1
|
An F, Jia X, Shi Y, Xiao X, Yang F, Su J, Peng X, Geng G, Yan C. The ultimate microbial composition for correcting Th17/Treg cell imbalance and lipid metabolism disorders in osteoporosis. Int Immunopharmacol 2025; 144:113613. [PMID: 39571271 DOI: 10.1016/j.intimp.2024.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
Osteoporosis is a systemic bone disease characterised by decreased bone mass and a deteriorated bone microstructure, leading to increased bone fragility and fracture risk. Disorders of the intestinal microbiota may be key inducers of osteoporosis. Furthermore, such disorders may contribute to osteoporosis by influencing immune function and lipid metabolism. Therefore, in this review, we aimed to summarise the molecular mechanisms through which the intestinal microbiota affect the onset and development of osteoporosis by regulating Th17/Treg imbalance and lipid metabolism disorders. We also discussed the regulatory mechanisms underlying the effect of intestinal microbiota-related modulators on Th17/Treg imbalance and lipid metabolism disorders in osteoporosis, to explore new molecular targets for its treatment and provide a theoretical basis for clinical management.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| | - Xueru Jia
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Yangyang Shi
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xiaolong Xiao
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Fan Yang
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Junchang Su
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xia Peng
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Guangqin Geng
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| |
Collapse
|
2
|
Wang J, Hou Y, Mu L, Yang M, Ai X. Gut microbiota contributes to the intestinal and extraintestinal immune homeostasis by balancing Th17/Treg cells. Int Immunopharmacol 2024; 143:113570. [PMID: 39547012 DOI: 10.1016/j.intimp.2024.113570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Gut microbiota is generally considered to play an important role in host health due to its extensive immunomodulatory activities. Th17 and Treg cells are two important CD4+ T cell subsets involved in immune regulation, and their imbalance is closely tied to many immune diseases. Recently, abundant researches have highlighted the importance of gut microbiota in supporting intestinal and extraintestinal immunity through the balance of Th17 and Treg cells. Here, we presented a comprehensive review of these findings. This review first provided an overview of gut microbiota, along with Th17/Treg cell differentiation and cytokine production. Subsequently, the review summarized the regulatory effects of gut microbiota (in terms of species, components, and metabolites) on the Th17/Treg cell balance in the local intestines and extraintestinal organs, such as lung, liver, brain, kidney, and bone. Specifically, the Th17 and Treg cells that can be modulated by gut microbiota originate not only from the gut and extraintestinal organs, but also from peripheral blood and spleen. Then, the microbial therapeutics, including probiotics, prebiotics, postbiotics, and fecal microbiota transplantation (FMT), were also reviewed because of their therapeutic potentials in addressing intestinal and extraintestinal diseases via the Th17/Treg axis. Finally, the review discussed the clinical applications and future study prospects of microbial therapeutics by targeting the Th17/Treg cell balance. In conclusion, this review focused on elucidating the regulatory effects of gut microbiota in balancing Th17/Treg cells to maintain intestinal and extraintestinal immune homeostasis, contributing to the further development and promotion of microbial therapeutics.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Yaqin Hou
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Lifeng Mu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China.
| | - Xiaopeng Ai
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
3
|
You K, Yang L, Su Z, Shen J, Fan X, Guo Y, Yuan Z, Lu H. Butyric Acid Modulates Gut Microbiota to Alleviate Inflammation and Secondary Bone Loss in Ankylosing Spondylitis. Biomedicines 2024; 13:9. [PMID: 39857593 PMCID: PMC11762490 DOI: 10.3390/biomedicines13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Ankylosing spondylitis (AS) is a chronic inflammatory and autoimmune disease that primarily affects the sacroiliac joints and axial skeleton. While the exact pathogenetic mechanism of AS remains unclear, previous reports have highlighted the involvement of genetic factors, immune responses, and gut microbiota dysregulation in the development of this condition. Short-chain fatty acids (SCFAs), which are microbial fermentation products derived from sugar, protein, and dietary fibers, play a role in maintaining the intestinal barrier function and reducing inflammatory responses. The aim of this study was to investigate the therapeutic potential of butyric acid (BA), an important SCFA, in the treatment of AS. Methods: To evaluate the anti-inflammatory and anti-bone loss effects of BA, a murine AS model was established using proteoglycan and dimethyl dioctadecyl ammonium (DDA) adjuvants. Various techniques, including an enzyme-linked immunosorbent assay (ELISA), magnetic resonance imaging (MRI), micro-CT, histology, quantitative PCR (qPCR) for intestinal tight junction protein expression, and 16S rDNA sequencing to analyze gut microbiota abundance, were employed to assess the inflammation and bone health in the target tissues. Results: The results indicated that BA demonstrated potential in alleviating the inflammatory response in the peripheral joints and the axial spine affected by AS, as evidenced by the reductions in inflammatory infiltration, synovial hyperplasia, and endplate erosion. Furthermore, BA was found to impact the intestinal barrier function positively. Notably, BA was associated with the downregulation of harmful inflammatory factors and the reversal of bone loss, suggesting its protective effects against AS. Conclusions: These beneficial effects were attributed to the modulation of gut microbiota, anti-inflammatory properties, and the maintenance of skeletal metabolic homeostasis. This study contributes new evidence supporting the relationship between gut microbiota and bone health.
Collapse
Affiliation(s)
- Ke You
- Department of Spine Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519082, China; (K.Y.); (L.Y.); (Z.S.); (Y.G.)
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Lianjun Yang
- Department of Spine Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519082, China; (K.Y.); (L.Y.); (Z.S.); (Y.G.)
| | - Zhihai Su
- Department of Spine Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519082, China; (K.Y.); (L.Y.); (Z.S.); (Y.G.)
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Jun Shen
- Department of Spine Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China;
| | - Xinyang Fan
- Centre of Education Development, South China Normal University, Guangzhou 510006, China;
| | - Yuanqing Guo
- Department of Spine Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519082, China; (K.Y.); (L.Y.); (Z.S.); (Y.G.)
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Hai Lu
- Department of Spine Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519082, China; (K.Y.); (L.Y.); (Z.S.); (Y.G.)
| |
Collapse
|
4
|
Shen H, Zhang C, Zhang Q, Lv Q, Liu H, Yuan H, Wang C, Meng F, Guo Y, Pei J, Yu C, Tie J, Chen X, Yu H, Zhang G, Wang X. Gut microbiota modulates depressive-like behaviors induced by chronic ethanol exposure through short-chain fatty acids. J Neuroinflammation 2024; 21:290. [PMID: 39508236 PMCID: PMC11539449 DOI: 10.1186/s12974-024-03282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Chronic ethanol exposure (CEE) is recognized as an important risk factor for depression, and the gut-brain axis has emerged as a key mechanism underlying chronic ethanol exposure-induced anxiety and depression-like behaviors. Short-chain fatty acids (SCFAs), which are the key metabolites generated by gut microbiota from insoluble dietary fiber, exert protective roles on the central nervous system, including the reduction of neuroinflammation. However, the link between gut microbial disturbances caused by chronic ethanol exposure, production of SCFAs, and anxiety and depression-like behaviors remains unclear. METHODS Initially, a 90-day chronic ethanol exposure model was established, followed by fecal microbiota transplantation model, which was supplemented with SCFAs via gavage. Anxiety and depression-like behaviors were determined by open field test, forced swim test, and elevated plus-maze. Serum and intestinal SCFAs levels were quantified using GC-MS. Changes in related indicators, including the intestinal barrier, intestinal inflammation, neuroinflammation, neurotrophy, and nerve damage, were detected using Western blotting, immunofluorescence, and Nissl staining. RESULTS Chronic ethanol exposure disrupted with gut microbial homeostasis, reduced the production of SCFAs, and led to anxiety and depression-like behaviors. Recipient mice transplanted with fecal microbiota that had been affected by chronic ethanol exposure exhibited impaired intestinal structure and function, low levels of SCFAs, intestinal inflammation, activation of neuroinflammation, a compromised blood-brain barrier, neurotrophic defects, alterations in the GABA system, anxiety and depression-like behaviors. Notably, the negative effects observed in these recipient mice were significantly alleviated through the supplementation of SCFAs. CONCLUSION SCFAs not only mitigate damage to intestinal structure and function but also alleviate various lesions in the central nervous system, such as neuroinflammation, and reduce anxiety and depression-like behaviors, which were triggered by transplantation with fecal microbiota that had been affected by chronic ethanol exposure, adding more support that SCFAs serve as a bridge between the gut and the brain.
Collapse
Affiliation(s)
- Hui Shen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Chaoxu Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Qian Zhang
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, Liaoning, 110001, P. R. China
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, P. R. China
| | - Qing Lv
- Department of Clinical Nutrition, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110032, P. R. China
| | - Hao Liu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Huiya Yuan
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
- Department of Forensic Analytical Toxicology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, 110122, P. R. China
| | - Changliang Wang
- The People's Procuratorate of Liaoning Province Judicial Authentication Center, Shenyang, Liaoning, 110122, P. R. China
- Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang, Liaoning, 110032, P. R. China
| | - Fanyue Meng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Yufu Guo
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Jiaxin Pei
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Chenyang Yu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Jinming Tie
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Xiaohuan Chen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Hao Yu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China.
| | - Guohua Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China.
| | - Xiaolong Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China.
| |
Collapse
|
5
|
Marroncini G, Naldi L, Martinelli S, Amedei A. Gut-Liver-Pancreas Axis Crosstalk in Health and Disease: From the Role of Microbial Metabolites to Innovative Microbiota Manipulating Strategies. Biomedicines 2024; 12:1398. [PMID: 39061972 PMCID: PMC11273695 DOI: 10.3390/biomedicines12071398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The functions of the gut are closely related to those of many other organs in the human body. Indeed, the gut microbiota (GM) metabolize several nutrients and compounds that, once released in the bloodstream, can reach distant organs, thus influencing the metabolic and inflammatory tone of the host. The main microbiota-derived metabolites responsible for the modulation of endocrine responses are short-chain fatty acids (SCFAs), bile acids and glucagon-like peptide 1 (GLP-1). These molecules can (i) regulate the pancreatic hormones (insulin and glucagon), (ii) increase glycogen synthesis in the liver, and (iii) boost energy expenditure, especially in skeletal muscles and brown adipose tissue. In other words, they are critical in maintaining glucose and lipid homeostasis. In GM dysbiosis, the imbalance of microbiota-related products can affect the proper endocrine and metabolic functions, including those related to the gut-liver-pancreas axis (GLPA). In addition, the dysbiosis can contribute to the onset of some diseases such as non-alcoholic steatohepatitis (NASH)/non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and type 2 diabetes (T2D). In this review, we explored the roles of the gut microbiota-derived metabolites and their involvement in onset and progression of these diseases. In addition, we detailed the main microbiota-modulating strategies that could improve the diseases' development by restoring the healthy balance of the GLPA.
