1
|
Acero-Bedoya S, Higgs EF, Martinez AC, Tonea R, Gajewski TF. Dendritic cell-intrinsic PTPN22 negatively regulates antitumor immunity and impacts anti-PD-L1 efficacy. J Immunother Cancer 2024; 12:e009588. [PMID: 39461876 DOI: 10.1136/jitc-2024-009588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Individuals with a loss-of-function single-nucleotide polymorphism in the gene encoding PTPN22 have an increased risk for autoimmune diseases, and patients with cancer with such alleles may respond better to checkpoint blockade immunotherapy. Studies in PTPN22 knockout (KO) mice have established it as a negative regulator of T cell responses in cancer models. However, the role of PTPN22 in distinct immune cell compartments, such as dendritic cells (DCs), remains undefined. METHODS We developed a novel PTPN22 conditional KO (cKO) mouse model that enables specific deletion in CD11c+ DCs by crossing to CD11c-Cre transgenic mice. Antitumor immunity was characterized using the B16.SIY and MC38.SIY cancer models and immune profiles of relevant tissues were evaluated by spectral flow cytometry. Antigen uptake, processing, and presentation, as well as DC proliferation to Flt3L, were characterized ex vivo. RESULTS Deletion of PTPN22 in DCs resulted in augmented antitumor immunity in multiple syngeneic tumor models. Tumor antigen-specific CD8+ T cells were increased in the tumor microenvironment (TME) of PTPN22 cKO mice and improved tumor control was CD8+ T cell-dependent. Augmented T cell priming was also detected at early time points in the draining lymph nodes, and these effects were correlated with an increased number of proliferating CD103+ DCs, also seen in the TME. In vitro studies revealed increased DC proliferation in response to Flt3L, as well as increased antigen processing and presentation. PTPN22 cKO mice bearing MC38 parental tumors showed combinatorial benefit with anti-PD-L1 therapy. CONCLUSIONS Deletion of PTPN22 in DCs is sufficient to drive an augmented tumor antigen-specific T cell response, resulting in enhanced tumor control. PTPN22 negatively regulates DC proliferation and antigen processing and presentation. Our work argues that PTPN22 is an attractive therapeutic target for cancer immunotherapy and highlights the potential to modulate antitumor immunity through the manipulation of DC signaling.
Collapse
Affiliation(s)
- Santiago Acero-Bedoya
- Pathology, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Emily F Higgs
- Pathology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Anna C Martinez
- Pathology, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Ruxandra Tonea
- Pathology, University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| | - Thomas F Gajewski
- Pathology and Medicine, The University of Chicago Biological Sciences Division, Chicago, Illinois, USA
| |
Collapse
|
2
|
Chen YJ, Chen Y, Chen P, Jia YQ, Wang H, Hong XP. Characteristics of PD-1 +CD4 + T cells in peripheral blood and synovium of rheumatoid arthritis patients. Clin Transl Immunology 2024; 13:e70006. [PMID: 39345753 PMCID: PMC11427813 DOI: 10.1002/cti2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Objectives PD-1 plays a crucial role in the immune dysregulation of rheumatoid arthritis (RA), but the specific characteristics of PD-1+CD4+ T cells remain unclear and require further investigation. Methods Circulating PD-1+CD4+ T cells from RA patients were analysed using flow cytometry. Plasma levels of soluble PD-1 (sPD-1) were measured using enzyme-linked immunosorbent assay (ELISA). Single-cell RNA sequence data from peripheral blood mononuclear cells (PBMCs) and synovial tissue of patients were obtained from the GEO and the ImmPort databases. Bioinformatics analyses were performed in the R studio to characterise PD-1+CD4+ T cells. Expression of CCR7, KLF2 and IL32 in PD-1+CD4+ T cells was validated by flow cytometry. Results RA patients showed an elevated proportion of PD-1+CD4+ T cells in peripheral blood, along with increased plasma sPD-1 levels, which positively correlated with TNF-α and erythrocyte sedimentation rate. Bioinformatic analysis revealed PD-1 expression on CCR7+CD4+ T cells in PBMCs, and on both CCR7+CD4+ T cells and CXCL13+CD4+ T cells in RA synovium. PD-1 was co-expressed with CCR7, KLF2, and IL32 in peripheral CD4+ T cells. In synovium, PD-1+CCR7+CD4+ T cells had higher expression of TNF and LCP2, while PD-1+CXCL13+CD4+ T cells showed elevated levels of ARID5A and DUSP2. PD-1+CD4+ T cells in synovium also appeared to interact with B cells and fibroblasts through BTLA and TNFSF signalling pathways. Conclusion This study highlights the increased proportion of PD-1+CD4+ T cells and elevated sPD-1 levels in RA. The transcriptomic profiles and signalling networks of PD-1+CD4+ T cells offer new insights into their role in RA pathogenesis.
Collapse
Affiliation(s)
- Yan-Juan Chen
- Department of Rheumatology and Immunology The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital Shenzhen China
- Integrated Chinese and Western Medicine Postdoctoral Research Station Jinan University Guangzhou China
| | - Yong Chen
- Department of Rheumatology and Immunology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Ping Chen
- Department of Rheumatology and Immunology Shenzhen People's Hospital Shenzhen China
| | - Yi-Qun Jia
- Stomatology Center, The Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen China
| | - Hua Wang
- Department of Orthopaedics, The Second Clinical Medical College of Jinan University, The First Afiliated Hospital of Southern University of Science and Technology Shenzhen People's Hospital Shenzhen China
| | - Xiao-Ping Hong
- Department of Rheumatology and Immunology The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital Shenzhen China
| |
Collapse
|
3
|
Zych M, Kniotek M, Roszczyk A, Dąbrowski F, Jędra R, Zagożdżon R. Surface Immune Checkpoints as Potential Biomarkers in Physiological Pregnancy and Recurrent Pregnancy Loss. Int J Mol Sci 2024; 25:9378. [PMID: 39273326 PMCID: PMC11395075 DOI: 10.3390/ijms25179378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Due to the genetic diversity between the mother and the fetus, heightened control over the immune system during pregnancy is crucial. Immunological parameters determined by clinicians in women with idiopathic recurrent spontaneous abortion (RSA) include the quantity and activity of Natural Killer (NK) and Natural Killer T (NKT) cells, the quantity of regulatory T lymphocytes, and the ratio of pro-inflammatory cytokines, which indicate imbalances in Th1 and Th2 cell response. The processes are controlled by immune checkpoint proteins (ICPs) expressed on the surface of immune cells. We aim to investigate differences in the expression of ICPs on T cells, T regulatory lymphocytes, NK cells, and NKT cells in peripheral blood samples collected from RSA women, pregnant women, and healthy multiparous women. We aim to discover new insights into the role of ICPs involved in recurrent pregnancy loss. Peripheral blood mononuclear cells (PBMCs) were isolated by gradient centrifugation from blood samples obtained from 10 multiparous women, 20 pregnant women (11-14th week of pregnancy), and 20 RSA women, at maximum of 72 h after miscarriage. The PBMCs were stained for flow cytometry analysis. Standard flow cytometry immunophenotyping of PBMCs was performed using antibodies against classical lymphocyte markers, including CD3, CD4, CD8, CD56, CD25, and CD127. Additionally, ICPs were investigated using antibodies against Programmed Death Protein-1 (PD-1, CD279), T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3, CD366), V-domain Ig suppressor of T cell activation (VISTA), T cell immunoglobulin and ITIM domain (TIGIT), and Lymphocyte activation gene 3 (LAG-3). We observed differences in the surface expression of ICPs in the analyzed subpopulations of lymphocytes between early pregnancy and RSA, after miscarriage, and in women. We noted diminished expression of PD-1 on T lymphocytes (p = 0.0046), T helper cells (CD3CD4 positive cells, p = 0.0165), T cytotoxic cells (CD3CD8 positive cells, p = 0.0046), T regulatory lymphocytes (CD3CD4CD25CD127 low positive cells, p = 0.0106), and NKT cells (CD3CD56/CD16 positive cells, p = 0.0438), as well as LAG-3 on lymphocytes T (p = 0.0225) T helper, p = 0.0426), T cytotoxic cells (p = 0.0458) and Treg (p = 0.0293), and cells from RSA women. Impaired expression of TIM-3 (p = 0.0226) and VISTA (p = 0.0039) on CD8 cytotoxic T and NK (TIM3 p = 0.0482; VISTA p = 0.0118) cells was shown, with an accompanying increased expression of TIGIT (p = 0.0211) on NKT cells. The changes in the expression of surface immune checkpoints indicate their involvement in the regulation of pregnancy. The data might be utilized to develop specific therapies for RSA women based on the modulation of ICP expression.
Collapse
MESH Headings
- Humans
- Female
- Pregnancy
- Abortion, Habitual/immunology
- Abortion, Habitual/metabolism
- Abortion, Habitual/blood
- Adult
- Biomarkers/blood
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Immune Checkpoint Proteins/metabolism
- Immune Checkpoint Proteins/genetics
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Immunophenotyping
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/immunology
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Antigens, CD/metabolism
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Programmed Cell Death 1 Receptor/metabolism
Collapse
Affiliation(s)
- Michał Zych
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Monika Kniotek
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Filip Dąbrowski
- Department of Gynecology and Gynecological Oncology, Medical Centre of Postgraduate Medical Education, CMKP, Marymoncka 99/103, 01-813 Warsaw, Poland
- Club35, Polish Society of Obstetricians and Gynecologists PTGiP, Cybernetyki7F/87, 02-677 Warsaw, Poland
| | - Robert Jędra
- Department of Gynecology and Gynecological Oncology, Medical Centre of Postgraduate Medical Education, CMKP, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Radosław Zagożdżon
- Laboratory of Cellular and Genetic Therapies, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|
4
|
Nguyen TV, Do LTK, Lin Q, Nagahara M, Namula Z, Wittayarat M, Hirata M, Otoi T, Tanihara F. Programmed cell death-1-modified pig developed using electroporation-mediated gene editing for in vitro fertilized zygotes. In Vitro Cell Dev Biol Anim 2024; 60:716-724. [PMID: 38485817 DOI: 10.1007/s11626-024-00869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/10/2024] [Indexed: 08/03/2024]
Abstract
Programmed cell death-1 (PD-1) is an immunoinhibitory receptor required to suppress inappropriate immune responses such as autoimmunity. Immune checkpoint antibodies that augment the PD-1 pathway lead to immune-related adverse events (irAEs), organ non-specific side effects due to autoimmune activation in humans. In this study, we generated a PD-1 mutant pig using electroporation-mediated introduction of the CRISPR/Cas9 system into porcine zygotes to evaluate the PD-1 gene deficiency phenotype. We optimized the efficient guide RNAs (gRNAs) targeting PD-1 in zygotes and transferred electroporated embryos with the optimized gRNAs and Cas9 into recipient gilts. One recipient gilt became pregnant and gave birth to two piglets. Sequencing analysis revealed that both piglets were biallelic mutants. At 18 mo of age, one pig showed non-purulent arthritis of the left elbow/knee joint and oligozoospermia, presumably related to PD-1 modification. Although this study has a limitation because of the small number of cases, our phenotypic analysis of PD-1 modification in pigs will provide significant insight into human medicine and PD-1-deficient pigs can be beneficial models for studying human irAEs.
Collapse
Affiliation(s)
- Thanh-Van Nguyen
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Lanh Thi Kim Do
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Qingyi Lin
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
| | - Megumi Nagahara
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
| | - Zhao Namula
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-Gun, Tokushima, 7793233, Japan.
- Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke, Tochigi, 3290498, Japan.
| |
Collapse
|
5
|
Sagrero-Fabela N, Chávez-Mireles R, Salazar-Camarena DC, Palafox-Sánchez CA. Exploring the Role of PD-1 in the Autoimmune Response: Insights into Its Implication in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:7726. [PMID: 39062968 PMCID: PMC11277507 DOI: 10.3390/ijms25147726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Despite advances in understanding systemic lupus erythematosus (SLE), many challenges remain in unraveling the precise mechanisms behind the disease's development and progression. Recent evidence has questioned the role of programmed cell death protein 1 (PD-1) in suppressing autoreactive CD4+ T cells during autoimmune responses. Research has investigated the potential impacts of PD-1 on various CD4+ T-cell subpopulations, including T follicular helper (Tfh) cells, circulating Tfh (cTfh) cells, and T peripheral helper (Tph) cells, all of which exhibit substantial PD-1 expression and are closely related to several autoimmune disorders, including SLE. This review highlights the complex role of PD-1 in autoimmunity and emphasizes the imperative for further research to elucidate its functions during autoreactive T-cell responses. Additionally, we address the potential of PD-1 and its ligands as possible therapeutic targets in SLE.
Collapse
Affiliation(s)
- Nefertari Sagrero-Fabela
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.S.-F.); (R.C.-M.)
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Ramón Chávez-Mireles
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.S.-F.); (R.C.-M.)
| | - Diana Celeste Salazar-Camarena
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Claudia Azucena Palafox-Sánchez
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
6
|
Salmaninejad A, Layeghi SM, Falakian Z, Golestani S, Kobravi S, Talebi S, Yousefi M. An update to experimental and clinical aspects of tumor-associated macrophages in cancer development: hopes and pitfalls. Clin Exp Med 2024; 24:156. [PMID: 39003350 PMCID: PMC11246281 DOI: 10.1007/s10238-024-01417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Tumor-associated macrophages (TAMs) represent one of the most abundant tumor-infiltrating stromal cells, and their normal function in tumor microenvironment (TME) is to suppress tumor cells by producing cytokines which trigger both direct cell cytotoxicity and antibody-mediated immune response. However, upon prolonged exposure to TME, the classical function of these so-called M1-type TAMs can be converted to another type, "M2-type," which are recruited by tumor cells so that they promote tumor growth and metastasis. This is the reason why the accumulation of TAMs in TME is correlated with poor prognosis in cancer patients. Both M1- and M2-types have high degree of plasticity, and M2-type cells can be reprogrammed to M1-type for therapeutic purposes. This characteristic introduces TAMs as promising target for developing novel cancer treatments. In addition, inhibition of M2-type cells and blocking their recruitment in TME, as well as their depletion by inducing apoptosis, are other approaches for effective immunotherapy of cancer. In this review, we summarize the potential of TAMs to be targeted for cancer immunotherapy and provide an up-to-date about novel strategies for targeting TAMs.
Collapse
Affiliation(s)
- Arash Salmaninejad
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Sepideh Mehrpour Layeghi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Falakian
- Department of Laboratory Science, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Shahin Golestani
- Department of Ophthalmology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Tehran Azad University, Tehran, Iran
| | - Samaneh Talebi
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
7
|
Wang J, Yan L, Wang X, Jia R, Guo J. Surface PD-1 expression in T cells is suppressed by HNRNPK through an exonic splicing silencer on exon 3. Inflamm Res 2024; 73:1123-1135. [PMID: 38698180 DOI: 10.1007/s00011-024-01887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVE Immunotherapy targeting programmed cell death 1 (PDCD1 or PD-1) and its ligands has shown remarkable promise and the regulation mechanism of PD-1 expression has received arising attention in recent years. PDCD1 exon 3 encodes the transmembrane domain and the deletion of exon 3 produces a soluble protein isoform of PD-1 (sPD-1), which can enhance immune response by competing with full-length PD-1 protein (flPD-1 or surface PD-1) on T cell surface. However, the mechanism of PDCD1 exon 3 skipping is unclear. METHODS The online SpliceAid program and minigene expression system were used to analyze potential splicing factors involved in the splicing event of PDCD1 exon 3. The potential binding motifs of heterogeneous nuclear ribonucleoprotein K (HNRNPK) on exon 3 predicted by SpliceAid were mutated by site-directed mutagenesis technology, which were further verified by pulldown assay. Antisense oligonucleotides (ASOs) targeting the exonic splicing silencer (ESS) on PDCD1 exon 3 were synthesized and screened to suppress the skipping of exon 3. The alternative splicing of PDCD1 exon 3 was analyzed by semiquantitative reverse transcription PCR. Western blot and flow cytometry were performed to detect the surface PD-1 expression in T cells. RESULTS HNRNPK was screened as a key splicing factor that promoted PDCD1 exon 3 skipping, causing a decrease in flPD-1 expression on T cell membrane and an increase in sPD-1 expression. Mechanically, a key ESS has been identified on exon 3 and can be bound by HNRNPK protein to promote exon 3 skipping. Blocking the interaction between ESS and HNRNPK with an ASO significantly reduced exon 3 skipping. Importantly, HNRNPK can promote exon 3 skipping of mouse Pdcd1 gene as well. CONCLUSIONS Our study revealed a novel evolutionarily conserved regulatory mechanism of PD-1 expression. The splicing factor HNRNPK markedly promoted PDCD1 exon 3 skipping by binding to the ESS on PDCD1 exon 3, resulting in decreased expression of flPD-1 and increased expression of sPD-1 in T cells.
Collapse
Affiliation(s)
- Jiayun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lingyan Yan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
8
|
Gao M, Shi J, Xiao X, Yao Y, Chen X, Wang B, Zhang J. PD-1 regulation in immune homeostasis and immunotherapy. Cancer Lett 2024; 588:216726. [PMID: 38401888 DOI: 10.1016/j.canlet.2024.216726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
Harnessing the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis is pivotal in autoimmunity and cancer immunotherapy. PD-1 receptors on immune cells engage with one of its ligands, PD-L1 or PD-L2, expressed on antigen-presenting cells or tumor cells, driving T-cell dysfunction and tumor immune escape. Thus, targeting PD-1/PD-L1 revitalizes cytotoxic T cells for cancer elimination. However, a majority of cancer patients don't respond to PD-1/PD-L1 blockade, and the underlying mechanisms remain partially understood. Recent studies have revealed that PD-1 expression levels or modifications impact the effectiveness of anti-PD-1/PD-L1 treatments. Therefore, understanding the molecular mechanisms governing PD-1 expression and modifications is crucial for innovating therapeutic strategies to enhance the efficacy of PD-1/PD-L1 inhibition. This article presents a comprehensive overview of advancements in PD-1 regulation and highlights their potential in modulating immune homeostasis and cancer immunotherapy, aiming to refine clinical outcomes.
Collapse
Affiliation(s)
- Minling Gao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jie Shi
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiangling Xiao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yingmeng Yao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xu Chen
- Chongqing University Medical School, Chongqing, 400044, China
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Jinfang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
9
|
Haham N, Zveik O, Rechtman A, Brill L, Vaknin-Dembinsky A. Altered immune co-inhibitory receptor expression and correlation of LAG-3 expression to disease severity in NMOSD. J Neuroimmunol 2024; 388:578289. [PMID: 38301597 DOI: 10.1016/j.jneuroim.2024.578289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
Co-inhibitory receptors (CIR)s regulate T cell-mediated immune responses and growing evidence links co-inhibitory receptors to the progression of neuroimmunological diseases. We studied the expression levels of CIRs: TIM-3, TIGIT, PD-1 and LAG-3 in the peripheral blood mononuclear cells (PBMCs) of 30 patients with Neuromyelitis optica spectrum disorder (NMOSD), 11 Multiple sclerosis (MS) patients and 31 Healthy controls (HC). We found that the mRNA expression levels of TIM-3 were significantly increased in NMOSD compared with HC, and increased LAG-3 surface protein expression was also observed on T-cells of NMOSD patients. Moreover, we observed a negative correlation between LAG-3 expression and disease severity in NMOSD. Our findings suggest a protective effect of LAG-3 in the setting of NMOSD, and that the differential expression of CIRs observed in this study may play a role in the pathological process of NMOSD.
Collapse
Affiliation(s)
- Nitsan Haham
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel.
| | - Omri Zveik
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel
| | - Ariel Rechtman
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel
| | - Livnat Brill
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Ein-Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Karem, Jerusalem 91120, Israel.
| |
Collapse
|
10
|
Shi R, Wang S, Jiang Y, Zhong G, Li M, Sun Y. ERCC4: a potential regulatory factor in inflammatory bowel disease and inflammation-associated colorectal cancer. Front Endocrinol (Lausanne) 2024; 15:1348216. [PMID: 38516408 PMCID: PMC10954797 DOI: 10.3389/fendo.2024.1348216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD) remains unclear and is associated with an increased risk of developing colitis-associated cancer (CAC). Under sustained inflammatory stimulation in the intestines, loss of early DNA damage response genes can lead to tumor formation. Many proteins are involved in the pathways of DNA damage response and play critical roles in protecting genes from various potential damages that DNA may undergo. ERCC4 is a structure-specific endonuclease that participates in the nucleotide excision repair (NER) pathway. The catalytic site of ERCC4 determines the activity of NER and is an indispensable gene in the NER pathway. ERCC4 may be involved in the imbalanced process of DNA damage and repair in IBD-related inflammation and CAC. This article primarily reviews the function of ERCC4 in the DNA repair pathway and discusses its potential role in the processes of IBD-related inflammation and carcinogenesis. Finally, we explore how this knowledge may open novel avenues for the treatment of IBD and IBD-related cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Sun
- *Correspondence: Yan Sun, ; Mingsong Li,
| |
Collapse
|
11
|
Wang K, Zhao J, Feng X, He S, Li J, Sun F, Xu Z, Yang H, Ye J, Cao L, Ye S. PD-1/PD-L1 governed cross-talk of exhausted CD8 + T and memory B cells in systemic lupus erythematosus. RMD Open 2024; 10:e003503. [PMID: 38233074 PMCID: PMC10806639 DOI: 10.1136/rmdopen-2023-003503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Indeterminate readout of the quantitative interferon-γ release test (QFT) for Mycobacterium tuberculosis screening is a specific laboratory finding for systemic lupus erythematosus (SLE), which may be due to T-cell exhaustion and abnormal programmed death receptor 1 (PD-1)/programmed death-ligand 1 (PD-L1) signalling. METHODS We enrolled 104 patients with SLE and 225 with other rheumatic musculoskeletal diseases (RMDs) who presented to the outpatient clinic between 2020 and 2023. Twenty healthy donors served as the controls. The QFT was performed in all participants, and those with indeterminate results were compared among the groups. Immunophenotyping and functional assays were performed using blood mononuclear cells. Interferon (IFN)-γ was detected in vitro and ex vivo in patients with SLE with indeterminate or negative QFT results, before or after rituximab therapy. RESULTS 104 patients with SLE had a significantly higher rate of indeterminate QFT results was significantly higher (17.31%) than that of 225 patients with RMD (3.56%). Patients with SLE with indeterminate QFT had more active disease (SLEDAI-2K, mean 10.94 vs 4.02, p<0.0001), including a higher incidence of active nephritis (55.56% vs 29.07%). Indeterminate QFT in SLE is mainly caused by an insufficient IFN-γ response in CD8+T cells with exhausted immunophenotypes. The abnormal interaction between exhausted PD-1 high CD8+ T cells and activated PD-L1 low memory B cells in SLE can be reversed with a PD-1 agonist or increased PD-L1 expression. Rituximab treatment indirectly reversed this IFN-γ response. CONCLUSION The PD-1/PD-L1 signalling pathway, which governs the crosstalk between exhausted CD8+ T cells and activated memory B cells, is a mechanistic explanation for insufficient interferon-γ response in patients with SLE.
