1
|
Brauer B, Ancatén-González C, Ahumada-Marchant C, Meza RC, Merino-Veliz N, Nardocci G, Varela-Nallar L, Arriagada G, Chávez AE, Bustos FJ. Impact of KDM6B mosaic brain knockout on synaptic function and behavior. Sci Rep 2024; 14:20416. [PMID: 39223259 PMCID: PMC11369245 DOI: 10.1038/s41598-024-70728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental conditions characterized by impairments in social communication, repetitive behaviors, and restricted interests. Epigenetic modifications serve as critical regulators of gene expression playing a crucial role in controlling brain function and behavior. Lysine (K)-specific demethylase 6B (KDM6B), a stress-inducible H3K27me3 demethylase, has emerged as one of the highest ASD risk genes, but the precise effects of KDM6B mutations on neuronal activity and behavioral function remain elusive. Here we show the impact of KDM6B mosaic brain knockout on the manifestation of different autistic-like phenotypes including repetitive behaviors, social interaction, and significant cognitive deficits. Moreover, KDM6B mosaic knockout display abnormalities in hippocampal excitatory synaptic transmission decreasing NMDA receptor mediated synaptic transmission and plasticity. Understanding the intricate interplay between epigenetic modifications and neuronal function may provide novel insights into the pathophysiology of ASD and potentially inform the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Bastian Brauer
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Carlos Ancatén-González
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaiso, Chile
| | - Constanza Ahumada-Marchant
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Rodrigo C Meza
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaiso, Chile
| | - Nicolas Merino-Veliz
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Gino Nardocci
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Molecular Biology and Bioinformatics Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CIIB), Universidad de Los Andes, Santiago, Chile
| | - Lorena Varela-Nallar
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile
| | - Gloria Arriagada
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Andrés E Chávez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaiso, Chile.
| | - Fernando J Bustos
- Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
| |
Collapse
|
2
|
Wang J, Zhou X, Han T, Zhang H. Epigenetic signatures of trophoblast lineage and their biological functions. Cells Dev 2024; 179:203934. [PMID: 38942294 DOI: 10.1016/j.cdev.2024.203934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
Trophoblasts play a crucial role in embryo implantation and in interacting with the maternal uterus. The trophoblast lineage develops into a substantial part of the placenta, a temporary extra-embryonic organ, capable of undergoing distinctive epigenetic events during development. The critical role of trophoblast-specific epigenetic signatures in regulating placental development has become known, significantly advancing our understanding of trophoblast identity and lineage development. Scientific efforts are revealing how trophoblast-specific epigenetic signatures mediate stage-specific gene regulatory programming during the development of the trophoblast lineage. These epigenetic signatures have a significant impact on blastocyst formation, placental development, as well as the growth and survival of embryos and fetuses. In evolution, DNA hypomethylation in the trophoblast lineage is conserved, and there is a significant disparity in the control of epigenetic dynamics and the landscape of genomic imprinting. Scientists have used murine and human multipotent trophoblast cells as in vitro models to recapitulate the essential epigenetic processes of placental development. Here, we review the epigenetic signatures of the trophoblast lineage and their biological functions to enhance our understanding of placental evolution, development, and function.
Collapse
Affiliation(s)
- Jianqi Wang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaobo Zhou
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Reproductive Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tingli Han
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China; The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Hua Zhang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China.
| |
Collapse
|
3
|
Xie J, Zhang Z. Recent Advances and Therapeutic Implications of 2-Oxoglutarate-Dependent Dioxygenases in Ischemic Stroke. Mol Neurobiol 2024; 61:3949-3975. [PMID: 38041714 DOI: 10.1007/s12035-023-03790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Ischemic stroke is a common disease with a high disability rate and mortality, which brings heavy pressure on families and medical insurance. Nowadays, the golden treatments for ischemic stroke in the acute phase mainly include endovascular therapy and intravenous thrombolysis. Some drugs are used to alleviate brain injury in patients with ischemic stroke, such as edaravone and 3-n-butylphthalide. However, no effective neuroprotective drug for ischemic stroke has been acknowledged. 2-Oxoglutarate-dependent dioxygenases (2OGDDs) are conserved and common dioxygenases whose activities depend on O2, Fe2+, and 2OG. Most 2OGDDs are expressed in the brain and are essential for the development and functions of the brain. Therefore, 2OGDDs likely play essential roles in ischemic brain injury. In this review, we briefly elucidate the functions of most 2OGDDs, particularly the effects of regulations of 2OGDDs on various cells in different phases after ischemic stroke. It would also provide promising potential therapeutic targets and directions of drug development for protecting the brain against ischemic injury and improving outcomes of ischemic stroke.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
4
|
Olmos-Pastoresa CA, Vázquez-Mendoza E, López-Meraz ML, Pérez-Estudillo CA, Beltran-Parrazal L, Morgado-Valle C. Transgenic rodents as dynamic models for the study of respiratory rhythm generation and modulation: a scoping review and a bibliometric analysis. Front Physiol 2023; 14:1295632. [PMID: 38179140 PMCID: PMC10764557 DOI: 10.3389/fphys.2023.1295632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The pre-Bötzinger complex, situated in the ventrolateral medulla, serves as the central generator for the inspiratory phase of the respiratory rhythm. Evidence strongly supports its pivotal role in generating, and, in conjunction with the post-inspiratory complex and the lateral parafacial nucleus, in shaping the respiratory rhythm. While there remains an ongoing debate concerning the mechanisms underlying these nuclei's ability to generate and modulate breathing, transgenic rodent models have significantly contributed to our understanding of these processes. However, there is a significant knowledge gap regarding the spectrum of transgenic rodent lines developed for studying respiratory rhythm, and the methodologies employed in these models. In this study, we conducted a scoping review to identify commonly used transgenic rodent lines and techniques for studying respiratory rhythm generation and modulation. Following PRISMA guidelines, we identified relevant papers in PubMed and EBSCO on 29 March 2023, and transgenic lines in Mouse Genome Informatics and the International Mouse Phenotyping Consortium. With strict inclusion and exclusion criteria, we identified 80 publications spanning 1997-2022 using 107 rodent lines. Our findings revealed 30 lines focusing on rhythm generation, 61 on modulation, and 16 on both. The primary in vivo method was whole-body plethysmography. The main in vitro method was hypoglossal/phrenic nerve recordings using the en bloc preparation. Additionally, we identified 119 transgenic lines with the potential for investigating the intricate mechanisms underlying respiratory rhythm. Through this review, we provide insights needed to design more effective experiments with transgenic animals to unravel the mechanisms governing respiratory rhythm. The identified transgenic rodent lines and methodological approaches compile current knowledge and guide future research towards filling knowledge gaps in respiratory rhythm generation and modulation.
Collapse
Affiliation(s)
| | | | | | | | - Luis Beltran-Parrazal
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Consuelo Morgado-Valle
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
5
|
Ramesh V, Liu F, Minto MS, Chan U, West AE. Bidirectional regulation of postmitotic H3K27me3 distributions underlie cerebellar granule neuron maturation dynamics. eLife 2023; 12:e86273. [PMID: 37092728 PMCID: PMC10181825 DOI: 10.7554/elife.86273] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/21/2023] [Indexed: 04/25/2023] Open
Abstract
The functional maturation of neurons is a prolonged process that extends past the mitotic exit and is mediated by the chromatin-dependent orchestration of gene transcription programs. We find that expression of this maturation gene program in mouse cerebellar granule neurons (CGNs) requires dynamic changes in the genomic distribution of histone H3 lysine 27 trimethylation (H3K27me3), demonstrating a function for this chromatin modification beyond its role in cell fate specification. The developmental loss of H3K27me3 at promoters of genes activated as CGNs mature is facilitated by the lysine demethylase and ASD-risk gene, Kdm6b. Interestingly, inhibition of the H3K27 methyltransferase EZH2 in newborn CGNs not only blocks the repression of progenitor genes but also impairs the induction of mature CGN genes, showing the importance of bidirectional H3K27me3 regulation across the genome. These data demonstrate that H3K27me3 turnover in developing postmitotic neurons regulates the temporal coordination of gene expression programs that underlie functional neuronal maturation.
Collapse
Affiliation(s)
- Vijyendra Ramesh
- Molecular Cancer Biology Program, Duke UniversityDurhamUnited States
| | - Fang Liu
- Department of Neurobiology, Duke UniversityDurhamUnited States
| | - Melyssa S Minto
- Department of Neurobiology, Duke UniversityDurhamUnited States
| | - Urann Chan
- Department of Neurobiology, Duke UniversityDurhamUnited States
| | - Anne E West
- Molecular Cancer Biology Program, Duke UniversityDurhamUnited States
- Department of Neurobiology, Duke UniversityDurhamUnited States
| |
Collapse
|
6
|
Shen Y, Liu C, Yang T, Tang Y, Shen Y, Gu Y. Transcriptome characterization of human gingival mesenchymal and periodontal ligament stem cells in response to electronic-cigarettes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121307. [PMID: 36804562 DOI: 10.1016/j.envpol.2023.121307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The potential toxicities and threats of electronic cigarettes (E-cigs) on periodontal health remain elusive. Gingival mesenchymal stem cells (GMSCs) and periodontal ligament stem cells (PDLSCs) contribute to cell differentiation and regeneration for periodontium as well as inflammatory modulation. However, the effects of E-cig exposure on periodontal tissues, particularly GMSCs and PDLSCs, and the underlying epigenetic mechanisms remain largely unknown. In this study, we conducted RNA-seq analysis to examine the transcriptome of human GMSCs and PDLSCs exposed to four types of E-cigs (aerosol and liquid with tobacco and menthol flavor) and conventional tobacco smoke in vitro. Our results showed that E-cig exposure primarily impacted the immunoregulation and inflammatory responses to pathogenic microorganisms in GMSCs, and the microenvironment, differentiation and response to corticosteroid in PDLSCs, which were significantly different from the damage effects caused by tobacco smoke. Additionally, we discovered a large number of differentially expressed non-coding RNAs among the different E-cig exposure methods and flavors. We also noticed that in GMSCs, CXCL2 was especially down-regulated by E-cig aerosol exposure whereas up-regulated by E-liquid exposure compared to control. Of note, the enhancer elements near CXCL2 and other genes located at Chromosome 4 contributed to the transcription activity of these genes, and KDM6B was remarkably elevated in response to E-liquid exposure. Lastly, we conducted ChIP-seq analysis to confirm that the elevated gene transcription by E-liquids was due to the weakened H3K27me3 at genome-wide enhancer elements in GMSCs, but not at promoter regions. Taken together, our results characterized the diverse gene expression profiles of GMSCs and PDLSCs in response to E-cigs with different exposure methods and flavors in vitro, and indicated a novel mechanism of KDM6B-mediated H3K27me3 on enhancers for gene transcription regulation. Our data could be served as a resource for emphasizing the understanding of E-cigs in periodontal health.
Collapse
Affiliation(s)
- Yifen Shen
- Central Laboratory, Ninth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu, 215200, China
| | - Chao Liu
- Central Laboratory, Ninth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu, 215200, China
| | - Tao Yang
- Department of Dentistry, Ninth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu, 215200, China
| | - Ying Tang
- Central Laboratory, Ninth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu, 215200, China
| | - Yihang Shen
- Central Laboratory, Ninth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu, 215200, China
| | - Yongchun Gu
- Department of Dentistry, Ninth People's Hospital of Suzhou, Soochow University, Suzhou, Jiangsu, 215200, China.
| |
Collapse
|
7
|
Kolev HM, Swisa A, Manduchi E, Lan Y, Stine RR, Testa G, Kaestner KH. H3K27me3 Demethylases Maintain the Transcriptional and Epigenomic Landscape of the Intestinal Epithelium. Cell Mol Gastroenterol Hepatol 2022; 15:821-839. [PMID: 36503150 PMCID: PMC9971508 DOI: 10.1016/j.jcmgh.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 02/23/2023]
Abstract
BACKGROUND & AIMS Although trimethylation of histone H3 lysine 27 (H3K27me3) by polycomb repressive complex 2 is required for intestinal function, the role of the antagonistic process-H3K27me3 demethylation-in the intestine remains unknown. The aim of this study was to determine the contribution of H3K27me3 demethylases to intestinal homeostasis. METHODS An inducible mouse model was used to simultaneously ablate the 2 known H3K27me3 demethylases, lysine (K)-specific demethylase 6A (Kdm6a) and lysine (K)-specific demethylase 6B (Kdm6b), from the intestinal epithelium. Mice were analyzed at acute and prolonged time points after Kdm6a/b ablation. Cellular proliferation and differentiation were measured using immunohistochemistry, while RNA sequencing and chromatin immunoprecipitation followed by sequencing for H3K27me3 were used to identify gene expression and chromatin changes after Kdm6a/b loss. Intestinal epithelial renewal was evaluated using a radiation-induced injury model, while Paneth cell homeostasis was measured via immunohistochemistry, immunoblot, and transmission electron microscopy. RESULTS We did not detect any effect of Kdm6a/b ablation on intestinal cell proliferation or differentiation toward the secretory cell lineages. Acute and prolonged Kdm6a/b loss perturbed expression of gene signatures belonging to multiple cell lineages (adjusted P value < .05), and a set of 72 genes was identified as being down-regulated with an associated increase in H3K27me3 levels after Kdm6a/b ablation (false discovery rate, <0.05). After prolonged Kdm6a/b loss, dysregulation of the Paneth cell gene signature was associated with perturbed matrix metallopeptidase 7 localization (P < .0001) and expression. CONCLUSIONS Although KDM6A/B does not regulate intestinal cell differentiation, both enzymes are required to support the full transcriptomic and epigenomic landscape of the intestinal epithelium and the expression of key Paneth cell genes.
