1
|
Qu R, Cheng X, Sefik E, Stanley Iii JS, Landa B, Strino F, Platt S, Garritano J, Odell ID, Coifman R, Flavell RA, Myung P, Kluger Y. Gene trajectory inference for single-cell data by optimal transport metrics. Nat Biotechnol 2025; 43:258-268. [PMID: 38580861 PMCID: PMC11452571 DOI: 10.1038/s41587-024-02186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/26/2024] [Indexed: 04/07/2024]
Abstract
Single-cell RNA sequencing has been widely used to investigate cell state transitions and gene dynamics of biological processes. Current strategies to infer the sequential dynamics of genes in a process typically rely on constructing cell pseudotime through cell trajectory inference. However, the presence of concurrent gene processes in the same group of cells and technical noise can obscure the true progression of the processes studied. To address this challenge, we present GeneTrajectory, an approach that identifies trajectories of genes rather than trajectories of cells. Specifically, optimal transport distances are calculated between gene distributions across the cell-cell graph to extract gene programs and define their gene pseudotemporal order. Here we demonstrate that GeneTrajectory accurately extracts progressive gene dynamics in myeloid lineage maturation. Moreover, we show that GeneTrajectory deconvolves key gene programs underlying mouse skin hair follicle dermal condensate differentiation that could not be resolved by cell trajectory approaches. GeneTrajectory facilitates the discovery of gene programs that control the changes and activities of biological processes.
Collapse
Affiliation(s)
- Rihao Qu
- Computational Biology & Bioinformatics Program, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Xiuyuan Cheng
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Esen Sefik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Boris Landa
- Program in Applied Mathematics, Yale University, New Haven, CT, USA
| | | | - Sarah Platt
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - James Garritano
- Program in Applied Mathematics, Yale University, New Haven, CT, USA
| | - Ian D Odell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Ronald Coifman
- Program in Applied Mathematics, Yale University, New Haven, CT, USA
- Department of Mathematics, Yale University, New Haven, CT, USA
- Department of Electrical Engineering, Yale University, New Haven, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Peggy Myung
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Yuval Kluger
- Computational Biology & Bioinformatics Program, Yale University, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
- Program in Applied Mathematics, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Karamveer, Uzun Y. Approaches for Benchmarking Single-Cell Gene Regulatory Network Methods. Bioinform Biol Insights 2024; 18:11779322241287120. [PMID: 39502448 PMCID: PMC11536393 DOI: 10.1177/11779322241287120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024] Open
Abstract
Gene regulatory networks are powerful tools for modeling genetic interactions that control the expression of genes driving cell differentiation, and single-cell sequencing offers a unique opportunity to build these networks with high-resolution genomic data. There are many proposed computational methods to build these networks using single-cell data, and different approaches are used to benchmark these methods. However, a comprehensive discussion specifically focusing on benchmarking approaches is missing. In this article, we lay the GRN terminology, present an overview of common gold-standard studies and data sets, and define the performance metrics for benchmarking network construction methodologies. We also point out the advantages and limitations of different benchmarking approaches, suggest alternative ground truth data sets that can be used for benchmarking, and specify additional considerations in this context.
Collapse
Affiliation(s)
- Karamveer
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yasin Uzun
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
3
|
Puviindran V, Shimada E, Huang Z, Ma X, Ban GI, Xiang Y, Zhang H, Ou J, Wei X, Nakagawa M, Martin J, Diao Y, Alman BA. Single cell analysis of Idh mutant growth plates identifies cell populations responsible for longitudinal bone growth and enchondroma formation. Sci Rep 2024; 14:26208. [PMID: 39482341 PMCID: PMC11527983 DOI: 10.1038/s41598-024-76539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
Enchondromas are a common tumor in bone that can occur as multiple lesions in enchondromatosis, which is associated with deformity of the affected bone. These lesions harbor somatic mutations in IDH and driving expression of a mutant Idh1 in Col2 expressing cells in mice causes an enchondromatosis phenotype. Here we compared growth plates from E18.5 mice expressing a mutant Idh1 with control littermates using single cell RNA sequencing. Data from Col2 expressing cells were analysed using UMAP and RNA pseudo-time analyses. A unique cluster of cells was identified in the mutant growth plates that expressed genes known to be upregulated in enchondromas. There was also a cluster of cells that was underrepresented in the mutant growth plates that expressed genes known to be important in longitudinal bone growth. Immunofluorescence showed that the genes from the unique cluster identified in the mutant growth plates were expressed in multiple growth plate anatomic zones, and pseudo-time analysis also suggested these cells could arise from multiple growth plate chondrocyte subpopulations. This data supports the notion that a subpopulation of chondrocytes become enchondromas at the expense of contributing to longitudinal growth.