Collapse
Affiliation(s)
- Kaiwen Wang
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of Rheumatology & Immunology, Jiading Branch, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiangfeng Zhao
- Laboratory of Rheumatology & Immunology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xuemei Feng
- Department of Clinical laboratory, Tibetan Medicine Hospital of Qinghai Province, Qinghai University School of Medicine, Xining, Qinghai, China
| | - Shuangjun He
- Department of Emergency, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Li
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangfang Sun
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhangling Xu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiting Yang
- Laboratory of Rheumatology & Immunology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jiaer Ye
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liou Cao
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Ye
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Bao H, Wang Y, Xiong H, Xia Y, Cui Z, Liu L. Mechanism of Iron Ion Homeostasis in Intestinal Immunity and Gut Microbiota Remodeling. Int J Mol Sci 2024; 25:727. [PMID: 38255801 PMCID: PMC10815743 DOI: 10.3390/ijms25020727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Iron is a vital trace element that plays an important role in humans and other organisms. It plays an active role in the growth, development, and reproduction of bacteria, such as Bifidobacteria. Iron deficiency or excess can negatively affect bacterial hosts. Studies have reported a major role of iron in the human intestine, which is necessary for maintaining body homeostasis and intestinal barrier function. Organisms can maintain their normal activities and regulate some cancer cells in the body by regulating iron excretion and iron-dependent ferroptosis. In addition, iron can modify the interaction between hosts and microorganisms by altering their growth and virulence or by affecting the immune system of the host. Lactic acid bacteria such as Lactobacillus acidophilus (L. acidophilus), Lactobacillus rhamnosus (L. rhamnosus), and Lactobacillus casei (L. casei) were reported to increase trace elements, protect the host intestinal barrier, mitigate intestinal inflammation, and regulate immune function. This review article focuses on the two aspects of the iron and gut and generally summarizes the mechanistic role of iron ions in intestinal immunity and the remodeling of gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (H.X.); (Y.X.)
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (H.X.); (Y.X.)
| |
Collapse
|
13
|
Aoki S. Elucidating the Mechanisms Underlying Interindividual Differences in the Onset of Adverse Drug Reactions. Biol Pharm Bull 2024; 47:1079-1086. [PMID: 38825461 DOI: 10.1248/bpb.b24-00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Idiosyncratic drug toxicities (IDTs) pose a significant challenge; they are marked by life-threatening adverse reactions that emerge aftermarket release and are influenced by intricate genetic and environmental variations. Recent genome-wide association studies have highlighted a strong correlation between specific human leukocyte antigen (HLA) polymorphisms and IDT onset. This review provides an overview of current research on HLA-mediated drug toxicities. In the last six years, HLA-transgenic (Tg) mice have been instrumental in advancing our understanding of these underlying mechanisms, uncovering systemic immune reactions that replicate human drug-induced immune stimulation. Additionally, the potential role of immune tolerance in shaping individual differences in adverse effects highlights its relevance to the interplay between HLA polymorphisms and IDTs. Although HLA-Tg mice offer valuable insights into systemic immune reactions, further exploration is essential to decipher the intricate interactions that lead to organ-specific adverse effects, especially in organs such as the skin or liver. Navigating the intricate interplay of HLA, which may potentially trigger intracellular immune responses, this review emphasizes the need for a holistic approach that integrates findings from both animal models and molecular/cellular investigations. The overarching goal is to enhance our comprehensive understanding of HLA-mediated IDTs and identify factors shaping individual variations in drug reactions. This review aims to facilitate the development of strategies to prevent severe adverse effects, address existing knowledge gaps, and provide guidance for future research initiatives in the field of HLA-mediated IDTs.
Collapse
Affiliation(s)
- Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
14
|
Katsuya H, Suzumiya J, Kimura S. Clinical PD-1/PD-L1 Blockades in Combination Therapies for Lymphomas. Cancers (Basel) 2023; 15:5399. [PMID: 38001659 PMCID: PMC10670854 DOI: 10.3390/cancers15225399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Immunotherapy with the programmed cell death protein 1 (PD-1)/PD-1 ligand (PD-L1) blockade has revolutionized the treatment of advanced solid cancers. However, these clinical benefits have been limited to cases of malignant lymphomas, showing promising results for only classic Hodgkin lymphoma (cHL) and primary mediastinal B-cell lymphoma (PMBCL). To bring clinical benefits to more patients with lymphoma, numerous combination therapies involving PD-1/PD-L1 blockade have been tested in clinical trials in both frontline and relapsed/refractory settings. This article reviews the current landscape of combination therapies with PD-1/PD-L1 blockade for lymphoma and discusses the potential therapeutic approaches. An interim analysis of a phase 3 study demonstrated increased progression-free survival with nivolumab combination therapy over the current frontline treatment in patients with advanced-stage cHL. The results of combination therapies for aggressive B-cell lymphomas, except for PMBCL, have been disappointing. Several clinical trials of combined PD-1/PD-L1 blockade and Bruton's tyrosine kinase inhibitors are exploring its efficacy in patients with chronic lymphocytic leukemia (CLL) with Richter transformation. Several T-cell lymphoma subtypes respond to PD-1/PD-L1 blockade monotherapy. Further clinical trials are underway to investigate appropriate combination regimens with PD-1/PD-L1 blockade, especially for cHL, CLL with Richter transformation, and T-cell lymphoma, in both frontline and relapsed/refractory settings.
Collapse
Affiliation(s)
- Hiroo Katsuya
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Junji Suzumiya
- Department of Hematology, Koga Community Hospital, Yaizu 425-0088, Japan;
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| |
Collapse
|
15
|
An EK, Zhang W, Park HB, Kim SJ, Eom HY, Hwang J, Kwak M, Lee JY, Lee PCW, Jin JO. Immunosuppressive nanoparticles containing recombinant PD-L1 and methotrexate alleviate multi-organ inflammation. Biomaterials 2023; 301:122233. [PMID: 37393694 DOI: 10.1016/j.biomaterials.2023.122233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
Multi-organ inflammatory diseases are one of the most serious autoimmune diseases worldwide. The regulation of immune responses by immune checkpoint proteins influences the development and treatment of cancer and autoimmune diseases. In this study, recombinant murine PD-L1 (rmPD-L1) was used for controlling T cell immunity to treat multi-organ inflammation. To enhance the immunosuppressive effect, we incorporated methotrexate, an anti-inflammatory drug, into hybrid nanoparticles (HNPs) and decorated the surface of HNPs with rmPD-L1 to produce immunosuppressive HNPs (IsHNPs). IsHNP treatment effectively targeted PD-1-expressing CD4 and CD8 T cells in the splenocytes; additionally, it promoted the production of Foxp3-expressing regulatory T cells, which suppressed the differentiation of helper T cells. IsHNP treatment also inhibited anti-CD3 antibody-mediated activation of CD4 and CD8 T cells in mice in vivo. This treatment protected mice from multi-organ inflammation induced by the adoptive transfer of naïve T cells to recombination-activating gene 1 knockout mice. The results of this study imply the therapeutic potential of IsHNPs in the treatment of multi-organ inflammation and other inflammatory diseases.
Collapse
Affiliation(s)
- Eun-Koung An
- Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Hae-Bin Park
- Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - So-Jung Kim
- Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Hee-Yun Eom
- Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Juyoung Hwang
- Department of Chemistry, Pukyong National University, Busan, 48513, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan, 48513, South Korea
| | - Ji Yeon Lee
- Department of Medicine, Division of Rheumatology, Seoul St. Mary's Hospital, Catholic University, Seoul, 06591, South Korea
| | - Peter Chang-Whan Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea.
| |
Collapse
|
16
|
Zhang Z, Jin L, Liu L, Zhou M, Zhang X, Zhang L. The intricate relationship between autoimmunity disease and neutrophils death patterns: a love-hate story. Apoptosis 2023; 28:1259-1284. [PMID: 37486407 DOI: 10.1007/s10495-023-01874-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Autoimmune diseases are pathological conditions that result from the misidentification of self-antigens in immune system, leading to host tissue damage and destruction. These diseases can affect different organs and systems, including the blood, joints, skin, and muscles. Despite the significant progress made in comprehending the underlying pathogenesis, the complete mechanism of autoimmune disease is still not entirely understood. In autoimmune diseases, the innate immunocytes are not functioning properly: they are either abnormally activated or physically disabled. As a vital member of innate immunocyte, neutrophils and their modes of death are influenced by the microenvironment of different autoimmune diseases due to their short lifespan and diverse death modes. Related to neutrophil death pathways, apoptosis is the most frequent cell death form of neutrophil non-lytic morphology, delayed or aberrant apoptosis may contribute to the development anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). In addition, NETosis, necroptosis and pyroptosis which are parts of lytic morphology exacerbate disease progression through various mechanisms in autoimmune diseases. This review aims to summarize recent advancements in understanding neutrophil death modes in various autoimmune diseases and provide insights into the development of novel therapeutic approaches for autoimmune diseases.
Collapse
Affiliation(s)
- Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China.
| |
Collapse
|
17
|
Spangenberg SH, Palermo A, Gazaniga NR, Martínez-Peña F, Guijas C, Chin EN, Rinschen MM, Sander PN, Webb B, Pereira LE, Jia Y, Meitz L, Siuzdak G, Lairson LL. Hydroxyproline metabolism enhances IFN-γ-induced PD-L1 expression and inhibits autophagic flux. Cell Chem Biol 2023; 30:1115-1134.e10. [PMID: 37467751 PMCID: PMC11426993 DOI: 10.1016/j.chembiol.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/20/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
The immune checkpoint protein PD-L1 plays critical roles in both immune system homeostasis and tumor progression. Impaired PD-1/PD-L1 function promotes autoimmunity and PD-L1 expression within tumors promotes immune evasion. If and how changes in metabolism or defined metabolites regulate PD-L1 expression is not fully understood. Here, using a metabolomics activity screening-based approach, we have determined that hydroxyproline (Hyp) significantly and directly enhances adaptive (i.e., IFN-γ-induced) PD-L1 expression in multiple relevant myeloid and cancer cell types. Mechanistic studies reveal that Hyp acts as an inhibitor of autophagic flux, which allows it to regulate this negative feedback mechanism, thereby contributing to its overall effect on PD-L1 expression. Due to its prevalence in fibrotic tumors, these findings suggest that hydroxyproline could contribute to the establishment of an immunosuppressive tumor microenvironment and that Hyp metabolism could be targeted to pharmacologically control PD-L1 expression for the treatment of cancer or autoimmune diseases.
Collapse
Affiliation(s)
| | - Amelia Palermo
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nathalia R Gazaniga
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Carlos Guijas
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Emily N Chin
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Markus M Rinschen
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Philipp N Sander
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bill Webb
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Laura E Pereira
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ying Jia
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lance Meitz
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gary Siuzdak
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, La Jolla, CA 92037, USA.
| | - Luke L Lairson
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
18
|
Li W, Bai Z, Liu J, Tang Y, Yin C, Jin M, Mu L, Li X. Mitochondrial ROS-dependent CD4 +PD-1 +T cells are pathological expansion in patients with primary immune thrombocytopenia. Int Immunopharmacol 2023; 122:110597. [PMID: 37413931 DOI: 10.1016/j.intimp.2023.110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
OBJECTIVE Aberrant-activated T cells, especially CD4+T cells, play a crucial part in the pathogenetic progress of immune thrombocytopenia (ITP). PD-1-mediated signals play a negative part in the activation of CD4+T cells. However, knowledge is limited on the pathogenic characteristics and function of CD4+PD-1+T cells in ITP. MATERIALS AND METHODS The frequency and phenotype including cell activation, apoptosis, and cytokine production of CD4+PD-1+T cells were evaluated by flow cytometry. PD-1 Ligation Assay was performed to assess the function of PD-1 pathway in CD4+T cells. Mitochondrial reactive oxygen species (mtROS) were detected by MitoSOX Red probe. RESULTS Compared with healthy controls (HC), the frequencies of CD4+PD-1+T cells were significantly increased in ITP patients. However, these cells are not exhausted despite PD-1 expression. Besides retaining cytokine-producing potential, these CD4+PD-1+T cells also had a possible B-cell helper function including expressing ICOS, CD84, and CD40L. Moreover, the CD4+PD-1+T cell subset contained higher levels of mitochondrial ROS than CD4+PD-1-T cell subset in patients with ITP. And mtROS inhibition could reduce the secretion of the inflammatory cytokines and regulate the function of CD4+PD-1+T cells. Upon in-vitro T cell receptor (TCR) stimulation of CD4+T cells in the presence of plate-bound PD-L1 fusion protein (PD-L1-Ig), CD4+T cells from ITP patients appeared resistant to such PD-1-mediated inhibition of interferon (IFN)-γ secretion. CONCLUSIONS The CD4+PD-1+T cells were more abundant in patients with ITP. Additionally, this CD4+PD-1+T cell subset may be a potential etiology of ITP and a potential immune therapeutic target for ITP patients in the future.