Collapse
Affiliation(s)
- Giada Marroncini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Laura Naldi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
6
|
Sapp PA, Townsend JR, Kirby TO, Govaert M, Duysburgh C, Verstrepen L, Marzorati M, Marshall TM, Esposito R. AG1 ®, a Novel Synbiotic, Maintains Gut Barrier Function following Inflammatory Challenge in a Caco-2/THP1-Blue™ Co-Culture Model. Microorganisms 2024; 12:1263. [PMID: 39065031 PMCID: PMC11278950 DOI: 10.3390/microorganisms12071263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Nutritional interventions to reduce gastrointestinal (GI) permeability are of significant interest to physically active adults and those experiencing chronic health conditions. This in vitro study was designed to assess the impact of AG1, a novel synbiotic, on GI permeability following an inflammatory challenge. Interventions [AG1 (vitamins/minerals, pre-/probiotics, and phytonutrients) and control (control medium)] were fed separately into a human GI tract model (stomach, small intestine, and colon). In the colonic phase, the GI contents were combined with fecal inocula from three healthy human donors. GI permeability was evaluated with transepithelial electrical resistance (TEER) in a Caco-2 (apical)/THP1-Blue™ (basolateral) co-culture model. The apical side received sodium butyrate (positive control) or Caco-2 complete medium (negative control) during baseline testing. In the 24 h experiment, the apical side received colonic simulation isolates from the GI model, and the basolateral side was treated with Caco-2 complete medium, then 6 h treatment with lipopolysaccharide. TEER was assessed at 0 h and 24 h, and inflammatory markers were measured at 30 h in triplicate. Paired samples t-tests were used to evaluate endpoint mean difference (MD) for AG1 vs. control. TEER was higher for AG1 (mean ± SD: 99.89 ± 1.32%) vs. control (mean ± SD: 92.87 ± 1.22%) following activated THP1-induced damage [MD: 7.0% (p < 0.05)]. AG1 maintained TEER similar to the level of the negative control [-0.1% (p = 0.02)]. No differences in inflammatory markers were observed. These in vitro data suggest that acute supplementation with AG1 might stimulate protective effects on GI permeability. These changes may be driven by SCFA production due to the pre-/probiotic properties of AG1, but more research is needed.
Collapse
Affiliation(s)
- Philip A. Sapp
- Research, Nutrition, and Innovation, AG1, Carson City, NV 89701, USA
| | - Jeremy R. Townsend
- Research, Nutrition, and Innovation, AG1, Carson City, NV 89701, USA
- Health & Human Performance, Concordia University Chicago, River Forest, IL 60305, USA
| | - Trevor O. Kirby
- Research, Nutrition, and Innovation, AG1, Carson City, NV 89701, USA
| | | | | | | | - Massimo Marzorati
- ProDigest BVBA, B-9052 Ghent, Belgium
- Center of Microbial Ecology and Technology (CMET), Ghent University, B-9000 Ghent, Belgium
| | - Tess M. Marshall
- Research, Nutrition, and Innovation, AG1, Carson City, NV 89701, USA
| | - Ralph Esposito
- Research, Nutrition, and Innovation, AG1, Carson City, NV 89701, USA
- Department of Nutrition, Food Studies, and Public Health, New York University-Steinhardt, New York, NY 10003, USA
| |
Collapse
|
7
|
Hamada R, Funasaka Y, Saeki H, Serizawa N, Hagino T, Yano Y, Mitsui H, Kanda N. Dietary habits in adult Japanese patients with vitiligo. J Dermatol 2024; 51:491-508. [PMID: 38421796 PMCID: PMC11484454 DOI: 10.1111/1346-8138.17163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Vitiligo is an autoimmune skin disease with acquired depigmentation. Dietary habits may modulate the pathogenesis of vitiligo. We evaluated dietary habits in adult Japanese patients with nonsegmental vitiligo, and compared their results with those of age- and sex-matched controls. We also examined the relationship between dietary habits and Vitiligo Area Scoring Index (VASI), or vitiligo on different anatomical sites. The intakes of energy, nutrients, and foods in the participants were analyzed using a brief-type self-administered diet history questionnaire. Patients with vitiligo showed higher body mass index (BMI) and lower intakes of manganese, vitamin D, pulses, and confection, compared with controls. Multivariate logistic regression analysis showed that vitiligo was associated with high BMI. VASI was higher in males than in females, and negatively correlated with age or intakes of potatoes and vegetables other than green/yellow vegetables. Linear multivariate regression analysis showed that high VASI was associated with younger age. Multivariate logistic regression analysis showed that moderate to severe vitiligo (VASI ≥ 4.25) was associated with male sex and longer disease duration. Multivariate logistic regression analyses showed the following association with vitiligo on respective anatomical sites: high intake of eggs and dairy products and high VASI on the head or neck, high intake of oils and fats and high VASI on the trunk, high intake of cereals and high VASI on the upper limbs, male sex and high VASI on the lower limbs, and high BMI and high VASI on the hands or feet. In conclusion, the control of obesity might have prophylactic or therapeutic effects on vitiligo.
Collapse
Affiliation(s)
- Risa Hamada
- Department of DermatologyNippon Medical SchoolTokyoJapan
| | - Yoko Funasaka
- Department of DermatologyNippon Medical SchoolTokyoJapan
| | - Hidehisa Saeki
- Department of DermatologyNippon Medical SchoolTokyoJapan
| | - Naotaka Serizawa
- Department of DermatologyNippon Medical School Chiba Hokusoh HospitalInzaiJapan
| | - Teppei Hagino
- Department of DermatologyNippon Medical School Chiba Hokusoh HospitalInzaiJapan
| | | | | | - Naoko Kanda
- Department of DermatologyNippon Medical School Chiba Hokusoh HospitalInzaiJapan
| |
Collapse
|
8
|
Wei L, Pan Y, Guo Y, Zhu Y, Jin H, Gu Y, Li C, Wang Y, Lin J, Chen Y, Ke C, Xu L. Symbiotic combination of Akkermansia muciniphila and inosine alleviates alcohol-induced liver injury by modulating gut dysbiosis and immune responses. Front Microbiol 2024; 15:1355225. [PMID: 38572243 PMCID: PMC10987824 DOI: 10.3389/fmicb.2024.1355225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Background Alcoholic liver disease (ALD) is exacerbated by disruptions in intestinal microecology and immune imbalances within the gut-liver axis. The present study assesses the therapeutic potential of combining Akkermansia muciniphila (A. muciniphila) with inosine in alleviating alcohol-induced liver injury. Methods Male C57BL/6 mice, subjected to a Lieber-DeCarli diet with 5% alcohol for 4 weeks, served as the alcoholic liver injury model. Various analyzes, including quantitative reverse transcription polymerase chain reaction (qRT-PCR), ELISA, immunochemistry, 16S rRNA gene sequencing, and flow cytometry, were employed to evaluate liver injury parameters, intestinal barrier function, microbiota composition, and immune responses. Results Compared to the model group, the A. muciniphila and inosine groups exhibited significantly decreased alanine aminotransferase, aspartate aminotransferase, and lipopolysaccharide (LPS) levels, reduced hepatic fat deposition and neutrophil infiltration, alleviated oxidative stress and inflammation, and increased expression of intestinal tight junction proteins (Claudin-1, Occludin, and ZO-1). These effects were further pronounced in the A. muciniphila and inosine combination group compared to individual treatments. While alcohol feeding induced intestinal dysbiosis and gut barrier disruption, the combined treatment reduced the abundance of harmful bacteria (Oscillibacter, Escherichia/Shigella, and Alistipes) induced by alcohol consumption, promoting the growth of butyrate-producing bacteria (Akkermansia, Lactobacillus, and Clostridium IV). Flow cytometry revealed that alcohol consumption reduced T regulatory (Treg) populations while increasing those of T-helper (Th) 1 and Th17, which were restored by A. muciniphila combined with inosine treatment. Moreover, A. muciniphila and inosine combination increased the expression levels of intestinal CD39, CD73, and adenosine A2A receptor (A2AR) along with enhanced proportions of CD4+CD39+Treg and CD4+CD73+Treg cells in the liver and spleen. The A2AR antagonist KW6002, blocked the beneficial effects of the A. muciniphila and inosine combination on liver injury in ALD mice. Conclusion This study reveals that the combination of A. muciniphila and inosine holds promise for ameliorating ALD by enhancing the gut ecosystem, improving intestinal barrier function, upregulating A2AR, CD73, and CD39 expression, modulating Treg cells functionality, and regulating the imbalance of Treg/Th17/Th1 cells, and these beneficial effects are partly A2AR-dependent.
Collapse
Affiliation(s)
- Li Wei
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yizhi Pan
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yu Guo
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yin Zhu
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
- Department of Infectious Diseases, Taizhou Enze Medical Center (Group), Enze Hospital, Taizhou, China
| | - Haoran Jin
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yingying Gu
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Chuanshuang Li
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yaqin Wang
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Jingjing Lin
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yongping Chen
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Chunhai Ke
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| | - Lanman Xu
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, China
| |
Collapse
|
9
|
Pan X, Liu P, Zhang YJ, Zhang HK, Wei H, Jiang JY, Hui-Yan, Shang EX, Li WW, Wang Y, Duan JA. Carboxymethyl chitosan-TK resistant starch complex ameliorates type 2 diabetes by regulating the gut microbiota. Int J Biol Macromol 2023; 253:126930. [PMID: 37717867 DOI: 10.1016/j.ijbiomac.2023.126930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Carboxymethyl chitosan and resistant starch exhibit good performance in diabetes regulation. We prepared carboxymethyl chitosan - resistant starch complex. Test the properties of composite resistant starch by using X-ray diffraction, water contact angle, infrared spectroscopy, and scanning electron microscopy, interactions with intestinal microbiota and mouse experiments were also conducted. The results indicated that the composite resistant starch had a good effect on promoting the proliferation of probiotics on Bifidobacterium and a significant inhibitory effect on Escherichia coli than resistant starch (P < 0.05). After administration, the water intake and weight of diabetic mice were significantly reduced. The blood glucose of diabetic mice was also reduced, and oral glucose tolerance showed that the glucose degradation rates of composite resistant starch were significantly improved compared to model mice. Cholesterol, triglycerides, high-density lipoprotein and low-density lipoprotein were significantly lower than those in the diabetes group (P < 0.05). The diversity of the gut microbiota was also proven.
Collapse
Affiliation(s)
- Xin Pan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye-Jun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hao-Kuang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hao Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing-Yi Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui-Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei-Wen Li
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Yiwei Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
10
|
Hou D, Li M, Li P, Chen B, Huang W, Guo H, Cao J, Zhao H. Effects of sodium butyrate on growth performance, antioxidant status, inflammatory response and resistance to hypoxic stress in juvenile largemouth bass ( Micropterus salmoides). Front Immunol 2023; 14:1265963. [PMID: 38022555 PMCID: PMC10656595 DOI: 10.3389/fimmu.2023.1265963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
The aim of this study was to investigate the effects of sodium butyrate (SB) supplementation on growth performance, antioxidant enzyme activities, inflammatory factors, and hypoxic stress in largemouth bass (Micropterus salmoides). Diets were supplemented with different doses of SB at 0 (SB0), 0.5 (SB1), 1.0 (SB2) and 2.0 (SB3) g/kg. The hypoxic stress experiment was performed after 56 days of culture. The results showed that compared with the SB0 group, the final body weight, weight gain rate and protein deposition rate of the SB3 group were significantly increased (P<0.05), while FCR was significantly decreased (P<0.05). The contents of dry matter, crude lipids, and ash in the SB2 group were significantly higher than those in the SB0 group (P<0.05). The urea level was significantly decreased (P<0.05), and the glucose content was significantly increased (P<0.05) in the SB supplement group. Compared with the SB0 group, the SB2 group had significant reductions in the levels of serum triglyceride, cholesterol, elevated-density lipoprotein cholesterol, and low-density lipoprotein (P<0.05), and significant reductions in the levels of liver alkaline phosphatase and malondialdehyde (P<0.05). The total antioxidant capacity of the SB1 group was higher than that of other groups (P<0.05). Compared with the SB0 group, the mRNA expression of TLR22, MyD88, TGF-β1, IL-1β and IL-8 in the SB2 group significantly decreased (P<0.05). The cumulative mortality rate was significantly decreased in the SB2 and SB3 groups in comparison with that in the SB0 group after three hours of hypoxic stress (P<0.05). In a 56-day feeding trial, SB enhanced largemouth bass growth by increasing antioxidant enzyme activity and inhibiting TLR22-MyD88 signaling, therefore increasing cumulative mortality from hypoxic stress in largemouth bass.