Collapse
Affiliation(s)
- Vijitha Puviindran
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Eijiro Shimada
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Zeyu Huang
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Xinyi Ma
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Developmental and Stem Cell Biology Program, Duke University School of Medicine, Durham, NC, USA
| | - Ga I Ban
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Yu Xiang
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Regeneration Center, Duke University School of Medicine, Durham, NC, USA
| | - Hongyuan Zhang
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jianhong Ou
- Regeneration Center, Duke University School of Medicine, Durham, NC, USA
| | - Xiaolin Wei
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Regeneration Center, Duke University School of Medicine, Durham, NC, USA
| | - Makoto Nakagawa
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - John Martin
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Yarui Diao
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Regeneration Center, Duke University School of Medicine, Durham, NC, USA
| | - Benjamin A Alman
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
- Regeneration Center, Duke University School of Medicine, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
- Developmental and Stem Cell Biology Program, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
Puviindran V, Shimada E, Huang Z, Ma X, Ban GI, Xiang Y, Zhang H, Ou J, Wei X, Nakagawa M, Martin J, Diao Y, Alman BA. Single-cell transcriptomic analyses of mouse idh1 mutant growth plate chondrocytes reveal distinct cell populations responsible for longitudinal growth and enchondroma formation. RESEARCH SQUARE 2024:rs.3.rs-4451086. [PMID: 38883785 PMCID: PMC11178001 DOI: 10.21203/rs.3.rs-4451086/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Enchondromas are a common tumor in bone that can occur as multiple lesions in enchondromatosis, which is associated with deformity of the effected bone. These lesions harbor mutations in IDH and driving expression of a mutant Idh1 in Col2 expressing cells in mice causes an enchondromatosis phenotype. In this study we compared growth plates from E18.5 mice expressing a mutant Idh1 with control littermates using single cell RNA sequencing. Data from Col2 expressing cells were analyzed using UMAP and RNA pseudo-time analyses. A unique cluster of cells was identified in the mutant growth plates that expressed genes known to be upregulated in enchondromas. There was also a cluster of cells that was underrepresented in the mutant growth plates that expressed genes known to be important in longitudinal bone growth. Immunofluorescence showed that the genes from the unique cluster identified in the mutant growth plates were expressed in multiple growth plate anatomic zones, and pseudo-time analysis also suggested these cells could arise from multiple growth plate chondrocyte subpopulations. This data identifies subpopulations of cells in control and mutant growth plates, and supports the notion that a mutant Idh1 alters the subpopulations of growth plate chondrocytes, resulting a subpopulation of cells that become enchondromas at the expense of other populations that contribute to longitudinal growth.
Collapse
Affiliation(s)
| | | | | | - Xinyi Ma
- Duke University School of Medicine
| | - Ga I Ban
- Duke University School of Medicine
| | - Yu Xiang
- Duke University School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Zieba J, Nevarez L, Wachtell D, Martin JH, Kot A, Wong S, Cohn DH, Krakow D. Altered Sox9 and FGF signaling gene expression in Aga2 OI mice negatively affects linear growth. JCI Insight 2023; 8:e171984. [PMID: 37796615 PMCID: PMC10721276 DOI: 10.1172/jci.insight.171984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
Osteogenesis imperfecta (OI), or brittle bone disease, is a disorder characterized by bone fragility and increased fracture incidence. All forms of OI also feature short stature, implying an effect on endochondral ossification. Using the Aga2+/- mouse, which has a mutation in type I collagen, we show an affected growth plate primarily due to a shortened proliferative zone. We used single-cell RNA-Seq analysis of tibial and femoral growth plate tissues to understand transcriptional consequences on growth plate cell types. We show that perichondrial cells, which express abundant type I procollagen, and growth plate chondrocytes, which were found to express low amounts of type I procollagen, had ER stress and dysregulation of the same unfolded protein response pathway as previously demonstrated in osteoblasts. Aga2+/- proliferating chondrocytes showed increased FGF and MAPK signaling, findings consistent with accelerated differentiation. There was also increased Sox9 expression throughout the growth plate, which is expected to accelerate early chondrocyte differentiation but reduce late hypertrophic differentiation. These data reveal that mutant type I collagen expression in OI has an impact on the cartilage growth plate. These effects on endochondral ossification indicate that OI is a biologically complex phenotype going beyond its known impacts on bone to negatively affect linear growth.
Collapse
Affiliation(s)
- Jennifer Zieba
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Lisette Nevarez
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Davis Wachtell
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Jorge H. Martin
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Alexander Kot
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Sereen Wong
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Daniel H. Cohn
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
- Department of Obstetrics and Gynecology and
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
6
|
Mori T, Takase T, Lan KC, Yamane J, Alev C, Kimura A, Osafune K, Yamashita JK, Akutsu T, Kitano H, Fujibuchi W. eSPRESSO: topological clustering of single-cell transcriptomics data to reveal informative genes for spatio-temporal architectures of cells. BMC Bioinformatics 2023; 24:252. [PMID: 37322439 PMCID: PMC10268514 DOI: 10.1186/s12859-023-05355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Bioinformatics capability to analyze spatio-temporal dynamics of gene expression is essential in understanding animal development. Animal cells are spatially organized as functional tissues where cellular gene expression data contain information that governs morphogenesis during the developmental process. Although several computational tissue reconstruction methods using transcriptomics data have been proposed, those methods have been ineffective in arranging cells in their correct positions in tissues or organs unless spatial information is explicitly provided. RESULTS This study demonstrates stochastic self-organizing map clustering with Markov chain Monte Carlo calculations for optimizing informative genes effectively reconstruct any spatio-temporal topology of cells from their transcriptome profiles with only a coarse topological guideline. The method, eSPRESSO (enhanced SPatial REconstruction by Stochastic Self-Organizing Map), provides a powerful in silico spatio-temporal tissue reconstruction capability, as confirmed by using human embryonic heart and mouse embryo, brain, embryonic heart, and liver lobule with generally high reproducibility (average max. accuracy = 92.0%), while revealing topologically informative genes, or spatial discriminator genes. Furthermore, eSPRESSO was used for temporal analysis of human pancreatic organoids to infer rational developmental trajectories with several candidate 'temporal' discriminator genes responsible for various cell type differentiations. CONCLUSIONS eSPRESSO provides a novel strategy for analyzing mechanisms underlying the spatio-temporal formation of cellular organizations.
