional contagion. This decision-making process was coupled with reduced blood glucose excursions and higher Adenosine triphosphate (ATP):Adenosine diphosphate (ADP) ratios in the forebrain of helper mice, suggesting that it was a highly energy-demanding process. Interestingly, chronic (food restriction and type 2 diabetes) and acute (chemogenetic activation of hunger-promoting AgRP neurons) situations mimicking organismal negative energy balance and enhanced appetite attenuated helping behavior toward a distressed conspecific. To investigate similar effects in humans, we estimated the influence of glycated hemoglobin (a surrogate of long-term glycemic control) on prosocial behavior (namely charity donation) using the Understanding Society dataset. Our results evidenced that organismal energy status markedly influences helping behavior and that hypothalamic AgRP neurons are at the interface of metabolism and prosocial behavior.
Collapse
Affiliation(s)
- Macarena Pozo
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Maria Milà-Guasch
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Mehdi Boutagouga Boudjadja
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, M13 9PTManchester, United Kingdom
| | - Iñigo Chivite
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Miriam Toledo
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Alicia G. Gómez-Valadés
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Elena Eyre
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Sara Ramírez
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Arnaud Obri
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Inbal Ben-Ami Bartal
- School of Psychological Sciences, Tel-Aviv University, 6997801Tel Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, 6997801Tel Aviv, Israel
| | - Giuseppe D'Agostino
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, M13 9PTManchester, United Kingdom
| | - Joan Costa-Font
- Department of Health Policy, London School of Economics and Political Science, WC2A 2AELondon, United Kingdom
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
- School of Medicine, Universitat de Barcelona, 08036Barcelona, Spain
| |
Collapse
|
37
|
Gu X, Zhang YZ, O'Malley JJ, De Preter CC, Penzo M, Hoon MA. Neurons in the caudal ventrolateral medulla mediate descending pain control. Nat Neurosci 2023; 26:594-605. [PMID: 36894654 PMCID: PMC11114367 DOI: 10.1038/s41593-023-01268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/27/2023] [Indexed: 03/11/2023]
Abstract
Supraspinal brain regions modify nociceptive signals in response to various stressors including stimuli that elevate pain thresholds. The medulla oblongata has previously been implicated in this type of pain control, but the neurons and molecular circuits involved have remained elusive. Here we identify catecholaminergic neurons in the caudal ventrolateral medulla that are activated by noxious stimuli in mice. Upon activation, these neurons produce bilateral feed-forward inhibition that attenuates nociceptive responses through a pathway involving the locus coeruleus and norepinephrine in the spinal cord. This pathway is sufficient to attenuate injury-induced heat allodynia and is required for counter-stimulus induced analgesia to noxious heat. Our findings define a component of the pain modulatory system that regulates nociceptive responses.
Collapse
Affiliation(s)
- Xinglong Gu
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
| | - Yizhen Z Zhang
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
| | - John J O'Malley
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA
| | - Caitlynn C De Preter
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
| | - Mario Penzo
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA
| | - Mark A Hoon
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA.
| |
Collapse
|
38
|
Zhang Q, Krashes MJ. Interfacing pain and hunger. Trends Endocrinol Metab 2023; 34:191-193. [PMID: 36841699 PMCID: PMC10085856 DOI: 10.1016/j.tem.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
Calculating and selecting what sensory and homeostatic requirements to attend to at any given time is vital for animals' survival. Tang et al. uncovered a circuit emanating from excitatory cortical neurons that transmit nociceptive information via the hypothalamus to blunt appetite during periods of chronic pain.
Collapse
Affiliation(s)
- Qi Zhang
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
39
|
Sutton Hickey AK, Duane SC, Mickelsen LE, Karolczak EO, Shamma AM, Skillings A, Li C, Krashes MJ. AgRP neurons coordinate the mitigation of activity-based anorexia. Mol Psychiatry 2023; 28:1622-1635. [PMID: 36577844 PMCID: PMC10782560 DOI: 10.1038/s41380-022-01932-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Anorexia nervosa (AN) is a debilitating and deadly disease characterized by low body mass index due to diminished food intake, and oftentimes concurrent hyperactivity. A high percentage of AN behavioral and metabolic phenotypes can be replicated in rodents given access to a voluntary running wheel and subject to food restriction, termed activity-based anorexia (ABA). Despite the well-documented bodyweight loss observed in AN human patients and ABA rodents, much less is understood regarding the neurobiological underpinnings of these maladaptive behaviors. Hunger-promoting hypothalamic agouti-related peptide (AgRP) neurons have been well characterized in their ability to regulate appetite, yet much less is known regarding their activity and function in the mediation of food intake during ABA. Here, feeding microstructure analysis revealed ABA mice decreased food intake due to increased interpellet interval retrieval and diminished meal number. Longitudinal activity recordings of AgRP neurons in ABA animals exhibited a maladaptive inhibitory response to food, independent of basal activity changes. We then demonstrated that ABA development or progression can be mitigated by chemogenetic AgRP activation through the reprioritization of food intake (increased meal number) over hyperactivity, but only during periods of food availability. These results elucidate a potential neural target for the amelioration of behavioral maladaptations present in AN patients.