Collapse
Affiliation(s)
- Dongqiang Hou
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Min Li
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Peijia Li
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Bing Chen
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wen Huang
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Junming Cao
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongxia Zhao
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
11
|
Wang J, Qin Y, Jiang J, Shan H, Zhao C, Li S. The Effect of Theaflavins on the Gut Microbiome and Metabolites in Diabetic Mice. Foods 2023; 12:3865. [PMID: 37893758 PMCID: PMC10606624 DOI: 10.3390/foods12203865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
With the development of diabetes, the gut microbiome falls into a state of dysbiosis, further affecting its progression. Theaflavins (TFs), a type of tea polyphenol derivative, show anti-diabetic properties, but their effect on the gut microbiome in diabetic mice is unclear. It is unknown whether the improvement of TFs on hyperglycemia and hyperlipidemia in diabetic mice is related to gut microbiota. Therefore, in this study, different concentrations of TFs were intragastrically administered to mice with diabetes induced by a high-fat-diet to investigate their effects on blood glucose, blood lipid, and the gut microbiome in diabetic mice, and the plausible mechanism underlying improvement in diabetes was explored from the perspective of the gut microbiome. The results showed that the TFs intervention significantly improved the hyperglycemia and hyperlipidemia of diabetic mice and affected the structure of the gut microbiome by promoting the growth of bacteria positively related to diabetes and inhibiting those negatively related to diabetes. The changes in short-chain fatty acids in mice with diabetes and functional prediction analysis suggested that TFs may affect carbohydrate metabolism and lipid metabolism by regulating the gut microbiome. These findings emphasize the ability of TFs to shape the diversity and structure of the gut microbiome in mice with diabetes induced by a high-fat diet combined with streptozotocin and have practical implications for the development of functional foods with TFs.
Collapse
Affiliation(s)
- Jun Wang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (J.W.)
| | - Yixin Qin
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (J.W.)
| | - Jingjing Jiang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (J.W.)
| | - Hongyan Shan
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (J.W.)
| | - Changyu Zhao
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (J.W.)
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Yang N, Lan T, Han Y, Zhao H, Wang C, Xu Z, Chen Z, Tao M, Li H, Song Y, Ma X. Tributyrin alleviates gut microbiota dysbiosis to repair intestinal damage in antibiotic-treated mice. PLoS One 2023; 18:e0289364. [PMID: 37523400 PMCID: PMC10389721 DOI: 10.1371/journal.pone.0289364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
Tributyrin (TB) is a butyric acid precursor and has a key role in anti-inflammatory and intestinal barrier repair effects by slowly releasing butyric acid. However, its roles in gut microbiota disorder caused by antibiotics remain unclear. Herein, we established an intestinal microbiota disorder model using ceftriaxone sodium via gavage to investigate the effects of different TB doses for restoring gut microbiota and intestinal injury. First, we divided C57BL/6 male mice into two groups: control (NC, n = 8) and experimental (ABx, n = 24) groups, receiving gavage with 0.2 mL normal saline and 400 mg/mL ceftriaxone sodium solution for 7 d (twice a day and the intermediate interval was 6 h), respectively. Then, mice in the ABx group were randomly split into three groups: model (M, 0.2 mL normal saline), low TB group (TL, 0.3 g/kg BW), and high TB group (TH, 3 g/kg BW) for 11 d. We found that TB supplementation alleviated antibiotics-induced weight loss, diarrhea, and intestinal tissue damage. The 16S rRNA sequence analysis showed that TB intervention increased the α diversity of intestinal flora, increased potential short-chain fatty acids (SCFAs)-producing bacteria (such as Muribaculaceae and Bifidobacterium), and inhibited the relative abundance of potentially pathogenic bacteria (such as Bacteroidetes and Enterococcus) compared to the M group. TB supplementation reversed the reduction in SCFAs production in antibiotic-treated mice. Additionally, TB downregulated the levels of serum LPS and zonulin, TNF-α, IL-6, IL-1β and NLRP3 inflammasome-related factors in intestinal tissue and upregulated tight junction proteins (such as ZO-1 and Occludin) and MUC2. Overall, the adjustment ability of low-dose TB to the above indexes was stronger than high-dose TB. In conclusion, TB can restore the dysbiosis of gut microbiota, increase SCFAs, suppress inflammation, and ameliorate antibiotic-induced intestinal damage, indicating that TB might be a potential gut microbiota modulator.
Collapse
Affiliation(s)
- Ning Yang
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Tongtong Lan
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Yisa Han
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Haifeng Zhao
- Qingdao Institute of Food and Drug Control, Key Laboratory of Quality Research and Evaluation of Marine Traditional Chinese Medicine, State Medical Products Administration, Qingdao, China
| | - Chuhui Wang
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Zhen Xu
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Zhao Chen
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Meng Tao
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Hui Li
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Yang Song
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Xuezhen Ma
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Zhang Q, Luo Y, Zheng Q, Zhao H, Wei X, Li X. Itaconate attenuates autoimmune hepatitis via PI3K/AKT/mTOR pathway-mediated inhibition of dendritic cell maturation and autophagy. Heliyon 2023; 9:e17551. [PMID: 37449121 PMCID: PMC10336503 DOI: 10.1016/j.heliyon.2023.e17551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Autoimmune hepatitis (AIH) results from an autoimmune-mediated chronic inflammatory response against liver cells. Defective self-tolerance and dysfunctional dendritic cells (DCs) play a regulatory role in AIH. Itaconate has recently attracted attention in the field of immunometabolism because of its crucial role as an anti-inflammatory metabolite that negatively regulates the inflammatory response. However, the underlying mechanism of itaconate mediation of DCs in AIH remains unclear. In this study, we found that itaconate acts as an anti-inflammatory factor in the liver. Endogenous itaconate levels were significantly increased in mice with S100-induced AIH model and correlated with upregulation of the immune-responsive gene 1 expression. However, the anti-inflammatory response from endogenously itaconate may not represent the effects exogenously-produced itaconate. We investigated the anti-inflammatory response from exogenous itaconate in S100-induced AIH, and our results showed that itaconate treatment attenuated liver histopathological damage, hepatocyte apoptosis, aminotransferase elevation, and IL-6 production in the S100-induced AIH model. In addition, Itaconate decreased glycolysis to suppress the maturation of DCs in the liver and spleen of AIH models, thereby directly regulating differentiation of Th17 and Tregs in vivo. The percentage of Th17 cells among the CD4+ population were decreased and Tregs were increased (P < 0.05). Furthermore, Itaconate-induced bone marrow-derived monocytes suppressed CD4+cells proliferation. In vitro and in vivo, we found that itaconate suppressed autophagy via activating the PI3K/AKT/mTOR signalling pathway in bone marrow-derived DCs and liver tissues. We further investigated the function of Itaconate on DC-specific mTOR-deficient mice. mTOR-deficient DCs augmented inflammatory reactions in mTORDC-/- AIH mice and induced autophagy. MHY1485 (an agonist of mTOR) and itaconate significantly alleviated the inflammatory reaction and autophagy signalling. In conclusion, itaconate ameliorate liver inflammation in S100-induced AIH mice by regulating the PI3K/AKT/mTOR pathway to decrease DCs autophagy and maturation. These results provide insight useful for treating AIH.
Collapse
Affiliation(s)
- Qiyu Zhang
- The First School of Clinical Medicine, Lanzhou University, 730000 Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, 730000 Lanzhou, China
- Hepatopancreatobiliary Surgery Institute of Gansu Province, The First Hospital of Lanzhou University, 730000 Lanzhou, China
| | - Yang Luo
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, 730000 Lanzhou, China
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, 730000 Lanzhou, China
| | - Qiuxia Zheng
- The First School of Clinical Medicine, Lanzhou University, 730000 Lanzhou, China
| | - Haixia Zhao
- The First School of Clinical Medicine, Lanzhou University, 730000 Lanzhou, China
| | - Xiaofeng Wei
- The First School of Clinical Medicine, Lanzhou University, 730000 Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, 730000 Lanzhou, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, 730000 Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, 730000 Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, 730000 Lanzhou, China
- Hepatopancreatobiliary Surgery Institute of Gansu Province, The First Hospital of Lanzhou University, 730000 Lanzhou, China
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, 730000 Lanzhou, China
| |
Collapse
|
14
|
Czaja AJ. Incorporating the Molecular Mimicry of Environmental Antigens into the Causality of Autoimmune Hepatitis. Dig Dis Sci 2023:10.1007/s10620-023-07967-5. [PMID: 37160542 PMCID: PMC10169207 DOI: 10.1007/s10620-023-07967-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Molecular mimicry between foreign and self-antigens has been implicated as a cause of autoimmune hepatitis in experimental models and cross-reacting antibodies in patients. This review describes the experimental and clinical evidence for molecular mimicry as a cause of autoimmune hepatitis, indicates the limitations and uncertainties of this premise, and encourages investigations that assess diverse environmental antigens as sources of disease-relevant molecular mimics. Pertinent articles were identified in PubMed using multiple search phrases. Several pathogens have linear or conformational epitopes that mimic the self-antigens of autoimmune hepatitis. The occurrence of an acute immune-mediated hepatitis after vaccination for severe acute respiratory syndrome (SARS)-associated coronavirus 2 (SARS-CoV-2) has suggested that vaccine-induced peptides may mimic disease-relevant tissue antigens. The intestinal microbiome is an under-evaluated source of gut-derived antigens that could also engage in molecular mimicry. Chaperone molecules may enhance the pathogenicity of molecular mimics, and they warrant investigation. Molecular mimics of immune dominant epitopes within cytochrome P450 IID6, the autoantigen most closely associated with autoimmune hepatitis, should be sought in diverse environmental antigens and assessed for pathogenicity. Avoidance strategies, dietary adjustments, vaccine improvement, and targeted manipulation of the intestinal microbiota may emerge as therapeutic possibilities. In conclusion, molecular mimicry may be a missing causality of autoimmune hepatitis. Molecular mimics of key immune dominant epitopes of disease-specific antigens must be sought in diverse environmental antigens. The ubiquity of molecular mimicry compels rigorous assessments of peptide mimics for immunogenicity and pathogenicity in experimental models. Molecular mimicry may complement epigenetic modifications as causative mechanisms of autoimmune hepatitis.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
15
|
Golpour F, Abbasi-Alaei M, Babaei F, Mirzababaei M, Parvardeh S, Mohammadi G, Nassiri-Asl M. Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomed Pharmacother 2023; 163:114763. [PMID: 37105078 DOI: 10.1016/j.biopha.2023.114763] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Gut microbiota can interact with the immune system through its metabolites. Short-chain fatty acids (SCFAs), as one of the most abundant metabolites of the resident gut microbiota play an important role in this crosstalk. SCFAs (acetate, propionate, and butyrate) regulate nearly every type of immune cell in the gut's immune cell repertoire regarding their development and function. SCFAs work through several pathways to impose protection towards colonic health and against local or systemic inflammation. Additionally, SCFAs play a role in the regulation of immune or non-immune pathways that can slow the development of autoimmunity either systematically or in situ. The present study aims to summarize the current knowledge on the immunomodulatory roles of SCFAs and the association between the SCFAs and autoimmune disorders such as celiac disease (CD), inflammatory bowel disease (IBD), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), type 1 diabetes (T1D) and other immune-mediated diseases, uncovering a brand-new therapeutic possibility to prevent or treat autoimmunity.