Collapse
Affiliation(s)
- Tomoya Mori
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Toshiro Takase
- Life Sciences, IBM Consulting, IBM Japan Ltd., 19-21 Nihonbashi Hakozaki-cho , Chuo-ku, Tokyo, 103-8510, Japan
| | - Kuan-Chun Lan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Sho-goin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Junko Yamane
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Sho-goin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Cantas Alev
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Azuma Kimura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Sho-goin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Sho-goin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Jun K Yamashita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Sho-goin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Hiroaki Kitano
- The Systems Biology Institute, Tokyo, Japan
- Okinawa Institute of Science and Technology Graduate School, Okinawa, Japan
- Sony Computer Science Laboratories, Inc., Tokyo, Japan
- Sony AI, Inc., Tokyo, Japan
- The Alan Turing Institute, London, UK
| | - Wataru Fujibuchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Sho-goin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
7
|
Zhou T, Chen Y, Liao Z, Zhang L, Su D, Li Z, Yang X, Ke X, Liu H, Chen Y, Weng R, Shen H, Xu C, Wan Y, Xu R, Su P. Spatiotemporal Characterization of Human Early Intervertebral Disc Formation at Single-Cell Resolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206296. [PMID: 36965031 DOI: 10.1002/advs.202206296] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/28/2023] [Indexed: 05/18/2023]
Abstract
The intervertebral disc (IVD) acts as a fibrocartilaginous joint to anchor adjacent vertebrae. Although several studies have demonstrated the cellular heterogeneity of adult mature IVDs, a single-cell transcriptomic atlas mapping early IVD formation is still lacking. Here, the authors generate a spatiotemporal and single cell-based transcriptomic atlas of human IVD formation at the embryonic stage and a comparative mouse transcript landscape. They identify two novel human notochord (NC)/nucleus pulposus (NP) clusters, SRY-box transcription factor 10 (SOX10)+ and cathepsin K (CTSK)+ , that are distributed in the early and late stages of IVD formation and they are validated by lineage tracing experiments in mice. Matrisome NC/NP clusters, T-box transcription factor T (TBXT)+ and CTSK+ , are responsible for the extracellular matrix homeostasis. The IVD atlas suggests that a subcluster of the vertebral chondrocyte subcluster might give rise to an inner annulus fibrosus of chondrogenic origin, while the fibroblastic outer annulus fibrosus preferentially expresseds transgelin and fibromodulin . Through analyzing intercellular crosstalk, the authors further find that notochordal secreted phosphoprotein 1 (SPP1) is a novel cue in the IVD microenvironment, and it is associated with IVD development and degeneration. In conclusion, the single-cell transcriptomic atlas will be leveraged to develop preventative and regenerative strategies for IVD degeneration.
Collapse
Affiliation(s)
- Taifeng Zhou
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Chen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhiheng Liao
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Long Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Deying Su
- Guangdong Provincial Key Laboratory of Proteomics and State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuling Li
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaona Ke
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hengyu Liu
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuyu Chen
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ricong Weng
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Huimin Shen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Caixia Xu
- Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yong Wan
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Peiqiang Su
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
8
|
Bernstein MN, Ni Z, Prasad A, Brown J, Mohanty C, Stewart R, Newton MA, Kendziorski C. SpatialCorr identifies gene sets with spatially varying correlation structure. CELL REPORTS METHODS 2022; 2:100369. [PMID: 36590683 PMCID: PMC9795364 DOI: 10.1016/j.crmeth.2022.100369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/26/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Recent advances in spatially resolved transcriptomics technologies enable both the measurement of genome-wide gene expression profiles and their mapping to spatial locations within a tissue. A first step in spatial transcriptomics data analysis is identifying genes with expression that varies spatially, and robust statistical methods exist to address this challenge. While useful, these methods do not detect spatial changes in the coordinated expression within a group of genes. To this end, we present SpatialCorr, a method for identifying sets of genes with spatially varying correlation structure. Given a collection of gene sets pre-defined by a user, SpatialCorr tests for spatially induced differences in the correlation of each gene set within tissue regions, as well as between and among regions. An application to cutaneous squamous cell carcinoma demonstrates the power of the approach for revealing biological insights not identified using existing methods.
Collapse
Affiliation(s)
| | - Zijian Ni
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aman Prasad
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Jared Brown
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chitrasen Mohanty
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Michael A. Newton
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
9
|
Gao M, Guo P, Liu X, Zhang P, He Z, Wen L, Liu S, Zhou Z, Zhu W. Systematic study of single-cell isolation from musculoskeletal tissues for single-sell sequencing. BMC Mol Cell Biol 2022; 23:32. [PMID: 35883033 PMCID: PMC9327421 DOI: 10.1186/s12860-022-00429-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The single-cell platform provided revolutionary way to study cellular biology. Technologically, a sophistic protocol of isolating qualified single cells would be key to deliver to single-cell platform, which requires high cell viability, high cell yield and low content of cell aggregates or doublets. For musculoskeletal tissues, like bone, cartilage, nucleus pulposus and tendons, as well as their pathological state, which are tense and dense, it’s full of challenge to efficiently and rapidly prepare qualified single-cell suspension. Conventionally, enzymatic dissociation methods were wildly used but lack of quality control. In the present study, we designed the rapid cycling enzymatic processing method using tissue-specific enzyme cocktail to treat different human pathological musculoskeletal tissues, including degenerated nucleus pulposus (NP), ossifying posterior longitudinal ligament (OPLL) and knee articular cartilage (AC) with osteoarthritis aiming to rapidly and efficiently harvest qualified single-cell suspensions for single-cell RNA-sequencing (scRNA-seq).
