1
|
Zhang G, Yao Q, Long C, Yi P, Song J, Wu L, Wan W, Rao X, Lin Y, Wei G, Ying J, Hua F. Infiltration by monocytes of the central nervous system and its role in multiple sclerosis: reflections on therapeutic strategies. Neural Regen Res 2025; 20:779-793. [PMID: 38886942 PMCID: PMC11433895 DOI: 10.4103/nrr.nrr-d-23-01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/12/2023] [Accepted: 02/18/2024] [Indexed: 06/20/2024] Open
Abstract
Mononuclear macrophage infiltration in the central nervous system is a prominent feature of neuroinflammation. Recent studies on the pathogenesis and progression of multiple sclerosis have highlighted the multiple roles of mononuclear macrophages in the neuroinflammatory process. Monocytes play a significant role in neuroinflammation, and managing neuroinflammation by manipulating peripheral monocytes stands out as an effective strategy for the treatment of multiple sclerosis, leading to improved patient outcomes. This review outlines the steps involved in the entry of myeloid monocytes into the central nervous system that are targets for effective intervention: the activation of bone marrow hematopoiesis, migration of monocytes in the blood, and penetration of the blood-brain barrier by monocytes. Finally, we summarize the different monocyte subpopulations and their effects on the central nervous system based on phenotypic differences. As activated microglia resemble monocyte-derived macrophages, it is important to accurately identify the role of monocyte-derived macrophages in disease. Depending on the roles played by monocyte-derived macrophages at different stages of the disease, several of these processes can be interrupted to limit neuroinflammation and improve patient prognosis. Here, we discuss possible strategies to target monocytes in neurological diseases, focusing on three key aspects of monocyte infiltration into the central nervous system, to provide new ideas for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Guangyong Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Qing Yao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Chubing Long
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Pengcheng Yi
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Jiali Song
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Luojia Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Wei Wan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Xiuqin Rao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Gen Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
2
|
Gao M, Wang X, Su S, Feng W, Lai Y, Huang K, Cao D, Wang Q. Meningeal lymphatic vessel crosstalk with central nervous system immune cells in aging and neurodegenerative diseases. Neural Regen Res 2025; 20:763-778. [PMID: 38886941 PMCID: PMC11433890 DOI: 10.4103/nrr.nrr-d-23-01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/22/2023] [Indexed: 06/20/2024] Open
Abstract
Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.
Collapse
Affiliation(s)
- Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xinyue Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Weicheng Feng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yaona Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Kongli Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Dandan Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
Fransson J, Bachelin C, Ichou F, Guillot-Noël L, Ponnaiah M, Gloaguen A, Maillart E, Stankoff B, Tenenhaus A, Fontaine B, Mochel F, Louapre C, Zujovic V. Multiple Sclerosis Patient Macrophages Impaired Metabolism Leads to an Altered Response to Activation Stimuli. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200312. [PMID: 39467238 PMCID: PMC11521098 DOI: 10.1212/nxi.0000000000200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/05/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND AND OBJECTIVES In multiple sclerosis (MS), immune cells invade the CNS and destroy myelin. Macrophages contribute to demyelination and myelin repair, and their role in each process depends on their ability to acquire specific phenotypes in response to external signals. In this article, we assess whether defects in MS patient macrophage responses may lead to increased inflammation or lack of neuroregenerative effects. METHODS CD14+CD16- monocytes from patients with MS and healthy controls (HCs) were activated in vitro to obtain homeostatic-like, proinflammatory, and proregenerative macrophages. Macrophage activation profiles were assessed through RNA sequencing and metabolomics. Surface molecule expression of CD14, CD16, and HLA-DR and myelin phagocytic capacity were evaluated with flow cytometry. Macrophage supernatant capacity to influence oligodendrocyte precursor cell differentiation toward an astrocytic or oligodendroglia fate was also tested. RESULTS We observed that MS patient monocytes ex vivo recapitulate their preferential activation toward the CD16+ phenotype, a subset of proinflammatory cells overrepresented in MS lesions. Functionally, MS patient macrophages display a decreased capacity to phagocytose human myelin and a deficit of processing myelin after ingestion. In addition, MS patient macrophage supernatant favors astrocytes over oligodendrocyte differentiation when compared with HC macrophage supernatant. Furthermore, even when exposed to homeostatic or proregenerative stimuli, MS patient macrophages uphold a proinflammatory transcriptomic profile with higher levels of cytokine/chemokine. Of interest, MS patient macrophages exhibit a distinct metabolic signature with a mitochondrial energy metabolism blockage. Transcriptomic data are further substantiated by metabolomics studies that reveal perturbations in the corresponding metabolic pathways. DISCUSSION Our results show an intrinsic defect of MS patient macrophages, reminiscent of innate immune cell memory in MS, lifting macrophage importance in the disease and as potential therapeutic targets.
Collapse
Affiliation(s)
- Jennifer Fransson
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Corinne Bachelin
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Farid Ichou
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Léna Guillot-Noël
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Maharajah Ponnaiah
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Arnaud Gloaguen
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Elisabeth Maillart
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Bruno Stankoff
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Arthur Tenenhaus
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Bertrand Fontaine
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Fanny Mochel
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Celine Louapre
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Violetta Zujovic
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| |
Collapse
|
4
|
Yang Y, Zhao Y, Liu H, Wu X, Guo M, Xie L, Wang G, Shi J, Yu W, Dong G. Inflammation-Targeted Biomimetic Nano-Decoys via Inhibiting the Infiltration of Immune Cells and Effectively Delivering Glucocorticoids for Enhanced Multiple Sclerosis Treatment. Adv Healthc Mater 2024:e2402965. [PMID: 39440626 DOI: 10.1002/adhm.202402965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Excessive infiltration of neutrophil and inflammatory cytokines accumulation as well as the inadequate delivery of drugs to the targeted site are key pathological cascades in multiple sclerosis (MS). Herein, inflammation-targeting biomimetic nano-decoys (TFMN) is developed that inhibit the infiltration of immune cells and effectively deliver glucocorticoids to lesions for enhanced MS treatment. Nano-decoys encapsulated with the glucocorticoid methylprednisolone (MPS) are prepared by coating neutrophil membrane (NM) on nanoparticles formed by the self-assembly of tannic acid and poloxamer188/pluronic68. Benefiting from the natural inflammation-targeting ability of activated neutrophil membranes, TFMN can target the lesion site and prevent neutrophils infiltration by adsorbing and neutralizing elevated neutrophil-related cytokines, subsequently modulating the inflammatory microenvironment in experimental autoimmune encephalomyelitis mice. TFMN exhibits a strong antioxidant capacity and scavenged excessive reactive oxygen species to enhance neuronal protection. Furthermore, at the inflammation site, perforin, discharged by cytotoxic T-lymphocytes, triggered the controlled release of MPS within the TFMN through perforin-formed pores in the NM. Simultaneously, this mechanism protected neurons from perforin-induced toxicity. The MPS liberated at the targeted site achieves optimal drug accumulation, thereby enhancing therapeutic efficacy. In conclusion, the innovative system shows potential for integrating various therapeutic agents, offering a novel strategy for CNS disorders.
Collapse
Affiliation(s)
- Yiling Yang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuzhen Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Huixian Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinyun Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingming Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Li Xie
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Guangsheng Wang
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenyan Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Gang Dong
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
5
|
Zhu Y, Gao Q, Zhang J, Cheng Y, Yang S, Xu R, Yuan J, Novakovic B, Netea MG, Cheng SC. Persistent bone marrow hemozoin accumulation confers a survival advantage against bacterial infection via cell-intrinsic Myd88 signaling. Cell Rep 2024; 43:114850. [PMID: 39392758 DOI: 10.1016/j.celrep.2024.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024] Open
Abstract
Malaria remains a global health challenge, affecting millions annually. Hemozoin (Hz) deposition in the bone marrow disrupts hematopoiesis and modulates immune responses, but the mechanisms are not fully understood. Here, we show that persistent hemozoin deposition induces a sustained bias toward myelopoiesis, increasing peripheral myeloid cell numbers. Hz drives this process through a cell-intrinsic, MyD88-dependent pathway, enhancing chromatin accessibility of transcription factors such as Runx1 and Etv6 in granulocyte-macrophage progenitors. These findings are confirmed by intraosseous Hz injections and bone marrow chimeras. Single-cell RNA sequencing reveals increased reactive oxygen species production in monocytes from malaria-recovered mice, correlating with enhanced bactericidal capacity. This highlights an alternative aspect of post-malarial immunity and extends our understanding of trained immunity, suggesting that pathogen by-products like Hz can induce innate immune memory. These results offer insights into therapeutic strategies that harness trained immunity to combat infectious diseases.
Collapse
Affiliation(s)
- Yanhui Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China
| | - Qingxiang Gao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jia Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yu Cheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuzhen Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Boris Novakovic
- Murdoch Children's Research Institute and Department of Pediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Mihai G Netea
- Departments of Medicine, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.
| | - Shih-Chin Cheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China; Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China.
| |
Collapse
|
6
|
Mou R, Ma J, Ju X, Wu Y, Chen Q, Li J, Shang T, Chen S, Yang Y, Li Y, Lv K, Chen X, Zhang Q, Liang T, Feng Y, Lu X. Vasopressin drives aberrant myeloid differentiation of hematopoietic stem cells, contributing to depression in mice. Cell Stem Cell 2024:S1934-5909(24)00358-8. [PMID: 39442524 DOI: 10.1016/j.stem.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Psychological stress is often linked to depression and can also impact the immune system, illustrating the interconnectedness of mental health and immune function. Hematopoietic stem cells (HSCs) can directly sense neuroendocrine signals in bone marrow and play a fundamental role in the maintenance of immune homeostasis. However, it is unclear how psychological stress impacts HSCs in depression. Here, we report that neuroendocrine factor arginine vasopressin (AVP) promotes myeloid-biased HSC differentiation by activating neutrophils. AVP administration increases neutrophil and Ly6Chi monocyte production by triggering HSCs that rely on intrinsic S100A9 in mice. When stimulated with AVP, neutrophils return to the bone marrow and release interleukin 36G (IL-36G), which interacts with interleukin 1 receptor-like 2 (IL-1RL2) on HSCs to produce neutrophils with high Elane expression that infiltrate the brain and induce neuroinflammation. Together, these findings define HSCs as a relay between psychological stress and myelopoiesis and identify the IL-36G-IL-1RL2 axis as a potential target for depression therapy.
