1
|
Somaiya RD, Po MA, Feller MB, Shekhar K. Cholinergic waves have a modest influence on the transcriptome of retinal ganglion cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.05.627027. [PMID: 39713433 PMCID: PMC11661095 DOI: 10.1101/2024.12.05.627027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
In the early stages of development, correlated activity known as retinal waves causes periodic depolarizations of retinal ganglion cells (RGCs). The β2KO mouse, which lacks the β2 subunit of the nicotinic acetylcholine receptor, serves as a model for understanding the role of these cholinergic waves. β2KO mice have disruptions in several developmental processes of the visual system, including reduced retinotopic and eye-specific refinement of RGC axonal projections to their primary brain targets and an impact on the retinal circuits underlying direction selectivity. However, the effects of this mutation on gene expression in individual functional RGC types remain unclear. Here, we performed single-cell RNA sequencing on RGCs isolated at the end of the first postnatal week from wild-type and β2KO mice. We found that in β2KO mice, the molecular programs governing RGC differentiation were not impacted and the magnitude of transcriptional changes was modest compared to those observed during two days of normal postnatal maturation. This contrasts with the substantial transcriptomic changes seen in downstream visual system areas under wave disruption in recent studies. However, we identified ∼238 genes whose expression was altered in a type-specific manner. We confirmed this result via in situ hybridization and whole-cell recording by focusing on one of the downregulated genes in aRGCs, Kcnk9 , which encodes the two-pore domain leak potassium channel TASK3. Our study reveals a limited transcriptomic impact of cholinergic signaling in the retina and instead of affecting all RGCs uniformly, these waves show subtle modulation of molecular programs in a type-specific manner. SIGNIFICANCE STATEMENT Spontaneous retinal waves are critical for the development of the mammalian visual system. However, their role in transcriptional regulation in the retina across the diverse retinal ganglion cell (RGC) types that underpin the detection and transmission of visual features is unclear. Using single-cell RNA sequencing, we analyzed RGC transcriptome from wild-type mice and mice with disrupted retinal waves. We identified several genes that show RGC-type-specific regulation in their expression, including multiple neuropeptides and ion channels. However, wave-dependent changes in the transcriptome were more subtle than developmental changes, indicating that spontaneous activity-dependent molecular changes in retinal ganglion cells are not primarily manifested at the transcriptomic level.
Collapse
|
2
|
Kubota N, Chen L, Zheng S. Shiba: A versatile computational method for systematic identification of differential RNA splicing across platforms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.30.596331. [PMID: 38895326 PMCID: PMC11185541 DOI: 10.1101/2024.05.30.596331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Alternative pre-mRNA splicing (AS) is a fundamental regulatory process that generates transcript diversity and cell type variation. We developed Shiba, a comprehensive method that integrates transcript assembly, splicing event identification, read counting, and differential splicing analysis across RNA-seq platforms. Shiba excels in capturing annotated and unannotated AS events with superior accuracy, sensitivity, and reproducibility. It addresses the often-overlooked issue of junction read imbalance, significantly reducing false positives to aid target prioritization and downstream analyses. Unlike other tools that require large numbers of biological replicates or resulting in low sensitivity and high false positives, Shiba's statistics framework is agnostic to sample size, as demonstrated by simulated data and its effective application to real n =1 RNA-seq datasets. To extend its utility to single-cell RNA-seq, we developed scShiba, which applies Shiba's pseudobulk approach to analyze splicing at the cluster level. scShiba successfully revealed AS regulation in developmental dopaminergic neurons and differences between excitatory and inhibitory neurons. Both Shiba and scShiba are available in Docker/Singularity containers and Snakemake pipelines, ensuring reproducibility. With their comprehensive capabilities, Shiba and scShiba enable systematic quantification of alternative splicing events across various platforms, laying a solid foundation for mechanistic exploration of the functional complexity in RNA splicing.
Collapse
|
3
|
Genna VG, Maurizi E, Rama P, Pellegrini G. Biology and medicine on ocular surface restoration: Advancements and limits of limbal stem cell deficiency treatments. Ocul Surf 2025; 35:57-67. [PMID: 39580144 DOI: 10.1016/j.jtos.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
Ocular vision can be hampered by corneal damages, sensibly reducing patients' quality of life and having important social and economic consequences. Ocular surface diseases, which often lead to corneal opacities with visual impairment are the most severe forms of the Limbal Stem Cell Deficiency (LSCD). The present review provides an updated perspective on the available treatments for LSCD, focusing on clinical and biological features, as well as critical points to monitor during clinical translation. Recently developed surgical treatments for LSCD are described, along with their benefits and limitations, with the aim of addressing the issue of correct patient selection. Autologous surgical approaches have been attempted, such as conjunctival limbal autograft (CLAU), simple limbal epithelial transplantation (SLET), and others. Allogeneic limbal stem cell transplantation represents an alternative but carries risk of rejection and requires immunosuppression. Other potential treatments are based on induced pluripotent stem cells (iPSCs), but they require further investigation. The development of advanced therapy medicinal products (ATMPs) such as cultivated limbal epithelial transplantation (CLET), or the use of other epithelia as cultivated oral mucosal epithelial cell transplantation (COMET), has opened additional therapeutic possibilities. Some common critical issues in clinical translation are described, such as patient selection, biopsy procurement, or the use of human/animal derived components, which require rigorous validation to ensure safety and efficacy. Personalized medicine is a promising field for ocular surface restoration, where long-term follow-up studies and standardized criteria are crucial to evaluate the efficacy of these treatments and their cost-effectiveness in providing high-value healthcare.
Collapse
Affiliation(s)
| | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Rama
- Department of Ophthalmology, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Graziella Pellegrini
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
4
|
Eastburn DJ, White KS, Jayne ND, Camiolo S, Montis G, Ha S, Watson KG, Yeakley JM, McComb J, Seligmann B. High-throughput gene expression analysis with TempO-LINC sensitively resolves complex brain, lung and kidney heterogeneity at single-cell resolution. Sci Rep 2024; 14:31285. [PMID: 39732835 DOI: 10.1038/s41598-024-82736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
We report the development and performance of a novel genomics platform, TempO-LINC, for conducting high-throughput transcriptomic analysis on single cells and nuclei. TempO-LINC works by adding cell-identifying molecular barcodes onto highly selective and high-sensitivity gene expression probes within fixed cells, without having to first generate cDNA. Using an instrument-free combinatorial indexing approach, all probes within the same fixed cell receive an identical barcode, enabling the reconstruction of single-cell gene expression profiles across as few as several hundred cells and up to 100,000 + cells per sample. The TempO-LINC approach is easily scalable based on the number of barcodes and rounds of barcoding performed; however, for the experiments reported in this study, the assay utilized over 5.3 million unique barcodes. TempO-LINC offers a robust protocol for fixing and banking cells and displays high-sensitivity gene detection from multiple diverse sample types. We show that TempO-LINC has a multiplet rate of less than 1.1% and a cell capture rate of ~ 50%. Although the assay can accurately profile the whole transcriptome (19,683 human, 21,400 mouse and 21,119 rat genes), it can be targeted to measure only actionable/informative genes and molecular pathways of interest - thereby reducing sequencing requirements. In this study, we applied TempO-LINC to profile the transcriptomes of more than 90,000 cells across multiple species and sample types, including nuclei from mouse lung, kidney and brain tissues. The data demonstrated the ability to identify and annotate more than 50 unique cell populations and positively correlate expression of cell type-specific molecular markers within them. TempO-LINC is a robust new single-cell technology that is ideal for large-scale applications/studies with high data quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Seungeun Ha
- BioSpyder Technologies, Inc., Carlsbad, CA, USA
| | | | | | - Joel McComb
- BioSpyder Technologies, Inc., Carlsbad, CA, USA
| | | |
Collapse
|
5
|
Han X, Bonin V. Higher-order cortical and thalamic pathways shape visual processing streams in the mouse cortex. Curr Biol 2024; 34:5671-5684.e6. [PMID: 39566501 DOI: 10.1016/j.cub.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Mammalian visual functions rely on distributed processing across interconnected cortical and subcortical regions. In higher-order visual areas (HVAs), visual features are processed in specialized streams that integrate feedforward and higher-order inputs from intracortical and thalamocortical pathways. However, the precise circuit organization responsible for HVA specialization remains unclear. We investigated the cellular architecture of primary visual cortex (V1) and higher-order visual pathways in the mouse, focusing on their roles in shaping visual representations. Using in vivo functional imaging and neural circuit tracing, we found that HVAs preferentially receive inputs from both V1 and higher-order pathways tuned to similar spatiotemporal properties, with the strongest selectivity seen in layer 2/3 neurons. These neurons exhibit target-specific tuning and sublaminar specificity in their projections, reflecting cell-type-specific visual information flow. In contrast, HVA layer 5 pathways nonspecifically broadcast visual signals across cortical areas, suggesting a role in distributing HVA outputs. Additionally, thalamocortical pathways from the lateral posterior thalamic nucleus (LP) provide highly specific, nearly non-overlapping visual inputs to HVAs, complementing intracortical inputs and contributing to input functional diversity. Our findings suggest that the convergence of laminar and cell-type-specific pathways V1 and higher-order intracortical and thalamocortical pathways plays a key role in shaping the functional specialization and diversity of HVAs.
Collapse
Affiliation(s)
- Xu Han
- Neuro-Electronics Research Flanders, 3000 Leuven, Belgium; KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium; VIB, 3000 Leuven, Belgium.
| | - Vincent Bonin
- Neuro-Electronics Research Flanders, 3000 Leuven, Belgium; KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium; VIB, 3000 Leuven, Belgium.
| |
Collapse
|
6
|
Patiño M, Rossa MA, Lagos WN, Patne NS, Callaway EM. Transcriptomic cell-type specificity of local cortical circuits. Neuron 2024; 112:3851-3866.e4. [PMID: 39353431 PMCID: PMC11624072 DOI: 10.1016/j.neuron.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Complex neocortical functions rely on networks of diverse excitatory and inhibitory neurons. While local connectivity rules between major neuronal subclasses have been established, the specificity of connections at the level of transcriptomic subtypes remains unclear. We introduce single transcriptome assisted rabies tracing (START), a method combining monosynaptic rabies tracing and single-nuclei RNA sequencing to identify transcriptomic cell types, providing inputs to defined neuron populations. We employ START to transcriptomically characterize inhibitory neurons providing monosynaptic input to 5 different layer-specific excitatory cortical neuron populations in mouse primary visual cortex (V1). At the subclass level, we observe results consistent with findings from prior studies that resolve neuronal subclasses using antibody staining, transgenic mouse lines, and morphological reconstruction. With improved neuronal subtype granularity achieved with START, we demonstrate transcriptomic subtype specificity of inhibitory inputs to various excitatory neuron subclasses. These results establish local connectivity rules at the resolution of transcriptomic inhibitory cell types.
Collapse
Affiliation(s)
- Maribel Patiño
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
| | - Marley A Rossa
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Willian Nuñez Lagos
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Neelakshi S Patne
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Neuroscience Graduate Program, Boston University, Boston, MA, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
7
|
Wang C, Yang H, Chen S, Wang C, Chen X. Early and late place cells during postnatal development of the hippocampus. Nat Commun 2024; 15:10075. [PMID: 39572591 PMCID: PMC11582796 DOI: 10.1038/s41467-024-54320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024] Open
Abstract
A proportion of hippocampal CA1 neurons function as place cells from the onset of navigation, which are referred to as early place cells. It is not clear whether this subset of neurons is predisposed to become place cells during early stages, or if all neurons have this potential. Here, we longitudinally imaged the activity of CA1 neurons in developing male rats during navigation with both one-photon and two-photon microscopy. Our results suggested that a largely consistent population of cells functioned as early place cells, demonstrating higher spatial coding abilities across environments and a tendency to form more synchronous cell assemblies. Early place cells were present in both deep and superficial layers of CA1. Cells in the deep layer exhibited greater synchrony than those in the superficial layer during early ages. These results support the theory that an initial cognitive map is primarily shaped by a predetermined set of hippocampal cells.