Results
We harvested highly qualified single-cell suspensions from NP and OPLL with sufficient cell numbers and high cell viability using the rapid cycling enzymatic processing method, which significantly increased the cell viability compared with the conventional long-time continuous digestion group (P < 0.05). Bioanalyzer trace showed expected cDNA size distribution of the scRNA-seq library and a clear separation of cellular barcodes from background partitions were verified by the barcode-rank plot after sequencing. T-SNE visualization revealed highly heterogeneous cell subsets in NP and OPLL. Unfortunately, we failed to obtain eligible samples from articular cartilage due to low cell viability and excessive cell aggregates and doublets.
Conclusions
In conclusion, using the rapid cycling enzymatic processing method, we provided thorough protocols for preparing single-cell suspensions from human musculoskeletal tissues, which was timesaving, efficient and protective to cell viability. The strategy would greatly guarantee the cell heterogeneity, which is critical for scRNA-seq data analysis. The protocol to treat human OA articular cartilage should be further improved.
Collapse
|
10
|
Bell N, Bhagat S, Muruganandan S, Kim R, Ho K, Pierce R, Kozhemyakina E, Lassar AB, Gamer L, Rosen V, Ionescu AM. Overexpression of transcription factor FoxA2 in the developing skeleton causes an enlargement of the cartilage hypertrophic zone, but it does not trigger ectopic differentiation in immature chondrocytes. Bone 2022; 160:116418. [PMID: 35398294 PMCID: PMC9133231 DOI: 10.1016/j.bone.2022.116418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 01/29/2023]
Abstract
We previously found that FoxA factors are necessary for chondrocyte differentiation. To investigate whether FoxA factors alone are sufficient to drive chondrocyte hypertrophy, we build a FoxA2 transgenic mouse in which FoxA2 cDNA is driven by a reiterated Tetracycline Response Element (TRE) and a minimal CMV promoter. This transgenic line was crossed with a col2CRE;Rosa26rtTA/+ mouse line to generate col2CRE;Rosa26rtTA/+;TgFoxA2+/- mice for inducible expression of FoxA2 in cartilage using doxycycline treatment. Ectopic expression of FoxA2 in the developing skeleton reveals skeletal defects and shorter skeletal elements in E17.5 mice. The chondro-osseous border was frequently mis-shaped in mutant mice, with small islands of col.10+ hypertrophic cells extending in the metaphyseal bone. Even though overexpression of FoxA2 causes an accumulation of hypertrophic chondrocytes, it did not trigger ectopic hypertrophy in the immature chondrocytes. This suggests that FoxA2 may need transcriptional co-factors (such as Runx2), whose expression is restricted to the hypertrophic zone, and absent in the immature chondrocytes. To investigate a potential FoxA2/Runx2 interaction in immature chondrocytes versus hypertrophic cells, we separated these two subpopulations by FACS to obtain CD24+CD200+ hypertrophic chondrocytes and CD24+CD200- immature chondrocytes and we ectopically expressed FoxA2 alone or in combination with Runx2 via lentiviral gene delivery. In CD24+CD200+ hypertrophic chondrocytes, FoxA2 enhanced the expression of chondrocyte hypertrophic markers collagen 10, MMP13, and alkaline phosphatase. In contrast, in the CD24+CD200- immature chondrocytes, neither FoxA2 nor Runx2 overexpression could induce ectopic expression of hypertrophic markers MMP13, alkaline phosphatase, or PTH/PTHrP receptor. Overall these findings mirror our in vivo data, and suggest that induction of chondrocyte hypertrophy by FoxA2 may require other factors in addition to Runx2 (i.e., Hif2α, MEF2C, or perhaps unknown factors), whose expression/activity is rate-limiting in immature chondrocytes.
Collapse
Affiliation(s)
- Nicole Bell
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America
| | - Sanket Bhagat
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Shanmugam Muruganandan
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America; Department of Biology, 134 Mugar Life Sciences Building, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America.
| | - Ryunhyung Kim
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Kailing Ho
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Rachel Pierce
- Department of Biology, 134 Mugar Life Sciences Building, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America.
| | - Elena Kozhemyakina
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, United States of America.
| | - Andrew B Lassar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, United States of America.
| | - Laura Gamer
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Andreia M Ionescu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America; Department of Biology, 134 Mugar Life Sciences Building, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America.