Collapse
Affiliation(s)
- Rong Mou
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Junkai Ma
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xuan Ju
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China
| | - Yixin Wu
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Qiuli Chen
- Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Jinglin Li
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tongyao Shang
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Siying Chen
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yue Yang
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yue Li
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Kaosheng Lv
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of BioMedical Sciences, Hunan University, Changsha 410028, Hunan, China
| | - Xuequn Chen
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Ye Feng
- Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| | - Xinjiang Lu
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
7
|
Johnson T, Su J, Andres J, Henning A, Ren J. Sex Differences in Fat Distribution and Muscle Fat Infiltration in the Lower Extremity: A Retrospective Diverse-Ethnicity 7T MRI Study in a Research Institute Setting in the USA. Diagnostics (Basel) 2024; 14:2260. [PMID: 39451583 PMCID: PMC11506611 DOI: 10.3390/diagnostics14202260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Fat infiltration in skeletal muscle is related to declining muscle strength, whereas excess subcutaneous fat is implicated in the development of metabolic diseases. Methods: Using multi-slice axial T2-weighted (T2w) MR images, this retrospective study characterized muscle fat infiltration (MFI) and fat distribution in the lower extremity of 107 subjects (64M/43F, age 11-79 years) with diverse ethnicities (including White, Black, Latino, and Asian subjects). Results: MRI data analysis shows that MFI, evaluated by the relative intensities of the pixel histogram profile in the calf muscle, tends to increase with both age and BMI. However, statistical significance was found only for the age correlation in women (p < 0.002), and the BMI correlation in men (p = 0.04). Sex disparities were also seen in the fat distribution, which was assessed according to subcutaneous fat thickness (SFT) and the fibula bone marrow cross-sectional area (BMA). SFT tends to decrease with age in men (p < 0.01), whereas SFT tends to increase with BMI only in women (p < 0.01). In contrast, BMA tends to increase with age in women (p < 0.01) and with BMI in men (p = 0.04). Additionally, MFI is positively correlated with BMA but not with SFT, suggesting that compromised bone structure may contribute to fat infiltration in the surrounding skeletal muscle. Conclusions: The findings of this study highlight a sex factor affecting MFI and fat distribution, which may offer valuable insights into effective strategies to prevent and treat MFI in women versus men.
Collapse
Affiliation(s)
- Talon Johnson
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Department of Mathematics, University of Arlington, Arlington, TX 76019, USA;
| | - Jianzhong Su
- Department of Mathematics, University of Arlington, Arlington, TX 76019, USA;
| | - Johnathan Andres
- Department of Mathematics, University of Houston, Houston, TX 77004, USA;
| | - Anke Henning
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
9
|
Gogoleva VS, Mundt S, De Feo D, Becher B. Mononuclear phagocytes in autoimmune neuroinflammation. Trends Immunol 2024; 45:814-823. [PMID: 39307582 DOI: 10.1016/j.it.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 10/13/2024]
Abstract
A healthy mammalian central nervous system (CNS) harbors a diverse population of leukocytes including members of the mononuclear phagocyte system (MPS). Exerting their specific functions, CNS tissue-resident macrophages as well as associated monocytes and dendritic cells (DCs) maintain CNS homeostasis. Under neuroinflammatory conditions, leukocytes from the systemic immune compartment invade the CNS. This review focuses on the newly discovered roles of the MPS in autoimmune neuroinflammation elicited by encephalitogenic T cells. We propose that CNS-associated DCs act as gatekeepers and antigen-presenting cells that guide the adaptive immune response while bone marrow (BM)-derived monocytes contribute to immunopathology and tissue damage. By contrast, CNS-resident macrophages primarily support tissue function and promote the repair and maintenance of CNS functions.
Collapse
Affiliation(s)
- Violetta S Gogoleva
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Rao G, Peng B, Zhang G, Fu X, Tian J, Tian Y. MicroRNAs in diabetic macroangiopathy. Cardiovasc Diabetol 2024; 23:344. [PMID: 39285459 PMCID: PMC11406791 DOI: 10.1186/s12933-024-02405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic macroangiopathy is a leading cause of diabetes-related mortality worldwide. Both genetic and environmental factors, through a multitude of underlying molecular mechanisms, contribute to the pathogenesis of diabetic macroangiopathy. MicroRNAs (miRNAs), a class of non-coding RNAs known for their functional diversity and expression specificity, are increasingly recognized for their roles in the initiation and progression of diabetes and diabetic macroangiopathy. In this review, we will describe the biogenesis of miRNAs, and summarize their functions in diabetic macroangiopathy, including atherosclerosis, peripheral artery disease, coronary artery disease, and cerebrovascular disease, which are anticipated to provide new insights into future perspectives of miRNAs in basic, translational and clinical research, ultimately advancing the diagnosis, prevention, and treatment of diabetic macroangiopathy.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China
| | - Boqiang Peng
- Department of General Surgery and Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guixiang Zhang
- Department of General Surgery and Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| | - Jingyan Tian
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
11
|
Liu M, Wang D, Qi C, Zou M, Song J, Li L, Xie H, Ren H, Hao H, Yang G, Li Z, Zhang Q, Zhou J, Ai D, Liu Q. Brain ischemia causes systemic Notch1 activity in endothelial cells to drive atherosclerosis. Immunity 2024; 57:2157-2172.e7. [PMID: 39079536 DOI: 10.1016/j.immuni.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/31/2024] [Accepted: 07/03/2024] [Indexed: 09/13/2024]
Abstract
Stroke leads to persistently high risk for recurrent vascular events caused by systemic atheroprogression that is driven by endothelial cell (EC) activation. However, whether and how stroke induces sustained pro-inflammatory and proatherogenic endothelial alterations in systemic vessels remain poorly understood. We showed that brain ischemia induces persistent activation, the upregulation of adhesion molecule VCAM1, and increased senescence in peripheral ECs until 4 weeks after stroke onset. This aberrant EC activity resulted from sustained Notch1 signaling, which was triggered by increased circulating Notch1 ligands DLL1 and Jagged1 after stroke in mice and humans. Consequently, this led to increased myeloid cell adhesion and atheroprogression by generating a senescent, pro-inflammatory endothelium. Notch1- or VCAM1-blocking antibodies and the genetic ablation of endothelial Notch1 reduced atheroprogression after stroke. Our findings revealed a systemic machinery that induces the persistent activation of peripheral ECs after stroke, which paves the way for therapeutic interventions or the prevention of recurrent vascular events following stroke.
Collapse
Affiliation(s)
- Mingming Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Danni Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Caiyun Qi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ming Zou
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiawei Song
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin 300052, China
| | - Lili Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hengchang Xie
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Honglei Ren
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongying Hao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guili Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zixiao Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin 300052, China
| | - Jie Zhou
- Department of Immunology, Tianjin Institute of Immunology, Tianjin Medical University, Tianjin 300070, China.
| | - Ding Ai
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
12
|
Wang Q, Wu Y, Lu Q, Zhao M. Contribution of gut-derived T cells to extraintestinal autoimmune diseases. Trends Immunol 2024; 45:639-648. [PMID: 39181734 DOI: 10.1016/j.it.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024]
Abstract
The mammalian intestine harbors abundant T cells with high motility, where these cells can affect both intestinal and extraintestinal disorders. Growing evidence shows that gut-derived T cells migrate to extraintestinal organs, contributing to the pathogenesis of certain autoimmune diseases, including type 1 diabetes (T1D) and multiple sclerosis (MS). However, three key questions require further elucidation. First, how do intestinal T cells egress from the intestine? Second, how do gut-derived T cells enter organs outside the gut? Third, what is the pathogenicity of gut-derived T cells and their correlation with the gut microenvironment? In this Opinion, we propose answers to these questions. Understanding the migration and functional regulation of gut-derived T cells might inform precise targeting for achieving safe and effective approaches to treat certain extraintestinal autoimmune diseases.
Collapse
Affiliation(s)
- Qiaolin Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Yutong Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
13
|
Song H, Lv A, Zhu Z, Li R, Zhao Q, Yu X, Jiang J, Lin X, Zhang C, Li R, Yan Y, Chen W, Wang N, Fu Y. CYP7B1 deficiency impairs myeloid cell activation in autoimmune disease of the central nervous system. PNAS NEXUS 2024; 3:pgae334. [PMID: 39262855 PMCID: PMC11388006 DOI: 10.1093/pnasnexus/pgae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024]
Abstract
Dysregulation of cholesterol metabolism underlies neurodegenerative disease and is increasingly implicated in neuroinflammatory diseases, such as multiple sclerosis (MS). Cytochrome P450 family 7 subfamily B member 1 (CYP7B1) is a key enzyme in alternative cholesterol metabolism. A recessive mutation in the gene CYP7B1 is known to cause a neurodegenerative disease, hereditary spastic paraplegia type 5 and oxysterol accumulation. However, the role of CYP7B1 in neuroinflammation has been little revealed. In this study, we induced experimental autoimmune encephalomyelitis (EAE), as a murine model of MS, using CYP7B1 homozygous knockout (KO) mice. We found that CYP7B1 deficiency can significantly attenuate EAE severity. CYP7B1 deficiency is sufficient to reduce leukocyte infiltration into the central nervous system, suppress proliferation of pathogenic CD4+ T cells, and decrease myeloid cell activation during EAE. Additionally, live-animal imaging targeting translocator protein expression, an outer mitochondrial membrane protein biomarker of neuroinflammation, showed that CYP7B1 deficiency results in suppressed neuroinflammation. Using human monocyte-derived microglia-like cellular disease model and primary microglia of CYP7B1 KO mice, we also found that activation of microglia of CYP7B1 deficiency was impaired. These cumulative results suggest that CYP7B1 can regulate neuroinflammation, thus providing potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Huanhuan Song
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Aowei Lv
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Zhibao Zhu
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Runyun Li
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Qiuping Zhao
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Xintong Yu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Junyi Jiang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Cunjin Zhang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Rui Li
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
- Institute of Immunotherapy, Fujian Medical University, Fuzhou 350122, China
| | - Yaping Yan
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (the Ministry of Education), National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710000, China
| | - Wanjin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Ying Fu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
14
|
Brune Z, Lu A, Moss M, Brune L, Huang A, Matta B, Barnes BJ. IRF5 mediates adaptive immunity via altered glutamine metabolism, mTORC1 signaling and post-transcriptional regulation following T cell receptor activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609422. [PMID: 39253451 PMCID: PMC11382993 DOI: 10.1101/2024.08.26.609422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Although dynamic alterations in transcriptional, translational, and metabolic programs have been described in T cells, the factors and pathways guiding these molecular shifts are poorly understood, with recent studies revealing a disassociation between transcriptional responses and protein expression following T cell receptor (TCR) stimulation. Previous studies identified interferon regulatory factor 5 (IRF5) in the transcriptional regulation of cytokines, chemotactic molecules and T effector transcription factors following TCR signaling. In this study, we identified T cell intrinsic IRF5 regulation of mTORC1 activity as a key modulator of CD40L protein expression. We further demonstrated a global shift in T cell metabolism, with alterations in glutamine metabolism accompanied by shifts in T cell populations at the single cell level due to loss of Irf5. T cell conditional Irf5 knockout mice in a murine model of experimental autoimmune encephalomyelitis (EAE) demonstrated protection from clinical disease with conserved defects in mTORC1 activity and glutamine regulation. Together, these findings expand our mechanistic understanding of IRF5 as an intrinsic regulator of T effector function(s) and support the therapeutic targeting of IRF5 in multiple sclerosis.