Collapse
Affiliation(s)
- Weiping Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China; Department of Hematology, Second Hospital of Dalian Medical University, Liaoning, China
| | - Ziran Bai
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Jiaqing Liu
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yawei Tang
- Department of Clinical Laboratory, Second Hospital of Dalian Medical University, Liaoning, China
| | - Chunlai Yin
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Minli Jin
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Lijun Mu
- Department of Hematology, Second Hospital of Dalian Medical University, Liaoning, China.
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.
| |
Collapse
|
19
|
Pizuorno Machado A, Shatila M, Liu C, Wang J, Altan M, Zhang HC, Thomas A, Wang Y. Immune-related adverse events after immune checkpoint inhibitor exposure in adult cancer patients with pre-existing autoimmune diseases. J Cancer Res Clin Oncol 2023; 149:6341-6350. [PMID: 36752908 DOI: 10.1007/s00432-023-04582-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/10/2023] [Indexed: 02/09/2023]
Abstract
PURPOSE Immune checkpoint inhibitor (ICI) therapy can predispose patients to immune-related adverse events (irAEs) and autoimmune disease (AD) flare-ups, but the characteristics of irAEs among patients with pre-existing ADs are largely unknown. We conducted this study to determine the clinical courses, irAEs, AD flares, treatment, and outcomes of patients with AD on ICIs. METHODS This was a retrospective study of adult cancer patients at a large cancer center who were diagnosed with ADs before undergoing ICI therapy. Patients' clinical courses, complications, treatments, and outcomes related to both ADs flares and irAEs were collected and analyzed. RESULTS The study included 197 patients. Most (55.4%) were women. Melanoma comprised the highest proportion (28.4%) of malignancies, and most (83.8%) patients received PD-1/PD-L1 inhibitors. Fifty (25.3%) patients developed a new irAE after starting ICI therapy, while 29 (14.7%) patients had an AD flare-up. Patients with inflammatory bowel disease had the highest incidence of AD flare-ups (31.7%), while patients with Hashimoto hypothyroidism had the highest incidence of new irAEs (39.2%). Patients with inflammatory bowel disease had more severe adverse events. In our cohort, patients with a new diagnosis of irAE were treated with immunosuppressive therapy. AD flares were managed similarly. With regard to irAE manifestations, the most common presentations were colitis (24 [12.1%] patients), hepatic transaminase elevations (8 [4%] patients), and pneumonitis (7 [3.5%] patients). CONCLUSION Our findings suggest that patients with gastrointestinal and rheumatologic ADs had a higher incidence of AD flare-ups, while patients with Hashimoto hypothyroidism and neurologic ADs had a higher incidence of new irAEs. Patients with prior ADs experiencing flare-ups or new irAEs after ICI therapy tend to require aggressive immunosuppressive treatment. Thorough evaluation of baseline disease status, appropriate medical management before ICI therapy, and early recognition of inflammatory exacerbation may help ensure long-term success in treating and improving outcomes in these patients.
Collapse
Affiliation(s)
- Antonio Pizuorno Machado
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Malek Shatila
- Department of Gastroenterology, Hepatology and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Cynthia Liu
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianbo Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mehmet Altan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hao Chi Zhang
- Department of Gastroenterology, Hepatology and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Anusha Thomas
- Department of Gastroenterology, Hepatology and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Ebrahimian H, Akhtari M, Akhlaghi M, Farhadi E, Jamshidi A, Alishiri GH, Mahmoudi M, Tavallaie M. Altered expression of apoptosis-related genes in rheumatoid arthritis peripheral blood mononuclear cell and related miRNA regulation. Immun Inflamm Dis 2023; 11:e914. [PMID: 37506143 PMCID: PMC10336681 DOI: 10.1002/iid3.914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/27/2023] [Accepted: 05/29/2023] [Indexed: 07/30/2023] Open
Abstract
AIM Impaired apoptosis and proliferation resulted in autoreactive lymphocyte development and inflammation in Rheumatoid arthritis (RA). TP53, BAX, FOXO1, and RB1 are related genes in cell survival, proliferation, and inflammation which could be important in RA development and disease severity. Here we investigated their expression in peripheral blood mononuclear cells (PBMCs) from RA patients in comparison to healthy controls. METHODS Fifty healthy controls and 50 RA patients were selected. The quantitative real-time polymerase chain reaction was used to assess the gene expression level in PBMCs. RESULTS The mRNA expression of TP53 (FC = 0.65, p = .000), BAX (FC = 0.76, p = .008), FOXO1 (FC = 0.59, p = .000) and RB1 (FC = 0.50, p = .000) were significantly reduced in RA PBMCs. TP53 expression was negatively correlated with miR-16-5p (p = .032) and FOXO1 expression was negatively correlated with miR-335-5p (p = .005) and miR-34a-5p (p = .014). A positive correlation was seen between TP53 expression and its downstream gene, BAX (p = .001). FOXO1 expression was also negatively correlated with disease activity, DAS28 (p = .021). CONCLUSION All selected genes have downregulated expression in RA PBMCs which could be correlated with RA pathogenesis by regulating apoptosis, cell survival, inflammatory mediator production, and proliferation. Due to the correlation of miR-16-5p, miR-34a-5p, and miR-335-5p with TP53 and FOXO1 expression in RA PBMCs, they could be used as future therapeutic targets.
Collapse
Affiliation(s)
- Hamidreza Ebrahimian
- Human Genetic Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Maryam Akhtari
- Tobacco Prevention and Control Research Center (TPCRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD)Shahid Beheshti University of Medical SciencesTehranIran
| | | | - Elham Farhadi
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
- Inflammation Research CenterTehran University of Medical SciencesTehranIran
| | - Ahmadreza Jamshidi
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
| | - Gholam Hossein Alishiri
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
- Department of Rheumatology, Faculty of MedicineBaqiyatallah University of Medical SciencesTehranIran
| | - Mahdi Mahmoudi
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
- Inflammation Research CenterTehran University of Medical SciencesTehranIran
| | - Mahmood Tavallaie
- Human Genetic Research CenterBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
21
|
Wang Y, Yang S, Wan L, Ling W, Chen H, Wang J. New developments in the mechanism and application of immune checkpoint inhibitors in cancer therapy (Review). Int J Oncol 2023; 63:86. [PMID: 37326100 PMCID: PMC10308343 DOI: 10.3892/ijo.2023.5534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) has been demonstrated in the treatment of numerous types of cancer and ICIs have remained a key focus of cancer research. However, improvements in survival rates only occur in a subset of patients, due to the complexity of drug resistance. Therefore, further investigations are required to identify predictive biomarkers that distinguish responders and non‑responders. Combined therapeutics involving ICIs and other modalities demonstrate potential in overcoming resistance to ICIs; however, further preclinical and clinical trials are required. Concurrently, prompt recognition and intervention of immune‑related adverse events are crucial to optimize the use of ICIs in clinical treatment. The present study aimed to review the current literature surrounding the mechanisms and application of ICIs, with the aim of providing a theoretical basis for clinicians.
Collapse
Affiliation(s)
- Yanjun Wang
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510062
| | - Shuo Yang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036
| | - Li Wan
- Department of Endocrinology and Metabolism, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060
| | - Wei Ling
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080
| |
Collapse
|
22
|
Chen CB, Hung WK, Wang CW, Lee CC, Hung SI, Chung WH. Advances in understanding of the pathogenesis and therapeutic implications of drug reaction with eosinophilia and systemic symptoms: an updated review. Front Med (Lausanne) 2023; 10:1187937. [PMID: 37457584 PMCID: PMC10338933 DOI: 10.3389/fmed.2023.1187937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Drug reaction with eosinophilia and systemic symptoms or drug-induced hypersensitivity syndrome (DRESS/DIHS) is one type of severe cutaneous adverse reaction (SCAR). It is featured by fever, widespread skin lesions, protracted clinical course, internal organ involvement, and possibly long-term autoimmune sequelae. The presence of high-risk human leukocyte antigen (HLA) alleles, hypersensitivity reaction after culprit drug ingestion, and human herpesvirus reactivation may all contribute to its complex clinical manifestations. Some recent studies focusing on the roles of involved cytokines/chemokines and T cells co-signaling pathways in DRESS/DIHS were conducted. In addition, some predictors of disease severity and prognosis were also reported. In this review, we provided an update on the current understanding of the pathogenesis, potential biomarkers, and the relevant therapeutic rationales of DRESS/DIHS.
Collapse
Affiliation(s)
- Chun-Bing Chen
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Wei-Kai Hung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
| | - Chih-Chun Lee
- Department of Medical Education, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shuen-Iu Hung
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
23
|
Chen RY, Zhu Y, Shen YY, Xu QY, Tang HY, Cui NX, Jiang L, Dai XM, Chen WQ, Lin Q, Li XZ. The role of PD-1 signaling in health and immune-related diseases. Front Immunol 2023; 14:1163633. [PMID: 37261359 PMCID: PMC10228652 DOI: 10.3389/fimmu.2023.1163633] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
Programmed cell death 1 receptor (PD-1) and its ligands constitute an inhibitory pathway to mediate the mechanism of immune tolerance and provide immune homeostasis. Significantly, the binding partners of PD-1 and its associated ligands are diverse, which facilitates immunosuppression in cooperation with other immune checkpoint proteins. Accumulating evidence has demonstrated the important immunosuppressive role of the PD-1 axis in the tumor microenvironment and in autoimmune diseases. In addition, PD-1 blockades have been approved to treat various cancers, including solid tumors and hematological malignancies. Here, we provide a comprehensive review of the PD-1 pathway, focusing on the structure and expression of PD-1, programmed cell death 1 ligand 1 (PD-L1), and programmed cell death 1 ligand 2 (PD-L2); the diverse biological functions of PD-1 signaling in health and immune-related diseases (including tumor immunity, autoimmunity, infectious immunity, transplantation immunity, allergy and immune privilege); and immune-related adverse events related to PD-1 and PD-L1 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Qiang Lin
- *Correspondence: Qiang Lin, ; Xiao-Zhong Li,
| | | |
Collapse
|
24
|
Alruwaii ZI, Montgomery EA. Gastrointestinal and Hepatobiliary Immune-related Adverse Events: A Histopathologic Review. Adv Anat Pathol 2023; 30:230-240. [PMID: 37037419 DOI: 10.1097/pap.0000000000000401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Immune checkpoint inhibitors have been increasingly used to treat various malignant neoplasms. Despite their superior efficacy in treating certain ones, their global immune-activation effect leads to systemic side effects, referred to as immune-related adverse events. Immune-related adverse events affect a variety of organs, including the skin, gastrointestinal, hepatobiliary, and endocrine organs. Gastrointestinal tract immune-related adverse events present with a wide range of symptoms with variable severity, which may lead to treatment interruption and administration of immunosuppression therapy in many cases. Histopathologic changes are diverse, overlapping with many other conditions. Therefore, recognizing these changes is crucial in diagnosing immune-related adverse events. This review discusses the pathologic manifestations of gastrointestinal immune-related adverse events and discusses the primary differential diagnoses.
Collapse
|
25
|
Shirwaikar Thomas A, Hanauer S, Wang Y. Immune Checkpoint Inhibitor Enterocolitis vs Idiopathic Inflammatory Bowel Disease. Clin Gastroenterol Hepatol 2023; 21:878-890. [PMID: 36270617 DOI: 10.1016/j.cgh.2022.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 02/07/2023]
Abstract
Immune checkpoint inhibitors have revolutionized management of advanced malignancies. However, their use is frequently complicated by immune related adverse events (irAEs), immune checkpoint inhibitor enterocolitis (IMEC) being the most common toxicity. IMEC is a distinct form of bowel inflammation that is highly reminiscent of idiopathic inflammatory bowel disorders (Crohn's disease, ulcerative colitis, and microscopic colitis). In this review, we highlight the similarities and differences in the pathophysiology, clinical presentation, evaluation, and management of these overlapping immune inflammatory bowel disorders. IMEC is an inflammatory bowel disease-like irAE that occurs as an outcome of disruption of intestinal immune surveillance and gut dysbiosis. Clinical and endoscopic presentation of both entities is strikingly similar, which often guides management. Though well established in inflammatory bowel disease, little is known about the long term outcomes of IMEC.
