1
|
Yang X, Huang YWA, Marshall J. Targeting TrkB-PSD-95 coupling to mitigate neurological disorders. Neural Regen Res 2025; 20:715-724. [PMID: 38886937 PMCID: PMC11433911 DOI: 10.4103/nrr.nrr-d-23-02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 06/20/2024] Open
Abstract
Tropomyosin receptor kinase B (TrkB) signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory. The activity-dependent release of brain-derived neurotrophic factor at synapses binds to pre- or postsynaptic TrkB resulting in the strengthening of synapses, reflected by long-term potentiation. Postsynaptically, the association of postsynaptic density protein-95 with TrkB enhances phospholipase Cγ-Ca2+/calmodulin-dependent protein kinase II and phosphatidylinositol 3-kinase-mechanistic target of rapamycin signaling required for long-term potentiation. In this review, we discuss TrkB-postsynaptic density protein-95 coupling as a promising strategy to magnify brain-derived neurotrophic factor signaling towards the development of novel therapeutics for specific neurological disorders. A reduction of TrkB signaling has been observed in neurodegenerative disorders, such as Alzheimer's disease and Huntington's disease, and enhancement of postsynaptic density protein-95 association with TrkB signaling could mitigate the observed deficiency of neuronal connectivity in schizophrenia and depression. Treatment with brain-derived neurotrophic factor is problematic, due to poor pharmacokinetics, low brain penetration, and side effects resulting from activation of the p75 neurotrophin receptor or the truncated TrkB.T1 isoform. Although TrkB agonists and antibodies that activate TrkB are being intensively investigated, they cannot distinguish the multiple human TrkB splicing isoforms or cell type-specific functions. Targeting TrkB-postsynaptic density protein-95 coupling provides an alternative approach to specifically boost TrkB signaling at localized synaptic sites versus global stimulation that risks many adverse side effects.
Collapse
Affiliation(s)
- Xin Yang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA
| | - John Marshall
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
2
|
Mohammad Hosseini A, Khaleghzadeh-Ahangar H, Rahimi A. The immunomodulatory effects of psychedelics in Alzheimer's disease-related dementia. Neuroscience 2025; 564:271-280. [PMID: 39603407 DOI: 10.1016/j.neuroscience.2024.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/03/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Dementia is an increasing disorder, and Alzheimer's disease (AD) is the cause of 60% of all dementia cases. Despite all efforts, there is no cure for stopping dementia progression. Recent studies reported potential effects of psychedelics on neuroinflammation during AD. Psychedelics by 5HT2AR activation can reduce proinflammatory cytokine levels (TNF-α, IL-6) and inhibit neuroinflammation. In addition to neuroinflammation suppression, psychedelics induce neuroplasticity by increasing Brain-derived neurotrophic factor (BDNF) levels through Sigma-1R stimulation. This review discussed the effects of psychedelics on AD from both neuroinflammatory and neuroplasticity standpoints.
Collapse
Affiliation(s)
| | - Hossein Khaleghzadeh-Ahangar
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran; Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Atena Rahimi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology and Toxicology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
3
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
4
|
Antonijevic M, Dallemagne P, Rochais C. Indirect influence on the BDNF/TrkB receptor signaling pathway via GPCRs, an emerging strategy in the treatment of neurodegenerative disorders. Med Res Rev 2025; 45:274-310. [PMID: 39180386 DOI: 10.1002/med.22075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2022] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
Neuronal survival depends on neurotrophins and their receptors. There are two types of neurotrophin receptors: a nonenzymatic, trans-membrane protein of the tumor necrosis factor receptor (TNFR) family-p75 receptor and the tyrosine kinase receptors (TrkR) A, B, and C. Activation of the TrkBR by brain-derived neurotrophic factor (BDNF) or neurotrophin 4/5 (NT-4/5) promotes neuronal survival, differentiation, and synaptic function. It is shown that in the pathogenesis of several neurodegenerative conditions (Alzheimer's disease, Parkinson's disease, Huntington's disease) the BDNF/TrkBR signaling pathway is impaired. Since it is known that GPCRs and TrkR are regulating several cell functions by interacting with each other and generating a cross-communication in this review we have focused on the interaction between different GPCRs and their ligands on BDNF/TrkBR signaling pathway.
Collapse
|
5
|
Han M, Zeng D, Tan W, Chen X, Bai S, Wu Q, Chen Y, Wei Z, Mei Y, Zeng Y. Brain region-specific roles of brain-derived neurotrophic factor in social stress-induced depressive-like behavior. Neural Regen Res 2025; 20:159-173. [PMID: 38767484 PMCID: PMC11246125 DOI: 10.4103/nrr.nrr-d-23-01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 05/22/2024] Open
Abstract
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response. Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region-specific, particularly involving the corticolimbic system, including the ventral tegmental area, nucleus accumbens, prefrontal cortex, amygdala, and hippocampus. Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology. In this review, we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression. We focused on associated molecular pathways and neural circuits, with special attention to the brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling pathway and the ventral tegmental area-nucleus accumbens dopamine circuit. We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature, severity, and duration of stress, especially in the above-mentioned brain regions of the corticolimbic system. Therefore, BDNF might be a biological indicator regulating stress-related processes in various brain regions.
Collapse
Affiliation(s)
- Man Han
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Deyang Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuyuan Bai
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiong Wu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yushan Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhen Wei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yufei Mei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
6
|
Sun J, Rojo-Cortes F, Ulian-Benitez S, Forero MG, Li G, Singh DND, Wang X, Cachero S, Moreira M, Kavanagh D, Jefferis GSXE, Croset V, Hidalgo A. A neurotrophin functioning with a Toll regulates structural plasticity in a dopaminergic circuit. eLife 2024; 13:RP102222. [PMID: 39704728 DOI: 10.7554/elife.102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Experience shapes the brain as neural circuits can be modified by neural stimulation or the lack of it. The molecular mechanisms underlying structural circuit plasticity and how plasticity modifies behaviour are poorly understood. Subjective experience requires dopamine, a neuromodulator that assigns a value to stimuli, and it also controls behaviour, including locomotion, learning, and memory. In Drosophila, Toll receptors are ideally placed to translate experience into structural brain change. Toll-6 is expressed in dopaminergic neurons (DANs), raising the intriguing possibility that Toll-6 could regulate structural plasticity in dopaminergic circuits. Drosophila neurotrophin-2 (DNT-2) is the ligand for Toll-6 and Kek-6, but whether it is required for circuit structural plasticity was unknown. Here, we show that DNT-2-expressing neurons connect with DANs, and they modulate each other. Loss of function for DNT-2 or its receptors Toll-6 and kinase-less Trk-like kek-6 caused DAN and synapse loss, impaired dendrite growth and connectivity, decreased synaptic sites, and caused locomotion deficits. In contrast, over-expressed DNT-2 increased DAN cell number, dendrite complexity, and promoted synaptogenesis. Neuronal activity modified DNT-2, increased synaptogenesis in DNT-2-positive neurons and DANs, and over-expression of DNT-2 did too. Altering the levels of DNT-2 or Toll-6 also modified dopamine-dependent behaviours, including locomotion and long-term memory. To conclude, a feedback loop involving dopamine and DNT-2 highlighted the circuits engaged, and DNT-2 with Toll-6 and Kek-6 induced structural plasticity in this circuit modifying brain function and behaviour.
Collapse
Affiliation(s)
- Jun Sun
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Francisca Rojo-Cortes
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Suzana Ulian-Benitez
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Manuel G Forero
- Semillero Lún, Grupo D+Tec, Universidad de Ibagué, Ibagué, Colombia
| | - Guiyi Li
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Deepanshu N D Singh
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Xiaocui Wang
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Marta Moreira
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Dean Kavanagh
- Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | | | - Vincent Croset
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Alicia Hidalgo
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
Duque M, Chen AB, Hsu E, Narayan S, Rymbek A, Begum S, Saher G, Cohen AE, Olson DE, Li Y, Prober DA, Bergles DE, Fishman MC, Engert F, Ahrens MB. Ketamine induces plasticity in a norepinephrine-astroglial circuit to promote behavioral perseverance. Neuron 2024:S0896-6273(24)00836-5. [PMID: 39694033 DOI: 10.1016/j.neuron.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/08/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024]
Abstract
Transient exposure to ketamine can trigger lasting changes in behavior and mood. We found that brief ketamine exposure causes long-term suppression of futility-induced passivity in larval zebrafish, reversing the "giving-up" response that normally occurs when swimming fails to cause forward movement. Whole-brain imaging revealed that ketamine hyperactivates the norepinephrine-astroglia circuit responsible for passivity. After ketamine washout, this circuit exhibits hyposensitivity to futility, leading to long-term increased perseverance. Pharmacological, chemogenetic, and optogenetic manipulations show that norepinephrine and astrocytes are necessary and sufficient for ketamine's long-term perseverance-enhancing aftereffects. In vivo calcium imaging revealed that astrocytes in adult mouse cortex are similarly activated during futility in the tail suspension test and that acute ketamine exposure also induces astrocyte hyperactivation. The cross-species conservation of ketamine's modulation of noradrenergic-astroglial circuits and evidence that plasticity in this pathway can alter the behavioral response to futility hold promise for identifying new strategies to treat affective disorders.
Collapse
Affiliation(s)
- Marc Duque
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Alex B Chen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Eric Hsu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sujatha Narayan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Altyn Rymbek
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shahinoor Begum
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37075, Germany
| | - Adam E Cohen
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - David E Olson
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA; Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA; Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95616, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - David A Prober
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mark C Fishman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
8
|
Alitalo O, Kohtala S, Rosenholm M, Saarreharju R, González-Hernández G, Sarparanta M, Rozov S, Rantamäki T. Nitrous oxide induces hypothermia and TrkB activation: Maintenance of body temperature abolishes antidepressant-like effects in mice. Neuropharmacology 2024; 261:110172. [PMID: 39362627 DOI: 10.1016/j.neuropharm.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Recent studies indicate that nitrous oxide (N2O), a gaseous anesthetic and an NMDA (N-methyl-D-aspartate) receptor antagonist, produces rapid antidepressant effect in patients suffering from treatment-resistant depression. Our recent work implies that hypothermia and reduced energy expenditure are connected with antidepressant-induced activation of TrkB neurotrophin receptors - a key regulator of synaptic plasticity. In this study, we demonstrate that a brief exposure to N2O leads to a drop in body temperature following the treatment, which is linked to decreased locomotor activity; enhanced slow-wave electroencephalographic activity; reduced brain glucose utilization; and increased phosphorylation of TrkB, GSK3β (glycogen synthase kinase 3β), and p70S6K (a kinase downstream of mTor (mammalian target of rapamycin)) in the medial prefrontal cortex of adult male mice. Moreover, preventing the hypothermic response in a chronic corticosterone stress model of depression attenuated the antidepressant-like behavioral effects of N2O in the saccharin preference test. These findings indicate that N2O treatment modulates TrkB signaling and related neurotrophic signaling pathways in a temperature-dependent manner, suggesting that the phenomenon driving TrkB activation - altered thermoregulation and energy expenditure - is linked to antidepressant-like behavioral responses.
Collapse
Affiliation(s)
- Okko Alitalo
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland; SleepWell Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Samuel Kohtala
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland; SleepWell Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Marko Rosenholm
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland; SleepWell Research Program, Faculty of Medicine, University of Helsinki, Finland; Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Roosa Saarreharju
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland; SleepWell Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Gemma González-Hernández
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland; SleepWell Research Program, Faculty of Medicine, University of Helsinki, Finland; Neuropsychopharmacology and Psychobiology Research Group, Department of Neurosciences, University of Cádiz, Cádiz, Spain
| | | | - Stanislav Rozov
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland; SleepWell Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Tomi Rantamäki
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland; SleepWell Research Program, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
9
|
Nguyen A, Ondrus AE. In Silico Tools to Score and Predict Cholesterol-Protein Interactions. J Med Chem 2024; 67:20765-20775. [PMID: 39616623 DOI: 10.1021/acs.jmedchem.4c01885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Cholesterol is structurally distinct from other lipids, which confers it with singular roles in membrane organization and protein function. As a signaling molecule, cholesterol engages in discrete interactions with transmembrane, peripheral, and certain soluble proteins to control cellular responses. Accordingly, the cholesterol-protein interface is central to cholesterol-related diseases and is an essential consideration in drug design. However, cholesterol's hydrophobic, un-drug-like nature presents a unique challenge to traditional in silico analyses. In this Perspective, we survey a collection of tools designed to predict and evaluate cholesterol binding sites in proteins, including classical sequence motifs, molecular docking, template-based strategies, molecular dynamics simulations, and recent artificial intelligence approaches. We then comment on contemporary tools to evaluate ligand-protein interactions, their applicability to cholesterol, and the yet-untapped potential of cholesterol-protein interactions in human health and disease.