Collapse
Affiliation(s)
- Chenyue Wang
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongjiang Yang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shijie Chen
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Cheng Wang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiaojing Chen
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
8
|
D'Souza SP, Upton BA, Eldred KC, Glass I, Nayak G, Grover K, Ahmed A, Nguyen MT, Hu YC, Gamlin P, Lang RA. Developmental control of rod number via a light-dependent retrograde pathway from intrinsically photosensitive retinal ganglion cells. Dev Cell 2024; 59:2897-2911.e6. [PMID: 39142280 PMCID: PMC11537824 DOI: 10.1016/j.devcel.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
Photoreception is essential for the development of the visual system, shaping vision's first synapse to cortical development. Here, we find that the lighting environment controls developmental rod apoptosis via Opn4-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). Using genetics, sensory environment manipulations, and computational approaches, we establish a pathway where light-dependent glutamate released from ipRGCs is detected via a transiently expressed glutamate receptor (Grik3) on rod precursors within the inner retina. Communication between these cells is mediated by hybrid neurites on ipRGCs that sense light before eye opening. These structures span the ipRGC-rod precursor distance over development and contain the machinery for photoreception (Opn4) and neurotransmitter release (Vglut2 & Syp). Assessment of the human gestational retina identifies conserved hallmarks of an ipRGC-to-rod axis, including displaced rod precursors, transient GRIK3 expression, and ipRGCs with deep-projecting neurites. This analysis defines an adaptive retrograde pathway linking the sensory environment to rod precursors via ipRGCs prior to eye opening.
Collapse
Affiliation(s)
- Shane P D'Souza
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Brian A Upton
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kiara C Eldred
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Ian Glass
- Birth Defects Research Laboratory, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98195, USA
| | - Gowri Nayak
- Transgenic Animal and Genome Editing Core, Department of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kassidy Grover
- Division of Hematology and Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Abdulla Ahmed
- Medical Doctor (M.D.) Training Program, George Washington University School of Medicine, Washington, DC 20052, USA
| | - Minh-Thanh Nguyen
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yueh-Chiang Hu
- Transgenic Animal and Genome Editing Core, Department of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Paul Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Richard A Lang
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
9
|
Xie F, Jain S, Xu R, Butrus S, Tan Z, Xu X, Shekhar K, Zipursky SL. Spatial profiling of the interplay between cell type- and vision-dependent transcriptomic programs in the visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.572244. [PMID: 38187533 PMCID: PMC10769288 DOI: 10.1101/2023.12.18.572244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
How early sensory experience during "critical periods" of postnatal life affects the organization of the mammalian neocortex at the resolution of neuronal cell types is poorly understood. We previously reported that the functional and molecular profiles of layer 2/3 (L2/3) cell types in the primary visual cortex (V1) are vision-dependent (Tan et al., Neuron, 108(4), 2020; Cheng et al., Cell, 185(2), 2022). Here, we characterize the spatial organization of L2/3 cell types with and without visual experience. Spatial transcriptomic profiling based on 500 genes recapitulates the zonation of L2/3 cell types along the pial-ventricular axis in V1. By applying multi-tasking theory (Adler et al., Cell Systems, 8, 2019), we suggest that the spatial zonation of L2/3 cell types is linked to the continuous nature of their gene expression profiles, which can be represented as a 2D manifold bounded by three archetypal cell types ("A", "B", and "C"). By comparing normally reared and dark reared L2/3 cells, we show that visual deprivation-induced transcriptomic changes comprise two independent gene programs. The first, induced specifically in the visual cortex, includes immediate-early genes and genes associated with metabolic processes. It manifests as a change in cell state that is orthogonal to cell type-specific gene expression programs. By contrast, the second program impacts L2/3 cell type identity, regulating a subset of cell type-specific genes and shifting the distribution of cells within the L2/3 manifold, with a depression of the B-type and C-type and a gain of the A-type. Through an integrated analysis of spatial transcriptomic measurements with single-nucleus RNA-seq data from our previous study, we describe how vision patterns L2/3 cortical cell types during the postnatal critical period. Significance statement Layer 2/3 (L2/3) glutamatergic neurons are important sites of experience-dependent plasticity and learning in the mammalian cortex. Their properties vary continuously with cortical depth and depend upon experience. Here, by applying spatial transcriptomics and different computational approaches in the mouse primary visual cortex, we show that vision regulates orthogonal gene expression programs underlying cell states and cell types. Visual deprivation not only induces an activity-dependent cell state, but also alters the composition of L2/3 cell types, which are appropriately described as a transcriptomic continuum. Our results provide insights into how experience shapes transcriptomes that may, in turn, sculpt brain wiring, function, and behavior.
Collapse
Affiliation(s)
- Fangming Xie
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Saumya Jain
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- These authors contributed equally
| | - Runzhe Xu
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences (QB3); Center for Computational Biology; Vision Sciences Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zhiqun Tan
- Center for Neural Circuit Mapping (CNCM), Department of Anatomy and Neurobiology, Institute for Memory Impairments and Neurological Disorders (UCIMIND), University of California, Irvine, Irvine, CA 92697, USA
| | - Xiangmin Xu
- Center for Neural Circuit Mapping (CNCM), Department of Anatomy and Neurobiology, Institute for Memory Impairments and Neurological Disorders (UCIMIND), University of California, Irvine, Irvine, CA 92697, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences (QB3); Center for Computational Biology; Vision Sciences Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
- Faculty Scientist, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - S. Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Lead contact
| |
Collapse
|
10
|
Butrus S, Monday HR, Yoo CJ, Feldman DE, Shekhar K. Molecular states underlying neuronal cell type development and plasticity in the whisker cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617106. [PMID: 39416021 PMCID: PMC11482765 DOI: 10.1101/2024.10.07.617106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Mouse whisker somatosensory cortex (wS1) is a major model system to study the experience-dependent plasticity of cortical neuron physiology, morphology, and sensory coding. However, the role of sensory experience in regulating neuronal cell type development and gene expression in wS1 remains poorly understood. We assembled and annotated a transcriptomic atlas of wS1 during postnatal development comprising 45 molecularly distinct neuronal types that can be grouped into eight excitatory and four inhibitory neuron subclasses. Using this atlas, we examined the influence of whisker experience from postnatal day (P) 12, the onset of active whisking, to P22, on the maturation of molecularly distinct cell types. During this developmental period, when whisker experience was normal, ~250 genes were regulated in a neuronal subclass-specific fashion. At the resolution of neuronal types, we found that only the composition of layer (L) 2/3 glutamatergic neuronal types, but not other neuronal types, changed substantially between P12 and P22. These compositional changes resemble those observed previously in the primary visual cortex (V1), and the temporal gene expression changes were also highly conserved between the two regions. In contrast to V1, however, cell type maturation in wS1 is not substantially dependent on sensory experience, as 10-day full-face whisker deprivation did not influence the transcriptomic identity and composition of L2/3 neuronal types. A one-day competitive whisker deprivation protocol also did not affect cell type identity but induced moderate changes in plasticity-related gene expression. Thus, developmental maturation of cell types is similar in V1 and wS1, but sensory deprivation minimally affects cell type development in wS1.
Collapse
Affiliation(s)
- Salwan Butrus
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hannah R. Monday
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher J. Yoo
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel E. Feldman
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Center for Computational Biology; Vision Sciences and Optometry; University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Gao Y, van Velthoven CTJ, Lee C, Thomas ED, Bertagnolli D, Carey D, Casper T, Chakka AB, Chakrabarty R, Clark M, Desierto MJ, Ferrer R, Gloe J, Goldy J, Guilford N, Guzman J, Halterman CR, Hirschstein D, Ho W, James K, McCue R, Meyerdierks E, Nguy B, Pena N, Pham T, Shapovalova NV, Sulc J, Torkelson A, Tran A, Tung H, Wang J, Ronellenfitch K, Levi B, Hawrylycz MJ, Pagan C, Dee N, Smith KA, Tasic B, Yao Z, Zeng H. Continuous cell type diversification throughout the embryonic and postnatal mouse visual cortex development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.02.616246. [PMID: 39829740 PMCID: PMC11741437 DOI: 10.1101/2024.10.02.616246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The mammalian cortex is composed of a highly diverse set of cell types and develops through a series of temporally regulated events that build out the cell type and circuit foundation for cortical function. The mechanisms underlying the development of different cell types remain elusive. Single-cell transcriptomics provides the capacity to systematically study cell types across the entire temporal range of cortical development. Here, we present a comprehensive and high-resolution transcriptomic and epigenomic cell type atlas of the developing mouse visual cortex. The atlas was built from a single-cell RNA-sequencing dataset of 568,674 high-quality single-cell transcriptomes and a single-nucleus Multiome dataset of 194,545 high-quality nuclei providing both transcriptomic and chromatin accessibility profiles, densely sampled throughout the embryonic and postnatal developmental stages from E11.5 to P56. We computationally reconstructed a transcriptomic developmental trajectory map of all excitatory, inhibitory, and non-neuronal cell types in the visual cortex, identifying branching points marking the emergence of new cell types at specific developmental ages and defining molecular signatures of cellular diversification. In addition to neurogenesis, gliogenesis and early postmitotic maturation in the embryonic stage which gives rise to all the cell classes and nearly all subclasses, we find that increasingly refined cell types emerge throughout the postnatal differentiation process, including the late emergence of many cell types during the eye-opening stage (P11-P14) and the onset of critical period (P21), suggesting continuous cell type diversification at different stages of cortical development. Throughout development, we find cooperative dynamic changes in gene expression and chromatin accessibility in specific cell types, identifying both chromatin peaks potentially regulating the expression of specific genes and transcription factors potentially regulating specific peaks. Furthermore, a single gene can be regulated by multiple peaks associated with different cell types and/or different developmental stages. Collectively, our study provides the most detailed dynamic molecular map directly associated with individual cell types and specific developmental events that reveals the molecular logic underlying the continuous refinement of cell type identities in the developing visual cortex.
Collapse
Affiliation(s)
- Yuan Gao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Daniel Carey
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Rachel McCue
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Beagan Nguy
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nick Pena
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Alex Tran
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Justin Wang
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| |
Collapse
|
12
|
Eastburn DJ, White KS, Jayne ND, Camiolo S, Montis G, Ha S, Watson KG, Yeakley JM, McComb J, Seligmann B. High-throughput gene expression analysis with TempO-LINC sensitively resolves complex brain, lung and kidney heterogeneity at single-cell resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.03.606484. [PMID: 39149288 PMCID: PMC11326174 DOI: 10.1101/2024.08.03.606484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
We report the development and performance of a novel genomics platform, TempO-LINC, for conducting high-throughput transcriptomic analysis on single cells and nuclei. TempO-LINC works by adding cell-identifying molecular barcodes onto highly selective and high-sensitivity gene expression probes within fixed cells, without having to first generate cDNA. Using an instrument-free combinatorial-indexing approach, all probes within the same fixed cell receive an identical barcode, enabling the reconstruction of single-cell gene expression profiles across as few as several hundred cells and up to 100,000+ cells per run. The TempO-LINC approach is easily scalable based on the number of barcodes and rounds of barcoding performed; however, for the experiments reported in this study, the assay utilized over 5.3 million unique barcodes. TempO-LINC has a robust protocol for fixing and banking cells and displays high-sensitivity gene detection from multiple diverse sample types. We show that TempO-LINC has an observed multiplet rate of less than 1.1% and a cell capture rate of ~50%. Although the assay can accurately profile the whole transcriptome (19,683 human or 21,400 mouse genes), it can be targeted to measure only actionable/informative genes and molecular pathways of interest - thereby reducing sequencing requirements. In this study, we applied TempO-LINC to profile the transcriptomes of 89,722 cells across multiple sample types, including nuclei from mouse lung, kidney and brain tissues. The data demonstrated the ability to identify and annotate at least 50 unique cell populations and positively correlate expression of cell type-specific molecular markers within them. TempO-LINC is a robust new single-cell technology that is ideal for large-scale applications/studies across thousands of samples with high data quality.