| |
Collapse
|
11
|
Liu NQ, Lin Y, Li L, Lu J, Geng D, Zhang J, Jashashvili T, Buser Z, Magallanes J, Tassey J, Shkhyan R, Sarkar A, Lopez N, Lee S, Lee Y, Wang L, Petrigliano FA, Van Handel B, Lyons K, Evseenko D. gp130/STAT3 signaling is required for homeostatic proliferation and anabolism in postnatal growth plate and articular chondrocytes. Commun Biol 2022; 5:64. [PMID: 35039652 PMCID: PMC8763901 DOI: 10.1038/s42003-021-02944-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/03/2021] [Indexed: 02/05/2023] Open
Abstract
Growth of long bones and vertebrae is maintained postnatally by a long-lasting pool of progenitor cells. Little is known about the molecular mechanisms that regulate the output and maintenance of the cells that give rise to mature cartilage. Here we demonstrate that postnatal chondrocyte-specific deletion of a transcription factor Stat3 results in severely reduced proliferation coupled with increased hypertrophy, growth plate fusion, stunting and signs of progressive dysfunction of the articular cartilage. This effect is dimorphic, with females more strongly affected than males. Chondrocyte-specific deletion of the IL-6 family cytokine receptor gp130, which activates Stat3, phenocopied Stat3-deletion; deletion of Lifr, one of many co-receptors that signals through gp130, resulted in a milder phenotype. These data define a molecular circuit that regulates chondrogenic cell maintenance and output and reveals a pivotal positive function of IL-6 family cytokines in the skeletal system with direct implications for skeletal development and regeneration.
Collapse
Affiliation(s)
- Nancy Q. Liu
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Yucheng Lin
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 China ,grid.263826.b0000 0004 1761 0489Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 China
| | - Liangliang Li
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 China ,grid.89957.3a0000 0000 9255 8984Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211100 China
| | - Jinxiu Lu
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Dawei Geng
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 China ,grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Jiankang Zhang
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Tea Jashashvili
- grid.42505.360000 0001 2156 6853Department of Radiology, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Zorica Buser
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Jenny Magallanes
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Jade Tassey
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Ruzanna Shkhyan
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Arijita Sarkar
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Noah Lopez
- grid.19006.3e0000 0000 9632 6718Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angles (UCLA), Los Angeles, CA USA
| | - Siyoung Lee
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Youngjoo Lee
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Liming Wang
- grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 China ,grid.89957.3a0000 0000 9255 8984Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu 210006 China
| | - Frank A. Petrigliano
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA 90033 USA
| | - Ben Van Handel
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Karen Lyons
- grid.19006.3e0000 0000 9632 6718Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angles (UCLA), Los Angeles, CA USA
| | - Denis Evseenko
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA 90033 USA
| |
Collapse
|
12
|
Bubb K, Holzer T, Nolte JL, Krüger M, Wilson R, Schlötzer-Schrehardt U, Brinckmann J, Altmüller J, Aszodi A, Fleischhauer L, Clausen-Schaumann H, Probst K, Brachvogel B. Mitochondrial respiratory chain function promotes extracellular matrix integrity in cartilage. J Biol Chem 2021; 297:101224. [PMID: 34560099 PMCID: PMC8503590 DOI: 10.1016/j.jbc.2021.101224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Energy metabolism and extracellular matrix (ECM) function together orchestrate and maintain tissue organization, but crosstalk between these processes is poorly understood. Here, we used single-cell RNA-Seq (scRNA-Seq) analysis to uncover the importance of the mitochondrial respiratory chain for ECM homeostasis in mature cartilage. This tissue produces large amounts of a specialized ECM to promote skeletal growth during development and maintain mobility throughout life. A combined approach of high-resolution scRNA-Seq, mass spectrometry/matrisome analysis, and atomic force microscopy was applied to mutant mice with cartilage-specific inactivation of respiratory chain function. This genetic inhibition in cartilage results in the expansion of a central area of 1-month-old mouse femur head cartilage, showing disorganized chondrocytes and increased deposition of ECM material. scRNA-Seq analysis identified a cell cluster-specific decrease in mitochondrial DNA-encoded respiratory chain genes and a unique regulation of ECM-related genes in nonarticular chondrocytes. These changes were associated with alterations in ECM composition, a shift in collagen/noncollagen protein content, and an increase of collagen crosslinking and ECM stiffness. These results demonstrate that mitochondrial respiratory chain dysfunction is a key factor that can promote ECM integrity and mechanostability in cartilage and presumably also in many other tissues.
Collapse
Affiliation(s)
- Kristina Bubb
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Tatjana Holzer
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Janica L Nolte
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Brinckmann
- Department of Dermatology, Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany; Berlin Institute of Health at Charité, Core Facility Genomics, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Attila Aszodi
- Department for Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Lutz Fleischhauer
- Department for Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany; Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Kristina Probst
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Nilsson Hall G, Rutten I, Lammertyn J, Eberhardt J, Geris L, Luyten FP, Papantoniou I. Cartilaginous spheroid-assembly design considerations for endochondral ossification: towards robotic-driven biomanufacturing. Biofabrication 2021; 13. [PMID: 34450613 DOI: 10.1088/1758-5090/ac2208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022]
Abstract
Spheroids have become essential building blocks for biofabrication of functional tissues. Spheroid formats allow high cell-densities to be efficiently engineered into tissue structures closely resembling the native tissues. In this work, we explore the assembly capacity of cartilaginous spheroids (d∼ 150µm) in the context of endochondral bone formation. The fusion capacity of spheroids at various degrees of differentiation was investigated and showed decreased kinetics as well as remodeling capacity with increased spheroid maturity. Subsequently, design considerations regarding the dimensions of engineered spheroid-based cartilaginous mesotissues were explored for the corresponding time points, defining critical dimensions for these type of tissues as they progressively mature. Next, mesotissue assemblies were implanted subcutaneously in order to investigate the influence of spheroid fusion parameters on endochondral ossification. Moreover, as a step towards industrialization, we demonstrated a novel automated image-guided robotics process, based on targeting and registering single-spheroids, covering the range of spheroid and mesotissue dimensions investigated in this work. This work highlights a robust and automated high-precision biomanufacturing roadmap for producing spheroid-based implants for bone regeneration.
