1
|
Bayne C, McGrosso D, Sanchez C, Rossitto LA, Patterson M, Gonzalez C, Baus C, Volk C, Zhao HN, Dorrestein P, Nizet V, Sakoulas G, Gonzalez DJ, Rose W. Multi-omic signatures of host response associated with presence, type, and outcome of enterococcal bacteremia. mSystems 2025:e0147124. [PMID: 39835799 DOI: 10.1128/msystems.01471-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Despite the prevalence and severity of enterococcal bacteremia (EcB), the mechanisms underlying systemic host responses to the disease remain unclear. Here, we present an extensive study that profiles molecular differences in plasma from EcB patients using an unbiased multi-omics approach. We performed shotgun proteomics and metabolomics on 105 plasma samples, including those from EcB patients and healthy volunteers. Comparison between healthy volunteer and EcB-infected patient samples revealed significant disparities in proteins and metabolites involved in the acute phase response, inflammatory processes, and cholestasis. Several features distinguish these two groups with remarkable accuracy. Cross-referencing EcB signatures with those of Staphylococcus aureus bacteremia revealed shared reductions in cholesterol metabolism proteins and differing responses in platelet alpha granule and neutrophil-associated proteins. Characterization of Enterococcus isolates derived from patients facilitated a nuanced comparison between EcB caused by Enterococcus faecalis and Enterococcus faecium, uncovering reduced immunoglobulin abundances in E. faecium cases and features capable of distinguishing the underlying microbe. Leveraging extensive patient metadata, we now have identified features associated with mortality or survival, revealing significant multi-omic differences and pinpointing histidine-rich glycoprotein and fetuin-B as features capable of distinguishing survival status with excellent accuracy. Altogether, this study aims to culminate in the creation of objective risk stratification algorithms-a pivotal step toward enhancing patient management and care. To facilitate the exploration of this rich data source, we provide a user-friendly interface at https://gonzalezlab.shinyapps.io/EcB_multiomics/. IMPORTANCE Enterococcus infections have emerged as the second most common nosocomial infection, with enterococcal bacteremia (EcB) contributing to thousands of patient deaths annually. To address a lack of detailed understanding regarding the specific systemic response to EcB, we conducted a comprehensive multi-omic evaluation of the systemic host response observed in patient plasma. Our findings reveal significant features in the metabolome and proteome associated with the presence of infection, species differences, and survival outcome. We identified features capable of discriminating EcB infection from healthy states and survival from mortality with excellent accuracy, suggesting potential practical clinical utility. However, our study also established that systemic features to distinguish Enterococcus faecalis from Enterococcus faecium EcB show only a moderate degree of discriminatory accuracy, unlikely to significantly improve upon current diagnostic methods. Comparisons of differences in the plasma proteome relative to healthy samples between bacteremia caused by Enterococcus and Staphylococcus aureus suggest the presence of bacteria-specific responses alongside conserved inflammatory reactions.
Collapse
Affiliation(s)
- Charlie Bayne
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, San Diego, California, USA
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California, USA
| | - Dominic McGrosso
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, San Diego, California, USA
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California, USA
| | - Concepcion Sanchez
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, San Diego, California, USA
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California, USA
| | - Leigh-Ana Rossitto
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla, San Diego, California, USA
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California, USA
| | - Maxwell Patterson
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, California, USA
| | - Carlos Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California, USA
| | - Courtney Baus
- Department of Pharmacy, UW Health, Madison, Wisconsin, USA
| | - Cecilia Volk
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Haoqi Nina Zhao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California, USA
| | - Pieter Dorrestein
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California, USA
- Department of Pediatrics, UC San Diego, La Jolla, San Diego, California, USA
- Center for Microbiome Innovation, University of California at San Diego, La Jolla, San Diego, California, USA
| | - Victor Nizet
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California, USA
- Department of Pediatrics, UC San Diego, La Jolla, San Diego, California, USA
| | - George Sakoulas
- Department of Pediatrics, UC San Diego, La Jolla, San Diego, California, USA
- Sharp Rees Stealy Medical Group, San Diego, California, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California, USA
- Center for Microbiome Innovation, University of California at San Diego, La Jolla, San Diego, California, USA
| | - Warren Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Ernst L, Macedo GC, McCall LI. System-based insights into parasitological and clinical treatment failure in Chagas disease. mSystems 2025:e0003824. [PMID: 39772644 DOI: 10.1128/msystems.00038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Infectious disease treatment success requires symptom resolution (clinical treatment success), which often but not always involves pathogen clearance. Both of these treatment goals face disease-specific and general challenges. In this review, we summarize the current state of knowledge in mechanisms of clinical and parasitological treatment failure in the context of Chagas disease, a neglected tropical disease causing cardiac and gastrointestinal symptoms. Parasite drug resistance and persistence, drug pharmacokinetics and dynamics, as well as persistently altered host immune responses and tissue damage are the most common reasons for Chagas disease treatment failure. We discuss the therapeutics that failed before regulatory approval, limitations of current therapeutic options and new treatment strategies to overcome persistent parasites, inflammatory responses, and metabolic alterations. Large-scale omics analyses were critical in generating these insights and will continue to play a prominent role in addressing the challenges still facing Chagas disease drug treatment.
Collapse
Affiliation(s)
- Luis Ernst
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Giovana C Macedo
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| |
Collapse
|
3
|
Yu J, Yuan J, Liu Z, Ye H, Lin M, Ma L, Liu R, Ding W, Li L, Ma T, Tang S, Pang Y. Combined urine proteomics and metabolomics analysis for the diagnosis of pulmonary tuberculosis. Clin Proteomics 2024; 21:66. [PMID: 39695396 DOI: 10.1186/s12014-024-09514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) diagnostic monitoring is paramount to clinical decision-making and the host biomarkers appears to play a significant role. The currently available diagnostic technology for TB detection is inadequate. In the present study, we aimed to identify biomarkers for diagnosis of pulmonary tuberculosis (PTB) using urinary metabolomic and proteomic analysis. METHODS In the study, urine from 40 PTB, 40 lung cancer (LCA), 40 community-acquired pneumonia (CAP) patients and 40 healthy controls (HC) was collected. Biomarker panels were selected based on random forest (RF) analysis. RESULTS A total of 3,868 proteins and 1,272 annotated metabolic features were detected using pairwise comparisons. Using AUC ≥ 0.80 as a cutoff value, we picked up five protein biomarkers for PTB diagnosis. The five-protein panel yielded an AUC for PTB/HC, PTB/CAP and PTB/LCA of 0.9840, 0.9680 and 0.9310, respectively. Additionally, five metabolism biomarkers were selected for differential diagnosis purpose. By employment of the five-metabolism panel, we could differentiate PTB/HC at an AUC of 0.9940, PTB/CAP of 0.8920, and PTB/LCA of 0.8570. CONCLUSION Our data demonstrate that metabolomic and proteomic analysis can identify a novel urine biomarker panel to diagnose PTB with high sensitivity and specificity. The receiver operating characteristic curve analysis showed that it is possible to perform non-invasive clinical diagnoses of PTB through these urine biomarkers.
Collapse
Affiliation(s)
- Jiajia Yu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Jinfeng Yuan
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Zhidong Liu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Huan Ye
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Minggui Lin
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Liping Ma
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Rongmei Liu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Weimin Ding
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Li Li
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Tianyu Ma
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Shenjie Tang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
4
|
Tsai CM, Hajam IA, Caldera JR, Chiang AW, Gonzalez C, Du X, Choudhruy B, Li H, Suzuki E, Askarian F, Clark T, Lin B, Wierzbicki IH, Riestra AM, Conrad DJ, Gonzalez DJ, Nizet V, Lewis NE, Liu GY. Pathobiont-driven antibody sialylation through IL-10 undermines vaccination. J Clin Invest 2024; 134:e179563. [PMID: 39680460 DOI: 10.1172/jci179563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/09/2024] [Indexed: 12/18/2024] Open
Abstract
The pathobiont Staphylococcus aureus (Sa) induces nonprotective antibody imprints that underlie ineffective staphylococcal vaccination. However, the mechanism by which Sa modifies antibody activity is not clear. Herein, we demonstrate that IL-10 is the decisive factor that abrogates antibody protection in mice. Sa-induced B10 cells drive antigen-specific vaccine suppression that affects both recalled and de novo developed B cells. Released IL-10 promotes STAT3 binding upstream of the gene encoding sialyltransferase ST3gal4 and increases its expression by B cells, leading to hyper-α2,3sialylation of antibodies and loss of protective activity. IL-10 enhances α2,3sialylation on cell-wall-associated IsdB, IsdA, and MntC antibodies along with suppression of the respective Sa vaccines. Consistent with mouse findings, human anti-Sa antibodies as well as anti-pseudomonal antibodies from cystic fibrosis subjects (high IL-10) are hypersialylated, compared with anti-Streptococcus pyogenes and pseudomonal antibodies from normal individuals. Overall, we demonstrate a pathobiont-centric mechanism that modulates antibody glycosylation through IL-10, leading to loss of staphylococcal vaccine efficacy.
Collapse
Affiliation(s)
- Chih-Ming Tsai
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Irshad A Hajam
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - J R Caldera
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Austin Wt Chiang
- Immunology Center of Georgia and Department of Medicine, Augusta University, Augusta, Georgia, USA
| | - Cesia Gonzalez
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Xin Du
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Biswa Choudhruy
- Glycobiology Research and Training Center, UCSD, La Jolla, California, USA
| | - Haining Li
- Department of Bioengineering, University of California, La Jolla, California, USA
| | - Emi Suzuki
- Division of Gastroenterology, Department of Pediatrics, UCSD, La Jolla, California, USA
- Division of Gastroenterology, Rady Children's Hospital, San Diego, California, USA
| | - Fatemeh Askarian
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
| | - Ty'Tianna Clark
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Brian Lin
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
| | - Igor H Wierzbicki
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Angelica M Riestra
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Douglas J Conrad
- Division of Pulmonary, Critical Care and Sleep Medicine, UCSD, La Jolla, California, USA
| | - David J Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Nathan E Lewis
- Department of Bioengineering, University of California, La Jolla, California, USA
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California, USA
| | - George Y Liu
- Division of Infectious Diseases, Department of Pediatrics, University of California, La Jolla, California, USA
- Division of Infectious Diseases, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
5
|
Jiang Y, Meng F, Ge Z, Zhou Y, Fan Z, Du J. Bioinspired peptide/polyamino acid assemblies as quorum sensing inhibitors for the treatment of bacterial infections. J Mater Chem B 2024; 12:11596-11610. [PMID: 39436377 DOI: 10.1039/d4tb01685h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Insufficient development of new antibiotics and the rise in antimicrobial resistance are putting the world at risk of losing curative medicines against bacterial infection. Quorum sensing is a type of cellular signaling for cell-to-cell communication that plays critical roles in biofilm formation and antimicrobial resistance, and is expected to be a new type of effective target for drug resistant bacteria. In this review we highlight recent advances in bioinspired peptide/polyamino acid assemblies as quorum sensing inhibitors across various microbial communities. In addition, existing obstacles and future development directions of peptide/polyamino acid assemblies as quorum sensing inhibitors were proposed for broader clinical applications and translations. Overall, quorum sensing peptide/polyamino acid assemblies could be vital tools against bacterial infection and antimicrobial resistance.