Collapse
|
13
|
Wu MW, Kourdougli N, Portera-Cailliau C. Network state transitions during cortical development. Nat Rev Neurosci 2024; 25:535-552. [PMID: 38783147 DOI: 10.1038/s41583-024-00824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Mammalian cortical networks are active before synaptogenesis begins in earnest, before neuronal migration is complete, and well before an animal opens its eyes and begins to actively explore its surroundings. This early activity undergoes several transformations during development. The most important of these is a transition from episodic synchronous network events, which are necessary for patterning the neocortex into functionally related modules, to desynchronized activity that is computationally more powerful and efficient. Network desynchronization is perhaps the most dramatic and abrupt developmental event in an otherwise slow and gradual process of brain maturation. In this Review, we summarize what is known about the phenomenology of developmental synchronous activity in the rodent neocortex and speculate on the mechanisms that drive its eventual desynchronization. We argue that desynchronization of network activity is a fundamental step through which the cortex transitions from passive, bottom-up detection of sensory stimuli to active sensory processing with top-down modulation.
Collapse
Affiliation(s)
- Michelle W Wu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nazim Kourdougli
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Xavier AM, Lin Q, Kang CJ, Cheadle L. A single-cell transcriptomic atlas of sensory-dependent gene expression in developing mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600673. [PMID: 38979325 PMCID: PMC11230371 DOI: 10.1101/2024.06.25.600673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sensory experience drives the refinement and maturation of neural circuits during postnatal brain development through molecular mechanisms that remain to be fully elucidated. One likely mechanism involves the sensory-dependent expression of genes that encode direct mediators of circuit remodeling within developing cells. However, while studies in adult systems have begun to uncover crucial roles for sensory-induced genes in modifying circuit connectivity, the gene programs induced by brain cells in response to sensory experience during development remain to be fully characterized. Here, we present a single-nucleus RNA-sequencing dataset describing the transcriptional responses of cells in mouse visual cortex to sensory deprivation or sensory stimulation during a developmental window when visual input is necessary for circuit refinement. We sequenced 118,529 individual nuclei across sixteen neuronal and non-neuronal cortical cell types isolated from control, sensory deprived, and sensory stimulated mice, identifying 1,268 unique sensory-induced genes within the developing brain. To demonstrate the utility of this resource, we compared the architecture and ontology of sensory-induced gene programs between cell types, annotated transcriptional induction and repression events based upon RNA velocity, and discovered Neurexin and Neuregulin signaling networks that underlie cell-cell interactions via CellChat . We find that excitatory neurons, especially layer 2/3 pyramidal neurons, are highly sensitive to sensory stimulation, and that the sensory-induced genes in these cells are poised to strengthen synapse-to-nucleus crosstalk by heightening protein serine/threonine kinase activity. Altogether, we expect this dataset to significantly broaden our understanding of the molecular mechanisms through which sensory experience shapes neural circuit wiring in the developing brain.
Collapse
|
15
|
Qian X, Coleman K, Jiang S, Kriz AJ, Marciano JH, Luo C, Cai C, Manam MD, Caglayan E, Otani A, Ghosh U, Shao DD, Andersen RE, Neil JE, Johnson R, LeFevre A, Hecht JL, Miller MB, Sun L, Stringer C, Li M, Walsh CA. Spatial Single-cell Analysis Decodes Cortical Layer and Area Specification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597673. [PMID: 38915567 PMCID: PMC11195106 DOI: 10.1101/2024.06.05.597673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The human cerebral cortex, pivotal for advanced cognitive functions, is composed of six distinct layers and dozens of functionally specialized areas1,2. The layers and areas are distinguished both molecularly, by diverse neuronal and glial cell subtypes, and structurally, through intricate spatial organization3,4. While single-cell transcriptomics studies have advanced molecular characterization of human cortical development, a critical gap exists due to the loss of spatial context during cell dissociation5,6,7,8. Here, we utilized multiplexed error-robust fluorescence in situ hybridization (MERFISH)9, augmented with deep-learning-based cell segmentation, to examine the molecular, cellular, and cytoarchitectural development of human fetal cortex with spatially resolved single-cell resolution. Our extensive spatial atlas, encompassing 16 million single cells, spans eight cortical areas across four time points in the second and third trimesters. We uncovered an early establishment of the six-layer structure, identifiable in the laminar distribution of excitatory neuronal subtypes by mid-gestation, long before the emergence of cytoarchitectural layers. Notably, while anterior-posterior gradients of neuronal subtypes were generally observed in most cortical areas, a striking exception was the sharp molecular border between primary (V1) and secondary visual cortices (V2) at gestational week 20. Here we discovered an abrupt binary shift in neuronal subtype specification at the earliest stages, challenging the notion that continuous morphogen gradients dictate mid-gestation cortical arealization6,10. Moreover, integrating single-nuclei RNA-sequencing and in situ whole transcriptomics revealed an early upregulation of synaptogenesis in V1-specific Layer 4 neurons, suggesting a role of synaptogenesis in this discrete border formation. Collectively, our findings underscore the crucial role of spatial relationships in determining the molecular specification of cortical layers and areas. This work not only provides a valuable resource for the field, but also establishes a spatially resolved single-cell analysis paradigm that paves the way for a comprehensive developmental atlas of the human brain.
Collapse
Affiliation(s)
- Xuyu Qian
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- These authors contributed equally: Xuyu Qian, Kyle Coleman, Shunzhou Jiang
| | - Kyle Coleman
- Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- These authors contributed equally: Xuyu Qian, Kyle Coleman, Shunzhou Jiang
| | - Shunzhou Jiang
- Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- These authors contributed equally: Xuyu Qian, Kyle Coleman, Shunzhou Jiang
| | - Andrea J. Kriz
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jack H. Marciano
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chunyu Luo
- Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chunhui Cai
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Monica Devi Manam
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Emre Caglayan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aoi Otani
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Urmi Ghosh
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diane D. Shao
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Rebecca E. Andersen
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jennifer E. Neil
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Johnson
- University of Maryland Brain and Tissue Bank, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alexandra LeFevre
- University of Maryland Brain and Tissue Bank, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jonathan L. Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Michael B. Miller
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Carsen Stringer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Mingyao Li
- Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Prince GS, Reynolds M, Martina V, Sun H. Gene-environmental regulation of the postnatal post-mitotic neuronal maturation. Trends Genet 2024; 40:480-494. [PMID: 38658255 PMCID: PMC11153025 DOI: 10.1016/j.tig.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Embryonic neurodevelopment, particularly neural progenitor differentiation into post-mitotic neurons, has been extensively studied. While the number and composition of post-mitotic neurons remain relatively constant from birth to adulthood, the brain undergoes significant postnatal maturation marked by major property changes frequently disrupted in neural diseases. This review first summarizes recent characterizations of the functional and molecular maturation of the postnatal nervous system. We then review regulatory mechanisms controlling the precise gene expression changes crucial for the intricate sequence of maturation events, highlighting experience-dependent versus cell-intrinsic genetic timer mechanisms. Despite significant advances in understanding of the gene-environmental regulation of postnatal neuronal maturation, many aspects remain unknown. The review concludes with our perspective on exciting future research directions in the next decade.
Collapse
Affiliation(s)
- Gabrielle S Prince
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Molly Reynolds
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Verdion Martina
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - HaoSheng Sun
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA; Freeman Hrabowski Scholar, Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
17
|
Ye Q, Nunez J, Zhang X. Multiple cholinergic receptor subtypes coordinate dual modulation of acetylcholine on anterior and posterior paraventricular thalamic neurons. J Neurochem 2024; 168:995-1018. [PMID: 38664195 PMCID: PMC11136594 DOI: 10.1111/jnc.16115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 05/31/2024]
Abstract
Paraventricular thalamus (PVT) plays important roles in the regulation of emotion and motivation through connecting many brain structures including the midbrain and the limbic system. Although acetylcholine (ACh) neurons of the midbrain were reported to send projections to PVT, little is known about how cholinergic signaling regulates PVT neurons. Here, we used both RNAscope and slice patch-clamp recordings to characterize cholinergic receptor expression and ACh modulation of PVT neurons in mice. We found ACh excited a majority of anterior PVT (aPVT) neurons but predominantly inhibited posterior PVT (pPVT) neurons. Compared to pPVT with more inhibitory M2 receptors, aPVT expressed higher levels of all excitatory receptor subtypes including nicotinic α4, α7, and muscarinic M1 and M3. The ACh-induced excitation was mimicked by nicotine and antagonized by selective blockers for α4β2 and α7 nicotinic ACh receptor (nAChR) subtypes as well as selective antagonists for M1 and M3 muscarinic ACh receptors (mAChR). The ACh-induced inhibition was attenuated by selective M2 and M4 mAChR receptor antagonists. Furthermore, we found ACh increased the frequency of excitatory postsynaptic currents (EPSCs) on a majority of aPVT neurons but decreased EPSC frequency on a larger number of pPVT neurons. In addition, ACh caused an acute increase followed by a lasting reduction in inhibitory postsynaptic currents (IPSCs) on PVT neurons of both subregions. Together, these data suggest that multiple AChR subtypes coordinate a differential modulation of ACh on aPVT and pPVT neurons.
Collapse
Affiliation(s)
- Qiying Ye
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Jeremiah Nunez
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Xiaobing Zhang
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
18
|
Tao Q, Xu Y, He Y, Luo T, Li X, Han L. Benchmarking mapping algorithms for cell-type annotating in mouse brain by integrating single-nucleus RNA-seq and Stereo-seq data. Brief Bioinform 2024; 25:bbae250. [PMID: 38796691 PMCID: PMC11128029 DOI: 10.1093/bib/bbae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 05/28/2024] Open
Abstract
Limited gene capture efficiency and spot size of spatial transcriptome (ST) data pose significant challenges in cell-type characterization. The heterogeneity and complexity of cell composition in the mammalian brain make it more challenging to accurately annotate ST data from brain. Many algorithms attempt to characterize subtypes of neuron by integrating ST data with single-nucleus RNA sequencing (snRNA-seq) or single-cell RNA sequencing. However, assessing the accuracy of these algorithms on Stereo-seq ST data remains unresolved. Here, we benchmarked 9 mapping algorithms using 10 ST datasets from four mouse brain regions in two different resolutions and 24 pseudo-ST datasets from snRNA-seq. Both actual ST data and pseudo-ST data were mapped using snRNA-seq datasets from the corresponding brain regions as reference data. After comparing the performance across different areas and resolutions of the mouse brain, we have reached the conclusion that both robust cell-type decomposition and SpatialDWLS demonstrated superior robustness and accuracy in cell-type annotation. Testing with publicly available snRNA-seq data from another sequencing platform in the cortex region further validated our conclusions. Altogether, we developed a workflow for assessing suitability of mapping algorithm that fits for ST datasets, which can improve the efficiency and accuracy of spatial data annotation.