Collapse
Affiliation(s)
- Faezeh Golpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrsa Abbasi-Alaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Babaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Mohammadi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Interaction between gut microbiota and sex hormones and their relation to sexual dimorphism in metabolic diseases. Biol Sex Differ 2023; 14:4. [PMID: 36750874 PMCID: PMC9903633 DOI: 10.1186/s13293-023-00490-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Metabolic diseases, such as obesity, metabolic syndrome (MetS) and type 2 diabetes (T2D), are now a widespread pandemic in the developed world. These pathologies show sex differences in their development and prevalence, and sex steroids, mainly estrogen and testosterone, are thought to play a prominent role in this sexual dimorphism. The influence of sex hormones on these pathologies is not only reflected in differences between men and women, but also between women themselves, depending on the hormonal changes associated with the menopause. The observed sex differences in gut microbiota composition have led to multiple studies highlighting the interaction between steroid hormones and the gut microbiota and its influence on metabolic diseases, ultimately pointing to a new therapy for these diseases based on the manipulation of the gut microbiota. This review aims to shed light on the role of sexual hormones in sex differences in the development and prevalence of metabolic diseases, focusing on obesity, MetS and T2D. We focus also the interaction between sex hormones and the gut microbiota, and in particular the role of microbiota in aspects such as gut barrier integrity, inflammatory status, and the gut-brain axis, given the relevance of these factors in the development of metabolic diseases.
Collapse
|
17
|
Zhang Y, Zhu X, Yu X, Novák P, Gui Q, Yin K. Enhancing intestinal barrier efficiency: A novel metabolic diseases therapy. Front Nutr 2023; 10:1120168. [PMID: 36937361 PMCID: PMC10018175 DOI: 10.3389/fnut.2023.1120168] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Physiologically, the intestinal barrier plays a crucial role in homeostasis and nutrient absorption and prevents pathogenic entry, harmful metabolites, and endotoxin absorption. Recent advances have highlighted the association between severely damaged intestinal barriers and diabetes, obesity, fatty liver, and cardiovascular diseases. Evidence indicates that an abated intestinal barrier leads to endotoxemia associated with systemic inflammation, insulin resistance, diabetes, and lipid accumulation, accelerating obesity and fatty liver diseases. Nonetheless, the specific mechanism of intestinal barrier damage and the effective improvement of the intestinal barrier remain to be explored. Here, we discuss the crosstalk between changes in the intestinal barrier and metabolic disease. This paper also highlights how to improve the gut barrier from the perspective of natural medicine, gut microbiota remodeling, lifestyle interventions, and bariatric surgery. Finally, potential challenges and prospects for the regulation of the gut barrier-metabolic disease axis are discussed, which may provide theoretical guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yaoyuan Zhang
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao Zhu
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Xinyuan Yu
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Petr Novák
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Qingjun Gui
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Qingjun Gui, ; Kai Yin,
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Qingjun Gui, ; Kai Yin,
| |
Collapse
|
18
|
Zhang F, Fan D, Huang JL, Zuo T. The gut microbiome: linking dietary fiber to inflammatory diseases. MEDICINE IN MICROECOLOGY 2022. [DOI: 10.1016/j.medmic.2022.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
19
|
Xu RC, Miao WT, Xu JY, Xu WX, Liu MR, Ding ST, Jian YX, Lei YH, Yan N, Liu HD. Neuroprotective Effects of Sodium Butyrate and Monomethyl Fumarate Treatment through GPR109A Modulation and Intestinal Barrier Restoration on PD Mice. Nutrients 2022; 14:nu14194163. [PMID: 36235813 PMCID: PMC9571500 DOI: 10.3390/nu14194163] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Research has connected Parkinson's disease (PD) with impaired intestinal barrier. The activation of G-protein-coupled receptor 109A (GPR109A) protects the intestinal barrier by inhibiting the NF-κB signaling pathway. Sodium butyrate (NaB), which is a GPR109A ligand, may have anti-PD effects. The current study's objective is to demonstrate that NaB or monomethyl fumarate (MMF, an agonist of the GPR109A) can treat PD mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) via repairing the intestinal barrier. Male C57BL/6J mice were divided into four groups randomly: control, MPTP + vehicle, MPTP + NaB, and MPTP + MMF. Modeling mice received MPTP (20 mg/kg/day, i.p.) for a week, while control mice received sterile PBS. Then, four groups each received two weeks of sterile PBS (10 mL/kg/day, i.g.), sterile PBS (10 mL/kg/day, i.g.), NaB (600 mg/kg/day, i.g.), or MMF (100 mg/kg/day, i.g.). We assessed the expression of tight junction (TJ) proteins (occludin and claudin-1), GPR109A, and p65 in the colon, performed microscopic examination via HE staining, quantified markers of intestinal permeability and proinflammatory cytokines in serum, and evaluated motor symptoms and pathological changes in the substantia nigra (SN) or striatum. According to our results, MPTP-induced defected motor function, decreased dopamine and 5-hydroxytryptamine levels in the striatum, decreased tyrosine hydroxylase-positive neurons and increased activated microglia in the SN, and systemic inflammation were ameliorated by NaB or MMF treatment. Additionally, the ruined intestinal barrier was also rebuilt and NF-κB was suppressed after the treatment, with higher levels of TJ proteins, GPR109A, and decreased intestinal permeability. These results show that NaB or MMF can remedy motor symptoms and pathological alterations in PD mice by restoring the intestinal barrier with activated GPR109A. We demonstrate the potential for repairing the compromised intestinal barrier and activating GPR109A as promising treatments for PD.
Collapse
Affiliation(s)
- Rui-Chen Xu
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of First Clinical, Chongqing Medical University, Chongqing 400016, China
| | - Wen-Teng Miao
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of Pediatrics, Chongqing Medical University, Chongqing 400016, China
| | - Jing-Yi Xu
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of First Clinical, Chongqing Medical University, Chongqing 400016, China
| | - Wen-Xin Xu
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of First Clinical, Chongqing Medical University, Chongqing 400016, China
| | - Ming-Ran Liu
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of First Clinical, Chongqing Medical University, Chongqing 400016, China
| | - Song-Tao Ding
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
| | - Yu-Xin Jian
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of First Clinical, Chongqing Medical University, Chongqing 400016, China
| | - Yi-Han Lei
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- College of First Clinical, Chongqing Medical University, Chongqing 400016, China
| | - Ning Yan
- Department of Neurology, University-Town Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Han-Deng Liu
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
- Correspondence: ; Tel.: +86-23-65712090
| |
Collapse
|
20
|
Pohl K, Moodley P, Dhanda A. The effect of increasing intestinal short-chain fatty acid concentration on gut permeability and liver injury in the context of liver disease: A systematic review. J Gastroenterol Hepatol 2022; 37:1498-1506. [PMID: 35612373 PMCID: PMC9545839 DOI: 10.1111/jgh.15899] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM The gut barrier protects the liver through tight junctions, which are disrupted in liver disease either from dysbiosis, inflammation, or the effects of ingested compounds such as alcohol. Strengthening of the gut barrier may ameliorate liver injury of varying etiologies. Short chain fatty acids (SCFAs) have been shown to improve gut barrier function. This systematic review aims to synthesize all studies that have trialed SCFA supplementation as a therapy for liver disease. METHODS A systematic review assessing the impact of SCFA supplementation on liver injury and intestinal permeability was conducted. All forms of intervention that specifically increased intestinal SCFA concentration and measured both liver injury and permeability were eligible. Two independent reviewers assessed each study for outcomes, risk of bias, and quality using checklists relevant to the study's methodology. RESULTS Seventeen studies were identified; two utilized a human model (15 murine). Fifty-eight markers of liver injury were identified, with 26 different measures of permeability. Given the numerous designs, no meta-analysis was possible. SCFA supplements included oral and enteral butyrate, probiotics, and prebiotics. Fourteen studies demonstrated improved permeability. All studies showed a significant amelioration of liver injury. CONCLUSIONS Short chain fatty acid supplementation to reduce intestinal permeability represents a potential therapy in a variety of liver disease models. A large number of outcome measures were reported however not all are practical in human studies. Future work should evaluate methods to increase luminal SCFA concentrations and the effect of this on gut permeability and liver inflammation in people with liver disease.
Collapse
Affiliation(s)
- Keith Pohl
- Hepatology Research Group, Faculty of HealthUniversity of PlymouthPlymouthUK,South West Liver UnitUniversity Hospitals Plymouth NHS TrustPlymouthUK
| | - Prebashan Moodley
- Hepatology Research Group, Faculty of HealthUniversity of PlymouthPlymouthUK,South West Liver UnitUniversity Hospitals Plymouth NHS TrustPlymouthUK
| | - Ashwin Dhanda
- Hepatology Research Group, Faculty of HealthUniversity of PlymouthPlymouthUK,South West Liver UnitUniversity Hospitals Plymouth NHS TrustPlymouthUK
| |
Collapse
|
21
|
Intestinal homeostasis in autoimmune liver diseases. Chin Med J (Engl) 2022; 135:1642-1652. [PMID: 36193976 PMCID: PMC9509077 DOI: 10.1097/cm9.0000000000002291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Intestinal homeostasis depends on complex interactions between the gut microbiota and host immune system. Emerging evidence indicates that the intestinal microbiota is a key player in autoimmune liver disease (AILD). Autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, and IgG4-related sclerosing cholangitis have been linked to gut dysbiosis. Diverse mechanisms contribute to disturbances in intestinal homeostasis in AILD. Bacterial translocation and molecular mimicry can lead to hepatic inflammation and immune activation. Additionally, the gut and liver are continuously exposed to microbial metabolic products, mediating variable effects on liver immune pathologies. Importantly, microbiota-specific or associated immune responses, either hepatic or systemic, are abnormal in AILD. Comprehensive knowledge about host-microbiota interactions, included but not limited to this review, facilitates novel clinical practice from a microbiome-based perspective. However, many challenges and controversies remain in the microbiota field of AILD, and there is an urgent need for future investigations.
Collapse
|
22
|
Yu H, Bai S, Hao Y, Guan Y. Fatty acids role in multiple sclerosis as "metabokines". J Neuroinflammation 2022; 19:157. [PMID: 35715809 PMCID: PMC9205055 DOI: 10.1186/s12974-022-02502-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/01/2022] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis (MS), as an autoimmune neurological disease with both genetic and environmental contribution, still lacks effective treatment options among progressive patients, highlighting the need to re-evaluate disease innate properties in search for novel therapeutic targets. Fatty acids (FA) and MS bear an interesting intimate connection. FA and FA metabolism are highly associated with autoimmunity, as the diet-derived circulatory and tissue-resident FAs level and composition can modulate immune cells polarization, differentiation and function, suggesting their broad regulatory role as “metabokines”. In addition, FAs are indeed protective factors for blood–brain barrier integrity, crucial contributors of central nervous system (CNS) chronic inflammation and progressive degeneration, as well as important materials for remyelination. The remaining area of ambiguity requires further exploration into this arena to validate the existed phenomenon, develop novel therapies, and confirm the safety and efficacy of therapeutic intervention targeting FA metabolism.
