1
|
Huang Q, Xu L, Ye L. Functional subsets of tumor-specific CD8 + T cells in draining lymph nodes and tumor microenvironment. Curr Opin Immunol 2025; 92:102506. [PMID: 39591663 DOI: 10.1016/j.coi.2024.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024]
Abstract
Accumulating evidence demonstrates that tumor-specific CD8+ T cells in tumor-draining lymph nodes (TdLNs) act as an upstream reservoir of exhausted subsets within tumor microenvironment (TME). This reservoir primarily consists of progenitor exhausted CD8+ T (TPEX) cells and newly defined tumor-specific memory subsets (TTSM). We propose that these two subsets work together to mediate the antitumor effects of PD-1/PD-L1 immune checkpoint blockade (ICB) in a spatiotemporal manner. Although PD-1/PD-L1 ICB monotherapy drives the proliferation and further differentiation of these subsets, it does not alter the programmed differentiation trajectory from TTSM cells to TPEX cells, ultimately leading to the development of terminally exhausted CD8+ T cells. This phenomenon may partly explaining the frequent relapse in patients following initial ICB therapy. In this review, we focus on the phenotypic and functional heterogeneity of tumor-specific CD8+ T cells in both TdLNs and the TME and discuss the implications of these studies for ICB. Our insights aim to illuminate new strategies for advancing tumor immunotherapies.
Collapse
Affiliation(s)
- Qizhao Huang
- Institute of Immunological Innovation and Translation, Chongqing Medical University, Chongqing, China; Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing, China; National Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China.
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
2
|
Du Y, Yang Y, Zheng B, Zhang Q, Zhou S, Zhao L. Finding a needle in a haystack: functional screening for novel targets in cancer immunology and immunotherapies. Oncogene 2025:10.1038/s41388-025-03273-8. [PMID: 39863748 DOI: 10.1038/s41388-025-03273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Genome-wide functional genetic screening has been widely used in the biomedicine field, which makes it possible to find a needle in a haystack at the genetic level. In cancer research, gene mutations are closely related to tumor development, metastasis, and recurrence, and the use of state-of-the-art powerful screening technologies, such as clustered regularly interspaced short palindromic repeat (CRISPR), to search for the most critical genes or coding products provides us with a new possibility to further refine the cancer mapping and provide new possibilities for the treatment of cancer patients. The use of CRISPR screening for the most critical genes or coding products has further refined the cancer atlas and provided new possibilities for the treatment of cancer patients. Immunotherapy, as a highly promising cancer treatment method, has been widely validated in the clinic, but it could only meet the needs of a small proportion of cancer patients. Finding new immunotherapy targets is the key to the future of tumor immunotherapy. Here, we revisit the application of functional screening in cancer immunology from different perspectives, from the selection of diverse in vitro and in vivo screening models to the screening of potential immune checkpoints and potentiating genes for CAR-T cells. The data will offer fresh therapeutic clues for cancer patients.
Collapse
Affiliation(s)
- Yi Du
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Yang Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| |
Collapse
|
3
|
Qiu Y, Su Y, Xie E, Cheng H, Du J, Xu Y, Pan X, Wang Z, Chen DG, Zhu H, Greenberg PD, Li G. Mannose metabolism reshapes T cell differentiation to enhance anti-tumor immunity. Cancer Cell 2025; 43:103-121.e8. [PMID: 39642888 PMCID: PMC11756673 DOI: 10.1016/j.ccell.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 09/23/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
Cellular metabolic status profoundly influences T cell differentiation, persistence, and anti-tumor efficacy. Our single-cell metabolic analyses of T cells reveal that diminished mannose metabolism is a prominent feature of T cell dysfunction. Conversely, experimental augmentation/restoration of mannose metabolism in adoptively transferred T cells via D-mannose supplementation enhances anti-tumor activity and restricts exhaustion differentiation both in vitro and in vivo. Mechanistically, D-mannose treatment induces intracellular metabolic programming and increases the O-GlcNAc transferase (OGT)-mediated O-GlcNAcylation of β-catenin, which preserves Tcf7 expression and epigenetic stemness, thereby promoting stem-like programs in T cells. Furthermore, in vitro expansion with D-mannose supplementation yields T cell products for adoptive therapy with stemness characteristics, even after extensive long-term expansion, that exhibits enhanced anti-tumor efficacy. These findings reveal cell-intrinsic mannose metabolism as a physiological regulator of CD8+ T cell fate, decoupling proliferation/expansion from differentiation, and underscoring the therapeutic potential of mannose modulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Yajing Qiu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Yapeng Su
- Program in Immunology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Departments of Immunology and Medicine, University of Washington, Seattle, WA 98109, USA; Herbold Computational Biology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ermei Xie
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Hongcheng Cheng
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Jing Du
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Yue Xu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Xiaoli Pan
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Zhe Wang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Daniel G Chen
- Program in Immunology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Departments of Immunology and Medicine, University of Washington, Seattle, WA 98109, USA; Herbold Computational Biology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Hong Zhu
- Department of Medical Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215123, Jiangsu, China
| | - Philip D Greenberg
- Program in Immunology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Departments of Immunology and Medicine, University of Washington, Seattle, WA 98109, USA.
| | - Guideng Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
4
|
Yu M, Thorner K, Parameswaran S, Wei W, Yu C, Lin X, Kopan R, Hass MR. The unique functions of Runx1 in skeletal muscle maintenance and regeneration are facilitated by an ETS interaction domain. Development 2024; 151:dev202556. [PMID: 39508441 DOI: 10.1242/dev.202556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
The conserved Runt-related (RUNX) transcription factor family are master regulators of developmental and regenerative processes. Runx1 and Runx2 are expressed in satellite cells (SCs) and in skeletal myotubes. Here, we examined the role of Runx1 in mouse satellite cells to determine the role of Runx1 during muscle differentiation. Conditional deletion of Runx1 in adult SCs negatively impacted self-renewal and impaired skeletal muscle maintenance even though Runx2 expression persisted. Runx1 deletion in C2C12 cells (which retain Runx2 expression) identified unique molecular functions of Runx1 that could not be compensated for by Runx2. The reduced myoblast fusion in vitro caused by Runx1 loss was due in part to ectopic expression of Mef2c, a target repressed by Runx1. Structure-function analysis demonstrated that the ETS-interacting MID/EID region of Runx1, absent from Runx2, is essential for Runx1 myoblast function and for Etv4 binding. Analysis of ChIP-seq datasets from Runx1 (T cells, muscle)- versus Runx2 (preosteoblasts)-dependent tissues identified a composite ETS:RUNX motif enriched in Runx1-dependent tissues. The ETS:RUNX composite motif was enriched in peaks open exclusively in ATAC-seq datasets from wild-type cells compared to ATAC peaks unique to Runx1 knockout cells. Thus, engagement of a set of targets by the RUNX1/ETS complex define the non-redundant functions of Runx1 in mouse muscle precursor cells.
Collapse
Affiliation(s)
- Meng Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Konrad Thorner
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sreeja Parameswaran
- Division of Human Genetics, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wei Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Chuyue Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Matthew R Hass
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Human Genetics, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
5
|
Liu Y, Chen J, Li A, Wu Y, Ge J, Yuan M, Xu B, Zheng X, Chen L, Jiang J. Novel biomarkers: the RUNX family as prognostic predictors in colorectal cancer. Front Immunol 2024; 15:1430136. [PMID: 39822248 PMCID: PMC11736411 DOI: 10.3389/fimmu.2024.1430136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/21/2024] [Indexed: 01/30/2025] Open
Abstract
While biomarkers have been shown to enhance the prognosis of patients with colorectal cancer (CRC) compared to conventional treatments, there is a pressing need to discover novel biomarkers that can assist in assessing the prognostic impact of immunotherapy and in formulating individualized treatment plans. The RUNX family, consisting of RUNX1, RUNX2, and RUNX3, has been recognized as crucial regulators in developmental processes, with dysregulation of these genes also being implicated in tumorigenesis and cancer progression. In our present study, we demonstrated a crucial regulatory role of RUNX in CD8+T and CD103+CD8+T cell-mediated anti-tumor response within the tumor microenvironment (TME) of human CRC. Specifically, RUNXs were significantly differentially expressed between tumor and normal tissues in CRC. Patients with a greater proportion of infiltrating CD8+RUNX1+, CD103+CD8+RUNX1+, CD8+RUNX2+, CD103+CD8+RUNX2+, CD8+RUNX3+, or CD103+CD8+RUNX3+ T cells demonstrated improved outcomes compared to those with lower proportions. Additionally, the proportions of infiltrating CD8+RUNX1+T and CD8+RUNX3+T cells may serve as valuable prognostic predictors for CRC patients, independent of other clinicopathological factors. Moreover, further bioinformatic analysis conducted utilizing the TISIDB and TIMER platforms demonstrated significant associations between the members of the RUNX family and immune-infiltrating cells, specifically diverse subpopulations of CD8+TILs. Our study of human colorectal cancer tissue microarray (TMA) also revealed positive and statistically significant correlations between the expressions of RUNX1, RUNX2, and RUNX3 in both CD8+T cells and CD103+CD8+T cells. Our study comprehensively revealed the varied expressions and prognostic importance of the RUNX family in human colorectal cancer tissues. It underscored their potential as vital biomarkers for prognostic evaluation in colorectal cancer patients and as promising targets for immunotherapy in treating this disease.
Collapse
Affiliation(s)
- Yingting Liu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Junjun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - An Li
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Yue Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Junwei Ge
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Maoling Yuan
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Bin Xu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
- Institute of Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
6
|
Yao CD, Davis KL. Correlative studies reveal factors contributing to successful CAR-T cell therapies in cancer. Cancer Metastasis Rev 2024; 44:15. [PMID: 39625613 DOI: 10.1007/s10555-024-10232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Cellular and targeted immunotherapies have revolutionized cancer treatments in the last several decades. Successful cellular therapies require both effective and durable cytotoxic activity from the immune cells as well as an accessible and susceptible response from targeted cancer cells. Correlative studies from clinical trials as well as real-world data from FDA-approved therapies have revealed invaluable insights about immune cell factors and cancer cell factors that impact rates of response and relapse to cellular therapies. This review focuses on the flagship cellular therapy of engineered chimeric antigen receptor T-cells (CAR-T cells). Within the CAR-T cell compartment, we discuss discoveries about T-cell phenotype, transcriptome, epigenetics, cytokine signaling, and metabolism that inform the cell manufacturing process to produce the most effective and durable CAR-T cells. Within the cancer cell compartment, we discuss mechanisms of resistance and relapse caused by mutations, alternative splicing, post-transcriptional modifications, and cellular reprogramming. Continued correlative and mechanistic studies are required to help us further optimize cellular therapies in a variety of malignancies.
Collapse
Affiliation(s)
- Catherine D Yao
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Kara L Davis
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA.