Collapse
Affiliation(s)
- Ames K Sutton Hickey
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.
| | - Sean C Duane
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Laura E Mickelsen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Eva O Karolczak
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Ahmed M Shamma
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Anna Skillings
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Chia Li
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.
- National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
40
|
Smith JA, Ji Y, Lorsung R, Breault MS, Koenig J, Cramer N, Masri R, Keller A. Sex differences in the role of parabrachial in nociception and pain in awake mice.. [PMID: 36993729 PMCID: PMC10055376 DOI: 10.1101/2023.03.22.533230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
SummaryThe parabrachial nucleus is a nexus for aversion, and for the sensory and affective components of pain. In anesthetized rodents with chronic pain, parabrachial neurons have amplified activity. Both spontaneous and evoked activity are considerably higher in awake, compared to anesthetized animals. Parabrachial neurons are rapidly conditioned to respond to innocuous stimuli, after pairing with nociceptive stimuli. In neuropathic or inflammatory pain, parabrachial responses remain amplified for at least 6 weeks, in parallel with increased pain metrics. Calcium responses from CGRP- expressing parabrachial neurons in males demonstrate responses to nociceptive stimuli, and amplified activity in inflammatory pain. In females these neurons evoke smaller responses at baseline, and only small increases in neuropathic pain. This sex difference may relate to our finding that, in females, a small percentage of neurons expresses CGRP RNA. Finally, we show that changes in parabrachial activity are correlated with in arousal, measured as changes in pupil size.
Collapse
|
41
|
Liu Q, Yang X, Luo M, Su J, Zhong J, Li X, Chan RHM, Wang L. An iterative neural processing sequence orchestrates feeding. Neuron 2023; 111:1651-1665.e5. [PMID: 36924773 DOI: 10.1016/j.neuron.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/22/2022] [Accepted: 02/16/2023] [Indexed: 03/17/2023]
Abstract
Feeding requires sophisticated orchestration of neural processes to satiate appetite in natural, capricious settings. However, the complementary roles of discrete neural populations in orchestrating distinct behaviors and motivations throughout the feeding process are largely unknown. Here, we delineate the behavioral repertoire of mice by developing a machine-learning-assisted behavior tracking system and show that feeding is fragmented and divergent motivations for food consumption or environment exploration compete throughout the feeding process. An iterative activation sequence of agouti-related peptide (AgRP)-expressing neurons in arcuate (ARC) nucleus, GABAergic neurons in the lateral hypothalamus (LH), and in dorsal raphe (DR) orchestrate the preparation, initiation, and maintenance of feeding segments, respectively, via the resolution of motivational conflicts. The iterative neural processing sequence underlying the competition of divergent motivations further suggests a general rule for optimizing goal-directed behaviors.
Collapse
Affiliation(s)
- Qingqing Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xing Yang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Moxuan Luo
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China; University of Science and Technology of China, Hefei 230026, China
| | - Junying Su
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinling Zhong
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofen Li
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rosa H M Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Science and Technology of China, Hefei 230026, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
42
|
Alvarado JS, Lutas A, Madara JC, Isaac J, Lommer C, Andermann ML. Transient cAMP production drives rapid and sustained spiking in brainstem parabrachial neurons to suppress feeding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530033. [PMID: 36865343 PMCID: PMC9980289 DOI: 10.1101/2023.02.25.530033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Brief stimuli can trigger longer lasting brain states. G protein-coupled receptors (GPCRs) could help sustain such states by coupling slow-timescale molecular signals to neuronal excitability. Brainstem parabrachial nucleus glutamatergic neurons (PBN Glut ) regulate sustained brain states such as pain, and express G s -coupled GPCRs that increase cAMP signaling. We asked whether cAMP directly influences PBN Glut excitability and behavior. Both brief tail shocks and brief optogenetic stimulation of cAMP production in PBN Glut neurons drove minutes-long suppression of feeding. This suppression matched the duration of prolonged elevations in cAMP, Protein Kinase A (PKA), and calcium activity in vivo and in vitro. Shortening this elevation in cAMP reduced the duration of feeding suppression following tail shocks. cAMP elevations in PBN Glut neurons rapidly lead to sustained increases in action potential firing via PKA-dependent mechanisms. Thus, molecular signaling in PBN Glut neurons helps prolong neural activity and behavioral states evoked by brief, salient bodily stimuli.