Collapse
Affiliation(s)
- Anna Nguyen
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Alison E Ondrus
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
10
|
Silva NR, Arjmand S, Domingos LB, Chaves-Filho AM, Mottin M, Real CC, Waszkiewicz AL, Gobira PH, Ferraro AN, Landau AM, Andrade CH, Müller HK, Wegener G, Joca SRL. Modulation of the endocannabinoid system by (S)-ketamine in an animal model of depression. Pharmacol Res 2024; 211:107545. [PMID: 39667543 DOI: 10.1016/j.phrs.2024.107545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Ketamine (KET) is recognized as rapid-acting antidepressant, but its mechanisms of action remain elusive. Considering the role of endocannabinoids (eCB) in stress and depression, we investigated if S-KET antidepressant effects involve the regulation of the eCB system using an established rat model of depression based on selective breeding: the Flinders Sensitive Line (FSL) and their controls, the Flinders Resistant Line (FRL). S-KET (15 mg/kg) effects were assessed in rats exposed to the open field and forced swimming test (FST), followed by analysis of the eCB signaling in the rat prefrontal cortex (PFC), a brain region involved in depression neurobiology. Changes in eCB receptors and enzymes were assessed at mRNA and protein levels (qPCR and western blot), CB1 binding ([3H]SR141716A autoradiography) and endocannabinoid content (lipidomics). The results demonstrated that the depressive behavior in FSL was negatively correlated with 2-AG levels, which were restored upon acute S-KET treatment. Although S-KET decreased CB1 and FAAH gene expression in FSL, there were no significant changes at protein levels. [3H]SR141716A binding to CB1 receptors was increased by S-KET and in silico analysis suggested that it binds to CB1, CB2, GPR55 and FAAH. Overall, S-KET effects correlated with an increased endocannabinoid signaling in the PFC, but systemic treatment with rimonabant failed to block its behavioral effects. Altogether, our results indicate that S-KET facilitates eCB signaling in the PFC of FSL. The inability of rimonabant to block the antidepressant effect of S-KET highlights the complexity of its interaction with the ECS, warranting further investigation into the molecular pathways.
Collapse
Affiliation(s)
- Nicole R Silva
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Luana B Domingos
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Adriano M Chaves-Filho
- Division of Medical Sciences, University of Victoria, Canada; Neuropharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Brazil
| | - Melina Mottin
- Laboratory for Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Brazil
| | - Caroline C Real
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University and Hospital, Denmark
| | | | - Pedro H Gobira
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | | | - Anne M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University and Hospital, Denmark
| | - Carolina H Andrade
- Laboratory for Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Brazil
| | - Heidi K Müller
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Sâmia R L Joca
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark.
| |
Collapse
|
11
|
Rafa-Zabłocka K, Nalepa I, Kreiner G. The effects of chronic desipramine treatment on neurotrophin-3 in the brain of mice with selective depletion of CREB and CREM in noradrenergic neurons. Neuroscience 2024; 562:190-197. [PMID: 39447672 DOI: 10.1016/j.neuroscience.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
The disturbances in neurotrophic support are thought to be one of the main causes of depression, which depend not only on the neurotrophins themselves but also on the molecules regulating their synthesis and effector functions. One such molecule is cAMP responsive element binding protein (CREB), which role in depression and antidepressant drugs mechanism of action has been extensively studied. However, CREB's effects vary depending on brain structure, necessitating specific transgenic models for studying its function. Moreover, deletion of CREB enhances cAMP response element modulator (CREM) expression, suspected to compensate for CREB in its absence. Previously, mice lacking CREB in noradrenergic neurons and CREM (Creb1DbhCreCrem-/-) showed to be insensitive to acute desipramine, whereas mice lacking only CREB (Creb1DbhCre) showed similar effects as wild type animals (w/t). As neurotrophic changes require chronic antidepressant treatment, in current study mice (w/t, Creb1DbhCre and Creb1DbhCreCrem-/-; both males and females) were given desipramine for 21 days, to assess the effects of the drug on CREB, neurotrophins and their receptors in the hippocampus and prefrontal cortex. Interestingly, desipramine had no effect on CREB in neither of studied groups. However, both male and female mice lacking CREB and CREM displayed alterations in neurotrophin-3 (NTF3) expression or protein levels, modulated by desipramine. These findings suggest NTF3 is connected with inhibited response to acute and probably chronic desipramine administration in Creb1DbhCreCrem-/- mice, although in w/t chronic desipramine had no effect on NTF3. Nevertheless, our findings give insight into the role of non-BDNF neurotrophins in the mechanism of antidepressant drugs.
Collapse
Affiliation(s)
- Katarzyna Rafa-Zabłocka
- Dept. Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Krakow, Smetna 12, Poland
| | - Irena Nalepa
- Dept. Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Krakow, Smetna 12, Poland
| | - Grzegorz Kreiner
- Dept. Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Krakow, Smetna 12, Poland.
| |
Collapse
|
12
|
Grzelak N, Kaczmarek D, Poziemba KM, Mrówczyński W. Myocardial Disorders in BDNF-Deficient Rats: Limited Recovery Post-Moderate Endurance Training. Diabetes Metab Syndr Obes 2024; 17:4649-4660. [PMID: 39654953 PMCID: PMC11626974 DOI: 10.2147/dmso.s486807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction The study aimed to determine whether heterozygous BDNF-deficient (BDNF-knockout, SD-BDNF) rats exhibit pathological changes in the myocardium and to assess whether a 5-week moderate-intensity endurance training program can reverse adverse changes in the heart muscle. Methods Experiments were conducted on four groups of rats: control wild-type, control BDNF knockout, trained wild-type and trained BDNF knockout. Knockout rats were selected due to the presence of symptoms resembling metabolic syndrome in serum and liver while 5-week moderate endurance training was used as an intervention targeted at restoring heart function. Measurements of BDNF/Trk-B concentrations and molecules levels and activities, such as cardiac specific enzymes like creatine kinase and creatine kinase myocardial band, lipids as total cholesterol, low-density lipoprotein and triglycerides, metabolic enzymes including alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase and lactate dehydrogenase and interleukin-1 were carried out in myocardium homogenates. Results In BDNF-deficient rats, the myocardium showed significantly reduced lipid concentrations, decreased metabolic and cardiac enzyme activity, and elevated Trk-B levels, all of which are indicative of myocardial ischemia or hypoxia. These changes in critical biomarkers were consistent with those earlier observed in the livers of BDNF-deficient rats, suggesting a link between the liver and cardiac function. Moderate endurance training led to an increase in creatine kinase activity in the myocardium of trained rats, suggesting increased production and utilization of energy required for myocardial contraction in trained wild-type and knockout populations of rats. Discussion BDNF-deficient rats exhibited numerous myocardial abnormalities, most of which were not reversible after moderate-intensity endurance training. These findings provide a basis for a deeper understanding of the mechanisms underlying myocardial disorders in BDNF-deficient rats, which appear to be a suitable model for studying various aspects of metabolic disorders.
Collapse
Affiliation(s)
- Norbert Grzelak
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| | - Dominik Kaczmarek
- Department of Physiology and Biochemistry, Poznań University of Physical Education, Poznań, Poland
| | - Krystian Marek Poziemba
- Department of Physiology and Biochemistry, Poznań University of Physical Education, Poznań, Poland
| | | |
Collapse
|
13
|
Inozemtseva LS, Yatsenko KA, Glazova NY, Kamensky AA, Myasoedov NF, Levitskaya NG, Grivennikov IA, Dolotov OV. Antidepressant-like and antistress effects of the ACTH(4-10) synthetic analogs Semax and Melanotan II on male rats in a model of chronic unpredictable stress. Eur J Pharmacol 2024; 984:177068. [PMID: 39442746 DOI: 10.1016/j.ejphar.2024.177068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Current antidepressant therapy shows substantial limitations, and there is an urgent need for the development of new treatment strategies for depression. Stressful events and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis play an important role in the pathogenesis of depression. HPA axis activity is self-regulated by negative feedback at several levels including adrenocorticotropic hormone (ACTH)-mediated feedback. Here, we investigated whether noncorticotropic synthetic analogs of the ACTH(4-10) fragment, ACTH(4-7)-Pro-Gly-Pro (Semax) and Ac-Nle4-cyclo[Asp5-His6-D-Phe7-Arg8-Trp9-Lys10]ACTH(4-10)-NH2 (Melanotan II (MTII), a potent agonist of melanocortin receptors), have potential antidepressant activity in a chronic unpredictable stress (CUS) rat model of depression. Stressed and control male adult Sprague-Dawley rats received daily intraperitoneal injections of saline or a low dose (60 nmol/kg of body weight (BW)) of Semax or MTII. Rats were monitored for BW and hedonic status, as measured in the sucrose preference test. We found that chronic treatment with Semax and MTII reversed or substantially attenuated CUS-induced anhedonia, BW gain suppression, adrenal hypertrophy and a decrease in the hippocampal levels of BDNF. In the forced swim test, no effects of the CUS procedure or peptides on the duration of rat immobility were detected. Our findings show that in the CUS paradigm, systemically administered ACTH(4-10) analogs Semax and MTII exert antidepressant-like effects on anhedonia and hippocampal BDNF levels, and attenuate markers of chronic stress load, at least in male rats. The results support the argument that ACTH(4-10) analogs and other noncorticotropic melanocortins may have promising therapeutic potential for the treatment and prevention of depression and other stress-related pathologies.
Collapse
Affiliation(s)
| | | | - Natalya Yu Glazova
- National Research Center "Kurchatov Institute", Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey A Kamensky
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Natalia G Levitskaya
- National Research Center "Kurchatov Institute", Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Oleg V Dolotov
- National Research Center "Kurchatov Institute", Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
14
|
Liu F, Jia Y, Zhao L, Xiao LN, Cheng X, Xiao Y, Zhang Y, Zhang Y, Yu H, Deng QE, Zhang Y, Feng Y, Wang J, Gao Y, Zhang X, Geng Y. Escin ameliorates CUMS-induced depressive-like behavior via BDNF/TrkB/CREB and TLR4/MyD88/NF-κB signaling pathways in rats. Eur J Pharmacol 2024; 984:177063. [PMID: 39426465 DOI: 10.1016/j.ejphar.2024.177063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Major depressive disorder (MDD) is a prevalent psychiatric disorder associated with brain inflammation and neuronal damage. Derived from the Aesculus chinensis Bunge fruit, escin has shown anti-inflammatory and neuroprotective effects. However, its potential as a treatment for MDD is unclear. This study investigates the antidepressant properties of escin using in vivo experimentation. The chronic unpredictable mild stress (CUMS) model was used to analyze the potential antidepressant effects and underlying mechanisms of escin. Wistar rats were exposed to CUMS for 35 consecutive days to induce MDD. The rats were then given either escin (1, 3, and 10 mg/kg) or fluoxetine (2 mg/kg) on a daily basis. Notably, escin significantly alleviated the depressive behaviors induced by CUMS, as evaluated through a series of behavioral assessments. Moreover, escin administration reduced TNF-α, IL-1β, and IL-6 levels in the hippocampus. It also decreased serum adrenal cortical hormone (ACTH) and corticosterone (CORT) levels while increasing 5-HT and Brain-derived neurotrophic factor (BDNF) levels in the CUMS rats, as measured by the enzyme-linked immunosorbent assay (ELISA). Pathological changes in the hippocampal regions were identified through Nissl staining, and Western blotting was used to quantify the protein levels of BDNF, TrkB, CREB, TLR4, MyD88, and NF-κB. Escin mitigated neuronal injury, elevated TrkB, BDNF, and CREB, and reduced TLR4, MyD88, and NF-κB protein levels in CUMS rats. The data from this study suggest that escin holds the potential for alleviating depression-like symptoms induced by CUMS. This effect may be mediated through the modulation of two signaling pathways, BDNF/TrkB/CREB and TLR4/MyD88/NF-κB.