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Cao Y, Li X, Pan Y, Wang H, Yang S, Hong L, Ye L. CRISPR-based genetic screens advance cancer immunology. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2554-2562. [PMID: 39048715 DOI: 10.1007/s11427-023-2571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/18/2024] [Indexed: 07/27/2024]
Abstract
CRISPR technologies have revolutionized research areas ranging from fundamental science to translational medicine. CRISPR-based genetic screens offer a powerful platform for unbiased screening in various fields, such as cancer immunology. Immune checkpoint blockade (ICB) therapy has been shown to strongly affect cancer treatment. However, the currently available ICBs are limited and do not work in all cancer patients. Pooled CRISPR screens enable the identification of previously unknown immune regulators that can regulate T-cell activation, cytotoxicity, persistence, infiltration into tumors, cytokine secretion, memory formation, T-cell metabolism, and CD4+ T-cell differentiation. These novel targets can be developed as new immunotherapies or used with the current ICBs as new combination therapies that may yield synergistic efficacy. Here, we review the progress made in the development of CRISPR technologies, particularly technological advances in CRISPR screens and their application in novel target identification for immunotherapy.
Collapse
Affiliation(s)
- Yuanfang Cao
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China
| | - Xueting Li
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China
| | - Yumu Pan
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China
| | - Huahe Wang
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China
| | - Siyu Yang
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China
| | - Lingjuan Hong
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China
| | - Lupeng Ye
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
8
|
LaFleur MW, D’Andrea JM, Patterson DG, Streeter IS, Coxe MA, Osborn JF, Milling LE, Tjokrosurjo Q, Gillis JE, Nguyen TH, Schwartz MA, Hacohen N, Doench JG, Sharpe AH. In Vivo CRISPR Screening Reveals CHD7 as a Positive Regulator of Short-lived Effector Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1528-1541. [PMID: 39373572 PMCID: PMC11578095 DOI: 10.4049/jimmunol.2400213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024]
Abstract
CD8+ T cells differentiate into two subpopulations in response to acute viral infection: memory precursor effector cells (MPECs) and short-lived effector cells (SLECs). MPECs and SLECs are epigenetically distinct; however, the epigenetic regulators required for formation of these subpopulations are mostly unknown. In this study, we performed an in vivo CRISPR screen in murine naive CD8+ T cells to identify the epigenetic regulators required for MPEC and SLEC formation, using the acute lymphocytic choriomeningitis virus Armstrong infection model. We identified the ATP-dependent chromatin remodeler CHD7 (chromodomain-helicase DNA-binding protein 7) as a positive regulator of SLEC formation, as knockout (KO) of Chd7 reduced SLECs numerically. In contrast, KO of Chd7 increased the formation of central memory T cells following pathogen clearance yet attenuated memory cell expansion following a rechallenge. These findings establish CHD7 as a novel positive regulator of SLEC and a negative regulator of central memory T cell formation.
Collapse
Affiliation(s)
- Martin W. LaFleur
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
| | - Jasmin M. D’Andrea
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
| | - Dillon G. Patterson
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
| | - Ivy S.L. Streeter
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
| | - Matthew A. Coxe
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
| | - Jossef F. Osborn
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
| | - Lauren E. Milling
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
| | - Qin Tjokrosurjo
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
| | - Jacob E. Gillis
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
| | - Thao H. Nguyen
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
| | - Marc A. Schwartz
- Massachusetts General Hospital Cancer Center,
Department of Medicine, Massachusetts General Hospital, Harvard Medical School,
Boston, MA 02114
- Broad Institute of MIT and Harvard, Cambridge, MA
02142
- Division of Hematology/Oncology, Boston Children’s
Hospital, Boston, MA 02115
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center,
Department of Medicine, Massachusetts General Hospital, Harvard Medical School,
Boston, MA 02114
- Broad Institute of MIT and Harvard, Cambridge, MA
02142
| | | | - Arlene H. Sharpe
- Department of Immunology, Blavatnik Institute, Harvard
Medical School, Boston, MA 02115
- Gene Lay Institute of Immunology and Inflammation, Brigham
and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical
School, Boston, MA 02115
- Broad Institute of MIT and Harvard, Cambridge, MA
02142
| |
Collapse
|
9
|
Chiffelle J, Barras D, Pétremand R, Orcurto A, Bobisse S, Arnaud M, Auger A, Rodrigo BN, Ghisoni E, Sauvage C, Saugy D, Michel A, Murgues B, Fahr N, Imbimbo M, Ochoa de Olza M, Latifyan S, Crespo I, Benedetti F, Genolet R, Queiroz L, Schmidt J, Homicsko K, Zimmermann S, Michielin O, Bassani-Sternberg M, Kandalaft LE, Dafni U, Corria-Osorio J, Trueb L, Dangaj Laniti D, Harari A, Coukos G. Tumor-reactive T cell clonotype dynamics underlying clinical response to TIL therapy in melanoma. Immunity 2024; 57:2466-2482.e12. [PMID: 39276771 DOI: 10.1016/j.immuni.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/12/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
Adoptive cell therapy (ACT) using in vitro expanded tumor-infiltrating lymphocytes (TILs) has inconsistent clinical responses. To better understand determinants of therapeutic success, we tracked TIL clonotypes from baseline tumors to ACT products and post-ACT blood and tumor samples in melanoma patients using single-cell RNA and T cell receptor (TCR) sequencing. Patients with clinical responses had baseline tumors enriched in tumor-reactive TILs, and these were more effectively mobilized upon in vitro expansion, yielding products enriched in tumor-specific CD8+ cells that preferentially infiltrated tumors post-ACT. Conversely, lack of clinical responses was associated with tumors devoid of tumor-reactive resident clonotypes and with cell products mostly composed of blood-borne clonotypes that persisted in blood but not in tumors post-ACT. Upon expansion, tumor-specific TILs lost tumor-associated transcriptional signatures, including exhaustion, and responders exhibited an intermediate exhausted effector state after TIL engraftment in the tumor, suggesting functional reinvigoration. Our findings provide insight into the nature and dynamics of tumor-specific clonotypes associated with clinical response to TIL-ACT, with implications for treatment optimization.
Collapse
Affiliation(s)
- Johanna Chiffelle
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - David Barras
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Rémy Pétremand
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Angela Orcurto
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Marion Arnaud
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Aymeric Auger
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Blanca Navarro Rodrigo
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Eleonora Ghisoni
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Christophe Sauvage
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Damien Saugy
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Alexandra Michel
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Baptiste Murgues
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Noémie Fahr
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Martina Imbimbo
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Maria Ochoa de Olza
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Sofiya Latifyan
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Medical Oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Isaac Crespo
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Fabrizio Benedetti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Raphael Genolet
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Lise Queiroz
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Julien Schmidt
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Krisztian Homicsko
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland; Medical Oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Stefan Zimmermann
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Michielin
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Medical Oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Urania Dafni
- Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece
| | - Jesus Corria-Osorio
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Lionel Trueb
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland.
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
10
|
Guo H, Guo L, Wang B, Jiang X, Wu Z, Mo X, Sun Y, Zhang Y, Wang Z, Kong J, Yan C, Huang X. Distinct Immune Homeostasis Remodeling Patterns after HLA-Matched and Haploidentical Transplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400544. [PMID: 39225336 PMCID: PMC11497014 DOI: 10.1002/advs.202400544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/21/2024] [Indexed: 09/04/2024]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a widely used treatment for a variety of hematopoietic disorders, and also provides a valuable platform for investigating the development of donor-derived immune cells in recipients post-HSCT. The immune system remodels from the donor to the recipient during allo-HSCT. However, little is known about the cell profile alterations as donor homeostasis rebalances to recipient homeostasis following HSCT. Here, multi-omics technology is applied at both the single cell and bulk sample levels, as well as spectrum flow cytometry and fluorescent transgenic mouse models, to dissect the dynamics of the rebalanced homeostatic immune system in recipients after allo-HSCT. The data reveal that all immune subpopulations observed in donors are successfully restored in recipients, though with varying levels of abundance. The remodeling of immune homeostasis exhibits different patterns in HLA-matched and haploidentical HSCT, highlighting distinct biases in T cell reconstitution from the central and peripheral pathways. Furthermore, ZNF683 is critical for maintaining the persistence and quiescence of CD8 T-cell in haploidentical HSCT. The research can serve as a foundation for developing novel strategies to induce immune tolerance.
Collapse
Affiliation(s)
- Huidong Guo
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Liping Guo
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Bixia Wang
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Xinya Jiang
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic MalignanciesChinese Academy of Medical SciencesBeijing2019RU029China
| | - Zhigui Wu
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Xiao‐Dong Mo
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Yu‐Qian Sun
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Yuan‐Yuan Zhang
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Zhi‐Dong Wang
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Jun Kong
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Chen‐Hua Yan
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Xiao‐Jun Huang
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic MalignanciesChinese Academy of Medical SciencesBeijing2019RU029China
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| |
Collapse
|
11
|
Scirgolea C, Sottile R, De Luca M, Susana A, Carnevale S, Puccio S, Ferrari V, Lise V, Contarini G, Scarpa A, Scamardella E, Feno S, Camisaschi C, De Simone G, Basso G, Giuliano D, Mazza EMC, Gattinoni L, Roychoudhuri R, Voulaz E, Di Mitri D, Simonelli M, Losurdo A, Pozzi D, Tsui C, Kallies A, Timo S, Martano G, Barberis E, Manfredi M, Rescigno M, Jaillon S, Lugli E. NaCl enhances CD8 + T cell effector functions in cancer immunotherapy. Nat Immunol 2024; 25:1845-1857. [PMID: 39198631 DOI: 10.1038/s41590-024-01923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/10/2024] [Indexed: 09/01/2024]
Abstract
CD8+ T cells control tumors but inevitably become dysfunctional in the tumor microenvironment. Here, we show that sodium chloride (NaCl) counteracts T cell dysfunction to promote cancer regression. NaCl supplementation during CD8+ T cell culture induced effector differentiation, IFN-γ production and cytotoxicity while maintaining the gene networks responsible for stem-like plasticity. Accordingly, adoptive transfer of tumor-specific T cells resulted in superior anti-tumor immunity in a humanized mouse model. In mice, a high-salt diet reduced the growth of experimental tumors in a CD8+ T cell-dependent manner by inhibiting terminal differentiation and enhancing the effector potency of CD8+ T cells. Mechanistically, NaCl enhanced glutamine consumption, which was critical for transcriptional, epigenetic and functional reprogramming. In humans, CD8+ T cells undergoing antigen recognition in tumors and predicting favorable responses to checkpoint blockade immunotherapy resembled those induced by NaCl. Thus, NaCl metabolism is a regulator of CD8+ T cell effector function, with potential implications for cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Simone Puccio
- IRCCS Humanitas Research Hospital, Milan, Italy
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Milan, Italy
| | | | | | | | | | | | - Simona Feno
- IRCCS Humanitas Research Hospital, Milan, Italy
| | | | | | | | | | | | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
- University of Regensburg, Regensburg, Germany
- Center for Immunomedicine in Transplantation and Oncology (CITO), University Hospital Regensburg, Regensburg, Germany
| | - Rahul Roychoudhuri
- Department of Pathology, University of Cambridge, Cambridge, UK
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Emanuele Voulaz
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Division of Thoracic, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Diletta Di Mitri
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Matteo Simonelli
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Davide Pozzi
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Carlson Tsui
- The Peter Doherty Institute for Infection and Immunity and Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Axel Kallies
- The Peter Doherty Institute for Infection and Immunity and Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Sara Timo
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giuseppe Martano
- IRCCS Humanitas Research Hospital, Milan, Italy
- Institute of Neuroscience, National Research Council of Italy (CNR) c/o Humanitas Mirasole S.p.A, Milan, Italy
| | - Elettra Barberis
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Enrico Lugli
- IRCCS Humanitas Research Hospital, Milan, Italy.