Collapse
|
43
|
Florsheim EB, Bachtel ND, Cullen J, Lima BGC, Godazgar M, Zhang C, Carvalho F, Gautier G, Launay P, Wang A, Dietrich MO, Medzhitov R. Immune sensing of food allergens promotes aversive behaviour. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524823. [PMID: 36712030 PMCID: PMC9882358 DOI: 10.1101/2023.01.19.524823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In addition to its canonical function in protecting from pathogens, the immune system can also promote behavioural alterations 1â€"3 . The scope and mechanisms of behavioural modifications by the immune system are not yet well understood. Using a mouse food allergy model, here we show that allergic sensitization drives antigen-specific behavioural aversion. Allergen ingestion activates brain areas involved in the response to aversive stimuli, including the nucleus of tractus solitarius, parabrachial nucleus, and central amygdala. Food aversion requires IgE antibodies and mast cells but precedes the development of gut allergic inflammation. The ability of allergen-specific IgE and mast cells to promote aversion requires leukotrienes and growth and differentiation factor 15 (GDF15). In addition to allergen-induced aversion, we find that lipopolysaccharide-induced inflammation also resulted in IgE-dependent aversive behaviour. These findings thus point to antigen-specific behavioural modifications that likely evolved to promote niche selection to avoid unfavourable environments.
Collapse
Affiliation(s)
- Esther B. Florsheim
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA,Centre for Immunotherapy, Vaccines, and Virotherapy (CIVV), Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ 85284, USA,Correspondence: and
| | - Nathaniel D. Bachtel
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Jaime Cullen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Bruna G. C. Lima
- Department of Pharmacology, University of São Paulo, São Paulo, SP 05508-000 SP, Brazil,Centre for Immunotherapy, Vaccines, and Virotherapy (CIVV), Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ 85284, USA
| | - Mahdieh Godazgar
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Cuiling Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Fernando Carvalho
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Gregory Gautier
- INSERM UMRS 1149; CNRS ERL 8252; University Paris Diderot, Sorbonne Paris Cite, Laboratoire d’excellence INFLAMEX, Paris 75018, France
| | - Pierre Launay
- INSERM UMRS 1149; CNRS ERL 8252; University Paris Diderot, Sorbonne Paris Cite, Laboratoire d’excellence INFLAMEX, Paris 75018, France
| | - Andrew Wang
- Department of Internal Medicine and Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marcelo O. Dietrich
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA,Howard Hughes Medical Institute,Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, CT, USA,Correspondence: and
| |
Collapse
|
44
|
Jiao F, Hu X, Yin H, Yuan F, Zhou Z, Wu W, Chen S, Liu Z, Guo F. Inhibition of c-Jun in AgRP neurons increases stress-induced anxiety and colitis susceptibility. Commun Biol 2023; 6:50. [PMID: 36641530 PMCID: PMC9840628 DOI: 10.1038/s42003-023-04425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Psychiatric disorders, such as anxiety, are associated with inflammatory bowel disease (IBD), however, the neural mechanisms regulating this comorbidity are unknown. Here, we show that hypothalamic agouti-related protein (AgRP) neuronal activity is suppressed under chronic restraint stress (CRS), a condition known to increase anxiety and colitis susceptibility. Consistently, chemogenic activation or inhibition of AgRP neurons reverses or mimics CRS-induced increase of anxiety-like behaviors and colitis susceptibility, respectively. Furthermore, CRS inhibits AgRP neuronal activity by suppressing the expression of c-Jun. Moreover, overexpression of c-Jun in these neurons protects against the CRS-induced effects, and knockdown of c-Jun in AgRP neurons (c-Jun∆AgRP) promotes anxiety and colitis susceptibility. Finally, the levels of secreted protein thrombospondin 1 (THBS1) are negatively associated with increased anxiety and colitis, and supplementing recombinant THBS1 rescues colitis susceptibility in c-Jun∆AgRP mice. Taken together, these results reveal critical roles of hypothalamic AgRP neuron-derived c-Jun in orchestrating stress-induced anxiety and colitis susceptibility.