Collapse
Affiliation(s)
- Yanan Jiang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Fanying Meng
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhenghong Ge
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Yuxiao Zhou
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhen Fan
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jianzhong Du
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Sun Y, Lu J, Wu J, Qi X, Huang Y, Lin K, Yang J, Wang H, Li J, Fang S, Yang A, Chen S, Chang W, Jin J, Xu Z, Wang S. Potential mechanism of CARD16 protein action and susceptibility to sepsis in the elderly infected population: Through transcriptome analysis of blood. Int J Biol Macromol 2024; 281:136578. [PMID: 39406325 DOI: 10.1016/j.ijbiomac.2024.136578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
As global aging accelerates, the super-elderly population is at higher risk of infectious diseases, especially sepsis, a condition that may be associated with declining immune system function and abnormal inflammatory responses. The aim of this study was to investigate the role of CARD16 protein in sepsis susceptibility in the elderly population and its potential mechanism, and to reveal the expression characteristics of CARD16-related genes through blood transcriptomic analysis. Transcriptome sequencing was conducted on peripheral blood samples obtained from patients suffering from senile sepsis, along with samples from a healthy elderly control group. To examine the differences in gene expression, bioinformatics techniques were employed to compare the expression levels of CARD16-related genes between the two groups. Additionally, a comprehensive analysis was performed on the downstream inflammatory pathways and cytokines that are regulated by CARD16.The findings from the transcriptome analysis indicated that the expression of CARD16 was markedly upregulated in the cohort of patients experiencing hypersenile sepsis. This upregulation was associated with an increase in a variety of pro-inflammatory factors. Further network analysis suggested that CARD16 may potentiate the inflammatory response by modulating the NF-κB signaling pathway, which could consequently heighten the patients' vulnerability to sepsis.In comparison to the healthy elderly control group, the levels of anti-inflammatory genes in the super-elderly cohort were found to be significantly diminished. This observation points to a notable imbalance in immune regulation, further emphasizing the altered immune response in individuals with senile sepsis.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jiahuan Lu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 200052, China
| | - Xiao Qi
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yanfang Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Ke Lin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jingnan Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hua Wang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jinwei Li
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Shuyu Fang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Ali Yang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Shu Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Wenhong Chang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 200052, China; Institute of Infection and Health, Fudan University, Shanghai 200040, China
| | - Jialin Jin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | - Zhongqing Xu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Sen Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai 200052, China.
| |
Collapse
|
7
|
Sanchez C, Campeau A, Liu-Bryan R, Mikuls TR, O'Dell JR, Gonzalez DJ, Terkeltaub R. Effective xanthine oxidase inhibitor urate lowering therapy in gout is linked to an emergent serum protein interactome of complement and inflammation modulators. Sci Rep 2024; 14:24598. [PMID: 39426967 PMCID: PMC11490615 DOI: 10.1038/s41598-024-74154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024] Open
Abstract
Urate-lowering treatment (ULT) to target with xanthine oxidase inhibitors (XOIs) paradoxically causes early increase in gouty arthritis flares. Because delayed reduction in flare burden is mechanistically unclear, we tested for ULT inflammation responsiveness markers. Unbiased proteomics analyzed blood samples (baseline, 48 weeks ULT) in two, independent ULT out trial cohorts (n = 19, n = 30). STRING-db and multivariate analyses supplemented determinations of altered proteins via Wilcoxon matched pairs signed rank testing in XOI ULT responders. Mechanistic studies characterized proteomes of cultured XOI-treated murine bone marrow macrophages (BMDMs). At 48 weeks ULT, serum urate normalized in all gout patients, and flares declined in association with significantly altered proteins (p < 0.05) in clustering and proteome networks in sera and peripheral blood mononuclear cells. Sera demonstrated altered complement activation and regulatory gene ontology biologic processes. In both cohorts, a treatment-emergent serum interactome included key gouty inflammation mediators (C5, IL-1B, CXCL8, IL6). Last, febuxostat treatment decreased complement activation biologic process proteins in cultured BMDMs. Reduced gout flares are linked with a XOI treatment-emergent serum protein interactome that includes inflammation regulators, associated with altered complement activation and regulatory biologic processes. Serum and leukocyte proteomics could help identify when gouty inflammatory processes begin to subside in response to ULT.Trial Registration: ClinicalTrials.gov Identifier NCT02579096, posted October 19, 2015.
Collapse
Affiliation(s)
- Concepcion Sanchez
- Department of Pharmacology, University of California, San Diego, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, and Collaborative Center for Multiplexed Proteomics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anaamika Campeau
- Department of Pharmacology, University of California, San Diego, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, and Collaborative Center for Multiplexed Proteomics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ru Liu-Bryan
- Division of Rheumatology, Autoimmunity and Inflammation, Department of Medicine, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093, USA
| | - Ted R Mikuls
- Department of Internal Medicine, University of Nebraska Medical Center, MSB 5544, 983331, Omaha, NE, 68198-3331, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - James R O'Dell
- Department of Internal Medicine, University of Nebraska Medical Center, MSB 5544, 983331, Omaha, NE, 68198-3331, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, and Collaborative Center for Multiplexed Proteomics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert Terkeltaub
- Division of Rheumatology, Autoimmunity and Inflammation, Department of Medicine, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
8
|
Zhang X, Shi S, Du Y, Chai R, Guo Z, Duan C, Wang H, Hu Y, Chang X, Du B. Shaping cardiac destiny: the role of post-translational modifications on endoplasmic reticulum - mitochondria crosstalk in cardiac remodeling. Front Pharmacol 2024; 15:1423356. [PMID: 39464632 PMCID: PMC11502351 DOI: 10.3389/fphar.2024.1423356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiac remodeling is a shared pathological change in most cardiovascular diseases. Encompassing both adaptive physiological responses and decompensated pathological changes. Anatomically, atrial remodeling is primarily caused by atrial fibrillation, whereas ventricular remodeling is typically induced by myocardial infarction, hypertension, or cardiomyopathy. Mitochondria, the powerhouse of cardiomyocytes, collaborate with other organelles such as the endoplasmic reticulum to control a variety of pathophysiological processes such as calcium signaling, lipid transfer, mitochondrial dynamics, biogenesis, and mitophagy. This mechanism is proven to be essential for cardiac remodeling. Post-translational modifications can regulate intracellular signaling pathways, gene expression, and cellular stress responses in cardiac cells by modulating protein function, stability, and interactions, consequently shaping the myocardial response to injury and stress. These modifications, in particular phosphorylation, acetylation, and ubiquitination, are essential for the regulation of the complex molecular pathways that underlie cardiac remodeling. This review provides a comprehensive overview of the crosstalk between the endoplasmic reticulum and mitochondria during cardiac remodeling, focusing on the regulatory effects of various post-translational modifications on these interactions.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Department of Internal Medicine, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yihang Du
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruoning Chai
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zezhen Guo
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Chenglin Duan
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huan Wang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Chang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bai Du
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Qin W, Guo T, You T, Tian R, Cui X, Wang P. Metagenomic next generation sequencing of bronchoalveolar lavage fluids for the identification of pathogens in patients with pulmonary infection: A retrospective study. Diagn Microbiol Infect Dis 2024; 110:116402. [PMID: 38878340 DOI: 10.1016/j.diagmicrobio.2024.116402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/30/2024]
Abstract
Due to the limitations of traditional laboratory methods (TMs), identification of causative pathogens of numerous pulmonary infections (PIs) remains difficult. This study evaluated the value of metagenomic next generation sequencing (mNGS) in the identification of various respiratory pathogens. A total of 207 patients with TMs and mNGS data were collected for this retrospective study. TMs included sputum culture, blood, and bronchoalveolar lavage fluid (BALF) analysis, or polymerase chain reaction analysis of throat swabs. Otherwise, BALF was collected and analyzed using mNGS. For bacterial pathogens, sensitivities of mNGS as compared to TMs were 76.74 % and 58.14 % (P=0.012). For fungal pathogens, the detection rate of mNGS sensitivity was higher as compared to that of TMs (93.68 % vs 22.11 %; P<0.001). The positive predictive value and negative predictive value were also greater for mNGS. Use of mNGS for BALF analysis offers good specificity and thus facilitates to the clinical diagnosis of PIs.
Collapse
Affiliation(s)
- Wenwen Qin
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Tai Guo
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Tiebin You
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Ruixin Tian
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Xiaoman Cui
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Ping Wang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| |
Collapse
|
10
|
Ohta R, Sano C. Factors Affecting Recurrent Staphylococcus aureus Bacteremia Among Older Patients in Rural Community Hospitals: A Retrospective Cohort Study. Cureus 2024; 16:e70120. [PMID: 39449886 PMCID: PMC11502118 DOI: 10.7759/cureus.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Staphylococcus aureus bacteremia (SAB) poses a significant health risk, particularly among adults over 65 years old, due to age-related vulnerabilities and comorbidities. Recurrent SAB is associated with increased morbidity, prolonged hospitalizations, and higher healthcare costs, necessitating the identification of risk factors that contribute to these recurrent infections. Methods A retrospective cohort study was conducted at a rural community hospital to identify factors associated with recurrent SAB in older patients. Data were extracted from electronic medical records of patients diagnosed with SAB between April 2016 and December 2023. Multivariate logistic regression was employed to analyze the relationship between recurrent SAB and potential risk factors, including age, sex, BMI, dependency on Japanese long-term health insurance, and comorbidities. Results Among 99 patients with SAB, 36 (36.4%) experienced recurrence. Higher BMI was significantly associated with recurrent SAB (OR: 1.15, 95% CI: 1.01-1.31, p = 0.036), while dependency on long-term care was associated with a lower risk of recurrence (OR: 0.20, 95% CI: 0.06-0.64, p = 0.007). Age and sex did not show significant associations with recurrence. Conclusion This study identified higher BMI as a risk factor for recurrent SAB in older patients, while dependency on long-term care was protective. These findings highlight the need for targeted management strategies for patients with higher BMI to prevent recurrent SAB. Further research is needed to explore these associations and confirm their relevance in other clinical settings.
Collapse
Affiliation(s)
| | - Chiaki Sano
- Community Medicine Management, Shimane University Faculty of Medicine, Izumo, JPN
| |
Collapse
|
11
|
Zhang Y, Li R, Zou G, Guo Y, Wu R, Zhou Y, Chen H, Zhou R, Lavigne R, Bergen PJ, Li J, Li J. Discovery of Antimicrobial Lysins from the "Dark Matter" of Uncharacterized Phages Using Artificial Intelligence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404049. [PMID: 38899839 PMCID: PMC11348152 DOI: 10.1002/advs.202404049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Indexed: 06/21/2024]
Abstract
The rapid rise of antibiotic resistance and slow discovery of new antibiotics have threatened global health. While novel phage lysins have emerged as potential antibacterial agents, experimental screening methods for novel lysins pose significant challenges due to the enormous workload. Here, the first unified software package, namely DeepLysin, is developed to employ artificial intelligence for mining the vast genome reservoirs ("dark matter") for novel antibacterial phage lysins. Putative lysins are computationally screened from uncharacterized Staphylococcus aureus phages and 17 novel lysins are randomly selected for experimental validation. Seven candidates exhibit excellent in vitro antibacterial activity, with LLysSA9 exceeding that of the best-in-class alternative. The efficacy of LLysSA9 is further demonstrated in mouse bloodstream and wound infection models. Therefore, this study demonstrates the potential of integrating computational and experimental approaches to expedite the discovery of new antibacterial proteins for combating increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Yue Zhang
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Runze Li
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Geng Zou
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Yating Guo
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Renwei Wu
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Yang Zhou
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
| | - Huanchun Chen
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Rui Zhou
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Rob Lavigne
- Department of BiosystemsLaboratory of Gene TechnologyKU LeuvenLeuven3001Belgium
| | - Phillip J. Bergen
- Monash Biomedicine Discovery InstituteDepartment of MicrobiologyFaculty of MedicineNursing and Health SciencesMonash UniversityMelbourne3800Australia
| | - Jian Li
- Monash Biomedicine Discovery InstituteDepartment of MicrobiologyFaculty of MedicineNursing and Health SciencesMonash UniversityMelbourne3800Australia
| | - Jinquan Li
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518000China
| |
Collapse
|
12
|
Yu HP, Liu FC, Chung YK, Alalaiwe A, Sung CT, Fang JY. Nucleic acid-based nanotherapeutics for treating sepsis and associated organ injuries. Theranostics 2024; 14:4411-4437. [PMID: 39113804 PMCID: PMC11303080 DOI: 10.7150/thno.98487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
In recent years, gene therapy has been made possible with the success of nucleic acid drugs against sepsis and its related organ dysfunction. Therapeutics based on nucleic acids such as small interfering RNAs (siRNAs), microRNAs (miRNAs), messenger RNAs (mRNAs), and plasmid DNAs (pDNAs) guarantee to treat previously undruggable diseases. The advantage of nucleic acid-based therapy against sepsis lies in the development of nanocarriers, achieving targeted and controlled gene delivery for improved efficacy with minimal adverse effects. Entrapment into nanocarriers also ameliorates the poor cellular uptake of naked nucleic acids. In this study, we discuss the current state of the art in nanoparticles for nucleic acid delivery to treat hyperinflammation and apoptosis associated with sepsis. The optimized design of the nanoparticles through physicochemical property modification and ligand conjugation can target specific organs-such as lung, heart, kidney, and liver-to mitigate multiple sepsis-associated organ injuries. This review highlights the nanomaterials designed for fabricating the anti-sepsis nanosystems, their physicochemical characterization, the mechanisms of nucleic acid-based therapy in working against sepsis, and the potential for promoting the therapeutic efficiency of the nucleic acids. The current investigations associated with nanoparticulate nucleic acid application in sepsis management are summarized in this paper. Noteworthily, the potential application of nanotherapeutic nucleic acids allows for a novel strategy to treat sepsis. Further clinical studies are required to confirm the findings in cell- and animal-based experiments. The capability of large-scale production and reproducibility of nanoparticle products are also critical for commercialization. It is expected that numerous anti-sepsis possibilities will be investigated for nucleic acid-based nanotherapeutics in the future.