Collapse
Affiliation(s)
- Fengjiao Liu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Yaxin Jia
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Liwei Zhao
- Science and Technology Office, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Li-Na Xiao
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Xizhen Cheng
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Yingying Xiao
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Ying Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Yuling Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Huimin Yu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Qiao-En Deng
- The Eighth Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050081, China
| | - Yuanyuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Yimeng Feng
- College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Junfang Wang
- College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Yonggang Gao
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China; Department of Preventive Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, Hebei, 050091, China.
| | - Xuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, Hebei, 050091, China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050091, China.
| | - Yunyun Geng
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China; Heibei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Shijiazhuang, Hebei, 050091, China.
| |
Collapse
|
15
|
Page CE, Epperson CN, Novick AM, Duffy KA, Thompson SM. Beyond the serotonin deficit hypothesis: communicating a neuroplasticity framework of major depressive disorder. Mol Psychiatry 2024; 29:3802-3813. [PMID: 38816586 DOI: 10.1038/s41380-024-02625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The serotonin deficit hypothesis explanation for major depressive disorder (MDD) has persisted among clinicians and the general public alike despite insufficient supporting evidence. To combat rising mental health crises and eroding public trust in science and medicine, researchers and clinicians must be able to communicate to patients and the public an updated framework of MDD: one that is (1) accessible to a general audience, (2) accurately integrates current evidence about the efficacy of conventional serotonergic antidepressants with broader and deeper understandings of pathophysiology and treatment, and (3) capable of accommodating new evidence. In this article, we summarize a framework for the pathophysiology and treatment of MDD that is informed by clinical and preclinical research in psychiatry and neuroscience. First, we discuss how MDD can be understood as inflexibility in cognitive and emotional brain circuits that involves a persistent negativity bias. Second, we discuss how effective treatments for MDD enhance mechanisms of neuroplasticity-including via serotonergic interventions-to restore synaptic, network, and behavioral function in ways that facilitate adaptive cognitive and emotional processing. These treatments include typical monoaminergic antidepressants, novel antidepressants like ketamine and psychedelics, and psychotherapy and neuromodulation techniques. At the end of the article, we discuss this framework from the perspective of effective science communication and provide useful language and metaphors for researchers, clinicians, and other professionals discussing MDD with a general or patient audience.
Collapse
Affiliation(s)
- Chloe E Page
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Family Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Helen and Arthur E. Johnson Depression Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew M Novick
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Korrina A Duffy
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Scott M Thompson
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
16
|
Liu L, Li R, Wu L, Guan Y, Miao M, Wang Y, Li C, Wu C, Lu G, Hu X, Sun L. (2R,6R)-hydroxynorketamine alleviates PTSD-like endophenotypes by regulating the PI3K/AKT signaling pathway in rats. Pharmacol Biochem Behav 2024; 245:173891. [PMID: 39369910 DOI: 10.1016/j.pbb.2024.173891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/08/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Patients diagnosed with post-traumatic stress disorder (PTSD) mainly exhibit enduring adverse emotions, heightening susceptibility to suicidal thoughts and behaviors. Notably, metabolites of ketamine, particularly (2R,6R)-hydroxyketamine (HNK), have demonstrated favorable antidepressant properties. However, the precise mechanism through which HNK exerts its therapeutic effects on negative emotional symptoms in PTSD patients should be fully elucidated. METHODS In this investigation, a model involving a single prolonged stress and plantar shock (SPS&S) was utilized, followed by the administration of (2R, 6R)-HNK into the lateral ventricle subsequent to the recovery phase. The evaluation of PTSD-related behaviors was conducted through the open field test (OFT), elevated plus maze test (EMPT), and forced swim test (FST). The expression of phosphatidylinositol 3-kinase (PI3K)/phosphokinase B (AKT) signaling pathway in rat brain regions was analyzed using molecular biology experiments. RESULTS SPS&S rats displayed adverse emotional behaviors characterized by depression and anxiety. Treatment with (2R, 6R)-HNK enhanced exploratory behavior and reversed negative emotional behaviors. This intervention mitigated disruptions in the expression levels of PI3K/AKT signaling pathway-associated proteins in the HIP and PFC, without influencing PI3K/AKT signaling in the AMY of SPS&S rats. CONCLUSION Traumatic stress can trigger negative emotional reactions in rats, potentially involving the PI3K/AKT signaling pathway in the HIP, PFC, and AMY. The (2R, 6R)-HNK compounds have demonstrated the potential to mitigate adverse emotions in rats subjected to the SPS&S paradigm. This effect may be attributed to the modulation of the PI3K/AKT signaling pathway in the HIP, and PFC, with a particularly notable impact observed in the HIP region.
Collapse
Affiliation(s)
- Lifen Liu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Rui Li
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Lanxia Wu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Yubo Guan
- School of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Miao Miao
- School of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Yuxuan Wang
- School of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Changjiang Li
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Chunyan Wu
- Department of Neurology, Affiliated Hospital of Shandong Second Medical University, Weifang, PR China
| | - Guohua Lu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Xinyu Hu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China.
| | - Lin Sun
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China; Department of Neurosurgery, Shanting District People's Hospital, Beijing Road, New Town, Zaozhuang, Shandong 277200, PR China; Management Committee of Shanting Economic Development Zone, No.37, Fuqian Road, Zaozhuang, Shandong 277200, PR China.
| |
Collapse
|
17
|
Krawczyk P, Klopotowska D, Matuszyk J. Modifications in the C-terminal tail of TrkC significantly alter neurotrophin-3-promoted outgrowth of neurite-like processes from PC12 cells. Biochem Biophys Rep 2024; 40:101853. [PMID: 39508056 PMCID: PMC11538612 DOI: 10.1016/j.bbrep.2024.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
TrkB and TrkC are quite common neurotrophin receptors found on the same cells in CNS. In the C-terminal tail, TrkB and TrkC differ only in two amino acid residues at positions immediately preceding the tyrosine residue, which, upon phosphorylation, becomes the docking site for phospholipase Cγ1 (PLCγ1). The question arose whether such a difference near the PLCγ1 docking site might contribute to differential response to neurotrophin. PC12 clones with the following receptors were obtained: wild-type TrkC, TrkC-Y820F with a defective PLCγ1 binding site, TrkC-T817S-I819V with two amino acid residues replaced with those in the TrkB tail. The outgrowth of neurite-like processes from TrkC-Y820F-containing cells appeared to be impaired, while the TrkC-T817S-I819V variant appeared more effective than wild-type TrkC in promoting the outgrowth of neurite-like processes after neurotrophin stimulation, at least in the compared PC12 cell clones. Taken together, both the tyrosine residue at the PLCγ1 docking site and the amino acid residues immediately preceding it appear important for TrkC-supported outgrowth of neurite-like processes.
Collapse
Affiliation(s)
- Pawel Krawczyk
- Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, 12 R. Weigla Street, 53-114, Wroclaw, Poland
| | - Dagmara Klopotowska
- Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, 12 R. Weigla Street, 53-114, Wroclaw, Poland
| | - Janusz Matuszyk
- Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, 12 R. Weigla Street, 53-114, Wroclaw, Poland
| |
Collapse
|
18
|
Gold PW, Wong ML. Comment on: Antidepressants act by directly binding to TRKB neurotrophin receptors. Mol Psychiatry 2024; 29:3926-3927. [PMID: 38909095 DOI: 10.1038/s41380-024-02615-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 06/24/2024]
Affiliation(s)
- Philip W Gold
- National Institutes of Health, National Institute of Mental Health Intramural Research Program, Bethesda, MD, 20814, USA.
| | - Ma-Li Wong
- State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
19
|
Liang C, Wei S, Ji Y, Lin J, Jiao W, Li Z, Yan F, Jing X. The role of enteric nervous system and GDNF in depression: Conversation between the brain and the gut. Neurosci Biobehav Rev 2024; 167:105931. [PMID: 39447778 DOI: 10.1016/j.neubiorev.2024.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Depression is a debilitating mental disorder that causes a persistent feeling of sadness and loss of interest. Approximately 280 million individuals worldwide suffer from depression by 2023. Despite the heavy medical and social burden imposed by depression, pathophysiology remains incompletely understood. Emerging evidence indicates various bidirectional interplay enable communication between the gut and brain. These interplays provide a link between intestinal and central nervous system as well as feedback from cortical and sensory centers to enteric activities, which also influences physiology and behavior in depression. This review aims to overview the significant role of the enteric nervous system (ENS) in the pathophysiology of depression and gut-brain axis's contribution to depressive disorders. Additionally, we explore the alterations in enteric glia cells (EGCs) and glial cell line-derived neurotrophic factor (GDNF) in depression and their involvement in neuronal support, intestinal homeostasis maintains and immune response activation. Modulating ENS function, EGCs and GDNF level could serve as novel strategies for future antidepressant therapy.
Collapse
Affiliation(s)
- Chuoyi Liang
- School of Nursing, Jinan University, Guangzhou, China
| | - Sijia Wei
- School of Nursing, Jinan University, Guangzhou, China
| | - Yelin Ji
- School of Nursing, Jinan University, Guangzhou, China
| | - Jiayi Lin
- School of Nursing, Jinan University, Guangzhou, China
| | - Wenli Jiao
- School of Nursing, Jinan University, Guangzhou, China
| | - Zhiying Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, China.
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
20
|
Shen W, Li Z, Tao Y, Zhou H, Wu H, Shi H, Huang F, Wu X. Tauroursodeoxycholic acid mitigates depression-like behavior and hippocampal neuronal damage in a corticosterone model of female mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03637-z. [PMID: 39611999 DOI: 10.1007/s00210-024-03637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024]
Abstract
Depression, a complex mental disorder influenced by both psychological and physiological factors, predominantly affects females. Studies have indicated that elevated levels of cortisol/corticosterone (CORT) under stress conditions can lead to hippocampal neuronal damage, thereby contributing to depression. Tauroursodeoxycholic acid (TUDCA), a bile acid, possesses anti-apoptotic, antioxidant, and anti-inflammatory properties. This study aimed to investigate the protective mechanism of TUDCA against CORT-induced neuromolecular and behavioral phenotypes of depression in female mice, providing theoretical support for its use in treating female depression. The antidepressant effects of TUDCA were evaluated through a series of behavioral tests, measurement of serum neurotransmitter levels, Nissl staining of the hippocampal CA3 region, and assessment of hippocampal proteins. Behavioral results demonstrated that TUDCA exhibited antidepressant effects, as evidenced by increased sucrose preference and locomotor activity, as well as reduced immobility time in depressed mice. Furthermore, TUDCA ameliorated neurotransmitter imbalances. Nissl staining revealed that TUDCA reduced neuronal damage in depressed mice, while Western blotting results indicated that TUDCA activated the hippocampal BDNF/TrkB/CREB pathway and regulated the expression of GR-related proteins. These findings suggested that TUDCA exerted neuroprotective effects in CORT-induced neuronal damage in female depressed mice. The mechanism appeared to be related to the activation of the BDNF/TrkB/CREB signaling pathway and the modulation of GR-related protein expression.
Collapse
Affiliation(s)
- Wei Shen
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zikang Li
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Houyuan Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
21
|
Bartlett MJ, Stopera CJ, Cowen SL, Sherman SJ, Falk T. Differential effects of statins on the anti-dyskinetic activity of sub-anesthetic ketamine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625570. [PMID: 39651168 PMCID: PMC11623634 DOI: 10.1101/2024.11.26.625570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Sub-anesthetic ketamine has been demonstrated to reduce abnormal involuntary movements (AIMs) in preclinical models of L-DOPA-induced dyskinesia (LID) and retrospective Parkinson's disease case reports. In this study, we examined the effects on L-DOPA-induced dyskinesia of two statins alone and in combination with ketamine in unilateral 6-hydroxydopamine-lesioned male rats, the standard preclinical LID model. Sub-anesthetic ketamine attenuated the development of AIMs, while lovastatin only showed anti-dyskinetic activity at the beginning of the priming but did not prevent the development of LID. The polar pravastatin blocked the long-term anti-dyskinetic effects of ketamine, while the non-polar lovastatin did not. This study shows different classes of statins affect LID differentially, points to an important drug interaction and further supports ongoing clinical testing of sub-anesthetic ketamine to treat LID in individuals with Parkinson's disease.