Collapse
Affiliation(s)
- Gabriella Nilsson Hall
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000 Leuven, Belgium.,Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000 Leuven, Belgium
| | - Iene Rutten
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, Box 2428, 3001 Leuven, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Willem de Croylaan 42, Box 2428, 3001 Leuven, Belgium
| | | | - Liesbet Geris
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000 Leuven, Belgium.,GIGA in silico medicine, Université de Liège, Avenue de l'Hôpital 11-BAT 34, 4000 Liège 1, Belgium.,Biomechanics Section, KU Leuven, Celestijnenlaan 300C, PB 2419, 3001 Leuven, Belgium
| | - Frank P Luyten
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000 Leuven, Belgium.,Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000 Leuven, Belgium
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000 Leuven, Belgium.,Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000 Leuven, Belgium.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas, Stadiou 26504, Platani, Patras, Greece
| |
Collapse
|
14
|
Rauch A, Mandrup S. Transcriptional networks controlling stromal cell differentiation. Nat Rev Mol Cell Biol 2021; 22:465-482. [PMID: 33837369 DOI: 10.1038/s41580-021-00357-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 02/02/2023]
Abstract
Stromal progenitors are found in many different tissues, where they play an important role in the maintenance of tissue homeostasis owing to their ability to differentiate into parenchymal cells. These progenitor cells are differentially pre-programmed by their tissue microenvironment but, when cultured and stimulated in vitro, these cells - commonly referred to as mesenchymal stromal cells (MSCs) - exhibit a marked plasticity to differentiate into many different cell lineages. Loss-of-function studies in vitro and in vivo have uncovered the involvement of specific signalling pathways and key transcriptional regulators that work in a sequential and coordinated fashion to activate lineage-selective gene programmes. Recent advances in omics and single-cell technologies have made it possible to obtain system-wide insights into the gene regulatory networks that drive lineage determination and cell differentiation. These insights have important implications for the understanding of cell differentiation, the contribution of stromal cells to human disease and for the development of cell-based therapeutic applications.
Collapse
Affiliation(s)
- Alexander Rauch
- Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark. .,Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark.
| | - Susanne Mandrup
- Center for Functional Genomics and Tissue Plasticity, Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
15
|
Hall GN, Tam WL, Andrikopoulos KS, Casas-Fraile L, Voyiatzis GA, Geris L, Luyten FP, Papantoniou I. Patterned, organoid-based cartilaginous implants exhibit zone specific functionality forming osteochondral-like tissues in vivo. Biomaterials 2021; 273:120820. [PMID: 33872857 DOI: 10.1016/j.biomaterials.2021.120820] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022]
Abstract
Tissue engineered constructs have the potential to respond to the unmet medical need of treating deep osteochondral defects. However, current tissue engineering strategies struggle in the attempt to create patterned constructs with biologically distinct functionality. In this work, a developmentally-inspired modular approach is proposed, whereby distinct cartilaginous organoids are used as living building blocks. First, a hierarchical construct was created, composed of three layers of cartilaginous tissue intermediates derived from human periosteum-derived cells: (i) early (SOX9), (ii) mature (COL2) and (iii) (pre)hypertrophic (IHH, COLX) phenotype. Subcutaneous implantation in nude mice generated a hybrid tissue containing one mineralized and one non-mineralized part. However, the non-mineralized part was represented by a collagen type I positive fibrocartilage-like tissue. To engineer a more stable articular cartilage part, iPSC-derived cartilage microtissues (SOX9, COL2; IHH neg) were generated. Subcutaneous implantation of assembled iPSC-derived cartilage microtissues resulted in a homogenous cartilaginous tissue positive for collagen type II but negative for osteocalcin. Finally, iPSC-derived cartilage microtissues in combination with the pre-hypertrophic cartilage organoids (IHH, COLX) could form dual tissues consisting of i) a cartilaginous safranin O positive and ii) a bony osteocalcin positive region upon subcutaneous implantation, corresponding to the pre-engineered zonal pattern. The assembly of functional building blocks, as presented in this work, opens possibilities for the production of complex tissue engineered implants by embedding zone-specific functionality through the use of pre-programmed living building blocks.
Collapse
Affiliation(s)
- Gabriella Nilsson Hall
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
| | - Wai Long Tam
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
| | - Konstantinos S Andrikopoulos
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas, Stadiou, 26504, Platani, Patras, Greece; Department of Physics, University of Patras, GR-265 00, Rio-Patras, Greece
| | - Leire Casas-Fraile
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, Leuven, 3000, Belgium
| | - George A Voyiatzis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas, Stadiou, 26504, Platani, Patras, Greece
| | - Liesbet Geris
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium; GIGA in Silico Medicine, Université de Liège, Avenue de L'Hôpital 11 - BAT 34, 4000, Liège 1, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C, PB 2419, 3001, Leuven, Belgium
| | - Frank P Luyten
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium.