Collapse
Affiliation(s)
- Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yu-Kuo Chung
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Calvin T. Sung
- Department of Dermatology, University of California, Irvine, United States
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
13
|
Liu F, Yang H, Yang T, Zhang Z, Guan L, Gao L, Ma H, Zhang H, Song N, Tong Z, Li J. Dysregulated proteasome activity and steroid hormone biosynthesis are associated with mortality among patients with acute COVID-19. J Transl Med 2024; 22:626. [PMID: 38965561 PMCID: PMC11229496 DOI: 10.1186/s12967-024-05342-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/22/2024] [Indexed: 07/06/2024] Open
Abstract
The persistence of coronavirus disease 2019 (COVID-19)-related hospitalization severely threatens medical systems worldwide and has increased the need for reliable detection of acute status and prediction of mortality. We applied a systems biology approach to discover acute-stage biomarkers that could predict mortality. A total 247 plasma samples were collected from 103 COVID-19 (52 surviving COVID-19 patients and 51 COVID-19 patients with mortality), 51 patients with other infectious diseases (IDCs) and 41 healthy controls (HCs). Paired plasma samples were obtained from survival COVID-19 patients within 1 day after hospital admission and 1-3 days before discharge. There were clear differences between COVID-19 patients and controls, as well as substantial differences between the acute and recovery phases of COVID-19. Samples from patients in the acute phase showed suppressed immunity and decreased steroid hormone biosynthesis, as well as elevated inflammation and proteasome activation. These findings were validated by enzyme-linked immunosorbent assays and metabolomic analyses in a larger cohort. Moreover, excessive proteasome activity was a prominent signature in the acute phase among patients with mortality, indicating that it may be a key cause of poor prognosis. Based on these features, we constructed a machine learning panel, including four proteins [C-reactive protein (CRP), proteasome subunit alpha type (PSMA)1, PSMA7, and proteasome subunit beta type (PSMB)1)] and one metabolite (urocortisone), to predict mortality among COVID-19 patients (area under the receiver operating characteristic curve: 0.976) on the first day of hospitalization. Our systematic analysis provides a novel method for the early prediction of mortality in hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Fengjiao Liu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Huqin Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China
| | - Tingyu Yang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhijin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China
| | - Lujia Guan
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China
| | - Leyi Gao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China
| | - Haomiao Ma
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China
| | - Haifan Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China
| | - Nan Song
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China.
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China.
| | - Jieqiong Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China.
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Lin M, Xu F, Sun J, Song J, Shen Y, Lu S, Ding H, Lan L, Chen C, Ma W, Wu X, Song Z, Wang W. Integrative multi-omics analysis unravels the host response landscape and reveals a serum protein panel for early prognosis prediction for ARDS. Crit Care 2024; 28:213. [PMID: 38956604 PMCID: PMC11218270 DOI: 10.1186/s13054-024-05000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The multidimensional biological mechanisms underpinning acute respiratory distress syndrome (ARDS) continue to be elucidated, and early biomarkers for predicting ARDS prognosis are yet to be identified. METHODS We conducted a multicenter observational study, profiling the 4D-DIA proteomics and global metabolomics of serum samples collected from patients at the initial stage of ARDS, alongside samples from both disease control and healthy control groups. We identified 28-day prognosis biomarkers of ARDS in the discovery cohort using the LASSO method, fold change analysis, and the Boruta algorithm. The candidate biomarkers were validated through parallel reaction monitoring (PRM) targeted mass spectrometry in an external validation cohort. Machine learning models were applied to explore the biomarkers of ARDS prognosis. RESULTS In the discovery cohort, comprising 130 adult ARDS patients (mean age 72.5, 74.6% male), 33 disease controls, and 33 healthy controls, distinct proteomic and metabolic signatures were identified to differentiate ARDS from both control groups. Pathway analysis highlighted the upregulated sphingolipid signaling pathway as a key contributor to the pathological mechanisms underlying ARDS. MAP2K1 emerged as the hub protein, facilitating interactions with various biological functions within this pathway. Additionally, the metabolite sphingosine 1-phosphate (S1P) was closely associated with ARDS and its prognosis. Our research further highlights essential pathways contributing to the deceased ARDS, such as the downregulation of hematopoietic cell lineage and calcium signaling pathways, contrasted with the upregulation of the unfolded protein response and glycolysis. In particular, GAPDH and ENO1, critical enzymes in glycolysis, showed the highest interaction degree in the protein-protein interaction network of ARDS. In the discovery cohort, a panel of 36 proteins was identified as candidate biomarkers, with 8 proteins (VCAM1, LDHB, MSN, FLG2, TAGLN2, LMNA, MBL2, and LBP) demonstrating significant consistency in an independent validation cohort of 183 patients (mean age 72.6 years, 73.2% male), confirmed by PRM assay. The protein-based model exhibited superior predictive accuracy compared to the clinical model in both the discovery cohort (AUC: 0.893 vs. 0.784; Delong test, P < 0.001) and the validation cohort (AUC: 0.802 vs. 0.738; Delong test, P = 0.008). INTERPRETATION Our multi-omics study demonstrated the potential biological mechanism and therapy targets in ARDS. This study unveiled several novel predictive biomarkers and established a validated prediction model for the poor prognosis of ARDS, offering valuable insights into the prognosis of individuals with ARDS.
Collapse
Affiliation(s)
- Mengna Lin
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feixiang Xu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Sun
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianfeng Song
- Department of Emergency Medicine, Minhang Hospital, Fudan University, Shanghai, China
| | - Yao Shen
- Department of Respiratory Medicine, Pudong Hospital, Fudan University, Shanghai, China
| | - Su Lu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hailin Ding
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lulu Lan
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Chen
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen Ma
- School of Public Health, Fudan University, Shanghai, China
| | - Xueling Wu
- Department of Respiratory Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Zhenju Song
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China.
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Institute of Emergency Rescue and Critical Care, Fudan University, Shanghai, China.
| | - Weibing Wang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China.
- School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Yu L, Zhang D, Yin Y, Li X, Bai C, Zhou Q, Liu X, Tian X, Xu D, Yu X, Zhao S, Hu R, Guo F, Yang Y, Ren Y, Chen G, Zeng J, Feng J. Tibial cortex transverse transport surgery improves wound healing in patients with severe type 2 DFUs by activating a systemic immune response: a cross-sectional study. Int J Surg 2024; 111:01279778-990000000-01748. [PMID: 38954658 PMCID: PMC11745691 DOI: 10.1097/js9.0000000000001897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Tibial cortex transverse transport (TTT) surgery has become an ideal treatment for patients with type 2 severe diabetic foot ulcerations (DFUs) while conventional treatments are ineffective. Based on our clinical practice experience, the protective immune response from TTT surgery may play a role against infections to promote wound healing in patients with DFUs. Therefore, this research aimed to systematically study the specific clinical efficacy and the mechanism of TTT surgery. MATERIALS AND METHODS Between June 2022 and September 2023, 68 patients with type 2 severe DFUs were enrolled and therapized by TTT surgery in this cross-sectional and experimental study. Major clinical outcomes including limb salvage rate and antibiotics usage rate were investigated. Ten clinical characteristics and laboratory features of glucose metabolism and kidney function were statistically analyzed. Blood samples from 6 key time points of TTT surgery were collected for label-free proteomics and clinical immune biomarker analysis. Besides, tissue samples from 3 key time points were for spatially resolved metabolomics and transcriptomics analysis, as well as applied to validate the key TTT-regulated molecules by RT-qPCR. RESULTS Notably, 64.7% of patients did not use antibiotics during the entire TTT surgery. TTT surgery can achieve a high limb salvage rate of 92.6% in patients with unilateral or bilateral DFUs. Pathway analysis of a total of 252 differentially expressed proteins (DEPs) from the proteomic revealed that the immune response induced by TTT surgery at different stages was first comprehensively verified through multi-omics combined with immune biomarker analysis. The function of upward transport was activating the systemic immune response, and wound healing occurs with downward transport. The spatial metabolic characteristics of skin tissue from patients with DFUs indicated downregulated levels of stearoylcarnitine and the glycerophospholipid metabolism pathway in skin tissue from patients with severe DFUs. Finally, the expressions of PRNP (prion protein) to activate the immune response, PLCB3 (PLCB3, phospholipase C beta 3) and VE-cadherin to play roles in neovascularization, and PPDPF (pancreatic progenitor cell differentiation and proliferation factor), LAMC2 (laminin subunit gamma 2) and SPRR2G (small proline rich protein 2G) to facilitate the developmental process mainly keratinocyte differentiation were statistically significant in skin tissues through transcriptomic and RT-qPCR analysis. CONCLUSION Tibial cortex transverse transport (TTT) surgery demonstrates favorable outcomes for patients with severe type 2 DFUs by activating a systemic immune response, contributing to anti-infection, ulcer recurrence, and the limb salvage rate for unilateral or bilateral DFUs. The specific clinical immune responses, candidate proteins, genes, and metabolic characteristics provide directions for in-depth mechanistic research on TTT surgery. Further research and public awareness are needed to optimize TTT surgery in patients with severe type 2 DFUs.
Collapse
Affiliation(s)
- Lin Yu
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China
- NHC Key Laboratory of Nuclear Surgery Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China
| | - Dingwei Zhang
- Department of Orthopaedics, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yuan Yin
- NHC Key Laboratory of Nuclear Surgery Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China
| | - Xiaoya Li
- Department of Orthopaedics, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Chunxia Bai
- Department of Orthopaedics, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Qian Zhou
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China
| | - Xinyi Liu
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China
| | - Xiaojun Tian
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China
| | - Daofei Xu
- Department of Orthopaedics, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xianjun Yu
- Department of Orthopaedics, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Sichun Zhao
- Department of Orthopaedics, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Rong Hu
- Department of Orthopaedics, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Fudie Guo
- Department of Orthopaedics, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yuwei Yang
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China
| | - Yan Ren
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China
| | - Gang Chen
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China
| | - Jiawei Zeng
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China
| | - Jiafu Feng
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China
| |
Collapse
|
16
|
Zhu J, Xie R, Gao R, Zhao Y, Yodsanit N, Zhu M, Burger JC, Ye M, Tong Y, Gong S. Multimodal nanoimmunotherapy engages neutrophils to eliminate Staphylococcus aureus infections. NATURE NANOTECHNOLOGY 2024; 19:1032-1043. [PMID: 38632494 DOI: 10.1038/s41565-024-01648-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
The increasing prevalence of antimicrobial resistance in Staphylococcus aureus necessitates alternative therapeutic approaches. Neutrophils play a crucial role in the fight against S. aureus but suffer from deficiencies in function leading to increased infection. Here we report a nanoparticle-mediated immunotherapy aimed at potentiating neutrophils to eliminate S. aureus. The nanoparticles consist of naftifine, haemoglobin (Hb) and a red blood cell membrane coating. Naftifine disrupts staphyloxanthin biosynthesis, Hb reduces bacterial hydrogen sulfide levels and the red blood cell membrane modifies bacterial lipid composition. Collectively, the nanoparticles can sensitize S. aureus to host oxidant killing. Furthermore, in the infectious microenvironment, Hb triggers lipid peroxidation in S. aureus, promoting neutrophil chemotaxis. Oxygen supplied by Hb can also significantly enhance the bactericidal capability of the recruited neutrophils by restoring neutrophil respiratory burst via hypoxia relief. This multimodal nanoimmunotherapy demonstrates excellent therapeutic efficacy in treating antimicrobial-resistant S. aureus persisters, biofilms and S. aureus-induced infection in mice.
Collapse
Affiliation(s)
- Jingcheng Zhu
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruosen Xie
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ruixuan Gao
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yi Zhao
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Nisakorn Yodsanit
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Min Zhu
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacobus C Burger
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Mingzhou Ye
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yao Tong
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Shaoqin Gong
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
17
|
Volk CF, Proctor RA, Rose WE. The Complex Intracellular Lifecycle of Staphylococcus aureus Contributes to Reduced Antibiotic Efficacy and Persistent Bacteremia. Int J Mol Sci 2024; 25:6486. [PMID: 38928191 PMCID: PMC11203666 DOI: 10.3390/ijms25126486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Staphylococcus aureus bacteremia continues to be associated with significant morbidity and mortality, despite improvements in diagnostics and management. Persistent infections pose a major challenge to clinicians and have been consistently shown to increase the risk of mortality and other infectious complications. S. aureus, while typically not considered an intracellular pathogen, has been proven to utilize an intracellular niche, through several phenotypes including small colony variants, as a means for survival that has been linked to chronic, persistent, and recurrent infections. This intracellular persistence allows for protection from the host immune system and leads to reduced antibiotic efficacy through a variety of mechanisms. These include antimicrobial resistance, tolerance, and/or persistence in S. aureus that contribute to persistent bacteremia. This review will discuss the challenges associated with treating these complicated infections and the various methods that S. aureus uses to persist within the intracellular space.