Collapse
Affiliation(s)
- Hannah M Kolev
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Avital Swisa
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elisabetta Manduchi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yemin Lan
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rachel R Stine
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Klaus H Kaestner
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
8
|
KDM6B cooperates with Tau and regulates synaptic plasticity and cognition via inducing VGLUT1/2. Mol Psychiatry 2022; 27:5213-5226. [PMID: 36028572 PMCID: PMC10108576 DOI: 10.1038/s41380-022-01750-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023]
Abstract
The excitatory neurotransmitter glutamate shapes learning and memory, but the underlying epigenetic mechanism of glutamate regulation in neuron remains poorly understood. Here, we showed that lysine demethylase KDM6B was expressed in excitatory neurons and declined in hippocampus with age. Conditional knockout of KDM6B in excitatory neurons reduced spine density, synaptic vesicle number and synaptic activity, and impaired learning and memory without obvious effect on brain morphology in mice. Mechanistically, KDM6B upregulated vesicular glutamate transporter 1 and 2 (VGLUT1/2) in neurons through demethylating H3K27me3 at their promoters. Tau interacted and recruited KDM6B to the promoters of Slc17a7 and Slc17a6, leading to a decrease in local H3K27me3 levels and induction of VGLUT1/2 expression in neurons, which could be prevented by loss of Tau. Ectopic expression of KDM6B, VGLUT1, or VGLUT2 restored spine density and synaptic activity in KDM6B-deficient cortical neurons. Collectively, these findings unravel a fundamental mechanism underlying epigenetic regulation of synaptic plasticity and cognition.
Collapse
|
9
|
Mazzatenta A, Maffei M, Di Giulio C, Neri G. COVID-19 Smell Impairment and Crosstalk with Hypoxia Physiology. Life (Basel) 2022; 12:life12091408. [PMID: 36143443 PMCID: PMC9505897 DOI: 10.3390/life12091408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 12/21/2022] Open
Abstract
Since its apomorphic appearance in 2019, severe acute respiratory syndrome Coronavirus type 2 (SARS-CoV-2) nowadays circulates as a plesiomorphic human virus in several synapomorphic variants. The respiratory tract is the most important site of infection, the viral effects in the lungs are well described, and more than half of the patients could develop shortness of breath and dyspnea and require ventilatory support. The physiological sign of this condition is the decrease in the partial pressure of oxygen in the blood, leading to acute hypoxia, which could be a factor in the disease. In severe patients, we recorded several physiological parameters: breath frequency (BF), partial pressure of oxygen in the blood (pO2), partial pressure of carbon dioxide in the blood (pCO2), hemoglobin (Hb), heart rate (HR), and blood pressure in correlation with the olfactory threshold. We found significant correlations between reduced olfactory threshold with pO2 and hemoglobin levels, changes in heart rate, and increased HR and pCO2. These results suggest that COVID-19 causes an impaired sense of smell that decreases in threshold corresponding to the disease severity.
Collapse
Affiliation(s)
- Andrea Mazzatenta
- Neurophysiology, Olfaction and Chemoreception Laboratory, Physiology and Physiopathology Section, Neuroscience, Imaging and Clinical Sciences Department, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| | - Margherita Maffei
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy
| | - Camillo Di Giulio
- Neurophysiology, Olfaction and Chemoreception Laboratory, Physiology and Physiopathology Section, Neuroscience, Imaging and Clinical Sciences Department, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giampiero Neri
- Neurophysiology, Olfaction and Chemoreception Laboratory, Physiology and Physiopathology Section, Neuroscience, Imaging and Clinical Sciences Department, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
10
|
Abstract
Histone lysine methylation plays a key role in gene activation and repression. The trimethylation of histone H3 on lysine-27 (H3K27me3) is a critical epigenetic event that is controlled by Jumonji domain-containing protein-3 (JMJD3). JMJD3 is a histone demethylase that specifically removes methyl groups. Previous studies have suggested that JMJD3 has a dual role in cancer cells. JMJD3 stimulates the expression of proliferative-related genes and increases tumor cell growth, propagation, and migration in various cancers, including neural, prostate, ovary, skin, esophagus, leukemia, hepatic, head and neck, renal, lymphoma, and lung. In contrast, JMJD3 can suppress the propagation of tumor cells, and enhance their apoptosis in colorectal, breast, and pancreatic cancers. In this review, we summarized the recent advances of JMJD3 function in cancer cells.
Collapse
|
11
|
Ylikoski J, Lehtimäki J, Pääkkönen R, Mäkitie A. Prevention and Treatment of Life-Threatening COVID-19 May Be Possible with Oxygen Treatment. Life (Basel) 2022; 12:754. [PMID: 35629421 PMCID: PMC9142938 DOI: 10.3390/life12050754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/22/2022] [Accepted: 05/12/2022] [Indexed: 01/08/2023] Open
Abstract
Most SARS CoV-2 infections probably occur unnoticed or cause only cause a mild common cold that does not require medical intervention. A significant proportion of more severe cases is characterized by early neurological symptoms such as headache, fatigue, and impaired consciousness, including respiratory distress. These symptoms suggest hypoxia, specifically affecting the brain. The condition is best explained by primary replication of the virus in the nasal respiratory and/or the olfactory epithelia, followed by an invasion of the virus into the central nervous system, including the respiratory centers, either along a transneural route, through disruption of the blood-brain barrier, or both. In patients, presenting with early dyspnea, the primary goal of therapy should be the reversal of brain hypoxia as efficiently as possible. The first approach should be intermittent treatment with 100% oxygen using a tight oronasal mask or a hood. If this does not help within a few hours, an enclosure is needed to increase the ambient pressure. This management approach is well established in the hypoxia-related diseases in diving and aerospace medicine and preserves the patient's spontaneous breathing. Preliminary research evidence indicates that even a small elevation of the ambient pressure might be lifesaving. Other neurological symptoms, presenting particularly in long COVID-19, suggest imbalance of the autonomous nervous system, i.e., dysautonomia. These patients could benefit from vagal nerve stimulation.
Collapse
Affiliation(s)
- Jukka Ylikoski
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland; (J.Y.); (R.P.)
- Helsinki Ear Institute, 00420 Helsinki, Finland;
- Salustim Group Inc., 90440 Kempele, Finland
| | - Jarmo Lehtimäki
- Helsinki Ear Institute, 00420 Helsinki, Finland;
- Salustim Group Inc., 90440 Kempele, Finland
| | - Rauno Pääkkönen
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland; (J.Y.); (R.P.)
| | - Antti Mäkitie
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland; (J.Y.); (R.P.)
| |
Collapse
|
12
|
Buontempo S, Laise P, Hughes JM, Trattaro S, Das V, Rencurel C, Testa G. EZH2-Mediated H3K27me3 Targets Transcriptional Circuits of Neuronal Differentiation. Front Neurosci 2022; 16:814144. [PMID: 35645710 PMCID: PMC9133892 DOI: 10.3389/fnins.2022.814144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/11/2022] [Indexed: 12/27/2022] Open
Abstract
The Polycomb Repressive Complex 2 (PRC2) plays important roles in the epigenetic regulation of cellular development and differentiation through H3K27me3-dependent transcriptional repression. Aberrant PRC2 activity has been associated with cancer and neurodevelopmental disorders, particularly with respect to the malfunction of sits catalytic subunit EZH2. Here, we investigated the role of the EZH2-mediated H3K27me3 apposition in neuronal differentiation. We made use of a transgenic mouse model harboring Ezh2 conditional KO alleles to derive embryonic stem cells and differentiate them into glutamatergic neurons. Time course transcriptomics and epigenomic analyses of H3K27me3 in absence of EZH2 revealed a significant dysregulation of molecular networks affecting the glutamatergic differentiation trajectory that resulted in: (i) the deregulation of transcriptional circuitries related to neuronal differentiation and synaptic plasticity, in particular LTD, as a direct effect of EZH2 loss and (ii) the appearance of a GABAergic gene expression signature during glutamatergic neuron differentiation. These results expand the knowledge about the molecular pathways targeted by Polycomb during glutamatergic neuron differentiation.
Collapse
Affiliation(s)
- Serena Buontempo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Pasquale Laise
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - James M. Hughes
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Sebastiano Trattaro
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Vivek Das
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Chantal Rencurel
- Department of Structural Biology and Biophysics, Biozentrum of the University of Basel, Basel, Switzerland
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| |
Collapse
|
13
|
Sanchez A, Penault-Llorca F, Bignon YJ, Guy L, Bernard-Gallon D. Effects of GSK-J4 on JMJD3 Histone Demethylase in Mouse Prostate Cancer Xenografts. Cancer Genomics Proteomics 2022; 19:339-349. [PMID: 35430567 DOI: 10.21873/cgp.20324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Histone methylation status is required to control gene expression. H3K27me3 is an epigenetic tri-methylation modification to histone H3 controlled by the demethylase JMJD3. JMJD3 is dysregulated in a wide range of cancers and has been shown to control the expression of a specific growth-modulatory gene signature, making it an interesting candidate to better understand prostate tumor progression in vivo. This study aimed to identify the impact of JMJD3 inhibition by its inhibitor, GSK4, on prostate tumor growth in vivo. MATERIALS AND METHODS Prostate cancer cell lines were implanted into Balb/c nude male mice. The effects of the selective JMJD3 inhibitor GSK-J4 on tumor growth were analyzed by bioluminescence assays and H3K27me3-regulated changes in gene expression were analyzed by ChIP-qPCR and RT-qPCR. RESULTS JMJD3 inhibition contributed to an increase in tumor growth in androgen-independent (AR-) xenografts and a decrease in androgen-dependent (AR+). GSK-J4 treatment modulated H3K27me3 enrichment on the gene panel in DU-145-luc xenografts while it had little effect on PC3-luc and no effect on LNCaP-luc. Effects of JMJD3 inhibition affected the panel gene expression. CONCLUSION JMJD3 has a differential effect in prostate tumor progression according to AR status. Our results suggest that JMJD3 is able to play a role independently of its demethylase function in androgen-independent prostate cancer. The effects of GSK-J4 on AR+ prostate xenografts led to a decrease in tumor growth.