Collapse
Affiliation(s)
- Zarina Brune
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Ailing Lu
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Matthew Moss
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Leianna Brune
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Amanda Huang
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Bharati Matta
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Betsy J Barnes
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
15
|
Jiang R, Lu Z, Wang C, Xiao J, Liu Q, Xu X, Shi J, Shen J, Zhu X, Gong P, Zhuang QX, Shi K, Shi W. Beta2 adrenergic receptor-mediated abnormal myelopoiesis drives neuroinflammation in aged patients with traumatic brain injury. SCIENCE ADVANCES 2024; 10:eadp5239. [PMID: 39028822 PMCID: PMC11259178 DOI: 10.1126/sciadv.adp5239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Aged patients often suffer poorer neurological recovery than younger patients after traumatic brain injury (TBI), but the mechanisms underlying this difference remain unclear. Here, we demonstrate abnormal myelopoiesis characterized by increased neutrophil and classical monocyte output but impaired nonclassical patrolling monocyte population in aged patients with TBI as well as in an aged murine TBI model. Retrograde and anterograde nerve tracing indicated that increased adrenergic input through the central amygdaloid nucleus-bone marrow axis drives abnormal myelopoiesis after TBI in a β2-adrenergic receptor-dependent manner, which is notably enhanced in aged mice after injury. Selective blockade of β2-adrenergic receptors rebalances abnormal myelopoiesis and improves the outcomes of aged mice after TBI. We therefore demonstrate that increased β2-adrenergic input-driven abnormal myelopoiesis exacerbates post-TBI neuroinflammation in the aged, representing a mechanism underlying the poorer recovery of aged patients and that blockade of β2-adrenergic receptor is a potential approach to promote neurological recovery after TBI.
Collapse
Affiliation(s)
- Rui Jiang
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhichao Lu
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chenxing Wang
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jun Xiao
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qianqian Liu
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xide Xu
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jinlong Shi
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jianhong Shen
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xingjia Zhu
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Peipei Gong
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Qian-Xing Zhuang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Kaibin Shi
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Chinese Institutes for Medical Research, Beijing 100069, China
| | - Wei Shi
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
16
|
Zhang Q, Wang C, Qin M, Ye Y, Mo Y, Meng Q, Yang G, Feng G, Lin R, Xian S, Wei J, Chen S, Wang S, Mo Z. Investigating cellular similarities and differences between upper tract urothelial carcinoma and bladder urothelial carcinoma using single-cell sequencing. Front Immunol 2024; 15:1298087. [PMID: 38903524 PMCID: PMC11187293 DOI: 10.3389/fimmu.2024.1298087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
Background Upper tract urothelial carcinoma (UTUC) and bladder urothelial carcinoma (BLCA) both originate from uroepithelial tissue, sharing remarkably similar clinical manifestations and therapeutic modalities. However, emerging evidence suggests that identical treatment regimens may lead to less favorable outcomes in UTUC compared to BLCA. Therefore, it is imperative to explore molecular processes of UTUC and identify biological differences between UTUC and BLCA. Methods In this study, we performed a comprehensive analysis using single-cell RNA sequencing (scRNA-seq) on three UTUC cases and four normal ureteral tissues. These data were combined with publicly available datasets from previous BLCA studies and RNA sequencing (RNA-seq) data for both cancer types. This pooled analysis allowed us to delineate the transcriptional differences among distinct cell subsets within the microenvironment, thus identifying critical factors contributing to UTUC progression and phenotypic differences between UTUC and BLCA. Results scRNA-seq analysis revealed seemingly similar but transcriptionally distinct cellular identities within the UTUC and BLCA ecosystems. Notably, we observed striking differences in acquired immunological landscapes and varied cellular functional phenotypes between these two cancers. In addition, we uncovered the immunomodulatory functions of vein endothelial cells (ECs) in UTUC, and intercellular network analysis demonstrated that fibroblasts play important roles in the microenvironment. Further intersection analysis showed that MARCKS promote UTUC progression, and immunohistochemistry (IHC) staining revealed that the diverse expression patterns of MARCKS in UTUC, BLCA and normal ureter tissues. Conclusion This study expands our multidimensional understanding of the similarities and distinctions between UTUC and BLCA. Our findings lay the foundation for further investigations to develop diagnostic and therapeutic targets for UTUC.
Collapse
Affiliation(s)
- Qingyun Zhang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Chengbang Wang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Min Qin
- Human Sperm Bank, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu Ye
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yingxi Mo
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Qinggui Meng
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Guanglin Yang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Guanzheng Feng
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Rui Lin
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Shinan Xian
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jueling Wei
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Shaohua Chen
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Shan Wang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
17
|
Zhang W, Sun HS, Wang X, Dumont AS, Liu Q. Cellular senescence, DNA damage, and neuroinflammation in the aging brain. Trends Neurosci 2024; 47:461-474. [PMID: 38729785 DOI: 10.1016/j.tins.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
Aging may lead to low-level chronic inflammation that increases the susceptibility to age-related conditions, including memory impairment and progressive loss of brain volume. As brain health is essential to promoting healthspan and lifespan, it is vital to understand age-related changes in the immune system and central nervous system (CNS) that drive normal brain aging. However, the relative importance, mechanistic interrelationships, and hierarchical order of such changes and their impact on normal brain aging remain to be clarified. Here, we synthesize accumulating evidence that age-related DNA damage and cellular senescence in the immune system and CNS contribute to the escalation of neuroinflammation and cognitive decline during normal brain aging. Targeting cellular senescence and immune modulation may provide a logical rationale for developing new treatment options to restore immune homeostasis and counteract age-related brain dysfunction and diseases.
Collapse
Affiliation(s)
- Wenyan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hong-Shuo Sun
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Xiaoying Wang
- Tulane Center for Clinical Neurosciences, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Aaron S Dumont
- Tulane Center for Clinical Neurosciences, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
18
|
Aliyu M, Zohora FT, Ceylan A, Hossain F, Yazdani R, Azizi G. Immunopathogenesis of multiple sclerosis: molecular and cellular mechanisms and new immunotherapeutic approaches. Immunopharmacol Immunotoxicol 2024; 46:355-377. [PMID: 38634438 DOI: 10.1080/08923973.2024.2330642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a central nervous system (CNS) demyelinating autoimmune disease with increasing global prevalence. It predominantly affects females, especially those of European descent. The interplay between environmental factors and genetic predisposition plays a crucial role in MS etiopathogenesis. METHODS We searched recent relevant literature on reputable databases, which include, PubMed, Embase, Web of Science, Scopus, and ScienceDirect using the following keywords: multiple sclerosis, pathogenesis, autoimmunity, demyelination, therapy, and immunotherapy. RESULTS Various animal models have been employed to investigate the MS etiopathogenesis and therapeutics. Autoreactive T cells within the CNS recruit myeloid cells through chemokine expression, leading to the secretion of inflammatory cytokines driving the MS pathogenesis, resulting in demyelination, gliosis, and axonal loss. Key players include T cell lymphocytes (CD4+ and CD8+), B cells, and neutrophils. Signaling dysregulation in inflammatory pathways and the immunogenetic basis of MS are essential considerations for any successful therapy to MS. Data indicates that B cells and neutrophils also have significant roles in MS, despite the common belief that T cells are essential. High neutrophil-to-lymphocyte ratios correlate with MS severity, indicating their contribution to disease progression. Dysregulated signaling pathways further exacerbate MS progression. CONCLUSION MS remains incurable, but disease-modifying therapies, monoclonal antibodies, and immunomodulatory drugs offer hope for patients. Research on the immunogenetics and immunoregulatory functions of gut microbiota is continuing to provide light on possible treatment avenues. Understanding the complex interplay between genetic predisposition, environmental factors, and immune dysregulation is critical for developing effective treatments for MS.
Collapse
Affiliation(s)
- Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
- Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ayca Ceylan
- Medical Faculty, Department of Pediatrics, Division of Immunology and Allergy, Selcuk University, Konya, Turkey
| | - Fariha Hossain
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Reza Yazdani
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gholamreza Azizi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
19
|
Tan LY, Cunliffe G, Hogan MP, Yeo XY, Oh C, Jin B, Kang J, Park J, Kwon MS, Kim M, Jung S. Emergence of the brain-border immune niches and their contribution to the development of neurodegenerative diseases. Front Immunol 2024; 15:1380063. [PMID: 38863704 PMCID: PMC11165048 DOI: 10.3389/fimmu.2024.1380063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Historically, the central nervous system (CNS) was regarded as 'immune-privileged', possessing its own distinct immune cell population. This immune privilege was thought to be established by a tight blood-brain barrier (BBB) and blood-cerebrospinal-fluid barrier (BCSFB), which prevented the crossing of peripheral immune cells and their secreted factors into the CNS parenchyma. However, recent studies have revealed the presence of peripheral immune cells in proximity to various brain-border niches such as the choroid plexus, cranial bone marrow (CBM), meninges, and perivascular spaces. Furthermore, emerging evidence suggests that peripheral immune cells may be able to infiltrate the brain through these sites and play significant roles in driving neuronal cell death and pathology progression in neurodegenerative disease. Thus, in this review, we explore how the brain-border immune niches may contribute to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We then discuss several emerging options for harnessing the neuroimmune potential of these niches to improve the prognosis and treatment of these debilitative disorders using novel insights from recent studies.
Collapse
Affiliation(s)
- Li Yang Tan
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Grace Cunliffe
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael Patrick Hogan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chansik Oh
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Bohwan Jin
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Junmo Kang
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Junho Park
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - MinYoung Kim
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Biomedical Science, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
20
|
Mo S, Shi C, Cai Y, Xu M, Xu H, Xu Y, Zhang K, Zhang Y, Liu J, Che S, Liu X, Xing C, Long X, Chen X, Liu E. Single-cell transcriptome reveals highly complement activated microglia cells in association with pediatric tuberculous meningitis. Front Immunol 2024; 15:1387808. [PMID: 38745656 PMCID: PMC11091396 DOI: 10.3389/fimmu.2024.1387808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Background Tuberculous meningitis (TBM) is a devastating form of tuberculosis (TB) causing high mortality and disability. TBM arises due to immune dysregulation, but the underlying immune mechanisms are unclear. Methods We performed single-cell RNA sequencing on peripheral blood mononuclear cells (PBMCs) and cerebrospinal fluid (CSF) cells isolated from children (n=6) with TBM using 10 xGenomics platform. We used unsupervised clustering of cells and cluster visualization based on the gene expression profiles, and validated the protein and cytokines by ELISA analysis. Results We revealed for the first time 33 monocyte populations across the CSF cells and PBMCs of children with TBM. Within these populations, we saw that CD4_C04 cells with Th17 and Th1 phenotypes and Macro_C01 cells with a microglia phenotype, were enriched in the CSF. Lineage tracking analysis of monocyte populations revealed myeloid cell populations, as well as subsets of CD4 and CD8 T-cell populations with distinct effector functions. Importantly, we discovered that complement-activated microglial Macro_C01 cells are associated with a neuroinflammatory response that leads to persistent meningitis. Consistently, we saw an increase in complement protein (C1Q), inflammatory markers (CRP) and inflammatory factor (TNF-α and IL-6) in CSF cells but not blood. Finally, we inferred that Macro_C01 cells recruit CD4_C04 cells through CXCL16/CXCR6. Discussion We proposed that the microglial Macro_C01 subset activates complement and interacts with the CD4_C04 cell subset to amplify inflammatory signals, which could potentially contribute to augment inflammatory signals, resulting in hyperinflammation and an immune response elicited by Mtb-infected tissues.