Collapse
Affiliation(s)
- Cecilia F. Volk
- Pharmacy Practice and Translational Research Division, School of Pharmacy, Pharmacy University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Richard A. Proctor
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Warren E. Rose
- Pharmacy Practice and Translational Research Division, School of Pharmacy, Pharmacy University of Wisconsin-Madison, Madison, WI 53705, USA;
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
18
|
Sanchez C, Campeau A, Liu-Bryan R, Mikuls TR, O'Dell JR, Gonzalez DJ, Terkeltaub R. Effective xanthine oxidase inhibitor urate lowering therapy in gout is linked to an emergent serum protein interactome of complement activation and inflammation modulators. RESEARCH SQUARE 2024:rs.3.rs-4278877. [PMID: 38766125 PMCID: PMC11100878 DOI: 10.21203/rs.3.rs-4278877/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Urate-lowering treatment (ULT) to target with xanthine oxidase inhibitors (XOIs) paradoxically causes early increase in gouty arthritis flares. Because delayed reduction in flare burden is mechanistically unclear, we tested for ULT inflammation responsiveness markers. Methods Unbiased proteomics analyzed blood samples (baseline, 48 weeks ULT) in two, independent ULT out trial cohorts (n = 19, n = 30). STRING-db and multivariate analyses supplemented determinations of altered proteins via Wilcoxon matched pairs signed rank testing in XOI ULT responders. Mechanistic studies characterized proteomes of cultured XOI-treated murine bone marrow macrophages (BMDMs). Results At 48 weeks ULT, serum urate normalized in all gout patients, and flares declined, with significantly altered proteins (p < 0.05) in clustering and proteome networks in sera and peripheral blood mononuclear cells. Serum proteome changes included decreased complement C8 heterotrimer C8A and C8G chains and chemokine PPBP/CXCL7, and increased urate crystal phagocytosis inhibitor sCD44. In both cohorts, a treatment-emergent serum interactome included key gouty inflammation mediators (C5, IL-1B, CXCL8, IL6). Last, febuxostat inhibited complement activation pathway proteins in cultured BMDMs. Conclusions Reduced gout flares are kinked with a XOI-treatment emergent complement- and inflammation-regulatory serum protein interactome. Serum and leukocyte proteomes could help identify onset of anti-inflammatory responsiveness to ULT in gout. Trial registration ClinicalTrials.gov Identifier: NCT02579096, posted October 19, 2015.
Collapse
|
19
|
Zhou X, Shen X, Johnson JS, Spakowicz DJ, Agnello M, Zhou W, Avina M, Honkala A, Chleilat F, Chen SJ, Cha K, Leopold S, Zhu C, Chen L, Lyu L, Hornburg D, Wu S, Zhang X, Jiang C, Jiang L, Jiang L, Jian R, Brooks AW, Wang M, Contrepois K, Gao P, Rose SMSF, Tran TDB, Nguyen H, Celli A, Hong BY, Bautista EJ, Dorsett Y, Kavathas PB, Zhou Y, Sodergren E, Weinstock GM, Snyder MP. Longitudinal profiling of the microbiome at four body sites reveals core stability and individualized dynamics during health and disease. Cell Host Microbe 2024; 32:506-526.e9. [PMID: 38479397 PMCID: PMC11022754 DOI: 10.1016/j.chom.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
To understand the dynamic interplay between the human microbiome and host during health and disease, we analyzed the microbial composition, temporal dynamics, and associations with host multi-omics, immune, and clinical markers of microbiomes from four body sites in 86 participants over 6 years. We found that microbiome stability and individuality are body-site specific and heavily influenced by the host. The stool and oral microbiome are more stable than the skin and nasal microbiomes, possibly due to their interaction with the host and environment. We identify individual-specific and commonly shared bacterial taxa, with individualized taxa showing greater stability. Interestingly, microbiome dynamics correlate across body sites, suggesting systemic dynamics influenced by host-microbial-environment interactions. Notably, insulin-resistant individuals show altered microbial stability and associations among microbiome, molecular markers, and clinical features, suggesting their disrupted interaction in metabolic disease. Our study offers comprehensive views of multi-site microbial dynamics and their relationship with host health and disease.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Center for Genomics and Personalized Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford, CA 94305, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Xiaotao Shen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Center for Genomics and Personalized Medicine, Stanford, CA 94305, USA
| | - Jethro S Johnson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK
| | - Daniel J Spakowicz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Division of Medical Oncology, Ohio State University Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | | | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Center for Genomics and Personalized Medicine, Stanford, CA 94305, USA
| | - Monica Avina
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexander Honkala
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Healthcare Innovation Labs, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Faye Chleilat
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shirley Jingyi Chen
- Stanford Healthcare Innovation Labs, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kexin Cha
- Stanford Healthcare Innovation Labs, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shana Leopold
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chenchen Zhu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lei Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai 200240, PRC
| | - Lin Lyu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai 200240, PRC
| | - Daniel Hornburg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xinyue Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chao Jiang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, PRC
| | - Liuyiqi Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, PRC
| | - Lihua Jiang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew W Brooks
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Meng Wang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peng Gao
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | - Hoan Nguyen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Alessandra Celli
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bo-Young Hong
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Woody L Hunt School of Dental Medicine, Texas Tech University Health Science Center, El Paso, TX 79905, USA
| | - Eddy J Bautista
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Headquarters-Mosquera, Cundinamarca 250047, Colombia
| | - Yair Dorsett
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Paula B Kavathas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yanjiao Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Erica Sodergren
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Center for Genomics and Personalized Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford, CA 94305, USA; Stanford Healthcare Innovation Labs, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Amormino C, Russo E, Tedeschi V, Fiorillo MT, Paiardini A, Spallotta F, Rosanò L, Tuosto L, Kunkl M. Targeting staphylococcal enterotoxin B binding to CD28 as a new strategy for dampening superantigen-mediated intestinal epithelial barrier dysfunctions. Front Immunol 2024; 15:1365074. [PMID: 38510259 PMCID: PMC10951378 DOI: 10.3389/fimmu.2024.1365074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Staphylococcus aureus is a gram-positive bacterium that may cause intestinal inflammation by secreting enterotoxins, which commonly cause food-poisoning and gastrointestinal injuries. Staphylococcal enterotoxin B (SEB) acts as a superantigen (SAg) by binding in a bivalent manner the T-cell receptor (TCR) and the costimulatory receptor CD28, thus stimulating T cells to produce large amounts of inflammatory cytokines, which may affect intestinal epithelial barrier integrity and functions. However, the role of T cell-mediated SEB inflammatory activity remains unknown. Here we show that inflammatory cytokines produced by T cells following SEB stimulation induce dysfunctions in Caco-2 intestinal epithelial cells by promoting actin cytoskeleton remodelling and epithelial cell-cell junction down-regulation. We also found that SEB-activated inflammatory T cells promote the up-regulation of epithelial-mesenchymal transition transcription factors (EMT-TFs) in a nuclear factor-κB (NF-κB)- and STAT3-dependent manner. Finally, by using a structure-based design approach, we identified a SEB mimetic peptide (pSEB116-132) that, by blocking the binding of SEB to CD28, dampens inflammatory-mediated dysregulation of intestinal epithelial barrier.
Collapse
Affiliation(s)
- Carola Amormino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Emanuela Russo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Laboratory affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Laura Rosanò
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Martina Kunkl
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
21
|
Pei F, Gu B, Miao SM, Guan XD, Wu JF. Clinical practice of sepsis-induced immunosuppression: Current immunotherapy and future options. Chin J Traumatol 2024; 27:63-70. [PMID: 38040590 DOI: 10.1016/j.cjtee.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 12/03/2023] Open
Abstract
Sepsis is a potentially fatal condition characterized by the failure of one or more organs due to a disordered host response to infection. The development of sepsis is closely linked to immune dysfunction. As a result, immunotherapy has gained traction as a promising approach to sepsis treatment, as it holds the potential to reverse immunosuppression and restore immune balance, thereby improving the prognosis of septic patients. However, due to the highly heterogeneous nature of sepsis, it is crucial to carefully select the appropriate patient population for immunotherapy. This review summarizes the current and evolved treatments for sepsis-induced immunosuppression to enhance clinicians' understanding and practical application of immunotherapy in the management of sepsis.
Collapse
Affiliation(s)
- Fei Pei
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, 510080, China
| | - Bin Gu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, 510080, China
| | - Shu-Min Miao
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, 510080, China
| | - Xiang-Dong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, 510080, China
| | - Jian-Feng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, 510080, China.
| |
Collapse
|
22
|
Cai J, Nielsen MW, Kalogeropoulos K, auf dem Keller U, van der Plas MJ. Peptidomic analysis of endogenous and bacterial protease activity in human plasma and wound fluids. iScience 2024; 27:109005. [PMID: 38333691 PMCID: PMC10850760 DOI: 10.1016/j.isci.2024.109005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
Endogenous and bacterial proteases play important roles in wound healing and infection. Analysis of alterations in the low-molecular-weight peptidome by individual enzymes could therefore provide insight into proteolytic events occurring in wounds and may aid in the discovery of biomarkers. Using liquid chromatography with tandem mass spectrometry, we characterized the peptidome of plasma and acute wound fluids digested ex vivo with human (neutrophil elastase and cathepsin G) and bacterial proteases (Pseudomonas aeruginosa LasB and Staphyloccocus aureus V8). We identified over 100 protein targets for each enzyme and characterized enzyme specific peptides and cleavage patterns. Moreover, we found unique peptide regions in V8 digested samples that were also present in dressing extracts from S. aureus infected wounds. Finally, the work indicates that peptidomic analysis of qualitative differences of proteolytic activity of individual enzymes may aid in the discovery of potential diagnostic biomarkers for wound healing status.
Collapse
Affiliation(s)
- Jun Cai
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Maike W. Nielsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Ulrich auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mariena J.A. van der Plas
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
23
|
Zhou X, Shen X, Johnson JS, Spakowicz DJ, Agnello M, Zhou W, Avina M, Honkala A, Chleilat F, Chen SJ, Cha K, Leopold S, Zhu C, Chen L, Lyu L, Hornburg D, Wu S, Zhang X, Jiang C, Jiang L, Jiang L, Jian R, Brooks AW, Wang M, Contrepois K, Gao P, Schüssler-Fiorenza Rose SM, Binh Tran TD, Nguyen H, Celli A, Hong BY, Bautista EJ, Dorsett Y, Kavathas P, Zhou Y, Sodergren E, Weinstock GM, Snyder MP. Longitudinal profiling of the microbiome at four body sites reveals core stability and individualized dynamics during health and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.577565. [PMID: 38352363 PMCID: PMC10862915 DOI: 10.1101/2024.02.01.577565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
To understand dynamic interplay between the human microbiome and host during health and disease, we analyzed the microbial composition, temporal dynamics, and associations with host multi-omics, immune and clinical markers of microbiomes from four body sites in 86 participants over six years. We found that microbiome stability and individuality are body-site-specific and heavily influenced by the host. The stool and oral microbiome were more stable than the skin and nasal microbiomes, possibly due to their interaction with the host and environment. Also, we identified individual-specific and commonly shared bacterial taxa, with individualized taxa showing greater stability. Interestingly, microbiome dynamics correlated across body sites, suggesting systemic coordination influenced by host-microbial-environment interactions. Notably, insulin-resistant individuals showed altered microbial stability and associations between microbiome, molecular markers, and clinical features, suggesting their disrupted interaction in metabolic disease. Our study offers comprehensive views of multi-site microbial dynamics and their relationship with host health and disease. Study Highlights The stability of the human microbiome varies among individuals and body sites.Highly individualized microbial genera are more stable over time.At each of the four body sites, systematic interactions between the environment, the host and bacteria can be detected.Individuals with insulin resistance have lower microbiome stability, a more diversified skin microbiome, and significantly altered host-microbiome interactions.
Collapse
|
24
|
Liu K, Wang C, Zhou X, Guo X, Yang Y, Liu W, Zhao R, Song H. Bacteriophage therapy for drug-resistant Staphylococcus aureus infections. Front Cell Infect Microbiol 2024; 14:1336821. [PMID: 38357445 PMCID: PMC10864608 DOI: 10.3389/fcimb.2024.1336821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Drug-resistant Staphylococcus aureus stands as a prominent pathogen in nosocomial and community-acquired infections, capable of inciting various infections at different sites in patients. This includes Staphylococcus aureus bacteremia (SaB), which exhibits a severe infection frequently associated with significant mortality rate of approximately 25%. In the absence of better alternative therapies, antibiotics is still the main approach for treating infections. However, excessive use of antibiotics has, in turn, led to an increase in antimicrobial resistance. Hence, it is imperative that new strategies are developed to control drug-resistant S. aureus infections. Bacteriophages are viruses with the ability to infect bacteria. Bacteriophages, were used to treat bacterial infections before the advent of antibiotics, but were subsequently replaced by antibiotics due to limited theoretical understanding and inefficient preparation processes at the time. Recently, phages have attracted the attention of many researchers again because of the serious problem of antibiotic resistance. This article provides a comprehensive overview of phage biology, animal models, diverse clinical case treatments, and clinical trials in the context of drug-resistant S. aureus phage therapy. It also assesses the strengths and limitations of phage therapy and outlines the future prospects and research directions. This review is expected to offer valuable insights for researchers engaged in phage-based treatments for drug-resistant S. aureus infections.