Collapse
Affiliation(s)
- Fuxin Jiao
- grid.8547.e0000 0001 0125 2443Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Xiaoming Hu
- grid.8547.e0000 0001 0125 2443Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032 China
| | - Hanrui Yin
- grid.410726.60000 0004 1797 8419CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Feixiang Yuan
- grid.8547.e0000 0001 0125 2443Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032 China
| | - Ziheng Zhou
- grid.410726.60000 0004 1797 8419CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Wei Wu
- grid.24516.340000000123704535Department of Gastroenterology, The Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200072 China
| | - Shanghai Chen
- grid.8547.e0000 0001 0125 2443Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032 China
| | - Zhanju Liu
- grid.24516.340000000123704535Department of Gastroenterology, The Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200072 China
| | - Feifan Guo
- grid.8547.e0000 0001 0125 2443Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032 China
| |
Collapse
|
45
|
Parabrachial-to-parasubthalamic nucleus pathway mediates fear-induced suppression of feeding in male mice. Nat Commun 2022; 13:7913. [PMID: 36585411 PMCID: PMC9803671 DOI: 10.1038/s41467-022-35634-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Feeding behavior is adaptively regulated by external and internal environment, such that feeding is suppressed when animals experience pain, sickness, or fear. While the lateral parabrachial nucleus (lPB) plays key roles in nociception and stress, neuronal pathways involved in feeding suppression induced by fear are not fully explored. Here, we investigate the parasubthalamic nucleus (PSTN), located in the lateral hypothalamus and critically involved in feeding behaviors, as a target of lPB projection neurons. Optogenetic activation of lPB-PSTN terminals in male mice promote avoidance behaviors, aversive learning, and suppressed feeding. Inactivation of the PSTN and lPB-PSTN pathway reduces fear-induced feeding suppression. Activation of PSTN neurons expressing pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide enriched in the PSTN, is sufficient for inducing avoidance behaviors and feeding suppression. Blockade of PACAP receptors impaires aversive learning induced by lPB-PSTN photomanipulation. These findings indicate that lPB-PSTN pathway plays a pivotal role in fear-induced feeding suppression.
Collapse
|
46
|
Tang HD, Dong WY, Hu R, Huang JY, Huang ZH, Xiong W, Xue T, Liu J, Yu JM, Zhu X, Zhang Z. A neural circuit for the suppression of feeding under persistent pain. Nat Metab 2022; 4:1746-1755. [PMID: 36443522 DOI: 10.1038/s42255-022-00688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
In humans, persistent pain often leads to decreased appetite. However, the neural circuits underlying this behaviour remain unclear. Here, we show that a circuit arising from glutamatergic neurons in the anterior cingulate cortex (GluACC) projects to glutamatergic neurons in the lateral hypothalamic area (GluLHA) to blunt food intake in a mouse model of persistent pain. In turn, these GluLHA neurons project to pro-opiomelanocortin neurons in the hypothalamic arcuate nucleus (POMCArc), a well-known neuronal population involved in decreasing food intake. In vivo calcium imaging and multi-tetrode electrophysiological recordings reveal that the GluACC → GluLHA → Arc circuit is activated in mouse models of persistent pain and is accompanied by decreased feeding behaviour in both males and females. Inhibition of this circuit using chemogenetics can alleviate the feeding suppression symptoms. Our study indicates that the GluACC → GluLHA → Arc circuit is involved in driving the suppression of feeding under persistent pain through POMC neuronal activity. This previously unrecognized pathway could be explored as a potential target for pain-associated diseases.
Collapse
Affiliation(s)
- Hao-Di Tang
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wan-Ying Dong
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui Hu
- Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ji-Ye Huang
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhao-Huan Huang
- National Engineering Laboratory for Brain-inspired Intelligence Technology and Application, School of Information Science and Technology, CAS Key Laboratory of Brain Function and Diseases, University of Science and Technology of China, Hefei, China
| | - Wei Xiong
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tian Xue
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ji Liu
- National Engineering Laboratory for Brain-inspired Intelligence Technology and Application, School of Information Science and Technology, CAS Key Laboratory of Brain Function and Diseases, University of Science and Technology of China, Hefei, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
| | - Jun-Ma Yu
- Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei, China.