| |
Collapse
|
12
|
Srinivasan S, Armitage J, Nilsson J, Waithman J. Transcriptional rewiring in CD8 + T cells: implications for CAR-T cell therapy against solid tumours. Front Immunol 2024; 15:1412731. [PMID: 39399500 PMCID: PMC11466849 DOI: 10.3389/fimmu.2024.1412731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
T cells engineered to express chimeric-antigen receptors (CAR-T cells) can effectively control relapsed and refractory haematological malignancies in the clinic. However, the successes of CAR-T cell therapy have not been recapitulated in solid tumours due to a range of barriers such as immunosuppression, poor infiltration, and tumour heterogeneity. Numerous strategies are being developed to overcome these barriers, which include improving culture conditions and manufacturing protocols, implementing novel CAR designs, and novel approaches to engineering the T cell phenotype. In this review, we describe the various emerging strategies to improve CAR T cell therapy for solid tumours. We specifically focus on new strategies to modulate cell function and fate that have precipitated from the growing knowledge of transcriptional circuits driving T cell differentiation, with the ultimate goal of driving more productive anti-tumour T cell immunity. Evidence shows that enrichment of particular phenotypic subsets of T cells in the initial cell product correlates to improved therapeutic responses and clinical outcomes. Furthermore, T cell exhaustion and poor persistence are major factors limiting therapeutic efficacy. The latest preclinical work shows that targeting specific master regulators and transcription factors can overcome these key barriers, resulting in superior T cell therapeutic products. This can be achieved by targeting key transcriptional circuits promoting memory-like phenotypes or sustaining key effector functions within the hostile tumour microenvironment. Additional discussion points include emerging considerations for the field such as (i) targeting permutations of transcription factors, (ii) transient expression systems, (iii) tissue specificity, and (iv) expanding this strategy beyond CAR-T cell therapy and cancer.
Collapse
Affiliation(s)
- Shamini Srinivasan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jesse Armitage
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Jonas Nilsson
- Melanoma Discovery Lab, Harry Perkins Institute of Medical Research, Centre of Medical Research, The University of Western Australia, Perth, WA, Australia
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jason Waithman
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
13
|
Chai T, Loh KM, Weissman IL. TMX1, a disulfide oxidoreductase, is necessary for T cell function through regulation of CD3ζ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614388. [PMID: 39386445 PMCID: PMC11463681 DOI: 10.1101/2024.09.22.614388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
T cell-targeted therapies are commonly used to manage T cell hyperactivity in autoimmune disorders, graft-versus-host diseases (GVHD), and transplant rejections. However, many patients experience significant side effects or inadequate responses to current treatments, highlighting the urgent need for alternative strategies. In this study, we searched for regulators of T cells through proximity labeling with APEX2 to detect proteins interacting with CD8α, a coreceptor of the T-cell receptor (TCR). This screen revealed TMX1, an ER resident transmembrane disulfide oxidoreductase, is essential for T cell cytotoxicity and NFAT, NFκB, and AP1 signaling but not cell proliferation. TMX1 deletion decreases surface TCR expression and destabilizes CD3ζ, a subunit of TCR complex; however, overexpression of CD3ζ rescues the phenotype, suggesting that TMX1 is not required for CD3ζ function. Mechanistically, TMX1 was found to directly engage the CxxC motif of CD3δ, which has been reported to be essential for proper TCR assembly and function. We hypothesize that the loss of TMX1 interaction with CD3δ leads to impaired TCR assembly and subsequent CD3ζ destabilization. These findings identify TMX1 as a novel regulator of T-cell receptor assembly and a potential target for immunosuppressive therapy.
Collapse
Affiliation(s)
- Timothy Chai
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kyle M. Loh
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Irving L. Weissman
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Bao W, Lyu J, Feng G, Guo L, Zhao D, You K, Liu Y, Li H, Du P, Chen D, Shen X. Aloe emodin promotes mucosal healing by modifying the differentiation fate of enteroendocrine cells via regulating cellular free fatty acid sensitivity. Acta Pharm Sin B 2024; 14:3964-3982. [PMID: 39309505 PMCID: PMC11413701 DOI: 10.1016/j.apsb.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 09/25/2024] Open
Abstract
The proper differentiation and reorganization of the intestinal epithelial cell population is critical to mucosal regeneration post injury. Label retaining cells (LRCs) expressing SRY-box transcription factor 9 (SOX9) promote epithelial repair by replenishing LGR5+ intestinal stem cells (ISCs). While, LRCs are also considered precursor cells for enteroendocrine cells (EECs) which exacerbate mucosal damage in inflammatory bowel disease (IBD). The factors that determine LRC-EEC differentiation and the effect of intervening in LRC-EEC differentiation on IBD remain unclear. In this study, we investigated the effects of a natural anthraquinone called aloe emodin (derived from the Chinese herb rhubarb) on mucosal healing in IBD models. Our findings demonstrated that aloe emodin effectively interfered with the differentiation to EECs and preserved a higher number of SOX9+ LRCs, thereby promoting mucosal healing. Furthermore, we discovered that aloe emodin acted as an antagonist of free fatty acid receptors (FFAR1), suppressing the FFAR1-mediated Gβγ/serine/threonine-protein kinase (AKT) pathway and promoting the translocation of forkhead box protein O1 (FOXO1) into the nucleus, ultimately resulting in the intervention of differentiation fate. These findings reveal the effect of free fatty acid accessibility on EEC differentiation and introduce a strategy for promoting mucosal healing in IBD by regulating the FFAR1/AKT/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Weilian Bao
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Jiaren Lyu
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Guize Feng
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Linfeng Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Dian Zhao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Keyuan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Yang Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Haidong Li
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Peng Du
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201210, China
| |
Collapse
|
15
|
Lee CS, Chen S, Berry CT, Kelly AR, Herman PJ, Oh S, O'Connor RS, Payne AS, Ellebrecht CT. Fate induction in CD8 CAR T cells through asymmetric cell division. Nature 2024; 633:670-677. [PMID: 39198645 PMCID: PMC11410665 DOI: 10.1038/s41586-024-07862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Early expansion and long-term persistence predict efficacy of chimeric antigen receptor T cells (CARTs)1-7, but mechanisms governing effector versus memory CART differentiation and whether asymmetric cell division induces differential fates in human CARTs remain unclear. Here we show that target-induced proximity labelling enables isolation of first-division proximal-daughter and distal-daughter CD8 CARTs that asymmetrically distribute their surface proteome and transcriptome, resulting in divergent fates. Target-engaged CARs remain on proximal daughters, which inherit a surface proteome resembling activated-undivided CARTs, whereas the endogenous T cell receptor and CD8 enrich on distal daughters, whose surface proteome resembles resting CARTs, correlating with glycolytic and oxidative metabolism, respectively. Despite memory-precursor phenotype and in vivo longevity, distal daughters demonstrate transient potent cytolytic activity similar to proximal daughters, uncovering an effector-like state in distal daughters destined to become memory CARTs. Both partitioning of pre-existing transcripts and changes in RNA velocity contribute to asymmetry of fate-determining factors, resulting in diametrically opposed transcriptional trajectories. Independent of naive, memory or effector surface immunophenotype, proximal-daughter CARTs use core sets of transcription factors known to support proliferation and effector function. Conversely, transcription factors enriched in distal daughters restrain differentiation and promote longevity, evidenced by diminished long-term in vivo persistence and function of distal-daughter CARTs after IKZF1 disruption. These studies establish asymmetric cell division as a framework for understanding mechanisms of CART differentiation and improving therapeutic outcomes.
Collapse
Affiliation(s)
- Casey S Lee
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sisi Chen
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corbett T Berry
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andre R Kelly
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick J Herman
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sangwook Oh
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aimee S Payne
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Christoph T Ellebrecht
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Xia X, Yang Z, Lu Q, Liu Z, Wang L, Du J, Li Y, Yang DH, Wu S. Reshaping the tumor immune microenvironment to improve CAR-T cell-based cancer immunotherapy. Mol Cancer 2024; 23:175. [PMID: 39187850 PMCID: PMC11346058 DOI: 10.1186/s12943-024-02079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
In many hematologic malignancies, the adoptive transfer of chimeric antigen receptor (CAR) T cells has demonstrated notable success; nevertheless, further improvements are necessary to optimize treatment efficacy. Current CAR-T therapies are particularly discouraging for solid tumor treatment. The immunosuppressive microenvironment of tumors affects CAR-T cells, limiting the treatment's effectiveness and safety. Therefore, enhancing CAR-T cell infiltration capacity and resolving the immunosuppressive responses within the tumor microenvironment could boost the anti-tumor effect. Specific strategies include structurally altering CAR-T cells combined with targeted therapy, radiotherapy, or chemotherapy. Overall, monitoring the tumor microenvironment and the status of CAR-T cells is beneficial in further investigating the viability of such strategies and advancing CAR-T cell therapy.
Collapse
Affiliation(s)
- Xueting Xia
- The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zongxin Yang
- The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Qisi Lu
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Foresea Life Insurance Guangzhou General Hospital, Guangzhou, 511300, China
| | - Zhenyun Liu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Lei Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jinwen Du
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, 11501, USA.
| | - Shaojie Wu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
17
|
Lyu J, Xu X, Chen C. A convenient single-cell newly synthesized transcriptome assay reveals gene expression dynamics during early-stage T-cell activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609222. [PMID: 39372732 PMCID: PMC11451745 DOI: 10.1101/2024.08.22.609222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Sequencing newly synthesized transcriptome alongside regular transcriptome in single cells enables the study of gene expression temporal dynamics during rapid chromatin and gene regulation processes. However, existing assays to profile single-cell newly synthesized transcriptome require in-house technical expertise to achieve high cellular throughput, limiting their widespread application. Here, we developed NOTE-seq, a method that simultaneously profiles regular and newly synthesized transcriptomes in single cells. NOTE-seq integrates 4-thiouridine labeling of newly synthesized RNA, thiol-alkylation-based chemical conversion, and a streamlined workflow on the 10X Genomics platform, offering high cellular throughput that is accessible and convenient for regular biology laboratories without specialized single-cell expertise. Using NOTE-seq, we characterized the temporal dynamics of gene expression during early-stage T-cell activation in Jurkat and naïve T cells, identified transcription factors and regulons, and discovered Fli-1 as a master transcription factor for gene regulation upon T-cell stimulation. Interestingly, chemotherapeutic topoisomerase inhibitor affects Fli-1 level in T cells, indicating potential complications for the immune system.