Collapse
Affiliation(s)
- Anna Sanchez
- Department of Oncogenetics, Centre Jean Perrin, Clermont-Ferrand, France.,INSERM U 1240 Molecular Imagery and Theranostic Strategies (IMoST), Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- INSERM U 1240 Molecular Imagery and Theranostic Strategies (IMoST), Clermont-Ferrand, France.,Department of Biopathology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, Clermont-Ferrand, France.,INSERM U 1240 Molecular Imagery and Theranostic Strategies (IMoST), Clermont-Ferrand, France
| | - Laurent Guy
- INSERM U 1240 Molecular Imagery and Theranostic Strategies (IMoST), Clermont-Ferrand, France.,Department of Urology, Gabriel Montpied Hospital, Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, Clermont-Ferrand, France; .,INSERM U 1240 Molecular Imagery and Theranostic Strategies (IMoST), Clermont-Ferrand, France
| |
Collapse
|
14
|
Meng Y, Zhang T, Zheng R, Ding S, Yang J, Liu R, Jiang Y, Jiang W. Depletion of Demethylase KDM6 Enhances Early Neuroectoderm Commitment of Human PSCs. Front Cell Dev Biol 2021; 9:702462. [PMID: 34568320 PMCID: PMC8455897 DOI: 10.3389/fcell.2021.702462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Epigenetic modifications play a crucial role in neurogenesis, learning, and memory, but the study of their role in early neuroectoderm commitment from pluripotent inner cell mass is relatively lacking. Here we utilized the system of directed neuroectoderm differentiation from human embryonic stem cells and identified that KDM6B, an enzyme responsible to erase H3K27me3, was the most upregulated enzyme of histone methylation during neuroectoderm differentiation by transcriptome analysis. We then constructed KDM6B-null embryonic stem cells and found strikingly that the pluripotent stem cells with KDM6B knockout exhibited much higher neuroectoderm induction efficiency. Furthermore, we constructed a series of embryonic stem cell lines knocking out the other H3K27 demethylase KDM6A, and depleting both KDM6A and KDM6B, respectively. These cell lines together confirmed that KDM6 impeded early neuroectoderm commitment. By RNA-seq, we found that the expression levels of a panel of WNT genes were significantly affected upon depletion of KDM6. Importantly, the result that WNT agonist and antagonist could abolish the differential neuroectoderm induction due to manipulating KDM6 further demonstrated that WNT was the major downstream of KDM6 during early neural induction. Moreover, we found that the chemical GSK-J1, an inhibitor of KDM6, could enhance neuroectoderm induction from both embryonic stem cells and induced pluripotent stem cells. Taken together, our findings not only illustrated the important role of the histone methylation modifier KDM6 in early neurogenesis, providing insights into the precise epigenetic regulation in cell fate determination, but also showed that the inhibitor of KDM6 could facilitate neuroectoderm differentiation from human pluripotent stem cells.
Collapse
Affiliation(s)
- Yajing Meng
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tianzhe Zhang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ran Zheng
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Song Ding
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jie Yang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ran Liu
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
15
|
Cade BE, Lee J, Sofer T, Wang H, Zhang M, Chen H, Gharib SA, Gottlieb DJ, Guo X, Lane JM, Liang J, Lin X, Mei H, Patel SR, Purcell SM, Saxena R, Shah NA, Evans DS, Hanis CL, Hillman DR, Mukherjee S, Palmer LJ, Stone KL, Tranah GJ, Abecasis GR, Boerwinkle EA, Correa A, Cupples LA, Kaplan RC, Nickerson DA, North KE, Psaty BM, Rotter JI, Rich SS, Tracy RP, Vasan RS, Wilson JG, Zhu X, Redline S. Whole-genome association analyses of sleep-disordered breathing phenotypes in the NHLBI TOPMed program. Genome Med 2021; 13:136. [PMID: 34446064 PMCID: PMC8394596 DOI: 10.1186/s13073-021-00917-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Sleep-disordered breathing is a common disorder associated with significant morbidity. The genetic architecture of sleep-disordered breathing remains poorly understood. Through the NHLBI Trans-Omics for Precision Medicine (TOPMed) program, we performed the first whole-genome sequence analysis of sleep-disordered breathing. METHODS The study sample was comprised of 7988 individuals of diverse ancestry. Common-variant and pathway analyses included an additional 13,257 individuals. We examined five complementary traits describing different aspects of sleep-disordered breathing: the apnea-hypopnea index, average oxyhemoglobin desaturation per event, average and minimum oxyhemoglobin saturation across the sleep episode, and the percentage of sleep with oxyhemoglobin saturation < 90%. We adjusted for age, sex, BMI, study, and family structure using MMSKAT and EMMAX mixed linear model approaches. Additional bioinformatics analyses were performed with MetaXcan, GIGSEA, and ReMap. RESULTS We identified a multi-ethnic set-based rare-variant association (p = 3.48 × 10-8) on chromosome X with ARMCX3. Additional rare-variant associations include ARMCX3-AS1, MRPS33, and C16orf90. Novel common-variant loci were identified in the NRG1 and SLC45A2 regions, and previously associated loci in the IL18RAP and ATP2B4 regions were associated with novel phenotypes. Transcription factor binding site enrichment identified associations with genes implicated with respiratory and craniofacial traits. Additional analyses identified significantly associated pathways. CONCLUSIONS We have identified the first gene-based rare-variant associations with objectively measured sleep-disordered breathing traits. Our results increase the understanding of the genetic architecture of sleep-disordered breathing and highlight associations in genes that modulate lung development, inflammation, respiratory rhythmogenesis, and HIF1A-mediated hypoxic response.
Collapse
Affiliation(s)
- Brian E. Cade
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Jiwon Lee
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA
| | - Tamar Sofer
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA
| | - Heming Wang
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Man Zhang
- grid.411024.20000 0001 2175 4264Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Han Chen
- grid.267308.80000 0000 9206 2401Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Center for Precision Health, School of Public Health and School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Sina A. Gharib
- grid.34477.330000000122986657Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA 98195 USA
| | - Daniel J. Gottlieb
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.410370.10000 0004 4657 1992VA Boston Healthcare System, Boston, MA 02132 USA
| | - Xiuqing Guo
- grid.239844.00000 0001 0157 6501The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Jacqueline M. Lane
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA ,grid.32224.350000 0004 0386 9924Center for Genomic Medicine and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Jingjing Liang
- grid.67105.350000 0001 2164 3847Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Xihong Lin
- grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Hao Mei
- grid.410721.10000 0004 1937 0407Department of Data Science, University of Mississippi Medical Center, Jackson, MS 29216 USA
| | - Sanjay R. Patel
- grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Shaun M. Purcell
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Richa Saxena
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA ,grid.32224.350000 0004 0386 9924Center for Genomic Medicine and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Neomi A. Shah
- grid.59734.3c0000 0001 0670 2351Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Daniel S. Evans
- grid.17866.3e0000000098234542California Pacific Medical Center Research Institute, San Francisco, CA 94107 USA
| | - Craig L. Hanis
- grid.267308.80000 0000 9206 2401Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - David R. Hillman
- grid.3521.50000 0004 0437 5942Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia 6009 Australia
| | - Sutapa Mukherjee
- Sleep Health Service, Respiratory and Sleep Services, Southern Adelaide Local Health Network, Adelaide, South Australia Australia ,grid.1014.40000 0004 0367 2697Adelaide Institute for Sleep Health, Flinders University, Adelaide, South Australia Australia
| | - Lyle J. Palmer
- grid.1010.00000 0004 1936 7304School of Public Health, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Katie L. Stone
- grid.17866.3e0000000098234542California Pacific Medical Center Research Institute, San Francisco, CA 94107 USA
| | - Gregory J. Tranah
- grid.17866.3e0000000098234542California Pacific Medical Center Research Institute, San Francisco, CA 94107 USA
| | | | - Gonçalo R. Abecasis
- grid.214458.e0000000086837370Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109 USA
| | - Eric A. Boerwinkle
- grid.267308.80000 0000 9206 2401Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XHuman Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Adolfo Correa
- grid.410721.10000 0004 1937 0407Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216 USA ,Jackson Heart Study, Jackson, MS 39216 USA
| | - L. Adrienne Cupples
- grid.189504.10000 0004 1936 7558Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118 USA ,grid.510954.c0000 0004 0444 3861Framingham Heart Study, Framingham, MA 01702 USA
| | - Robert C. Kaplan
- grid.251993.50000000121791997Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, 10461 USA
| | - Deborah A. Nickerson
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, WA 98195 USA ,grid.34477.330000000122986657Northwest Genomics Center, Seattle, WA 98105 USA
| | - Kari E. North
- grid.410711.20000 0001 1034 1720Department of Epidemiology and Carolina Center of Genome Sciences, University of North Carolina, Chapel Hill, NC 27514 USA
| | - Bruce M. Psaty
- grid.34477.330000000122986657Cardiovascular Health Study, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA 98101 USA ,grid.488833.c0000 0004 0615 7519Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101 USA
| | - Jerome I. Rotter
- grid.239844.00000 0001 0157 6501The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Stephen S. Rich
- grid.27755.320000 0000 9136 933XCenter for Public Health Genomics, University of Virginia, Charlottesville, VA 22908 USA
| | - Russell P. Tracy
- grid.59062.380000 0004 1936 7689Department of Pathology, University of Vermont, Colchester, VT 05405 USA
| | - Ramachandran S. Vasan
- grid.510954.c0000 0004 0444 3861Framingham Heart Study, Framingham, MA 01702 USA ,grid.189504.10000 0004 1936 7558Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118 USA ,grid.189504.10000 0004 1936 7558Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118 USA
| | - James G. Wilson
- grid.410721.10000 0004 1937 0407Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Xiaofeng Zhu
- grid.67105.350000 0001 2164 3847Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Susan Redline
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.239395.70000 0000 9011 8547Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215 USA
| | | |
Collapse
|
16
|
Davies DA, Adlimoghaddam A, Albensi BC. The Effect of COVID-19 on NF-κB and Neurological Manifestations of Disease. Mol Neurobiol 2021; 58:4178-4187. [PMID: 34075562 PMCID: PMC8169418 DOI: 10.1007/s12035-021-02438-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
The coronavirus disease that presumably began in 2019 (COVID-19) is a highly infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in a pandemic. Initially, COVID-19 was thought to only affect respiration. However, accumulating evidence shows a wide range of neurological symptoms are also associated with COVID-19, such as anosmia/ageusia, headaches, seizures, demyelination, mental confusion, delirium, and coma. Neurological symptoms in COVID-19 patients may arise due to a cytokine storm and a heighten state of inflammation. The nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) is a central pathway involved with inflammation and is shown to be elevated in a dose-dependent matter in response to coronaviruses. NF-κB has a role in cytokine storm syndrome, which is associated with greater severity in COVID-19-related symptoms. Therefore, therapeutics that reduce the NF-κB pathway should be considered in the treatment of COVID-19. Neuro-COVID-19 units have been established across the world to examine the neurological symptoms associated with COVID-19. Neuro-COVID-19 is increasingly becoming an accepted term among scientists and clinicians, and interdisciplinary teams should be created to implement strategies for treating the wide range of neurological symptoms observed in COVID-19 patients.
Collapse
Affiliation(s)
- Don A Davies
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada.
| | - Aida Adlimoghaddam
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada.
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
17
|
Ding Y, Yao Y, Gong X, Zhuo Q, Chen J, Tian M, Farzaneh M. JMJD3: a critical epigenetic regulator in stem cell fate. Cell Commun Signal 2021; 19:72. [PMID: 34217316 PMCID: PMC8254972 DOI: 10.1186/s12964-021-00753-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
The Jumonji domain-containing protein-3 (JMJD3) is a histone demethylase that regulates the trimethylation of histone H3 on lysine 27 (H3K27me3). H3K27me3 is an important epigenetic event associated with transcriptional silencing. JMJD3 has been studied extensively in immune diseases, cancer, and tumor development. There is a comprehensive epigenetic transformation during the transition of embryonic stem cells (ESCs) into specialized cells or the reprogramming of somatic cells to induced pluripotent stem cells (iPSCs). Recent studies have illustrated that JMJD3 plays a major role in cell fate determination of pluripotent and multipotent stem cells (MSCs). JMJD3 has been found to enhance self-renewal ability and reduce the differentiation capacity of ESCs and MSCs. In this review, we will focus on the recent advances of JMJD3 function in stem cell fate. Video Abstract
Collapse
Affiliation(s)
- Yuanjie Ding
- School of Medicine, Jishou University, Jishou, 416000, China.,Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, 427000, China
| | - Yuanchun Yao
- School of Medicine, Jishou University, Jishou, 416000, China
| | - Xingmu Gong
- School of Medicine, Jishou University, Jishou, 416000, China
| | - Qi Zhuo
- School of Medicine, Jishou University, Jishou, 416000, China.
| | - Jinhua Chen
- School of Medicine, Jishou University, Jishou, 416000, China
| | - Miao Tian
- School of Medicine, Jishou University, Jishou, 416000, China
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
18
|
Maheshwari U, Kraus D, Vilain N, Holwerda SJB, Cankovic V, Maiorano NA, Kohler H, Satoh D, Sigrist M, Arber S, Kratochwil CF, Di Meglio T, Ducret S, Rijli FM. Postmitotic Hoxa5 Expression Specifies Pontine Neuron Positional Identity and Input Connectivity of Cortical Afferent Subsets. Cell Rep 2021; 31:107767. [PMID: 32553152 DOI: 10.1016/j.celrep.2020.107767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/18/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
The mammalian precerebellar pontine nucleus (PN) has a main role in relaying cortical information to the cerebellum. The molecular determinants establishing ordered connectivity patterns between cortical afferents and precerebellar neurons are largely unknown. We show that expression of Hox5 transcription factors is induced in specific subsets of postmitotic PN neurons at migration onset. Hox5 induction is achieved by response to retinoic acid signaling, resulting in Jmjd3-dependent derepression of Polycomb chromatin and 3D conformational changes. Hoxa5 drives neurons to settle posteriorly in the PN, where they are monosynaptically targeted by cortical neuron subsets mainly carrying limb somatosensation. Furthermore, Hoxa5 postmigratory ectopic expression in PN neurons is sufficient to attract cortical somatosensory inputs regardless of position and avoid visual afferents. Transcriptome analysis further suggests that Hoxa5 is involved in circuit formation. Thus, Hoxa5 coordinates postmitotic specification, migration, settling position, and sub-circuit assembly of PN neuron subsets in the cortico-cerebellar pathway.