Collapse
Affiliation(s)
- Quyuan Tao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310012, China
| | - Yiheng Xu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Youzhe He
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310012, China
| | - Ting Luo
- BGI Research, Hangzhou 310012, China
- BGI Research, Shenzhen 518103, China
| | - Xiaoming Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
- Research Units for Emotion and Emotion disorders, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lei Han
- BGI Research, Hangzhou 310012, China
- BGI Research, Shenzhen 518103, China
| |
Collapse
|
19
|
Schmidt M, Avagyan S, Reiche K, Binder H, Loeffler-Wirth H. A Spatial Transcriptomics Browser for Discovering Gene Expression Landscapes across Microscopic Tissue Sections. Curr Issues Mol Biol 2024; 46:4701-4720. [PMID: 38785552 PMCID: PMC11119626 DOI: 10.3390/cimb46050284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
A crucial feature of life is its spatial organization and compartmentalization on the molecular, cellular, and tissue levels. Spatial transcriptomics (ST) technology has opened a new chapter of the sequencing revolution, emerging rapidly with transformative effects across biology. This technique produces extensive and complex sequencing data, raising the need for computational methods for their comprehensive analysis and interpretation. We developed the ST browser web tool for the interactive discovery of ST images, focusing on different functional aspects such as single gene expression, the expression of functional gene sets, as well as the inspection of the spatial patterns of cell-cell interactions. As a unique feature, our tool applies self-organizing map (SOM) machine learning to the ST data. Our SOM data portrayal method generates individual gene expression landscapes for each spot in the ST image, enabling its downstream analysis with high resolution. The performance of the spatial browser is demonstrated by disentangling the intra-tumoral heterogeneity of melanoma and the microarchitecture of the mouse brain. The integration of machine-learning-based SOM portrayal into an interactive ST analysis environment opens novel perspectives for the comprehensive knowledge mining of the organization and interactions of cellular ecosystems.
Collapse
Affiliation(s)
- Maria Schmidt
- Interdisciplinary Centre for Bioinformatics (IZBI), Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.S.); (H.B.)
| | - Susanna Avagyan
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia
| | - Kristin Reiche
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstrasse 1, 04103 Leipzig, Germany
- Institute for Clinical Immunology, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics (IZBI), Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.S.); (H.B.)
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics (IZBI), Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.S.); (H.B.)
| |
Collapse
|
20
|
Chen X, Fischer S, Rue MCP, Zhang A, Mukherjee D, Kanold PO, Gillis J, Zador AM. Whole-cortex in situ sequencing reveals input-dependent area identity. Nature 2024:10.1038/s41586-024-07221-6. [PMID: 38658747 DOI: 10.1038/s41586-024-07221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/22/2024] [Indexed: 04/26/2024]
Abstract
The cerebral cortex is composed of neuronal types with diverse gene expression that are organized into specialized cortical areas. These areas, each with characteristic cytoarchitecture1,2, connectivity3,4 and neuronal activity5,6, are wired into modular networks3,4,7. However, it remains unclear whether these spatial organizations are reflected in neuronal transcriptomic signatures and how such signatures are established in development. Here we used BARseq, a high-throughput in situ sequencing technique, to interrogate the expression of 104 cell-type marker genes in 10.3 million cells, including 4,194,658 cortical neurons over nine mouse forebrain hemispheres, at cellular resolution. De novo clustering of gene expression in single neurons revealed transcriptomic types consistent with previous single-cell RNA sequencing studies8,9. The composition of transcriptomic types is highly predictive of cortical area identity. Moreover, areas with similar compositions of transcriptomic types, which we defined as cortical modules, overlap with areas that are highly connected, suggesting that the same modular organization is reflected in both transcriptomic signatures and connectivity. To explore how the transcriptomic profiles of cortical neurons depend on development, we assessed cell-type distributions after neonatal binocular enucleation. Notably, binocular enucleation caused the shifting of the cell-type compositional profiles of visual areas towards neighbouring cortical areas within the same module, suggesting that peripheral inputs sharpen the distinct transcriptomic identities of areas within cortical modules. Enabled by the high throughput, low cost and reproducibility of BARseq, our study provides a proof of principle for the use of large-scale in situ sequencing to both reveal brain-wide molecular architecture and understand its development.
Collapse
Affiliation(s)
- Xiaoyin Chen
- Allen Institute for Brain Science, Seattle, WA, USA.
| | - Stephan Fischer
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Mara C P Rue
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Aixin Zhang
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Didhiti Mukherjee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jesse Gillis
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
21
|
Shen Y, Shao M, Hao ZZ, Huang M, Xu N, Liu S. Multimodal Nature of the Single-cell Primate Brain Atlas: Morphology, Transcriptome, Electrophysiology, and Connectivity. Neurosci Bull 2024; 40:517-532. [PMID: 38194157 PMCID: PMC11003949 DOI: 10.1007/s12264-023-01160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/23/2023] [Indexed: 01/10/2024] Open
Abstract
Primates exhibit complex brain structures that augment cognitive function. The neocortex fulfills high-cognitive functions through billions of connected neurons. These neurons have distinct transcriptomic, morphological, and electrophysiological properties, and their connectivity principles vary. These features endow the primate brain atlas with a multimodal nature. The recent integration of next-generation sequencing with modified patch-clamp techniques is revolutionizing the way to census the primate neocortex, enabling a multimodal neuronal atlas to be established in great detail: (1) single-cell/single-nucleus RNA-seq technology establishes high-throughput transcriptomic references, covering all major transcriptomic cell types; (2) patch-seq links the morphological and electrophysiological features to the transcriptomic reference; (3) multicell patch-clamp delineates the principles of local connectivity. Here, we review the applications of these technologies in the primate neocortex and discuss the current advances and tentative gaps for a comprehensive understanding of the primate neocortex.
Collapse
Affiliation(s)
- Yuhui Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Mingting Shao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Mengyao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Nana Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, 510080, China.
| |
Collapse
|
22
|
Fisher J, Verhagen M, Long Z, Moissidis M, Yan Y, He C, Wang J, Micoli E, Alastruey CM, Moors R, Marín O, Mi D, Lim L. Cortical somatostatin long-range projection neurons and interneurons exhibit divergent developmental trajectories. Neuron 2024; 112:558-573.e8. [PMID: 38086373 DOI: 10.1016/j.neuron.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/22/2023] [Accepted: 11/10/2023] [Indexed: 02/24/2024]
Abstract
The mammalian cerebral cortex contains an extraordinary diversity of cell types that emerge by implementing different developmental programs. Delineating when and how cellular diversification occurs is particularly challenging for cortical inhibitory neurons because they represent a small proportion of all cortical cells and have a protracted development. Here, we combine single-cell RNA sequencing and spatial transcriptomics to characterize the emergence of neuronal diversity among somatostatin-expressing (SST+) cells in mice. We found that SST+ inhibitory neurons segregate during embryonic stages into long-range projection (LRP) neurons and two types of interneurons, Martinotti cells and non-Martinotti cells, following distinct developmental trajectories. Two main subtypes of LRP neurons and several subtypes of interneurons are readily distinguishable in the embryo, although interneuron diversity is likely refined during early postnatal life. Our results suggest that the timing for cellular diversification is unique for different subtypes of SST+ neurons and particularly divergent for LRP neurons and interneurons.
Collapse
Affiliation(s)
- Josephine Fisher
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE1 1UL London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, SE1 1UL, London, UK
| | - Marieke Verhagen
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Zhen Long
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Monika Moissidis
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE1 1UL London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, SE1 1UL, London, UK
| | - Yiming Yan
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chenyi He
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingyu Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Elia Micoli
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Clara Milían Alastruey
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Rani Moors
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE1 1UL London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, SE1 1UL, London, UK.
| | - Da Mi
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Lynette Lim
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
23
|
Wolterhoff N, Hiesinger PR. Synaptic promiscuity in brain development. Curr Biol 2024; 34:R102-R116. [PMID: 38320473 PMCID: PMC10849093 DOI: 10.1016/j.cub.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Precise synaptic connectivity is a prerequisite for the function of neural circuits, yet individual neurons, taken out of their developmental context, readily form unspecific synapses. How does the genome encode brain wiring in light of this apparent contradiction? Synaptic specificity is the outcome of a long series of developmental processes and mechanisms before, during and after synapse formation. How much promiscuity is permissible or necessary at the moment of synaptic partner choice depends on the extent to which prior development restricts available partners or subsequent development corrects initially made synapses. Synaptic promiscuity at the moment of choice can thereby play important roles in the development of precise connectivity, but also facilitate developmental flexibility and robustness. In this review, we assess the experimental evidence for the prevalence and roles of promiscuous synapse formation during brain development. Many well-established experimental approaches are based on developmental genetic perturbation and an assessment of synaptic connectivity only in the adult; this can make it difficult to pinpoint when a given defect or mechanism occurred. In many cases, such studies reveal mechanisms that restrict partner availability already prior to synapse formation. Subsequently, at the moment of choice, factors including synaptic competency, interaction dynamics and molecular recognition further restrict synaptic partners. The discussion of the development of synaptic specificity through the lens of synaptic promiscuity suggests an algorithmic process based on neurons capable of promiscuous synapse formation that are continuously prevented from making the wrong choices, with no single mechanism or developmental time point sufficient to explain the outcome.
Collapse
Affiliation(s)
- Neele Wolterhoff
- Division of Neurobiology, Free University Berlin, 14195 Berlin, Germany
| | - P Robin Hiesinger
- Division of Neurobiology, Free University Berlin, 14195 Berlin, Germany.
| |
Collapse
|
24
|
Moore JR, Nemera MT, D’Souza RD, Hamagami N, Clemens AW, Beard DC, Urman A, Mendoza VR, Gabel HW. Non-CG DNA methylation and MeCP2 stabilize repeated tuning of long genes that distinguish closely related neuron types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577861. [PMID: 38352532 PMCID: PMC10862856 DOI: 10.1101/2024.01.30.577861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The extraordinary diversity of neuron types in the mammalian brain is delineated at the highest resolution by subtle gene expression differences that may require specialized molecular mechanisms to be maintained. Neurons uniquely express the longest genes in the genome and utilize neuron-enriched non-CG DNA methylation (mCA) together with the Rett syndrome protein, MeCP2, to control gene expression, but the function of these unique gene structures and machinery in regulating finely resolved neuron type-specific gene programs has not been explored. Here, we employ epigenomic and spatial transcriptomic analyses to discover a major role for mCA and MeCP2 in maintaining neuron type-specific gene programs at the finest scale of cellular resolution. We uncover differential susceptibility to MeCP2 loss in neuronal populations depending on global mCA levels and dissect methylation patterns and intragenic enhancer repression that drive overlapping and distinct gene regulation between neuron types. Strikingly, we show that mCA and MeCP2 regulate genes that are repeatedly tuned to differentiate neuron types at the highest cellular resolution, including spatially resolved, vision-dependent gene programs in the visual cortex. These repeatedly tuned genes display genomic characteristics, including long length, numerous intragenic enhancers, and enrichment for mCA, that predispose them to regulation by MeCP2. Thus, long gene regulation by the MeCP2 pathway maintains differential gene expression between closely-related neurons to facilitate the exceptional cellular diversity in the complex mammalian brain.
Collapse
Affiliation(s)
- J. Russell Moore
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Mati T. Nemera
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Rinaldo D. D’Souza
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Nicole Hamagami
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Adam W. Clemens
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Diana C. Beard
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Alaina Urman
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Victoria Rodriguez Mendoza
- Opportunities in Genomic Research Program, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Harrison W. Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| |
Collapse
|
25
|
Kaplan HS, Logeman BL, Zhang K, Santiago C, Sohail N, Naumenko S, Ho Sui SJ, Ginty DD, Ren B, Dulac C. Sensory Input, Sex, and Function Shape Hypothalamic Cell Type Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576835. [PMID: 38328205 PMCID: PMC10849564 DOI: 10.1101/2024.01.23.576835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mammalian behavior and physiology undergo dramatic changes in early life. Young animals rely on conspecifics to meet their homeostatic needs, until weaning and puberty initiate nutritional independence and sex-specific social interactions, respectively. How neuronal populations regulating homeostatic functions and social behaviors develop and mature during these transitions remains unclear. We used paired transcriptomic and chromatin accessibility profiling to examine the developmental trajectories of neuronal populations in the hypothalamic preoptic region, where cell types with key roles in physiological and behavioral control have been identified1-6. These data reveal a remarkable diversity of developmental trajectories shaped by the sex of the animal, and the location and behavioral or physiological function of the corresponding cell types. We identify key stages of preoptic development, including the perinatal emergence of sex differences, postnatal maturation and subsequent refinement of signaling networks, and nonlinear transcriptional changes accelerating at the time of weaning and puberty. We assessed preoptic development in various sensory mutants and find a major role for vomeronasal sensing in the timing of preoptic cell type maturation. These results provide novel insights into the development of neurons controlling homeostatic functions and social behaviors and lay ground for examining the dynamics of these functions in early life.