Collapse
|
18
|
Noguchi Y, Matsui R, Suh J, Dou Y, Suzuki J. Genome-Wide Screening Approaches for Biochemical Reactions Independent of Cell Growth. Annu Rev Genomics Hum Genet 2024; 25:51-76. [PMID: 38692586 DOI: 10.1146/annurev-genom-121222-115958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Genome-wide screening is a potent approach for comprehensively understanding the molecular mechanisms of biological phenomena. However, despite its widespread use in the past decades across various biological targets, its application to biochemical reactions with temporal and reversible biological outputs remains a formidable challenge. To uncover the molecular machinery underlying various biochemical reactions, we have recently developed the revival screening method, which combines flow cytometry-based cell sorting with library reconstruction from collected cells. Our refinements to the traditional genome-wide screening technique have proven successful in revealing the molecular machinery of biochemical reactions of interest. In this article, we elucidate the technical basis of revival screening, focusing on its application to CRISPR-Cas9 single guide RNA (sgRNA) library screening. Finally, we also discuss the future of genome-wide screening while describing recent achievements from in vitro and in vivo screening.
Collapse
Affiliation(s)
- Yuki Noguchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan;
| | - Risa Matsui
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan;
| | - Jaeyeon Suh
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan;
| | - Yu Dou
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan;
| | - Jun Suzuki
- Center for Integrated Biosystems, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan;
| |
Collapse
|
19
|
McCutcheon SR, Rohm D, Iglesias N, Gersbach CA. Epigenome editing technologies for discovery and medicine. Nat Biotechnol 2024; 42:1199-1217. [PMID: 39075148 DOI: 10.1038/s41587-024-02320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/19/2024] [Indexed: 07/31/2024]
Abstract
Epigenome editing has rapidly evolved in recent years, with diverse applications that include elucidating gene regulation mechanisms, annotating coding and noncoding genome functions and programming cell state and lineage specification. Importantly, given the ubiquitous role of epigenetics in complex phenotypes, epigenome editing has unique potential to impact a broad spectrum of diseases. By leveraging powerful DNA-targeting technologies, such as CRISPR, epigenome editing exploits the heritable and reversible mechanisms of epigenetics to alter gene expression without introducing DNA breaks, inducing DNA damage or relying on DNA repair pathways.
Collapse
Affiliation(s)
- Sean R McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Dahlia Rohm
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA.
| |
Collapse
|
20
|
Mietz J, Kaulfuss M, Egli L, Opitz L, Münz C, Chijioke O. Human effector CD8 + T cells with an activated and exhausted-like phenotype control tumour growth in vivo in a humanized tumour model. EBioMedicine 2024; 106:105240. [PMID: 38986249 PMCID: PMC11296066 DOI: 10.1016/j.ebiom.2024.105240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Humanized tumour models could be particularly valuable for cancer immunotherapy research, as they may better reflect human-specific aspects of the interfaces between tumour and immune system of human cancer. However, endogenous antitumour immunity in humanized models is still largely undefined. METHODS We established an autologous humanized mouse tumour model by using NSG mice reconstituted with human immune cells from hematopoietic progenitors and tumours generated from transformed autologous human B cells. We demonstrate growth of solid lymphoid tumours after subcutaneous implantation, infiltration by endogenous human immune cells and immunocompetence of the model. FINDINGS We found human T cell subsets described in human cancer, including progenitor exhausted (Tpex), terminally exhausted (Tex-term) and tissue-resident (TRM) cells in tumour-bearing humanized mice with accumulation of Tex-term and TRM in the tumour. In addition, we identified tumour-reactive CD8+ T cells through expression of CD137. This subpopulation of de novo arising human CD137+ CD8+ T cells displayed a highly proliferative, fully activated effector and exhausted-like phenotype with enhanced expression of activation and exhaustion markers like PD-1, CD39, CD160, TIM-3, TIGIT and TOX, the senescence marker CD57 (B3GAT1) and cytolytic effector molecules such as PRF1, GZMH and NKG7. Moreover, these CD137+ CD8+ T cells exhibited tumour-specific clonal expansion and presented signature overlap with tumour-reactive CD8+ T cells described in human cancer. We demonstrate superior anticancer activity of this activated and exhausted-like human CD8+ T cell subset by adoptive transfer experiments using recipients bearing autologous human tumours. Mice adoptively transferred with CD137+ CD8+ T cells showed reduced tumour growth and higher CD8+ T cell tumour infiltration, correlating with control of human tumours. INTERPRETATION We established an immunocompetent humanized tumour model, providing a tool for immunotherapy research and defined effective anticancer activity of human effector CD8+ T cells with an activated and exhausted-like phenotype, supporting clinical exploration of such cells in adoptive T cell therapies. FUNDING Swiss Cancer Research foundation.
Collapse
Affiliation(s)
- Juliane Mietz
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Meike Kaulfuss
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Lukas Egli
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
21
|
Posey AD, Young RM, June CH. Future perspectives on engineered T cells for cancer. Trends Cancer 2024; 10:687-695. [PMID: 38853073 DOI: 10.1016/j.trecan.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a revolutionary treatment for hematological malignancies, but its adaptation to solid tumors is impeded by multiple challenges, particularly T cell dysfunction and exhaustion. The heterogeneity and inhospitableness of the solid tumor microenvironment (TME) contribute to diminished CAR T cell efficacy exhibited by reduced cytotoxicity, proliferation, cytokine secretion, and the upregulation of inhibitory receptors, similar to the phenotype of tumor-infiltrating lymphocytes (TILs). In this review, we highlight recent advances in T cell therapy for solid tumors, particularly brain cancer. Innovative strategies, including locoregional delivery and 'armoring' CAR T cells with cytokines such as interleukin (IL)-18, are under investigation to improve efficacy and safety. We also highlight emerging issues with toxicity management of CAR T cell adverse events. This review discusses the obstacles associated with CAR T cell therapy in the context of solid tumors and outlines current and future strategies to overcome these challenges.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Neoplasms/immunology
- Neoplasms/therapy
- Neoplasms/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Microenvironment/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Animals
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
Collapse
Affiliation(s)
- Avery D Posey
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Regina M Young
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
De Castro V, Galaine J, Loyon R, Godet Y. CRISPR-Cas gene knockouts to optimize engineered T cells for cancer immunotherapy. Cancer Gene Ther 2024; 31:1124-1134. [PMID: 38609574 DOI: 10.1038/s41417-024-00771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
While CAR-T and tgTCR-T therapies have exhibited noteworthy and promising outcomes in hematologic and solid tumors respectively, a set of distinct challenges remains. Consequently, the quest for novel strategies has become imperative to safeguard and more effectively release the full functions of engineered T cells. These factors are intricately linked to the success of adoptive cell therapy. Recently, CRISPR-based technologies have emerged as a major breakthrough for maintaining T cell functions. These technologies have allowed the discovery of T cells' negative regulators such as specific cell-surface receptors, cell-signaling proteins, and transcription factors that are involved in the development or maintenance of T cell dysfunction. By employing a CRISPR-genic invalidation approach to target these negative regulators, it has become possible to prevent the emergence of hypofunctional T cells. This review revisits the establishment of the dysfunctional profile of T cells before delving into a comprehensive summary of recent CRISPR-gene invalidations, with each invalidation contributing to the enhancement of engineered T cells' antitumor capacities. The narrative unfolds as we explore how these advancements were discovered and identified, marking a significant advancement in the pursuit of superior adoptive cell therapy.
Collapse
Affiliation(s)
- Valentine De Castro
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Jeanne Galaine
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Romain Loyon
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Yann Godet
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France.
| |
Collapse
|
23
|
Liu B, Zhou H, Tan L, Siu KTH, Guan XY. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct Target Ther 2024; 9:175. [PMID: 39013849 PMCID: PMC11252281 DOI: 10.1038/s41392-024-01856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 07/18/2024] Open
Abstract
Traditional therapeutic approaches such as chemotherapy and radiation therapy have burdened cancer patients with onerous physical and psychological challenges. Encouragingly, the landscape of tumor treatment has undergone a comprehensive and remarkable transformation. Emerging as fervently pursued modalities are small molecule targeted agents, antibody-drug conjugates (ADCs), cell-based therapies, and gene therapy. These cutting-edge treatment modalities not only afford personalized and precise tumor targeting, but also provide patients with enhanced therapeutic comfort and the potential to impede disease progression. Nonetheless, it is acknowledged that these therapeutic strategies still harbour untapped potential for further advancement. Gaining a comprehensive understanding of the merits and limitations of these treatment modalities holds the promise of offering novel perspectives for clinical practice and foundational research endeavours. In this review, we discussed the different treatment modalities, including small molecule targeted drugs, peptide drugs, antibody drugs, cell therapy, and gene therapy. It will provide a detailed explanation of each method, addressing their status of development, clinical challenges, and potential solutions. The aim is to assist clinicians and researchers in gaining a deeper understanding of these diverse treatment options, enabling them to carry out effective treatment and advance their research more efficiently.
Collapse
Affiliation(s)
- Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Hongyu Zhou
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Licheng Tan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Kin To Hugo Siu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
24
|
Nair KA, Liu B. Navigating the landscape of the unfolded protein response in CD8 + T cells. Front Immunol 2024; 15:1427859. [PMID: 39026685 PMCID: PMC11254671 DOI: 10.3389/fimmu.2024.1427859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Endoplasmic reticulum stress occurs due to large amounts of misfolded proteins, hypoxia, nutrient deprivation, and more. The unfolded protein is a complex intracellular signaling network designed to operate under this stress. Composed of three individual arms, inositol-requiring enzyme 1, protein kinase RNA-like ER kinase, and activating transcription factor-6, the unfolded protein response looks to resolve stress and return to proteostasis. The CD8+ T cell is a critical cell type for the adaptive immune system. The unfolded protein response has been shown to have a wide-ranging spectrum of effects on CD8+ T cells. CD8+ T cells undergo cellular stress during activation and due to environmental insults. However, the magnitude of the effects this response has on CD8+ T cells is still understudied. Thus, studying these pathways is important to unraveling the inner machinations of these powerful cells. In this review, we will highlight the recent literature in this field, summarize the three pathways of the unfolded protein response, and discuss their roles in CD8+ T cell biology and functionality.
Collapse
Affiliation(s)
- Keith Alan Nair
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
25
|
Moeckel C, Mouratidis I, Chantzi N, Uzun Y, Georgakopoulos-Soares I. Advances in computational and experimental approaches for deciphering transcriptional regulatory networks: Understanding the roles of cis-regulatory elements is essential, and recent research utilizing MPRAs, STARR-seq, CRISPR-Cas9, and machine learning has yielded valuable insights. Bioessays 2024; 46:e2300210. [PMID: 38715516 PMCID: PMC11444527 DOI: 10.1002/bies.202300210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Understanding the influence of cis-regulatory elements on gene regulation poses numerous challenges given complexities stemming from variations in transcription factor (TF) binding, chromatin accessibility, structural constraints, and cell-type differences. This review discusses the role of gene regulatory networks in enhancing understanding of transcriptional regulation and covers construction methods ranging from expression-based approaches to supervised machine learning. Additionally, key experimental methods, including MPRAs and CRISPR-Cas9-based screening, which have significantly contributed to understanding TF binding preferences and cis-regulatory element functions, are explored. Lastly, the potential of machine learning and artificial intelligence to unravel cis-regulatory logic is analyzed. These computational advances have far-reaching implications for precision medicine, therapeutic target discovery, and the study of genetic variations in health and disease.