Collapse
Affiliation(s)
- Upasana Maheshwari
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, 4051 Basel, Switzerland
| | - Dominik Kraus
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, 4051 Basel, Switzerland
| | - Nathalie Vilain
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Sjoerd J B Holwerda
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Vanja Cankovic
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Nicola A Maiorano
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Daisuke Satoh
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Biozentrum, University of Basel, Kingelbergstrasse 70, 4056 Basel, Switzerland
| | - Markus Sigrist
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Biozentrum, University of Basel, Kingelbergstrasse 70, 4056 Basel, Switzerland
| | - Silvia Arber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Biozentrum, University of Basel, Kingelbergstrasse 70, 4056 Basel, Switzerland
| | - Claudius F Kratochwil
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Thomas Di Meglio
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, 4051 Basel, Switzerland.
| |
Collapse
|
19
|
Davis K, Azarcon P, Hickenlooper S, Bia R, Horiuchi E, Szulik MW, Franklin S. The role of demethylases in cardiac development and disease. J Mol Cell Cardiol 2021; 158:89-100. [PMID: 34081951 DOI: 10.1016/j.yjmcc.2021.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Heart failure is a worldwide health condition that currently has limited noninvasive treatments. Heart disease includes both structural and molecular remodeling of the heart which is driven by alterations in gene expression in the cardiomyocyte. Therefore, understanding the regulatory mechanisms which instigate these changes in gene expression and constitute the foundation for pathological remodeling may be beneficial for developing new treatments for heart disease. These gene expression changes are largely preceded by epigenetic alterations to chromatin, including the post-translational modification of histones such as methylation, which alters chromatin to be more or less accessible for transcription factors or regulatory proteins to bind and modify gene expression. Methylation was once thought to be a permanent mark placed on histone or non-histone targets by methyltransferases, but is now understood to be a reversible process after the discovery of the first demethylase, KDM1A/LSD1. Since this time, it has been shown that demethylases play key roles in embryonic development, in maintaining cellular homeostasis and disease progression. However, the role of demethylases in the fetal and adult heart remains largely unknown. In this review, we have compiled data on the 33 mammalian demethylases that have been identified to date and evaluate their expression in the embryonic and adult heart as well as changes in expression in the failing myocardium using publicly available RNA-sequencing and proteomic datasets. Our analysis detected expression of 14 demethylases in the normal fetal heart, and 5 demethylases in the normal adult heart. Moreover, 8 demethylases displayed differential expression in the diseased human heart compared to healthy hearts. We then examined the literature regarding these demethylases and provide phenotypic information of 13 demethylases that have been functionally interrogated in some way in the heart. Lastly, we describe the 6 arginine and lysine residues on histones which have been shown to be methylated but have no corresponding demethylase identified which removes these methyl marks. Overall, this review highlights our current knowledge on the role of demethylases, their importance in cardiac development and pathophysiology and provides evidence for the use of pharmacological inhibitors to combat disease.
Collapse
Affiliation(s)
- Kathryn Davis
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America.
| | - Presley Azarcon
- School of Medicine, University of Utah, Salt Lake City, UT, United States of America
| | - Samuel Hickenlooper
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Ryan Bia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Emilee Horiuchi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Marta W Szulik
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States of America; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States of America.
| |
Collapse
|
20
|
Yong SJ. Persistent Brainstem Dysfunction in Long-COVID: A Hypothesis. ACS Chem Neurosci 2021; 12:573-580. [PMID: 33538586 PMCID: PMC7874499 DOI: 10.1021/acschemneuro.0c00793] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Long-COVID is a postviral illness that can affect survivors of COVID-19, regardless of initial disease severity or age. Symptoms of long-COVID include fatigue, dyspnea, gastrointestinal and cardiac problems, cognitive impairments, myalgia, and others. While the possible causes of long-COVID include long-term tissue damage, viral persistence, and chronic inflammation, the review proposes, perhaps for the first time, that persistent brainstem dysfunction may also be involved. This hypothesis can be split into two parts. The first is the brainstem tropism and damage in COVID-19. As the brainstem has a relatively high expression of ACE2 receptor compared with other brain regions, SARS-CoV-2 may exhibit tropism therein. Evidence also exists that neuropilin-1, a co-receptor of SARS-CoV-2, may be expressed in the brainstem. Indeed, autopsy studies have found SARS-CoV-2 RNA and proteins in the brainstem. The brainstem is also highly prone to damage from pathological immune or vascular activation, which has also been observed in autopsy of COVID-19 cases. The second part concerns functions of the brainstem that overlap with symptoms of long-COVID. The brainstem contains numerous distinct nuclei and subparts that regulate the respiratory, cardiovascular, gastrointestinal, and neurological processes, which can be linked to long-COVID. As neurons do not readily regenerate, brainstem dysfunction may be long-lasting and, thus, is long-COVID. Indeed, brainstem dysfunction has been implicated in other similar disorders, such as chronic pain and migraine and myalgic encephalomyelitis or chronic fatigue syndrome.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological
Sciences, Sunway University, Petaling Jaya, Selangor 47500, Malaysia
| |
Collapse
|
21
|
Roles of HIF and 2-Oxoglutarate-Dependent Dioxygenases in Controlling Gene Expression in Hypoxia. Cancers (Basel) 2021; 13:cancers13020350. [PMID: 33477877 PMCID: PMC7832865 DOI: 10.3390/cancers13020350] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that such dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. Abstract Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.
Collapse
|
22
|
The Functions of the Demethylase JMJD3 in Cancer. Int J Mol Sci 2021; 22:ijms22020968. [PMID: 33478063 PMCID: PMC7835890 DOI: 10.3390/ijms22020968] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/09/2022] Open
Abstract
Cancer is a major cause of death worldwide. Epigenetic changes in response to external (diet, sports activities, etc.) and internal events are increasingly implicated in tumor initiation and progression. In this review, we focused on post-translational changes in histones and, more particularly, the tri methylation of lysine from histone 3 (H3K27me3) mark, a repressive epigenetic mark often under- or overexpressed in a wide range of cancers. Two actors regulate H3K27 methylation: Jumonji Domain-Containing Protein 3 demethylase (JMJD3) and Enhancer of zeste homolog 2 (EZH2) methyltransferase. A number of studies have highlighted the deregulation of these actors, which is why this scientific review will focus on the role of JMJD3 and, consequently, H3K27me3 in cancer development. Data on JMJD3’s involvement in cancer are classified by cancer type: nervous system, prostate, blood, colorectal, breast, lung, liver, ovarian, and gastric cancers.
Collapse
|
23
|
Montibus B, Cercy J, Bouschet T, Charras A, Maupetit-Méhouas S, Nury D, Gonthier-Guéret C, Chauveau S, Allegre N, Chariau C, Hong CC, Vaillant I, Marques CJ, Court F, Arnaud P. TET3 controls the expression of the H3K27me3 demethylase Kdm6b during neural commitment. Cell Mol Life Sci 2021; 78:757-768. [PMID: 32405722 PMCID: PMC9644380 DOI: 10.1007/s00018-020-03541-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023]
Abstract
The acquisition of cell identity is associated with developmentally regulated changes in the cellular histone methylation signatures. For instance, commitment to neural differentiation relies on the tightly controlled gain or loss of H3K27me3, a hallmark of polycomb-mediated transcriptional gene silencing, at specific gene sets. The KDM6B demethylase, which removes H3K27me3 marks at defined promoters and enhancers, is a key factor in neurogenesis. Therefore, to better understand the epigenetic regulation of neural fate acquisition, it is important to determine how Kdm6b expression is regulated. Here, we investigated the molecular mechanisms involved in the induction of Kdm6b expression upon neural commitment of mouse embryonic stem cells. We found that the increase in Kdm6b expression is linked to a rearrangement between two 3D configurations defined by the promoter contact with two different regions in the Kdm6b locus. This is associated with changes in 5-hydroxymethylcytosine (5hmC) levels at these two regions, and requires a functional ten-eleven-translocation (TET) 3 protein. Altogether, our data support a model whereby Kdm6b induction upon neural commitment relies on an intronic enhancer the activity of which is defined by its TET3-mediated 5-hmC level. This original observation reveals an unexpected interplay between the 5-hmC and H3K27me3 pathways during neural lineage commitment in mammals. It also questions to which extent KDM6B-mediated changes in H3K27me3 level account for the TET-mediated effects on gene expression.
Collapse
Affiliation(s)
- Bertille Montibus
- Université Clermont Auvergne, CNRS, Inserm, GReD, 63000, Clermont-Ferrand, France
- King's College, London, UK
| | - Jil Cercy
- Université Clermont Auvergne, CNRS, Inserm, GReD, 63000, Clermont-Ferrand, France
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Amandine Charras
- Université Clermont Auvergne, CNRS, Inserm, GReD, 63000, Clermont-Ferrand, France
- Department of Women's and Children's Health, Institute of Lifecourse and Medical Sciences, Liverpool University, Liverpool, UK
| | | | - David Nury
- Université Clermont Auvergne, CNRS, Inserm, GReD, 63000, Clermont-Ferrand, France
| | | | - Sabine Chauveau
- Université Clermont Auvergne, CNRS, Inserm, GReD, 63000, Clermont-Ferrand, France
| | - Nicolas Allegre
- Université Clermont Auvergne, CNRS, Inserm, GReD, 63000, Clermont-Ferrand, France
| | - Caroline Chariau
- Nantes Université, CHU Nantes, SFR Santé, FED4203, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
| | - Charles C Hong
- Vanderbilt University School of Medicine Nashville, Nashville, USA
| | - Isabelle Vaillant
- Université Clermont Auvergne, CNRS, Inserm, GReD, 63000, Clermont-Ferrand, France
| | - C Joana Marques
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
- Department of Genetics, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Franck Court
- Université Clermont Auvergne, CNRS, Inserm, GReD, 63000, Clermont-Ferrand, France.
| | - Philippe Arnaud
- Université Clermont Auvergne, CNRS, Inserm, GReD, 63000, Clermont-Ferrand, France.
| |
Collapse
|
24
|
Huang Y, Zhang H, Wang L, Tang C, Qin X, Wu X, Pan M, Tang Y, Yang Z, Babarinde IA, Lin R, Ji G, Lai Y, Xu X, Su J, Wen X, Satoh T, Ahmed T, Malik V, Ward C, Volpe G, Guo L, Chen J, Sun L, Li Y, Huang X, Bao X, Gao F, Liu B, Zheng H, Jauch R, Lai L, Pan G, Chen J, Testa G, Akira S, Hu J, Pei D, Hutchins AP, Esteban MA, Qin B. JMJD3 acts in tandem with KLF4 to facilitate reprogramming to pluripotency. Nat Commun 2020; 11:5061. [PMID: 33033262 PMCID: PMC7545202 DOI: 10.1038/s41467-020-18900-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The interplay between the Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC) and transcriptional/epigenetic co-regulators in somatic cell reprogramming is incompletely understood. Here, we demonstrate that the histone H3 lysine 27 trimethylation (H3K27me3) demethylase JMJD3 plays conflicting roles in mouse reprogramming. On one side, JMJD3 induces the pro-senescence factor Ink4a and degrades the pluripotency regulator PHF20 in a reprogramming factor-independent manner. On the other side, JMJD3 is specifically recruited by KLF4 to reduce H3K27me3 at both enhancers and promoters of epithelial and pluripotency genes. JMJD3 also promotes enhancer-promoter looping through the cohesin loading factor NIPBL and ultimately transcriptional elongation. This competition of forces can be shifted towards improved reprogramming by using early passage fibroblasts or boosting JMJD3’s catalytic activity with vitamin C. Our work, thus, establishes a multifaceted role for JMJD3, placing it as a key partner of KLF4 and a scaffold that assists chromatin interactions and activates gene transcription. Previous work suggested that histone demethylase JMJD3 is detrimental to somatic cell reprogramming. Here, the authors show that while JMJD3 has a context-independent detrimental effect on early stages of reprogramming, during late stages it activates epithelial and pluripotency genes together with Klf4.