Collapse
Affiliation(s)
- Siwei Mo
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Chenyan Shi
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Yi Cai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Maozhu Xu
- Maternal and Child Care Health Hospital of Zunyi City, Zunyi, Guizhou, China
| | - Hongmei Xu
- Department of Infectious Diseases, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhong Xu
- Department of Clinical Laboratory, Shenzhen Baoan Hospital, The Second Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Kehong Zhang
- Department of Clinical Laboratory, Shenzhen Baoan Hospital, The Second Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Yue Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jiao Liu
- Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Siyi Che
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiangyu Liu
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Chaonan Xing
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xiaoru Long
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Enmei Liu
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
21
|
Liu X, Dong M, Li Y, Li L, Zhang Y, Zhou A, Wang D. Structural characterization of Russula griseocarnosa polysaccharide and its improvement on hematopoietic function. Int J Biol Macromol 2024; 263:130355. [PMID: 38395281 DOI: 10.1016/j.ijbiomac.2024.130355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The hematopoietic function of a polysaccharide derived from Russula griseocarnosa was demonstrated in K562 cells, and subsequently purified through chromatography to obtain RGP1. RGP1 is a galactan composed of 1,6-α-D-Galp as the main chain, with partial substitutions. A -CH3 substitution was detected at O-3 of 1,6-α-D-Galp. The possible branches at O-2 of 1,6-α-D-Galp was α-L-Fucp. In mice with cyclophosphamide (CTX)-induced hematopoietic dysfunction, RGP1 alleviated bone marrow damage and multinucleated giant cell infiltration of the spleen, increased the number of long-term hematopoietic stem cells, and regulated the levels of myeloid cells in the peripheral blood. Furthermore, RGP1 promoted the differentiation of activated T cells and CD4+ T cells without affecting natural killer cells and B cells. Proteomic analysis, detection of cytokines, and western blotting revealed that RGP1 could alleviate hematopoietic dysfunction by promoting the activation of CD4+ T cells and the Janus kinase/ signal transducer and activator of transcription 3 pathway. The present study provides experimental evidence to support the application of RGP1 in CTX-induced hematopoietic dysfunction.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China.
| | - Mingyuan Dong
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuan Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Andong Zhou
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
22
|
Wang D, Ling J, Tan R, Wang H, Qu Y, Li X, Lin J, Zhang Q, Hu Q, Liu Z, Lu Z, Lin Y, Sun L, Wang D, Zhou M, Shi Z, Gao W, Ye H, Lin X. CD169 + classical monocyte as an important participant in Graves' ophthalmopathy through CXCL12-CXCR4 axis. iScience 2024; 27:109213. [PMID: 38439953 PMCID: PMC10910260 DOI: 10.1016/j.isci.2024.109213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/11/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Patients with Graves' disease (GD) can develop Graves' ophthalmopathy (GO), but the underlying pathological mechanisms driving this development remain unclear. In our study, which included patients with GD and GO, we utilized single-cell RNA sequencing (scRNA-seq) and multiplatform analyses to investigate CD169+ classical monocytes, which secrete proinflammatory cytokines and are expanded through activated interferon signaling. We found that CD169+ clas_mono was clinically significant in predicting GO progression and prognosis, and differentiated into CD169+ macrophages that promote inflammation, adipogenesis, and fibrosis. Our murine model of early-stage GO showed that CD169+ classical monocytes accumulated in orbital tissue via the Cxcl12-Cxcr4 axis. Further studies are needed to investigate whether targeting circulating monocytes and the Cxcl12-Cxcr4 axis could alleviate GO progression.
Collapse
Affiliation(s)
- Dongliang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jie Ling
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - RongQiang Tan
- The First People’s Hospital of Zhaoqing, Zhaoqing 526000, China
| | - Huishi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yixin Qu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xingyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jinshan Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qiuling Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhaojing Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Li Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Dingqiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Ming Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhuoxing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wuyou Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Huijing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
23
|
Chen BR, Wu T, Chen TH, Wang Y. Neuroimmune interactions and their roles in neurodegenerative diseases. FUNDAMENTAL RESEARCH 2024; 4:251-261. [PMID: 38933502 PMCID: PMC11197660 DOI: 10.1016/j.fmre.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/10/2023] [Accepted: 04/03/2023] [Indexed: 06/28/2024] Open
Abstract
The nervous system possesses bidirectional, sophisticated and delicate communications with the immune system. These neuroimmune interactions play a vitally important role in the initiation and development of many disorders, especially neurodegenerative diseases. Although scientific advancements have made tremendous progress in this field during the last few years, neuroimmune communications are still far from being elucidated. By organizing recent research, in this review, we discuss the local and intersystem neuroimmune interactions and their roles in Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Unveiling these will help us gain a better understanding of the process of interplay inside the body and how the organism maintains homeostasis. It will also facilitate a view of the diseases from a holistic, pluralistic and interconnected perspective, thus providing a basis of developing novel and effective methods to diagnose, intervene and treat diseases.
Collapse
Affiliation(s)
- Bai-Rong Chen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Ting Wu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Ting-Hui Chen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Liu M, Wang D, Xu L, Pan Y, Huang H, Li M, Liu Q. Group 2 innate lymphoid cells suppress neuroinflammation and brain injury following intracerebral hemorrhage. J Cereb Blood Flow Metab 2024; 44:355-366. [PMID: 37933727 PMCID: PMC10870958 DOI: 10.1177/0271678x231208168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
Intracerebral hemorrhage (ICH) mobilizes circulating leukocytes that contribute to neuroinflammation and neural injury. However, little is known about the endogenous regulatory immune mechanisms to restrict neuroinflammation following ICH. We examined the role of group 2 innate lymphoid cells (ILC2) that are a specialized subset of innate immune modulators in a mouse model of ICH. We found accumulation of ILC2 in the brain following acute ICH and a concomitant increase of ILC2 within the peripheral lymph nodes. Depletion of ILC2 exacerbated neurodeficits and brain edema after ICH in male and female mice. This aggravated ICH injury was accompanied by augmented microglia activity and leukocyte infiltration. In contrast, expansion of ILC2 using IL-33 led to reduced ICH injury, microglia activity and leukocyte infiltration. Notably, elimination of microglia using a colony stimulating factor 1 receptor inhibitor diminished the exacerbation of ICH injury induced by depletion of ILC2. Brain-infiltrating ILC2 had upregulation of IL-13 after ICH. Results from in vitro assays revealed that ILC2 suppressed thrombin-induced inflammatory activity in microglia-like BV2 cells. Thus, our findings demonstrate that ILC2 suppress neuroinflammation and acute ICH injury.
Collapse
Affiliation(s)
- Mingming Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Danni Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| | - Lin Xu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Pan
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Huachen Huang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
25
|
Qi H, Duan S, Xu Y, Zhang H. Frontiers and future perspectives of neuroimmunology. FUNDAMENTAL RESEARCH 2024; 4:206-217. [PMID: 38933499 PMCID: PMC11197808 DOI: 10.1016/j.fmre.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/16/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Neuroimmunology is an interdisciplinary branch of biomedical science that emerges from the intersection of studies on the nervous system and the immune system. The complex interplay between the two systems has long been recognized. Research efforts directed at the underlying functional interface and associated pathophysiology, however, have garnered attention only in recent decades. In this narrative review, we highlight significant advances in research on neuroimmune interplay and modulation. A particular focus is on early- and middle-career neuroimmunologists in China and their achievements in frontier areas of "neuroimmune interface", "neuro-endocrine-immune network and modulation", "neuroimmune interactions in diseases", "meningeal lymphatic and glymphatic systems in health and disease", and "tools and methodologies in neuroimmunology research". Key scientific questions and future directions for potential breakthroughs in neuroimmunology research are proposed.
Collapse
Affiliation(s)
- Hai Qi
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shumin Duan
- Faculty of Medicine and Pharmaceutical Sciences, Zhejiang University, Hangzhou 310014, China
| | - Yanying Xu
- Department of Life Sciences, National Natural Science Foundation of China, Beijing 100085, China
| | - Hongliang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Beijing 100085, China
| |
Collapse
|
26
|
Ren H, Liu Q. Skull and vertebral bone marrow in central nervous system inflammation. FUNDAMENTAL RESEARCH 2024; 4:246-250. [PMID: 38933518 PMCID: PMC11197483 DOI: 10.1016/j.fmre.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 03/07/2023] Open
Abstract
Emerging evidence has highlighted the capacity of hematogenous cells in skull and vertebral bone marrow to enter the meningeal borders via ossified vascular channels and maintain immune homeostasis in the central nervous system (CNS). CNS-adjacent skull and vertebral bone marrow comprises hematopoietic niches that can sense CNS injury and supply specialized immune cells to fine-tune inflammatory responses. Here, we review recent advances in our understanding of skull and vertebral bone marrow-derived immune cells in homeostasis and inflammatory CNS diseases. Further, we discuss the implications for future development of therapies to mitigate CNS inflammation and its detrimental sequelae in neurological disorders.
Collapse
Affiliation(s)
- Honglei Ren
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
27
|
Sun C, Ruan Z, Zhang Y, Guo R, Li H, Wang T, Gao T, Tang Y, Song N, Hao S, Huang X, Li S, Ning F, Su Y, Lu Q, Wang Q, Cao X, Li Z, Chang T. High indirect bilirubin levels as an independent predictor of postoperative myasthenic crisis: a single-center, retrospective study. Front Neurol 2024; 14:1336823. [PMID: 38283685 PMCID: PMC10811789 DOI: 10.3389/fneur.2023.1336823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Background Thymectomy is an efficient and standard treatment strategy for patients with myasthenia gravis (MG), postoperative myasthenic crisis (POMC) is the major complication related to thymectomy and has a strongly life-threatening effect. As a biomarker, whether the bilirubin level is a risk factor for MG progression remains unclear. This study aimed to investigate the association between the preoperative bilirubin level and postoperative myasthenic crisis (POMC). Methods We analyzed 375 patients with MG who underwent thymectomy at Tangdu Hospital between January 2012 and September 2021. The primary outcome measurement was POMC. The association between POMC and bilirubin level was analyzed by restricted cubic spline (RCS). Indirect bilirubin (IBIL) was divided into two subgroups based on the normal upper limit of IBIL, 14 μmol/L. Results Compared with non-POMC group, IBIL levels were significantly higher in patients with POMC. Elevated IBIL levels were closely associated with an increased risk of POMC (p for trend = 0.002). There was a dose-response curve relationship between IBIL levels and POMC incidence (p for non-linearity = 0.93). However, DBIL levels showed a U-shaped association with POMC incidence. High IBIL level (≥14 μmol/L) was an independent predictive factor for POMC [odds ratio = 3.47, 95% confidence interval (CI): 1.56-7.8, p = 0.002]. The addition of high IBIL levels improved the prediction model performance (net reclassification index = 0.186, 95% CI: 0.039-0.334; integrated discrimination improvement = 0.0345, 95% CI: 0.005-0.065). Conclusion High preoperative IBIL levels, especially those exceeding the normal upper limit, could independently predict the incidence of POMC.