Collapse
Affiliation(s)
- Kaixin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Chao Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xudong Zhou
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
- College of Public Health, China Medical University, Shenyang, China
| | - Xudong Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yi Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Wanying Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Rongtao Zhao
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Song
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
- College of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
25
|
Hynds H, Hines KM. MOCCal: A Multiomic CCS Calibrator for Traveling Wave Ion Mobility Mass Spectrometry. Anal Chem 2024; 96:1185-1194. [PMID: 38194410 PMCID: PMC10809277 DOI: 10.1021/acs.analchem.3c04290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Ion mobility mass spectrometry (IM-MS) is a rapid, gas-phase separation technology that can resolve ions on the basis of their size-to-charge and mass-to-charge ratios. Since each class of biomolecule has a unique relationship between size and mass, IM-MS spectra of complex biological samples are organized into trendlines that each contain one type of biomolecule (i.e., lipid, peptide, metabolite). These trendlines can aid in the identification of unknown ions by providing a general classification, while more specific identifications require the conversion of IM arrival times to collision cross section (CCS) values to minimize instrument-to-instrument variability. However, the process of converting IM arrival times to CCS values varies between the different IM devices. Arrival times from traveling wave ion mobility (TWIM) devices must undergo a calibration process to obtain CCS values, which can impart biases if the calibrants are not structurally similar to the analytes. For multiomic mixtures, several different types of calibrants must be used to obtain the most accurate CCS values from TWIM platforms. Here we describe the development of a multiomic CCS calibration tool, MOCCal, to automate the assignment of unknown features to the power law calibration that provides the most accurate CCS value. MOCCal calibrates every experimental arrival time with up to three class-specific calibration curves and uses the difference (in Å2) between the calibrated TWCCSN2 value and DTCCSN2 vs m/z regression lines to determine the best calibration curve. Using real and simulated multiomic samples, we demonstrate that MOCCal provides accurately calibrated TWCCSN2 values for small molecules, lipids, and peptides.
Collapse
Affiliation(s)
- Hannah
M. Hynds
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
| |
Collapse
|
26
|
Chang YT, Lin CY, Chen CJ, Hwang E, Alshetaili A, Yu HP, Fang JY. Neutrophil-targeted combinatorial nanosystems for suppressing bacteremia-associated hyperinflammation and MRSA infection to improve survival rates. Acta Biomater 2024; 174:331-344. [PMID: 38061677 DOI: 10.1016/j.actbio.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 01/02/2024]
Abstract
There is currently no specific and effective treatment for bacteremia-mediated sepsis. Hence, this study engineered a combinatorial nanosystem containing neutrophil-targeted roflumilast-loaded nanocarriers and non-targeted fusidic acid-loaded nanoparticles to enable the dual mitigation of bacteremia-associated inflammation and methicillin-resistant Staphylococcus aureus (MRSA) infection. The targeted nanoparticles were developed by conjugating anti-lymphocyte antigen 6 complex locus G6D (Ly6G) antibody fragment on the nanoparticulate surface. The particle size and zeta potential of the as-prepared nanosystem were about 200 nm and -25 mV, respectively. The antibody-conjugated nanoparticles showed a three-fold increase in neutrophil internalization compared to the unfunctionalized nanoparticles. As a selective phosphodiesterase (PDE) 4 inhibitor, the roflumilast in the nanocarriers largely inhibited cytokine/chemokine release from the activated neutrophils. The fusidic acid-loaded nanocarriers were vital to eliminate biofilm MRSA colony by 3 log units. The nanoparticles drastically decreased the intracellular bacterial count compared to the free antibiotic. The in vivo mouse bioimaging demonstrated prolonged retention of the nanosystem in the circulation with limited organ distribution and liver metabolism. In the mouse bacteremia model, the multifunctional nanosystem produced a 1‒2 log reduction of MRSA burden in peripheral organs and blood. The functionalized nanosystem arrested the cytokine/chemokine overexpression greater than the unfunctionalized nanocarriers and free drugs. The combinatory nanosystem also extended the median survival time from 50 to 103 h. No toxicity from the nanoformulation was found based on histology and serum biochemistry. Furthermore, our data proved that the active neutrophil targeting by the versatile nanosystem efficiently alleviated MRSA infection and organ dysfunction caused by bacteremia. STATEMENT OF SIGNIFICANCE: Bacteremia-mediated sepsis poses a significant challenge in clinical practice, as there is currently no specific and effective treatment available. In our study, we have developed a novel combinatorial nanosystem to address this issue. Our nanosystem consists of neutrophil-targeted roflumilast-loaded nanocarriers and non-targeted fusidic acid-loaded nanoparticles, enabling the simultaneous mitigation of bacteremia-associated inflammation and MRSA infection. Our nanosystem demonstrated the decreased neutrophil activation, effective inhibition of cytokine release, elimination of MRSA biofilm colonies, and reduced intracellular bacterial counts. In vivo experiments showed prolonged circulation, limited organ distribution, and increased survival rates in a mouse bacteremia model. Importantly, our nanosystem exhibited no toxicity based on comprehensive assessments.
Collapse
Affiliation(s)
- Yen-Tzu Chang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Cheng-Yu Lin
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chih-Jung Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
27
|
Sanchez C, Campeau A, Liu-Bryan R, Mikuls T, O'Dell J, Gonzalez D, Terkeltaub R. Sustained xanthine oxidase inhibitor treat to target urate lowering therapy rewires a tight inflammation serum protein interactome. RESEARCH SQUARE 2024:rs.3.rs-3770277. [PMID: 38260556 PMCID: PMC10802734 DOI: 10.21203/rs.3.rs-3770277/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Effective xanthine oxidoreductase inhibition (XOI) urate-lowering treatment (ULT) to target significantly reduces gout flare burden and synovitis between 1-2 years therapy, without clearing all monosodium urate crystal deposits. Paradoxically, treat to target ULT is associated with increased flare activity for at least 1 year in duration on average, before gout flare burden decreases. Since XOI has anti-inflammatory effects, we tested for biomarkers of sustained, effective ULT that alters gouty inflammation. Methods We characterized the proteome of febuxostat-treated murine bone marrow macrophages. Blood samples (baseline and 48 weeks ULT) were analyzed by unbiased proteomics in febuxostat and allopurinol ULT responders from two, independent, racially and ethnically distinct comparative effectiveness trial cohorts (n=19, n=30). STRING-db and multivariate analyses supplemented determinations of significantly altered proteins via Wilcoxon matched pairs signed rank testing. Results The proteome of cultured IL-1b-stimulated macrophages revealed febuxostat-induced anti-inflammatory changes, including for classical and alternative pathway complement activation pathways. At 48 weeks ULT, with altered purine metabolism confirmed by serum metabolomics, serum urate dropped >30%, to normal (<6.8 mg/dL) in all the studied patients. Overall, flares declined from baseline. Treated gout patient sera and peripheral blood mononuclear cells (PBMCs) showed significantly altered proteins (p<0.05) in clustering and proteome networks. CRP was not a useful therapy response biomarker. By comparison, significant serum proteome changes included decreased complement C8 heterotrimer C8A and C8G chains essential for C5b-9 membrane attack complex assembly and function; increase in the NLRP3 inflammasome activation promoter vimentin; increased urate crystal phagocytosis inhibitor sCD44; increased gouty inflammation pro-resolving mediator TGFB1; decreased phagocyte-recruiting chemokine PPBP/CXCL7, and increased monocyte/macrophage-expressed keratin-related proteins (KRT9,14,16) further validated by PBMC proteomics. STRING-db analyses of significantly altered serum proteins from both cohorts revealed a tight interactome network including central mediators of gouty inflammation (eg, IL-1B, CXCL8, IL6, C5). Conclusions Rewiring of inflammation mediators in a tight serum protein interactome was a biomarker of sustained XOI-based ULT that effectively reduced serum urate and gout flares. Monitoring of the serum and PBMC proteome, including for changes in the complement pathway could help determine onset and targets of anti-inflammatory changes in response to effective, sustained XOI-based ULT.Trial Registration: ClinicalTrials.gov Identifier: NCT02579096.
Collapse
|
28
|
Nicholas-Haizelden K, Murphy B, Hoptroff M, Horsburgh MJ. Bioprospecting the Skin Microbiome: Advances in Therapeutics and Personal Care Products. Microorganisms 2023; 11:1899. [PMID: 37630459 PMCID: PMC10456854 DOI: 10.3390/microorganisms11081899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Bioprospecting is the discovery and exploration of biological diversity found within organisms, genetic elements or produced compounds with prospective commercial or therapeutic applications. The human skin is an ecological niche which harbours a rich and compositional diversity microbiome stemming from the multifactorial interactions between the host and microbiota facilitated by exploitable effector compounds. Advances in the understanding of microbial colonisation mechanisms alongside species and strain interactions have revealed a novel chemical and biological understanding which displays applicative potential. Studies elucidating the organismal interfaces and concomitant understanding of the central processes of skin biology have begun to unravel a potential wealth of molecules which can exploited for their proposed functions. A variety of skin-microbiome-derived compounds display prospective therapeutic applications, ranging from antioncogenic agents relevant in skin cancer therapy to treatment strategies for antimicrobial-resistant bacterial and fungal infections. Considerable opportunities have emerged for the translation to personal care products, such as topical agents to mitigate various skin conditions such as acne and eczema. Adjacent compound developments have focused on cosmetic applications such as reducing skin ageing and its associated changes to skin properties and the microbiome. The skin microbiome contains a wealth of prospective compounds with therapeutic and commercial applications; however, considerable work is required for the translation of in vitro findings to relevant in vivo models to ensure translatability.
Collapse
Affiliation(s)
- Keir Nicholas-Haizelden
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| | - Barry Murphy
- Unilever Research & Development, Port Sunlight, Wirral CH63 3JW, UK; (B.M.); (M.H.)
| | - Michael Hoptroff
- Unilever Research & Development, Port Sunlight, Wirral CH63 3JW, UK; (B.M.); (M.H.)
| | - Malcolm J. Horsburgh
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| |
Collapse
|
29
|
Scott AM, Karlsson C, Mohanty T, Hartman E, Vaara ST, Linder A, Malmström J, Malmström L. Generalized precursor prediction boosts identification rates and accuracy in mass spectrometry based proteomics. Commun Biol 2023; 6:628. [PMID: 37301900 PMCID: PMC10257694 DOI: 10.1038/s42003-023-04977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Data independent acquisition mass spectrometry (DIA-MS) has recently emerged as an important method for the identification of blood-based biomarkers. However, the large search space required to identify novel biomarkers from the plasma proteome can introduce a high rate of false positives that compromise the accuracy of false discovery rates (FDR) using existing validation methods. We developed a generalized precursor scoring (GPS) method trained on 2.75 million precursors that can confidently control FDR while increasing the number of identified proteins in DIA-MS independent of the search space. We demonstrate how GPS can generalize to new data, increase protein identification rates, and increase the overall quantitative accuracy. Finally, we apply GPS to the identification of blood-based biomarkers and identify a panel of proteins that are highly accurate in discriminating between subphenotypes of septic acute kidney injury from undepleted plasma to showcase the utility of GPS in discovery DIA-MS proteomics.
Collapse
Affiliation(s)
- Aaron M Scott
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Christofer Karlsson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Tirthankar Mohanty
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Erik Hartman
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Suvi T Vaara
- Division of Anaesthesia and Intensive Care Medicine Department of Surgery, Intensive Care Units, Helsinki University Central Hospital, Box 340, 00029 HUS, Helsinki, Finland
| | - Adam Linder
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lars Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
30
|
Huang L, Liu C, Li Z, Huang X, Zheng R, Shi Z, Hong X, Qin Y, Liu G. Characteristics of Virulent ST5-SCC mec II Methicillin-Resistant Staphylococcus aureus Prevalent in a Surgery Ward. Infect Drug Resist 2023; 16:3487-3495. [PMID: 37293535 PMCID: PMC10244206 DOI: 10.2147/idr.s410330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
Objective To investigate the transmission pathway of a MRSA prevalence in a pancreatic surgery ward in a Chinese teaching hospital. Methods Molecular epidemiology investigations were carried out combined PFGE, MLST, SCCmec typing and whole-genome sequencing for 20 successive MRSA isolates (2 isolates from the ward environment). Resistance and virulence genes were detected using specific PCR. Bacterial identification and AST were performed using the Vitek 2 Compact System. Clinical data of enrolled cases were retrieved from electronic case records. Results From January 2020 to May 2020, successive isolated 20 MRSA strains were clarified to 2 PFGE patterns (A = 19, B = 1) in the ward. Both isolates from environment and patients belonged to sequence type ST5-SCCmec II-spa type t311. MRSA-related resistance genes mecA, blaZ, ermA, ant(4')-Ia and norA were found in each clone. All 20 isolates carried tst, hlg, hla, eta, eap, fnbA and seo virulence genes, other virulence genes such as sea, sec, seb, seg, sei, sem, sen, ebpS and fnbB were also found in partial stains. All patients had fever symptom, 27.8% were accompanied by diarrhea, 88.9% had undergone surgery or invasive procedures within 30 days. Finally, 94.4% of these patients recovered. Conclusion This study confirmed a prevalence of ST5-MRSA-II-t311 clone in a surgery ward, indicated MRSA is a risk factor for post-surgery nosocomial infection and hand hygiene and environmental surveillance should not be ignored.