Collapse
|
22
|
Li J, Jiang Y, Cheng D, Cheng J, Hu J, Wang X, Yuan TF. Psychedelics for treating psychiatric disorders: From circuit mechanisms to applications. Sci Bull (Beijing) 2024:S2095-9273(24)00849-1. [PMID: 39672711 DOI: 10.1016/j.scib.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Affiliation(s)
- Jie Li
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine and School of Psychology, Shanghai 200030, China
| | - Yuting Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine and School of Psychology, Shanghai 200030, China
| | - Dan Cheng
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine and School of Psychology, Shanghai 200030, China
| | - Jianjun Cheng
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210 China.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine and School of Psychology, Shanghai 200030, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| |
Collapse
|
23
|
Izumi Y, Reiersen AM, Lenze EJ, Mennerick SJ, Zorumski CF. Sertraline modulates hippocampal plasticity via sigma 1 receptors, cellular stress and neurosteroids. Transl Psychiatry 2024; 14:474. [PMID: 39572523 PMCID: PMC11582653 DOI: 10.1038/s41398-024-03185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
In addition to modulating serotonin transport, selective serotonin reuptake inhibitors (SSRIs) have multiple other mechanisms that may contribute to clinical effects, and some of these latter actions prompt repurposing of SSRIs for non-psychiatric indications. In a recent study of the SSRIs fluvoxamine, fluoxetine and sertraline we found that, unlike the other two SSRIs, sertraline acutely inhibited LTP at a low micromolar concentration through inverse agonism of sigma 1 receptors (S1Rs). In the present studies, we pursued mechanisms contributing to sertraline modulation of LTP in rat hippocampal slices. We found that sertraline partially inhibits synaptic responses mediated by N-methyl-D-aspartate receptors (NMDARs) via effects on NMDARs that contain GluN2B subunits. A selective S1R antagonist (NE-100), but not an S1R agonist (PRE-084) blocked effects on NMDARs, even though both S1R ligands were previously shown to prevent LTP inhibition. Both NE-100 and PRE-084, however, prevented adverse effects of sertraline on one-trial learning. Because of the important role that S1Rs play in modulating endoplasmic reticulum stress, we examined whether inhibitors of cellular stress alter effects of sertraline. We found that two stress inhibitors, ISRIB and quercetin, prevented LTP inhibition, as did inhibitors of the synthesis of endogenous neurosteroids, which are homeostatic regulators of cellular stress. These studies highlight complex effects of sertraline, S1Rs and neurosteroids on hippocampal function and have relevance for understanding therapeutic and adverse drug actions.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Angela M Reiersen
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric J Lenze
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven J Mennerick
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry & Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
24
|
Sun D, Li X, Xu S, Cao S, Quan Y, Cui S, Xu D. Dazhu Hongjingtian injection attenuated alcohol-induced depressive symptoms by inhibiting hippocampus oxidative stress and inflammation through Nrf2/HO-1/NLRP3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118564. [PMID: 38996946 DOI: 10.1016/j.jep.2024.118564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alcoholic depression, a disorder of the central nervous system, is characterized by alcohol abuse, which causes blood-brain barrier disruption and oxidative damage in the brain. The rhizome of Rhodiola crenulate, from which Dazhu Hongjingtian Injection (DZHJTI) is derived, has been traditionally employed in ethnopharmacology to treat neurological disorders due to its neuroprotective, anti-inflammatory, and antioxidant properties. However, the exact mechanism by which DZHJTI alleviates alcoholic depression remains unclear. AIM OF THE STUDY This study aimed to investigate the antidepressant effects of DZHJTI and its underlying mechanisms in a mouse model of alcohol-induced depression. MATERIALS AND METHODS A model of alcoholic depression was established using C57BL/6J mice, and the effects of DZHJTI on depression-like behaviors induced by alcohol exposure were assessed through behavioral experiments. Histopathological examination was conducted to observe nerve cell damage and microglial activation in the hippocampal region. Oxidative stress indices in the hippocampus, inflammatory factors, and serum levels of dopamine (DA) and 5-hydroxytryptamine (5-HT) were measured using ELISA. Expression of proteins related to the Nrf2/HO-1/NLRP3 signaling pathway was determined by Western blot analysis. RESULTS DZHJTI attenuated depression-like behaviors, neuronal cell damage, oxidative stress levels, inflammatory responses, and microglial activation. It also restored levels of brain-derived neurotrophic factor, brain myelin basic protein, DA, and 5-HT in mice with chronic alcohol exposure. After DZHJTI treatment, the expressions of Nuclear Respiratory Factor 2 (Nrf2) and Heme Oxygenase-1 (HO-1) increased in the hippocampus, whereas the levels of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3), apoptosis-associated speck-like protein containing CARD, cleaved caspase-1, interleukin (IL)-1β, and IL-18 decreased. CONCLUSIONS DZHJTI ameliorates alcohol-induced depressive symptoms in mice through its antioxidant and anti-inflammatory effects, involving mechanisms associated with the Nrf2/HO-1/NLRP3 signaling pathway. This study highlights the potential of DZHJTI as a therapeutic option for alcohol-related depression and suggests the scope for future research to further elucidate its mechanisms and broader clinical applications.
Collapse
Affiliation(s)
- Dingchun Sun
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Xiangdan Li
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Songji Xu
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China
| | - Shuxia Cao
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Yingshi Quan
- Department of Anesthesiology, Yanbian University Hospital, Yanji, Jilin, China
| | - Songbiao Cui
- Department of Neurology, Yanbian University Hospital, Yanji, Jilin, China.
| | - Dongyuan Xu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.
| |
Collapse
|
25
|
Huie EZ, Yang X, Rioult-Pedotti MS, Tran K, Monsen ER, Hansen K, Erickson MA, Naik M, Yotova AY, Banks WA, Huang YWA, Silverman JL, Marshall J. Peptidomimetic inhibitors targeting TrkB/PSD-95 signaling improves cognition and seizure outcomes in an Angelman Syndrome mouse model. Neuropsychopharmacology 2024:10.1038/s41386-024-02020-z. [PMID: 39511336 DOI: 10.1038/s41386-024-02020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/18/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
Angelman syndrome (AS) is a rare genetic neurodevelopmental disorder with profoundly debilitating symptoms with no FDA-approved cure or therapeutic. Brain-derived neurotrophic factor (BDNF), and its receptor tropomyosin receptor kinase B (TrkB), have a well-established role as regulators of synaptic plasticity, dendritic outgrowth and spine formation. Previously, we reported that the association of postsynaptic density protein 95 (PSD-95) with TrkB is critical for intact BDNF signaling in the AS mouse model, as illustrated by attenuated PLCγ and PI3K signaling and intact MAPK pathway signaling. These data suggest that drugs tailored to enhance the TrkB-PSD-95 interaction may provide a novel approach for the treatment of AS and a variety of neurodevelopmental disorders (NDDs). To evaluate this critical interaction, we synthesized a class of high-affinity PSD-95 ligands that bind specifically to the PDZ3 domain of PSD-95, denoted as Syn3 peptidomimetic ligands. We evaluated Syn3 and its analog D-Syn3 (engineered using dextrorotary (D)-amino acids) in vivo using the Ube3a exon 2 deletion mouse model of AS. Following systemic administration of Syn3 and D-Syn3, we demonstrate improvement in the seizure domain of AS. Learning and memory using the novel object recognition assay also illustrated improved cognition following Syn3 and D-Syn3, along with restored long-term potentiation. A pharmacokinetic analysis of D-Syn3 demonstrates that it crosses the blood-brain barrier (BBB), and the brain influx rate is in the range of CNS therapeutics. Finally, D-Syn3 treated mice showed a partial rescue in motor learning. Neither Syn3 nor D-Syn3 improved gross exploratory locomotion deficits, nor gait impairments that have been well documented in the AS rodent models. These findings highlight the need for further investigation of this compound class as a potential therapeutic for AS and other genetic NDDs.
Collapse
Affiliation(s)
- Emily Z Huie
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, 4625 2nd Avenue Suite 1001A, Sacramento, CA, 95817, USA
| | - Xin Yang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Mengia S Rioult-Pedotti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Kyle Tran
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, 4625 2nd Avenue Suite 1001A, Sacramento, CA, 95817, USA
| | - Emma R Monsen
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, 4625 2nd Avenue Suite 1001A, Sacramento, CA, 95817, USA
| | - Kim Hansen
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Department of Medicine, Seattle, WA, 98104, USA
| | - Michelle A Erickson
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Department of Medicine, Seattle, WA, 98104, USA
| | - Mandar Naik
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Anna Y Yotova
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, 4625 2nd Avenue Suite 1001A, Sacramento, CA, 95817, USA
| | - William A Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Department of Medicine, Seattle, WA, 98104, USA
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Jill L Silverman
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, 4625 2nd Avenue Suite 1001A, Sacramento, CA, 95817, USA.
| | - John Marshall
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
26
|
Wang J, Li L, Li L, Shen Y, Qiu F. Lycopene alleviates age-related cognitive deficit via activating liver-brain fibroblast growth factor-21 signalling. Redox Biol 2024; 77:103363. [PMID: 39307046 PMCID: PMC11447408 DOI: 10.1016/j.redox.2024.103363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
Brain function is linked with many peripheral tissues, including the liver, where hepatic fibroblast growth factor 21 (FGF21) mediates communication between the liver and brain. Lycopene (LYC), a naturally occurring carotenoid, posses multiple health-promoting properties, including neuroprotective function. Here, we investigated the effects of LYC on age-related memory impairment and the relative contribution of liver-brain FGF21 signaling in these process. The results showed that after treatment with LYC for 3 months, brain aging and age-related cognitive deficits were effectively managed. In addition, LYC ameliorated neuronal degeneration, mitochondrial dysfunction and synaptic damage, and promoted synaptic vesicle fusion in 18-month-old mice. Notably, LYC activated liver-brain FGF21 signalling in aging mice. Whereas all these central effects of LYC were negated by blocking FGF21 via i. v. injection of adeno-associated virus in aging mice. Furthermore, recombinant FGF21 elevated mitochondrial ATP levels and enhanced synaptic vesicle fusion in mouse hippocampal HT-22 cells, which promoted neurotransmitter release. Additionally, we co-cultured hepatocytes and neurons in Transwell and found that LYC enhanced hepatocytes' support for neurons. This support included improved cell senescence, enhanced mitochondrial function, and increased axon length in co-cultured neurons. In conclusion, LYC protects against age-related cognitive deficit, partly explained by activating liver-brain FGF21 signalling, hence promoting neurotransmitters release via increasing mitochondrial ATP levels and enhancing synaptic vesicle fusion. These findings revealed that FGF21 could be a potential therapeutical target in nutritional intervention strategies to improve cognitive damage caused by aging and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Jia Wang
- Nutritional and Food Sciences Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China.
| | - Lu Li
- Nutritional and Food Sciences Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Li Li
- Nutritional and Food Sciences Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Yuqi Shen
- Nutritional and Food Sciences Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Fubin Qiu
- Nutritional and Food Sciences Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
27
|
Yang Y, Chen S, Zhang L, Zhang G, Liu Y, Li Y, Zou L, Meng L, Tian Y, Dai L, Xiong M, Pan L, Xiong J, Chen L, Hou H, Yu Z, Zhang Z. The PM20D1-NADA pathway protects against Parkinson's disease. Cell Death Differ 2024; 31:1545-1560. [PMID: 39174646 PMCID: PMC11519464 DOI: 10.1038/s41418-024-01356-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons in the substantia nigra and the accumulation of α-synuclein (α-Syn) aggregates. However, the molecular mechanisms regulating α-Syn aggregation and neuronal degeneration remain poorly understood. The peptidase M20 domain containing 1 (PM20D1) gene lies within the PARK16 locus genetically linked to PD. Single nucleotide polymorphisms regulating PM20D1 expression are associated with changed risk of PD. Dopamine (DA) metabolism and DA metabolites have been reported to regulate α-Syn pathology. Here we report that PM20D1 catalyzes the conversion of DA to N-arachidonoyl dopamine (NADA), which interacts with α-Syn and inhibits its aggregation. Simultaneously, NADA competes with α-Syn fibrils to regulate TRPV4-mediated calcium influx and downstream phosphatases, thus alleviating α-Syn phosphorylation. The expression of PM20D1 decreases during aging. Overexpression of PM20D1 or the administration of NADA in a mouse model of synucleinopathy alleviated α-Syn pathology, dopaminergic neurodegeneration, and motor impairments. These observations support the protective effect of the PM20D1-NADA pathway against the progression of α-Syn pathology in PD.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sichun Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Liu
- Department of Nursing, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiming Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Zou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lina Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liam Chen
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Hua Hou
- Department of Polymer Science, College of Chemistry and Molecular Sciences of Wuhan University, Wuhan, 430060, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
28
|
Acero-Castillo MC, Correia MBM, Caixeta FV, Motta V, Barros M, Maior RS. Is the antidepressant effect of ketamine separate from its psychotomimetic effect? A review of rodent models. Neuropharmacology 2024; 258:110088. [PMID: 39032814 DOI: 10.1016/j.neuropharm.2024.110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Ketamine is an NMDA (N-methyl-d-aspartate) glutamate receptor antagonist, which has a myriad of dose-dependent pharmacological and behavioral effects, including anesthetic, sedative, amnestic, analgesic, and anti-inflammatory properties. Intriguingly, ketamine at subanesthetic doses displays a relevant profile both in mimicking symptoms of schizophrenia and also as the first fast-acting treatment for depression. Here, we present an overview of the state-of-the-art knowledge about ketamine as an antidepressant as well as a pharmacological model of schizophrenia in animal models and human participants. Ketamine's dual effect appears to arise from its mechanism of action involving NMDA receptors, with both immediate and downstream consequences being triggered as a result. Finally, we discuss the feasibility of a unified approach linking the glutamatergic hypothesis of schizophrenia to the promising preclinical and clinical success of ketamine in the treatment of refractory depression.