Collapse
Affiliation(s)
- Chao Sun
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhe Ruan
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Zhang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rongjing Guo
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huanhuan Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tantan Wang
- School of Pharmaceutical Sciences, Peking-Tsinghua Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Ting Gao
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yonglan Tang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Na Song
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sijia Hao
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoxi Huang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shuang Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fan Ning
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yue Su
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qingqing Wang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiangqi Cao
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
28
|
Fu M, Hua X, Shu S, Xu X, Zhang H, Peng Z, Mo H, Liu Y, Chen X, Yang Y, Zhang N, Wang X, Liu Z, Yue G, Hu S, Song J. Single-cell RNA sequencing in donor and end-stage heart failure patients identifies NLRP3 as a therapeutic target for arrhythmogenic right ventricular cardiomyopathy. BMC Med 2024; 22:11. [PMID: 38185631 PMCID: PMC10773142 DOI: 10.1186/s12916-023-03232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Dilation may be the first right ventricular change and accelerates the progression of threatening ventricular tachyarrhythmias and heart failure for patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), but the treatment for right ventricular dilation remains limited. METHODS Single-cell RNA sequencing (scRNA-seq) of blood and biventricular myocardium from 8 study participants was performed, including 6 end-stage heart failure patients with ARVC and 2 normal controls. ScRNA-seq data was then deeply analyzed, including cluster annotation, cellular proportion calculation, and characterization of cellular developmental trajectories and interactions. An integrative analysis of our single-cell data and published genome-wide association study-based data provided insights into the cell-specific contributions to the cardiac arrhythmia phenotype of ARVC. Desmoglein 2 (Dsg2)mut/mut mice were used as the ARVC model to verify the therapeutic effects of pharmacological intervention on identified cellular cluster. RESULTS Right ventricle of ARVC was enriched of CCL3+ proinflammatory macrophages and TNMD+ fibroblasts. Fibroblasts were preferentially affected in ARVC and perturbations associated with ARVC overlap with those reside in genetic variants associated with cardiac arrhythmia. Proinflammatory macrophages strongly interact with fibroblast. Pharmacological inhibition of Nod-like receptor protein 3 (NLRP3), a transcriptional factor predominantly expressed by the CCL3+ proinflammatory macrophages and several other myeloid subclusters, could significantly alleviate right ventricular dilation and dysfunction in Dsg2mut/mut mice (an ARVC mouse model). CONCLUSIONS This study provided a comprehensive analysis of the lineage-specific changes in the blood and myocardium from ARVC patients at a single-cell resolution. Pharmacological inhibition of NLRP3 could prevent right ventricular dilation and dysfunction of mice with ARVC.
Collapse
Affiliation(s)
- Mengxia Fu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Galactophore Department, Galactophore Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Songren Shu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Xinjie Xu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Hang Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Zhiming Peng
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Mo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Yanyun Liu
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Shaanxi, 710126, China
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Yicheng Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Ningning Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Xiaohu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Zirui Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Guangxin Yue
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Shengshou Hu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China.
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China.
- The Cardiomyopathy Research Group, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China.
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China.
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China.
- The Cardiomyopathy Research Group, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China.
| |
Collapse
|
29
|
Lei Y, Guo X, Luo Y, Niu X, Xi Y, Xiao L, He D, Bian Y, Zhang Y, Wang L, Peng X, Wang Z, Chen G. Synovial microenvironment-influenced mast cells promote the progression of rheumatoid arthritis. Nat Commun 2024; 15:113. [PMID: 38168103 PMCID: PMC10761862 DOI: 10.1038/s41467-023-44304-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Mast cells are phenotypically and functionally heterogeneous, and their state is possibly controlled by local microenvironment. Therefore, specific analyses are needed to understand whether mast cells function as powerful participants or dispensable bystanders in specific diseases. Here, we show that degranulation of mast cells in inflammatory synovial tissues of patients with rheumatoid arthritis (RA) is induced via MAS-related G protein-coupled receptor X2 (MRGPRX2), and the expression of MHC class II and costimulatory molecules on mast cells are upregulated. Collagen-induced arthritis mice treated with a combination of anti-IL-17A and cromolyn sodium, a mast cell membrane stabilizer, show significantly reduced clinical severity and decreased bone erosion. The findings of the present study suggest that synovial microenvironment-influenced mast cells contribute to disease progression and may provide a further mast cell-targeting therapy for RA.
Collapse
Affiliation(s)
- Yunxuan Lei
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Xin Guo
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Yanping Luo
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Yebin Xi
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Lianbo Xiao
- Department of Joint Surgery, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Dongyi He
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqin Bian
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yong Zhang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Li Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China
| | - Xiaochun Peng
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhaojun Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China.
| | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, China.
| |
Collapse
|
30
|
Xu C, Zhang Q, Zhang Y, Chen H, Tang T, Wang J, Xia S, Chen G, Zhang J. Lateralized response of skull bone marrow via osteopontin signaling in mice after ischemia reperfusion. J Neuroinflammation 2023; 20:294. [PMID: 38071333 PMCID: PMC10710724 DOI: 10.1186/s12974-023-02980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Skull bone marrow is thought to be an immune tissue closely associated with the central nervous system (CNS). Recent studies have focused on the role of skull bone marrow in central nervous system disorders. In this study, we performed single-cell RNA sequencing on ipsilateral and contralateral skull bone marrow cells after experimental stroke and then performed flow cytometry and analysis of cytokine expression. Skull marrow showed lateralization in response to stroke. Lateralization is demonstrated primarily by the proliferation and differentiation of myeloid and lymphoid lineage cells in the skull bone marrow adjacent to the ischemic region, with an increased proportion of neutrophils compared to monocytes. Analysis of chemokines in the skull revealed marked differences in chemotactic signals between the ipsilateral and contralateral skull, whereas sympathetic signals innervating the skull did not affect cranial bone marrow lateralization. Osteopontin (OPN) is involved in region-specific activation of the skull marrow that promotes inflammation in the meninges, and inhibition of OPN expression improves neurological function.
Collapse
Affiliation(s)
- Chaoran Xu
- Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Qia Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yi Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huaijun Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tianchi Tang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junjie Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Siqi Xia
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
31
|
Mazzitelli JA, Pulous FE, Smyth LCD, Kaya Z, Rustenhoven J, Moskowitz MA, Kipnis J, Nahrendorf M. Skull bone marrow channels as immune gateways to the central nervous system. Nat Neurosci 2023; 26:2052-2062. [PMID: 37996526 PMCID: PMC10894464 DOI: 10.1038/s41593-023-01487-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 10/10/2023] [Indexed: 11/25/2023]
Abstract
Decades of research have characterized diverse immune cells surveilling the CNS. More recently, the discovery of osseous channels (so-called 'skull channels') connecting the meninges with the skull and vertebral bone marrow has revealed a new layer of complexity in our understanding of neuroimmune interactions. Here we discuss our current understanding of skull and vertebral bone marrow anatomy, its contribution of leukocytes to the meninges, and its surveillance of the CNS. We explore the role of this hematopoietic output on CNS health, focusing on the supply of immune cells during health and disease.
Collapse
Affiliation(s)
- Jose A Mazzitelli
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
- Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Fadi E Pulous
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Leon C D Smyth
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Zeynep Kaya
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Justin Rustenhoven
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
| | - Michael A Moskowitz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA.
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA.
- Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, MO, USA.
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
32
|
Zhou R, Wang L, Chen L, Feng X, Zhou R, Xiang P, Wen J, Huang Y, Zhou H. Bone Marrow-Derived GCA + Immune Cells Drive Alzheimer's Disease Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303402. [PMID: 37949676 PMCID: PMC10754099 DOI: 10.1002/advs.202303402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Alzheimer's disease (AD) is an age-related degenerative disease of the central nervous system (CNS), whereas the role of bone marrow immune cells in the pathogenesis of AD remains unclear. Here, the study reveals that compared to matched healthy individuals, AD patients have higher circulating grancalcin (GCA) levels, which negatively correlate with cognitive function. Bone marrow-derived GCA+ immune cells, which secret abundant GCA and increase during aging, preferentially invaded the hippocampus and cortex of AD mouse model in a C-C Motif Chemokine Receptor 10 (CCR10)-dependent manner. Transplanting GCA+ immune cells or direct stereotaxic injection of recombinant GCA protein intensified amyloid plaque load and aggravated cognitive and memory impairments. In contrast, genetic ablation of GCA in the hematopoietic compartment improves cognitive and memory function. Mechanistically, GCA competitively binds to the low-density lipoprotein receptor-related protein 1 (LRP1) in microglia, thus inhibiting phagocytosis and clearance of Aβ and potentiating neuropathological changes. Importantly, GCA-neutralizing antibody treatment rejuvenated cognitive and memory function and constrained AD progression. Together, the study demonstrates a pathological role of GCA+ immune cells instigating cognitive and memory decline, suggesting that GCA+ immune cells can be a potential target for innovative therapeutic strategies in AD.
Collapse
Affiliation(s)
- Rui Zhou
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
| | - Liwen Wang
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
| | - Linyun Chen
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
| | - Xu Feng
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
| | - Ruoyu Zhou
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
| | - Peng Xiang
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
| | - Jie Wen
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
| | - Yan Huang
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Haiyan Zhou
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| |
Collapse
|
33
|
Brea D. Post-stroke immunosuppression: Exploring potential implications beyond infections. Eur J Neurosci 2023; 58:4269-4281. [PMID: 37857561 DOI: 10.1111/ejn.16174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Stroke is a leading cause of mortality and disability. It occurs when cerebral blood flow is disrupted via vascular occlusion or rupture, causing tissue damage. Research has extensively examined the role of the immune response in stroke pathophysiology, focusing on infiltrated immune cells and inflammatory molecules. However, the stroke's impact on immune physiology remains underexplored. While initially stroke triggers the activation of peripheral inflammation, a subsequent profound immunosuppression occurs in a matter of hours/days. This response, potentially shielding the brain from excessive inflammation, significantly affects stroke patients. Beyond rendering patients more susceptible to infections, immunosuppression generates diverse consequences by disrupting immune system functions that are crucial for organ homeostasis. This review explores the effects of immunosuppression on stroke patients, shedding light on potential issues in immune organs such as the spleen and bone marrow, as well as non-immune organs like the small intestine, liver and heart. By synthesizing existing literature and offering additional insights, this manuscript highlights the multifaceted impact of post-stroke immunosuppression.