Collapse
Affiliation(s)
- Haojun Yu
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Shuwei Bai
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Yong Hao
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| |
Collapse
|
23
|
Methyl butyrate attenuates concanavalin A-induced autoimmune hepatitis by inhibiting Th1-cell activation and homing to the liver. Cell Immunol 2022; 378:104575. [DOI: 10.1016/j.cellimm.2022.104575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022]
|
24
|
Du Y, Zhang W, Qiu H, Xiao C, Shi J, Reid LM, He Z. Mouse Models of Liver Parenchyma Injuries and Regeneration. Front Cell Dev Biol 2022; 10:903740. [PMID: 35721478 PMCID: PMC9198899 DOI: 10.3389/fcell.2022.903740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Mice have genetic and physiological similarities with humans and a well-characterized genetic background that is easy to manipulate. Murine models have become the most favored, robust mammalian systems for experimental analyses of biological processes and disease conditions due to their low cost, rapid reproduction, a wealth of mouse strains with defined genetic conditions (both native ones as well as ones established experimentally), and high reproducibility with respect to that which can be done in experimental studies. In this review, we focus on murine models for liver, an organ with renown regenerative capacity and the organ most central to systemic, complex metabolic and physiological functions for mammalian hosts. Establishment of murine models has been achieved for all aspects of studies of normal liver, liver diseases, liver injuries, and regenerative repair mechanisms. We summarize key information on current mouse systems that partially model facets of clinical scenarios, particularly those associated with drug-induced acute or chronic liver injuries, dietary related, non-alcoholic liver disease (NAFLD), hepatitis virus infectious chronic liver diseases, and autoimmune hepatitis (AIH). In addition, we also include mouse models that are suitable for studying liver cancers (e.g., hepatocellular carcinomas), the aging process (senescence, apoptosis), and various types of liver injuries and regenerative processes associated with them.
Collapse
Affiliation(s)
- Yuan Du
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
| | - Hua Qiu
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Canjun Xiao
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
| | - Jun Shi
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| | - Lola M. Reid
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| | - Zhiying He
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| |
Collapse
|
25
|
Johnson WT, Dorn NC, Ogbonna DA, Bottini N, Shah NJ. Lipid-based regulators of immunity. Bioeng Transl Med 2022; 7:e10288. [PMID: 35600637 PMCID: PMC9115682 DOI: 10.1002/btm2.10288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022] Open
Abstract
Lipids constitute a diverse class of molecular regulators with ubiquitous physiological roles in sustaining life. These carbon-rich compounds are primarily sourced from exogenous sources and may be used directly as structural cellular building blocks or as a substrate for generating signaling mediators to regulate cell behavior. In both of these roles, lipids play a key role in both immune activation and suppression, leading to inflammation and resolution, respectively. The simple yet elegant structural properties of lipids encompassing size, hydrophobicity, and molecular weight enable unique biodistribution profiles that facilitate preferential accumulation in target tissues to modulate relevant immune cell subsets. Thus, the structural and functional properties of lipids can be leveraged to generate new materials as pharmacological agents for potently modulating the immune system. Here, we discuss the properties of three classes of lipids: polyunsaturated fatty acids, short-chain fatty acids, and lipid adjuvants. We describe their immunoregulatory functions in modulating disease pathogenesis in preclinical models and in human clinical trials. We conclude with an outlook on harnessing the diverse and potent immune modulating properties of lipids for immunoregulation.
Collapse
Affiliation(s)
- Wade T. Johnson
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Nicholas C. Dorn
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Dora A. Ogbonna
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Nunzio Bottini
- Division of Rheumatology, Allergy and Immunology, Department of MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
- Program in ImmunologyUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Nisarg J. Shah
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California, San DiegoLa JollaCaliforniaUSA
- Program in ImmunologyUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
26
|
Liu H, Liu H, Liu C, Shang M, Wei T, Yin P. Gut Microbiome and the Role of Metabolites in the Study of Graves’ Disease. Front Mol Biosci 2022; 9:841223. [PMID: 35252357 PMCID: PMC8889015 DOI: 10.3389/fmolb.2022.841223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Graves’ disease (GD) is an autoimmune thyroid disease (AITD), which is one of the most common organ-specific autoimmune disorders with an increasing prevalence worldwide. But the etiology of GD is still unclear. A growing number of studies show correlations between gut microbiota and GD. The dysbiosis of gut microbiota may be the reason for the development of GD by modulating the immune system. Metabolites act as mediators or modulators between gut microbiota and thyroid. The purpose of this review is to summarize the correlations between gut microbiota, microbial metabolites and GD. Challenges in the future study are also discussed. The combination of microbiome and metabolome may provide new insight for the study and put forward the diagnosis, treatment, prevention of GD in the future.
Collapse
Affiliation(s)
- Haihua Liu
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Huiying Liu
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Chang Liu
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mengxue Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Tianfu Wei
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Peiyuan Yin
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Peiyuan Yin, ,
| |
Collapse
|
27
|
Akkermansia muciniphila Ameliorates Acetaminophen-Induced Liver Injury by Regulating Gut Microbial Composition and Metabolism. Microbiol Spectr 2022; 10:e0159621. [PMID: 35107323 PMCID: PMC8809353 DOI: 10.1128/spectrum.01596-21] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The gut microbiota drives individual sensitivity to excess acetaminophen (APAP)-mediated hepatotoxicity. It has been reported that the bacterium Akkermansia muciniphila protects hosts against liver disease via the liver-gut axis, but its therapeutic potential for drug-induced liver injury remains unclear. In this study, we aimed to investigate the effect of A. muciniphila on APAP-induced liver injury and the underlying mechanism. Administration of A. muciniphila efficiently alleviated APAP-induced hepatotoxicity and reduced the levels of serum alanine aminotransferase (ALT) and aspartate transaminase (AST). A. muciniphila significantly attenuated APAP-induced oxidative stress and the inflammatory response, as evidenced by restoration of the reduced glutathione/oxidized glutathione (GSH/GSSG) balance, enhanced superoxide dismutase (SOD) activity, reduced proinflammatory cytokine production, and alleviation of macrophage and neutrophil infiltration. Moreover, A. muciniphila maintained gut barrier function, reshaped the perturbed microbial community and promoted short-chain fatty acid (SCFA) secretion. The beneficial effects of A. muciniphila were accompanied by alterations in hepatic gene expression at the transcriptional level and activation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Our results suggested that A. muciniphila could be a potential pretreatment for APAP-induced liver injury. IMPORTANCE Our work revealed that A. muciniphila attenuated APAP-induced liver injury by alleviating oxidative stress and inflammation in the liver, and its hepatoprotective effect was accompanied by activation of the PI3K/Akt pathway and mediated by regulation of the composition and metabolic function of the intestinal microbiota. This finding suggested that the microbial community is a non-negligible impact on drug metabolism and probiotic administration could be a potential therapy for drug-induced liver injury.
Collapse
|
28
|
|
29
|
Abstract
Type 2 diabetes (T2D) is an independent risk factor for acute ischemic stroke (AIS), but the underlying mechanisms remain elusive. Because the gut microbiota plays a causal role in both T2D and AIS, we wondered whether gut dysbiosis in T2D aggravates stroke progression. We recruited 35 T2D, 90 AIS, 60 AIS with T2D (AIS_T2D) patients, and 55 healthy controls and found that AIS and T2D had an additive effect on AIS_T2D patient gut dysbiosis by exhibiting the largest difference from the heathy controls. In addition, we found that the degree of gut dysbiosis associated with T2D was positively correlated with the National Institutes of Health Stroke Scale (NIHSS), modified Rankin score (mRS), and Essen stroke risk score in patients with AIS, including AIS and AIS_T2D patients. Compared with mice colonized with gut microbiota from healthy controls poststroke modeling, germfree (GF) mice colonized with gut microbiota from T2D patients showed exacerbated cerebral injury and impaired gut barrier function. Specifically, exacerbated brain injury and gut barrier dysfunction in T2D-treated GF mice were significantly associated with a reduction in short-chain fatty acid (SCFA)-producing bacteria. Our study showed that T2D and AIS have an additive effect on AIS_T2D patient gut microbiota dysbiosis. T2D-associated gut microbiota dysbiosis is associated with stroke severity in AIS patients and aggravates stroke progression in mice. IMPORTANCE We demonstrated an additive effect of type 2 diabetes (T2D) and acute ischemic stroke (AIS) on AIS with T2D (AIS_T2D) patient gut microbiota dysbiosis, and gut dysbiosis associated with T2D was positively correlated with stroke severity in AIS patients. Through animal experiments, we found that cerebral injury was exacerbated by fecal microbiota transplantation from T2D patients compared with that from healthy controls, which was associated with a reduction in short-chain fatty acid (SCFA)-producing bacteria. This study provided a novel view that links T2D and AIS through gut microbial dysbiosis.
Collapse
|
30
|
Sirbe C, Simu G, Szabo I, Grama A, Pop TL. Pathogenesis of Autoimmune Hepatitis-Cellular and Molecular Mechanisms. Int J Mol Sci 2021; 22:13578. [PMID: 34948375 PMCID: PMC8703580 DOI: 10.3390/ijms222413578] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
Pediatric autoimmune liver disorders include autoimmune hepatitis (AIH), autoimmune sclerosing cholangitis (ASC), and de novo AIH after liver transplantation. AIH is an idiopathic disease characterized by immune-mediated hepatocyte injury associated with the destruction of liver cells, causing inflammation, liver failure, and fibrosis, typically associated with autoantibodies. The etiology of AIH is not entirely unraveled, but evidence supports an intricate interaction among genetic variants, environmental factors, and epigenetic modifications. The pathogenesis of AIH comprises the interaction between specific genetic traits and molecular mimicry for disease development, impaired immunoregulatory mechanisms, including CD4+ T cell population and Treg cells, alongside other contributory roles played by CD8+ cytotoxicity and autoantibody production by B cells. These findings delineate an intricate pathway that includes gene to gene and gene to environment interactions with various drugs, viral infections, and the complex microbiome. Epigenetics emphasizes gene expression through hereditary and reversible modifications of the chromatin architecture without interfering with the DNA sequence. These alterations comprise DNA methylation, histone transformations, and non-coding small (miRNA) and long (lncRNA) RNA transcriptions. The current first-line therapy comprises prednisolone plus azathioprine to induce clinical and biochemical remission. Further understanding of the cellular and molecular mechanisms encountered in AIH may depict their impact on clinical aspects, detect biomarkers, and guide toward novel, effective, and better-targeted therapies with fewer side effects.
Collapse
Affiliation(s)
- Claudia Sirbe
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Gelu Simu
- Cardiology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Cardiology Department, Rehabilitation Hospital, 400066 Cluj-Napoca, Romania
| | - Iulia Szabo
- Department of Rheumatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Alina Grama
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Tudor Lucian Pop
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| |
Collapse
|
31
|
Chen Z, Wang M, Yang S, Shi J, Ji T, Ding W, Jiang L, Fan Z, Chen J, Lu Y. Butyric Acid Protects Against Renal Ischemia-Reperfusion Injury by Adjusting the Treg/Th17 Balance via HO-1/p-STAT3 Signaling. Front Cell Dev Biol 2021; 9:733308. [PMID: 34796171 PMCID: PMC8593469 DOI: 10.3389/fcell.2021.733308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Immune regulation plays a vital role in ischemia-reperfusion injury (IRI). Butyric acid (BA) has immunomodulatory effects in many diseases, but its immunomodulatory effects during renal IRI are still unclear. Our research shows that BA protected against IRI and significantly improved renal IRI in vivo. In vitro studies showed that BA inhibits Th17 cell differentiation and induces Treg cell differentiation. Mechanism studies have shown that heme oxygenase 1 (HO-1)/STAT3 signaling pathway was involved in the inhibitory effect of BA on Th17 cell differentiation. HO-1 inhibitors can significantly rescue the BA-mediated inhibition of Th17 cell differentiation. We confirmed that BA promotes the differentiation of Th17 cells into Treg cells by regulating the pathway and reduces renal IRI.