Collapse
Affiliation(s)
- Yinghua Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China
| | - Hui Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Lulu Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China
| | - Chuanqing Tang
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China
| | - Xiaogan Qin
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China
| | - Xinyu Wu
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Meifang Pan
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yujia Tang
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China
| | - Zhongzhou Yang
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China
| | - Isaac A Babarinde
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Runxia Lin
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guanyu Ji
- Science and Technology Department, E-GENE, 518118, Shenzhen, China
| | - Yiwei Lai
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Integrative Biology, GIBH, CAS, 510530, Guangzhou, China
| | - Xueting Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China.,School of Life Sciences, University of Science and Technology of China, 230027, Hefei, China
| | - Jianbin Su
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China
| | - Xue Wen
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, 130061, Changchun, China
| | - Takashi Satoh
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Tanveer Ahmed
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China
| | - Vikas Malik
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Integrative Biology, GIBH, CAS, 510530, Guangzhou, China
| | - Carl Ward
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Integrative Biology, GIBH, CAS, 510530, Guangzhou, China
| | - Giacomo Volpe
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Laboratory of Integrative Biology, GIBH, CAS, 510530, Guangzhou, China
| | - Lin Guo
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China
| | - Jinlong Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China
| | - Li Sun
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yingying Li
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Xiaofen Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China
| | - Xichen Bao
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, 511436, Guangzhou, China
| | - Fei Gao
- Science and Technology Department, E-GENE, 518118, Shenzhen, China.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Baohua Liu
- Health Science Center, Shenzhen University, 518060, Shenzhen, China
| | - Hui Zheng
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, 511436, Guangzhou, China
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Liangxue Lai
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, 511436, Guangzhou, China
| | - Guangjin Pan
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, 511436, Guangzhou, China
| | - Jiekai Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.,Joint School of Life Sciences, GIBH and Guangzhou Medical University, 511436, Guangzhou, China
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology, Milan, 20139, Italy
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Jifan Hu
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, 130061, Changchun, China
| | - Duanqing Pei
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Andrew P Hutchins
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Miguel A Esteban
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China. .,Laboratory of Integrative Biology, GIBH, CAS, 510530, Guangzhou, China. .,Joint School of Life Sciences, GIBH and Guangzhou Medical University, 511436, Guangzhou, China. .,Institute for Stem Cells and Regeneration, CAS, 100101, Beijing, China.
| | - Baoming Qin
- Chinese Academy of Sciences (CAS) Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health (GIBH), CAS, 510530, Guangzhou, China. .,Laboratory of Metabolism and Cell Fate, GIBH, CAS, 510530, Guangzhou, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China. .,Joint School of Life Sciences, GIBH and Guangzhou Medical University, 511436, Guangzhou, China.
| |
Collapse
|
25
|
Abstract
Lysine demethylase 6A (KDM6A), also known as UTX, belongs to the KDM6 family of histone H3 lysine 27 (H3K27) demethylases, which also includes UTY and KDM6B (JMJD3). The KDM6A protein contains six tetratricopeptide repeat (TPR) domains and an enzymatic Jumonji C (JmjC) domain that catalyzes the removal of di- and trimethylation on H3K27. KDM6A physically associates with histone H3 lysine 4 monomethyltransferases MLL3 (KMT2C) and MLL4 (KMT2D). Since its identification as an H3K27 demethylase in 2007, studies have reported KDM6A's critical roles in cell differentiation, development, and cancer. KDM6A is important for differentiation of embryonic stem cells and development of various tissues. Mutations of KDM6A cause Kabuki syndrome. KDM6A is frequently mutated in cancers and functions as a tumor suppressor. KDM6A is redundant with UTY and functions largely independently of its demethylase activity. It regulates gene expression, likely through the associated transcription factors and MLL3/4 on enhancers. However, KDM6A enzymatic activity is required in certain cellular contexts. Functional redundancy between H3K27 demethylase activities of KDM6A and KDM6B in vivo has yet to be determined. Further understanding of KDM6A functions and working mechanisms will provide more insights into enhancer regulation and may help generate novel therapeutic approaches to treat KDM6A-related diseases.
Collapse
|
26
|
Dey J, Alam MT, Chandra S, Gupta J, Ray U, Srivastava AK, Tripathi PP. Neuroinvasion of SARS-CoV-2 may play a role in the breakdown of the respiratory center of the brain. J Med Virol 2020; 93:1296-1303. [PMID: 32964419 DOI: 10.1002/jmv.26521] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
The recent outbreak of the novel coronavirus, SARS-CoV-2, has emerged to be highly pathogenic in nature. Although lungs are considered as the primary infected organs by SARS-CoV-2, some of the other organs, including the brain, have also been found to be affected. Here, we have discussed how SARS-CoV-2 might infect the brain. The infection of the respiratory center in the brainstem could be hypothesized to be responsible for the respiratory failure in many COVID-19 patients. The virus might gain entry through the olfactory bulb and invade various parts of the brain, including the brainstem. Alternatively, the entry might also occur from peripheral circulation into the central nervous system by compromising the blood-brain barrier. Finally, yet another possible entry route could be its dispersal from the lungs into the vagus nerve via the pulmonary stretch receptors, eventually reaching the brainstem. Therefore, screening neurological symptoms in COVID-19 patients, especially toward the breakdown of the respiratory center in the brainstem, might help us better understand this disease.
Collapse
Affiliation(s)
- Jhilik Dey
- Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, West Bengal, India.,Indian Institute of Chemical Biology-Translational Research Unit of Excellence (IICB-TRUE), Kolkata, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Md T Alam
- Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, West Bengal, India.,Indian Institute of Chemical Biology-Translational Research Unit of Excellence (IICB-TRUE), Kolkata, West Bengal, India
| | - Sreyashi Chandra
- Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, West Bengal, India.,Indian Institute of Chemical Biology-Translational Research Unit of Excellence (IICB-TRUE), Kolkata, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Jalaj Gupta
- Stem Cell Research Centre, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Upasana Ray
- Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, West Bengal, India.,Indian Institute of Chemical Biology-Translational Research Unit of Excellence (IICB-TRUE), Kolkata, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Amit K Srivastava
- Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, West Bengal, India.,Indian Institute of Chemical Biology-Translational Research Unit of Excellence (IICB-TRUE), Kolkata, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Prem P Tripathi
- Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, West Bengal, India.,Indian Institute of Chemical Biology-Translational Research Unit of Excellence (IICB-TRUE), Kolkata, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
27
|
Ashokkumar D, Zhang Q, Much C, Bledau AS, Naumann R, Alexopoulou D, Dahl A, Goveas N, Fu J, Anastassiadis K, Stewart AF, Kranz A. MLL4 is required after implantation, whereas MLL3 becomes essential during late gestation. Development 2020; 147:dev186999. [PMID: 32439762 DOI: 10.1242/dev.186999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/24/2020] [Indexed: 12/26/2022]
Abstract
Methylation of histone 3 lysine 4 (H3K4) is a major epigenetic system associated with gene expression. In mammals there are six H3K4 methyltransferases related to yeast Set1 and fly Trithorax, including two orthologs of fly Trithorax-related: MLL3 and MLL4. Exome sequencing has documented high frequencies of MLL3 and MLL4 mutations in many types of human cancer. Despite this emerging importance, the requirements of these paralogs in mammalian development have only been incompletely reported. Here, we examined the null phenotypes to establish that MLL3 is first required for lung maturation, whereas MLL4 is first required for migration of the anterior visceral endoderm that initiates gastrulation in the mouse. This collective cell migration is preceded by a columnar-to-squamous transition in visceral endoderm cells that depends on MLL4. Furthermore, Mll4 mutants display incompletely penetrant, sex-distorted, embryonic haploinsufficiency and adult heterozygous mutants show aspects of Kabuki syndrome, indicating that MLL4 action, unlike MLL3, is dosage dependent. The highly specific and discordant functions of these paralogs in mouse development argues against their action as general enhancer factors.
Collapse
Affiliation(s)
- Deepthi Ashokkumar
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Qinyu Zhang
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Christian Much
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Anita S Bledau
- Stem Cell Engineering, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Ronald Naumann
- Transgenic Core Facility, Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Dimitra Alexopoulou
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Neha Goveas
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Jun Fu
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Konstantinos Anastassiadis
- Stem Cell Engineering, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - A Francis Stewart
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Andrea Kranz
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| |
Collapse
|
28
|
Gandhi S, Srivastava AK, Ray U, Tripathi PP. Is the Collapse of the Respiratory Center in the Brain Responsible for Respiratory Breakdown in COVID-19 Patients? ACS Chem Neurosci 2020; 11:1379-1381. [PMID: 32348111 PMCID: PMC7192347 DOI: 10.1021/acschemneuro.0c00217] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/28/2022] Open
Abstract
Following the identification of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, we are now again facing a global highly pathogenic novel coronavirus (SARS-CoV-2) epidemic. Although the lungs are one of the most critically affected organs, several other organs, including the brain may also get infected. Here, we have highlighted that SARS-CoV-2 might infect the central nervous system (CNS) through the olfactory bulb. From the olfactory bulb, SARS-CoV-2 may target the deeper parts of the brain including the thalamus and brainstem by trans-synaptic transfer described for many other viral diseases. Following this, the virus might infect the respiratory center of brain, which could be accountable for the respiratory breakdown of COVID-19 patients. Therefore, it is important to screen the COVID-19 patients for neurological symptoms as well as possibility of the collapse of the respiratory center in the brainstem should be investigated in depth.
Collapse
Affiliation(s)
- Sonu Gandhi
- DBT-National Institute of
Animal Biotechnology (DBT-NIAB), Hyderabad 500032,
India
| | - Amit Kumar Srivastava
- CSIR-Indian Institute of
Chemical Biology (CSIR-IICB), Kolkata 700032,
India
- IICB-Translational Research
Unit of Excellence (IICB-TRUE), Kolkata 700091,
India
| | - Upasana Ray
- CSIR-Indian Institute of
Chemical Biology (CSIR-IICB), Kolkata 700032,
India
- IICB-Translational Research
Unit of Excellence (IICB-TRUE), Kolkata 700091,
India
| | - Prem Prakash Tripathi
- CSIR-Indian Institute of
Chemical Biology (CSIR-IICB), Kolkata 700032,
India
- IICB-Translational Research
Unit of Excellence (IICB-TRUE), Kolkata 700091,
India
| |
Collapse
|
29
|
Critical role of histone H3 lysine 27 demethylase Kdm6b in the homeostasis and function of medullary thymic epithelial cells. Cell Death Differ 2020; 27:2843-2855. [PMID: 32346138 DOI: 10.1038/s41418-020-0546-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 01/26/2023] Open
Abstract
Medullary thymic epithelial cells (mTECs) play a central role in the establishment of T cell central immunological tolerance by promiscuously expressing tissue-restricted antigens (TRAs) and presenting them to developing T cells, leading to deletion of T cells responding to self-antigens. However, molecular mechanisms especially epigenetic regulation of mTEC homeostasis and TRA expression remain elusive. Here we show that the H3K27 demethylase Kdm6b is essential to maintain the postnatal thymic medulla by promoting mTEC survival and regulating the expression of TRA genes. Moreover, mice lacking Kdm6b developed pathological autoimmune disorders. Mechanically, Kdm6b exerted its function by reducing repressive H3K27 trimethylation (H3K27me3) at the promoters of anti-apoptotic gene Bcl2 and a set of Aire-dependent TRA genes. Thus, our findings reveal a dual role of Kdm6b in the regulation of mTEC-mediated T cell central tolerance.