| | - Xia Zhu
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Zhi Zhang
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
47
|
Pauli JL, Chen JY, Basiri ML, Park S, Carter ME, Sanz E, McKnight GS, Stuber GD, Palmiter RD. Molecular and anatomical characterization of parabrachial neurons and their axonal projections. eLife 2022; 11:e81868. [PMID: 36317965 PMCID: PMC9668336 DOI: 10.7554/elife.81868] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022] Open
Abstract
The parabrachial nucleus (PBN) is a major hub that receives sensory information from both internal and external environments. Specific populations of PBN neurons are involved in behaviors including food and water intake, nociceptive responses, breathing regulation, as well as learning and responding appropriately to threatening stimuli. However, it is unclear how many PBN neuron populations exist and how different behaviors may be encoded by unique signaling molecules or receptors. Here we provide a repository of data on the molecular identity, spatial location, and projection patterns of dozens of PBN neuron subclusters. Using single-cell RNA sequencing, we identified 21 subclusters of neurons in the PBN and neighboring regions. Multiplexed in situ hybridization showed many of these subclusters are enriched within specific PBN subregions with scattered cells in several other regions. We also provide detailed visualization of the axonal projections from 21 Cre-driver lines of mice. These results are all publicly available for download and provide a foundation for further interrogation of PBN functions and connections.
Collapse
Affiliation(s)
- Jordan L Pauli
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Jane Y Chen
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Marcus L Basiri
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Sekun Park
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Matthew E Carter
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Elisenda Sanz
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - G Stanley McKnight
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Richard D Palmiter
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| |
Collapse
|
48
|
Post RJ, Bulkin DA, Ebitz RB, Lee V, Han K, Warden MR. Tonic activity in lateral habenula neurons acts as a neutral valence brake on reward-seeking behavior. Curr Biol 2022; 32:4325-4336.e5. [PMID: 36049479 PMCID: PMC9613558 DOI: 10.1016/j.cub.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 12/16/2021] [Accepted: 08/09/2022] [Indexed: 11/16/2022]
Abstract
Survival requires both the ability to persistently pursue goals and the ability to determine when it is time to stop, an adaptive balance of perseverance and disengagement. Neural activity in the lateral habenula (LHb) has been linked to negative valence, but its role in regulating the balance between engaged reward seeking and disengaged behavioral states remains unclear. Here, we show that LHb neural activity is tonically elevated during minutes-long periods of disengagement from reward-seeking behavior, both when due to repeated reward omission (negative valence) and when sufficient reward has been consumed (positive valence). Furthermore, we show that LHb inhibition extends ongoing reward-seeking behavioral states but does not prompt task re-engagement. We find no evidence for similar tonic activity changes in ventral tegmental area dopamine neurons. Our findings support a framework in which tonic activity in LHb neurons suppresses engagement in reward-seeking behavior in response to both negatively and positively valenced factors.
Collapse
Affiliation(s)
- Ryan J Post
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - David A Bulkin
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - R Becket Ebitz
- Department of Neuroscience, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Vladlena Lee
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Kasey Han
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Melissa R Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
49
|
Liu C, Zhang W. Molecular basis of somatosensation in insects. Curr Opin Neurobiol 2022; 76:102592. [DOI: 10.1016/j.conb.2022.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
|
50
|
Ma X, Chen W, Yang NN, Wang L, Hao XW, Tan CX, Li HP, Liu CZ. Potential mechanisms of acupuncture for neuropathic pain based on somatosensory system. Front Neurosci 2022; 16:940343. [PMID: 36203799 PMCID: PMC9530146 DOI: 10.3389/fnins.2022.940343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Neuropathic pain, caused by a lesion or disease of the somatosensory system, is common and distressing. In view of the high human and economic burden, more effective treatment strategies were urgently needed. Acupuncture has been increasingly used as an adjuvant or complementary therapy for neuropathic pain. Although the therapeutic effects of acupuncture have been demonstrated in various high-quality randomized controlled trials, there is significant heterogeneity in the underlying mechanisms. This review aimed to summarize the potential mechanisms of acupuncture on neuropathic pain based on the somatosensory system, and guided for future both foundational and clinical studies. Here, we argued that acupuncture may have the potential to inhibit neuronal activity caused by neuropathic pain, through reducing the activation of pain-related ion channels and suppressing glial cells (including microglia and astrocytes) to release inflammatory cytokines, chemokines, amongst others. Meanwhile, acupuncture as a non-pharmacologic treatment, may have potential to activate descending pain control system via increasing the level of spinal or brain 5-hydroxytryptamine (5-HT), norepinephrine (NE), and opioid peptides. And the types of endogenously opioid peptides was influenced by electroacupuncture-frequency. The cumulative evidence demonstrated that acupuncture provided an alternative or adjunctive therapy for neuropathic pain.
Collapse
Affiliation(s)
- Xin Ma
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Wen Chen
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Na-Na Yang
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Wang
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Wan Hao
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-Xia Tan
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Hong-Ping Li
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
- Hong-Ping Li,
| | - Cun-Zhi Liu
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Acupuncture-Moxibustion and Tuina, International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Cun-Zhi Liu,
| |
Collapse
|