Collapse
Affiliation(s)
- Anusha Shirwaikar Thomas
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen Hanauer
- Division of Gastroenterology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
26
|
DNA methylation and transcriptome signatures of the PDCD1 gene in ankylosing spondylitis. Genes Immun 2023; 24:46-51. [PMID: 36707702 DOI: 10.1038/s41435-023-00196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Ankylosing spondylitis (AS) is an autoimmune-related inflammatory arthritis. The association between the DNA methylation and mRNA expression of PDCD1 gene with the susceptibility to AS remains unclear. In this case-control study, the methylation level of PDCD1 promoter was detected in 80 AS patients and 80 healthy controls by MethylTarget method. The transcriptional level of PDCD1 gene was measured in 47 AS patients and 47 healthy controls by real-time quantitative PCR. Finally, 17 methylation sites mapped to one CpG island were detected. Compared to healthy controls, the promoter of PDCD1 was hypermethylated (p < 0.001) and the mRNA expression was downregulated (p < 0.001) in AS patients. Significantly negative correlation was identified between the DNA methylation and mRNA expression of PDCD1 gene (rs = -0.470, p < 0.001). The receiver operating characteristic (ROC) results showed that PDCD1 island had a sensitivity of 61.3% and a specificity of 82.5%, and PDCD1 mRNA had a sensitivity of 87.2% and a specificity of 89.0%. The methylation level of PDCD1 was positively correlated with the ESR, CRP and ASDAS of AS, and was not affected by HLA-B27 status, gender or medicine intake.
Collapse
|
27
|
Burke KP, Patterson DG, Liang D, Sharpe AH. Immune checkpoint receptors in autoimmunity. Curr Opin Immunol 2023; 80:102283. [PMID: 36709596 PMCID: PMC10019320 DOI: 10.1016/j.coi.2023.102283] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/04/2023] [Indexed: 01/30/2023]
Abstract
Immune checkpoint receptors such as programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), lymphocyte-activation gene 3 (LAG-3), and T cell immunoglobulin and ITIM domain (TIGIT) have distinct and overlapping inhibitory functions that regulate Tcell activation, differentiation, and function. These inhibitory receptors also mediate tolerance, and dysregulation of these receptors can result in a breach of tolerance and the development of autoimmune syndromes. Similarly, antibody blockade of immune checkpoint receptors or their ligands for cancer immunotherapy may trigger a spectrum of organ inflammation that resembles autoimmunity, termed immune-related adverse events (irAE). In this review, we discuss recent advances in the regulation of autoimmunity by immune checkpoint receptors. We highlight coordinated gene expression programs linking checkpoint receptors, heterogeneity within autoreactive T-cell populations, parallels between irAE and autoimmunity, and bidirectional functional interactions between immune checkpoint receptors and their ligands.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dillon G Patterson
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dan Liang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
28
|
Anti-CD20-atezolizumab-polatuzumab vedotin in relapsed/refractory follicular and diffuse large B-cell lymphoma. J Cancer Res Clin Oncol 2023; 149:811-817. [PMID: 35182224 PMCID: PMC9931830 DOI: 10.1007/s00432-021-03847-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/30/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE New therapies are needed for relapsed/refractory (R/R) B-cell non-Hodgkin lymphoma. This phase 1b, open-label trial evaluated two anti-CD20-based triplet combinations. METHODS Patients with R/R follicular lymphoma (FL; n = 13) were treated with obinutuzumab, atezolizumab, and polatuzumab vedotin (G-atezo-pola; 1.4 mg/kg/1.8 mg/kg) and patients with R/R diffuse large B-cell lymphoma (DLBCL; n = 23) received rituximab (R)-atezo-pola. The primary efficacy endpoint was complete response (CR) at end of induction (EOI) by PET-CT (investigator assessed; modified Lugano 2014 criteria). Safety endpoints were also assessed. RESULTS 13 FL patients were treated and evaluable for safety; 2/23 DLBCL patients did not receive treatment and were not included in the safety population. Median observation time was 23.3 and 5.7 months in the FL and DLBCL cohorts, respectively. At EOI, CR rates in FL patients treated with G-atezo-pola at pola doses of 1.4 mg/kg (N = 3) and 1.8 mg/kg (N = 7) were 33% and 14%, respectively. In DLBCL patients receiving R-atezo-pola, the CR rate at EOI was 13%. In the FL cohort, 62% of patients experienced a grade 3-5 adverse event (AE; including two deaths) and 31% developed a serious AE (SAE). In DLBCL patients, R-atezo-pola was associated with a lower incidence of grade 3-5 AEs (24%; one death) and SAEs (10%). In both cohorts, the most common grade 3-5 AEs were hematologic toxicities. CONCLUSION Based on these safety issues, considered as related specifically to G-atezo-pola, and limited efficacy, no further development of either combination is planned. TRIAL REGISTRATION NCT02729896; Date of registration: April 6, 2016.
Collapse
|
29
|
He X, Liu F, Jin Y, Fu H, Mao J. Glomerular diseases after immune checkpoint inhibitors use: What do We know so far? Ren Fail 2022; 44:2046-2055. [DOI: 10.1080/0886022x.2022.2147439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Xue He
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Fei Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Yanyan Jin
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Haidong Fu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Saha A, Dreyfuss I, Sarfraz H, Friedman M, Markowitz J. Dietary Considerations for Inflammatory Bowel Disease Are Useful for Treatment of Checkpoint Inhibitor-Induced Colitis. Cancers (Basel) 2022; 15:84. [PMID: 36612082 PMCID: PMC9817715 DOI: 10.3390/cancers15010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Checkpoint molecules are cell surface receptors on immune cells that mitigate excessive immune responses, but they have increased expression levels in cancer to facilitate immune escape. Checkpoint blockade therapies (e.g., anti-PD-1, anti-CTLA-4, and anti-LAG-3 therapy, among others) have been developed for multiple cancers. Colitis associated with checkpoint blockade therapy has pathophysiological similarities to inflammatory bowel disease (IBD), such as Crohn's disease and ulcerative colitis. Current therapeutic guidelines for checkpoint blockade-induced colitis include corticosteroids and, if the patient is refractory to steroids, immunomodulating antibodies, such as anti-TNF and anti-integrin agents. Interestingly, immunomodulatory molecules, such as TNFα, are upregulated in both IBD and checkpoint-mediated colitis. The inflammatory colitis toxicity symptoms from checkpoint blockade are similar to clinical symptoms experienced by patients with IBD. The pathophysiologic, dietary, and genetic factors associated with IBD will be reviewed. We will then explain how the principles developed for the treatment of IBD can be applied to patients experiencing inflammatory bowel toxicity secondary to checkpoint blockade.
Collapse
Affiliation(s)
- Aditi Saha
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Isabella Dreyfuss
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Humaira Sarfraz
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Mark Friedman
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Joseph Markowitz
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida School of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
31
|
Kang YE, Yi HS, Yeo MK, Kim JT, Park D, Jung Y, Kim OS, Lee SE, Kim JM, Joung KH, Lee JH, Ku BJ, Lee M, Kim HJ. Increased Pro-Inflammatory T Cells, Senescent T Cells, and Immune-Check Point Molecules in the Placentas of Patients With Gestational Diabetes Mellitus. J Korean Med Sci 2022; 37:e338. [PMID: 36513052 PMCID: PMC9745681 DOI: 10.3346/jkms.2022.37.e338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is the most common metabolic complication of pregnancy. To define the altered pathway in GDM placenta, we investigated the transcriptomic profiles from human placenta between GDM and controls. METHODS Clinical parameters and postpartum complications were reviewed in all participants. Differentially expressed canonical pathways were analyzed between the GDM and control groups based on transcriptomic analysis. CD4+ T, CD8+ T, and senescent T cell subsets were determined by flow cytometry based on staining for specific intracellular cytokines. RESULTS Gene ontology analysis revealed that the placenta of GDM revealed upregulation of diverse mitochondria or DNA replication related pathways and downregulation of T-cell immunity related pathways. The maternal placenta of the GDM group had a higher proportion of CD4+ T and CD8+ T cells than the control group. Interestingly, senescent CD4+ T cells tended to increase and CD8+ T cells were significantly increased in GDM compared to controls, along with increased programmed cell death-1 (CD274+) expression. Programmed death-ligand 1 expression in syncytotrophoblasts was also significantly increased in patients with GDM. CONCLUSION This study demonstrated increased proinflammatory T cells, senescent T cells and immune-check point molecules in GDM placentas, suggesting that changes in senescent T cells and immune-escape signaling might be related to the pathophysiology of GDM.
Collapse
Affiliation(s)
- Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
| | - Min-Kyung Yeo
- Department of Pathology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Jung Tae Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Danbit Park
- Department of Obstetrics and Gynecology, Chungnam National University Hospital, Daejeon, Korea
| | - Yewon Jung
- Department of Obstetrics and Gynecology, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Ok Soon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Seong Eun Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ji Min Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Kyong Hye Joung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Bon Jeong Ku
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Mina Lee
- Department of Obstetrics and Gynecology, Chungnam National University College of Medicine, Daejeon, Korea.
| | - Hyun Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea.
| |
Collapse
|
32
|
Lee C, Drobni ZD, Zafar A, Gongora CA, Zlotoff DA, Alvi RM, Taron J, Rambarat PK, Schoenfeld S, Mosarla RC, Raghu VK, Hartmann SE, Gilman HK, Murphy SP, Sullivan RJ, Faje A, Hoffmann U, Zhang L, Mayrhofer T, Reynolds KL, Neilan TG. Pre-Existing Autoimmune Disease Increases the Risk of Cardiovascular and Noncardiovascular Events After Immunotherapy. JACC CardioOncol 2022; 4:660-669. [PMID: 36636443 PMCID: PMC9830202 DOI: 10.1016/j.jaccao.2022.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background The use of immune checkpoint inhibitors (ICI) is associated with cardiovascular (CV) events, and patients with pre-existing autoimmune disease are at increased CV risk. Objectives The aim of this study was to characterize the risk for CV events in patients with pre-existing autoimmune disease post-ICI. Methods This was a retrospective study of 6,683 patients treated with ICIs within an academic network. Autoimmune disease prior to ICI was confirmed by chart review. Baseline characteristics and risk for CV and non-CV immune-related adverse events were compared with a matched control group (1:1 ratio) of ICI patients without autoimmune disease. Matching was based on age, sex, history of coronary artery disease, history of heart failure, and diabetes mellitus. CV events were a composite of myocardial infarction, percutaneous coronary intervention, coronary artery bypass graft, stroke, transient ischemic attack, deep venous thrombosis, pulmonary embolism, or myocarditis. Univariable and multivariable Cox proportional hazards models were used to determine the association between autoimmune disease and CV events. Results Among 502 patients treated with ICIs, 251 patients with and 251 patients without autoimmune disease were studied. During a median follow-up period of 205 days, there were 45 CV events among patients with autoimmune disease and 22 CV events among control subjects (adjusted HR: 1.77; 95% CI: 1.04-3.03; P = 0.0364). Of the non-CV immune-related adverse events, there were increased rates of psoriasis (11.2% vs 0.4%; P < 0.001) and colitis (24.3% vs 16.7%; P = 0.045) in patients with autoimmune disease. Conclusions Patients with autoimmune disease have an increased risk for CV and non-CV events post-ICI.