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium; Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas, Stadiou, 26504, Platani, Patras, Greece.
| |
Collapse
|
16
|
Le J, Zhongqun L, Zhaoyan W, Yijun S, Yingjin W, Yaojie W, Yanan J, Zhanrong J, Chunyang M, Fangli G, Nan X, Lingyun Z, Xiumei W, Qiong W, Xiong L, Xiaodan S. Development of methods for detecting the fate of mesenchymal stem cells regulated by bone bioactive materials. Bioact Mater 2021; 6:613-626. [PMID: 33005826 PMCID: PMC7508719 DOI: 10.1016/j.bioactmat.2020.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 01/07/2023] Open
Abstract
The fate of mesenchymal stem cells (MSCs) is regulated by biological, physical and chemical signals. Developments in biotechnology and materials science promoted the occurrence of bioactive materials which can provide physical and chemical signals for MSCs to regulate their fate. In order to design and synthesize materials that can precisely regulate the fate of MSCs, the relationship between the properties of materials and the fate of mesenchymal stem cells need to be clarified, in which the detection of the fate of mesenchymal stem cells plays an important role. In the past 30 years, a series of detection technologies have been developed to detect the fate of MSCs regulated by bioactive materials, among which high-throughput technology has shown great advantages due to its ability to detect large amounts of data at one time. In this review, the latest research progresses of detecting the fate of MSCs regulated by bone bioactive materials (BBMs) are systematically reviewed from traditional technology to high-throughput technology which is emphasized especially. Moreover, current problems and the future development direction of detection technologies of the MSCs fate regulated by BBMs are prospected. The aim of this review is to provide a detection technical framework for researchers to establish the relationship between the properties of BMMs and the fate of MSCs, so as to help researchers to design and synthesize BBMs better which can precisely regulate the fate of MSCs.
Collapse
Affiliation(s)
- Jiang Le
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Liu Zhongqun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wang Zhaoyan
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, People's Republic of China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, People's Republic of China
- School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Su Yijun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wang Yingjin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wei Yaojie
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jiang Yanan
- Key Lab of Advanced Technologies of Materials of Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Jia Zhanrong
- Key Lab of Advanced Technologies of Materials of Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Ma Chunyang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Gang Fangli
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xu Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zhao Lingyun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wang Xiumei
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wu Qiong
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, People's Republic of China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, People's Republic of China
- School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Lu Xiong
- Key Lab of Advanced Technologies of Materials of Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Sun Xiaodan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
17
|
Smeeton J, Natarajan N, Naveen Kumar A, Miyashita T, Baddam P, Fabian P, Graf D, Crump JG. Zebrafish model for spondylo-megaepiphyseal-metaphyseal dysplasia reveals post-embryonic roles of Nkx3.2 in the skeleton. Development 2021; 148:dev193409. [PMID: 33462117 PMCID: PMC7860120 DOI: 10.1242/dev.193409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/31/2020] [Indexed: 01/10/2023]
Abstract
The regulated expansion of chondrocytes within growth plates and joints ensures proper skeletal development through adulthood. Mutations in the transcription factor NKX3.2 underlie spondylo-megaepiphyseal-metaphyseal dysplasia (SMMD), which is characterized by skeletal defects including scoliosis, large epiphyses, wide growth plates and supernumerary distal limb joints. Whereas nkx3.2 knockdown zebrafish and mouse Nkx3.2 mutants display embryonic lethal jaw joint fusions and skeletal reductions, respectively, they lack the skeletal overgrowth seen in SMMD patients. Here, we report adult viable nkx3.2 mutant zebrafish displaying cartilage overgrowth in place of a missing jaw joint, as well as severe dysmorphologies of the facial skeleton, skullcap and spine. In contrast, cartilage overgrowth and scoliosis are absent in rare viable nkx3.2 knockdown animals that lack jaw joints, supporting post-embryonic roles for Nkx3.2. Single-cell RNA-sequencing and in vivo validation reveal increased proliferation and upregulation of stress-induced pathways, including prostaglandin synthases, in mutant chondrocytes. By generating a zebrafish model for the skeletal overgrowth defects of SMMD, we reveal post-embryonic roles for Nkx3.2 in dampening proliferation and buffering the stress response in joint-associated chondrocytes.
Collapse
Affiliation(s)
- Joanna Smeeton
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Natasha Natarajan
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Arati Naveen Kumar
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tetsuto Miyashita
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Pranidhi Baddam
- Department of Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Peter Fabian
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Daniel Graf
- Department of Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
18
|
Inference of Networks from Large Datasets. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
An Introduction to Single-Cell RNA-Seq Analysis and its Applications. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Vanyai HK, Prin F, Guillermin O, Marzook B, Boeing S, Howson A, Saunders RE, Snoeks T, Howell M, Mohun TJ, Thompson B. Control of skeletal morphogenesis by the Hippo-YAP/TAZ pathway. Development 2020; 147:dev187187. [PMID: 32994166 PMCID: PMC7673359 DOI: 10.1242/dev.187187] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
The Hippo-YAP/TAZ pathway is an important regulator of tissue growth, but can also control cell fate or tissue morphogenesis. Here, we investigate the function of the Hippo pathway during the development of cartilage, which forms the majority of the skeleton. Previously, YAP was proposed to inhibit skeletal size by repressing chondrocyte proliferation and differentiation. We find that, in vitro, Yap/Taz double knockout impairs murine chondrocyte proliferation, whereas constitutively nuclear nls-YAP5SA accelerates proliferation, in line with the canonical role of this pathway in most tissues. However, in vivo, cartilage-specific knockout of Yap/Taz does not prevent chondrocyte proliferation, differentiation or skeletal growth, but rather results in various skeletal deformities including cleft palate. Cartilage-specific expression of nls-YAP5SA or knockout of Lats1/2 do not increase cartilage growth, but instead lead to catastrophic malformations resembling chondrodysplasia or achondrogenesis. Physiological YAP target genes in cartilage include Ctgf, Cyr61 and several matrix remodelling enzymes. Thus, YAP/TAZ activity controls chondrocyte proliferation in vitro, possibly reflecting a regenerative response, but is dispensable for chondrocyte proliferation in vivo, and instead functions to control cartilage morphogenesis via regulation of the extracellular matrix.