Collapse
Affiliation(s)
- Harris S. Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Brandon L. Logeman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Kai Zhang
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
- Current address: Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Celine Santiago
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Noor Sohail
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - Serhiy Naumenko
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
- Newborn Screening Ontario, Ottawa, ON, Canada
| | - Shannan J. Ho Sui
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - David D. Ginty
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
26
|
Schneider-Mizell CM, Bodor AL, Brittain D, Buchanan J, Bumbarger DJ, Elabbady L, Gamlin C, Kapner D, Kinn S, Mahalingam G, Seshamani S, Suckow S, Takeno M, Torres R, Yin W, Dorkenwald S, Bae JA, Castro MA, Halageri A, Jia Z, Jordan C, Kemnitz N, Lee K, Li K, Lu R, Macrina T, Mitchell E, Mondal SS, Mu S, Nehoran B, Popovych S, Silversmith W, Turner NL, Wong W, Wu J, Reimer J, Tolias AS, Seung HS, Reid RC, Collman F, Maçarico da Costa N. Cell-type-specific inhibitory circuitry from a connectomic census of mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.23.525290. [PMID: 36747710 PMCID: PMC9900837 DOI: 10.1101/2023.01.23.525290] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mammalian cortex features a vast diversity of neuronal cell types, each with characteristic anatomical, molecular and functional properties. Synaptic connectivity powerfully shapes how each cell type participates in the cortical circuit, but mapping connectivity rules at the resolution of distinct cell types remains difficult. Here, we used millimeter-scale volumetric electron microscopy1 to investigate the connectivity of all inhibitory neurons across a densely-segmented neuronal population of 1352 cells spanning all layers of mouse visual cortex, producing a wiring diagram of inhibitory connections with more than 70,000 synapses. Taking a data-driven approach inspired by classical neuroanatomy, we classified inhibitory neurons based on the relative targeting of dendritic compartments and other inhibitory cells and developed a novel classification of excitatory neurons based on the morphological and synaptic input properties. The synaptic connectivity between inhibitory cells revealed a novel class of disinhibitory specialist targeting basket cells, in addition to familiar subclasses. Analysis of the inhibitory connectivity onto excitatory neurons found widespread specificity, with many interneurons exhibiting differential targeting of certain subpopulations spatially intermingled with other potential targets. Inhibitory targeting was organized into "motif groups," diverse sets of cells that collectively target both perisomatic and dendritic compartments of the same excitatory targets. Collectively, our analysis identified new organizing principles for cortical inhibition and will serve as a foundation for linking modern multimodal neuronal atlases with the cortical wiring diagram.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sam Kinn
- Allen Institute for Brain Science, Seattle, WA
| | | | | | | | - Marc Takeno
- Allen Institute for Brain Science, Seattle, WA
| | | | - Wenjing Yin
- Allen Institute for Brain Science, Seattle, WA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, NJ
- Computer Science Department, Princeton University
| | - J Alexander Bae
- Princeton Neuroscience Institute, Princeton University, NJ
- Electrical and Computer Engineering Department, Princeton University
| | | | | | - Zhen Jia
- Princeton Neuroscience Institute, Princeton University, NJ
- Computer Science Department, Princeton University
| | - Chris Jordan
- Princeton Neuroscience Institute, Princeton University, NJ
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, NJ
| | - Kisuk Lee
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology
| | - Kai Li
- Computer Science Department, Princeton University
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, NJ
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton University, NJ
- Computer Science Department, Princeton University
| | - Eric Mitchell
- Princeton Neuroscience Institute, Princeton University, NJ
| | - Shanka Subhra Mondal
- Princeton Neuroscience Institute, Princeton University, NJ
- Electrical and Computer Engineering Department, Princeton University
| | - Shang Mu
- Princeton Neuroscience Institute, Princeton University, NJ
| | - Barak Nehoran
- Princeton Neuroscience Institute, Princeton University, NJ
- Computer Science Department, Princeton University
| | - Sergiy Popovych
- Princeton Neuroscience Institute, Princeton University, NJ
- Computer Science Department, Princeton University
| | | | - Nicholas L Turner
- Princeton Neuroscience Institute, Princeton University, NJ
- Computer Science Department, Princeton University
| | - William Wong
- Princeton Neuroscience Institute, Princeton University, NJ
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton University, NJ
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine
- Department of Electrical and Computer Engineering, Rice University
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, NJ
- Computer Science Department, Princeton University
| | - R Clay Reid
- Allen Institute for Brain Science, Seattle, WA
| | | | | |
Collapse
|
27
|
Wallace JL, Pollen AA. Human neuronal maturation comes of age: cellular mechanisms and species differences. Nat Rev Neurosci 2024; 25:7-29. [PMID: 37996703 DOI: 10.1038/s41583-023-00760-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/25/2023]
Abstract
The delayed and prolonged postmitotic maturation of human neurons, compared with neurons from other species, may contribute to human-specific cognitive abilities and neurological disorders. Here we review the mechanisms of neuronal maturation, applying lessons from model systems to understand the specific features of protracted human cortical maturation and species differences. We cover cell-intrinsic features of neuronal maturation, including transcriptional, epigenetic and metabolic mechanisms, as well as cell-extrinsic features, including the roles of activity and synapses, the actions of glial cells and the contribution of the extracellular matrix. We discuss evidence for species differences in biochemical reaction rates, the proposed existence of an epigenetic maturation clock and the contributions of both general and modular mechanisms to species-specific maturation timing. Finally, we suggest approaches to measure, improve and accelerate the maturation of human neurons in culture, examine crosstalk and interactions among these different aspects of maturation and propose conceptual models to guide future studies.
Collapse
Affiliation(s)
- Jenelle L Wallace
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
28
|
Xie Y, Harwell CC, Garcia ADR. Astrocyte Development in the Rodent. ADVANCES IN NEUROBIOLOGY 2024; 39:51-67. [PMID: 39190071 DOI: 10.1007/978-3-031-64839-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Astrocytes have gained increasing recognition as key elements of a broad array of nervous system functions. These include essential roles in synapse formation and elimination, synaptic modulation, maintenance of the blood-brain barrier, energetic support, and neural repair after injury or disease of the nervous system. Nevertheless, our understanding of mechanisms underlying astrocyte development and maturation remains far behind that of neurons and oligodendrocytes. Early efforts to understand astrocyte development focused primarily on their specification from embryonic progenitors and the molecular mechanisms driving the switch from neuron to glial production. Considerably, less is known about postnatal stages of astrocyte development, the period during which they are predominantly generated and mature. Notably, this period is coincident with synapse formation and the emergence of nascent neural circuits. Thus, a greater understanding of astrocyte development is likely to shed new light on the formation and maturation of synapses and circuits. Here, we highlight key foundational principles of embryonic and postnatal astrocyte development, focusing largely on what is known from rodent studies.
Collapse
Affiliation(s)
- Yajun Xie
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA
| | - Corey C Harwell
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA
| | - A Denise R Garcia
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Clarin JD, Reddy N, Alexandropoulos C, Gao WJ. The role of cell adhesion molecule IgSF9b at the inhibitory synapse and psychiatric disease. Neurosci Biobehav Rev 2024; 156:105476. [PMID: 38029609 PMCID: PMC10842117 DOI: 10.1016/j.neubiorev.2023.105476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
Understanding perturbations in synaptic function between health and disease states is crucial to the treatment of neuropsychiatric illness. While genome-wide association studies have identified several genetic loci implicated in synaptic dysfunction in disorders such as autism and schizophrenia, many have not been rigorously characterized. Here, we highlight immunoglobulin superfamily member 9b (IgSF9b), a cell adhesion molecule thought to localize exclusively to inhibitory synapses in the brain. While both pre-clinical and clinical studies suggest its association with psychiatric diseases, our understanding of IgSF9b in synaptic maintenance, neural circuits, and behavioral phenotypes remains rudimentary. Moreover, these functions wield undiscovered influences on neurodevelopment. This review evaluates current literature and publicly available gene expression databases to explore the implications of IgSF9b dysfunction in rodents and humans. Through a focused analysis of one high-risk gene locus, we identify areas requiring further investigation and unearth clues related to broader mechanisms contributing to the synaptic etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Jacob D Clarin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Natasha Reddy
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Cassandra Alexandropoulos
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States.
| |
Collapse
|
30
|
Sorensen SA, Gouwens NW, Wang Y, Mallory M, Budzillo A, Dalley R, Lee B, Gliko O, Kuo HC, Kuang X, Mann R, Ahmadinia L, Alfiler L, Baftizadeh F, Baker K, Bannick S, Bertagnolli D, Bickley K, Bohn P, Brown D, Bomben J, Brouner K, Chen C, Chen K, Chvilicek M, Collman F, Daigle T, Dawes T, de Frates R, Dee N, DePartee M, Egdorf T, El-Hifnawi L, Enstrom R, Esposito L, Farrell C, Gala R, Glomb A, Gamlin C, Gary A, Goldy J, Gu H, Hadley K, Hawrylycz M, Henry A, Hill D, Hirokawa KE, Huang Z, Johnson K, Juneau Z, Kebede S, Kim L, Lee C, Lesnar P, Li A, Glomb A, Li Y, Liang E, Link K, Maxwell M, McGraw M, McMillen DA, Mukora A, Ng L, Ochoa T, Oldre A, Park D, Pom CA, Popovich Z, Potekhina L, Rajanbabu R, Ransford S, Reding M, Ruiz A, Sandman D, Siverts L, Smith KA, Stoecklin M, Sulc J, Tieu M, Ting J, Trinh J, Vargas S, Vumbaco D, Walker M, Wang M, Wanner A, Waters J, Williams G, Wilson J, Xiong W, Lein E, Berg J, Kalmbach B, Yao S, Gong H, Luo Q, Ng L, Sümbül U, Jarsky T, Yao Z, Tasic B, Zeng H. Connecting single-cell transcriptomes to projectomes in mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.25.568393. [PMID: 38168270 PMCID: PMC10760188 DOI: 10.1101/2023.11.25.568393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The mammalian brain is composed of diverse neuron types that play different functional roles. Recent single-cell RNA sequencing approaches have led to a whole brain taxonomy of transcriptomically-defined cell types, yet cell type definitions that include multiple cellular properties can offer additional insights into a neuron's role in brain circuits. While the Patch-seq method can investigate how transcriptomic properties relate to the local morphological and electrophysiological properties of cell types, linking transcriptomic identities to long-range projections is a major unresolved challenge. To address this, we collected coordinated Patch-seq and whole brain morphology data sets of excitatory neurons in mouse visual cortex. From the Patch-seq data, we defined 16 integrated morpho-electric-transcriptomic (MET)-types; in parallel, we reconstructed the complete morphologies of 300 neurons. We unified the two data sets with a multi-step classifier, to integrate cell type assignments and interrogate cross-modality relationships. We find that transcriptomic variations within and across MET-types correspond with morphological and electrophysiological phenotypes. In addition, this variation, along with the anatomical location of the cell, can be used to predict the projection targets of individual neurons. We also shed new light on infragranular cell types and circuits, including cell-type-specific, interhemispheric projections. With this approach, we establish a comprehensive, integrated taxonomy of excitatory neuron types in mouse visual cortex and create a system for integrated, high-dimensional cell type classification that can be extended to the whole brain and potentially across species.