Collapse
Affiliation(s)
- Zhen Chen
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Miaomiao Wang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shikun Yang
- Key Laboratory of Liver Transplantation, Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jian Shi
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Tianhao Ji
- Key Laboratory of Liver Transplantation, Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, Nanjing, China
| | - Wei Ding
- The Third Affiliated Hospital of Soochow University, Changzhou, China.,Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | | | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Jing Chen
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yunjie Lu
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
32
|
Zheng Y, Ran Y, Zhang H, Wang B, Zhou L. The Microbiome in Autoimmune Liver Diseases: Metagenomic and Metabolomic Changes. Front Physiol 2021; 12:715852. [PMID: 34690796 PMCID: PMC8531204 DOI: 10.3389/fphys.2021.715852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies have identified the critical role of microbiota in the pathophysiology of autoimmune liver diseases (AILDs), including autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC). Metagenomic studies reveal significant decrease of gut bacterial diversity in AILDs. Although profiles of metagenomic vary widely, Veillonella is commonly enriched in AIH, PBC, and PSC. Apart from gut microbiome, the oral and bile microbiome seem to be associated with these diseases as well. The functional analysis of metagenomics suggests that metabolic pathways changed in the gut microbiome of the patients. Microbial metabolites, including short-chain fatty acids (SCFAs) and microbial bile acid metabolites, have been shown to modulate innate immunity, adaptive immunity, and inflammation. Taken together, the evidence of host–microbiome interactions and in-depth mechanistic studies needs further accumulation, which will offer more possibilities to clarify the mechanisms of AILDs and provide potential molecular targets for the prevention and treatment in the future.
Collapse
Affiliation(s)
- Yanping Zheng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Ran
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongxia Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gastroenterology and Hepatology, Hotan People's Hospital, Xinjiang, China
| |
Collapse
|
33
|
Dupraz L, Magniez A, Rolhion N, Richard ML, Da Costa G, Touch S, Mayeur C, Planchais J, Agus A, Danne C, Michaudel C, Spatz M, Trottein F, Langella P, Sokol H, Michel ML. Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal γδ T cells. Cell Rep 2021; 36:109332. [PMID: 34233192 DOI: 10.1016/j.celrep.2021.109332] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/04/2021] [Accepted: 06/10/2021] [Indexed: 12/23/2022] Open
Abstract
Gut interleukin-17A (IL-17)-producing γδ T cells are tissue-resident cells that are involved in both host defense and regulation of intestinal inflammation. However, factors that regulate their functions are poorly understood. In this study, we find that the gut microbiota represses IL-17 production by cecal γδ T cells. Treatment with vancomycin, a Gram-positive bacterium-targeting antibiotic, leads to decreased production of short-chain fatty acids (SCFAs) by the gut microbiota. Our data reveal that these microbiota-derived metabolites, particularly propionate, reduce IL-17 and IL-22 production by intestinal γδ T cells. Propionate acts directly on γδ T cells to inhibit their production of IL-17 in a histone deacetylase-dependent manner. Moreover, the production of IL-17 by human IL-17-producing γδ T cells from patients with inflammatory bowel disease (IBD) is regulated by propionate. These data contribute to a better understanding of the mechanisms regulating gut γδ T cell functions and offer therapeutic perspectives of these cells.
Collapse
Affiliation(s)
- Louise Dupraz
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, 75012 Paris, France
| | - Aurélie Magniez
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Nathalie Rolhion
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, 75012 Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Mathias L Richard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Grégory Da Costa
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Sothea Touch
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, 75012 Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Camille Mayeur
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Julien Planchais
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Allison Agus
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Camille Danne
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Chloé Michaudel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Madeleine Spatz
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 9017, University of Lille, CHU Lille, Institut Pasteur de Lille, 59000 Lille, France
| | - Philippe Langella
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Harry Sokol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, 75012 Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Marie-Laure Michel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.
| |
Collapse
|
34
|
Pral LP, Fachi JL, Corrêa RO, Colonna M, Vinolo MAR. Hypoxia and HIF-1 as key regulators of gut microbiota and host interactions. Trends Immunol 2021; 42:604-621. [PMID: 34171295 DOI: 10.1016/j.it.2021.05.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Oxygen (O2) availability is a key factor regulating microbiota composition and the homeostatic function of cells in the intestinal mucosa of vertebrates. Microbiota-derived metabolites increase O2 consumption by intestinal epithelial cells (IECs), reducing its availability in the gut and leading to hypoxia. This physiological hypoxia activates cellular hypoxic sensors that adapt the metabolism and function of IECs and mucosa-resident cells, such as type-3 innate lymphoid cells (ILC3s). In this review, we discuss recent evidence suggesting that the intricate and multidirectional interactions among the microbiota, hypoxia/hypoxic sensors, and mammalian host cells (IECs and ILC3s) determine how the intestinal barrier and host-microbiota-pathogens connections are molded. Understanding these interactions might provide new treatment possibilities for dysbiosis, as well as certain inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Laís P Pral
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - José L Fachi
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Renan O Corrêa
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Marco A R Vinolo
- Laboratory of Immunoinflammation, Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil; Experimental Medicine Research Cluster, Campinas, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil.
| |
Collapse
|
35
|
Armstrong AJS, Quinn K, Fouquier J, Li SX, Schneider JM, Nusbacher NM, Doenges KA, Fiorillo S, Marden TJ, Higgins J, Reisdorph N, Campbell TB, Palmer BE, Lozupone CA. Systems Analysis of Gut Microbiome Influence on Metabolic Disease in HIV-Positive and High-Risk Populations. mSystems 2021; 6:e01178-20. [PMID: 34006628 PMCID: PMC8269254 DOI: 10.1128/msystems.01178-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
Poor metabolic health, characterized by insulin resistance and dyslipidemia, is higher in people living with HIV and has been linked with inflammation, antiretroviral therapy (ART) drugs, and ART-associated lipodystrophy (LD). Metabolic disease is associated with gut microbiome composition outside the context of HIV but has not been deeply explored in HIV infection or in high-risk men who have sex with men (HR-MSM), who have a highly altered gut microbiome composition. Furthermore, the contribution of increased bacterial translocation and associated systemic inflammation that has been described in HIV-positive and HR-MSM individuals has not been explored. We used a multiomic approach to explore relationships between impaired metabolic health, defined using fasting blood markers, gut microbes, immune phenotypes, and diet. Our cohort included ART-treated HIV-positive MSM with or without LD, untreated HIV-positive MSM, and HR-MSM. For HIV-positive MSM on ART, we further explored associations with the plasma metabolome. We found that elevated plasma lipopolysaccharide binding protein (LBP) was the most important predictor of impaired metabolic health and network analysis showed that LBP formed a hub joining correlated microbial and immune predictors of metabolic disease. Taken together, our results suggest the role of inflammatory processes linked with bacterial translocation and interaction with the gut microbiome in metabolic disease among HIV-positive and -negative MSM.IMPORTANCE The gut microbiome in people living with HIV (PLWH) is of interest since chronic infection often results in long-term comorbidities. Metabolic disease is prevalent in PLWH even in well-controlled infection and has been linked with the gut microbiome in previous studies, but little attention has been given to PLWH. Furthermore, integrated analyses that consider gut microbiome, together with diet, systemic immune activation, metabolites, and demographics, have been lacking. In a systems-level analysis of predictors of metabolic disease in PLWH and men who are at high risk of acquiring HIV, we found that increased lipopolysaccharide-binding protein, an inflammatory marker indicative of compromised intestinal barrier function, was associated with worse metabolic health. We also found impaired metabolic health associated with specific dietary components, gut microbes, and host and microbial metabolites. This study lays the framework for mechanistic studies aimed at targeting the microbiome to prevent or treat metabolic endotoxemia in HIV-infected individuals.
Collapse
Affiliation(s)
- Abigail J S Armstrong
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, Colorado, USA
- Center for Advanced Biotechnology and Medicine, Rutgers the State University, Piscataway, New Jersey, USA
| | - Kevin Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Jennifer Fouquier
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Sam X Li
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | | | - Nichole M Nusbacher
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Katrina A Doenges
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Suzanne Fiorillo
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Tyson J Marden
- Colorado Clinical and Translational Sciences Institute, Aurora, Colorado, USA
| | - Janine Higgins
- Department of Pediatrics, Section of Endocrinology, University of Colorado, Aurora, Colorado, USA
| | - Nichole Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Thomas B Campbell
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Brent E Palmer
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | | |
Collapse
|
36
|
Fortuna R, Hart DA, Sharkey KA, Schachar RA, Johnston K, Reimer RA. Effect of a prebiotic supplement on knee joint function, gut microbiota, and inflammation in adults with co-morbid obesity and knee osteoarthritis: study protocol for a randomized controlled trial. Trials 2021; 22:255. [PMID: 33827639 PMCID: PMC8025512 DOI: 10.1186/s13063-021-05212-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic and painful condition where the articular cartilage surfaces progressively degenerate, resulting in loss of function and progressive disability. Obesity is a primary risk factor for the development and progression of knee OA, defined as the "metabolic OA" phenotype. Metabolic OA is associated with increased fat deposits that release inflammatory cytokines/adipokines, thereby resulting in systemic inflammation which can contribute to cartilage degeneration. There is currently no cure for OA. Prebiotics are a type of dietary fiber that can positively influence gut microbiota thereby reducing systemic inflammation and offering protection of joint integrity in rodents. However, no human clinical trials have tested the effects of prebiotics in adults with obesity suffering from knee OA. Therefore, the purpose of this double-blind, placebo-controlled, randomized trial is to determine if prebiotic supplementation can, through positive changes in the gut microbiota, improve knee function and physical performance in adults with obesity and knee OA. METHODS Adults (n = 60) with co-morbid obesity (BMI > 30 kg/m2) and knee OA (Kellgren-Lawrence grade II-III) will be recruited from the Alberta Hip and Knee Clinic and the Rocky Mountain Health Clinic and surrounding community of Calgary, Canada, and randomized (stratified by sex, BMI, and age) to prebiotic (oligofructose-enriched inulin; 16 g/day) or a calorie-matched placebo (maltodextrin) for 6 months. Anthropometrics, performance-based tests, knee pain, serum inflammatory markers and metabolomics, quality of life, and gut microbiota will be assessed at baseline, 3 months, 6 months (end of prebiotic supplementation), and 3 months following the end of the prebiotic supplementation. CLINICAL SIGNIFICANCE There is growing pressure on health care systems for aggressive OA treatment such as total joint replacement. Less aggressive, yet effective, conservative treatment options have the potential to address the growing prevalence of co-morbid obesity and knee OA by delaying the need for joint replacement or ideally preventing its need altogether. The results of this clinical trial will provide the first evidence regarding the efficacy of prebiotic supplementation on knee joint function and pain in adults with obesity and knee OA. If successful, the results may provide a simple, safe, and easy to adhere to intervention to reduce knee joint pain and improve the quality of life of adults with co-morbid knee OA and obesity. TRIAL REGISTRATION Clinical Trials.gov NCT04172688 . Registered on 21 November 2019.
Collapse
Affiliation(s)
- Rafael Fortuna
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta Canada
| | - David A. Hart
- McCaig Institute for Bone and Joint Health, Department of Surgery, and Faculty of Kinesiology, University of Calgary, Calgary, Alberta Canada
| | - Keith A. Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta Canada
| | | | - Kelly Johnston
- Division of Hip and Knee Reconstruction, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta Canada
| | - Raylene A. Reimer
- Faculty of Kinesiology and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 2500 University Dr. NW, Calgary, Alberta Canada
| |
Collapse
|
37
|
Hajjar R, Richard CS, Santos MM. The role of butyrate in surgical and oncological outcomes in colorectal cancer. Am J Physiol Gastrointest Liver Physiol 2021; 320:G601-G608. [PMID: 33404375 PMCID: PMC8238168 DOI: 10.1152/ajpgi.00316.2020] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Butyrate is a short-chain fatty acid produced by colonic gut bacteria as a result of fermentation of dietary fibers. In the colon, butyrate is a major energy substrate and contributes to the nutritional support and proliferation of a healthy mucosa. It also promotes the intestinal barrier function by enhancing mucus production and tight junctions. In addition to its pro-proliferative effect in healthy colonocytes, butyrate inhibits the proliferation of cancer cells. The antineoplastic effect of butyrate is associated with the inhibitory effect of butyrate on histone deacetylase (HDAC) enzymes, which promote carcinogenesis. Due to the metabolic shift of cancer cells toward glycolysis, unused butyrate accumulates and inhibits procarcinogenic HDACs. In addition, recent studies suggest that butyrate may improve the healing of colonic tissue after surgery in animal models, specifically at the site of reconnection of colonic ends, anastomosis, after surgical resection. Here, we review current evidence on the impact of butyrate on epithelial integrity and colorectal cancer and present current knowledge on data that support its potential applications in surgical practice.