Collapse
Affiliation(s)
- Camille Moeckel
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Nikol Chantzi
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yasin Uzun
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
26
|
Hao J, Li R, Zhao X, Liu X, Chen X, Xie T, Li X, Yao C, Sun Q, Wei K, Gou M, Chi X, Xu W, Ni L, Dong C. NR4A1 transcriptionally regulates the differentiation of stem-like CD8 + T cells in the tumor microenvironment. Cell Rep 2024; 43:114301. [PMID: 38823016 DOI: 10.1016/j.celrep.2024.114301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/11/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024] Open
Abstract
CD8+ T cells are rendered exhausted in tumor and chronic infection. Among heterogeneous exhausted T cells, a subpopulation of progenitor-like (Tpex) cells have been found important for long-term tumor or pathogen control and are also the main responders in immunotherapy. Using an RFP reporter mouse for the orphan nuclear receptor NR4A1, originally characterized as critical in T cell dysfunction, we discover that the reporter is highly expressed in Tpex cells in tumor and chronic infection. Enforced expression of Nr4a1 promotes Tpex cell accumulation, whereas tumor control is improved after Nr4a1 deletion, associated with increased effector function but decreased long-term maintenance of CD8+ T cells. Integrating chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) analysis, NR4A1 is found to bind and promote the expression of Tpex-related genes, as well as suppress terminal differentiation-associated genes. This study therefore has identified a key role of NR4A1 in Tpex regulation and provides a promising target for immunotherapy.
Collapse
Affiliation(s)
- Jing Hao
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Ruifeng Li
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Xiaohong Zhao
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Xinwei Liu
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Xiang Chen
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Tian Xie
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Xiaoli Li
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Chenjun Yao
- Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qinli Sun
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Kun Wei
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Mengting Gou
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Xinxin Chi
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Wei Xu
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Ling Ni
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Chen Dong
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China; Westlake University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
27
|
Pimentel H, Freimer JW, Arce MM, Garrido CM, Marson A, Pritchard JK. A model for accurate quantification of CRISPR effects in pooled FACS screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599448. [PMID: 38948774 PMCID: PMC11213010 DOI: 10.1101/2024.06.17.599448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
CRISPR screens are powerful tools to identify key genes that underlie biological processes. One important type of screen uses fluorescence activated cell sorting (FACS) to sort perturbed cells into bins based on the expression level of marker genes, followed by guide RNA (gRNA) sequencing. Analysis of these data presents several statistical challenges due to multiple factors including the discrete nature of the bins and typically small numbers of replicate experiments. To address these challenges, we developed a robust and powerful Bayesian random effects model and software package called Waterbear. Furthermore, we used Waterbear to explore how various experimental design parameters affect statistical power to establish principled guidelines for future screens. Finally, we experimentally validated our experimental design model findings that, when using Waterbear for analysis, high power is maintained even at low cell coverage and a high multiplicity of infection. We anticipate that Waterbear will be of broad utility for analyzing FACS-based CRISPR screens.
Collapse
Affiliation(s)
- Harold Pimentel
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Departments of Computational Medicine and Human Genetics, University of California, Los Angeles, Howard Hughes Medical Institute, Los Angeles, CA 90024, USA
- These authors contributed equally
| | - Jacob W. Freimer
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Present address: Genentech Research and Early Development, South San Francisco, CA
- These authors contributed equally
| | - Maya M. Arce
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | | | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
- These authors jointly supervised this work
| | - Jonathan K. Pritchard
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- These authors jointly supervised this work
| |
Collapse
|
28
|
Escobar G, Anderson AC. Decoding T cell state-specific regulomes in cancer. Cell Res 2024; 34:399-400. [PMID: 38242943 PMCID: PMC11143291 DOI: 10.1038/s41422-024-00926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Affiliation(s)
- Giulia Escobar
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana C Anderson
- Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
- The Gene Lay Institute of Immunology and Inflammation, Boston, MA, USA.
| |
Collapse
|
29
|
Lan X, Mi T, Alli S, Guy C, Djekidel MN, Liu X, Boi S, Chowdhury P, He M, Zehn D, Feng Y, Youngblood B. Antitumor progenitor exhausted CD8 + T cells are sustained by TCR engagement. Nat Immunol 2024; 25:1046-1058. [PMID: 38816618 DOI: 10.1038/s41590-024-01843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
The durability of an antitumor immune response is mediated in part by the persistence of progenitor exhausted CD8+ T cells (Tpex). Tpex serve as a resource for replenishing effector T cells and preserve their quantity through self-renewal. However, it is unknown how T cell receptor (TCR) engagement affects the self-renewal capacity of Tpex in settings of continued antigen exposure. Here we use a Lewis lung carcinoma model that elicits either optimal or attenuated TCR signaling in CD8+ T cells to show that formation of Tpex in tumor-draining lymph nodes and their intratumoral persistence is dependent on optimal TCR engagement. Notably, attenuated TCR stimulation accelerates the terminal differentiation of optimally primed Tpex. This TCR-reinforced Tpex development and self-renewal is coupled to proximal positioning to dendritic cells and epigenetic imprinting involving increased chromatin accessibility at Egr2 and Tcf1 target loci. Collectively, this study highlights the critical function of TCR engagement in sustaining Tpex during tumor progression.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Mice
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/metabolism
- Mice, Inbred C57BL
- Hepatocyte Nuclear Factor 1-alpha/metabolism
- Cell Differentiation/immunology
- Dendritic Cells/immunology
- Signal Transduction/immunology
- Mice, Knockout
- Lymphocyte Activation/immunology
- Cell Self Renewal
- Mice, Transgenic
- Early Growth Response Protein 2
Collapse
Affiliation(s)
- Xin Lan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tian Mi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shanta Alli
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Xueyan Liu
- Department of Mathematics, University of New Orleans, New Orleans, LA, USA
| | - Shannon Boi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Partha Chowdhury
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Minghong He
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
30
|
Chen E, Wu J, Huang J, Zhu W, Sun H, Wang X, Lin D, Li X, Shi D, Liu Z, Huang J, Chen M, Xie F, Deng W. FLI1 promotes IFN-γ-induced kynurenine production to impair anti-tumor immunity. Nat Commun 2024; 15:4590. [PMID: 38816360 PMCID: PMC11139667 DOI: 10.1038/s41467-024-48397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC)-mediated immunosuppression within the tumor microenvironment (TME) frequently culminates in the failure of otherwise promising immunotherapies. In this study, we identify tumor-intrinsic FLI1 as a critical mediator in impairing T cell anti-tumor immunity. A mechanistic inquiry reveals that FLI1 orchestrates the expression of CBP and STAT1, facilitating chromatin accessibility and transcriptional activation of IDO1 in response to T cell-released IFN-γ. This regulatory cascade ultimately leads to augmented IDO1 expression, resulting in heightened synthesis of kynurenine (Kyn) in tumor cells. This, in turn, fosters CD8+ T cell exhaustion and regulatory T cell (Treg) differentiation. Intriguingly, we find that pharmacological inhibition of FLI1 effectively obstructs the CBP/STAT1-IDO1-Kyn axis, thereby invigorating both spontaneous and checkpoint therapy-induced immune responses, culminating in enhanced tumor eradication. In conclusion, our findings delineate FLI1-mediated Kyn metabolism as an immune evasion mechanism in NPC, furnishing valuable insights into potential therapeutic interventions.
Collapse
MESH Headings
- Kynurenine/metabolism
- Interferon-gamma/metabolism
- Interferon-gamma/immunology
- Animals
- Proto-Oncogene Protein c-fli-1/metabolism
- Proto-Oncogene Protein c-fli-1/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Tumor Microenvironment/immunology
- Tumor Microenvironment/drug effects
- Humans
- Mice
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- STAT1 Transcription Factor/metabolism
- Cell Line, Tumor
- Nasopharyngeal Carcinoma/immunology
- Nasopharyngeal Carcinoma/metabolism
- Nasopharyngeal Carcinoma/genetics
- Nasopharyngeal Carcinoma/pathology
- Nasopharyngeal Carcinoma/drug therapy
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- Mice, Inbred C57BL
- Nasopharyngeal Neoplasms/immunology
- Nasopharyngeal Neoplasms/metabolism
- Nasopharyngeal Neoplasms/pathology
- Nasopharyngeal Neoplasms/drug therapy
- Nasopharyngeal Neoplasms/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Tumor Escape/drug effects
- Mice, Knockout
Collapse
Affiliation(s)
- Enni Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jiawei Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jiajia Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Wancui Zhu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Haohui Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Xiaonan Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Dagui Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Xiaodi Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Dingbo Shi
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Zhiqiao Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jinsheng Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China.
| | - Fangyun Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China.
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Guangdong, China.
| |
Collapse
|
31
|
Hsiung CCS, Wilson CM, Sambold NA, Dai R, Chen Q, Teyssier N, Misiukiewicz S, Arab A, O'Loughlin T, Cofsky JC, Shi J, Gilbert LA. Engineered CRISPR-Cas12a for higher-order combinatorial chromatin perturbations. Nat Biotechnol 2024:10.1038/s41587-024-02224-0. [PMID: 38760567 DOI: 10.1038/s41587-024-02224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/28/2024] [Indexed: 05/19/2024]
Abstract
Multiplexed genetic perturbations are critical for testing functional interactions among coding or non-coding genetic elements. Compared to double-stranded DNA cutting, repressive chromatin formation using CRISPR interference (CRISPRi) avoids genotoxicity and is more effective for perturbing non-coding regulatory elements in pooled assays. However, current CRISPRi pooled screening approaches are limited to targeting one to three genomic sites per cell. We engineer an Acidaminococcus Cas12a (AsCas12a) variant, multiplexed transcriptional interference AsCas12a (multiAsCas12a), that incorporates R1226A, a mutation that stabilizes the ribonucleoprotein-DNA complex via DNA nicking. The multiAsCas12a-KRAB fusion improves CRISPRi activity over DNase-dead AsCas12a-KRAB fusions, often rescuing the activities of lentivirally delivered CRISPR RNAs (crRNA) that are inactive when used with the latter. multiAsCas12a-KRAB supports CRISPRi using 6-plex crRNA arrays in high-throughput pooled screens. Using multiAsCas12a-KRAB, we discover enhancer elements and dissect the combinatorial function of cis-regulatory elements in human cells. These results instantiate a group testing framework for efficiently surveying numerous combinations of chromatin perturbations for biological discovery and engineering.