Collapse
Affiliation(s)
- M C Acero-Castillo
- Laboratory of Neuroscience, Metabolism, and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| | - M B M Correia
- Laboratory of Neuroscience, Metabolism, and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil; Department of Anthropology, Emory University, Atlanta GA, ZIP 30322, USA
| | - F V Caixeta
- Laboratory of Neuroscience, Metabolism, and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| | - V Motta
- Department of Basic Psychological Processes, Institute of Psychology, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| | - M Barros
- Department of Pharmacy, School of Health Sciences, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil
| | - R S Maior
- Laboratory of Neuroscience, Metabolism, and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, ZIP 70910-900, Brasilia-DF, Brazil.
| |
Collapse
|
29
|
Brunello CA, Cannarozzo C, Castrén E. Rethinking the role of TRKB in the action of antidepressants and psychedelics. Trends Neurosci 2024; 47:865-874. [PMID: 39304417 DOI: 10.1016/j.tins.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Antidepressant drugs promote neuronal plasticity, and activation of brain-derived neurotrophic factor (BDNF) signaling through its receptor neuronal receptor tyrosine kinase 2 (NTRK2 or TRKB) is among the critical steps in this process. These mechanisms are shared by typical slow-acting antidepressants, fast-acting ketamine, and psychedelic compounds, although the cellular targets of each drug differ. In this opinion article, we propose that some of these antidepressants may directly bind to TRKB and allosterically potentiate BDNF signaling, among other possible effects. TRKB activation in parvalbumin-containing interneurons disinhibits cortical networks and reactivates a juvenile-like plasticity window. Subsequent rewiring of aberrant networks, coupled with environmental stimuli, may underlie its clinical antidepressant effects. The end-to-end hypothesis proposed may stimulate the search for new treatment strategies.
Collapse
Affiliation(s)
| | | | - Eero Castrén
- Neuroscience Center - HILIFE, University of Helsinki, Finland.
| |
Collapse
|
30
|
Du W, Chen H, Gróf I, Lemaitre L, Bocsik A, Perdyan A, Mieczkowski J, Deli MA, Hortobágyi T, Wan Q, Glebov OO. Antidepressant-induced membrane trafficking regulates blood-brain barrier permeability. Mol Psychiatry 2024; 29:3590-3598. [PMID: 38816584 PMCID: PMC11541205 DOI: 10.1038/s41380-024-02626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
As the most prescribed psychotropic drugs in current medical practice, antidepressant drugs (ADs) of the selective serotonin reuptake inhibitor (SSRI) class represent prime candidates for drug repurposing. The mechanisms underlying their mode of action, however, remain unclear. Here, we show that common SSRIs and selected representatives of other AD classes bidirectionally regulate fluid-phase uptake at therapeutic concentrations and below. We further characterize membrane trafficking induced by a canonical SSRI fluvoxamine to show that it involves enhancement of clathrin-mediated endocytosis, endosomal system, and exocytosis. RNA sequencing analysis showed few fluvoxamine-associated differences, consistent with the effect being independent of gene expression. Fluvoxamine-induced increase in membrane trafficking boosted transcytosis in cell-based blood-brain barrier models, while a single injection of fluvoxamine was sufficient to enable brain accumulation of a fluid-phase fluorescent tracer in vivo. These findings reveal modulation of membrane trafficking by ADs as a possible cellular mechanism of action and indicate their clinical repositioning potential for regulating drug delivery to the brain.
Collapse
Affiliation(s)
- Wenjia Du
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, 266071, China
| | - Huanhuan Chen
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, 266071, China
| | - Ilona Gróf
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Lucien Lemaitre
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Alexandra Bocsik
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Adrian Perdyan
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, 80-210, Poland
| | - Jakub Mieczkowski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, 80-210, Poland
| | - Mária A Deli
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Tibor Hortobágyi
- Centre for Healthy Brain Ageing, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, 266071, China
| | - Oleg O Glebov
- Centre for Healthy Brain Ageing, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
| |
Collapse
|
31
|
Kot EF, Goncharuk SA, Franco ML, McKenzie DM, Arseniev AS, Benito-Martínez A, Costa M, Cattaneo A, Hristova K, Vilar M, Mineev KS. Structural basis for the transmembrane signaling and antidepressant-induced activation of the receptor tyrosine kinase TrkB. Nat Commun 2024; 15:9316. [PMID: 39472452 PMCID: PMC11522581 DOI: 10.1038/s41467-024-53710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Neurotrophin receptors of the Trk family are involved in the regulation of brain development and neuroplasticity, and therefore can serve as targets for anti-cancer and stroke-recovery drugs, antidepressants, and many others. The structures of Trk protein domains in various states upon activation need to be elucidated to allow rational drug design. However, little is known about the conformations of the transmembrane and juxtamembrane domains of Trk receptors. In the present study, we employ NMR spectroscopy to solve the structure of the TrkB dimeric transmembrane domain in the lipid environment. We verify the structure using mutagenesis and confirm that the conformation corresponds to the active state of the receptor. Subsequent study of TrkB interaction with the antidepressant drug fluoxetine, and the antipsychotic drug chlorpromazine, provides a clear self-consistent model, describing the mechanism by which fluoxetine activates the receptor by binding to its transmembrane domain.
Collapse
Affiliation(s)
- Erik F Kot
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - María Luisa Franco
- Instituto de Biomedicina de Valencia-CSIC, València, Spain
- Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the IBV-CSIC, 3, Valencia, Spain
| | - Daniel M McKenzie
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Andrea Benito-Martínez
- Instituto de Biomedicina de Valencia-CSIC, València, Spain
- Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the IBV-CSIC, 3, Valencia, Spain
| | - Mario Costa
- Scuola Normale Superiore Laboratory of Biology BIO@SNS, Pisa, Italy
- CNR Neuroscience Institute, Pisa, Italy
| | | | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Marçal Vilar
- Instituto de Biomedicina de Valencia-CSIC, València, Spain.
- Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the IBV-CSIC, 3, Valencia, Spain.
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
- Goethe University Frankfurt, Frankfurt am Main, Germany, Germany.
| |
Collapse
|
32
|
Villéga F, Fernandes A, Jézéquel J, Uyttersprot F, Benac N, Zenagui S, Bastardo L, Gréa H, Bouchet D, Villetelle L, Nicole O, Rogemond V, Honnorat J, Dupuis JP, Groc L. Ketamine alleviates NMDA receptor hypofunction through synaptic trapping. Neuron 2024; 112:3311-3328.e9. [PMID: 39047728 DOI: 10.1016/j.neuron.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/16/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Activity-dependent modulations of N-methyl-D-aspartate glutamate receptor (NMDAR) trapping at synapses regulate excitatory neurotransmission and shape cognitive functions. Although NMDAR synaptic destabilization has been associated with severe neurological and psychiatric conditions, tuning NMDAR synaptic trapping to assess its clinical relevance for the treatment of brain conditions remains a challenge. Here, we report that ketamine (KET) and other clinically relevant NMDAR open channel blockers (OCBs) promote interactions between NMDAR and PDZ-domain-containing scaffolding proteins and enhance NMDAR trapping at synapses. We further show that KET-elicited trapping enhancement compensates for depletion in synaptic receptors triggered by autoantibodies from patients with anti-NMDAR encephalitis. Preventing synaptic depletion mitigates impairments in NMDAR-mediated CaMKII signaling and alleviates anxiety- and sensorimotor-gating-related behavioral deficits provoked by autoantibodies. Altogether, these findings reveal an unexpected dimension of OCB action and stress the potential of targeting receptor anchoring in NMDAR-related synaptopathies.
Collapse
Affiliation(s)
- Frédéric Villéga
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France; Department of Pediatric Neurology, CIC-1401, University Children's Hospital of Bordeaux, Bordeaux, France
| | - Alexandra Fernandes
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Julie Jézéquel
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Floriane Uyttersprot
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Nathan Benac
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Sarra Zenagui
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Laurine Bastardo
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Hélène Gréa
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Delphine Bouchet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Léa Villetelle
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Olivier Nicole
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Véronique Rogemond
- Synaptopathies and Autoantibodies Team, Institut NeuroMyoGene-MeLis, INSERM U1314, CNRS UMR 5284, Université Claude Bernard Lyon1, 69373 Lyon, France; French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 69677 Bron, France
| | - Jérôme Honnorat
- Synaptopathies and Autoantibodies Team, Institut NeuroMyoGene-MeLis, INSERM U1314, CNRS UMR 5284, Université Claude Bernard Lyon1, 69373 Lyon, France; French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 69677 Bron, France
| | - Julien P Dupuis
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France.
| | - Laurent Groc
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
33
|
Kim SH, Lee B, Lee SM, Kim Y. Restoring social deficits in IRSp53-deleted mice: chemogenetic inhibition of ventral dentate gyrus Emx1-expressing cells. Transl Psychiatry 2024; 14:425. [PMID: 39375329 PMCID: PMC11458854 DOI: 10.1038/s41398-024-03104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
IRSp53 is a synaptic scaffold protein reported to be involved in schizophrenia, autism spectrum disorders, and social deficits in knockout mice. Identifying critical brain regions and cells related to IRSp53 deletion is expected to be of great help in the treatment of psychiatric problems. In this study, we performed chemogenetic inhibition within the ventral dentate gyrus (vDG) of mice with IRSp53 deletion in Emx1-expressing cells (Emx1-Cre;IRSp53 flox/flox). We observed the recovery of social deficits after chemogenetic inhibition within vDG of Emx1-Cre;IRSp53 flox/flox mice. Additionally, chemogenetic activation induced social deficits in Emx1-Cre mice. CRHR1 expression increased in the hippocampus of Emx1-Cre;IRSp53 flox/flox mice, and CRHR1 was reduced by chemogenetic inhibition. Htd2, Ccn1, and Atp61l were decreased in bulk RNA sequencing, and Eya1 and Ecrg4 were decreased in single-cell RNA sequencing of the hippocampus in Emx1-Cre;IRSp53 flox/flox mice compared to control mice. This study determined that the vDG is a critical brain region for social deficits caused by IRSp53 deletion. Social deficits in Emx1-Cre;IRSp53 flox/flox mice were recovered through chemogenetic inhibition, providing clues for new treatment methods for psychiatric disorders accompanied by social deficits.