Collapse
Affiliation(s)
- Roy Hajjar
- 1Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada,2Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Carole S. Richard
- 1Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada,2Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Manuela M. Santos
- 1Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada,3Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
38
|
Hu T, Sun Y, Li H, Du P, Liu L, An Z. Dual derivatization strategy for the comprehensive quantification and double bond location characterization of fatty acids by ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2021; 1639:461939. [PMID: 33530009 DOI: 10.1016/j.chroma.2021.461939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Comprehensive analysis of fatty acids (FAs) has long been challenging due to their poor ionization efficiency, lack of characteristic fragment ions and difficulty of identifying C=C bond locations. In this study, a high coverage ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was established for the quantification and C=C bond location characterization of FAs using two structural analogues, 2-hydrazinyl-4,6-dimethylpyrimidine (DMP) and 2-hydrazinylpyrimidine (DP), as dual derivatization reagents. DP-labeled FA standards were used as internal standards to reduced matrix effects, which guaranteed the accurate quantification of FAs. The derivatization yields of FAs were larger than 99% and the sensitivities were increased by 400-fold compared with non-derivatized FAs. Pretreatment and instrumental analysis of FAs can be completed in 20 minutes. Only 5 μL rat plasma can satisfy the quantification of 36 FAs with good linearity (r>0.99). Both intra-day and inter-day accuracies were in the range of 85-105%, and the precisions were less than 15%. The extraction recoveries were investigated to be in the range of 88-112%. No obvious matrix effects were observed for the derivatized FAs. In addition, the locations of C=C bonds in DMP-derivatized FAs could be identified by diagnostic fragment ions generated from 1,4-hydrogen elimination and allylic cleavage under low energy collision induced dissociation (CID). The new method was finally employed for FA profiling in plasma from rats with moxifloxacin-induced liver injury. Significant downregulation of butyric acid was observed in moxifloxacin treated model rats, which was believed to be related to the liver injury.
Collapse
Affiliation(s)
- Ting Hu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Yuan Sun
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Han Li
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Ping Du
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Lihong Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China.
| | - Zhuoling An
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
39
|
Effects of traditional Chinese medicine Chaihu-Shugan-San aqueous extract on high-fat diet-induced liver steatosis in rats via intestinal microbiota metabolite SCFAs and its receptor Gpr43/109a. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Maalouly G, Hajal J, Noujeim C, Choueiry M, Nassereddine H, Smayra V, Saliba Y, Fares N. New insights in gut-liver axis in wild-type murine imiquimod-induced lupus. Lupus 2021; 30:926-936. [PMID: 33596715 DOI: 10.1177/0961203321995254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Intestinal and hepatic manifestations of lupus seem to be underestimated in comparison to other major organ lesions. Although recent data point to gut-liver axis involvement in lupus, gut permeability dysfunction and liver inflammation need to be more investigated. OBJECTIVE This study aims to assess fecal calprotectin, intestinal tight junction proteins and liver inflammation pathway in wild-type murine imiquimod- induced lupus. METHODS C57BL/6 mice were topically treated on their right ears with 1.25 mg of 5% imiquimod cream, three times per week for six weeks. Fecal calprotectin was collected at day 0, 22 and 45. Renal, liver and intestinal pathology, as well as inflammatory markers, intestinal tight junction proteins, and E. coli protein in liver were assessed at sacrifice. RESULTS At six weeks, lupus nephritis was confirmed on histopathology and NGAL and KIM-1 expression. Calprotectin rise started at day 22 and persists at day 45. Protein expression of Claudine, ZO-1 and occludin was significantly decreased. E. coli protein was significantly increased in liver with necro-inflammation and increased TLR4, TLR7, and pNFκB/NFκB liver expression. CONCLUSION This study is the first to demonstrate early fecal calprotectin increase and liver activation of TLR4- NFκB pathway in wild-type murine imiquimod-induced lupus.
Collapse
Affiliation(s)
- Georges Maalouly
- Faculty of Medicine, CHU Hotel Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Joelle Hajal
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Charbel Noujeim
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Michel Choueiry
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Hussein Nassereddine
- Faculty of Medicine, CHU Hotel Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Viviane Smayra
- Faculty of Medicine, CHU Hotel Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon
| | - Youakim Saliba
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Nassim Fares
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
41
|
Mölzer C, Heissigerova J, Wilson HM, Kuffova L, Forrester JV. Immune Privilege: The Microbiome and Uveitis. Front Immunol 2021; 11:608377. [PMID: 33569055 PMCID: PMC7868421 DOI: 10.3389/fimmu.2020.608377] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/04/2020] [Indexed: 02/03/2023] Open
Abstract
Immune privilege (IP), a term introduced to explain the unpredicted acceptance of allogeneic grafts by the eye and the brain, is considered a unique property of these tissues. However, immune responses are modified by the tissue in which they occur, most of which possess IP to some degree. The eye therefore displays a spectrum of IP because it comprises several tissues. IP as originally conceived can only apply to the retina as it contains few tissue-resident bone-marrow derived myeloid cells and is immunologically shielded by a sophisticated barrier – an inner vascular and an outer epithelial barrier at the retinal pigment epithelium. The vascular barrier comprises the vascular endothelium and the glia limitans. Immune cells do not cross the blood-retinal barrier (BRB) despite two-way transport of interstitial fluid, governed by tissue oncotic pressure. The BRB, and the blood-brain barrier (BBB) mature in the neonatal period under signals from the expanding microbiome and by 18 months are fully established. However, the adult eye is susceptible to intraocular inflammation (uveitis; frequency ~200/100,000 population). Uveitis involving the retinal parenchyma (posterior uveitis, PU) breaches IP, while IP is essentially irrelevant in inflammation involving the ocular chambers, uveal tract and ocular coats (anterior/intermediate uveitis/sclerouveitis, AU). Infections cause ~50% cases of AU and PU but infection may also underlie the pathogenesis of immune-mediated “non-infectious” uveitis. Dysbiosis accompanies the commonest form, HLA-B27–associated AU, while latent infections underlie BRB breakdown in PU. This review considers the pathogenesis of uveitis in the context of IP, infection, environment, and the microbiome.
Collapse
Affiliation(s)
- Christine Mölzer
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jarmila Heissigerova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Heather M Wilson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucia Kuffova
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
42
|
Xu J, Chen D, Jin L, Chen Z, Tu Y, Huang X, Xue F, Xu J, Chen M, Wang X, Chen Y. Ubiquitously specific protease 4 inhibitor-Vialinin A attenuates inflammation and fibrosis in S100-induced hepatitis mice through Rheb/mTOR signalling. J Cell Mol Med 2021; 25:1140-1150. [PMID: 33295107 PMCID: PMC7812299 DOI: 10.1111/jcmm.16180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/27/2022] Open
Abstract
Inflammation and fibrosis are major consequences of autoimmune hepatitis, however, the therapeutic mechanism remains to be investigated. USP4 is a deubiquitinating enzyme and plays an important role in tissue fibrosis and immune disease. Vialinin A is an extract from mushroom and is a specific USP4 inhibitor. However, there is lack of evidences that Vialinin A plays a role in autoimmune hepatitis. By employing S100-induced autoimmune hepatitis in mice and AML12 cell line, therapeutic mechanism of Vialinin A was examined. Inflammation was documented by liver histological staining and inflammatory cytokines. Fibrosis was demonstrated by Masson, Sirius red staining and fibrotic cytokines with western blot and real-time RT-PCR. In experimental animal, there were increases in inflammation and fibrosis as well as USP4, and which were reduced after treatment of Vialinin A. Vialinin A also reduced Rheb and phosphorylated mTOR. Moreover, in LPS-treated AML12 cells, LPS-induced USP4, inflammatory and fibrotic cytokines, phosphorylated mTOR and Rheb. Specific inhibitory siRNA of USP4 reduced USP4 level and the parameters mentioned above. In conclusion, USP4 was significantly elevated in autoimmune hepatitis mice and Vialinin A reduced USP4 level and attenuate inflammation and fibrosis in the liver. The mechanism may be related to regulation of Rheb/mTOR signalling.
Collapse
Affiliation(s)
- Jie Xu
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dazhi Chen
- Department of Gastroenterology, The First Hospital of Peking University, BeiJing, China
| | - Lanling Jin
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhengkang Chen
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yulu Tu
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaozhe Huang
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feiben Xue
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jialu Xu
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mingzhuan Chen
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaodong Wang
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongping Chen
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
43
|
Roberts JL, Liu G, Darby TM, Fernandes LM, Diaz-Hernandez ME, Jones RM, Drissi H. Bifidobacterium adolescentis supplementation attenuates fracture-induced systemic sequelae. Biomed Pharmacother 2020; 132:110831. [PMID: 33022534 PMCID: PMC9979243 DOI: 10.1016/j.biopha.2020.110831] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota is an important contributor to both health and disease. While previous studies have reported on the beneficial influences of the gut microbiota and probiotic supplementation on bone health, their role in recovery from skeletal injury and resultant systemic sequelae remains unexplored. This study aimed to determine the extent to which probiotics could modulate bone repair by dampening fracture-induced systemic inflammation. Our findings demonstrate that femur fracture induced an increase in gut permeability lasting up to 7 days after trauma before returning to basal levels. Strikingly, dietary supplementation with Bifidobacterium adolescentis augmented the tightening of the intestinal barrier, dampened the systemic inflammatory response to fracture, accelerated fracture callus cartilage remodeling, and elicited enhanced protection of the intact skeleton following fracture. Together, these data outline a mechanism whereby dietary supplementation with beneficial bacteria can be therapeutically targeted to prevent the systemic pathologies induced by femur fracture.