Collapse
Affiliation(s)
- C C-S Hsiung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - C M Wilson
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, CA, USA
| | | | - R Dai
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Q Chen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - N Teyssier
- Biological and Medical Informatics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - S Misiukiewicz
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - A Arab
- Arc Institute, Palo Alto, CA, USA
| | - T O'Loughlin
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - J C Cofsky
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - J Shi
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - L A Gilbert
- Department of Urology, University of California, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Arc Institute, Palo Alto, CA, USA.
| |
Collapse
|
32
|
Chapman NM, Chi H. Metabolic rewiring and communication in cancer immunity. Cell Chem Biol 2024; 31:862-883. [PMID: 38428418 PMCID: PMC11177544 DOI: 10.1016/j.chembiol.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
The immune system shapes tumor development and progression. Although immunotherapy has transformed cancer treatment, its overall efficacy remains limited, underscoring the need to uncover mechanisms to improve therapeutic effects. Metabolism-associated processes, including intracellular metabolic reprogramming and intercellular metabolic crosstalk, are emerging as instructive signals for anti-tumor immunity. Here, we first summarize the roles of intracellular metabolic pathways in controlling immune cell function in the tumor microenvironment. How intercellular metabolic communication regulates anti-tumor immunity, and the impact of metabolites or nutrients on signaling events, are also discussed. We then describe how targeting metabolic pathways in tumor cells or intratumoral immune cells or via nutrient-based interventions may boost cancer immunotherapies. Finally, we conclude with discussions on profiling and functional perturbation methods of metabolic activity in intratumoral immune cells, and perspectives on future directions. Uncovering the mechanisms for metabolic rewiring and communication in the tumor microenvironment may enable development of novel cancer immunotherapies.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
33
|
Wang S, Zhang W, Wu X, Zhu Z, Chen Y, Liu W, Xu J, Chen L, Zhuang C. Comprehensive analysis of T-cell regulatory factors and tumor immune microenvironment in stomach adenocarcinoma. BMC Cancer 2024; 24:570. [PMID: 38714987 PMCID: PMC11077837 DOI: 10.1186/s12885-024-12302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most prevalent malignant tumors worldwide and is associated with high morbidity and mortality rates. However, the specific biomarkers used to predict the postoperative prognosis of patients with gastric cancer remain unknown. Recent research has shown that the tumor microenvironment (TME) has an increasingly positive effect on anti-tumor activity. This study aims to build signatures to study the effect of certain genes on gastric cancer. METHODS Expression profiles of 37 T cell-related genes and their TME characteristics were comprehensively analyzed. A risk signature was constructed and validated based on the screened T cell-related genes, and the roles of hub genes in GC were experimentally validated. RESULTS A novel T cell-related gene signature was constructed based on CD5, ABCA8, SERPINE2, ESM1, SERPINA5, and NMU. The high-risk group indicated lower overall survival (OS), poorer immune efficacy, and higher drug resistance, with SERPINE2 promoting GC cell proliferation, according to experiments. SERPINE2 and CXCL12 were significantly correlated, indicating poor OS via the Youjiang cohort. CONCLUSIONS This study identified T cell-related genes in patients with stomach adenocarcinoma (STAD) for prognosis estimation and proposed potential immunotherapeutic targets for STAD.
Collapse
Affiliation(s)
- Shuchang Wang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Weifeng Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xinrui Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhu Zhu
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, China
| | - Yuanbiao Chen
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Wangrui Liu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Junnfei Xu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Li Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Department of Nursing, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Chun Zhuang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
34
|
Hermans L, O’Sullivan TE. No time to die: Epigenetic regulation of natural killer cell survival. Immunol Rev 2024; 323:61-79. [PMID: 38426615 PMCID: PMC11102341 DOI: 10.1111/imr.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
NK cells are short-lived innate lymphocytes that can mediate antigen-independent responses to infection and cancer. However, studies from the past two decades have shown that NK cells can acquire transcriptional and epigenetic modifications during inflammation that result in increased survival and lifespan. These findings blur the lines between the innate and adaptive arms of the immune system, and suggest that the homeostatic mechanisms that govern the persistence of innate immune cells are malleable. Indeed, recent studies have shown that NK cells undergo continuous and strictly regulated adaptations controlling their survival during development, tissue residency, and following inflammation. In this review, we summarize our current understanding of the critical factors regulating NK cell survival throughout their lifespan, with a specific emphasis on the epigenetic modifications that regulate the survival of NK cells in various contexts. A precise understanding of the molecular mechanisms that govern NK cell survival will be important to enhance therapies for cancer and infectious diseases.
Collapse
Affiliation(s)
- Leen Hermans
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Timothy E. O’Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
35
|
Chan JD, Scheffler CM, Munoz I, Sek K, Lee JN, Huang YK, Yap KM, Saw NYL, Li J, Chen AXY, Chan CW, Derrick EB, Todd KL, Tong J, Dunbar PA, Li J, Hoang TX, de Menezes MN, Petley EV, Kim JS, Nguyen D, Leung PSK, So J, Deguit C, Zhu J, House IG, Kats LM, Scott AM, Solomon BJ, Harrison SJ, Oliaro J, Parish IA, Quinn KM, Neeson PJ, Slaney CY, Lai J, Beavis PA, Darcy PK. FOXO1 enhances CAR T cell stemness, metabolic fitness and efficacy. Nature 2024; 629:201-210. [PMID: 38600376 PMCID: PMC11062918 DOI: 10.1038/s41586-024-07242-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/27/2024] [Indexed: 04/12/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment of haematological malignancies such as acute lymphoblastic leukaemia, B cell lymphoma and multiple myeloma1-4, but the efficacy of CAR T cell therapy in solid tumours has been limited5. This is owing to a number of factors, including the immunosuppressive tumour microenvironment that gives rise to poorly persisting and metabolically dysfunctional T cells. Analysis of anti-CD19 CAR T cells used clinically has shown that positive treatment outcomes are associated with a more 'stem-like' phenotype and increased mitochondrial mass6-8. We therefore sought to identify transcription factors that could enhance CAR T cell fitness and efficacy against solid tumours. Here we show that overexpression of FOXO1 promotes a stem-like phenotype in CAR T cells derived from either healthy human donors or patients, which correlates with improved mitochondrial fitness, persistence and therapeutic efficacy in vivo. This work thus reveals an engineering approach to genetically enforce a favourable metabolic phenotype that has high translational potential to improve the efficacy of CAR T cells against solid tumours.
Collapse
Affiliation(s)
- Jack D Chan
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Christina M Scheffler
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Isabelle Munoz
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Joel N Lee
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Yu-Kuan Huang
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kah Min Yap
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicole Y L Saw
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jasmine Li
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Amanda X Y Chen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Cheok Weng Chan
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Emily B Derrick
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kirsten L Todd
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Junming Tong
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Phoebe A Dunbar
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jiawen Li
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Thang X Hoang
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Maria N de Menezes
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Emma V Petley
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Joelle S Kim
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dat Nguyen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Patrick S K Leung
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Joan So
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Christian Deguit
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Joe Zhu
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Imran G House
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lev M Kats
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Faculty of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Benjamin J Solomon
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Simon J Harrison
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Clinical Haematology and Centre of Excellence for Cellular Immunotherapies, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Jane Oliaro
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kylie M Quinn
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Clare Y Slaney
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Junyun Lai
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
- Clinical Haematology and Centre of Excellence for Cellular Immunotherapies, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia.
- Department of Immunology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
36
|
Chen X, Zhong S, Zhan Y, Zhang X. CRISPR-Cas9 applications in T cells and adoptive T cell therapies. Cell Mol Biol Lett 2024; 29:52. [PMID: 38609863 PMCID: PMC11010303 DOI: 10.1186/s11658-024-00561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
T cell immunity is central to contemporary cancer and autoimmune therapies, encompassing immune checkpoint blockade and adoptive T cell therapies. Their diverse characteristics can be reprogrammed by different immune challenges dependent on antigen stimulation levels, metabolic conditions, and the degree of inflammation. T cell-based therapeutic strategies are gaining widespread adoption in oncology and treating inflammatory conditions. Emerging researches reveal that clustered regularly interspaced palindromic repeats-associated protein 9 (CRISPR-Cas9) genome editing has enabled T cells to be more adaptable to specific microenvironments, opening the door to advanced T cell therapies in preclinical and clinical trials. CRISPR-Cas9 can edit both primary T cells and engineered T cells, including CAR-T and TCR-T, in vivo and in vitro to regulate T cell differentiation and activation states. This review first provides a comprehensive summary of the role of CRISPR-Cas9 in T cells and its applications in preclinical and clinical studies for T cell-based therapies. We also explore the application of CRISPR screen high-throughput technology in editing T cells and anticipate the current limitations of CRISPR-Cas9, including off-target effects and delivery challenges, and envisioned improvements in related technologies for disease screening, diagnosis, and treatment.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Cardiology, Cardiovascular Institute of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Shuhan Zhong
- Department of Hematology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, 310003, China
| | - Yonghao Zhan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Xuepei Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
37
|
Lin CP, Levy PL, Alflen A, Apriamashvili G, Ligtenberg MA, Vredevoogd DW, Bleijerveld OB, Alkan F, Malka Y, Hoekman L, Markovits E, George A, Traets JJH, Krijgsman O, van Vliet A, Poźniak J, Pulido-Vicuña CA, de Bruijn B, van Hal-van Veen SE, Boshuizen J, van der Helm PW, Díaz-Gómez J, Warda H, Behrens LM, Mardesic P, Dehni B, Visser NL, Marine JC, Markel G, Faller WJ, Altelaar M, Agami R, Besser MJ, Peeper DS. Multimodal stimulation screens reveal unique and shared genes limiting T cell fitness. Cancer Cell 2024; 42:623-645.e10. [PMID: 38490212 PMCID: PMC11003465 DOI: 10.1016/j.ccell.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/03/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Genes limiting T cell antitumor activity may serve as therapeutic targets. It has not been systematically studied whether there are regulators that uniquely or broadly contribute to T cell fitness. We perform genome-scale CRISPR-Cas9 knockout screens in primary CD8 T cells to uncover genes negatively impacting fitness upon three modes of stimulation: (1) intense, triggering activation-induced cell death (AICD); (2) acute, triggering expansion; (3) chronic, causing dysfunction. Besides established regulators, we uncover genes controlling T cell fitness either specifically or commonly upon differential stimulation. Dap5 ablation, ranking highly in all three screens, increases translation while enhancing tumor killing. Loss of Icam1-mediated homotypic T cell clustering amplifies cell expansion and effector functions after both acute and intense stimulation. Lastly, Ctbp1 inactivation induces functional T cell persistence exclusively upon chronic stimulation. Our results functionally annotate fitness regulators based on their unique or shared contribution to traits limiting T cell antitumor activity.