Collapse
Affiliation(s)
- Su Hyun Kim
- Mental Health Research Institute, National Center for Mental Health, Seoul, South Korea
| | - Bomee Lee
- Mental Health Research Institute, National Center for Mental Health, Seoul, South Korea
| | - Seong Mi Lee
- Mental Health Research Institute, National Center for Mental Health, Seoul, South Korea
| | - Yangsik Kim
- Department of Psychiatry, Inha University Hospital, College of Medicine, Inha University, Incheon, South Korea.
| |
Collapse
|
34
|
Li F, Yang K, Gao X, Zhang M, Gu D, Wu X, Lu C, Wu Q, Dixit D, Gimple RC, You Y, Mack SC, Shi Y, Kang T, Agnihotri SA, Taylor MD, Rich JN, Zhang N, Wang X. A peptide encoded by upstream open reading frame of MYC binds to tropomyosin receptor kinase B and promotes glioblastoma growth in mice. Sci Transl Med 2024; 16:eadk9524. [PMID: 39356747 DOI: 10.1126/scitranslmed.adk9524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/26/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
MYC promotes tumor growth through multiple mechanisms. Here, we show that, in human glioblastomas, the variant MYC transcript encodes a 114-amino acid peptide, MYC pre-mRNA encoded protein (MPEP), from the upstream open reading frame (uORF) MPEP. Secreted MPEP promotes patient-derived xenograft tumor growth in vivo, independent of MYC through direct binding, and activation of tropomyosin receptor kinase B (TRKB), which induces downstream AKT-mTOR signaling. Targeting MPEP through genetic ablation reduced growth of patient-derived 4121 and 3691 glioblastoma stem cells. Administration of an MPEP-neutralizing antibody in combination with a small-molecule TRKB inhibitor reduced glioblastoma growth in patient-derived xenograft tumor-bearing mice. The overexpression of MPEP in surgical glioblastoma specimens predicted a poor prognosis, supporting its clinical relevance. In summary, our results demonstrate that tumor-specific translation of a MYC-associated uORF promotes glioblastoma growth, suggesting a new therapeutic strategy for glioblastoma.
Collapse
Affiliation(s)
- Fanying Li
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xinya Gao
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510080, China
| | - Maolei Zhang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
| | - Danling Gu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xujia Wu
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Chenfei Lu
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Qiulian Wu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Deobrat Dixit
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ryan C Gimple
- Physician Scientist Training Program, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yongping You
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Stephen C Mack
- Division of Brain Tumor Research, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yu Shi
- Institute of Pathology, Ministry of Education Key Laboratory of Tumor Immunopathology, Southwest Hospital, Chongqing 400038, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510080, China
| | - Sameer A Agnihotri
- Brain Tumor Biology and Therapy Lab, Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nu Zhang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Institute for Brain Tumors, Jiangsu Provincial Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
35
|
Fujii C, Zorumski CF, Izumi Y. Endoplasmic reticulum stress, autophagy, neuroinflammation, and sigma 1 receptors as contributors to depression and its treatment. Neural Regen Res 2024; 19:2202-2211. [PMID: 38488553 PMCID: PMC11034583 DOI: 10.4103/1673-5374.391334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 04/24/2024] Open
Abstract
The etiological factors contributing to depression and other neuropsychiatric disorders are largely undefined. Endoplasmic reticulum stress pathways and autophagy are well-defined mechanisms that play critical functions in recognizing and resolving cellular stress and are possible targets for the pathophysiology and treatment of psychiatric and neurologic illnesses. An increasing number of studies indicate the involvement of endoplasmic reticulum stress and autophagy in the control of neuroinflammation, a contributing factor to multiple neuropsychiatric illnesses. Initial inflammatory triggers induce endoplasmic reticulum stress, leading to neuroinflammatory responses. Subsequently, induction of autophagy by neurosteroids and other signaling pathways that converge on autophagy induction are thought to participate in resolving neuroinflammation. The aim of this review is to summarize our current understanding of the molecular mechanisms governing the induction of endoplasmic reticulum stress, autophagy, and neuroinflammation in the central nervous system. Studies focused on innate immune factors, including neurosteroids with anti-inflammatory roles will be reviewed. In the context of depression, animal models that led to our current understanding of molecular mechanisms underlying depression will be highlighted, including the roles of sigma 1 receptors and pharmacological agents that dampen endoplasmic reticulum stress and associated neuroinflammation.
Collapse
Affiliation(s)
- Chika Fujii
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F. Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
36
|
Madsen CA, Navarro ML, Elfving B, Kessing LV, Castrén E, Mikkelsen JD, Knudsen GM. The effect of antidepressant treatment on blood BDNF levels in depressed patients: A review and methodological recommendations for assessment of BDNF in blood. Eur Neuropsychopharmacol 2024; 87:35-55. [PMID: 39079257 DOI: 10.1016/j.euroneuro.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 09/11/2024]
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder and a leading cause of disability worldwide. Brain-derived neurotrophic factor (BDNF), a signaling protein responsible for promoting neuroplasticity, is highly expressed in the central nervous system but can also be found in the blood. Since impaired brain plasticity is considered a cornerstone in the pathophysiology of MDD, measurement of BDNF in blood has been proposed as a potential biomarker in MDD. The aim of our study is to systematically review the literature for the effects of antidepressant treatments on blood BDNF levels in MDD and the suitability of blood BDNF as a biomarker for depression severity and antidepressant response. We searched Pubmed® and Cochrane library up to March 2024 in a systematic manner using Medical Subject Headings (MeSH). The search resulted in a total of 42 papers, of which 30 were included in this systematic review. Generally, we found that patients with untreated MDD have a lower blood BDNF level than healthy controls. Antidepressant treatments increase blood BDNF levels, and more evidently after pharmacological than non-pharmacological treatment. Neither baseline nor change in the blood BDNF level correlates with depression severity or treatment outcome, which undermines its use as a biomarker in MDD. Our review also highlights the importance of considering factors influencing the accuracy and reproducibility of BDNF measurements. We summarize considerations to help obtain more robust blood BDNF values and compile a list of recommendations to help streamline assessment of blood BDNF levels in future studies.
Collapse
Affiliation(s)
- Clara A Madsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Miriam L Navarro
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Lars V Kessing
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Psychiatric Centre Copenhagen, Mental Health Services Capital Region, Copenhagen, Denmark
| | - Eero Castrén
- Neuroscience Center / HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jens D Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
37
|
Gonda X, Tarazi FI, Dome P. The emergence of antidepressant drugs targeting GABA A receptors: A concise review. Biochem Pharmacol 2024; 228:116481. [PMID: 39147329 DOI: 10.1016/j.bcp.2024.116481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Depression is among the most common psychiatric illnesses, which imposes a major socioeconomic burden on patients, caregivers, and the public health system. Treatment with classical antidepressants (e.g. tricyclic antidepressants and selective serotonine reuptake inhibitors), which primarily affect monoaminergic systems has several limitations, such as delayed onset of action and moderate efficacy in a relatively large proportion of depressed patients. Furthermore, depression is highly heterogeneus, and its different subtypes, including post-partum depression, involve distinct neurobiology, warranting a differential approach to pharmacotherapy. Given these shortcomings, the need for novel antidepressants that are superior in efficacy and faster in onset of action is fully justified. The development and market introduction of rapid-acting antidepressants has accelerated in recent years. Some of these new antidepressants act through the GABAergic system. In this review, we discuss the discovery, efficacy, and limitations of treatment with classic antidepressants. We provide a detailed discussion of GABAergic neurotransmission, with a special focus on GABAA receptors, and possible explanations for the mood-enhancing effects of GABAergic medications (in particular neurosteroids acting at GABAA receptors), and, ultimately, we present the most promising molecules belonging to this family which are currently used in clinical practice or are in late phases of clinical development.
Collapse
Affiliation(s)
- Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
| | - Frank I Tarazi
- Department of Psychiatry and Neurology, Harvard Medical School and McLean Hospital, Boston, MA, USA
| | - Peter Dome
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; Nyiro Gyula National Institute of Psychiatry and Addictology, Budapest, Hungary
| |
Collapse
|
38
|
Allende LG, Natalí L, Cragnolini AB, Bollo M, Musri MM, de Mendoza D, Martín MG. Lysosomal cholesterol accumulation in aged astrocytes impairs cholesterol delivery to neurons and can be rescued by cannabinoids. Glia 2024; 72:1746-1765. [PMID: 38856177 DOI: 10.1002/glia.24580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Cholesterol is crucial for the proper functioning of eukaryotic cells, especially neurons, which rely on cholesterol to maintain their complex structure and facilitate synaptic transmission. However, brain cells are isolated from peripheral cholesterol by the blood-brain barrier and mature neurons primarily uptake the cholesterol synthesized by astrocytes for proper function. This study aimed to investigate the effect of aging on cholesterol trafficking in astrocytes and its delivery to neurons. We found that aged astrocytes accumulated high levels of cholesterol in the lysosomal compartment, and this cholesterol buildup can be attributed to the simultaneous occurrence of two events: decreased levels of the ABCA1 transporter, which impairs ApoE-cholesterol export from astrocytes, and reduced expression of NPC1, which hinders cholesterol release from lysosomes. We show that these two events are accompanied by increased microR-33 in aged astrocytes, which targets ABCA1 and NPC1. In addition, we demonstrate that the microR-33 increase is triggered by oxidative stress, one of the hallmarks of aging. By coculture experiments, we show that cholesterol accumulation in astrocytes impairs the cholesterol delivery from astrocytes to neurons. Remarkably, we found that this altered transport of cholesterol could be alleviated through treatment with endocannabinoids as well as cannabidiol or CBD. Finally, according to data demonstrating that aged astrocytes develop an A1 phenotype, we found that cholesterol buildup is also observed in reactive C3+ astrocytes. Given that reduced neuronal cholesterol affects synaptic plasticity, the ability of cannabinoids to restore cholesterol transport from aged astrocytes to neurons holds significant implications in aging and inflammation.
Collapse
Affiliation(s)
- Leandro G Allende
- Departamento de Neurobiología Molecular y celular, Instituto Ferreyra, INIMEC-CONICET-UNC, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lautaro Natalí
- Departamento de Bioquímica y Biofísica, Instituto Ferreyra, INIMEC-CONICET-UNC, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea B Cragnolini
- Instituto de Investigaciones Biológicas y Tecnológicas, CONICET-UNC, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Bollo
- Departamento de Bioquímica y Biofísica, Instituto Ferreyra, INIMEC-CONICET-UNC, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Melina M Musri
- Departamento de Bioquímica y Biofísica, Instituto Ferreyra, INIMEC-CONICET-UNC, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Diego de Mendoza
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mauricio G Martín
- Departamento de Neurobiología Molecular y celular, Instituto Ferreyra, INIMEC-CONICET-UNC, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
39
|
Stopera CJ, Bartlett MJ, Liu C, Esqueda A, Parmar R, Heien ML, Sherman SJ, Falk T. Differential effects of opioid receptor antagonism on the anti-dyskinetic and anti-parkinsonian effects of sub-anesthetic ketamine treatment in a preclinical model. Neuropharmacology 2024; 257:110047. [PMID: 38889877 DOI: 10.1016/j.neuropharm.2024.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Sub-anesthetic ketamine treatment has been shown to be an effective therapy for treatment-resistant depression and chronic pain. Our group has previously shown that sub-anesthetic ketamine produces acute anti-parkinsonian, and acute anti-dyskinetic effects in preclinical models of Parkinson's disease (PD). Ketamine is a multifunctional drug and exerts effects through blockade of N-methyl-d-aspartate receptors but also through interaction with the opioid system. In this report, we provide detailed pharmacokinetic rodent data on ketamine and its main metabolites following an intraperitoneal injection, and second, we explore the pharmacodynamic properties of ketamine in a rodent PD model with respect to the opioid system, using naloxone, a pan-opioid receptor antagonist, in unilateral 6-hydroxydopamine-lesioned male rats, treated with 6 mg/kg levodopa (l-DOPA) to establish a model of l-DOPA-induced dyskinesia (LID). As previously reported, we showed that ketamine (20 mg/kg) is highly efficacious in reducing LID and now report that the magnitude of this effect is resistant to naloxone (3 and 5 mg/kg). The higher naloxone dose of 5 mg/kg, however, led to an extension of the time-course of the LID, indicating that opioid receptor activation, while not a prerequisite for the anti-dyskinetic effects of ketamine, still exerts an acute modulatory effect. In contrast to the mild modulatory effect on LID, we found that naloxone added to the anti-parkinsonian activity of ketamine, further reducing the akinetic phenotype. In conclusion, our data show opioid receptor blockade differentially modulates the acute anti-parkinsonian and anti-dyskinetic actions of ketamine, providing novel mechanistic information to support repurposing ketamine for individuals with LID.