Collapse
Affiliation(s)
- Lei Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Branch of National Clinical Research Center for Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Chengcheng Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Branch of National Clinical Research Center for Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhanjie Li
- Department of Infection Control, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xu Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Laboratory Medicine, the Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ruiying Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Branch of National Clinical Research Center for Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhixin Shi
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Branch of National Clinical Research Center for Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xin Hong
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Branch of National Clinical Research Center for Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yufeng Qin
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Genyan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Branch of National Clinical Research Center for Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
31
|
Jiang X, Liu X, Qu X, Zhu P, Wo F, Xu X, Jin J, He Q, Wu J. Integration of metabolomics and peptidomics reveals distinct molecular landscape of human diabetic kidney disease. Theranostics 2023; 13:3188-3203. [PMID: 37351171 PMCID: PMC10283058 DOI: 10.7150/thno.80435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/17/2023] [Indexed: 06/24/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common microvascular complication of diabetes, and there is an urgent need to discover reliable biomarkers for early diagnosis. Here, we established an effective urine multi-omics platform and integrated metabolomics and peptidomics to investigate the biological changes during DKD pathogenesis. Methods: Totally 766 volunteers (221 HC, 198 T2DM, 175 early DKD, 125 overt DKD, and 47 grey-zone T2DM patients with abnormal urinary mALB concentration) were included in this study. Non-targeted metabolic fingerprints of urine samples were acquired on matrix-free LDI-MS platform by the tip-contact extraction method using fluorinated ethylene propylene coated silicon nanowires chips (FEP@SiNWs), while peptide profiles hidden in urine samples were uncovered by MALDI-TOF MS after capturing urine peptides by porous silicon microparticles. Results: After multivariate analysis, ten metabolites and six peptides were verified to be stepwise regulated in different DKD stages. The altered metabolic pathways and biological processes associated with the DKD pathogenesis were concentrated in amino acid metabolism and cellular protein metabolic process, which were supported by renal transcriptomics. Interestingly, multi-omics significantly increased the diagnostic accuracy for both early DKD diagnosis and DKD status discrimination. Combined with machine learning, a stepwise prediction model was constructed and 89.9% of HC, 75.5% of T2DM, 69.6% of early DKD and 75.7% of overt DKD subjects in the external validation cohort were correctly classified. In addition, 87.5% of grey-zone patients were successfully distinguished from T2DM patients. Conclusion: This multi-omics platform displayed a satisfactory ability to explore molecular information and provided a new insight for establishing effective DKD management.
Collapse
Affiliation(s)
- Xinrong Jiang
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xingyue Liu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xuetong Qu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Pingya Zhu
- Well-healthcare Technologies Co., Hangzhou, 310051, China
| | - Fangjie Wo
- Well-healthcare Technologies Co., Hangzhou, 310051, China
| | - Xinran Xu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Juan Jin
- Department of Nephrology, The First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital of Hangzhou Medical College, Hangzhou, 311300, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, 310006, China
| | - Jianmin Wu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
32
|
Kunkl M, Amormino C, Spallotta F, Caristi S, Fiorillo MT, Paiardini A, Kaempfer R, Tuosto L. Bivalent binding of staphylococcal superantigens to the TCR and CD28 triggers inflammatory signals independently of antigen presenting cells. Front Immunol 2023; 14:1170821. [PMID: 37207220 PMCID: PMC10189049 DOI: 10.3389/fimmu.2023.1170821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Staphylococcus aureus superantigens (SAgs) such as staphylococcal enterotoxin A (SEA) and B (SEB) are potent toxins stimulating T cells to produce high levels of inflammatory cytokines, thus causing toxic shock and sepsis. Here we used a recently released artificial intelligence-based algorithm to better elucidate the interaction between staphylococcal SAgs and their ligands on T cells, the TCR and CD28. The obtained computational models together with functional data show that SEB and SEA are able to bind to the TCR and CD28 stimulating T cells to activate inflammatory signals independently of MHC class II- and B7-expressing antigen presenting cells. These data reveal a novel mode of action of staphylococcal SAgs. By binding to the TCR and CD28 in a bivalent way, staphylococcal SAgs trigger both the early and late signalling events, which lead to massive inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Silvana Caristi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Raymond Kaempfer
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Loretta Tuosto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
33
|
Elsaid K, Merriman TR, Rossitto LA, Liu-Bryan R, Karsh J, Phipps-Green A, Jay GD, Elsayed S, Qadri M, Miner M, Cadzow M, Dambruoso TJ, Schmidt TA, Dalbeth N, Chhana A, Höglund J, Ghassemian M, Campeau A, Maltez N, Karlsson NG, Gonzalez DJ, Terkeltaub R. Amplification of Inflammation by Lubricin Deficiency Implicated in Incident, Erosive Gout Independent of Hyperuricemia. Arthritis Rheumatol 2023; 75:794-805. [PMID: 36457235 PMCID: PMC10191887 DOI: 10.1002/art.42413] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022]
Abstract
OBJECTIVE In gout, hyperuricemia promotes urate crystal deposition, which stimulates the NLRP3 inflammasome and interleukin-1β (IL-1β)-mediated arthritis. Incident gout without background hyperuricemia is rarely reported. To identify hyperuricemia-independent mechanisms driving gout incidence and progression, we characterized erosive urate crystalline inflammatory arthritis in a young female patient with normouricemia diagnosed as having sufficient and weighted classification criteria for gout according to the American College of Rheumatology (ACR)/EULAR gout classification criteria (the proband). METHODS We conducted whole-genome sequencing, quantitative proteomics, whole-blood RNA-sequencing analysis using serum samples from the proband. We used a mouse model of IL-1β-induced knee synovitis to characterize proband candidate genes, biomarkers, and pathogenic mechanisms of gout. RESULTS Lubricin level was attenuated in human proband serum and associated with elevated acute-phase reactants and inflammatory whole-blood transcripts and transcriptional pathways. The proband had predicted damaging gene variants of NLRP3 and of inter-α trypsin inhibitor heavy chain 3, an inhibitor of lubricin-degrading cathepsin G. Changes in the proband's serum protein interactome network supported enhanced lubricin degradation, with cathepsin G activity increased relative to its inhibitors, SERPINB6 and thrombospondin 1. Activation of Toll-like receptor 2 (TLR-2) suppressed levels of lubricin mRNA and lubricin release in cultured human synovial fibroblasts (P < 0.01). Lubricin blunted urate crystal precipitation and IL-1β induction of xanthine oxidase and urate in cultured macrophages (P < 0.001). In lubricin-deficient mice, injection of IL-1β in knees increased xanthine oxidase-positive synovial resident M1 macrophages (P < 0.05). CONCLUSION Our findings linked normouricemic erosive gout to attenuated lubricin, with impaired control of cathepsin G activity, compounded by deleterious NLRP3 variants. Lubricin suppressed monosodium urate crystallization and blunted IL-1β-induced increases in xanthine oxidase and urate in macrophages. The collective activities of articular lubricin that could limit incident and erosive gouty arthritis independently of hyperuricemia are subject to disruption by inflammation, activated cathepsin G, and synovial fibroblast TLR-2 signaling.
Collapse
Affiliation(s)
- Khaled Elsaid
- Chapman University School of Pharmacy, Irvine, California
| | - Tony R Merriman
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, and Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Leigh-Ana Rossitto
- Department of Pharmacology, School of Medicine, and Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, California
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, San Diego, and Department of Medicine, UC San Diego, La Jolla, California
| | - Jacob Karsh
- The Ottawa Hospital, Division of Rheumatology, University of Ottawa, Canada
| | | | - Gregory D Jay
- Department of Emergency Medicine, Alpert School of Medicine, and Division of Biomedical Engineering, School of Engineering, Brown University, Rhode, Island
| | - Sandy Elsayed
- Chapman University School of Pharmacy, Irvine, California
| | | | - Marin Miner
- VA San Diego Healthcare System, San Diego, California
| | - Murray Cadzow
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Talia J Dambruoso
- Division of Biomedical Engineering, School of Engineering, Brown University, Rhode, Island
| | - Tannin A Schmidt
- Biomedical Engineering Department, School of Dental Medicine, UConn Health, Farmington, Connecticut
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Ashika Chhana
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Jennifer Höglund
- Department of Medical Biochemistry, Institute for Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Majid Ghassemian
- Biomolecular and Proteomics Mass Spectrometry Facility, Department of Chemistry/Biochemistry, UC San Diego
| | - Anaamika Campeau
- Department of Pharmacology, School of Medicine, and Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, California
| | - Nancy Maltez
- The Ottawa Hospital, Division of Rheumatology, University of Ottawa, Canada
| | - Niclas G Karlsson
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway, and Department of Medical Biochemistry, Institute for Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - David J Gonzalez
- Department of Pharmacology, School of Medicine, and Skaggs School of Pharmacy and Pharmaceutical Sciences, Collaborative Center for Multiplexed Proteomics, Program for Integrative Omics and Data Science in Disease Prevention and Therapeutics, UC San Diego, La Jolla, California
| | - Robert Terkeltaub
- VA San Diego Healthcare System and Department of Medicine, UC San Diego
| |
Collapse
|
34
|
Du K, Zhai C, Li X, Gang H, Gao X. Feature-Based Molecular Networking Facilitates the Comprehensive Identification of Differential Metabolites in Diabetic Cognitive Dysfunction Rats. Metabolites 2023; 13:metabo13040538. [PMID: 37110195 PMCID: PMC10142102 DOI: 10.3390/metabo13040538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Cognitive dysfunction is a frequent complication of type 2 diabetes mellitus (T2DM), usually accompanied by metabolic disorders. However, the metabolic changes in diabetic cognitive dysfunction (DCD) patients, especially compared to T2DM groups, are not fully understood. Due to the subtle differences in metabolic alterations between DCD groups and T2DM groups, the comprehensive detection of the untargeted metabolic profiles of hippocampus and urine samples of rats was conducted by LC-MS, considering the different ionization modes and polarities of the examined compounds, and feature-based molecular networking (FBMN) was performed to help identify differential metabolites from a comprehensive perspective in this study. In addition, an association analysis of the differential metabolites in hippocampus and urine was conducted by the O2PLS model. Finally, a total of 71 hippocampal tissue differential metabolites and 179 urine differential metabolites were identified. The pathway enrichment results showed that glutamine and glutamate metabolism, alanine, aspartate, and glutamate metabolism, glycerol phospholipid metabolism, TCA cycle, and arginine biosynthesis in the hippocampus of DCD animals were changed. Seven metabolites (AUC > 0.9) in urine appeared as key differential metabolites that might reflect metabolic changes in the target tissue of DCD rats. This study showed that FBMN facilitated the comprehensive identification of differential metabolites in DCD rats. The differential metabolites may suggest an underlying DCD and be considered as potential biomarkers for DCD. Large samples and clinical experiments are needed for the subsequent elucidation of the possible mechanisms leading to these alterations and the verification of potential biomarkers.
Collapse
Affiliation(s)
- Ke Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Chuanjia Zhai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Xuejiao Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Hongchuan Gang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Xiaoyan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| |
Collapse
|
35
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 203] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
36
|
Fu J, Zhu F, Xu CJ, Li Y. Metabolomics meets systems immunology. EMBO Rep 2023; 24:e55747. [PMID: 36916532 PMCID: PMC10074123 DOI: 10.15252/embr.202255747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/24/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Metabolic processes play a critical role in immune regulation. Metabolomics is the systematic analysis of small molecules (metabolites) in organisms or biological samples, providing an opportunity to comprehensively study interactions between metabolism and immunity in physiology and disease. Integrating metabolomics into systems immunology allows the exploration of the interactions of multilayered features in the biological system and the molecular regulatory mechanism of these features. Here, we provide an overview on recent technological developments of metabolomic applications in immunological research. To begin, two widely used metabolomics approaches are compared: targeted and untargeted metabolomics. Then, we provide a comprehensive overview of the analysis workflow and the computational tools available, including sample preparation, raw spectra data preprocessing, data processing, statistical analysis, and interpretation. Third, we describe how to integrate metabolomics with other omics approaches in immunological studies using available tools. Finally, we discuss new developments in metabolomics and its prospects for immunology research. This review provides guidance to researchers using metabolomics and multiomics in immunity research, thus facilitating the application of systems immunology to disease research.