Collapse
Key Words
- CABG, coronary artery bypass graft
- CTLA-4, cytotoxic T lymphocyte–associated antigen-4
- CV, cardiovascular
- DVT, deep venous thrombosis
- ICI, immune checkpoint inhibitor
- MI, myocardial infarction
- PCI, percutaneous coronary intervention
- PD-1, programmed death-1
- PD-L1, programmed death-ligand 1
- PE, pulmonary embolism
- SMD, standardized mean difference
- TIA, transient ischemic attack
- coronary artery disease
- immunotherapy
- irAE, immune-related adverse event
- myocarditis
- thrombosis
Collapse
Affiliation(s)
- Charlotte Lee
- Division of Cardiology, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Zsofia D. Drobni
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Amna Zafar
- Division of Cardiovascular Diseases and Hypertension, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Carlos A. Gongora
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel A. Zlotoff
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Raza M. Alvi
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jana Taron
- Department of Radiology, University Hospital Freiburg, Freiburg, Germany
| | - Paula K. Rambarat
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sara Schoenfeld
- Division of Rheumatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ramya C. Mosarla
- Division of Cardiology, New York University, New York, New York, USA
| | - Vineet K. Raghu
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sarah E. Hartmann
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hannah K. Gilman
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sean P. Murphy
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ryan J. Sullivan
- Division of Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexander Faje
- Division of Endocrinology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Udo Hoffmann
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lili Zhang
- Department of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Thomas Mayrhofer
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kerry L. Reynolds
- Division of Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tomas G. Neilan
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Yang Y, Chen Y, Li Y, Feng Y, Hu N, Xue L. Expression and Significance of Programmed Death-1 and Its Ligands in the Accelerated Formation of Atherosclerosis in an Induced Murine Lupus Model. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6255383. [PMID: 39050559 PMCID: PMC11268968 DOI: 10.1155/2022/6255383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 07/27/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease that occurs in artery walls, which seriously affects the survival and prognosis of patients with systemic lupus erythematosus (SLE). Immune and inflammatory responses have notable effects on all stages of AS. In this study, we modeled SLE combined with AS in vivo via intraperitoneal injection of pristane (2,6,10,14-tetramethylpentadecane) into apolipoprotein E-knockout (ApoE-/- ) mice that had accelerated atherosclerotic lesions compared with wild-type (WT) ApoE-/- mice. In pristane-induced ApoE-/- mice, expression of programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) in peripheral blood and on the surfaces of atherosclerotic lesions significantly increased, and levels of proinflammatory cytokines, namely, interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) in peripheral blood were elevated. We did not detect expression of programmed death-ligand 2 (PD-L2) in the arterial plaques of either pristane-induced or WT ApoE-/- mice, nor did we observe any significant difference in PD-L2 expression in peripheral blood between the two groups. Taken together, these results suggested that PD-1/PD-L1 signaling pathway might play an important regulatory role in the progression of AS in an induced murine lupus model which implies a potential target for treatment of AS in SLE.
Collapse
Affiliation(s)
- Yue Yang
- Department of Rheumatology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yueying Chen
- Department of Rheumatology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yongming Li
- Department of Rheumatology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yiyi Feng
- Department of Rheumatology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Na Hu
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Luan Xue
- Department of Rheumatology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
34
|
Zhu H, Zou J, Zeng B, Yang L, Xiao J, Zhang X, Feng Y, Su C. Expression of Programmed Cell Death 1 Ligand 2 in Patients With Thymoma and Thymomatous Myasthenia Gravis. Am J Clin Pathol 2022; 158:646-654. [PMID: 36208149 DOI: 10.1093/ajcp/aqac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/14/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES This study aimed to examine the expression of programmed cell death 1 ligand 2 (PD-L2) in thymoma and thymomatous myasthenia gravis (MG). METHODS The records of 70 patients with thymoma receiving surgical resection between January 2017 and December 2018 were retrospectively reviewed. Thymoma PD-L2 expression was evaluated by immunohistochemistry staining. Associations between PD-L2 expression and clinicopathologic features were examined. RESULTS PD-L2 expression was positive in 41 patients (58.6%) and negative in 29 patients (41.4%). Of them, 33 had thymomatous MG. Patients with MG were more likely to be 50 years of age or younger (69.70% vs 35.14%); have more World Health Organization (WHO) type B thymomas (84.85% vs 64.86%); have tumors of smaller size (4.09 ± 2.33 cm vs 6.47 ± 2.42 cm); have positive PD-L2 expression (78.79% vs 40.54%); and have a higher percentage of PD-L2-positive cells, higher PD-L2 expression intensity, and score (all P < .05). Positive PD-L2 expression was associated with more type B thymomas, higher Masaoka-Koga stage, smaller tumor size, ectopic thymus, and MG (all P < .05). Factors significantly associated with MG were age under 50 years, tumor size less than 5 cm, and positive PD-L2 expression (all P < .05). CONCLUSIONS Thymoma PD-L2 expression is significantly associated with thymomatous MG and WHO histologic types B2 and B3.
Collapse
Affiliation(s)
- Haoshuai Zhu
- Department of Thoracic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianyong Zou
- Department of Thoracic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo Zeng
- Department of Thoracic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Yang
- Department of Thoracic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiefei Xiao
- Department of Thoracic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanfen Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunhua Su
- Department of Thoracic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
An Q, Zhao J, Zhu X, Yang B, Wu Z, Su Y, Zhang L, Xu K, Ma D. Exploiting the role of T cells in the pathogenesis of Sjögren's syndrome for therapeutic treatment. Front Immunol 2022; 13:995895. [PMID: 36389806 PMCID: PMC9650646 DOI: 10.3389/fimmu.2022.995895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/17/2022] [Indexed: 08/19/2023] Open
Abstract
Sjögrens syndrome (SS) is caused by autoantibodies that attack proprioceptive salivary and lacrimal gland tissues. Damage to the glands leads to dry mouth and eyes and affects multiple systems and organs. In severe cases, SS is life-threatening because it can lead to interstitial lung disease, renal insufficiency, and lymphoma. Histological examination of the labial minor salivary glands of patients with SS reveals focal lymphocyte aggregation of T and B cells. More studies have been conducted on the role of B cells in the pathogenesis of SS, whereas the role of T cells has only recently attracted the attention of researchers. This review focusses on the role of various populations of T cells in the pathogenesis of SS and the progress made in research to therapeutically targeting T cells for the treatment of patients with SS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
36
|
Hassani N, Salmaninejad A, Aslani S, Kamali-sarvestani E, Vessal M. The association between PD-1 gene polymorphisms and susceptibility to multiple sclerosis. Immunol Med 2022; 46:69-76. [PMID: 36308011 DOI: 10.1080/25785826.2022.2137967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Programmed cell death 1 (PD-1) is an immune checkpoint and has been reported to be associated with several autoimmune diseases. We aimed to investigate the association between human PD-1 gene (PDCD1) polymorphisms and multiple sclerosis (MS). This case-control study was conducted on 229 MS patients and 246 healthy controls. Genotyping of rs36084323 (PD-1.1 G/A), rs11568821 (PD-1.3 G/A) and rs2227981 (PD-1.5 C/T) polymorphisms was performed by PCR-RFLP technique. The frequency difference of PD-1.1 genotypes and alleles (-536 G/A) between patients and healthy controls was not significant. Regarding PD-1.3, the AA + AG genotype was found to be relatively higher in the control group. Concerning PD-1.5 (+7785 C/T), the frequency of T allele carriers (TT + CT) was relatively higher in MS patients, which was marginally insignificant (p = .07). PD-1 gene polymorphisms may be associated with MS; however, accurate conclusions require further studies with a larger number of samples.
Collapse
Affiliation(s)
- Nasrin Hassani
- Department of Molecular Biology, Faculty of Medicine, Islamic Azad University, Shiraz, Iran
| | - Arash Salmaninejad
- Regenerative Medicine, Organ Procurement and Transplantation Multi Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Aslani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Eskandar Kamali-sarvestani
- Department of Immunology and Autoimmune Diseases Research Center, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Vessal
- Department of Molecular Biology, Faculty of Medicine, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
37
|
Perdigoto AL, Deng S, Du KC, Kuchroo M, Burkhardt DB, Tong A, Israel G, Robert ME, Weisberg SP, Kirkiles-Smith N, Stamatouli AM, Kluger HM, Quandt Z, Young A, Yang ML, Mamula MJ, Pober JS, Anderson MS, Krishnaswamy S, Herold KC. Immune cells and their inflammatory mediators modify β cells and cause checkpoint inhibitor-induced diabetes. JCI Insight 2022; 7:e156330. [PMID: 35925682 PMCID: PMC9536276 DOI: 10.1172/jci.insight.156330] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Checkpoint inhibitors (CPIs) targeting programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) and cytotoxic T lymphocyte antigen 4 (CTLA-4) have revolutionized cancer treatment but can trigger autoimmune complications, including CPI-induced diabetes mellitus (CPI-DM), which occurs preferentially with PD-1 blockade. We found evidence of pancreatic inflammation in patients with CPI-DM with shrinkage of pancreases, increased pancreatic enzymes, and in a case from a patient who died with CPI-DM, peri-islet lymphocytic infiltration. In the NOD mouse model, anti-PD-L1 but not anti-CTLA-4 induced diabetes rapidly. RNA sequencing revealed that cytolytic IFN-γ+CD8+ T cells infiltrated islets with anti-PD-L1. Changes in β cells were predominantly driven by IFN-γ and TNF-α and included induction of a potentially novel β cell population with transcriptional changes suggesting dedifferentiation. IFN-γ increased checkpoint ligand expression and activated apoptosis pathways in human β cells in vitro. Treatment with anti-IFN-γ and anti-TNF-α prevented CPI-DM in anti-PD-L1-treated NOD mice. CPIs targeting the PD-1/PD-L1 pathway resulted in transcriptional changes in β cells and immune infiltrates that may lead to the development of diabetes. Inhibition of inflammatory cytokines can prevent CPI-DM, suggesting a strategy for clinical application to prevent this complication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gary Israel
- Department of Radiology and Biomedical Imaging, and
| | - Marie E. Robert
- Department of Pathology, Yale University, New Haven, Connecticut, USA
| | - Stuart P. Weisberg
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Angeliki M. Stamatouli
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | | - Zoe Quandt
- Department of Medicine and
- Diabetes Center, University of California, San Francisco, San Francisco, California, USA
| | - Arabella Young
- Diabetes Center, University of California, San Francisco, San Francisco, California, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | | - Mark S. Anderson
- Department of Medicine and
- Diabetes Center, University of California, San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
38
|
Immunotherapeutic Strategies for Head and Neck Squamous Cell Carcinoma (HNSCC): Current Perspectives and Future Prospects. Vaccines (Basel) 2022; 10:vaccines10081272. [PMID: 36016159 PMCID: PMC9416402 DOI: 10.3390/vaccines10081272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Neoantigens are abnormal proteins produced by genetic mutations in somatic cells. Because tumour neoantigens are expressed only in tumour cells and have immunogenicity, they may represent specific targets for precision immunotherapy. With the reduction in sequencing cost, continuous advances in artificial intelligence technology and an increased understanding of tumour immunity, neoantigen vaccines and adoptive cell therapy (ACT) targeting neoantigens have become research hotspots. Approximately 900,000 patients worldwide are diagnosed with head and neck squamous cell carcinoma (HNSCC) each year. Due to its high mutagenicity and abundant lymphocyte infiltration, HNSCC naturally generates a variety of potential new antigen targets that may be used for HNSCC immunotherapies. Currently, the main immunotherapy for HNSCC is use of immune checkpoint inhibitors(ICIs). Neoantigen vaccines and adoptive cell therapy targeting neoantigens are extensions of immunotherapy for HNSCC, and a large number of early clinical trials are underway in combination with immune checkpoint inhibitors for the treatment of recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC). In this paper, we review recent neoantigen vaccine trials related to the treatment of HNSCC, introduce adoptive cell therapy targeting neoantigens, and propose a potential treatment for HNSCC. The clinical application of immune checkpoint inhibitor therapy and its combination with neoantigen vaccines in the treatment of HNSCC are summarized, and the prospect of using neoantigen to treat HNSCC is discussed and proposed.