Collapse
Affiliation(s)
| | | | - Yun Wang
- Allen Institute for Brain Science
| | | | | | | | | | | | | | - Xiuli Kuang
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | - Chao Chen
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Kai Chen
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | - Nick Dee
- Allen Institute for Brain Science
| | | | | | | | | | | | | | | | | | | | | | | | - Hong Gu
- Allen Institute for Brain Science
| | | | | | | | | | | | - Zili Huang
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | | | | | | | - Lisa Kim
- Allen Institute for Brain Science
| | | | | | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China
| | | | - Yaoyao Li
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | - Zoran Popovich
- University of Washington, Dept. of Computer Science and Engineering
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wei Xiong
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Ed Lein
- Allen Institute for Brain Science
| | - Jim Berg
- Allen Institute for Brain Science
| | | | | | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China
| | - Qingming Luo
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Lydia Ng
- Allen Institute for Brain Science
| | | | | | | | | | | |
Collapse
|
31
|
Li P, Wei J, Zhu Y. CellGO: a novel deep learning-based framework and webserver for cell-type-specific gene function interpretation. Brief Bioinform 2023; 25:bbad417. [PMID: 37995133 PMCID: PMC10790717 DOI: 10.1093/bib/bbad417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023] Open
Abstract
Interpreting the function of genes and gene sets identified from omics experiments remains a challenge, as current pathway analysis tools often fail to consider the critical biological context, such as tissue or cell-type specificity. To address this limitation, we introduced CellGO. CellGO tackles this challenge by leveraging the visible neural network (VNN) and single-cell gene expressions to mimic cell-type-specific signaling propagation along the Gene Ontology tree within a cell. This design enables a novel scoring system to calculate the cell-type-specific gene-pathway paired active scores, based on which, CellGO is able to identify cell-type-specific active pathways associated with single genes. In addition, by aggregating the activities of single genes, CellGO extends its capability to identify cell-type-specific active pathways for a given gene set. To enhance biological interpretation, CellGO offers additional features, including the identification of significantly active cell types and driver genes and community analysis of pathways. To validate its performance, CellGO was assessed using a gene set comprising mixed cell-type markers, confirming its ability to discern active pathways across distinct cell types. Subsequent benchmarking analyses demonstrated CellGO's superiority in effectively identifying cell types and their corresponding cell-type-specific pathways affected by gene knockouts, using either single genes or sets of genes differentially expressed between knockout and control samples. Moreover, CellGO demonstrated its ability to infer cell-type-specific pathogenesis for disease risk genes. Accessible as a Python package, CellGO also provides a user-friendly web interface, making it a versatile and accessible tool for researchers in the field.
Collapse
Affiliation(s)
- Peilong Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Junfeng Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Zhu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
32
|
Wisner SR, Saha A, Grimes WN, Mizerska K, Kolarik HJ, Wallin J, Diamond JS, Sinha R, Hoon M. Sensory deprivation arrests cellular and synaptic development of the night-vision circuitry in the retina. Curr Biol 2023; 33:4415-4429.e3. [PMID: 37769662 PMCID: PMC10615854 DOI: 10.1016/j.cub.2023.08.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Experience regulates synapse formation and function across sensory circuits. How inhibitory synapses in the mammalian retina are sculpted by visual cues remains unclear. By use of a sensory deprivation paradigm, we find that visual cues regulate maturation of two GABA synapse types (GABAA and GABAC receptor synapses), localized across the axon terminals of rod bipolar cells (RBCs)-second-order retinal neurons integral to the night-vision circuit. Lack of visual cues causes GABAA synapses at RBC terminals to retain an immature receptor configuration with slower response profiles and prevents receptor recruitment at GABAC synapses. Additionally, the organizing protein for both these GABA synapses, LRRTM4, is not clustered at dark-reared RBC synapses. Ultrastructurally, the total number of ribbon-output/inhibitory-input synapses across RBC terminals remains unaltered by sensory deprivation, although ribbon synapse output sites are misarranged when the circuit develops without visual cues. Intrinsic electrophysiological properties of RBCs and expression of chloride transporters across RBC terminals are additionally altered by sensory deprivation. Introduction to normal 12-h light-dark housing conditions facilitates maturation of dark-reared RBC GABA synapses and restoration of intrinsic RBC properties, unveiling a new element of light-dependent retinal cellular and synaptic plasticity.
Collapse
Affiliation(s)
- Serena R Wisner
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Aindrila Saha
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA; Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - William N Grimes
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kamila Mizerska
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah J Kolarik
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Julie Wallin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jeffrey S Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raunak Sinha
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mrinalini Hoon
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
33
|
de Ceglia R, Ledonne A, Litvin DG, Lind BL, Carriero G, Latagliata EC, Bindocci E, Di Castro MA, Savtchouk I, Vitali I, Ranjak A, Congiu M, Canonica T, Wisden W, Harris K, Mameli M, Mercuri N, Telley L, Volterra A. Specialized astrocytes mediate glutamatergic gliotransmission in the CNS. Nature 2023; 622:120-129. [PMID: 37674083 PMCID: PMC10550825 DOI: 10.1038/s41586-023-06502-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/31/2023] [Indexed: 09/08/2023]
Abstract
Multimodal astrocyte-neuron communications govern brain circuitry assembly and function1. For example, through rapid glutamate release, astrocytes can control excitability, plasticity and synchronous activity2,3 of synaptic networks, while also contributing to their dysregulation in neuropsychiatric conditions4-7. For astrocytes to communicate through fast focal glutamate release, they should possess an apparatus for Ca2+-dependent exocytosis similar to neurons8-10. However, the existence of this mechanism has been questioned11-13 owing to inconsistent data14-17 and a lack of direct supporting evidence. Here we revisited the astrocyte glutamate exocytosis hypothesis by considering the emerging molecular heterogeneity of astrocytes18-21 and using molecular, bioinformatic and imaging approaches, together with cell-specific genetic tools that interfere with glutamate exocytosis in vivo. By analysing existing single-cell RNA-sequencing databases and our patch-seq data, we identified nine molecularly distinct clusters of hippocampal astrocytes, among which we found a notable subpopulation that selectively expressed synaptic-like glutamate-release machinery and localized to discrete hippocampal sites. Using GluSnFR-based glutamate imaging22 in situ and in vivo, we identified a corresponding astrocyte subgroup that responds reliably to astrocyte-selective stimulations with subsecond glutamate release events at spatially precise hotspots, which were suppressed by astrocyte-targeted deletion of vesicular glutamate transporter 1 (VGLUT1). Furthermore, deletion of this transporter or its isoform VGLUT2 revealed specific contributions of glutamatergic astrocytes in cortico-hippocampal and nigrostriatal circuits during normal behaviour and pathological processes. By uncovering this atypical subpopulation of specialized astrocytes in the adult brain, we provide insights into the complex roles of astrocytes in central nervous system (CNS) physiology and diseases, and identify a potential therapeutic target.
Collapse
Affiliation(s)
- Roberta de Ceglia
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Ada Ledonne
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
- Department of Experimental Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy
| | - David Gregory Litvin
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
- Wyss Center for Bio and Neuro Engineering, Campus Biotech, Geneva, Switzerland
| | - Barbara Lykke Lind
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Giovanni Carriero
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | | | - Erika Bindocci
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | | | - Iaroslav Savtchouk
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Ilaria Vitali
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Anurag Ranjak
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Mauro Congiu
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Tara Canonica
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - William Wisden
- Department of Life Sciences and UK Dementia Research Institute, Imperial College London, London, UK
| | - Kenneth Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Manuel Mameli
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Nicola Mercuri
- Department of Experimental Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Ludovic Telley
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.
| | - Andrea Volterra
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.
- Wyss Center for Bio and Neuro Engineering, Campus Biotech, Geneva, Switzerland.
| |
Collapse
|
34
|
Sherman S, Arnold-Ammer I, Schneider MW, Kawakami K, Baier H. Retina-derived signals control pace of neurogenesis in visual brain areas but not circuit assembly. Nat Commun 2023; 14:6020. [PMID: 37758715 PMCID: PMC10533834 DOI: 10.1038/s41467-023-40749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
Brain development is orchestrated by both innate and experience-dependent mechanisms, but their relative contributions are difficult to disentangle. Here we asked if and how central visual areas are altered in a vertebrate brain depleted of any and all signals from retinal ganglion cells throughout development. We transcriptionally profiled neurons in pretectum, thalamus and other retinorecipient areas of larval zebrafish and searched for changes in lakritz mutants that lack all retinal connections. Although individual genes are dysregulated, the complete set of 77 neuronal types develops in apparently normal proportions, at normal locations, and along normal differentiation trajectories. Strikingly, the cell-cycle exits of proliferating progenitors in these areas are delayed, and a greater fraction of early postmitotic precursors remain uncommitted or are diverted to a pre-glial fate. Optogenetic stimulation targeting groups of neurons normally involved in processing visual information evokes behaviors indistinguishable from wildtype. In conclusion, we show that signals emitted by retinal axons influence the pace of neurogenesis in visual brain areas, but do not detectably affect the specification or wiring of downstream neurons.
Collapse
Affiliation(s)
- Shachar Sherman
- Max Planck Institute for Biological Intelligence, Department Genes - Circuits - Behavior, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Irene Arnold-Ammer
- Max Planck Institute for Biological Intelligence, Department Genes - Circuits - Behavior, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Martin W Schneider
- Max Planck Institute for Biological Intelligence, Department Genes - Circuits - Behavior, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka, 411-8540, Japan
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Department Genes - Circuits - Behavior, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
35
|
O'Toole SM, Oyibo HK, Keller GB. Molecularly targetable cell types in mouse visual cortex have distinguishable prediction error responses. Neuron 2023; 111:2918-2928.e8. [PMID: 37708892 DOI: 10.1016/j.neuron.2023.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/19/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Predictive processing postulates the existence of prediction error neurons in cortex. Neurons with both negative and positive prediction error response properties have been identified in layer 2/3 of visual cortex, but whether they correspond to transcriptionally defined subpopulations is unclear. Here we used the activity-dependent, photoconvertible marker CaMPARI2 to tag neurons in layer 2/3 of mouse visual cortex during stimuli and behaviors designed to evoke prediction errors. We performed single-cell RNA-sequencing on these populations and found that previously annotated Adamts2 and Rrad layer 2/3 transcriptional cell types were enriched when photolabeling during stimuli that drive negative or positive prediction error responses, respectively. Finally, we validated these results functionally by designing artificial promoters for use in AAV vectors to express genetically encoded calcium indicators. Thus, transcriptionally distinct cell types in layer 2/3 that can be targeted using AAV vectors exhibit distinguishable negative and positive prediction error responses.
Collapse
Affiliation(s)
- Sean M O'Toole
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Hassana K Oyibo
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
36
|
Halfmann C, Rüland T, Müller F, Jehasse K, Kampa BM. Electrophysiological properties of layer 2/3 pyramidal neurons in the primary visual cortex of a retinitis pigmentosa mouse model ( rd10). Front Cell Neurosci 2023; 17:1258773. [PMID: 37780205 PMCID: PMC10540630 DOI: 10.3389/fncel.2023.1258773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Retinal degeneration is one of the main causes of visual impairment and blindness. One group of retinal degenerative diseases, leading to the loss of photoreceptors, is collectively termed retinitis pigmentosa. In this group of diseases, the remaining retina is largely spared from initial cell death making retinal ganglion cells an interesting target for vision restoration methods. However, it is unknown how downstream brain areas, in particular the visual cortex, are affected by the progression of blindness. Visual deprivation studies have shown dramatic changes in the electrophysiological properties of visual cortex neurons, but changes on a cellular level in retinitis pigmentosa have not been investigated yet. Therefore, we used the rd10 mouse model to perform patch-clamp recordings of pyramidal neurons in layer 2/3 of the primary visual cortex to screen for potential changes in electrophysiological properties resulting from retinal degeneration. Compared to wild-type C57BL/6 mice, we only found an increase in intrinsic excitability around the time point of maximal retinal degeneration. In addition, we saw an increase in the current amplitude of spontaneous putative inhibitory events after a longer progression of retinal degeneration. However, we did not observe a long-lasting shift in excitability after prolonged retinal degeneration. Together, our results provide evidence of an intact visual cortex with promising potential for future therapeutic strategies to restore vision.