Collapse
Affiliation(s)
- Jianbo Fu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Cao J, Xiao Y, Zhang M, Huang L, Wang Y, Liu W, Wang X, Wu J, Huang Y, Wang R, Zhou L, Li L, Zhang Y, Ren L, Qian K, Wang J. Deep Learning of Dual Plasma Fingerprints for High-Performance Infection Classification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206349. [PMID: 36470664 DOI: 10.1002/smll.202206349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Infection classification is the key for choosing the proper treatment plans. Early determination of the causative agents is critical for disease control. Host responses analysis can detect variform and sensitive host inflammatory responses to ascertain the presence and type of the infection. However, traditional host-derived inflammatory indicators are insufficient for clinical infection classification. Fingerprints-based omic analysis has attracted increasing attention globally for analyzing the complex host systemic immune response. A single type of fingerprints is not applicable for infection classification (area under curve (AUC) of 0.550-0.617). Herein, an infection classification platform based on deep learning of dual plasma fingerprints (DPFs-DL) is developed. The DPFs with high reproducibility (coefficient of variation <15%) are obtained at low sample consumption (550 nL native plasma) using inorganic nanoparticle and organic matrix assisted laser desorption/ionization mass spectrometry. A classifier (DPFs-DL) for viral versus bacterial infection discrimination (AUC of 0.775) and coronavirus disease 2019 (COVID-2019) diagnosis (AUC of 0.917) is also built. Furthermore, a metabolic biomarker panel of two differentially regulated metabolites, which may serve as potential biomarkers for COVID-19 management (AUC of 0.677-0.883), is constructed. This study will contribute to the development of precision clinical care for infectious diseases.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yan Xiao
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Mengji Zhang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Lin Huang
- Country Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Ying Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Wanshan Liu
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Xinming Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Jiao Wu
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Yida Huang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Ruimin Wang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Li Zhou
- Beijing health biotech co. Ltd, Beijing, 100193, P. R. China
| | - Lin Li
- Beijing health biotech co. Ltd, Beijing, 100193, P. R. China
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P. R. China
| |
Collapse
|
38
|
Howden BP, Giulieri SG, Wong Fok Lung T, Baines SL, Sharkey LK, Lee JYH, Hachani A, Monk IR, Stinear TP. Staphylococcus aureus host interactions and adaptation. Nat Rev Microbiol 2023; 21:380-395. [PMID: 36707725 PMCID: PMC9882747 DOI: 10.1038/s41579-023-00852-y] [Citation(s) in RCA: 211] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 01/28/2023]
Abstract
Invasive Staphylococcus aureus infections are common, causing high mortality, compounded by the propensity of the bacterium to develop drug resistance. S. aureus is an excellent case study of the potential for a bacterium to be commensal, colonizing, latent or disease-causing; these states defined by the interplay between S. aureus and host. This interplay is multidimensional and evolving, exemplified by the spread of S. aureus between humans and other animal reservoirs and the lack of success in vaccine development. In this Review, we examine recent advances in understanding the S. aureus-host interactions that lead to infections. We revisit the primary role of neutrophils in controlling infection, summarizing the discovery of new immune evasion molecules and the discovery of new functions ascribed to well-known virulence factors. We explore the intriguing intersection of bacterial and host metabolism, where crosstalk in both directions can influence immune responses and infection outcomes. This Review also assesses the surprising genomic plasticity of S. aureus, its dualism as a multi-mammalian species commensal and opportunistic pathogen and our developing understanding of the roles of other bacteria in shaping S. aureus colonization.
Collapse
Affiliation(s)
- Benjamin P. Howden
- grid.1008.90000 0001 2179 088XCentre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.410678.c0000 0000 9374 3516Department of Infectious Diseases, Austin Health, Heidelberg, Victoria Australia ,grid.416153.40000 0004 0624 1200Microbiology Department, Royal Melbourne Hospital, Melbourne, Victoria Australia
| | - Stefano G. Giulieri
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.416153.40000 0004 0624 1200Victorian Infectious Diseases Service, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Tania Wong Fok Lung
- grid.21729.3f0000000419368729Department of Paediatrics, Columbia University, New York, NY USA
| | - Sarah L. Baines
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Liam K. Sharkey
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Jean Y. H. Lee
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.419789.a0000 0000 9295 3933Department of Infectious Diseases, Monash Health, Clayton, Victoria Australia
| | - Abderrahman Hachani
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Ian R. Monk
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Timothy P. Stinear
- grid.1008.90000 0001 2179 088XCentre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| |
Collapse
|
39
|
Gao Z, Zhou W, Lv X, Wang X. Metabolomics as a Critical Tool for Studying Clinical Surgery. Crit Rev Anal Chem 2023; 54:2245-2258. [PMID: 36592066 DOI: 10.1080/10408347.2022.2162810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metabolomics enables the analysis of metabolites within an organism, which offers the closest direct measurement of the physiological activity of the organism, and has advanced efforts to characterize metabolic states, identify biomarkers, and investigate metabolic pathways. A high degree of innovation in analytical techniques has promoted the application of metabolomics, especially in the study of clinical surgery. Metabolomics can be employed as a clinical testing method to maximize therapeutic outcomes, and has been applied in rapid diagnosis of diseases, timely postoperative monitoring, prognostic assessment, and personalized medicine. This review focuses on the use of mass spectrometry and nuclear magnetic resonance-based metabolomics in clinical surgery, including identifying metabolic changes before and after surgery, finding disease-associated biomarkers, and exploring the potential of personalized therapy. Challenges and opportunities of metabolomics in organ transplantation are also discussed, with a particular emphasis on metabolomics in donor organ evaluation and protection, prognostic outcome prediction, as well as postoperative adverse reaction monitoring. In the end, current limitations of metabolomics in clinical surgery and future research directions are presented.
Collapse
Affiliation(s)
- Zhenye Gao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Wenxiu Zhou
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xiaoyuan Lv
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xin Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
40
|
Intracellular infection-responsive release of NO and peptides for synergistic bacterial eradication. J Control Release 2022; 352:87-97. [PMID: 36243236 DOI: 10.1016/j.jconrel.2022.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/14/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Bacteria have the ability to invade and survive in host cells to form intracellular bacteria (ICBs), and challenges remain in the intracellular delivery of sufficient antibiotics to remove ICBs. Herein, antimicrobial peptide of epsilon-poly-l-lysine (ePL) and nitric oxide (NO) donors are integrated into nanoparticles (NPs) for ICB treatment without using any antibiotics. ePL was grafted with dodecyl alcohol through ethyl dichlorophosphate to prepare ePL-C12, followed by conjugation of nitrate-functionalized NO donors to obtain ePL-C12NO. PNO/C NPs were prepared from mixtures of ePL-C12NO and ePL-C12 and the optimal ePL-C12NO ratio was 7% in terms of bactericidal effect and macrophage toxicity. Once being engulfed by bacteria-infected macrophages (BIMs), NPs are disintegrated when encountering with ICB-secreted phosphatase, and the NP degradation accelerates intracellular NO release in response to the elevated glutathione levels in BIMs. The selective and abrupt release of NO and ePL with different antimicrobial mechanisms exhibits synergistic eradication of ICBs and no apparent toxicity to macrophages. ICB-infected mice show persistent weight loss and 100% of mortality rate after treatment with ePL-C12 NPs for 7 days, while PNO/C treatment causes entire survival of infected mice and full recovery of body weights to normal values. ICB-infected mice are also accompanied with apparent hepatomegaly and splenomegaly, which are only eliminated by PNO/C treatment without associated any pathological abnormality. PNO/C treatment reduces bacterial burdens in livers (2.45 log), spleens (2.16 log) and kidneys (3.46 log) and restores hepatic and renal function to normal levels. Thus, this study provides a feasible strategy to selectively release NO and cationic peptides in response to intracellular infection-derived signals, achieving synergistic eradication of ICBs and function restoration of the main tissues.
Collapse
|
41
|
Holland TL, Bayer AS, Fowler VG. Persistent Methicilin-Resistant Staphylococcus aureus Bacteremia: Resetting the Clock for Optimal Management. Clin Infect Dis 2022; 75:1668-1674. [PMID: 35535790 PMCID: PMC9617577 DOI: 10.1093/cid/ciac364] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 01/25/2023] Open
Abstract
A positive follow-up blood culture for methicillin-resistant Staphylococcus aureus (MRSA) while on seemingly appropriate therapy is a common and ominous development. However, the definition and management of persistent MRSA bacteremia is unstandardized. In this Opinion Paper, we identify the presence of bacteremia for > 1 calendar day as a "worry point" that should trigger an intensive diagnostic evaluation to identify metastatic infection sites. Next, we define the duration of MRSA bacteremia that likely constitutes antibiotic failure and outline a potential management algorithm for such patients. Finally, we propose pragmatic clinical trial designs to test treatment strategies for persistent MRSA bacteremia.
Collapse
Affiliation(s)
- Thomas L Holland
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Arnold S Bayer
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, Torrance, California, USA
- The Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Vance G Fowler
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| |
Collapse
|
42
|
Fakouri Baygi S, Banerjee SK, Chakraborty P, Kumar Y, Barupal DK. IDSL.UFA Assigns High-Confidence Molecular Formula Annotations for Untargeted LC/HRMS Data Sets in Metabolomics and Exposomics. Anal Chem 2022; 94:13315-13322. [PMID: 36137231 PMCID: PMC9682628 DOI: 10.1021/acs.analchem.2c00563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Untargeted liquid chromatography/high-resolution mass spectrometry (LC/HRMS) assays in metabolomics and exposomics aim to characterize the small molecule chemical space in a biospecimen. To gain maximum biological insights from these data sets, LC/HRMS peaks should be annotated with chemical and functional information including molecular formula, structure, chemical class, and metabolic pathways. Among these, molecular formulas may be assigned to LC/HRMS peaks through matching theoretical and observed isotopic profiles (MS1) of the underlying ionized compound. For this, we have developed the Integrated Data Science Laboratory for Metabolomics and Exposomics-United Formula Annotation (IDSL.UFA) R package. In the untargeted metabolomics validation tests, IDSL.UFA assigned 54.31-85.51% molecular formula for true positive annotations as the top hit and 90.58-100% within the top five hits. Molecular formula annotations were also supported by tandem mass spectrometry data. We have implemented new strategies to (1) generate formula sources and their theoretical isotopic profiles, (2) optimize the formula hits ranking for the individual and aligned peak lists, and (3) scale IDSL.UFA-based workflows for studies with larger sample sizes. Annotating the raw data for a publicly available pregnancy metabolome study using IDSL.UFA highlighted hundreds of new pregnancy-related compounds and also suggested the presence of chlorinated perfluorotriether alcohols (Cl-PFTrEAs) in human specimens. IDSL.UFA is useful for human metabolomics and exposomics studies where we need to minimize the loss of biological insights in untargeted LC/HRMS data sets. The IDSL.UFA package is available in the R CRAN repository https://cran.r-project.org/package=IDSL.UFA. Detailed documentation and tutorials are also provided at www.ufa.idsl.me.
Collapse
Affiliation(s)
- Sadjad Fakouri Baygi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sanjay K Banerjee
- Non-communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Praloy Chakraborty
- Non-communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Yashwant Kumar
- Non-communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Dinesh Kumar Barupal
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA,Corresponding author: Address: CAM Building, 3rd floor, 17 E 102nd St, New York, NY 10029 , phone: +1-530-979-4354
| |
Collapse
|
43
|
Sorrentino JT, Golden GJ, Morris C, Painter CD, Nizet V, Campos AR, Smith JW, Karlsson C, Malmström J, Lewis NE, Esko JD, Gómez Toledo A. Vascular Proteome Responses Precede Organ Dysfunction in a Murine Model of Staphylococcus aureus Bacteremia. mSystems 2022; 7:e0039522. [PMID: 35913192 PMCID: PMC9426442 DOI: 10.1128/msystems.00395-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/16/2022] [Indexed: 12/24/2022] Open
Abstract
Vascular dysfunction and organ failure are two distinct, albeit highly interconnected, clinical outcomes linked to morbidity and mortality in human sepsis. The mechanisms driving vascular and parenchymal damage are dynamic and display significant molecular cross talk between organs and tissues. Therefore, assessing their individual contribution to disease progression is technically challenging. Here, we hypothesize that dysregulated vascular responses predispose the organism to organ failure. To address this hypothesis, we have evaluated four major organs in a murine model of Staphylococcus aureus sepsis by combining in vivo labeling of the endothelial cell surface proteome, data-independent acquisition (DIA) mass spectrometry, and an integrative computational pipeline. The data reveal, with unprecedented depth and throughput, that a septic insult evokes organ-specific proteome responses that are highly compartmentalized, synchronously coordinated, and significantly correlated with the progression of the disease. These responses include abundant vascular shedding, dysregulation of the intrinsic pathway of coagulation, compartmentalization of the acute phase response, and abundant upregulation of glycocalyx components. Vascular cell surface proteome changes were also found to precede bacterial invasion and leukocyte infiltration into the organs, as well as to precede changes in various well-established cellular and biochemical correlates of systemic coagulopathy and tissue dysfunction. Importantly, our data suggest a potential role for the vascular proteome as a determinant of the susceptibility of the organs to undergo failure during sepsis. IMPORTANCE Sepsis is a life-threatening response to infection that results in immune dysregulation, vascular dysfunction, and organ failure. New methods are needed for the identification of diagnostic and therapeutic targets. Here, we took a systems-wide approach using data-independent acquisition (DIA) mass spectrometry to track the progression of bacterial sepsis in the vasculature leading to organ failure. Using a murine model of S. aureus sepsis, we were able to quantify thousands of proteins across the plasma and parenchymal and vascular compartments of multiple organs in a time-resolved fashion. We showcase the profound proteome remodeling triggered by sepsis over time and across these compartments. Importantly, many vascular proteome alterations precede changes in traditional correlates of organ dysfunction, opening a molecular window for the discovery of early markers of sepsis progression.