Collapse
Affiliation(s)
- David Brea
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científcas (CSIC), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
34
|
Gao W, Lei Y, Guo X, Luo Y, Zhang Z, Xi Y, Wang W, Xia W, Wang Z, Niu X, Chen G, Yue T. Comparison and subsets analysis of peripheral CD4 +T cells in patients with psoriasis and psoriatic arthritis. Mol Immunol 2023; 163:174-180. [PMID: 37812989 DOI: 10.1016/j.molimm.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/14/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
Psoriatic arthritis (PsA) is a disease that transformed from psoriasis (PsO), and its underlying mechanisms are still not fully understood. Overactivation of the immune system is a key factor driving inflammatory diseases. Our goal is to define the unbalanced subsets of peripheral blood CD4 +T cells between PsO and PsA patients. Blood samples from 43 patients (23 PsA and 20 PsO) and 36 healthy donors (HD) were studied. Peripheral blood mononuclear cells (PBMC) were separated from blood and underwent fluorescent staining to assess CD4+T cell subsets by flow cytometry. We found that frequencies of various CD4+T cells including Th1, Th2, Th17, and Tfh were higher in the patients with PsO or PsA than those of healthy donors, indicating the general expansion of CD4+T cells in inflammatory conditions. More importantly, we observed the significant imbalance of Th1/Th2 between patients with PsO and PsA. Pearson correlation analysis showed that Th1/Th2 ratio was positively correlated with disease activity in psoriatic arthritis (DAPSA), Tfh/Tfr ratio was positively correlated with DAPSA score and visual analogue scale (VAS) score in PsA patients. Together, our results highlight the CD4+T cell changes in the transition from PsO to PsA, may contribute to early assessment and intervention.
Collapse
Affiliation(s)
- Weiqin Gao
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunxuan Lei
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Guo
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Luo
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghua Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Yebin Xi
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Wang
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Wenjie Xia
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Zhaojun Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guangjie Chen
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Tao Yue
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
35
|
Shi Y, Qi C, Bai Y. The immunometabolic landscape of bone marrow cells in multiple sclerosis. FASEB J 2023; 37:e23267. [PMID: 37878265 DOI: 10.1096/fj.202300694r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/29/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
In multiple sclerosis (MS), the bone marrow hematopoietic system supplies immune cells to orchestrate central nervous system (CNS) inflammation and autoimmunity. Understanding the metabolic processes within the bone marrow is essential for unraveling the phenotype and function of immune cells. However, a comprehensive exploration of the metabolic landscape and its association with systemic immune response in MS at the single-cell level has yet to be elucidated. Herein, we conducted an analysis of 70 289 bone marrow cells obtained from seven patients with MS and seven health controls (referenced as HRA001783) to address this question. Our focus was primarily on investigating the metabolic preferences of diverse immune cell populations and delineating their metabolic manifestations in the bone marrow microenvironment of MS. Through our analysis, we observed the activation of carbohydrate and amino acid metabolic pathways in the bone marrow cells of MS patients. Notably, we discovered significant metabolic alterations in cell-cell communication within the plasma cell population in the MS bone marrow. These findings shed light on the complex metabolic landscape within the bone marrow niche during MS and highlight the distinctive metabolic characteristics of plasma cells in this context, which may provoke novel understanding of MS pathogenesis and promote future design of immune therapies.
Collapse
Affiliation(s)
- Yutong Shi
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Caiyun Qi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Bai
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, China
| |
Collapse
|
36
|
Wang Z, Zheng D, Tan YS, Yuan Q, Yuan F, Zhang S. Enabling Survival of Transplanted Neural Precursor Cells in the Ischemic Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302527. [PMID: 37867250 PMCID: PMC10667812 DOI: 10.1002/advs.202302527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/24/2023] [Indexed: 10/24/2023]
Abstract
There is no effective therapy for ischemic stroke following the acute stage. Neural transplantation offers a potential option for repairing the ischemic lesion. However, this strategy is hindered by the poor survival of the neural precursor cells (NPCs) that are transplanted into the inflammatory ischemic core. Here, a chemical cocktail consisting of fibrinogen and maraviroc is developed to promote the survival of the transplanted NPCs in the ischemic core of the mouse cerebral cortex. The grafted NPCs survive in the presence of the cocktail but not fibrinogen or maraviroc alone at day 7. The surviving NPCs divide and differentiate to mature neurons by day 30, reconstituting the infarct cortex with vascularization. Molecular analysis in vivo and in vitro shows that blocking the activation of CCR5 on the NPCs protects the NPCs from apoptosis induced by pro-inflammatory factors, revealing the underlying protective effect of the cocktail for NPCs. The findings open an avenue to enable survival of the transplanted NPCs under the inflammatory neurological conditions like stroke.
Collapse
Affiliation(s)
- Zhifu Wang
- Program in Neuroscience & Behavioral Disorders, GK Goh Centre for NeuroscienceDuke‐NUS Medical SchoolSingapore169857Singapore
| | - Danyi Zheng
- Program in Neuroscience & Behavioral Disorders, GK Goh Centre for NeuroscienceDuke‐NUS Medical SchoolSingapore169857Singapore
| | - Ye Sing Tan
- Program in Neuroscience & Behavioral Disorders, GK Goh Centre for NeuroscienceDuke‐NUS Medical SchoolSingapore169857Singapore
| | - Qiang Yuan
- Program in Neuroscience & Behavioral Disorders, GK Goh Centre for NeuroscienceDuke‐NUS Medical SchoolSingapore169857Singapore
| | - Fang Yuan
- Program in Neuroscience & Behavioral Disorders, GK Goh Centre for NeuroscienceDuke‐NUS Medical SchoolSingapore169857Singapore
| | - Su‐Chun Zhang
- Program in Neuroscience & Behavioral Disorders, GK Goh Centre for NeuroscienceDuke‐NUS Medical SchoolSingapore169857Singapore
- Department of NeuroscienceDepartment of NeurologyWaisman CenterUniversity of Wisconsin‐MadisonMadisonWI53705USA
| |
Collapse
|
37
|
Diebold M, Fehrenbacher L, Frosch M, Prinz M. How myeloid cells shape experimental autoimmune encephalomyelitis: At the crossroads of outside-in immunity. Eur J Immunol 2023; 53:e2250234. [PMID: 37505465 DOI: 10.1002/eji.202250234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/21/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of central nervous system (CNS) autoimmunity. It is most commonly used to mimic aspects of multiple sclerosis (MS), a demyelinating disorder of the human brain and spinal cord. The innate immune response displays one of the core pathophysiological features linked to both the acute and chronic stages of MS. Hence, understanding and targeting the innate immune response is essential. Microglia and other CNS resident MUs, as well as infiltrating myeloid cells, diverge substantially in terms of both their biology and their roles in EAE. Recent advances in the field show that antigen presentation, as well as disease-propagating and regulatory interactions with lymphocytes, can be attributed to specific myeloid cell types and cell states in EAE lesions, following a distinct temporal pattern during disease initiation, propagation and recovery. Furthermore, single-cell techniques enable the assessment of characteristic proinflammatory as well as beneficial cell states, and identification of potential treatment targets. Here, we discuss the principles of EAE induction and protocols for varying experimental paradigms, the composition of the myeloid compartment of the CNS during health and disease, and systematically review effects on myeloid cells for therapeutic approaches in EAE.
Collapse
Affiliation(s)
- Martin Diebold
- Institute of Neuropathology, University Medical Center Freiburg, Freiburg, Germany
| | - Luca Fehrenbacher
- Institute of Neuropathology, University Medical Center Freiburg, Freiburg, Germany
| | - Maximilian Frosch
- Institute of Neuropathology, University Medical Center Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, University Medical Center Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
38
|
Zong B, Yu F, Zhang X, Zhao W, Li S, Li L. Mechanisms underlying the beneficial effects of physical exercise on multiple sclerosis: focus on immune cells. Front Immunol 2023; 14:1260663. [PMID: 37841264 PMCID: PMC10570846 DOI: 10.3389/fimmu.2023.1260663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple sclerosis (MS) is a prevalent neuroimmunological illness that leads to neurological disability in young adults. Although the etiology of MS is heterogeneous, it is well established that aberrant activity of adaptive and innate immune cells plays a crucial role in its pathogenesis. Several immune cell abnormalities have been described in MS and its animal models, including T lymphocytes, B lymphocytes, dendritic cells, neutrophils, microglia/macrophages, and astrocytes, among others. Physical exercise offers a valuable alternative or adjunctive disease-modifying therapy for MS. A growing body of evidence indicates that exercise may reduce the autoimmune responses triggered by immune cells in MS. This is partially accomplished by restricting the infiltration of peripheral immune cells into the central nervous system (CNS) parenchyma, curbing hyperactivation of immune cells, and facilitating a transition in the balance of immune cells from a pro-inflammatory to an anti-inflammatory state. This review provides a succinct overview of the correlation between physical exercise, immune cells, and MS pathology, and highlights the potential benefits of exercise as a strategy for the prevention and treatment of MS.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Xiaoyou Zhang
- School of Physical Education, Hubei University, Wuhan, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Shichang Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|
39
|
Gulbins A, Horstmann M, Keitsch S, Soddemann M, Wilker B, Wilson GC, Zeidan R, Hammer GD, Daser A, Bechrakis NE, Görtz GE, Eckstein A. Potential involvement of the bone marrow in experimental Graves' disease and thyroid eye disease. Front Endocrinol (Lausanne) 2023; 14:1252727. [PMID: 37810891 PMCID: PMC10558005 DOI: 10.3389/fendo.2023.1252727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Graves' disease is an autoimmune disorder caused by auto-antibodies against the thyroid stimulating hormone receptor (TSHR). Overstimulation of the TSHR induces hyperthyroidism and thyroid eye disease (TED) as the most common extra thyroidal manifestation of Graves' disease. In TED, the TSHR cross talks with the insulin-like growth factor 1 receptor (IGF-1R) in orbital fibroblasts leading to inflammation, deposition of hyaluronan and adipogenesis. The bone marrow may play an important role in autoimmune diseases, but its role in Graves' disease and TED is unknown. Here, we investigated whether induction of experimental Graves' disease and accompanying TED involves bone marrow activation and whether interference with IGF-1R signaling prevents this activation. Results Immunization of mice with TSHR resulted in an increase the numbers of CD4-positive T-lymphocytes (p ≤0.0001), which was normalized by linsitinib (p = 0.0029), an increase of CD19-positive B-lymphocytes (p= 0.0018), which was unaffected by linsitinib and a decrease of GR1-positive cells (p= 0.0038), which was prevented by linsitinib (p= 0.0027). In addition, we observed an increase of Sca-1 positive hematopietic stem cells (p= 0.0007) and of stromal cell-derived factor 1 (SDF-1) (p ≤0.0001) after immunization with TSHR which was prevented by linsitinib (Sca-1: p= 0.0008, SDF-1: p ≤0.0001). TSHR-immunization also resulted in upregulation of CCL-5, IL-6 and osteopontin (all p ≤0.0001) and a concomitant decrease of the immune-inhibitory cytokines IL-10 (p= 0.0064) and PGE2 (p ≤0.0001) in the bone marrow (all p≤ 0.0001). Treatment with the IGF-1R antagonist linsitinib blocked these events (all p ≤0.0001). We further demonstrate a down-regulation of arginase-1 expression (p= 0.0005) in the bone marrow in TSHR immunized mice, with a concomitant increase of local arginine (p ≤0.0001). Linsitinib induces an upregulation of arginase-1 resulting in low arginase levels in the bone marrow. Reconstitution of arginine in bone marrow cells in vitro prevented immune-inhibition by linsitinib. Conclusion Collectively, these data indicate that the bone marrow is activated in experimental Graves' disease and TED, which is prevented by linsitinib. Linsitinib-mediated immune-inhibition is mediated, at least in part, by arginase-1 up-regulation, consumption of arginine and thereby immune inhibition.