Collapse
Affiliation(s)
- Carolyn J Stopera
- Graduate Interdisciplinary Program in Neuroscience, The University of Arizona, Tucson, AZ, 85724, USA.
| | | | - Chenxi Liu
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA.
| | - Alexander Esqueda
- Department of Neurology, The University of Arizona, Tucson, AZ, 85724, USA.
| | - Raveena Parmar
- Department of Pharmacology, The University of Arizona, Tucson, AZ, 85724, USA.
| | - M Leandro Heien
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA.
| | - Scott J Sherman
- Department of Neurology, The University of Arizona, Tucson, AZ, 85724, USA.
| | - Torsten Falk
- Graduate Interdisciplinary Program in Neuroscience, The University of Arizona, Tucson, AZ, 85724, USA; Department of Neurology, The University of Arizona, Tucson, AZ, 85724, USA; Department of Pharmacology, The University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
40
|
Maxion A, Gaebler AJ, Röhrig R, Mathiak K, Zweerings J, Kutafina E. Spectral changes in electroencephalography linked to neuroactive medications: A computational pipeline for data mining and analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 255:108319. [PMID: 39047578 DOI: 10.1016/j.cmpb.2024.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND AND OBJECTIVES The increasing amount of open-access medical data provides new opportunities to gain clinically relevant information without recruiting new patients. We developed an open-source computational pipeline, that utilizes the publicly available electroencephalographic (EEG) data of the Temple University Hospital to identify EEG profiles associated with the usage of neuroactive medications. It facilitates access to the data and ensures consistency in data processing and analysis, thus reducing the risk of errors and creating comparable and reproducible results. Using this pipeline, we analyze the influence of common neuroactive medications on brain activity. METHODS The pipeline is constructed using easily controlled modules. The user defines the medications of interest and comparison groups. The data is downloaded and preprocessed, spectral features are extracted, and statistical group comparison with visualization through a topographic EEG map is performed. The pipeline is adjustable to answer a variety of research questions. Here, the effects of carbamazepine and risperidone were statistically compared with control data and with other medications from the same classes (anticonvulsants and antipsychotics). RESULTS The comparison between carbamazepine and the control group showed an increase in absolute and relative power for delta and theta, and a decrease in relative power for alpha, beta, and gamma. Compared to antiseizure medications, carbamazepine showed an increase in alpha and theta for absolute powers, and for relative powers an increase in alpha and theta, and a decrease in gamma and delta. Risperidone compared with the control group showed a decrease in absolute and relative power for alpha and beta and an increase in theta for relative power. Compared to antipsychotic medications, risperidone showed a decrease in delta for absolute powers. These results show good agreement with state-of-the-art research. The database allows to create large groups for many different medications. Additionally, it provides a collection of records labeled as "normal" after expert assessment, which is convenient for the creation of control groups. CONCLUSIONS The pipeline allows fast testing of different hypotheses regarding links between medications and EEG spectrum through ecological usage of readily available data. It can be utilized to make informed decisions about the design of new clinical studies.
Collapse
Affiliation(s)
- Anna Maxion
- Research Group Neuroscience, Interdisciplinary Center for Clinical Research Within the Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Arnim Johannes Gaebler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany; Institute of Physiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Rainer Röhrig
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jana Zweerings
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ekaterina Kutafina
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany; Institute for Biomedical Informatics, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
41
|
Walaszek M, Kachlik Z, Cubała WJ. Low-carbohydrate diet as a nutritional intervention in a major depression disorder: focus on relapse prevention. Nutr Neurosci 2024; 27:1185-1198. [PMID: 38245881 DOI: 10.1080/1028415x.2024.2303218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
OBJECTIVES Mood disorders are trending to be among the leading causes of years lived with disability. Despite multiple treatment options, around 30% patients with major depressive disorder (MDD) develop treatment resistant depression (TRD) and fail to respond to current pharmacological therapies. This study aimed to explore the potential benefits of nutritional treatment strategies, along with their molecular mechanisms of action, focusing especially on low-carbohydrate diet (LCHD), ketogenic diet (KD) and other strategies based on carbohydrates intake reduction. METHODS A comprehensive literature review was conducted to determine the impact of LCHD on alleviating depressive symptoms in patients with MDD, along with an explanation of its mode of action. RESULTS The study revealed significant impact of nutritional interventions based on restriction in carbohydrate intake such as LCHD, KD or sugar-sweetened beverages (SSB) exclusion on anxiety or depression symptoms reduction, mood improvement and lower risk of cognitive impairment or depression. The efficacy of these approaches is further substantiated by their underlying molecular mechanisms, mainly brain-derived neurotrophic factor (BDNF) which is a potential key target of sugar restriction diets in terms of neuroplasticity. DISCUSSION Healthcare professionals may consider implementing LCHD strategies for MDD and TRD patients to modify the disease process, maintain euthymia, and prevent depressive episode relapses. Ranging from the exclusion of SSB to the adherence to rigorous LCHD regimens, these nutritional approaches are safe, straightforward to implement, and may confer benefits for well-being and relapse prevention in this specific patient population.
Collapse
Affiliation(s)
- Michał Walaszek
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Zofia Kachlik
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Wiesław Jerzy Cubała
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
42
|
Dahrendorff J, Currier G, Uddin M. Leveraging DNA methylation to predict treatment response in major depressive disorder: A critical review. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32985. [PMID: 38650309 DOI: 10.1002/ajmg.b.32985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Major depressive disorder (MDD) is a debilitating and prevalent mental disorder with a high disease burden. Despite a wide array of different treatment options, many patients do not respond to initial treatment attempts. Selection of the most appropriate treatment remains a significant clinical challenge in psychiatry, highlighting the need for the development of biomarkers with predictive utility. Recently, the epigenetic modification DNA methylation (DNAm) has emerged to be of great interest as a potential predictor of MDD treatment outcomes. Here, we review efforts to date that seek to identify DNAm signatures associated with treatment response in individuals with MDD. Searches were conducted in the databases PubMed, Scopus, and Web of Science with the concepts and keywords MDD, DNAm, antidepressants, psychotherapy, cognitive behavior therapy, electroconvulsive therapy, transcranial magnetic stimulation, and brain stimulation therapies. We identified 32 studies implicating DNAm patterns associated with MDD treatment outcomes. The majority of studies (N = 25) are focused on selected target genes exploring treatment outcomes in pharmacological treatments (N = 22) with a few studies assessing treatment response to electroconvulsive therapy (N = 3). Additionally, there are few genome-scale efforts (N = 7) to characterize DNAm patterns associated with treatment outcomes. There is a relative dearth of studies investigating DNAm patterns in relation to psychotherapy, electroconvulsive therapy, or transcranial magnetic stimulation; importantly, most existing studies have limited sample sizes. Given the heterogeneity in both methods and results of studies to date, there is a need for additional studies before existing findings can inform clinical decisions.
Collapse
Affiliation(s)
- Jan Dahrendorff
- Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Glenn Currier
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, Florida, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
43
|
Tsybko A, Eremin D, Ilchibaeva T, Khotskin N, Naumenko V. CDNF Exerts Anxiolytic, Antidepressant-like, and Procognitive Effects and Modulates Serotonin Turnover and Neuroplasticity-Related Genes. Int J Mol Sci 2024; 25:10343. [PMID: 39408672 PMCID: PMC11482483 DOI: 10.3390/ijms251910343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotrophic factor because it does not bind to a known specific receptor on the plasma membrane and functions primarily as an unfolded protein response (UPR) regulator in the endoplasmic reticulum. Data on the effects of CDNF on nonmotor behavior and monoamine metabolism are limited. Here, we performed the intracerebroventricular injection of a recombinant CDNF protein at doses of 3, 10, and 30 μg in C57BL/6 mice. No adverse effects of the CDNF injection on feed and water consumption or locomotor activity were observed for 3 days afterwards. Decreases in body weight and sleep duration were transient. CDNF-treated animals demonstrated improved performance on the operant learning task and a substantial decrease in anxiety and behavioral despair. CDNF in all the doses enhanced serotonin (5-HT) turnover in the murine frontal cortex, hippocampus, and midbrain. This alteration was accompanied by changes in the mRNA levels of the 5-HT1A and 5-HT7 receptors and in monoamine oxidase A mRNA and protein levels. We found that CDNF dramatically increased c-Fos mRNA levels in all investigated brain areas but elevated the phosphorylated-c-Fos level only in the midbrain. Similarly, enhanced CREB phosphorylation was found in the midbrain in experimental animals. Additionally, the upregulation of a spliced transcript of XBP1 (UPR regulator) was detected in the midbrain and frontal cortex. Thus, we can hypothesize that exogenous CDNF modulates the UPR pathway and overall neuronal activation and enhances 5-HT turnover, thereby affecting learning and emotion-related behavior.
Collapse
Affiliation(s)
- Anton Tsybko
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (D.E.); (T.I.); (N.K.); (V.N.)
| | | | | | | | | |
Collapse
|
44
|
Inserra A, Campanale A, Rezai T, Romualdi P, Rubino T. Epigenetic mechanisms of rapid-acting antidepressants. Transl Psychiatry 2024; 14:359. [PMID: 39231927 PMCID: PMC11375021 DOI: 10.1038/s41398-024-03055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Rapid-acting antidepressants (RAADs), including dissociative anesthetics, psychedelics, and empathogens, elicit rapid and sustained therapeutic improvements in psychiatric disorders by purportedly modulating neuroplasticity, neurotransmission, and immunity. These outcomes may be mediated by, or result in, an acute and/or sustained entrainment of epigenetic processes, which remodel chromatin structure and alter DNA accessibility to regulate gene expression. METHODS In this perspective, we present an overview of the known mechanisms, knowledge gaps, and future directions surrounding the epigenetic effects of RAADs, with a focus on the regulation of stress-responsive DNA and brain regions, and on the comparison with conventional antidepressants. MAIN BODY Preliminary correlative evidence indicates that administration of RAADs is accompanied by epigenetic effects which are similar to those elicited by conventional antidepressants. These include changes in DNA methylation, post-translational modifications of histones, and differential regulation of non-coding RNAs in stress-responsive chromatin areas involved in neurotrophism, neurotransmission, and immunomodulation, in stress-responsive brain regions. Whether these epigenetic changes causally contribute to the therapeutic effects of RAADs, are a consequence thereof, or are unrelated, remains unknown. Moreover, the potential cell type-specificity and mechanisms involved are yet to be fully elucidated. Candidate mechanisms include neuronal activity- and serotonin and Tropomyosine Receptor Kinase B (TRKB) signaling-mediated epigenetic changes, and direct interaction with DNA, histones, or chromatin remodeling complexes. CONCLUSION Correlative evidence suggests that epigenetic changes induced by RAADs accompany therapeutic and side effects, although causation, mechanisms, and cell type-specificity remain largely unknown. Addressing these research gaps may lead to the development of novel neuroepigenetics-based precision therapeutics.