Collapse
Affiliation(s)
- Chun-Pu Lin
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Pierre L Levy
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Tumor Immunology and Immunotherapy Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Astrid Alflen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Hematology and Medical Oncology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Georgi Apriamashvili
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten A Ligtenberg
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Onno B Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ferhat Alkan
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Yuval Malka
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ettai Markovits
- Ella Lemelbaum Institute for Immuno-oncology and Melanoma, Sheba Medical Center, Ramat Gan 52612, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Austin George
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Joleen J H Traets
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Oscar Krijgsman
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Alex van Vliet
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Joanna Poźniak
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Carlos Ariel Pulido-Vicuña
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Beaunelle de Bruijn
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Susan E van Hal-van Veen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Julia Boshuizen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Pim W van der Helm
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Judit Díaz-Gómez
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Hamdy Warda
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Leonie M Behrens
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Paula Mardesic
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Bilal Dehni
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Nils L Visser
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Gal Markel
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel; Davidoff Cancer Center and Samueli Integrative Cancer Pioneering Institute, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - William J Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Michal J Besser
- Ella Lemelbaum Institute for Immuno-oncology and Melanoma, Sheba Medical Center, Ramat Gan 52612, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel; Davidoff Cancer Center and Samueli Integrative Cancer Pioneering Institute, Rabin Medical Center, Petach Tikva 4941492, Israel; Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Pathology, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
38
|
Xiang M, Li H, Zhan Y, Ma D, Gao Q, Fang Y. Functional CRISPR screens in T cells reveal new opportunities for cancer immunotherapies. Mol Cancer 2024; 23:73. [PMID: 38581063 PMCID: PMC10996278 DOI: 10.1186/s12943-024-01987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
T cells are fundamental components in tumour immunity and cancer immunotherapies, which have made immense strides and revolutionized cancer treatment paradigm. However, recent studies delineate the predicament of T cell dysregulation in tumour microenvironment and the compromised efficacy of cancer immunotherapies. CRISPR screens enable unbiased interrogation of gene function in T cells and have revealed functional determinators, genetic regulatory networks, and intercellular interactions in T cell life cycle, thereby providing opportunities to revamp cancer immunotherapies. In this review, we briefly described the central roles of T cells in successful cancer immunotherapies, comprehensively summarised the studies of CRISPR screens in T cells, elaborated resultant master genes that control T cell activation, proliferation, fate determination, effector function, and exhaustion, and highlighted genes (BATF, PRDM1, and TOX) and signalling cascades (JAK-STAT and NF-κB pathways) that extensively engage in multiple branches of T cell responses. In conclusion, this review bridged the gap between discovering element genes to a specific process of T cell activities and apprehending these genes in the global T cell life cycle, deepened the understanding of T cell biology in tumour immunity, and outlined CRISPR screens resources that might facilitate the development and implementation of cancer immunotherapies in the clinic.
Collapse
Affiliation(s)
- Minghua Xiang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
39
|
Milling LE, Markson SC, Tjokrosurjo Q, Derosia NM, Streeter IS, Hickok GH, Lemmen AM, Nguyen TH, Prathima P, Fithian W, Schwartz MA, Hacohen N, Doench JG, LaFleur MW, Sharpe AH. Framework for in vivo T cell screens. J Exp Med 2024; 221:e20230699. [PMID: 38411617 PMCID: PMC10899089 DOI: 10.1084/jem.20230699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024] Open
Abstract
In vivo T cell screens are a powerful tool for elucidating complex mechanisms of immunity, yet there is a lack of consensus on the screen design parameters required for robust in vivo screens: gene library size, cell transfer quantity, and number of mice. Here, we describe the Framework for In vivo T cell Screens (FITS) to provide experimental and analytical guidelines to determine optimal parameters for diverse in vivo contexts. As a proof-of-concept, we used FITS to optimize the parameters for a CD8+ T cell screen in the B16-OVA tumor model. We also included unique molecular identifiers (UMIs) in our screens to (1) improve statistical power and (2) track T cell clonal dynamics for distinct gene knockouts (KOs) across multiple tissues. These findings provide an experimental and analytical framework for performing in vivo screens in immune cells and illustrate a case study for in vivo T cell screens with UMIs.
Collapse
Affiliation(s)
- Lauren E. Milling
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Samuel C. Markson
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qin Tjokrosurjo
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicole M. Derosia
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ivy S.L. Streeter
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Grant H. Hickok
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ashlyn M. Lemmen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thao H. Nguyen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Priyamvada Prathima
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - William Fithian
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
| | - Marc A. Schwartz
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nir Hacohen
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John G. Doench
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Martin W. LaFleur
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arlene H. Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
40
|
Pei J, Peng Y, Ma K, Lan C, Zhang T, Li Y, Chen X, Gao H. Integrated analysis reveals FLI1 regulates the tumor immune microenvironment via its cell-type-specific expression and transcriptional regulation of distinct target genes of immune cells in breast cancer. BMC Genomics 2024; 25:250. [PMID: 38448802 PMCID: PMC10916124 DOI: 10.1186/s12864-024-10174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Immunotherapy is a practical therapeutic approach in breast cancer (BRCA), and the role of FLI1 in immune regulation has gradually been unveiled. However, the specific role of FLI1 in BRCA was conflicted; thus, additional convincing evidence is needed. METHODS We explored the upstream regulation of FLI1 expression via summary data-based Mendelian randomization (SMR) analysis and ncRNA network construction centering on FLI1 using BRCA genome-wide association study (GWAS) summary data with expression quantitative trait loci (eQTLs) and DNA methylation quantitative trait loci (mQTLs) from the blood and a series of in silico analyses, respectively. We illuminated the downstream function of FLI1 in immune regulation by integrating a series of analyses of single-cell RNA sequence data (scRNA-seq). RESULTS We verified a causal pathway from FLI1 methylation to FLI1 gene expression to BRCA onset and demonstrated that FLI1 was downregulated in BRCA. FLI1, a transcription factor, served as myeloid and T cells' communication regulator by targeting immune-related ligands and receptor transcription in BRCA tissues. We constructed a ceRNA network centering on FLI1 that consisted of three LncRNAs (CKMT2-AS1, PSMA3-AS1, and DIO3OS) and a miRNA (hsa-miR-324-5p), and the expression of FLI1 was positively related to a series of immune-related markers, including immune cell infiltration, biomarkers of immune cells, and immune checkpoints. CONCLUSION Low-methylation-induced or ncRNA-mediated downregulation of FLI1 is associated with poor prognosis, and FLI1 might regulate the tumor immune microenvironment via a cell-type-specific target genes manner in BRCA.
Collapse
Affiliation(s)
- Jianying Pei
- National Research Institute for Family Planning, Beijing, 100081, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- Institute of Clinical Medicine, Gansu Provincial Maternity and Child-care Hospital (Gansu Provincial Central Hospital), Lanzhou, 730000, China
| | - Ying Peng
- Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Kexin Ma
- National Research Institute for Family Planning, Beijing, 100081, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Chunyan Lan
- National Research Institute for Family Planning, Beijing, 100081, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Tingting Zhang
- Medical College of Northwest Minzu University, Lanzhou, 730030, China
| | - Yan Li
- Medical College of Northwest Minzu University, Lanzhou, 730030, China
| | - Xiaofang Chen
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Huafang Gao
- National Research Institute for Family Planning, Beijing, 100081, China.
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
41
|
Tieu V, Sotillo E, Bjelajac JR, Chen C, Malipatlolla M, Guerrero JA, Xu P, Quinn PJ, Fisher C, Klysz D, Mackall CL, Qi LS. A versatile CRISPR-Cas13d platform for multiplexed transcriptomic regulation and metabolic engineering in primary human T cells. Cell 2024; 187:1278-1295.e20. [PMID: 38387457 PMCID: PMC10965243 DOI: 10.1016/j.cell.2024.01.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
CRISPR technologies have begun to revolutionize T cell therapies; however, conventional CRISPR-Cas9 genome-editing tools are limited in their safety, efficacy, and scope. To address these challenges, we developed multiplexed effector guide arrays (MEGA), a platform for programmable and scalable regulation of the T cell transcriptome using the RNA-guided, RNA-targeting activity of CRISPR-Cas13d. MEGA enables quantitative, reversible, and massively multiplexed gene knockdown in primary human T cells without targeting or cutting genomic DNA. Applying MEGA to a model of CAR T cell exhaustion, we robustly suppressed inhibitory receptor upregulation and uncovered paired regulators of T cell function through combinatorial CRISPR screening. We additionally implemented druggable regulation of MEGA to control CAR activation in a receptor-independent manner. Lastly, MEGA enabled multiplexed disruption of immunoregulatory metabolic pathways to enhance CAR T cell fitness and anti-tumor activity in vitro and in vivo. MEGA offers a versatile synthetic toolkit for applications in cancer immunotherapy and beyond.
Collapse
Affiliation(s)
- Victor Tieu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeremy R Bjelajac
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Crystal Chen
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Meena Malipatlolla
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Justin A Guerrero
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peng Xu
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrick J Quinn
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chris Fisher
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dorota Klysz
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94080, USA.
| |
Collapse
|
42
|
Hsiung CC, Wilson CM, Sambold NA, Dai R, Chen Q, Misiukiewicz S, Arab A, Teyssier N, O'Loughlin T, Cofsky JC, Shi J, Gilbert LA. Higher-order combinatorial chromatin perturbations by engineered CRISPR-Cas12a for functional genomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.18.558350. [PMID: 37781594 PMCID: PMC10541102 DOI: 10.1101/2023.09.18.558350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Multiplexed genetic perturbations are critical for testing functional interactions among coding or non-coding genetic elements. Compared to double-stranded DNA cutting, repressive chromatin formation using CRISPR interference (CRISPRi) avoids genotoxicity and is more effective for perturbing non-coding regulatory elements in pooled assays. However, current CRISPRi pooled screening approaches are limited to targeting 1-3 genomic sites per cell. To develop a tool for higher-order ( > 3) combinatorial targeting of genomic sites with CRISPRi in functional genomics screens, we engineered an Acidaminococcus Cas12a variant -- referred to as mul tiplexed transcriptional interference AsCas12a (multiAsCas12a). multiAsCas12a incorporates a key mutation, R1226A, motivated by the hypothesis of nicking-induced stabilization of the ribonucleoprotein:DNA complex for improving CRISPRi activity. multiAsCas12a significantly outperforms prior state-of-the-art Cas12a variants in combinatorial CRISPRi targeting using high-order multiplexed arrays of lentivirally transduced CRISPR RNAs (crRNA), including in high-throughput pooled screens using 6-plex crRNA array libraries. Using multiAsCas12a CRISPRi, we discover new enhancer elements and dissect the combinatorial function of cis-regulatory elements. These results instantiate a group testing framework for efficiently surveying potentially numerous combinations of chromatin perturbations for biological discovery and engineering.
Collapse
|
43
|
Zhang Z, Baxter AE, Ren D, Qin K, Chen Z, Collins SM, Huang H, Komar CA, Bailer PF, Parker JB, Blobel GA, Kohli RM, Wherry EJ, Berger SL, Shi J. Efficient engineering of human and mouse primary cells using peptide-assisted genome editing. Nat Biotechnol 2024; 42:305-315. [PMID: 37095348 PMCID: PMC11230135 DOI: 10.1038/s41587-023-01756-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/22/2023] [Indexed: 04/26/2023]
Abstract
Simple, efficient and well-tolerated delivery of CRISPR genome editing systems into primary cells remains a major challenge. Here we describe an engineered Peptide-Assisted Genome Editing (PAGE) CRISPR-Cas system for rapid and robust editing of primary cells with minimal toxicity. The PAGE system requires only a 30-min incubation with a cell-penetrating Cas9 or Cas12a and a cell-penetrating endosomal escape peptide to achieve robust single and multiplex genome editing. Unlike electroporation-based methods, PAGE gene editing has low cellular toxicity and shows no significant transcriptional perturbation. We demonstrate rapid and efficient editing of primary cells, including human and mouse T cells, as well as human hematopoietic progenitor cells, with editing efficiencies upwards of 98%. PAGE provides a broadly generalizable platform for next-generation genome engineering in primary cells.