Collapse
Affiliation(s)
- Claas Halfmann
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Thomas Rüland
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
- Molecular and Cellular Physiology, Institute of Biological Information Processing (IBI-1), Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| | - Frank Müller
- Molecular and Cellular Physiology, Institute of Biological Information Processing (IBI-1), Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
- Research Training Group 2610 Innoretvision, RWTH Aachen University, Aachen, Germany
| | - Kevin Jehasse
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Björn M. Kampa
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
- Research Training Group 2610 Innoretvision, RWTH Aachen University, Aachen, Germany
- JARA BRAIN, Institute of Neuroscience and Medicine (INM-10), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
37
|
Wang M, Yu X. Experience-dependent structural plasticity of pyramidal neurons in the developing sensory cortices. Curr Opin Neurobiol 2023; 81:102724. [PMID: 37068383 DOI: 10.1016/j.conb.2023.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/19/2023]
Abstract
Sensory experience regulates the structural and functional wiring of neuronal circuits, during development and throughout adulthood. Here, we review current knowledge of how experience affects structural plasticity of pyramidal neurons in the sensory cortices. We discuss the pros and cons of existing labeling approaches, as well as what structural parameters are most plastic. We further discuss how recent advances in sparse labeling of specific neuronal subtypes, as well as development of techniques that allow fast, high resolution imaging in large fields, would enable future studies to address currently unanswered questions in the field of structural plasticity.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and PKU-IDG/McGovern Institute, Peking University, Beijing 100871, China.
| | - Xiang Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and PKU-IDG/McGovern Institute, Peking University, Beijing 100871, China; Autism Research Center of Peking University Health Science Center, Beijing 100191, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
38
|
Peng YR. Cell-type specification in the retina: Recent discoveries from transcriptomic approaches. Curr Opin Neurobiol 2023; 81:102752. [PMID: 37499619 DOI: 10.1016/j.conb.2023.102752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
Understanding the formation of the complex nervous system hinges on decoding the mechanism that specifies a vast array of neuronal types, each endowed with a unique morphology, physiology, and connectivity. As a pivotal step towards addressing this problem, seminal work has been devoted to characterizing distinct neuronal types. In recent years, high-throughput, single-cell transcriptomic methods have enabled a rapid inventory of cell types in various regions of the nervous system, with the retina exhibiting complete molecular characterization across many vertebrate species. This invaluable resource has furnished a fresh perspective for investigating the molecular principles of cell-type specification, thereby advancing our understanding of retinal development. Accordingly, this review focuses on the most recent transcriptomic characterizations of retinal cells, with a particular focus on amacrine cells and retinal ganglion cells. These investigations have unearthed new insights into their cell-type specification.
Collapse
Affiliation(s)
- Yi-Rong Peng
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
39
|
Temporal control of neuronal wiring. Semin Cell Dev Biol 2023; 142:81-90. [PMID: 35644877 DOI: 10.1016/j.semcdb.2022.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/22/2022]
Abstract
Wiring an animal brain is a complex process involving a staggering number of cell-types born at different times and locations in the developing brain. Incorporation of these cells into precise circuits with high fidelity is critical for animal survival and behavior. Assembly of neuronal circuits is heavily dependent upon proper timing of wiring programs, requiring neurons to express specific sets of genes (sometimes transiently) at the right time in development. While cell-type specificity of genetic programs regulating wiring has been studied in detail, mechanisms regulating proper timing and coordination of these programs across cell-types are only just beginning to emerge. In this review, we discuss some temporal regulators of wiring programs and how their activity is controlled over time and space. A common feature emerges from these temporal regulators - they are induced by cell-extrinsic cues and control transcription factors capable of regulating a highly cell-type specific set of target genes. Target specificity in these contexts comes from cell-type specific transcription factors. We propose that the spatiotemporal specificity of wiring programs is controlled by the combinatorial activity of temporal programs and cell-type specific transcription factors. Going forward, a better understanding of temporal regulators will be key to understanding the mechanisms underlying brain wiring, and will be critical for the development of in vitro models like brain organoids.
Collapse
|
40
|
Markey KM, Saunders JC, Smuts J, von Reyn CR, Garcia ADR. Astrocyte development—More questions than answers. Front Cell Dev Biol 2023; 11:1063843. [PMID: 37051466 PMCID: PMC10083403 DOI: 10.3389/fcell.2023.1063843] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
The past 15–20 years has seen a remarkable shift in our understanding of astrocyte contributions to central nervous system (CNS) function. Astrocytes have emerged from the shadows of neuroscience and are now recognized as key elements in a broad array of CNS functions. Astrocytes comprise a substantial fraction of cells in the human CNS. Nevertheless, fundamental questions surrounding their basic biology remain poorly understood. While recent studies have revealed a diversity of essential roles in CNS function, from synapse formation and function to blood brain barrier maintenance, fundamental mechanisms of astrocyte development, including their expansion, migration, and maturation, remain to be elucidated. The coincident development of astrocytes and synapses highlights the need to better understand astrocyte development and will facilitate novel strategies for addressing neurodevelopmental and neurological dysfunction. In this review, we provide an overview of the current understanding of astrocyte development, focusing primarily on mammalian astrocytes and highlight outstanding questions that remain to be addressed. We also include an overview of Drosophila glial development, emphasizing astrocyte-like glia given their close anatomical and functional association with synapses. Drosophila offer an array of sophisticated molecular genetic tools and they remain a powerful model for elucidating fundamental cellular and molecular mechanisms governing astrocyte development. Understanding the parallels and distinctions between astrocyte development in Drosophila and vertebrates will enable investigators to leverage the strengths of each model system to gain new insights into astrocyte function.
Collapse
Affiliation(s)
- Kathryn M. Markey
- Department of Biology, Drexel University, Philadelphia, PA, United States
| | | | - Jana Smuts
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
| | - Catherine R. von Reyn
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - A. Denise R. Garcia
- Department of Biology, Drexel University, Philadelphia, PA, United States
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
- *Correspondence: A. Denise R. Garcia,
| |
Collapse
|
41
|
Frank MM, Sitko AA, Suthakar K, Torres Cadenas L, Hunt M, Yuk MC, Weisz CJC, Goodrich LV. Experience-dependent flexibility in a molecularly diverse central-to-peripheral auditory feedback system. eLife 2023; 12:e83855. [PMID: 36876911 PMCID: PMC10147377 DOI: 10.7554/elife.83855] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023] Open
Abstract
Brainstem olivocochlear neurons (OCNs) modulate the earliest stages of auditory processing through feedback projections to the cochlea and have been shown to influence hearing and protect the ear from sound-induced damage. Here, we used single-nucleus sequencing, anatomical reconstructions, and electrophysiology to characterize murine OCNs during postnatal development, in mature animals, and after sound exposure. We identified markers for known medial (MOC) and lateral (LOC) OCN subtypes, and show that they express distinct cohorts of physiologically relevant genes that change over development. In addition, we discovered a neuropeptide-enriched LOC subtype that produces Neuropeptide Y along with other neurotransmitters. Throughout the cochlea, both LOC subtypes extend arborizations over wide frequency domains. Moreover, LOC neuropeptide expression is strongly upregulated days after acoustic trauma, potentially providing a sustained protective signal to the cochlea. OCNs are therefore poised to have diffuse, dynamic effects on early auditory processing over timescales ranging from milliseconds to days.
Collapse
Affiliation(s)
- Michelle M Frank
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Austen A Sitko
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Kirupa Suthakar
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Mackenzie Hunt
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Mary Caroline Yuk
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Catherine JC Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
42
|
Astrocyte heterogeneity and interactions with local neural circuits. Essays Biochem 2023; 67:93-106. [PMID: 36748397 PMCID: PMC10011406 DOI: 10.1042/ebc20220136] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Astrocytes are ubiquitous within the central nervous system (CNS). These cells possess many individual processes which extend out into the neuropil, where they interact with a variety of other cell types, including neurons at synapses. Astrocytes are now known to be active players in all aspects of the synaptic life cycle, including synapse formation and elimination, synapse maturation, maintenance of synaptic homeostasis and modulation of synaptic transmission. Traditionally, astrocytes have been studied as a homogeneous group of cells. However, recent studies have uncovered a surprising degree of heterogeneity in their development and function, suggesting that astrocytes may be matched to neurons to support local circuits. Hence, a better understanding of astrocyte heterogeneity and its implications are needed to understand brain function.
Collapse
|
43
|
Shrestha BR, Wu L, Goodrich LV. Runx1 controls auditory sensory neuron diversity in mice. Dev Cell 2023; 58:306-319.e5. [PMID: 36800995 PMCID: PMC10202259 DOI: 10.1016/j.devcel.2023.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/28/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
Sound stimulus is encoded in mice by three molecularly and physiologically diverse subtypes of sensory neurons, called Ia, Ib, and Ic spiral ganglion neurons (SGNs). Here, we show that the transcription factor Runx1 controls SGN subtype composition in the murine cochlea. Runx1 is enriched in Ib/Ic precursors by late embryogenesis. Upon the loss of Runx1 from embryonic SGNs, more SGNs take on Ia rather than Ib or Ic identities. This conversion was more complete for genes linked to neuronal function than to connectivity. Accordingly, synapses in the Ib/Ic location acquired Ia properties. Suprathreshold SGN responses to sound were enhanced in Runx1CKO mice, confirming the expansion of neurons with Ia-like functional properties. Runx1 deletion after birth also redirected Ib/Ic SGNs toward Ia identity, indicating that SGN identities are plastic postnatally. Altogether, these findings show that diverse neuronal identities essential for normal auditory stimulus coding arise hierarchically and remain malleable during postnatal development.
Collapse
Affiliation(s)
- Brikha R Shrestha
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA.
| | - Lorna Wu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Whitney IE, Butrus S, Dyer MA, Rieke F, Sanes JR, Shekhar K. Vision-Dependent and -Independent Molecular Maturation of Mouse Retinal Ganglion Cells. Neuroscience 2023; 508:153-173. [PMID: 35870562 PMCID: PMC10809145 DOI: 10.1016/j.neuroscience.2022.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 01/17/2023]
Abstract
The development and connectivity of retinal ganglion cells (RGCs), the retina's sole output neurons, are patterned by activity-independent transcriptional programs and activity-dependent remodeling. To inventory the molecular correlates of these influences, we applied high-throughput single-cell RNA sequencing (scRNA-seq) to mouse RGCs at six embryonic and postnatal ages. We identified temporally regulated modules of genes that correlate with, and likely regulate, multiple phases of RGC development, ranging from differentiation and axon guidance to synaptic recognition and refinement. Some of these genes are expressed broadly while others, including key transcription factors and recognition molecules, are selectively expressed by one or a few of the 45 transcriptomically distinct types defined previously in adult mice. Next, we used these results as a foundation to analyze the transcriptomes of RGCs in mice lacking visual experience due to dark rearing from birth or to mutations that ablate either bipolar or photoreceptor cells. 98.5% of visually deprived (VD) RGCs could be unequivocally assigned to a single RGC type based on their transcriptional profiles, demonstrating that visual activity is dispensable for acquisition and maintenance of RGC type identity. However, visual deprivation significantly reduced the transcriptomic distinctions among RGC types, implying that activity is required for complete RGC maturation or maintenance. Consistent with this notion, transcriptomic alternations in VD RGCs significantly overlapped with gene modules found in developing RGCs. Our results provide a resource for mechanistic analyses of RGC differentiation and maturation, and for investigating the role of activity in these processes.