Collapse
|
30
|
Histone H3K27me3 demethylases regulate human Th17 cell development and effector functions by impacting on metabolism. Proc Natl Acad Sci U S A 2020; 117:6056-6066. [PMID: 32123118 PMCID: PMC7084125 DOI: 10.1073/pnas.1919893117] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
T cells control many immune functions, with Th17 cells critical in regulating inflammation. Following activation, T cells undergo metabolic reprogramming and utilize glycolysis to increase the ATP availability. Epigenetic mechanisms controlling metabolic functions in T cells are currently not well-defined. Here, we establish an epigenetic link between the histone H3K27me3 demethylases KDM6A/B and the coordination of a metabolic response. Inhibition of KDM6A/B leads to global increases in the repressive H3K27me3 histone mark, resulting in down-regulation of key transcription factors, followed by metabolic reprogramming and anergy. This work suggests a critical role of H3K27 demethylase enzymes in maintaining Th17 functions by controlling metabolic switches. Short-term treatment with KDM6 enzyme inhibitors may be useful in the therapy of chronic inflammatory diseases. T helper (Th) cells are CD4+ effector T cells that play a critical role in immunity by shaping the inflammatory cytokine environment in a variety of physiological and pathological situations. Using a combined chemico-genetic approach, we identify histone H3K27 demethylases KDM6A and KDM6B as central regulators of human Th subsets. The prototypic KDM6 inhibitor GSK-J4 increases genome-wide levels of the repressive H3K27me3 chromatin mark and leads to suppression of the key transcription factor RORγt during Th17 differentiation. In mature Th17 cells, GSK-J4 induces an altered transcriptional program with a profound metabolic reprogramming and concomitant suppression of IL-17 cytokine levels and reduced proliferation. Single-cell analysis reveals a specific shift from highly inflammatory cell subsets toward a resting state upon demethylase inhibition. The root cause of the observed antiinflammatory phenotype in stimulated Th17 cells is reduced expression of key metabolic transcription factors, such as PPRC1. Overall, this leads to reduced mitochondrial biogenesis, resulting in a metabolic switch with concomitant antiinflammatory effects. These data are consistent with an effect of GSK-J4 on Th17 T cell differentiation pathways directly related to proliferation and include regulation of effector cytokine profiles. This suggests that inhibiting KDM6 demethylases may be an effective, even in the short term, therapeutic target for autoimmune diseases, including ankylosing spondylitis.
Collapse
|
31
|
Ricci B, Millner TO, Pomella N, Zhang X, Guglielmi L, Badodi S, Ceric D, Gemma C, Cognolato E, Zhang Y, Brandner S, Barnes MR, Marino S. Polycomb-mediated repression of EphrinA5 promotes growth and invasion of glioblastoma. Oncogene 2020; 39:2523-2538. [PMID: 31988455 PMCID: PMC7082224 DOI: 10.1038/s41388-020-1161-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 12/04/2019] [Accepted: 01/15/2020] [Indexed: 11/22/2022]
Abstract
Glioblastoma (GBM) is the most common and most aggressive intrinsic brain tumour in adults. Integrated transcriptomic and epigenomic analyses of glioblastoma initiating cells (GIC) in a mouse model uncovered a novel epigenetic regulation of EfnA5. In this model, Bmi1 enhances H3K27me3 at the EfnA5 locus and reinforces repression of selected target genes in a cellular context-dependent fashion. EfnA5 mediates Bmi1-dependent proliferation and invasion in vitro and tumour formation in an allograft model. Importantly, we show that this novel Polycomb feed-forward loop is also active in human GIC and we provide pre-clinical evidence of druggability of the EFNA5 signalling pathway in GBM xenografts overexpressing Bmi1.
Collapse
Affiliation(s)
- Barbara Ricci
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Thomas O Millner
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Nicola Pomella
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Xinyu Zhang
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Loredana Guglielmi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Sara Badodi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Dario Ceric
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Carolina Gemma
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Erica Cognolato
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Ying Zhang
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
| | - Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
| | - Michael R Barnes
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
| |
Collapse
|
32
|
Bosselut R. Control of Intra-Thymic αβ T Cell Selection and Maturation by H3K27 Methylation and Demethylation. Front Immunol 2019; 10:688. [PMID: 31001282 PMCID: PMC6456692 DOI: 10.3389/fimmu.2019.00688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/13/2019] [Indexed: 12/25/2022] Open
Abstract
In addition to transcription factor binding, the dynamics of DNA modifications (methylation) and chromatin structure are essential contributors to the control of transcription in eukaryotes. Research in the past few years has emphasized the importance of histone H3 methylation at lysine 27 for lineage specific gene repression, demonstrated that deposition of this mark at specific genes is subject to differentiation-induced changes during development, and identified enzymatic activities, methyl transferases and demethylases, that control these changes. The present review discusses the importance of these mechanisms during intrathymic αβ T cell selection and late differentiation.
Collapse
Affiliation(s)
- Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
33
|
Mallaney C, Ostrander EL, Celik H, Kramer AC, Martens A, Kothari A, Koh WK, Haussler E, Iwamori N, Gontarz P, Zhang B, Challen GA. Kdm6b regulates context-dependent hematopoietic stem cell self-renewal and leukemogenesis. Leukemia 2019; 33:2506-2521. [PMID: 30936419 PMCID: PMC6773521 DOI: 10.1038/s41375-019-0462-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
Abstract
The histone demethylase KDM6B (JMJD3) is upregulated in blood disorders, suggesting it may have important pathogenic functions. Here we examined the function of Kdm6b in hematopoietic stem cells (HSC) to evaluate its potential as a therapeutic target. Loss of Kdm6b lead to depletion of phenotypic and functional HSCs in adult mice, and Kdm6b is necessary for HSC self-renewal in response to inflammatory and proliferative stress. Loss of Kdm6b leads to a pro-differentiation poised state in HSCs due to the increased expression of the AP-1 transcription factor complex (Fos and Jun) and immediate early response (IER) genes. These gene expression changes occurred independently of chromatin modifications. Targeting AP-1 restored function of Kdm6b-deficient HSCs, suggesting Kdm6b regulates this complex during HSC stress response. We also show Kdm6b supports developmental context-dependent leukemogenesis for T-cell acute lymphoblastic leukemia (T-ALL) and M5 acute myeloid leukemia (AML). Kdm6b is required for effective fetal-derived T-ALL and adult-derived AML, but not vice versa. These studies identify a crucial role for Kdm6b in regulating HSC self-renewal in different contexts, and highlight the potential of KDM6B as a therapeutic target in different hematopoietic malignancies.
Collapse
Affiliation(s)
- Cates Mallaney
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Elizabeth L Ostrander
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hamza Celik
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ashley C Kramer
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andrew Martens
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alok Kothari
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Won Kyun Koh
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Emily Haussler
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Naoki Iwamori
- Laboratory of Biomedicine, Division of Pathobiology, Department of Basic Medicine, Faculty of Medicine, Kyushu University, Fukuoka, 812-8582, Japan
| | - Paul Gontarz
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bo Zhang
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
34
|
Swahari V, West AE. Histone demethylases in neuronal differentiation, plasticity, and disease. Curr Opin Neurobiol 2019; 59:9-15. [PMID: 30878844 DOI: 10.1016/j.conb.2019.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/14/2019] [Indexed: 12/29/2022]
Abstract
For more than 40 years after its discovery, histone methylation was thought to be largely irreversible. However, the first histone demethylase (HDM) was identified in 2004, challenging this notion. Since that time, more than 20 HDMs have been identified and characterized, and many have been shown to have critical roles in organismal development, cell fate, and disease. Here, we highlight some of the recent advances in our understanding of the function of HDMs in the context of neuronal development, plasticity, and disease. We focus, in particular, on molecular genetic studies of LSD1, Kdm6b, and Kdm5c that have elucidated both enzymatic and non-enzymatic gene regulatory functions of these HDMs in neurons.
Collapse
Affiliation(s)
- Vijay Swahari
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anne E West
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
35
|
Guo Z, Lu J, Li J, Wang P, Li Z, Zhong Y, Guo K, Wang J, Ye J, Liu P. JMJD3 inhibition protects against isoproterenol-induced cardiac hypertrophy by suppressing β-MHC expression. Mol Cell Endocrinol 2018; 477:1-14. [PMID: 29753027 DOI: 10.1016/j.mce.2018.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/11/2018] [Accepted: 05/08/2018] [Indexed: 01/20/2023]
Abstract
Jumonji domain-containing protein D3 (JMJD3), a histone 3 lysine 27 (H3K27) demethylase, has been extensively studied for their participation in development, cellular physiology and a variety of diseases. However, its potential roles in cardiovascular system remain unknown. In this study, we found that JMJD3 played a pivotal role in the process of cardiac hypertrophy. JMJD3 expression was elevated by isoproterenol (ISO) stimuli both in vitro and in vivo. Overexpression of wild-type JMJD3, but not the demethylase-defective mutant, promoted cardiomyocyte hypertrophy, as implied by increased cardiomyocyte surface area and the expression of hypertrophy marker genes. In contrary, JMJD3 silencing or its inhibitor GSK-J4 suppressed ISO-induced cardiac hypertrophy. Mechanistically, JMJD3 was recruited to demethylate H3K27me3 at the promoter of β-MHC to promote its expression and cardiac hypertrophy. Thus, our results reveal that JMJD3 may be a key epigenetic regulator of β-MHC expression in cardiomyocytes and a potential therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Jingyan Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Panxia Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Zhenzhen Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Yao Zhong
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China; School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Kaiteng Guo
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Junjian Wang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China.
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
36
|
Tran KA, Dillingham CM, Sridharan R. The role of α-ketoglutarate-dependent proteins in pluripotency acquisition and maintenance. J Biol Chem 2018; 294:5408-5419. [PMID: 30181211 DOI: 10.1074/jbc.tm118.000831] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
α-Ketoglutarate is an important metabolic intermediate that acts as a cofactor for several chromatin-modifying enzymes, including histone demethylases and the Tet family of enzymes that are involved in DNA demethylation. In this review, we focus on the function and genomic localization of these α-ketoglutarate-dependent enzymes in the maintenance of pluripotency during cellular reprogramming to induced pluripotent stem cells and in disruption of pluripotency during in vitro differentiation. The enzymatic function of many of these α-ketoglutarate-dependent proteins is required for pluripotency acquisition and maintenance. A better understanding of their specific function will be essential in furthering our knowledge of pluripotency.
Collapse
Affiliation(s)
- Khoa A Tran
- From the Wisconsin Institute for Discovery.,Molecular and Cellular Pharmacology Program, and
| | - Caleb M Dillingham
- From the Wisconsin Institute for Discovery.,Cellular and Molecular Pathology Program, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | - Rupa Sridharan
- From the Wisconsin Institute for Discovery, .,Department of Cell and Regenerative Biology
| |
Collapse
|
37
|
The chromatin basis of neurodevelopmental disorders: Rethinking dysfunction along the molecular and temporal axes. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:306-327. [PMID: 29309830 DOI: 10.1016/j.pnpbp.2017.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 12/13/2022]
Abstract
The complexity of the human brain emerges from a long and finely tuned developmental process orchestrated by the crosstalk between genome and environment. Vis à vis other species, the human brain displays unique functional and morphological features that result from this extensive developmental process that is, unsurprisingly, highly vulnerable to both genetically and environmentally induced alterations. One of the most striking outcomes of the recent surge of sequencing-based studies on neurodevelopmental disorders (NDDs) is the emergence of chromatin regulation as one of the two domains most affected by causative mutations or Copy Number Variations besides synaptic function, whose involvement had been largely predicted for obvious reasons. These observations place chromatin dysfunction at the top of the molecular pathways hierarchy that ushers in a sizeable proportion of NDDs and that manifest themselves through synaptic dysfunction and recurrent systemic clinical manifestation. Here we undertake a conceptual investigation of chromatin dysfunction in NDDs with the aim of systematizing the available evidence in a new framework: first, we tease out the developmental vulnerabilities in human corticogenesis as a structuring entry point into the causation of NDDs; second, we provide a much needed clarification of the multiple meanings and explanatory frameworks revolving around "epigenetics", highlighting those that are most relevant for the analysis of these disorders; finally we go in-depth into paradigmatic examples of NDD-causing chromatin dysregulation, with a special focus on human experimental models and datasets.