Collapse
Affiliation(s)
- Zhen Zhang
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy E Baxter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, PA, USA
| | - Diqiu Ren
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Kunhua Qin
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, PA, USA
| | - Sierra M Collins
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hua Huang
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Chad A Komar
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter F Bailer
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jared B Parker
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gerd A Blobel
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rahul M Kohli
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Shelley L Berger
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Junwei Shi
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
44
|
Liao X, Li W, Zhou H, Rajendran BK, Li A, Ren J, Luan Y, Calderwood DA, Turk B, Tang W, Liu Y, Wu D. The CUL5 E3 ligase complex negatively regulates central signaling pathways in CD8 + T cells. Nat Commun 2024; 15:603. [PMID: 38242867 PMCID: PMC10798966 DOI: 10.1038/s41467-024-44885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
CD8+ T cells play an important role in anti-tumor immunity. Better understanding of their regulation could advance cancer immunotherapies. Here we identify, via stepwise CRISPR-based screening, that CUL5 is a negative regulator of the core signaling pathways of CD8+ T cells. Knocking out CUL5 in mouse CD8+ T cells significantly improves their tumor growth inhibiting ability, with significant proteomic alterations that broadly enhance TCR and cytokine signaling and their effector functions. Chemical inhibition of neddylation required by CUL5 activation, also enhances CD8 effector activities with CUL5 validated as a major target. Mechanistically, CUL5, which is upregulated by TCR stimulation, interacts with the SOCS-box-containing protein PCMTD2 and inhibits TCR and IL2 signaling. Additionally, CTLA4 is markedly upregulated by CUL5 knockout, and its inactivation further enhances the anti-tumor effect of CUL5 KO. These results together reveal a negative regulatory mechanism for CD8+ T cells and have strong translational implications in cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaofeng Liao
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hongyue Zhou
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Barani Kumar Rajendran
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ao Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jingjing Ren
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yi Luan
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Benjamin Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Wenwen Tang
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Research Institute, Yale University School of Medicine, West Haven, CT, 06516, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Dianqing Wu
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
45
|
Li X, Chen Z, Ye W, Yu J, Zhang X, Li Y, Niu Y, Ran S, Wang S, Luo Z, Zhao J, Hao Y, Zong J, Xia C, Xia J, Wu J. High-throughput CRISPR technology: a novel horizon for solid organ transplantation. Front Immunol 2024; 14:1295523. [PMID: 38239344 PMCID: PMC10794540 DOI: 10.3389/fimmu.2023.1295523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Organ transplantation is the gold standard therapy for end-stage organ failure. However, the shortage of available grafts and long-term graft dysfunction remain the primary barriers to organ transplantation. Exploring approaches to solve these issues is urgent, and CRISPR/Cas9-based transcriptome editing provides one potential solution. Furthermore, combining CRISPR/Cas9-based gene editing with an ex vivo organ perfusion system would enable pre-implantation transcriptome editing of grafts. How to determine effective intervention targets becomes a new problem. Fortunately, the advent of high-throughput CRISPR screening has dramatically accelerated the effective targets. This review summarizes the current advancements, utilization, and workflow of CRISPR screening in various immune and non-immune cells. It also discusses the ongoing applications of CRISPR/Cas-based gene editing in transplantation and the prospective applications of CRISPR screening in solid organ transplantation.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
46
|
Wu Y, Zhao S, Guo W, Liu Y, Requena Mullor MDM, Rodrìguez RA, Wei R. Systematic analysis of the prognostic value and immunological function of LTBR in human cancer. Aging (Albany NY) 2024; 16:129-152. [PMID: 38175686 PMCID: PMC10817409 DOI: 10.18632/aging.205356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
Lymphotoxin beta receptor (LTBR) is a positive T cell proliferation regulator gene. It is closely associated with the tumor immune microenvironment. However, its role in cancer and immunotherapy is unclear. Firstly, the expression level and prognostic value of LTBR were analyzed. Secondly, the expression of LTBR in clinical stages, immune subtypes, and molecular subtypes was analyzed. The correlation between LTBR and immune regulatory genes, immune checkpoint genes, and RNA modification genes was then analyzed. Correlations between LTBR and immune cells, scores, cancer-related functional status, tumor stemness index, mismatch repair (MMR) genes, and DNA methyltransferase were also analyzed. In addition, we analyzed the role of LTBR in DNA methylation, mutational status, tumor mutation burden (TMB), and microsatellite instability (MSI). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to explore the role of LTBR in pan-cancer. Finally, the drugs associated with LTBR were analyzed. The expression of LTBR was confirmed using quantitative real-time PCR and Western blot. LTBR is significantly overexpressed in most cancers and is associated with low patient survival. In addition, LTBR expression was strongly correlated with immune cells, score, cancer-related functional status, tumor stemness index, MMR genes, DNA methyltransferase, DNA methylation, mutational status, TMB, and MSI. Enrichment analysis revealed that LTBR was associated with apoptosis, necroptosis, and immune-related pathways. Finally, multiple drugs targeting LTBR were identified. LTBR is overexpressed in several tumors and is associated with a poor prognosis. It is related to immune-related genes and immune cell infiltration.
Collapse
Affiliation(s)
- Yinteng Wu
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shijian Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Wenliang Guo
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi 537100, China
| | - Ying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | | | | | - Ruqiong Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
47
|
Li YR, Lyu Z, Tian Y, Fang Y, Zhu Y, Chen Y, Yang L. Advancements in CRISPR screens for the development of cancer immunotherapy strategies. Mol Ther Oncolytics 2023; 31:100733. [PMID: 37876793 PMCID: PMC10591018 DOI: 10.1016/j.omto.2023.100733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
CRISPR screen technology enables systematic and scalable interrogation of gene function by using the CRISPR-Cas9 system to perturb gene expression. In the field of cancer immunotherapy, this technology has empowered the discovery of genes, biomarkers, and pathways that regulate tumor development and progression, immune reactivity, and the effectiveness of immunotherapeutic interventions. By conducting large-scale genetic screens, researchers have successfully identified novel targets to impede tumor growth, enhance anti-tumor immune responses, and surmount immunosuppression within the tumor microenvironment (TME). Here, we present an overview of CRISPR screens conducted in tumor cells for the purpose of identifying novel therapeutic targets. We also explore the application of CRISPR screens in immune cells to propel the advancement of cell-based therapies, encompassing T cells, natural killer cells, dendritic cells, and macrophages. Furthermore, we outline the crucial components necessary for the successful implementation of immune-specific CRISPR screens and explore potential directions for future research.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yanxin Tian
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
48
|
Wang Y, Khalil A, Kamar A, Du M, Dinh T, McFarland C, Wang Z. Unveiling immune checkpoint regulation: exploring the power of in vivo CRISPR screenings in cancer immunotherapy. Front Genet 2023; 14:1304425. [PMID: 38162677 PMCID: PMC10755878 DOI: 10.3389/fgene.2023.1304425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer immunotherapy by reinvigorating antitumor immune responses, but their efficacy remains limited in most patients. To address this challenge and optimize Immune check inhibitor treatment, understanding the underlying molecular intricacies involved is crucial. The emergence of CRISPR-Cas9 technology has empowered researchers to precisely investigate gene function and has introduced transformative shifts in identifying key genes for various physiological and pathological processes. CRISPR screenings, particularly in vivo CRISPR screenings, have become invaluable tools in deciphering molecular networks and signaling pathways governing suppressive immune checkpoint molecules. In this review, we provide a comprehensive overview of in vivo CRISPR screenings in cancer immunotherapy, exploring how this cutting-edge technology has unraveled potential novel therapeutic targets and combination strategies. We delve into the latest findings and advancements, shedding light on immune checkpoint regulation and offering exciting prospects for the development of innovative and effective treatments for cancer patients.
Collapse
Affiliation(s)
- Yuxiang Wang
- Department of Genetics and Genome Sciences and Case Comprehesive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Athar Khalil
- Department of Genetics and Genome Sciences and Case Comprehesive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Amina Kamar
- Centre for Digital Transformation, Imperial College, London, United Kingdom
| | - Mengyan Du
- Department of Genetics and Genome Sciences and Case Comprehesive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Trang Dinh
- Department of Genetics and Genome Sciences and Case Comprehesive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Christopher McFarland
- Department of Genetics and Genome Sciences and Case Comprehesive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Zhenghe Wang
- Department of Genetics and Genome Sciences and Case Comprehesive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
49
|
Schmid D, Auf der Maur P, Trefny MP, Zippelius A. Unraveling T-cell Exhaustion: Genetic Screening Meets In Vitro Modeling. Cancer Res 2023; 83:3830-3832. [PMID: 37855668 DOI: 10.1158/0008-5472.can-23-3204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
T-cell exhaustion poses a significant barrier to the efficacy of immunotherapies. In the past decade, immune checkpoint blockade (ICB) has been the leading strategy to prevent or reverse T-cell exhaustion. Although ICB yields promising clinical outcomes in patients with cancer, its impact on T-cell reinvigoration is often short-lived. High-throughput genomic tools, including CRISPR screening along with single-cell RNA and chromatin accessibility sequencing may point toward new therapeutic avenues. However, their utility in identifying key mediators of T-cell exhaustion is constrained by the restricted scalability of well-validated in vivo exhaustion models, like chronic LCMV infection. In a recent article in Science Immunology, Wu and colleagues introduce an in vitro exhaustion model that involves repetitive stimulation of T-cell receptor-transgenic, LCMV-specific P14 CD8 T cells. This approach enables a direct comparison of exhausted T (Tex) cells generated both in vivo and in vitro using the same antigen, adeptly pinpointing exhaustion features that can be recapitulated in vitro. Leveraging this efficient and scalable model alongside CRISPR screening, the authors highlight the transcription factor BHLHE40 as a pivotal element in promoting Tex-cell transition from progenitor to intermediate Tex cells.
Collapse
Affiliation(s)
- Dominic Schmid
- Department of Biomedicine, Laboratory Cancer Immunology, University of Basel, Basel, Switzerland
- Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Priska Auf der Maur
- Department of Medicine III, Klinikum Rechts der Issar, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Marcel P Trefny
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Munich, Germany
| | - Alfred Zippelius
- Department of Biomedicine, Laboratory Cancer Immunology, University of Basel, Basel, Switzerland
- Medical Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
50
|
Zhou L, Yang L, Feng Y, Chen S. Pooled screening with next-generation gene editing tools. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 28:100479. [PMID: 38222973 PMCID: PMC10786633 DOI: 10.1016/j.cobme.2023.100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Pooled screening creates a pool of cells with genetic variants, allowing for the simultaneous examination for changes in behavior or function. By selectively inducing mutations or perturbing expression, it enables scientists to systematically investigate the function of genes or genetic elements. Emerging gene editing tools, such as CRISPR, coupled with advances in sequencing and computational capabilities, provide growing opportunities to understand biological processes in humans, animals, and plants as well as to identify potential targets for therapeutic interventions and agricultural research. In this review, we highlight the recent advances of pooled screens using next-generation gene editing tools along with relevant challenges and describe potential future directions of this technology.
Collapse
Affiliation(s)
- Liqun Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Yanzhi Feng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
- Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
- Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|