Collapse
|
39
|
Li H, Yang P. Identification of biomarkers related to neutrophils and two molecular subtypes of systemic lupus erythematosus. BMC Med Genomics 2022; 15:162. [PMID: 35858908 PMCID: PMC9297641 DOI: 10.1186/s12920-022-01306-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE), an autoimmune disease with complex pathogenesis, poses a considerable threat to women’s health. Increasing evidence indicates that neutrophils play an important role in the development and progression of lupus. Methods Weighted correlation network analysis and single-sample gene set enrichment analysis (GSEA) were used to analyse SLE expression data from a comprehensive gene expression database and identify modules associated with neutrophils. Thereafter, the biomarkers most closely related to neutrophils were identified. We reclassified SLE into two molecular subtypes based on the aforementioned biomarkers and evaluated cell infiltration, molecular mechanisms, and signature pathways in each subtype. Results The results showed significant differences in immunological characteristics between the two molecular subtypes of SLE. Hub genes were significantly upregulated in the NEUT-H subtype, and they may be associated with lupus activity. The GSEA revealed associations between our biomarkers and key metabolic pathways. Conclusions Our study provides not only a classification for patients with SLE but also new cell and gene targets for immunotherapy, as well as a new experimental paradigm to explore immunotherapy for other autoimmune diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01306-9.
Collapse
Affiliation(s)
- Huiyan Li
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Pingting Yang
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, 110001, China.
| |
Collapse
|
40
|
Zhou LY, Xie Y, Li Y. Bifidobacterium infantis regulates the programmed cell death 1 pathway and immune response in mice with inflammatory bowel disease. World J Gastroenterol 2022; 28:3164-3176. [PMID: 36051332 PMCID: PMC9331522 DOI: 10.3748/wjg.v28.i26.3164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/12/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is caused by an abnormal immune response. Programmed cell death 1 (PD-1) is an immunostimulatory molecule, which interacts with PD ligand (PD-L1) playing a prime important role among autoimmune diseases. Bifidobacterium infantis (B. infantis) can promote the differentiation of CD (cluster of differentiation) 4+ T cells into regulatory T cells (Tregs). Tregs participate in the development of IBD and may be related to disease activity. B. infantis amplify the expression level of PD-1, PD-L1 and Tregs’ nuclear transcription factor forkhead box protein 3 (Foxp3). But the mechanism of B. infantis on PD-1/PD-L1 signaling remains unclear.
AIM To explore the mechanism of B. infantis regulating the immune response in IBD.
METHODS Forty-eight-week-old BALB/c mice were randomly divided into five groups: The control group, dextran sulphate sodium (DSS) model group, DSS + B. infantis group, DSS + B. infantis + anti-PD-L1 group, and DSS + anti-PD-L1 group. The control group mice were given drinking water freely, the other four groups were given drinking water containing 5% DSS freely. The control group, DSS model group, and DSS + anti-PD-L1 group were given normal saline (NS) 400 μL daily by gastric lavage, and the DSS + B. infantis group and DSS + B. infantis + anti-PD-L1 group were given NS and 1 × 109 colony-forming unit of B. infantis daily by gastric lavage. The DSS + B. infantis + anti-PD-L1 group and DSS + anti-PD-L1 group were given 200 μg of PD-L1 blocker intraperitoneally at days 0, 3, 5, and 7; the control group, DSS + anti-PD-L1 group, and DSS + B. infantis group were given an intraperitoneal injection of an equal volume of phosphate buffered saline (PBS). Changes in PD-L1, PD-1, Foxp3, interleukin (IL)-10, and transforming growth factor β (TGF-β) 1 protein and gene expression were observed. Flow cytometry was used to observe changes in CD4+, CD25+, Foxp3+ cell numbers in the blood and spleen.
RESULTS Compared to the control group, the expression of PD-1, Foxp3, IL-10, and TGF-β1 was significantly decreased in the intestinal tract of the DSS mice (P < 0.05). Compared to the control group, the proportion of CD4+, CD25+, Foxp3+ cells in spleen and blood of DSS group was visibly katabatic (P < 0.05). B. infantis upgraded the express of PD-L1, PD-1, Foxp3, IL-10, and TGF-β1 (P < 0.05) and increased the proportion of CD4+, CD25+, Foxp3+ cells both in spleen and blood (P < 0.05). After blocking PD-L1, the increase in Foxp3, IL-10, and TGF-β1 protein and gene by B. infantis was inhibited (P < 0.05), and the proliferation of CD4+, CD25+, Foxp3+ cells in the spleen and blood was also inhibited (P < 0.05). After blocking PD-L1, the messenger ribonucleic acid and protein expression of PD-1 were invariant.
CONCLUSION It is potential that B. infantis boost the proliferation of CD4+, CD25+, Foxp3+ T cells in both spleen and blood, as well as the expression of Foxp3 in the intestinal tract by activating the PD-1/PD-L1 pathway.
Collapse
Affiliation(s)
- Lin-Yan Zhou
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Ying Xie
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yan Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
41
|
Lu J, Wu J, Mao L, Xu H, Wang S. Revisiting PD-1/PD-L pathway in T and B cell response: Beyond immunosuppression. Cytokine Growth Factor Rev 2022; 67:58-65. [PMID: 35850949 DOI: 10.1016/j.cytogfr.2022.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022]
Abstract
The regulation of T cell response depends on co-inhibitory pathways that serve to control immune-mediated tissue damage and resolve inflammation by modulating the magnitude and duration of immune response. In this process, the axis of T-cell-expressed programmed death-1 (PD-1) and its ligands (PD-L1 and PD-L2) play a key role. While the PD-1/PD-L pathway has received considerable attention for its role in the maintenance of T cell exhaustion in cancer and chronic infection, the PD-1/PD-L pathway also plays diverse roles in regulating host immunity beyond T cell exhaustion. In this review, we will discuss emerging concepts in co-stimulatory functions of PD-1/PD-L pathway on T cell- and B cell response and explore the potential underlying mechanisms. In addition, based on the elevated expression of PD-1 and its ligands in local inflamed tissues, we further discussed the role of PD-1/PD-L pathway in autoimmune diseases.
Collapse
Affiliation(s)
- Jian Lu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jing Wu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Huaxi Xu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
42
|
Zhang S, Tao X, Wang L, Chen H, Zhao L, Sun J, Bian S, Chen Z, Shao T, Yang Y, Li Y, Zhang F. Downregulation of Programmed Death-1 Pathway Promoting CD8 + T Cell Cytotoxicity in Primary Biliary Cholangitis. Dig Dis Sci 2022; 67:2981-2993. [PMID: 34392493 DOI: 10.1007/s10620-021-07165-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/07/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is an autoimmune disease. CD8 + T cell (CTLs) cytotoxicity played a crucial rule in of PBC with unclear detailed pathogenesis. AIMS The role of the programmed death-1 (PD-1) pathway in CD8 + T cell cytotoxicity in patients with PBC was determined. METHODS We recruited 69 patients with PBC and 57 healthy controls (HCs). PD-1 pathway in peripheral CD8 + T cells and related cytokines were detected, and gene expression levels were detected. Immunofluorescence staining of PD-1/PD-L1 was performed on liver tissue. PD-1 ± CTLs were cocultured with human intrahepatic biliary epithelial cells (HiBECs) to measure CTL cytotoxicity, proliferation and cytokine levels and HiBEC apoptosis. The upstream signaling pathway of PD-1 was detected. RESULTS PBC patients exhibited Tbet gene upregulation and PD-1 downregulation in CTLs, with PD-1 expression reduced in CTLs and PD-L1 reduced in the liver portal region relative to HCs. Higher plasma IL-10, interferon-γ and transforming growth factor-β concentrations were observed in the PBC group than the HC group. In CTL and HiBEC coculture experiment, compared with PD-1- CTLs, PD-1 + CTLs exhibited weaker cytotoxicity, less proliferation and lower cytokine production. When the system was blocked by anti-PD-1 antibodies, these effects were antagonized. CONCLUSIONS PD-1 expression in CD8 + T cells decreased, and PD-1 pathway-related cytokines changed in patients with PBC. PD-1/PD-L1 pathway silencing increased CD8 + T cell proliferation, related cytokine production and CTL cytotoxic effects on HiBECs in coculture experiment. The PD-1/PD-L1 pathway might represent an important pathway in the immunological mechanism underlying PBC.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xixi Tao
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Liling Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jinlei Sun
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Sainan Bian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhilei Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Tihong Shao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yunjiao Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
43
|
Alruwaii ZI, Montgomery EA. Gastrointestinal and Hepatobiliary Immune-related Adverse Events: A Histopathologic Review. Adv Anat Pathol 2022; 29:183-193. [PMID: 35470287 DOI: 10.1097/pap.0000000000000346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immune checkpoint inhibitors have been increasingly used to treat various malignant neoplasms. Despite their superior efficacy in treating certain ones, their global immune-activation effect leads to systemic side effects, referred to as immune-related adverse events. Immune-related adverse events affect a variety of organs, including the skin, gastrointestinal, hepatobiliary, and endocrine organs. Gastrointestinal tract immune-related adverse events present with a wide range of symptoms with variable severity, which may lead to treatment interruption and administration of immunosuppression therapy in many cases. Histopathologic changes are diverse, overlapping with many other conditions. Therefore, recognizing these changes is crucial in diagnosing immune-related adverse events. This review discusses the pathologic manifestations of gastrointestinal immune-related adverse events and discusses the primary differential diagnoses.
Collapse
|
44
|
Cesa K, Cunningham C, Harris T, Sunseri W. A Review of Extraintestinal Manifestations & Medication-Induced Myocarditis and Pericarditis in Pediatric Inflammatory Bowel Disease. Cureus 2022; 14:e26366. [PMID: 35911289 PMCID: PMC9334219 DOI: 10.7759/cureus.26366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 11/26/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a systemic disorder where extraintestinal symptoms may involve virtually any organ system. Of these extraintestinal symptoms, those involving the heart are relatively rare but associated with significant morbidity. We reviewed the existing literature on noninfectious myocarditis and pericarditis in the pediatric IBD population, including extraintestinal manifestations (EIMs) of IBD and extraintestinal complications (EICs) from medication. We focused on the incidence, presentation, diagnosis, treatment, and outcomes for timely diagnosis and management of these potentially deadly diseases. In addition, we aim to identify and highlight the gaps in current knowledge for future studies and investigations.
Collapse
|
45
|
Les I, Pérez-Francisco I, Cabero M, Sánchez C, Hidalgo M, Teijeira L, Arrazubi V, Domínguez S, Anaut P, Eguiluz S, Elejalde I, Herrera A, Martínez M. Prediction of Immune-Related Adverse Events Induced by Immune Checkpoint Inhibitors With a Panel of Autoantibodies: Protocol of a Multicenter, Prospective, Observational Cohort Study. Front Pharmacol 2022; 13:894550. [PMID: 35721217 PMCID: PMC9198493 DOI: 10.3389/fphar.2022.894550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Immune checkpoint inhibitor (ICI) therapy is markedly improving the prognosis of patients with several types of cancer. On the other hand, the growth in the use of these drugs in oncology is associated with an increase in multiple immune-related adverse events (irAEs), whose optimal prevention and management remain unclear. In this context, there is a need for reliable and validated biomarkers to predict the occurrence of irAEs in patients treated with ICIs. Thus, the main objective of this study is to evaluate the diagnostic performance of a sensitive routinely available panel of autoantibodies consisting of antinuclear antibodies, rheumatoid factor, and antineutrophil cytoplasmic antibodies to identify patients at risk of developing irAEs. Methods and Analysis: A multicenter, prospective, observational, cohort study has been designed to be conducted in patients diagnosed with cancer amenable to ICI therapy. Considering the percentage of ICI-induced irAEs to be 25% and a loss to follow-up of 5%, it has been estimated that a sample size of 294 patients is required to detect an expected sensitivity of the autoantibody panel under study of 0.90 with a confidence interval (95%) of no less than 0.75. For 48 weeks, patients will be monitored through the oncology outpatient clinics of five hospitals in Spain. Immune-related adverse events will be defined and categorized according to CTCAE v. 5.0. All the patients will undergo ordinary blood tests at specific moments predefined per protocol and extraordinary blood tests at the time of any irAE being detected. Ordinary and extraordinary samples will be frozen and stored in the biobank until analysis in the same autoimmunity laboratory when the whole cohort reaches week 48. A predictive model of irAEs will be constructed with potential risk factors of immune-related toxicity including the autoantibody panel under study. Ethics and Dissemination: This protocol was reviewed and approved by the Ethical Committee of the Basque Country and the Spanish Agency of Medicines and Medical Devices. Informed consent will be obtained from all participants before their enrollment. The authors declare that the results will be submitted to an international peer-reviewed journal for their prompt dissemination.