Collapse
Affiliation(s)
- Anne Gulbins
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mareike Horstmann
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Simone Keitsch
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthias Soddemann
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Barbara Wilker
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Gregory C. Wilson
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Ryan Zeidan
- Sling Therapeutics Inc., Ann Arbor, MI, United States
| | - Gary D. Hammer
- Endocrine Oncology Program, University of Michigan, Ann Arbor, MI, United States
| | - Anke Daser
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nikolaos E. Bechrakis
- Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gina-Eva Görtz
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anja Eckstein
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
40
|
Balog BM, Sonti A, Zigmond RE. Neutrophil biology in injuries and diseases of the central and peripheral nervous systems. Prog Neurobiol 2023; 228:102488. [PMID: 37355220 PMCID: PMC10528432 DOI: 10.1016/j.pneurobio.2023.102488] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
The role of inflammation in nervous system injury and disease is attracting increased attention. Much of that research has focused on microglia in the central nervous system (CNS) and macrophages in the peripheral nervous system (PNS). Much less attention has been paid to the roles played by neutrophils. Neutrophils are part of the granulocyte subtype of myeloid cells. These cells, like macrophages, originate and differentiate in the bone marrow from which they enter the circulation. After tissue damage or infection, neutrophils are the first immune cells to infiltrate into tissues and are directed there by specific chemokines, which act on chemokine receptors on neutrophils. We have reviewed here the basic biology of these cells, including their differentiation, the types of granules they contain, the chemokines that act on them, the subpopulations of neutrophils that exist, and their functions. We also discuss tools available for identification and further study of neutrophils. We then turn to a review of what is known about the role of neutrophils in CNS and PNS diseases and injury, including stroke, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, spinal cord and traumatic brain injuries, CNS and PNS axon regeneration, and neuropathic pain. While in the past studies have focused on neutrophils deleterious effects, we will highlight new findings about their benefits. Studies on their actions should lead to identification of ways to modify neutrophil effects to improve health.
Collapse
Affiliation(s)
- Brian M Balog
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Anisha Sonti
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Richard E Zigmond
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA.
| |
Collapse
|
41
|
Miyamoto K, Sujino T, Harada Y, Ashida H, Yoshimatsu Y, Yonemoto Y, Nemoto Y, Tomura M, Melhem H, Niess JH, Suzuki T, Suzuki T, Suzuki S, Koda Y, Okamoto R, Mikami Y, Teratani T, Tanaka KF, Yoshimura A, Sato T, Kanai T. The gut microbiota-induced kynurenic acid recruits GPR35-positive macrophages to promote experimental encephalitis. Cell Rep 2023; 42:113005. [PMID: 37590143 DOI: 10.1016/j.celrep.2023.113005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
The intricate interplay between gut microbes and the onset of experimental autoimmune encephalomyelitis (EAE) remains poorly understood. Here, we uncover remarkable similarities between CD4+ T cells in the spinal cord and their counterparts in the small intestine. Furthermore, we unveil a synergistic relationship between the microbiota, particularly enriched with the tryptophan metabolism gene EC:1.13.11.11, and intestinal cells. This symbiotic collaboration results in the biosynthesis of kynurenic acid (KYNA), which modulates the recruitment and aggregation of GPR35-positive macrophages. Subsequently, a robust T helper 17 (Th17) immune response is activated, ultimately triggering the onset of EAE. Conversely, modulating the KYNA-mediated GPR35 signaling in Cx3cr1+ macrophages leads to a remarkable amelioration of EAE. These findings shed light on the crucial role of microbial-derived tryptophan metabolites in regulating immune responses within extraintestinal tissues.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Miyarisan Pharmaceutical Co., Ltd., Research Laboratory, 1-10-3, Kaminagazato, Kita-ku, Tokyo 114-0016, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Yosuke Harada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroshi Ashida
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Cyuo-ku, Chiba city, Chiba 260-8673, Japan
| | - Yusuke Yoshimatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuki Yonemoto
- Department of Gastroenterology and Hepatology, Tokyo Medical Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yasuhiro Nemoto
- Department of Gastroenterology and Hepatology, Tokyo Medical Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Otani University, 3-11-1 Nshikiorikita, Tondabayshi, Osaka, 584-8584, Japan
| | - Hassan Melhem
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; Clarunis-University Center for Gastrointestinal and Liver Diseases, University Hospital Basel, 4002 Basel, Switzerland
| | - Toshihiko Suzuki
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Toru Suzuki
- Division of Brain Sciences Institute for Advanced Medical Research, Keio University School of Medicne, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shohei Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuzo Koda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenji F. Tanaka
- Division of Brain Sciences Institute for Advanced Medical Research, Keio University School of Medicne, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1, Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
42
|
Dietz A, Senf K, Karius J, Stumm R, Neuhaus EM. Glia Cells Control Olfactory Neurogenesis by Fine-Tuning CXCL12. Cells 2023; 12:2164. [PMID: 37681896 PMCID: PMC10486585 DOI: 10.3390/cells12172164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Olfaction depends on lifelong production of sensory neurons from CXCR4 expressing neurogenic stem cells. Signaling by CXCR4 depends on the concentration of CXCL12, CXCR4's principal ligand. Here, we use several genetic models to investigate how regulation of CXCL12 in the olfactory stem cell niche adjusts neurogenesis. We identify subepithelial tissue and sustentacular cells, the olfactory glia, as main CXCL12 sources. Lamina propria-derived CXCL12 accumulates on quiescent gliogenic stem cells via heparan sulfate. Additionally, CXCL12 is secreted within the olfactory epithelium by sustentacular cells. Both sustentacular-cell-derived and lamina propria-derived CXCL12 are required for CXCR4 activation. ACKR3, a high-affinity CXCL12 scavenger, is expressed by mature glial cells and titrates CXCL12. The accurate adjustment of CXCL12 by ACKR3 is critical for CXCR4-dependent proliferation of neuronal stem cells and for proper lineage progression. Overall, these findings establish precise regulation of CXCL12 by glia cells as a prerequisite for CXCR4-dependent neurogenesis and identify ACKR3 as a scavenger influencing tissue homeostasis beyond embryonic development.
Collapse
Affiliation(s)
| | | | | | | | - Eva Maria Neuhaus
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747 Jena, Germany; (A.D.); (K.S.); (J.K.); (R.S.)
| |
Collapse
|
43
|
Laaker C, Baenen C, Kovács KG, Sandor M, Fabry Z. Immune cells as messengers from the CNS to the periphery: the role of the meningeal lymphatic system in immune cell migration from the CNS. Front Immunol 2023; 14:1233908. [PMID: 37662908 PMCID: PMC10471710 DOI: 10.3389/fimmu.2023.1233908] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
In recent decades there has been a large focus on understanding the mechanisms of peripheral immune cell infiltration into the central nervous system (CNS) in neuroinflammatory diseases. This intense research led to several immunomodulatory therapies to attempt to regulate immune cell infiltration at the blood brain barrier (BBB), the choroid plexus (ChP) epithelium, and the glial barrier. The fate of these infiltrating immune cells depends on both the neuroinflammatory environment and their type-specific interactions with innate cells of the CNS. Although the fate of the majority of tissue infiltrating immune cells is death, a percentage of these cells could become tissue resident immune cells. Additionally, key populations of immune cells can possess the ability to "drain" out of the CNS and act as messengers reporting signals from the CNS toward peripheral lymphatics. Recent data supports that the meningeal lymphatic system is involved not just in fluid homeostatic functions in the CNS but also in facilitating immune cell migration, most notably dendritic cell migration from the CNS to the meningeal borders and to the draining cervical lymph nodes. Similar to the peripheral sites, draining immune cells from the CNS during neuroinflammation have the potential to coordinate immunity in the lymph nodes and thus influence disease. Here in this review, we will evaluate evidence of immune cell drainage from the brain via the meningeal lymphatics and establish the importance of this in animal models and humans. We will discuss how targeting immune cells at sites like the meningeal lymphatics could provide a new mechanism to better provide treatment for a variety of neurological conditions.
Collapse
Affiliation(s)
- Collin Laaker
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI, United States
| | - Cameron Baenen
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Kristóf G. Kovács
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| |
Collapse
|
44
|
Qing R, Xue M, Zhao J, Wu L, Breitwieser A, Smorodina E, Schubert T, Azzellino G, Jin D, Kong J, Palacios T, Sleytr UB, Zhang S. Scalable biomimetic sensing system with membrane receptor dual-monolayer probe and graphene transistor arrays. SCIENCE ADVANCES 2023; 9:eadf1402. [PMID: 37478177 PMCID: PMC10361598 DOI: 10.1126/sciadv.adf1402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Affinity-based biosensing can enable point-of-care diagnostics and continuous health monitoring, which commonly follows bottom-up approaches and is inherently constrained by bioprobes' intrinsic properties, batch-to-batch consistency, and stability in biofluids. We present a biomimetic top-down platform to circumvent such difficulties by combining a "dual-monolayer" biorecognition construct with graphene-based field-effect-transistor arrays. The construct adopts redesigned water-soluble membrane receptors as specific sensing units, positioned by two-dimensional crystalline S-layer proteins as dense antifouling linkers guiding their orientations. Hundreds of transistors provide statistical significance from transduced signals. System feasibility was demonstrated with rSbpA-ZZ/CXCR4QTY-Fc combination. Nature-like specific interactions were achieved toward CXCL12 ligand and HIV coat glycoprotein in physiologically relevant concentrations, without notable sensitivity loss in 100% human serum. The construct is regeneratable by acidic buffer, allowing device reuse and functional tuning. The modular and generalizable architecture behaves similarly to natural systems but gives electrical outputs, which enables fabrication of multiplex sensors with tailored receptor panels for designated diagnostic purposes.