Collapse
Affiliation(s)
- James T. Sorrentino
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Gregory J. Golden
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
| | - Claire Morris
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
| | - Chelsea D. Painter
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Alexandre Rosa Campos
- The Cancer Center and The Inflammatory and Infectious Disease Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jeffrey W. Smith
- The Cancer Center and The Inflammatory and Infectious Disease Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Christofer Karlsson
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, BMC, Lund, Sweden
| | - Johan Malmström
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, BMC, Lund, Sweden
| | - Nathan E. Lewis
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- National Biologics Facility, Technical University of Denmark, Krogens-Lyngby, Denmark
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
| | - Alejandro Gómez Toledo
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, BMC, Lund, Sweden
| |
Collapse
|
44
|
Li F, Yin J, Lu M, Yang Q, Zeng Z, Zhang B, Li Z, Qiu Y, Dai H, Chen Y, Zhu F. ConSIG: consistent discovery of molecular signature from OMIC data. Brief Bioinform 2022; 23:6618243. [PMID: 35758241 DOI: 10.1093/bib/bbac253] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
The discovery of proper molecular signature from OMIC data is indispensable for determining biological state, physiological condition, disease etiology, and therapeutic response. However, the identified signature is reported to be highly inconsistent, and there is little overlap among the signatures identified from different biological datasets. Such inconsistency raises doubts about the reliability of reported signatures and significantly hampers its biological and clinical applications. Herein, an online tool, ConSIG, was constructed to realize consistent discovery of gene/protein signature from any uploaded transcriptomic/proteomic data. This tool is unique in a) integrating a novel strategy capable of significantly enhancing the consistency of signature discovery, b) determining the optimal signature by collective assessment, and c) confirming the biological relevance by enriching the disease/gene ontology. With the increasingly accumulated concerns about signature consistency and biological relevance, this online tool is expected to be used as an essential complement to other existing tools for OMIC-based signature discovery. ConSIG is freely accessible to all users without login requirement at https://idrblab.org/consig/.
Collapse
Affiliation(s)
- Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingkun Lu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qingxia Yang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhenyu Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Bing Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Haibin Dai
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuzong Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
45
|
Yow HY, Govindaraju K, Lim AH, Abdul Rahim N. Optimizing Antimicrobial Therapy by Integrating Multi-Omics With Pharmacokinetic/Pharmacodynamic Models and Precision Dosing. Front Pharmacol 2022; 13:915355. [PMID: 35814236 PMCID: PMC9260690 DOI: 10.3389/fphar.2022.915355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
In the era of “Bad Bugs, No Drugs,” optimizing antibiotic therapy against multi-drug resistant (MDR) pathogens is crucial. Mathematical modelling has been employed to further optimize dosing regimens. These models include mechanism-based PK/PD models, systems-based models, quantitative systems pharmacology (QSP) and population PK models. Quantitative systems pharmacology has significant potential in precision antimicrobial chemotherapy in the clinic. Population PK models have been employed in model-informed precision dosing (MIPD). Several antibiotics require close monitoring and dose adjustments in order to ensure optimal outcomes in patients with infectious diseases. Success or failure of antibiotic therapy is dependent on the patient, antibiotic and bacterium. For some drugs, treatment responses vary greatly between individuals due to genotype and disease characteristics. Thus, for these drugs, tailored dosing is required for successful therapy. With antibiotics, inappropriate dosing such as insufficient dosing may put patients at risk of therapeutic failure which could lead to mortality. Conversely, doses that are too high could lead to toxicities. Hence, precision dosing which customizes doses to individual patients is crucial for antibiotics especially those with a narrow therapeutic index. In this review, we discuss the various strategies in optimizing antimicrobial therapy to address the challenges in the management of infectious diseases and delivering personalized therapy.
Collapse
Affiliation(s)
- Hui-Yin Yow
- Faculty of Health and Medical Sciences, School of Pharmacy, Taylor’s University, Subang Jaya, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Kayatri Govindaraju
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Audrey Huili Lim
- Centre for Clinical Outcome Research (CCORE), Institute for Clinical Research, National Institutes of Health, Shah Alam, Malaysia
| | - Nusaibah Abdul Rahim
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Nusaibah Abdul Rahim,
| |
Collapse
|
46
|
Gautreaux MA, Tucker LJ, Person XJ, Zetterholm HK, Priddy LB. Review of immunological plasma markers for longitudinal analysis of inflammation and infection in rat models. J Orthop Res 2022; 40:1251-1262. [PMID: 35315119 PMCID: PMC9106877 DOI: 10.1002/jor.25330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023]
Abstract
Disease or trauma of orthopedic tissues, including osteomyelitis, osteoporosis, arthritis, and fracture, results in a complex immune response, leading to a change in the concentration and milieu of immunological cells and proteins in the blood. While C-reactive protein levels and white blood cell counts are used to track inflammation and infection clinically, controlled longitudinal studies of disease/injury progression are limited. Thus, the use of clinically-relevant animal models can enable a more in-depth understanding of disease/injury progression and treatment efficacy. Though longitudinal tracking of immunological markers has been performed in rat models of various inflammatory and infectious diseases, currently there is no consensus on which markers are sensitive and reliable for tracking levels of inflammation and/or infection. Here, we discuss the blood markers that are most consistent with other outcome measures of the immune response in the rat, by reviewing their utility for longitudinal tracking of infection and/or inflammation in the following types of models: localized inflammation/arthritis, injury, infection, and injury + infection. While cytokines and acute phase proteins such as haptoglobin, fibrinogen, and α2 -macroglobulin demonstrate utility for tracking immunological response in many inflammation and infection models, there is likely not a singular superior marker for all rat models. Instead, longitudinal characterization of these models may benefit from evaluation of a collection of cytokines and/or acute phase proteins. Identification of immunological plasma markers indicative of the progression of a pathology will allow for the refinement of animal models for understanding, diagnosing, and treating inflammatory and infectious diseases of orthopedic tissues.
Collapse
Affiliation(s)
- Malley A. Gautreaux
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS USA
| | - Luke J. Tucker
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS USA
| | - Xavier J. Person
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS USA
| | - Haley K. Zetterholm
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS USA
| | - Lauren B. Priddy
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS USA.,corresponding author, Contact: , (662) 325-5988, Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, USA 39762
| |
Collapse
|
47
|
Heithoff DM, Pimienta G, Mahan SP, Yang WH, Le DT, House JK, Marth JD, Smith JW, Mahan MJ. Coagulation factor protein abundance in the pre-septic state predicts coagulopathic activities that arise during late-stage murine sepsis. EBioMedicine 2022; 78:103965. [PMID: 35349828 PMCID: PMC8965145 DOI: 10.1016/j.ebiom.2022.103965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although sepsis accounts for 1 in 5 deaths globally, few molecular therapies exist for this condition. The development of effective biomarkers and treatments for sepsis requires a more complete understanding of host responses and pathogenic mechanisms at early stages of disease to minimize host-driven pathology. METHODS An alternative to the current symptom-based approach used to diagnose sepsis is a precise assessment of blood proteomic changes during the onset and progression of Salmonella Typhimurium (ST) murine sepsis. FINDINGS A distinct pattern of coagulation factor protein abundance was identified in the pre-septic state- prior to overt disease symptoms or bacteremia- that was predictive of the dysregulation of fibrinolytic and anti-coagulant activities and resultant consumptive coagulopathy during ST murine sepsis. Moreover, the changes in protein abundance observed generally have the same directionality (increased or decreased abundance) reported for human sepsis. Significant overlap of ST coagulopathic activities was observed in Gram-negative Escherichia coli- but not in Gram-positive staphylococcal or pneumococcal murine sepsis models. Treatment with matrix metalloprotease inhibitors prevented aberrant inflammatory and coagulopathic activities post-ST infection and increased survival. Antibiotic treatment regimens initiated after specific changes arise in the plasma proteome post-ST infection were predictive of an increase in disease relapse and death after cessation of antibiotic treatment. INTERPRETATION Altered blood proteomics provides a platform to develop rapid and easy-to-perform tests to predict sepsis for early intervention via biomarker incorporation into existing blood tests prompted by patient presentation with general malaise, and to stratify Gram-negative and Gram-positive infections for appropriate treatment. Antibiotics are less effective in microbial clearance when initiated after the onset of altered blood proteomics as evidenced by increased disease relapse and death after termination of antibiotic therapy. Treatment failure is potentially due to altered bacterial / host-responses and associated increased host-driven pathology, providing insight into why delays in antibiotic administration in human sepsis are associated with increased risk for death. Delayed treatment may thus require prolonged therapy for microbial clearance despite the prevailing notion of antibiotic de-escalation and shortened courses of antibiotics to improve drug stewardship. FUNDING National Institutes of Health, U.S. Army.
Collapse
Affiliation(s)
- Douglas M Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA
| | - Genaro Pimienta
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Scott P Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA; Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis CA 95616, USA
| | - Won Ho Yang
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara CA 93106, USA; Glycosylation Network Research Center and Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dzung T Le
- Department of Pathology, University of California, La Jolla, San Diego, CA 92093, USA
| | - John K House
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales 2570, Australia
| | - Jamey D Marth
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara CA 93106, USA; Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jeffrey W Smith
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Michael J Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
48
|
Infection Biomarkers Based on Metabolomics. Metabolites 2022; 12:metabo12020092. [PMID: 35208167 PMCID: PMC8877834 DOI: 10.3390/metabo12020092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/18/2022] Open
Abstract
Current infection biomarkers are highly limited since they have low capability to predict infection in the presence of confounding processes such as in non-infectious inflammatory processes, low capability to predict disease outcomes and have limited applications to guide and evaluate therapeutic regimes. Therefore, it is critical to discover and develop new and effective clinical infection biomarkers, especially applicable in patients at risk of developing severe illness and critically ill patients. Ideal biomarkers would effectively help physicians with better patient management, leading to a decrease of severe outcomes, personalize therapies, minimize antibiotics overuse and hospitalization time, and significantly improve patient survival. Metabolomics, by providing a direct insight into the functional metabolic outcome of an organism, presents a highly appealing strategy to discover these biomarkers. The present work reviews the desired main characteristics of infection biomarkers, the main metabolomics strategies to discover these biomarkers and the next steps for developing the area towards effective clinical biomarkers.
Collapse
|
49
|
Harris MB, Lesani M, Liu Z, McCall LI. Molecular networking in infectious disease models. Methods Enzymol 2022; 663:341-375. [PMID: 35168796 PMCID: PMC10040239 DOI: 10.1016/bs.mie.2021.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Small molecule metabolites are the product of many enzymatic reactions. Metabolomics thus opens a window into enzyme activity and function, integrating effects at the post-translational, proteome, transcriptome and genome level. In addition, small molecules can themselves regulate enzyme activity, expression and function both via substrate availability mechanisms and through allosteric regulation. Metabolites are therefore at the nexus of infectious diseases, regulating nutrient availability to the pathogen, immune responses, tropism, and host disease tolerance and resilience. Analysis of metabolomics data is however complex, particularly in terms of metabolite annotation. An emerging valuable approach to extend metabolite annotations beyond existing compound libraries and to identify infection-induced chemical changes is molecular networking. In this chapter, we discuss the applications of molecular networking in the context of infectious diseases specifically, with a focus on considerations relevant to these biological systems.
Collapse
Affiliation(s)
- Morgan B Harris
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| | - Mahbobeh Lesani
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States; Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States.
| |
Collapse
|
50
|
Multi-omics of human plasma reveals molecular features of dysregulated inflammation and accelerated aging in schizophrenia. Mol Psychiatry 2022; 27:1217-1225. [PMID: 34741130 PMCID: PMC9054664 DOI: 10.1038/s41380-021-01339-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/08/2022]
Abstract
Schizophrenia is a devastating psychiatric illness that detrimentally affects a significant portion of the worldwide population. Aging of schizophrenia patients is associated with reduced longevity, but the potential biological factors associated with aging in this population have not yet been investigated in a global manner. To address this gap in knowledge, the present study assesses proteomics and metabolomics profiles in the plasma of subjects afflicted with schizophrenia compared to non-psychiatric control patients over six decades of life. Global, unbiased analyses of circulating blood plasma can provide knowledge of prominently dysregulated molecular pathways and their association with schizophrenia, as well as features of aging and gender in this disease. The resulting data compiled in this study represent a compendium of molecular changes associated with schizophrenia over the human lifetime. Supporting the clinical finding of schizophrenia's association with more rapid aging, both schizophrenia diagnosis and age significantly influenced the plasma proteome in subjects assayed. Schizophrenia was broadly associated with prominent dysregulation of inflammatory and metabolic system components. Proteome changes demonstrated increased abundance of biomarkers for risk of physiologic comorbidities of schizophrenia, especially in younger individuals. These findings advance our understanding of the molecular etiology of schizophrenia and its associated comorbidities throughout the aging process.
Collapse
|