Collapse
Affiliation(s)
- Iñigo Les
- Internal Medicine Department, Navarra University Hospital, Pamplona, Spain.,Autoimmune Diseases Unit, Internal Medicine Department, Navarra University Hospital, Pamplona, Spain
| | - Inés Pérez-Francisco
- Bioaraba Health Research Institute, Breast Cancer Research Group, Vitoria-Gasteiz, Spain
| | - María Cabero
- Bioaraba Health Research Institute, Clinical Trials Platform, Vitoria-Gasteiz, Spain
| | - Cristina Sánchez
- Osakidetza Basque Health Service, Araba University Hospital, Department of Internal Medicine, Vitoria-Gasteiz, Spain
| | - María Hidalgo
- Osakidetza Basque Health Service, Araba University Hospital, Department of Medical Oncology, Vitoria-Gasteiz, Spain
| | - Lucía Teijeira
- Medical Oncology Department, Navarra University Hospital, Pamplona, Spain
| | - Virginia Arrazubi
- Medical Oncology Department, Navarra University Hospital, Pamplona, Spain
| | - Severina Domínguez
- Bioaraba Health Research Institute, Breast Cancer Research Group, Vitoria-Gasteiz, Spain.,Osakidetza Basque Health Service, Araba University Hospital, Department of Medical Oncology, Vitoria-Gasteiz, Spain
| | - Pilar Anaut
- Osakidetza Basque Health Service, Araba University Hospital, Department of Internal Medicine, Vitoria-Gasteiz, Spain
| | - Saioa Eguiluz
- Osakidetza Basque Health Service, Araba University Hospital, Department of Internal Medicine, Vitoria-Gasteiz, Spain
| | - Iñaki Elejalde
- Internal Medicine Department, Navarra University Hospital, Pamplona, Spain.,Autoimmune Diseases Unit, Internal Medicine Department, Navarra University Hospital, Pamplona, Spain
| | - Alberto Herrera
- Osakidetza Basque Health Service, Araba University Hospital, Department of Immunology, Vitoria-Gasteiz, Spain
| | - Mireia Martínez
- Osakidetza Basque Health Service, Araba University Hospital, Department of Medical Oncology, Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Lung Cancer Research Group, Vitoria-Gasteiz, Spain
| |
Collapse
|
46
|
CD96 Downregulation Promotes the Immune Response of CD4 T Cells and Associates with Ankylosing Spondylitis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3946754. [PMID: 35769669 PMCID: PMC9234051 DOI: 10.1155/2022/3946754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 11/20/2022]
Abstract
Inhibitory receptors (IRs) play an indispensable role in regulating T cell activation and expansion. This study is aimed at exploring the correlation between IRs and ankylosing spondylitis (AS). Bioinformatics analysis of two datasets (GSE25101 and GSE73754), including 68 AS cases and 36 healthy controls, demonstrated that “T cell receptor signaling pathway” was significantly enriched, and two IRs (CD112R and CD96) were downregulated in AS cases. Real-time Quantitative PCR Detecting System (qPCR) analysis confirmed the decreased expression of CD112R and CD96 in the peripheral blood of AS patients. Flow cytometry demonstrated that the frequency of CD96-positive cells among CD4 T cells in AS patients was significantly reduced and that expressed on the cells was also significantly lower than the healthy controls. In addition, the expression of CD96 was altered on human primary CD4 T cells extracted from 3 healthy volunteers and cocultured with allogeneic dendritic cells (DCs). Also, low expression of CD96 elevated the phosphorylation of ERK in CD4 T cells and increased the level of TNF-α, IL-23, IL-17A, IL-6, and IFN-γ in the cell culture supernatant. These results suggested that CD96 is crucial for the pathogenesis of AS and may be a potential target in the treatment of the disease.
Collapse
|
47
|
Zheng ZK, Wang JL, Li WX, Wu TQ, Chen MS, Zhou ZG. Anti-programmed Cell Death Protein-1 Therapy in Intrahepatic Cholangiocarcinoma Induced Type 1 Diabetes: A Case Report and Literature Review. Front Public Health 2022; 10:917679. [PMID: 35784237 PMCID: PMC9243496 DOI: 10.3389/fpubh.2022.917679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/25/2022] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint inhibitors, widely used in the treatment of malignancies, can improve the prognosis of patients, while it also can induce various immune-related adverse events, and type 1 diabetes induced by anti-programmed cell death protein-1 is a rare but severe complication. Here we reported a case of type 1 diabetes induced by anti-PD-1 which was to treat intrahepatic cholangiocarcinoma. The case was a 61-year-old female who developed diabetes and ketoacidosis symptoms at the 16th week after anti-PD-1 therapy. Her blood glucose was 30.32 mmol/L, HBA1c was 8.10%, and C-peptide was <0.10 ng/ml. The patient was diagnosed as fulminant type 1 diabetes mellitus complicated with ketoacidosis induced by anti-PD-1, and was treated with massive fluid rehydration, intravenous infusion of insulin and correction of acid-base electrolyte disorder. Hepatectomy was performed after stabilization, and the patient was treated with long-term insulin. Through the case report and literature review, this study aims to improve oncologists' understanding of anti-PD-1 induced type 1 diabetes, so as to make early diagnosis and treatment of the complications and ensure medical safety.
Collapse
Affiliation(s)
- Zhi-Kai Zheng
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Jiong-Liang Wang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Wen-Xuan Li
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Tian-Qing Wu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Min-Shan Chen
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Zhong-Guo Zhou
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, China
- *Correspondence: Zhong-Guo Zhou
| |
Collapse
|
48
|
Park BC, Jung S, Chen ST, Dewan AK, Johnson DB. Challenging Dermatologic Considerations Associated with Immune Checkpoint Inhibitors. Am J Clin Dermatol 2022; 23:707-717. [PMID: 35708849 DOI: 10.1007/s40257-022-00706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/25/2022]
Abstract
Immune checkpoint inhibitors have emerged as a new paradigm in oncologic care for many malignancies. However, nonspecific immune activation has led to "collateral damage" in the form of immune-related adverse events, with skin being a commonly affected organ. Cutaneous immune-related adverse events include a wide spectrum of clinical presentations and challenging considerations, often necessitating dermatology referral to support diagnosis and management, particularly for atypical presentations or more severe, cutaneous immune-related adverse events that may require specialized dermatologic evaluations including biopsy and histopathology. Close collaborations between oncologists and dermatologists may optimize clinical decision making in the following challenging management settings: non-steroidal therapies for corticosteroid-refractory, cutaneous immune-related adverse events, immune checkpoint inhibitor rechallenge, balancing cutaneous immune-related adverse events and treatments, and immune checkpoint inhibitors in patients with pre-existing autoimmune disease, skin conditions, and organ transplants. These complex clinical decisions that often lack rigorous data should be made in close collaboration with dermatologists to minimize unnecessary morbidity and mortality. This article provides a review of approaches to challenging dermatologic considerations associated with immune checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Benjamin C Park
- School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Seungyeon Jung
- School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Steven T Chen
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Anna K Dewan
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, 2220 Pierce Avenue, 777 Preston Research Building, Nashville, TN, 3723, USA.
| |
Collapse
|
49
|
Small extracellular vesicles derived from PD-L1-modified mesenchymal stem cell promote Tregs differentiation and prolong allograft survival. Cell Tissue Res 2022; 389:465-481. [PMID: 35688948 DOI: 10.1007/s00441-022-03650-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/02/2022] [Indexed: 11/02/2022]
Abstract
We aimed to explore whether programmed cell death protein-1 ligand (PD-L1) modification on small extracellular vesicles (sEVs) could promote T regulatory cells (Tregs) differentiation. In this study, it was confirmed that under physiological conditions, PD-L1 expression was minimal in the MSCs and absent in the MSC-sEVs. A vector harboring the PD-L1 gene was constructed and transfected into bone marrow mesenchymal stem cells (BM-MSCs). By extracting the sEVs of these modified BM-MSCs and monitoring the expression of the PD-L1 protein, however, PD-L1 expression was substantially increased in the MSCs and concentrated in the sEVs. Then, the rat naïve CD4 + T cells were cocultured with the sEVs derived from the PD-L1-modified MSCs (sEVsPD-L1). By flow cytometry, a higher percentage of Tregs and anti-inflammatory downstream cytokines (including IL-2, IFN-γ, TGF-β, IL-10) was detected in the sEVsPD-L1 group than that in the control group treated by either sEVs in wild type, modified by empty vector, or blank control. Suppressive effect on CD4 + T cell proliferation serves as additional evidence to support the immunoregulation capacity of sEVsPD-L1. The animal model of vascularized composite allograft further confirmed that PD-L1-modified sEVs induce an immune tolerance, by clinically observation, histopathology, T cell fate and cell product. In conclusion, sEVsPD-L1 efficiently promotes Treg cell differentiation in vitro and in vivo, which suggests their therapeutic potential in the treatment of allograft rejection.
Collapse
|
50
|
Wang C, Hao C, Dai K, Li Y, Jiao J, Niu Z, Xu X, Deng X, He J, Yao W. Occupational Low-Dose Radiation Affects the Expression of Immune Checkpoint of Medical Radiologists. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7105. [PMID: 35742351 PMCID: PMC9223099 DOI: 10.3390/ijerph19127105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to investigate the expression of immune checkpoint cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and T cell immunoglobulin and mucin domain 3 (TIM-3) in the peripheral blood T lymphocytes of medical radiologists. The study incorporated 100 male medical radiologists and 107 male healthy controls. The expressions of CTLA-4 and TIM-3 among CD4+ and CD8+ lymphocytes were detected by flow cytometry. The expression levels of CTLA-4 and TIM-3 in the CD4+T cells of radiation workers were lower than those of healthy controls (p < 0.05). Correlation analysis showed that the CD8+CTLA-4 expression level was significantly positively correlated with individual cumulative dose (rs = 0.260, p = 0.001, <0.05), while the expression level of CD8+TIM-3 was negatively correlated (rs = −0.180, p = 0.027, <0.05). Low-dose radiation exposure affects the expression of CTLA-4 and TIM-3 in human peripheral blood T lymphocytes. Future studies need to focus on exploring the mechanisms by which CTLA-4 and TIM-3 expression changes in response to low-dose radiation exposure.
Collapse
Affiliation(s)
- Chen Wang
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.W.); (C.H.); (K.D.); (Z.N.); (X.X.); (X.D.); (J.H.)
| | - Changfu Hao
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.W.); (C.H.); (K.D.); (Z.N.); (X.X.); (X.D.); (J.H.)
| | - Kai Dai
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.W.); (C.H.); (K.D.); (Z.N.); (X.X.); (X.D.); (J.H.)
| | - Yuzheng Li
- Henan Institute of Occupational Medicine, Zhengzhou 450001, China; (Y.L.); (J.J.)
| | - Jie Jiao
- Henan Institute of Occupational Medicine, Zhengzhou 450001, China; (Y.L.); (J.J.)
| | - Zhuoya Niu
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.W.); (C.H.); (K.D.); (Z.N.); (X.X.); (X.D.); (J.H.)
| | - Xiao Xu
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.W.); (C.H.); (K.D.); (Z.N.); (X.X.); (X.D.); (J.H.)
| | - Xuedan Deng
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.W.); (C.H.); (K.D.); (Z.N.); (X.X.); (X.D.); (J.H.)
| | - Jing He
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.W.); (C.H.); (K.D.); (Z.N.); (X.X.); (X.D.); (J.H.)
| | - Wu Yao
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (C.W.); (C.H.); (K.D.); (Z.N.); (X.X.); (X.D.); (J.H.)
| |
Collapse
|