Collapse
Affiliation(s)
- Joseph L. Roberts
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA,Nutrition and Health Sciences Program, Emory University, Atlanta, GA, USA
| | - Guanglu Liu
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Trevor M. Darby
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Lorenzo M. Fernandes
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Rheinallt M. Jones
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA; Nutrition and Health Sciences Program, Emory University, Atlanta, GA, USA.
| |
Collapse
|
44
|
Jiang D, Guo S, Kang A, Ju Y, Li J, Yu S, Bao B, Cao Y, Tang Y, Zhang L, Yao W. Comparison of the short-chain fatty acids in normal rat faeces after the treatment of Euphorbia kansui, a traditional Chinese medicine for edoema. PHARMACEUTICAL BIOLOGY 2020; 58:367-373. [PMID: 32351153 PMCID: PMC7241507 DOI: 10.1080/13880209.2020.1755318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/26/2020] [Accepted: 04/08/2020] [Indexed: 05/26/2023]
Abstract
Context: As a toxic traditional Chinese medicine for edoema, Euphorbia kansui S.L. Liou ex S.B. Ho (Euphorbiaceae) (EK) stir-fried with vinegar for detoxification was associated with alterations of gut microbiota. However, the evidence of correlation between short-chain fatty acids (SCFAs) and toxicity of EK has not been confirmed.Objective: In order to study the biological basis of detoxification of EK stir-fried with vinegar (VEK), a rapid, sensitive and validated GC-MS method was developed to determine SCFAs in normal rat faeces after given EK and VEK.Materials and methods: Sprague Dawley rats were orally administered 0.5% CMC-Na (control group), EK (EK-treated group) and VEK powder (VEK-treated group) at 680 mg/kg for six consecutive days (eight rats each group). Fresh faeces samples were promptly collected, derivatized and then analyzed by GC-MS.Results: The ranges of LOD and LOQ were within 0.13-1.79 and 0.45-5.95 μg/mL, respectively. The RSD values of intra-day and inter-day precisions were less than 15%. Four SCFAs were generally stable under four storage conditions. The extraction recoveries were ranged from 53.5% to 97.3% with RSD values lower than 15%. The concentrations of four SCFAs in EK and VEK were decreased significantly compared with those not administered (EK-treated, p < 0.01; VEK-treated, p < 0.05 and p < 0.01). After being stir-fried with vinegar, the concentrations were all increased (p < 0.05 and p < 0.01).Discussion and conclusions: The negative correlation between SCFAs and toxicity of EK may provide evidence for biological mechanism and toxic Chinese medicine.
Collapse
Affiliation(s)
- Dongjing Jiang
- School of Pharmacy, Suzhou Vocational Health College, Suzhou, China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sijia Guo
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - An Kang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yonghui Ju
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingxian Li
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Yu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Beihua Bao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yudan Cao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Li Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weifeng Yao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
45
|
Guan X, Li W, Meng H. A double-edged sword: Role of butyrate in the oral cavity and the gut. Mol Oral Microbiol 2020; 36:121-131. [PMID: 33155411 DOI: 10.1111/omi.12322] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
Abstract
Butyrate, a four-carbon short-chain fatty acid (SCFA), is a metabolite of anaerobic bacteria. Butyrate has primarily been described as an energy substance in the studies on the digestive tract. The multiple mechanisms of its protective function in the gut and on underlying diseases (including metabolic diseases, diseases of the nervous system, and osteoporosis) via interaction with intestinal epithelial cells and immune cells have been well documented. There are many butyrogenic bacteria in the oral cavity as well. As essential components of the oral microbiome, periodontal pathogens are also able to generate butyrate when undergoing metabolism. Considerable evidence has indicated that butyrate plays an essential role in the initiation and perpetuation of periodontitis. However, butyrate is considered to participate in the pro-inflammatory activities in periodontal tissue and the reactivation of latent viruses. In this review, we focused on the production and biological impact of butyrate in both intestine and oral cavity and explained the possible pathway of various diseases that were engaged by butyrate. Finally, we suggested two hypotheses, which may give a better understanding of the significantly different functions of butyrate in different organs (i.e., the expanded butyrate paradox).
Collapse
Affiliation(s)
- Xiaoyuan Guan
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wenjing Li
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Huanxin Meng
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
46
|
Plaza-Díaz J, Solís-Urra P, Rodríguez-Rodríguez F, Olivares-Arancibia J, Navarro-Oliveros M, Abadía-Molina F, Álvarez-Mercado AI. The Gut Barrier, Intestinal Microbiota, and Liver Disease: Molecular Mechanisms and Strategies to Manage. Int J Mol Sci 2020; 21:E8351. [PMID: 33171747 PMCID: PMC7664383 DOI: 10.3390/ijms21218351] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Liver disease encompasses pathologies as non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, alcohol liver disease, hepatocellular carcinoma, viral hepatitis, and autoimmune hepatitis. Nowadays, underlying mechanisms associating gut permeability and liver disease development are not well understood, although evidence points to the involvement of intestinal microbiota and their metabolites. Animal studies have shown alterations in Toll-like receptor signaling related to the leaky gut syndrome by the action of bacterial lipopolysaccharide. In humans, modifications of the intestinal microbiota in intestinal permeability have also been related to liver disease. Some of these changes were observed in bacterial species belonging Roseburia, Streptococcus, and Rothia. Currently, numerous strategies to treat liver disease are being assessed. This review summarizes and discusses studies addressed to determine mechanisms associated with the microbiota able to alter the intestinal barrier complementing the progress and advancement of liver disease, as well as the main strategies under development to manage these pathologies. We highlight those approaches that have shown improvement in intestinal microbiota and barrier function, namely lifestyle changes (diet and physical activity) and probiotics intervention. Nevertheless, knowledge about how such modifications are beneficial is still limited and specific mechanisms involved are not clear. Thus, further in-vitro, animal, and human studies are needed.
Collapse
Affiliation(s)
- Julio Plaza-Díaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| | - Patricio Solís-Urra
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2531015, Chile;
| | - Fernando Rodríguez-Rodríguez
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile; (F.R.-R.); (J.O.-A.)
| | - Jorge Olivares-Arancibia
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile; (F.R.-R.); (J.O.-A.)
- Escuela de Pedagogía en Educación Física, Facultad de Educación, Universidad de las Américas, Santiago 8370035, Chile
| | - Miguel Navarro-Oliveros
- BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain;
| | - Francisco Abadía-Molina
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain;
- Department of Cell Biology, School of Sciences, University of Granada, 18071 Granada, Spain
| | - Ana I. Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain;
| |
Collapse
|
47
|
Zhu L, Hua F, Ding W, Ding K, Zhang Y, Xu C. The correlation between the Th17/Treg cell balance and bone health. IMMUNITY & AGEING 2020; 17:30. [PMID: 33072163 PMCID: PMC7557094 DOI: 10.1186/s12979-020-00202-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023]
Abstract
With the ageing of the world population, osteoporosis has become a problem affecting quality of life. According to the traditional view, the causes of osteoporosis mainly include endocrine disorders, metabolic disorders and mechanical factors. However, in recent years, the immune system and immune factors have been shown to play important roles in the occurrence and development of osteoporosis. Among these components, regulatory T (Treg) cells and T helper 17 (Th17) cells are crucial for maintaining bone homeostasis, especially osteoclast differentiation. Treg cells and Th17 cells originate from the same precursor cells, and their differentiation requires involvement of the TGF-β regulated signalling pathway. Treg cells and Th17 cells have opposite functions. Treg cells inhibit the differentiation of osteoclasts in vivo and in vitro, while Th17 cells promote the differentiation of osteoclasts. Therefore, understanding the balance between Treg cells and Th17 cells is anticipated to provide a new idea for the development of novel treatments for osteoporosis.
Collapse
Affiliation(s)
- Lei Zhu
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Jiangsu, 213003 China
| | - Fei Hua
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Jiangsu, 213003 China
| | - Wenge Ding
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Jiangsu, 213003 China
| | - Kai Ding
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Jiangsu, 213003 China
| | - Yige Zhang
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Jiangsu, 213003 China
| | - Chenyang Xu
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Jiangsu, 213003 China
| |
Collapse
|
48
|
Wang H, Feng X, Yan W, Tian D. Regulatory T Cells in Autoimmune Hepatitis: Unveiling Their Roles in Mouse Models and Patients. Front Immunol 2020; 11:575572. [PMID: 33117375 PMCID: PMC7575771 DOI: 10.3389/fimmu.2020.575572] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a severe and chronic liver disease, and its incidence has increased worldwide in recent years. Research into the pathogenesis of AIH remains limited largely owing to the lack of suitable mouse models. The concanavalin A (ConA) mouse model is a typical and well-established model used to investigate T cell-dependent liver injury. However, ConA-induced hepatitis is acute and usually disappears after 48 h; thus, it does not mimic the pathogenesis of AIH in the human body. Several studies have explored various AIH mouse models, but as yet there is no widely accepted and valid mouse model for AIH. Immunosuppression is the standard clinical therapy for AIH, but patient side effects and recurrence limit its use. Regulatory T cells (Tregs) play critical roles in the maintenance of immune homeostasis and in the prevention of autoimmune diseases, which may provide a potential therapeutic target for AIH therapy. However, the role of Tregs in AIH has not yet been clarified, partly because of difficulties in diagnosing AIH and in collecting patient samples. In this review, we discuss the studies related to Treg in various AIH mouse models and patients with AIH and provide some novel insights for this research area.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxia Feng
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Zhang H, Liu M, Liu X, Zhong W, Li Y, Ran Y, Guo L, Chen X, Zhao J, Wang B, Zhou L. Bifidobacterium animalis ssp. Lactis 420 Mitigates Autoimmune Hepatitis Through Regulating Intestinal Barrier and Liver Immune Cells. Front Immunol 2020; 11:569104. [PMID: 33123141 PMCID: PMC7573389 DOI: 10.3389/fimmu.2020.569104] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune hepatitis (AIH) is an immune-mediated inflammatory liver disease of uncertain cause. Accumulating evidence shows that gut microbiota and intestinal barrier play significant roles in AIH thus the gut–liver axis has important clinical significance as a potential therapeutic target. In the present study, we found that Bifidobacterium animalis ssp. lactis 420 (B420) significantly alleviated S100-induced experimental autoimmune hepatitis (EAH) and modulated the gut microbiota composition. While the analysis of clinical specimens revealed that the fecal SCFA quantities were decreased in AIH patients, and B420 increased the cecal SCFA quantities in EAH mice. Remarkably, B420 application improved intestinal barrier function through upregulation of tight junction proteins in both vitro and vivo experiments. Moreover, B420 decreased the serum endotoxin level and suppressed the RIP3 signaling pathway of liver macrophages in EAH mice thus regulated the proliferation of Th17 cells. Nevertheless, the inhibition effect of B420 on RIP3 signaling pathway was blunted in vitro studies. Together, our results showed that early intervention with B420 contributed to improve the liver immune homeostasis and liver injury in EAH mice, which might be partly due to the protection of intestinal barrier. Our study suggested the potential efficacy of probiotics application against AIH and the promising therapeutic strategies targeting gut–liver axis for AIH.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Man Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xin Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yanni Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Ying Ran
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Liping Guo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xu Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.,Department of Gastroenterology and Hepatology, People's Hospital of Hetian District, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
50
|
Fecal transplantation and butyrate improve neuropathic pain, modify immune cell profile, and gene expression in the PNS of obese mice. Proc Natl Acad Sci U S A 2020; 117:26482-26493. [PMID: 33020290 DOI: 10.1073/pnas.2006065117] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Obesity affects over 2 billion people worldwide and is accompanied by peripheral neuropathy (PN) and an associated poorer quality of life. Despite high prevalence, the molecular mechanisms underlying the painful manifestations of PN are poorly understood, and therapies are restricted to use of painkillers or other drugs that do not address the underlying disease. Studies have demonstrated that the gut microbiome is linked to metabolic health and its alteration is associated with many diseases, including obesity. Pathologic changes to the gut microbiome have recently been linked to somatosensory pain, but any relationships between gut microbiome and PN in obesity have yet to be explored. Our data show that mice fed a Western diet developed indices of PN that were attenuated by concurrent fecal microbiome transplantation (FMT). In addition, we observed changes in expression of genes involved in lipid metabolism and calcium handling in cells of the peripheral nerve system (PNS). FMT also induced changes in the immune cell populations of the PNS. There was a correlation between an increase in the circulating short-chain fatty acid butyrate and pain improvement following FMT. Additionally, butyrate modulated gene expression and immune cells in the PNS. Circulating butyrate was also negatively correlated with distal pain in 29 participants with varied body mass index. Our data suggest that the metabolite butyrate, secreted by the gut microbiome, underlies some of the effects of FMT. Targeting the gut microbiome, butyrate, and its consequences may represent novel viable approaches to prevent or relieve obesity-associated neuropathies.
Collapse
|