Collapse
|
38
|
Chung N, Bogliotti YS, Ding W, Vilarino M, Takahashi K, Chitwood JL, Schultz RM, Ross PJ. Active H3K27me3 demethylation by KDM6B is required for normal development of bovine preimplantation embryos. Epigenetics 2018; 12:1048-1056. [PMID: 29160132 DOI: 10.1080/15592294.2017.1403693] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The substantial epigenetic remodeling that occurs during early stages of mammalian embryonic development likely contributes to reprogramming the parental genomes from a differentiated to a totipotent state and activation of the embryonic genome. Trimethylation of lysine 27 of histone 3 (H3K27me3) is a repressive mark that undergoes global dynamic changes during preimplantation development of several species. To ascertain the role of H3K27me3 in bovine preimplantation development we perturbed the activity of KDM6B, which demethylates H3K27me3. Knockdown of maternal KDM6B mRNA inhibited the reduction in global levels of H3K27me3 from 2-cell to 8-cell embryo stages and compromised development to the blastocyst stage; embryos that developed to the blastocyst stage had fewer inner cell mass (ICM) and trophectoderm (TE) cells. In addition, the transcriptome of KDM6B knockdown embryos was altered at the 8-cell stage and characterized by downregulation of transcripts related to transcriptional regulation, chromatin remodeling, and protein catabolism. Inhibiting the catalytic activity of KDM6B with a specific small molecule inhibitor also prevented the global decrease in H3K27me3 and compromised development to the blastocyst stage. These results indicate that histone demethylation activity, mediated by KDM6B, is required for the global decrease in H3K27me3, correct activation of the embryonic genome, and development to the blastocyst stage in bovine embryos.
Collapse
Affiliation(s)
- Nhi Chung
- a Department of Animal Science , University of California Davis , Davis , CA , USA
| | - Yanina S Bogliotti
- a Department of Animal Science , University of California Davis , Davis , CA , USA
| | - Wei Ding
- a Department of Animal Science , University of California Davis , Davis , CA , USA.,b Department of Animal Husbandry and Veterinary Medicine , Jiangsu Polytechnic College of Agriculture and Forestry , Jurong , Jiangsu Province , China
| | - Marcela Vilarino
- a Department of Animal Science , University of California Davis , Davis , CA , USA
| | - Kazuki Takahashi
- a Department of Animal Science , University of California Davis , Davis , CA , USA
| | - James L Chitwood
- a Department of Animal Science , University of California Davis , Davis , CA , USA
| | - Richard M Schultz
- c Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine , University of California Davis , Davis , CA , USA.,d Department of Biology, School of Arts and Sciences , University of Pennsylvania , Philadelphia , PA , USA
| | - Pablo J Ross
- a Department of Animal Science , University of California Davis , Davis , CA , USA
| |
Collapse
|
39
|
Wijayatunge R, Liu F, Shpargel KB, Wayne NJ, Chan U, Boua JV, Magnuson T, West AE. The histone demethylase Kdm6b regulates a mature gene expression program in differentiating cerebellar granule neurons. Mol Cell Neurosci 2017; 87:4-17. [PMID: 29254825 DOI: 10.1016/j.mcn.2017.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/21/2017] [Accepted: 11/06/2017] [Indexed: 02/09/2023] Open
Abstract
The histone H3 lysine 27 (H3K27) demethylase Kdm6b (Jmjd3) can promote cellular differentiation, however its physiological functions in neurons remain to be fully determined. We studied the expression and function of Kdm6b in differentiating granule neurons of the developing postnatal mouse cerebellum. At postnatal day 7, Kdm6b is expressed throughout the layers of the developing cerebellar cortex, but its expression is upregulated in newborn cerebellar granule neurons (CGNs). Atoh1-Cre mediated conditional knockout of Kdm6b in CGN precursors either alone or in combination with Kdm6a did not disturb the gross morphological development of the cerebellum. Furthermore, RNAi-mediated knockdown of Kdm6b in cultured CGN precursors did not alter the induced expression of early neuronal marker genes upon cell cycle exit. By contrast, knockdown of Kdm6b significantly impaired the induction of a mature neuronal gene expression program, which includes gene products required for functional synapse maturation. Loss of Kdm6b also impaired the ability of Brain-Derived Neurotrophic Factor (BDNF) to induce expression of Grin2c and Tiam1 in maturing CGNs. Taken together, these data reveal a previously unknown role for Kdm6b in the postmitotic stages of CGN maturation and suggest that Kdm6b may work, at least in part, by a transcriptional mechanism that promotes gene sensitivity to regulation by BDNF.
Collapse
Affiliation(s)
- Ranjula Wijayatunge
- Dept. of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Fang Liu
- Dept. of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Karl B Shpargel
- Dept. of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Nicole J Wayne
- Dept. of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Urann Chan
- Dept. of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Jane-Valeriane Boua
- Dept. of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Terry Magnuson
- Dept. of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Anne E West
- Dept. of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
40
|
Liu PP, Xu YJ, Teng ZQ, Liu CM. Polycomb Repressive Complex 2: Emerging Roles in the Central Nervous System. Neuroscientist 2017; 24:208-220. [DOI: 10.1177/1073858417747839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The polycomb repressive complex 2 (PRC2) is responsible for catalyzing both di- and trimethylation of histone H3 at lysine 27 (H3K27me2/3). The subunits of PRC2 are widely expressed in the central nervous system (CNS). PRC2 as well as H3K27me2/3, play distinct roles in neuronal identity, proliferation and differentiation of neural stem/progenitor cells, neuronal morphology, and gliogenesis. Mutations or dysregulations of PRC2 subunits often cause neurological diseases. Therefore, PRC2 might represent a common target of different pathological processes that drive neurodegenerative diseases. A better understanding of the intricate and complex regulatory networks mediated by PRC2 in CNS will help to develop new therapeutic approaches and to generate specific brain cell types for treating neurological diseases.
Collapse
Affiliation(s)
- Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Jie Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
|
42
|
Taube JH, Sphyris N, Johnson KS, Reisenauer KN, Nesbit TA, Joseph R, Vijay GV, Sarkar TR, Bhangre NA, Song JJ, Chang JT, Lee MG, Soundararajan R, Mani SA. The H3K27me3-demethylase KDM6A is suppressed in breast cancer stem-like cells, and enables the resolution of bivalency during the mesenchymal-epithelial transition. Oncotarget 2017; 8:65548-65565. [PMID: 29029452 PMCID: PMC5630352 DOI: 10.18632/oncotarget.19214] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
The deposition of the activating H3K4me3 and repressive H3K27me3 histone modifications within the same promoter, forming a so-called bivalent domain, maintains gene expression in a repressed but transcription-ready state. We recently reported a significantly increased incidence of bivalency following an epithelial-mesenchymal transition (EMT), a process associated with the initiation of the metastatic cascade. The reverse process, known as the mesenchymal-epithelial transition (MET), is necessary for efficient colonization. Here, we identify numerous genes associated with differentiation, proliferation and intercellular adhesion that are repressed through the acquisition of bivalency during EMT, and re-expressed following MET. The majority of EMT-associated bivalent domains arise through H3K27me3 deposition at H3K4me3-marked promoters. Accordingly, we show that the expression of the H3K27me3-demethylase KDM6A is reduced in cells that have undergone EMT, stem-like subpopulations of mammary cell lines and stem cell-enriched triple-negative breast cancers. Importantly, KDM6A levels are restored following MET, concomitant with CDH1/E-cadherin reactivation through H3K27me3 removal. Moreover, inhibition of KDM6A, using the H3K27me3-demethylase inhibitor GSK-J4, prevents the re-expression of bivalent genes during MET. Our findings implicate KDM6A in the resolution of bivalency accompanying MET, and suggest KDM6A inhibition as a viable strategy to suppress metastasis formation in breast cancer.
Collapse
Affiliation(s)
- Joseph H. Taube
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
- Institute of Biomedical Sciences, Baylor University, Waco, Texas, USA
| | - Nathalie Sphyris
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | - Robiya Joseph
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Geraldine V. Vijay
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapasree R. Sarkar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Integrative Bioscience, Texas A & M University, College Station, Texas, USA
| | - Neeraja A. Bhangre
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joon Jin Song
- Depatment of Statistical Science, Baylor University, Waco, Texas, USA
| | - Jeffrey T. Chang
- Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, Texas, USA
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Texas, USA
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sendurai A. Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
43
|
Mir SE, Smits M, Biesmans D, Julsing M, Bugiani M, Aronica E, Kaspers GJL, Cloos J, Würdinger T, Hulleman E. Trimethylation of H3K27 during human cerebellar development in relation to medulloblastoma. Oncotarget 2017; 8:78978-78988. [PMID: 29108280 PMCID: PMC5668013 DOI: 10.18632/oncotarget.20741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/17/2017] [Indexed: 12/30/2022] Open
Abstract
Medulloblastoma (MB), the most common malignant childhood brain tumor, encompasses a collection of four clinically and molecularly distinct tumor subgroups, i.e. WNT, SHH, Group 3 and Group 4. These tumors are believed to originate from precursor cells during cerebellar development. Although the exact etiology of these brain tumors is not yet known, histone modifications are increasingly recognized as key events during cerebellum development and MB tumorigenesis. Recent studies show that key components involved in post-translational modifications of histone H3 lysine 27 (H3K27) are commonly deregulated in MB. In this descriptive study, we have investigated the trimethylation status of H3K27, as well as the expression of the H3K27 methylase EZH2 and demethylases KDM6A and KDM6B, during human cerebellum development in relation to MB. H3K27 Trimethylation status differed between the MB subgroups. Moreover, trimethylation of H3K27 and expression of its modifiers EZH2, KDM6A and KDM6B were detected in a spatio-temporal manner during development of the human cerebellum, with consistent high occurrence in the four proliferative zones, which are believed to harbor the precursor cells of the different MB subgroups. Our results suggest that H3K27 trimethylation in MB is deregulated by EZH2, KDM6A and KDM6B. Moreover, we provide evidence that during development of the human cerebellum H3K27me3 and its regulators are expressed in a spatio-temporal manner.
Collapse
Affiliation(s)
- Shahryar E Mir
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Michiel Smits
- Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Dennis Biesmans
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Machteld Julsing
- Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Thomas Würdinger
- Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Esther Hulleman
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Neuro-oncology Research Group, Departments of Neurosurgery and Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Yi X, Jiang X, Li X, Jiang DS. Histone lysine methylation and congenital heart disease: From bench to bedside (Review). Int J Mol Med 2017; 40:953-964. [PMID: 28902362 DOI: 10.3892/ijmm.2017.3115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/21/2017] [Indexed: 11/05/2022] Open
Abstract
Histone post-translational modifications (PTM) as one of the key epigenetic regulatory mechanisms that plays critical role in various biological processes, including regulating chromatin structure dynamics and gene expression. Histone lysine methyltransferase contributes to the establishment and maintenance of differential histone methylation status, which can recognize histone methylated sites and build an association between these modifications and their downstream processes. Recently, it was found that abnormalities in the histone lysine methylation level or pattern may lead to the occurrence of many types of cardiovascular diseases, such as congenital heart disease (CHD). In order to provide new theoretical basis and targets for the treatment of CHD from the view of developmental biology and genetics, this review discusses and elaborates on the association between histone lysine methylation modifications and CHD.