Collapse
Affiliation(s)
- Rui Qing
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- MIT Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Mantian Xue
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jiayuan Zhao
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lidong Wu
- Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Andreas Breitwieser
- Department of Bionanosciences (DBNS), BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Eva Smorodina
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Giovanni Azzellino
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Jin
- Avalon GloboCare Corp., Freehold, NJ 07728, USA
| | - Jing Kong
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomás Palacios
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Uwe B. Sleytr
- Department of Bionanosciences (DBNS), BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Shuguang Zhang
- MIT Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
45
|
Kiss MG, Mindur JE, Yates AG, Lee D, Fullard JF, Anzai A, Poller WC, Christie KA, Iwamoto Y, Roudko V, Downey J, Chan CT, Huynh P, Janssen H, Ntranos A, Hoffmann JD, Jacob W, Goswami S, Singh S, Leppert D, Kuhle J, Kim-Schulze S, Nahrendorf M, Kleinstiver BP, Probert F, Roussos P, Swirski FK, McAlpine CS. Interleukin-3 coordinates glial-peripheral immune crosstalk to incite multiple sclerosis. Immunity 2023; 56:1502-1514.e8. [PMID: 37160117 PMCID: PMC10524830 DOI: 10.1016/j.immuni.2023.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/07/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Glial cells and central nervous system (CNS)-infiltrating leukocytes contribute to multiple sclerosis (MS). However, the networks that govern crosstalk among these ontologically distinct populations remain unclear. Here, we show that, in mice and humans, CNS-resident astrocytes and infiltrating CD44hiCD4+ T cells generated interleukin-3 (IL-3), while microglia and recruited myeloid cells expressed interleukin-3 receptor-ɑ (IL-3Rɑ). Astrocytic and T cell IL-3 elicited an immune migratory and chemotactic program by IL-3Rɑ+ myeloid cells that enhanced CNS immune cell infiltration, exacerbating MS and its preclinical model. Multiregional snRNA-seq of human CNS tissue revealed the appearance of IL3RA-expressing myeloid cells with chemotactic programming in MS plaques. IL3RA expression by plaque myeloid cells and IL-3 amount in the cerebrospinal fluid predicted myeloid and T cell abundance in the CNS and correlated with MS severity. Our findings establish IL-3:IL-3RA as a glial-peripheral immune network that prompts immune cell recruitment to the CNS and worsens MS.
Collapse
Affiliation(s)
- Máté G Kiss
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - John E Mindur
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Abi G Yates
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donghoon Lee
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Disease Neurogenomics and the Icahn Institute for Data Science and Genomic Technology and the Departments of Psychiatry and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Fullard
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Disease Neurogenomics and the Icahn Institute for Data Science and Genomic Technology and the Departments of Psychiatry and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Atsushi Anzai
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wolfram C Poller
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathleen A Christie
- Center for Genomic Medicine, Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Yoshiko Iwamoto
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Vladimir Roudko
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey Downey
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christopher T Chan
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pacific Huynh
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Henrike Janssen
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Achilles Ntranos
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jan D Hoffmann
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Walter Jacob
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sukanya Goswami
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sumnima Singh
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Leppert
- Departments of Medicine, Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Departments of Medicine, Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthias Nahrendorf
- Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Fay Probert
- Department of Pharmacology and Department Chemistry, University of Oxford, Oxford, UK
| | - Panos Roussos
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Disease Neurogenomics and the Icahn Institute for Data Science and Genomic Technology and the Departments of Psychiatry and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, New York, NY, USA; Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Filip K Swirski
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cameron S McAlpine
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology and the Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Hu XH, Chen L, Wu H, Tang YB, Zheng QM, Wei XY, Wei Q, Huang Q, Chen J, Xu X. Cell therapy in end-stage liver disease: replace and remodel. Stem Cell Res Ther 2023; 14:141. [PMID: 37231461 DOI: 10.1186/s13287-023-03370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Liver disease is prevalent worldwide. When it reaches the end stage, mortality rises to 50% or more. Although liver transplantation has emerged as the most efficient treatment for end-stage liver disease, its application has been limited by the scarcity of donor livers. The lack of acceptable donor organs implies that patients are at high risk while waiting for suitable livers. In this scenario, cell therapy has emerged as a promising treatment approach. Most of the time, transplanted cells can replace host hepatocytes and remodel the hepatic microenvironment. For instance, hepatocytes derived from donor livers or stem cells colonize and proliferate in the liver, can replace host hepatocytes, and restore liver function. Other cellular therapy candidates, such as macrophages and mesenchymal stem cells, can remodel the hepatic microenvironment, thereby repairing the damaged liver. In recent years, cell therapy has transitioned from animal research to early human studies. In this review, we will discuss cell therapy in end-stage liver disease treatment, especially focusing on various cell types utilized for cell transplantation, and elucidate the processes involved. Furthermore, we will also summarize the practical obstacles of cell therapy and offer potential solutions.
Collapse
Affiliation(s)
- Xin-Hao Hu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lan Chen
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hao Wu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yang-Bo Tang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Qiu-Min Zheng
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Yong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qiang Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qi Huang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xiao Xu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
47
|
Wang H, Luo F, Shao X, Gao Y, Jiang N, Jia C, Li H, Chen R. Integrated Proteomics and Single-Cell Mass Cytometry Analysis Dissects the Immune Landscape of Ankylosing Spondylitis. Anal Chem 2023; 95:7702-7714. [PMID: 37126452 DOI: 10.1021/acs.analchem.3c00809] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mass cytometry is a powerful single-cell technology widely adopted to depict immune cell heterogeneity in different contexts. However, this method is only capable of examining several dozens of proteins simultaneously and requires a prior knowledge of the markers to be analyzed. Here we propose that the integration of mass cytometry with shot-gun proteomics may serve as a valuable tool to achieve an in-depth understanding of the immune system. By implementing such a strategy, we investigated the immune landscape of ankylosing spondylitis (AS), a chronic inflammatory arthritis with unclear etiology. The proteome alteration in peripheral blood mononuclear cells (PBMCs) was investigated by quantitative proteomics, and then mass cytometry analysis was conducted to decipher the immunome by considering the signaling molecules identified with differential expression by proteomics. As a result, we identified a wide spectrum of proteins dysregulated in AS, e.g., upregulation of glycolytic enzymes, downregulation of lipid transporters, and dysregulation of chemokine signaling molecules involved in proinflammatory cytokine production and leucocyte migration. Moreover, the single-cell analysis showed the upregulation of chemokine signaling regulators in subclusters of both innate and adaptive immune cells in AS. In addition, correlation analysis unveiled the interplay among Phenograph-identified subclusters of monocytes, CD4+ T cells, and CD8+ T cells. Taken together, our findings demonstrated that the integration of mass spectrometry-based proteomics and single-cell mass cytometry may serve as a useful tool to reveal clinically relevant information regarding useful targets and cellular phenotypes that could be further exploited to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Hao Wang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450008, China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fengting Luo
- Department of Clinical Laboratory, Tianjin Hospital, Tianjin 300142, China
| | - Xianfeng Shao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Na Jiang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Chenxi Jia
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
| | - Hongle Li
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450008, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
48
|
Guo M, Ge X, Wang C, Yin Z, Jia Z, Hu T, Li M, Wang D, Han Z, Wang L, Xiong X, Chen F, Lei P. Intranasal Delivery of Gene-Edited Microglial Exosomes Improves Neurological Outcomes after Intracerebral Hemorrhage by Regulating Neuroinflammation. Brain Sci 2023; 13:brainsci13040639. [PMID: 37190604 DOI: 10.3390/brainsci13040639] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Neural inflammatory response is a crucial pathological change in intracerebral hemorrhage (ICH) which accelerates the formation of perihematomal edema and aggravates neural cell death. Although surgical and drug treatments for ICH have advanced rapidly in recent years, therapeutic strategies that target and control neuroinflammation are still limited. Exosomes are important carriers for information transfer among cells. They have also been regarded as a promising therapeutic tool in translational medicine, with low immunogenicity, high penetration through the blood-brain barrier, and ease of modification. In our previous research, we have found that exogenous administration of miRNA-124-overexpressed microglial exosomes (Exo-124) are effective in improving post-injury cognitive impairment. From this, we evaluated the potential therapeutic effects of miRNA-124-enriched microglial exosomes on the ICH mice in the present study. We found that the gene-edited exosomes could attenuate neuro-deficits and brain edema, improve blood-brain barrier integrity, and reduce neural cell death. Moreover, the protective effect of Exo-124 was abolished in mice depleted of Gr-1+ myeloid cells. It suggested that the exosomes exerted their functions by limiting the infiltration of leukocyte into the brain, thus controlling neuroinflammation following the onset of ICH. In conclusion, our findings provided a promising therapeutic strategy for improving neuroinflammation in ICH. It also opens a new avenue for intranasal delivery of exosome therapy using miRNA-edited microglial exosomes.
Collapse
Affiliation(s)
- Mengtian Guo
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xintong Ge
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Conglin Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhenyu Yin
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zexi Jia
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tianpeng Hu
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meimei Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dong Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaoli Han
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lu Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiangyang Xiong
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Tianjin 300052, China
| | - Ping Lei
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
49
|
Castellani G, Croese T, Peralta Ramos JM, Schwartz M. Transforming the understanding of brain immunity. Science 2023; 380:eabo7649. [PMID: 37023203 DOI: 10.1126/science.abo7649] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Contemporary studies have completely changed the view of brain immunity from envisioning the brain as isolated and inaccessible to peripheral immune cells to an organ in close physical and functional communication with the immune system for its maintenance, function, and repair. Circulating immune cells reside in special niches in the brain's borders, the choroid plexus, meninges, and perivascular spaces, from which they patrol and sense the brain in a remote manner. These niches, together with the meningeal lymphatic system and skull microchannels, provide multiple routes of interaction between the brain and the immune system, in addition to the blood vasculature. In this Review, we describe current ideas about brain immunity and their implications for brain aging, diseases, and immune-based therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Castellani
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tommaso Croese
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Michal Schwartz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
50
|
Monsour M, Gordon J, Lockard G, Borlongan CV. Stem Cells Attenuate the Inflammation Crosstalk Between Ischemic Stroke and Multiple Sclerosis: A Review. Cell Transplant 2023; 32:9636897231184596. [PMID: 37515536 PMCID: PMC10387781 DOI: 10.1177/09636897231184596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 07/31/2023] Open
Abstract
The immense neuroinflammation induced by multiple sclerosis (MS) promotes a favorable environment for ischemic stroke (IS) development, making IS a deadly complication of MS. The overlapping inflammation in MS and IS is a prelude to the vascular pathology, and an inherent cell death mechanism that exacerbates neurovascular unit (NVU) impairment in the disease progression. Despite this consequence, no therapies focus on reducing IS incidence in patients with MS. To this end, the preclinical and clinical evidence we review here argues for cell-based regenerative medicine that will augment the NVU dysfunction and inflammation to ameliorate IS risk.
Collapse
Affiliation(s)
- Molly Monsour
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jonah Gordon
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Gavin Lockard
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|