Collapse
Affiliation(s)
- Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Behavioral Neuroscience Laboratory, University of South Santa Catarina (UNISUL), Tubarão, Brazil., Tubarão, Brazil.
| | | | - Tamim Rezai
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Varese, Italy
| |
Collapse
|
45
|
Cardon I, Grobecker S, Jenne F, Jahner T, Rupprecht R, Milenkovic VM, Wetzel CH. Serotonin effects on human iPSC-derived neural cell functions: from mitochondria to depression. Mol Psychiatry 2024; 29:2689-2700. [PMID: 38532010 PMCID: PMC11420088 DOI: 10.1038/s41380-024-02538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Depression's link to serotonin dysregulation is well-known. The monoamine theory posits that depression results from impaired serotonin activity, leading to the development of antidepressants targeting serotonin levels. However, their limited efficacy suggests a more complex cause. Recent studies highlight mitochondria as key players in depression's pathophysiology. Mounting evidence indicates that mitochondrial dysfunction significantly correlates with major depressive disorder (MDD), underscoring its pivotal role in depression. Exploring the serotonin-mitochondrial connection, our study investigated the effects of chronic serotonin treatment on induced-pluripotent stem cell-derived astrocytes and neurons from healthy controls and two case study patients. One was a patient with antidepressant non-responding MDD ("Non-R") and another had a non-genetic mitochondrial disorder ("Mito"). The results revealed that serotonin altered the expression of genes related to mitochondrial function and dynamics in neurons and had an equalizing effect on calcium homeostasis in astrocytes, while ATP levels seemed increased. Serotonin significantly decreased cytosolic and mitochondrial calcium in neurons. Electrophysiological measurements evidenced that serotonin depolarized the resting membrane potential, increased both sodium and potassium current density and ultimately improved the overall excitability of neurons. Specifically, neurons from the Non-R patient appeared responsive to serotonin in vitro, which seemed to improve neurotransmission. While it is unclear how this translates to the systemic level and AD resistance mechanisms are not fully elucidated, our observations show that despite his treatment resistance, this patient's cortical neurons are responsive to serotonergic signals. In the Mito patient, evidence suggested that serotonin, by increasing excitability, exacerbated an existing hyperexcitability highlighting the importance of considering mitochondrial disorders in patients with MDD, and avoiding serotonin-increasing medication. Taken together, our findings suggested that serotonin positively affects calcium homeostasis in astrocytes and increases neuronal excitability. The latter effect must be considered carefully, as it could have beneficial or detrimental implications based on individual pathologies.
Collapse
Affiliation(s)
- Iseline Cardon
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Sonja Grobecker
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Frederike Jenne
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Tatjana Jahner
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
46
|
Rajamanickam G, Lee ATH, Liao P. Role of Brain Derived Neurotrophic Factor and Related Therapeutic Strategies in Central Post-Stroke Pain. Neurochem Res 2024; 49:2303-2318. [PMID: 38856889 DOI: 10.1007/s11064-024-04175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is vital for synaptic plasticity, cell persistence, and neuronal development in peripheral and central nervous systems (CNS). Numerous intracellular signalling pathways involving BDNF are well recognized to affect neurogenesis, synaptic function, cell viability, and cognitive function, which in turn affects pathological and physiological aspects of neurons. Stroke has a significant psycho-socioeconomic impact globally. Central post-stroke pain (CPSP), also known as a type of chronic neuropathic pain, is caused by injury to the CNS following a stroke, specifically damage to the somatosensory system. BDNF regulates a broad range of functions directly or via its biologically active isoforms, regulating multiple signalling pathways through interactions with different types of receptors. BDNF has been shown to play a major role in facilitating neuroplasticity during post-stroke recovery and a pro-nociceptive role in pain development in the nervous system. BDNF-tyrosine kinase receptors B (TrkB) pathway promotes neurite outgrowth, neurogenesis, and the prevention of apoptosis, which helps in stroke recovery. Meanwhile, BDNF overexpression plays a role in CPSP via the activation of purinergic receptors P2X4R and P2X7R. The neuronal hyperexcitability that causes CPSP is linked with BDNF-TrkB interactions, changes in ion channels and inflammatory reactions. This review provides an overview of BDNF synthesis, interactions with certain receptors, and potential functions in regulating signalling pathways associated with stroke and CPSP. The pathophysiological mechanisms underlying CPSP, the role of BDNF in CPSP, and the challenges and current treatment strategies targeting BDNF are also discussed.
Collapse
Affiliation(s)
- Gayathri Rajamanickam
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Andy Thiam Huat Lee
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
47
|
Yoon SH, Song WS, Chung G, Kim SJ, Kim MH. Activity in the dorsal hippocampus-mPFC circuit modulates stress-coping strategies during inescapable stress. Exp Mol Med 2024; 56:1921-1935. [PMID: 39218973 PMCID: PMC11447212 DOI: 10.1038/s12276-024-01294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 09/04/2024] Open
Abstract
Anatomical connectivity and lesion-deficit studies have shown that the dorsal and ventral hippocampi contribute to cognitive and emotional processes, respectively. However, the role of the dorsal hippocampus (dHP) in emotional or stress-related behaviors remains unclear. Here, we showed that neuronal activity in the dHP affects stress-coping behaviors in mice via excitatory projections to the medial prefrontal cortex (mPFC). The antidepressant ketamine rapidly induced c-Fos expression in both the dorsal and ventral hippocampi. The suppression of GABAergic transmission in the dHP-induced molecular changes similar to those induced by ketamine administration, including eukaryotic elongation factor 2 (eEF2) dephosphorylation, brain-derived neurotrophic factor (BDNF) elevation, and extracellular signal-regulated kinase (ERK) phosphorylation. These synaptic and molecular changes in the dHP induced a reduction in the immobility time of the mice in the tail-suspension and forced swim tests without affecting anxiety-related behavior. Conversely, pharmacological and chemogenetic potentiation of inhibitory neurotransmission in the dHP CA1 region induced passive coping behaviors during the tests. Transneuronal tracing and electrophysiology revealed monosynaptic excitatory connections between dHP CA1 neurons and mPFC neurons. Optogenetic stimulation of dHP CA1 neurons in freely behaving mice produced c-Fos induction and spike firing in the mPFC neurons. Chemogenetic activation of the dHP-recipient mPFC neurons reversed the passive coping behaviors induced by suppression of dHP CA1 neuronal activity. Collectively, these results indicate that neuronal activity in the dHP modulates stress-coping strategies to inescapable stress and contributes to the antidepressant effects of ketamine via the dHP-mPFC circuit.
Collapse
Affiliation(s)
- Sang Ho Yoon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, CA, 92697, USA
| | - Woo Seok Song
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea
| | - Geehoon Chung
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Sang Jeong Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea
| | - Myoung-Hwan Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea.
- Seoul National University Bundang Hospital, Seongnam, Gyeonggi, 13620, Korea.
| |
Collapse
|
48
|
Liu Q, Wang M, Wang W, Yue S, Jannini TB, Jannini EA, Jiang H, Zhang X. Repetitive transcranial magnetic stimulation via the hippocampal brain-derived neurotrophic factor-tyrosine kinase receptor B pathway to affect sexual behavior and neuroplasticity in rapid ejaculation rats. Andrology 2024; 12:1429-1438. [PMID: 38230991 DOI: 10.1111/andr.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/23/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Premature ejaculation (PE) is the most prevalent sexual dysfunction among men. Eejaculation involves a complex nervous mechanism in which the ejaculatory centers play a key role in modulating sperm emission. Although treatment possibilities span from psychotherapy to pharmacological approaches, results show inconsistent efficacy. In this context, the emergence of repetitive transcranial magnetic stimulation (rTMS) as a non-invasive neuromodulatory approach represents a compelling avenue for potential therapeutic exploration. OBJECTIVE To investigate whether high-frequency transcranial magnetic stimulation can modulate the ejaculatory behavior of rats with rapid ejaculation by altering neurotransmitter levels and neuroplasticity in the hippocampus. METHODS Rats have been screened for rapid ejaculation by observing behavioral indices of mating, and subsequently divided into two groups. The intervention group was administered with a 10 Hz rTMS stimulation, whereas the control group received a sham procedure. Upon the delivery of rTMS, we investigated ejaculation latency (EL), the hippocampal 5-hydroxytryptamine (5-HT) concentration, brain-derived neurotrophic factor (BDNF), synaptophysin (SYN), and postsynaptic density protein 95 (PSD95) expressions, as well as BDNF-receptor tyrosine kinase receptor B (TrkB) pathway upregulation. RESULTS After 14 days, EL was increased in the intervention group compared with the control group. 5-HT concentration in the hippocampal region was increased, and high-frequency rTMS activated the BDNF and TrkB pathways, including phosphorylation of cAMP response element-binding protein (CREB), and upregulated the transcription and protein expression of SYN, and PSD95. CONCLUSION RTMS upregulates BDNF, SYN, and PSD95 expression through activation of the BDNF-TrkB pathway and increases brain 5-hydroxytryptamine thereby regulating neuroplasticity and improving ejaculation.
Collapse
Affiliation(s)
- Qiushi Liu
- The Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Ming Wang
- The Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Weinan Wang
- The Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Shaoyu Yue
- The Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Tommaso B Jannini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Hui Jiang
- Department of Urology, Peking University First Hospital Institute of Urology, Peking University, Beijing, China
| | - Xiansheng Zhang
- The Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| |
Collapse
|
49
|
Costa A, Micheli L, Sordi V, Ciampi C, Lucci J, Passani MB, Provensi G. Preventing social defeat stress-induced behavioural and neurochemical alterations by repeated treatment with a mix of Centella asiatica, Echinacea purpurea and Zingiber officinale standardized extracts. Front Pharmacol 2024; 15:1439811. [PMID: 39253374 PMCID: PMC11381240 DOI: 10.3389/fphar.2024.1439811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Background: Prolonged exposure to stress is a risk factor for the onset of several disorders. Modern life is burdened by a pervasive prevalence of stress, which represents a major societal challenge requiring new therapeutic strategies. In this context, botanical drug-based therapies can have a paramount importance. Methods: Here we studied the preventive effects of a repeated treatment (p.o. daily, 3 weeks) with a combination of Centella asiatica (200 mg/kg), Echinacea purpurea (20 mg/kg) and Zingiber officinale (150 mg/kg) standardized extracts, on the chronic social defeat stress (CSDS) deleterious outcomes. After 10 days of CSDS exposure, male mice' performances were evaluated in paradigms relevant for social (social interaction test), emotional (tail suspension test), cognitive (novel object recognition) domains as well as for pain perception (cold plate and von Frey tests) and motor skills (rotarod). Mice were then sacrificed, the spinal cords, hippocampi and frontal cortices dissected and processed for RT-PCR analysis. Results: Extracts mix treatment prevented stress-induced social aversion, memory impairment, mechanical and thermal allodynia and reduced behavioural despair independently of stress exposure. The treatment stimulated hippocampal and cortical BDNF and TrkB mRNA levels and counteracted stress-induced alterations in pro- (TNF-α, IL-1β and IL-6) and anti-inflammatory (IL4, IL10) cytokines expression in the same areas. It also modulated expression of pain related genes (GFAP and Slc1a3) in the spinal cord. Conclusion: The treatment with the extracts mix obtained from C. asiatica, E. purpurea and Z. officinale may represent a promising strategy to promote resilience and prevent the deleterious effects induced by extended exposure to psychosocial stress.
Collapse
Affiliation(s)
- Alessia Costa
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Laura Micheli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Virginia Sordi
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Clara Ciampi
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Jacopo Lucci
- Bios-Therapy, Physiological Systems for Health S.p.A., Sansepolcro, Italy
- Aboca S.p.A. Società Agricola, Innovation and Medical Science Division, Sansepolcro, Italy
| | | | - Gustavo Provensi
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
50
|
Nguyen DD, Mansur S, Ciesla L, Gray NE, Zhao S, Bao Y. A Combined Computational and Experimental Approach to Studying Tropomyosin Kinase Receptor B Binders for Potential Treatment of Neurodegenerative Diseases. Molecules 2024; 29:3992. [PMID: 39274839 PMCID: PMC11396239 DOI: 10.3390/molecules29173992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024] Open
Abstract
Tropomyosin kinase receptor B (TrkB) has been explored as a therapeutic target for neurological and psychiatric disorders. However, the development of TrkB agonists was hindered by our poor understanding of the TrkB agonist binding location and affinity (both affect the regulation of disorder types). This motivated us to develop a combined computational and experimental approach to study TrkB binders. First, we developed a docking method to simulate the binding affinity of TrkB and binders identified by our magnetic drug screening platform from Gotu kola extracts. The Fred Docking scores from the docking computation showed strong agreement with the experimental results. Subsequently, using this screening platform, we identified a list of compounds from the NIH clinical collection library and applied the same docking studies. From the Fred Docking scores, we selected two compounds for TrkB activation tests. Interestingly, the ability of the compounds to increase dendritic arborization in hippocampal neurons matched well with the computational results. Finally, we performed a detailed binding analysis of the top candidates and compared them with the best-characterized TrkB agonist, 7,8-dyhydroxyflavon. The screening platform directly identifies TrkB binders, and the computational approach allows for the quick selection of top candidates with potential biological activities based on the docking scores.
Collapse
Affiliation(s)
- Duc D. Nguyen
- Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, USA
| | - Shomit Mansur
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Lukasz Ciesla
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Nora E. Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Shan Zhao
- Department of Mathematics, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Yuping Bao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
| |
Collapse
|