Collapse
Affiliation(s)
- Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaoyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
45
|
Song A, Jiang S, Wang Q, Zou J, Lin Z, Gao X. JMJD3 Is Crucial for the Female AVPV RIP-Cre Neuron-Controlled Kisspeptin-Estrogen Feedback Loop and Reproductive Function. Endocrinology 2017; 158:1798-1811. [PMID: 28323958 DOI: 10.1210/en.2016-1750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/06/2017] [Indexed: 12/29/2022]
Abstract
The hypothalamic-pituitary-gonadal axis controls development, reproduction, and metabolism. Although most studies have focused on the hierarchy from the brain to the gonad, many questions remain unresolved concerning the feedback from the gonad to the central nervous system, especially regarding the potential epigenetic modifications in hypothalamic neurons. In the present report, we generated genetically modified mice lacking histone H3 lysine 27 (H3K27) demethylase Jumonji domain-containing 3 (JMJD3) in hypothalamic rat-insulin-promoter-expressing neurons (RIP-Cre neurons). The female mutant mice displayed late-onset obesity owing to reduced locomotor activity and decreased energy expenditure. JMJD3 deficiency in RIP-Cre neurons also results in delayed pubertal onset, an irregular estrous cycle, impaired fertility, and accelerated ovarian failure in female mice owing to the dysregulation of the hypothalamic-ovarian axis. We found that JMJD3 directly regulates Kiss1 gene expression by binding to the Kiss1 promoter and triggering H3K27me3 demethylation in the anteroventral periventricular (AVPV) nucleus. Further study confirmed that the aberrations arose from impaired kisspeptin signaling in the hypothalamic AVPV nucleus and subsequent estrogen deficiency. Estrogen replacement therapy can reverse obesity in mutant mice. Moreover, we demonstrated that Jmjd3 is an estrogen target gene in the hypothalamus. These results provide direct genetic and molecular evidence that JMJD3 is a key mediator for the kisspeptin-estrogen feedback loop.
Collapse
Affiliation(s)
- Anying Song
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Shujun Jiang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Qinghua Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Jianghuan Zou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| |
Collapse
|
46
|
Gabriele M, Vulto-van Silfhout AT, Germain PL, Vitriolo A, Kumar R, Douglas E, Haan E, Kosaki K, Takenouchi T, Rauch A, Steindl K, Frengen E, Misceo D, Pedurupillay CRJ, Stromme P, Rosenfeld JA, Shao Y, Craigen WJ, Schaaf CP, Rodriguez-Buritica D, Farach L, Friedman J, Thulin P, McLean SD, Nugent KM, Morton J, Nicholl J, Andrieux J, Stray-Pedersen A, Chambon P, Patrier S, Lynch SA, Kjaergaard S, Tørring PM, Brasch-Andersen C, Ronan A, van Haeringen A, Anderson PJ, Powis Z, Brunner HG, Pfundt R, Schuurs-Hoeijmakers JHM, van Bon BWM, Lelieveld S, Gilissen C, Nillesen WM, Vissers LELM, Gecz J, Koolen DA, Testa G, de Vries BBA. YY1 Haploinsufficiency Causes an Intellectual Disability Syndrome Featuring Transcriptional and Chromatin Dysfunction. Am J Hum Genet 2017; 100:907-925. [PMID: 28575647 DOI: 10.1016/j.ajhg.2017.05.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/04/2017] [Indexed: 01/06/2023] Open
Abstract
Yin and yang 1 (YY1) is a well-known zinc-finger transcription factor with crucial roles in normal development and malignancy. YY1 acts both as a repressor and as an activator of gene expression. We have identified 23 individuals with de novo mutations or deletions of YY1 and phenotypic features that define a syndrome of cognitive impairment, behavioral alterations, intrauterine growth restriction, feeding problems, and various congenital malformations. Our combined clinical and molecular data define "YY1 syndrome" as a haploinsufficiency syndrome. Through immunoprecipitation of YY1-bound chromatin from affected individuals' cells with antibodies recognizing both ends of the protein, we show that YY1 deletions and missense mutations lead to a global loss of YY1 binding with a preferential retention at high-occupancy sites. Finally, we uncover a widespread loss of H3K27 acetylation in particular on the YY1-bound enhancers, underscoring a crucial role for YY1 in enhancer regulation. Collectively, these results define a clinical syndrome caused by haploinsufficiency of YY1 through dysregulation of key transcriptional regulators.
Collapse
Affiliation(s)
- Michele Gabriele
- Laboratory of Stem Cell Epigenetics, Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | | | - Pierre-Luc Germain
- Laboratory of Stem Cell Epigenetics, Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Alessandro Vitriolo
- Laboratory of Stem Cell Epigenetics, Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Raman Kumar
- School of Medicine and Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Evelyn Douglas
- SA Clinical Genetics Service, SA Pathology, Adelaide, SA 5000, Australia; School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Eric Haan
- SA Clinical Genetics Service, SA Pathology, Adelaide, SA 5000, Australia; School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, 160-8582 Tokyo, Japan
| | - Toshiki Takenouchi
- Center for Medical Genetics, Keio University School of Medicine, 160-8582 Tokyo, Japan
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren-Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren-Zurich, Switzerland
| | - Eirik Frengen
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0315 Oslo, Norway
| | - Doriana Misceo
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0315 Oslo, Norway
| | | | - Petter Stromme
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital and University of Oslo, 0313 Oslo, Norway
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yunru Shao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Rodriguez-Buritica
- Division of Genetics, Department of Pediatrics, University of Texas Health, Houston, TX 77030, USA
| | - Laura Farach
- Division of Genetics, Department of Pediatrics, University of Texas Health, Houston, TX 77030, USA
| | - Jennifer Friedman
- Departments of Neurosciences and Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego, CA 92123, USA
| | - Perla Thulin
- Department of Neurology, University of Utah, San Diego, CA 92123, USA
| | - Scott D McLean
- Clinical Genetics Section, Children's Hospital of San Antonio, San Antonio, TX 78207, USA
| | - Kimberly M Nugent
- Clinical Genetics Section, Children's Hospital of San Antonio, San Antonio, TX 78207, USA
| | - Jenny Morton
- Birmingham Women's Hospital, B15 2TG Birmingham, UK
| | - Jillian Nicholl
- SA Clinical Genetics Service, SA Pathology, Adelaide, SA 5000, Australia; School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Joris Andrieux
- Institut de Génétique Médicale, Hopital Jeanne de Flandre, 59000 Lille, France
| | | | - Pascal Chambon
- Laboratory of Cytogenetics, Rouen University Hospital, 76031 Rouen, France
| | - Sophie Patrier
- Service d'Anatomie Pathologique, Rouen University Hospital, 76031 Rouen, France
| | - Sally A Lynch
- National Centre for Medical Genetics, Our Lady's Children's Hospital, D12 V004 Dublin, Ireland
| | - Susanne Kjaergaard
- Department of Clinical Genetics, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Pernille M Tørring
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark
| | | | - Anne Ronan
- Hunter Genetics, Waratah, NSW 2298, Australia
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Peter J Anderson
- Australian Craniofacial Unit, Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | - Zöe Powis
- Ambry Genetics, Aliso Viejo, CA 92656, USA
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | | | - Bregje W M van Bon
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Stefan Lelieveld
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Willy M Nillesen
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Jozef Gecz
- School of Medicine and Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - David A Koolen
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Giuseppe Testa
- Laboratory of Stem Cell Epigenetics, Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy; Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy.
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
47
|
Shen H, Xu W, Lan F. Histone lysine demethylases in mammalian embryonic development. Exp Mol Med 2017; 49:e325. [PMID: 28450736 PMCID: PMC6130211 DOI: 10.1038/emm.2017.57] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 12/18/2022] Open
Abstract
Post-translational modifications, such as methylation, acetylation and phosphorylation, of histone proteins play important roles in regulating dynamic chromatin structure. Histone demethylation has become one of the most active research areas of epigenetics in the past decade. To date, with the exception of histone H3 lysine 79 methylation, the demethylases for all major lysine methylation sites have been discovered. These enzymes have been shown to be involved in various biological processes, with embryonic development being an exciting emerging area. This review will primarily discuss the involvement of these demethylases in the regulation of mammalian embryonic development, including their roles in embryonic stem cell pluripotency, primordial germ cell (PGC) formation and maternal-to-zygotic transition.
Collapse
Affiliation(s)
- Hongjie Shen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics, Shanghai Ministry of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenqi Xu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics, Shanghai Ministry of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Lan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics, Shanghai Ministry of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Akerberg AA, Henner A, Stewart S, Stankunas K. Histone demethylases Kdm6ba and Kdm6bb redundantly promote cardiomyocyte proliferation during zebrafish heart ventricle maturation. Dev Biol 2017; 426:84-96. [PMID: 28372944 DOI: 10.1016/j.ydbio.2017.03.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/01/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
Abstract
Trimethylation of lysine 27 on histone 3 (H3K27me3) by the Polycomb repressive complex 2 (PRC2) contributes to localized and inherited transcriptional repression. Kdm6b (Jmjd3) is a H3K27me3 demethylase that can relieve repression-associated H3K27me3 marks, thereby supporting activation of previously silenced genes. Kdm6b is proposed to contribute to early developmental cell fate specification, cardiovascular differentiation, and/or later steps of organogenesis, including endochondral bone formation and lung development. We pursued loss-of-function studies in zebrafish to define the conserved developmental roles of Kdm6b. kdm6ba and kdm6bb homozygous deficient zebrafish are each viable and fertile. However, loss of both kdm6ba and kdm6bb shows Kdm6b proteins share redundant and pleiotropic roles in organogenesis without impacting initial cell fate specification. In the developing heart, co-expressed Kdm6b proteins promote cardiomyocyte proliferation coupled with the initial stages of cardiac trabeculation. While newly formed trabecular cardiomyocytes display a striking transient decrease in bulk cellular H3K27me3 levels, this demethylation is independent of collective Kdm6b. Our results indicate a restricted and likely locus-specific role for Kdm6b demethylases during heart ventricle maturation rather than initial cardiogenesis.
Collapse
Affiliation(s)
- Alexander A Akerberg
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, United States; Department of Biology, University of Oregon, Eugene, OR 97403-1229, United States
| | - Astra Henner
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, United States
| | - Scott Stewart
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, United States
| | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, United States; Department of Biology, University of Oregon, Eugene, OR 97403-1229, United States.
| |
Collapse
|
49
|
Meeks JJ, Shilatifard A. Multiple Roles for the MLL/COMPASS Family in the Epigenetic Regulation of Gene Expression and in Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-050216-034333] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joshua J. Meeks
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
50
|
Naruse C, Shibata S, Tamura M, Kawaguchi T, Abe K, Sugihara K, Kato T, Nishiuchi T, Wakana S, Ikawa M, Asano M. New insights into the role of Jmjd3 and Utx in axial skeletal formation in mice. FASEB J 2017; 31:2252-2266. [PMID: 28188179 DOI: 10.1096/fj.201600642r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
Jmjd3 and Utx are demethylases specific for lysine 27 of histone H3. Previous reports indicate that Jmjd3 is essential for differentiation of various cell types, such as macrophages and epidermal cells in mice, whereas Utx is involved in cancer and developmental diseases in humans and mice, as well as Hox regulation in zebrafish and nematodes. Here, we report that Jmjd3, but not Utx, is involved in axial skeletal formation in mice. A Jmjd3 mutant embryo (Jmjd3Δ18/Δ18), but not a catalytically inactive Utx truncation mutant (Utx-/y), showed anterior homeotic transformation. Quantitative RT-PCR and microarray analyses showed reduced Hox expression in both Jmjd3Δ18/Δ18 embryos and tailbuds, whereas levels of Hox activators, such as Wnt signaling factors and retinoic acid synthases, did not decrease, which suggests that Jmjd3 plays a regulatory role in Hox expression during axial patterning. Chromatin immunoprecipitation analyses of embryo tailbud tissue showed trimethylated lysine 27 on histone H3 to be at higher levels at the Hox loci in Jmjd3Δ18/Δ18 mutants compared with wild-type tailbuds. In contrast, trimethylated lysine 4 on histone H3 levels were found to be equivalent in wild-type and Jmjd3Δ18/Δ18 tailbuds. Demethylase-inactive Jmjd3 mutant embryos showed the same phenotype as Jmjd3Δ18/Δ18 mice. These results suggest that the demethylase activity of Jmjd3, but not that of Utx, affects mouse axial patterning in concert with alterations in Hox gene expression.-Naruse, C., Shibata, S., Tamura, M., Kawaguchi, T., Abe, K., Sugihara, K., Kato, T., Nishiuchi, T., Wakana, S., Ikawa, M., Asano, M. New insights into the role of Jmjd3 and Utx in axial skeletal formation in mice.
Collapse
Affiliation(s)
- Chie Naruse
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Shinwa Shibata
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Takayuki Kawaguchi
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Kanae Abe
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Kazushi Sugihara
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Tomoaki Kato
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Masahito Ikawa
- Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan; .,Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| |
Collapse
|