Collapse
Affiliation(s)
- Irene E Whitney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Karthik Shekhar
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences, QB3, Center for Computational Biology, University of California, Berkeley, CA 94720, USA; Biological Systems Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
45
|
Dombrovski M, Peek MY, Park JY, Vaccari A, Sumathipala M, Morrow C, Breads P, Zhao A, Kurmangaliyev YZ, Sanfilippo P, Rehan A, Polsky J, Alghailani S, Tenshaw E, Namiki S, Zipursky SL, Card GM. Synaptic gradients transform object location to action. Nature 2023; 613:534-542. [PMID: 36599984 PMCID: PMC9849133 DOI: 10.1038/s41586-022-05562-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/11/2022] [Indexed: 01/06/2023]
Abstract
To survive, animals must convert sensory information into appropriate behaviours1,2. Vision is a common sense for locating ethologically relevant stimuli and guiding motor responses3-5. How circuitry converts object location in retinal coordinates to movement direction in body coordinates remains largely unknown. Here we show through behaviour, physiology, anatomy and connectomics in Drosophila that visuomotor transformation occurs by conversion of topographic maps formed by the dendrites of feature-detecting visual projection neurons (VPNs)6,7 into synaptic weight gradients of VPN outputs onto central brain neurons. We demonstrate how this gradient motif transforms the anteroposterior location of a visual looming stimulus into the fly's directional escape. Specifically, we discover that two neurons postsynaptic to a looming-responsive VPN type promote opposite takeoff directions. Opposite synaptic weight gradients onto these neurons from looming VPNs in different visual field regions convert localized looming threats into correctly oriented escapes. For a second looming-responsive VPN type, we demonstrate graded responses along the dorsoventral axis. We show that this synaptic gradient motif generalizes across all 20 primary VPN cell types and most often arises without VPN axon topography. Synaptic gradients may thus be a general mechanism for conveying spatial features of sensory information into directed motor outputs.
Collapse
Affiliation(s)
- Mark Dombrovski
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Martin Y Peek
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jin-Yong Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Andrea Vaccari
- Department of Computer Science, Middlebury College, Middlebury, VT, USA
| | | | - Carmen Morrow
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Patrick Breads
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Arthur Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yerbol Z Kurmangaliyev
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Piero Sanfilippo
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aadil Rehan
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jason Polsky
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shada Alghailani
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Emily Tenshaw
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shigehiro Namiki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.,Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA. .,Department of Neuroscience, Howard Hughes Medical Institute, The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
46
|
Lanjewar AL, Jagetia S, Khan ZM, Eagleson KL, Levitt P. Subclass-specific expression patterns of MET receptor tyrosine kinase during development in medial prefrontal and visual cortices. J Comp Neurol 2023; 531:132-148. [PMID: 36201439 PMCID: PMC9691614 DOI: 10.1002/cne.25418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 01/12/2023]
Abstract
Met encodes a receptor tyrosine kinase (MET) that is expressed during development and regulates cortical synapse maturation. Conditional deletion of Met in the nervous system during embryonic development leads to deficits in adult contextual fear learning, a medial prefrontal cortex (mPFC)-dependent cognitive task. MET also regulates the timing of critical period plasticity for ocular dominance in primary visual cortex (V1). However, the underlying circuitry responsible remains unknown. Therefore, this study determines the broad expression patterns of MET throughout postnatal development in mPFC and V1 projection neurons (PNs), providing insight into similarities and differences in the neuronal subtypes and temporal patterns of MET expression between cortical areas. Using a transgenic mouse line that expresses green fluorescent protein (GFP) in Met+ neurons, immunofluorescence and confocal microscopy were performed to visualize MET-GFP+ cell bodies and PN subclass-specific protein markers. Analyses reveal that the MET expression is highly enriched in infragranular layers of mPFC, but in supragranular layers of V1. Interestingly, temporal regulation of the percentage of MET+ neurons across development not only differs between cortical regions but also is distinct between lamina within a cortical region. Further, MET is expressed predominantly in the subcerebral PN subclass in mPFC, but the intratelencephalic PN subclass in V1. The data suggest that MET signaling influences the development of distinct circuits in mPFC and V1 that underlie subcerebral and intracortical functional deficits following Met deletion, respectively.
Collapse
Affiliation(s)
- Alexandra L. Lanjewar
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA,Department of PediatricsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA,Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Sonum Jagetia
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA,Department of PediatricsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Zuhayr M. Khan
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA,Department of PediatricsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kathie L. Eagleson
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA,Department of PediatricsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Pat Levitt
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA,Department of PediatricsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
47
|
Wei JR, Hao ZZ, Xu C, Huang M, Tang L, Xu N, Liu R, Shen Y, Teichmann SA, Miao Z, Liu S. Identification of visual cortex cell types and species differences using single-cell RNA sequencing. Nat Commun 2022; 13:6902. [PMID: 36371428 PMCID: PMC9653448 DOI: 10.1038/s41467-022-34590-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
The primate neocortex exerts high cognitive ability and strong information processing capacity. Here, we establish a single-cell RNA sequencing dataset of 133,454 macaque visual cortical cells. It covers major cortical cell classes including 25 excitatory neuron types, 37 inhibitory neuron types and all glial cell types. We identified layer-specific markers including HPCAL1 and NXPH4, and also identified two cell types, an NPY-expressing excitatory neuron type that expresses the dopamine receptor D3 gene; and a primate specific activity-dependent OSTN + sensory neuron type. Comparisons of our dataset with humans and mice show that the gene expression profiles differ between species in relation to genes that are implicated in the synaptic plasticity and neuromodulation of excitatory neurons. The comparisons also revealed that glutamatergic neurons may be more diverse across species than GABAergic neurons and non-neuronal cells. These findings pave the way for understanding how the primary cortex fulfills the high-cognitive functions.
Collapse
Affiliation(s)
- Jia-Ru Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Mengyao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lei Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Nana Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ruifeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuhui Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Zhichao Miao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China.
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Cambridge, UK.
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China.
| |
Collapse
|
48
|
Ali Marandi Ghoddousi R, Magalong VM, Kamitakahara AK, Levitt P. SCAMPR, a single-cell automated multiplex pipeline for RNA quantification and spatial mapping. CELL REPORTS METHODS 2022; 2:100316. [PMID: 36313803 PMCID: PMC9606134 DOI: 10.1016/j.crmeth.2022.100316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/14/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
Spatial gene expression, achieved classically through in situ hybridization, is a fundamental tool for topographic phenotyping of cell types in the nervous system. Newly developed techniques allow for visualization of multiple mRNAs at single-cell resolution and greatly expand the ability to link gene expression to tissue topography, yet there are challenges in efficient quantification and analysis of these high-dimensional datasets. We have therefore developed the single-cell automated multiplex pipeline for RNA (SCAMPR), facilitating rapid and accurate segmentation of neuronal cell bodies using a dual immunohistochemistry-RNAscope protocol and quantification of low- and high-abundance mRNA signals using open-source image processing and automated segmentation tools. Proof of principle using SCAMPR focused on spatial mapping of gene expression by peripheral (vagal nodose) and central (visual cortex) neurons. The analytical effectiveness of SCAMPR is demonstrated by identifying the impact of early life stress on gene expression in vagal neuron subtypes.
Collapse
Affiliation(s)
- Ramin Ali Marandi Ghoddousi
- Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- University of Southern California, Los Angeles, CA 90007, USA
| | | | - Anna K. Kamitakahara
- Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- University of Southern California, Los Angeles, CA 90007, USA
- Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Pat Levitt
- Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- University of Southern California, Los Angeles, CA 90007, USA
- Keck School of Medicine, Los Angeles, CA 90033, USA
| |
Collapse
|
49
|
Routh BN, Brager DH, Johnston D. Ionic and morphological contributions to the variable gain of membrane responses in layer 2/3 pyramidal neurons of mouse primary visual cortex. J Neurophysiol 2022; 128:1040-1050. [PMID: 36129187 PMCID: PMC9576169 DOI: 10.1152/jn.00181.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
Many neuronal cell types exhibit a sliding scale of neuronal excitability in the subthreshold voltage range. This is due to a variable contribution of different voltage-gated ion channels, leading to scaling of input resistance (RN) as a function of membrane potential (Vm) and a voltage-dependent dynamic gain of neuronal responsiveness. In layer 2/3 pyramidal neurons within the primary visual cortex (V1), this response influences sensory processing by tightening neuronal tuning to preferred orientations, but the identity of the ionic conductances involved remains unknown. Here, we used in vitro physiological recordings in acute slices to identify the contributions of several voltage-dependent conductances to the dynamic gain of membrane responses in layer 2/3 pyramidal neurons in mouse primary visual cortex. We found that the steep voltage dependence of input resistance in these cells was mediated in part by a combination of persistent sodium, inwardly rectifying potassium, and hyperpolarization-activated nonselective cation channels. In addition, the steepness of the slope of the RN/Vm relationship was inversely correlated with the number of branches on the proximal apical dendrite. These data have uncovered physiological and morphological factors that underlie the scaling of membrane responses in L2/3 neurons of rodent V1. Regulation of these channels would serve as a mechanism of real-time neuromodulation of neuronal processing of sensory information.NEW & NOTEWORTHY Layer 2/3 pyramidal neurons in primary visual cortex scale subthreshold voltage responses with resting membrane potential because RN increases as Vm is depolarized. Here, we uncovered the voltage-dependent contributions of NaP, Kir, and HCN conductances toward this behavior, and we additionally demonstrated that the strength of the RN/Vm relationship is inversely correlated with proximal branching along the apical dendrite.
Collapse
Affiliation(s)
- Brandy N Routh
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Darrin H Brager
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Daniel Johnston
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas
| |
Collapse
|
50
|
Gasterstädt I, Schröder M, Cronin L, Kusch J, Rennau LM, Mücher B, Herlitze S, Jack A, Wahle P. Chemogenetic Silencing of Differentiating Cortical Neurons Impairs Dendritic and Axonal Growth. Front Cell Neurosci 2022; 16:941620. [PMID: 35910251 PMCID: PMC9336219 DOI: 10.3389/fncel.2022.941620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Electrical activity is considered a key driver for the neurochemical and morphological maturation of neurons and the formation of neuronal networks. Designer receptors exclusively activated by designer drugs (DREADDs) are tools for controlling neuronal activity at the single cell level by triggering specific G protein signaling. Our objective was to investigate if prolonged silencing of differentiating cortical neurons can influence dendritic and axonal maturation. The DREADD hM4Di couples to Gi/o signaling and evokes hyperpolarization via GIRK channels. HM4Di was biolistically transfected into neurons in organotypic slice cultures of rat visual cortex, and activated by clozapine-N-oxide (CNO) dissolved in H2O; controls expressed hM4Di, but were mock-stimulated with H2O. Neurons were analyzed after treatment for two postnatal time periods, DIV 5-10 and 10-20. We found that CNO treatment delays the maturation of apical dendrites of L2/3 pyramidal cells. Further, the number of collaterals arising from the main axon was significantly lower, as was the number of bouton terminaux along pyramidal cell and basket cell axons. The dendritic maturation of L5/6 pyramidal cells and of multipolar interneurons (basket cells and bitufted cells) was not altered by CNO treatment. Returning CNO-treated cultures to CNO-free medium for 7 days was sufficient to recover dendritic and axonal complexity. Our findings add to the view that activity is a key driver in particular of postnatal L2/3 pyramidal cell maturation. Our results further suggest that inhibitory G protein signaling may represent a factor balancing the strong driving force of neurotrophic factors, electrical activity and calcium signaling.
Collapse
Affiliation(s)
- Ina Gasterstädt
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Max Schröder
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Lukas Cronin
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julian Kusch
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Lisa-Marie Rennau
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Brix Mücher
- Department of General Zoology and Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Petra Wahle,
| |
Collapse
|