Collapse
Affiliation(s)
- Hannah K Vanyai
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Fabrice Prin
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Oriane Guillermin
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Bishara Marzook
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Stefan Boeing
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Alexander Howson
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Rebecca E Saunders
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Thomas Snoeks
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Michael Howell
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Timothy J Mohun
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
| | - Barry Thompson
- The Francis Crick Institute, 1 Midland Rd, St Pancras, NW1 1AT London, UK
- EMBL Australia, Department of Cancer Biology & Therapeutics, The John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, 2601, Canberra, Australia
| |
Collapse
|
21
|
Panina Y, Karagiannis P, Kurtz A, Stacey GN, Fujibuchi W. Human Cell Atlas and cell-type authentication for regenerative medicine. Exp Mol Med 2020; 52:1443-1451. [PMID: 32929224 PMCID: PMC8080834 DOI: 10.1038/s12276-020-0421-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
In modern biology, the correct identification of cell types is required for the developmental study of tissues and organs and the production of functional cells for cell therapies and disease modeling. For decades, cell types have been defined on the basis of morphological and physiological markers and, more recently, immunological markers and molecular properties. Recent advances in single-cell RNA sequencing have opened new doors for the characterization of cells at the individual and spatiotemporal levels on the basis of their RNA profiles, vastly transforming our understanding of cell types. The objective of this review is to survey the current progress in the field of cell-type identification, starting with the Human Cell Atlas project, which aims to sequence every cell in the human body, to molecular marker databases for individual cell types and other sources that address cell-type identification for regenerative medicine based on cell data guidelines.
Collapse
Affiliation(s)
- Yulia Panina
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Peter Karagiannis
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Andreas Kurtz
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, Herts, SG88HZ, UK
- National Stem Cell Resource Centre, Institute of Zoology, Chinese Academy of Sciences, 100190, Beijing, China
- Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wataru Fujibuchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
22
|
Efremova M, Vento-Tormo R, Park JE, Teichmann SA, James KR. Immunology in the Era of Single-Cell Technologies. Annu Rev Immunol 2020; 38:727-757. [PMID: 32075461 DOI: 10.1146/annurev-immunol-090419-020340] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immune cells are characterized by diversity, specificity, plasticity, and adaptability-properties that enable them to contribute to homeostasis and respond specifically and dynamically to the many threats encountered by the body. Single-cell technologies, including the assessment of transcriptomics, genomics, and proteomics at the level of individual cells, are ideally suited to studying these properties of immune cells. In this review we discuss the benefits of adopting single-cell approaches in studying underappreciated qualities of immune cells and highlight examples where these technologies have been critical to advancing our understanding of the immune system in health and disease.
Collapse
Affiliation(s)
- Mirjana Efremova
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom; ,
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom; ,
| | - Jong-Eun Park
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom; ,
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom; , .,Theory of Condensed Matter, Department of Physics, University of Cambridge, Cambridgeshire CB3 0HE, United Kingdom.,European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Kylie R James
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom; ,
| |
Collapse
|
23
|
Nilsson Hall G, Mendes LF, Gklava C, Geris L, Luyten FP, Papantoniou I. Developmentally Engineered Callus Organoid Bioassemblies Exhibit Predictive In Vivo Long Bone Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902295. [PMID: 31993293 PMCID: PMC6974953 DOI: 10.1002/advs.201902295] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/18/2019] [Indexed: 05/17/2023]
Abstract
Clinical translation of cell-based products is hampered by their limited predictive in vivo performance. To overcome this hurdle, engineering strategies advocate to fabricate tissue products through processes that mimic development and regeneration, a strategy applicable for the healing of large bone defects, an unmet medical need. Natural fracture healing occurs through the formation of a cartilage intermediate, termed "soft callus," which is transformed into bone following a process that recapitulates developmental events. The main contributors to the soft callus are cells derived from the periosteum, containing potent skeletal stem cells. Herein, cells derived from human periosteum are used for the scalable production of microspheroids that are differentiated into callus organoids. The organoids attain autonomy and exhibit the capacity to form ectopic bone microorgans in vivo. This potency is linked to specific gene signatures mimicking those found in developing and healing long bones. Furthermore, callus organoids spontaneously bioassemble in vitro into large engineered tissues able to heal murine critical-sized long bone defects. The regenerated bone exhibits similar morphological properties to those of native tibia. These callus organoids can be viewed as a living "bio-ink" allowing bottom-up manufacturing of multimodular tissues with complex geometric features and inbuilt quality attributes.
Collapse
Affiliation(s)
- Gabriella Nilsson Hall
- Prometheus Division of Skeletal Tissue EngineeringSkeletal Biology and Engineering Research CenterDepartment of Development and RegenerationKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
| | - Luís Freitas Mendes
- Prometheus Division of Skeletal Tissue EngineeringSkeletal Biology and Engineering Research CenterDepartment of Development and RegenerationKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
| | - Charikleia Gklava
- Prometheus Division of Skeletal Tissue EngineeringSkeletal Biology and Engineering Research CenterDepartment of Development and RegenerationKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
| | - Liesbet Geris
- Prometheus Division of Skeletal Tissue EngineeringKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
- GIGA In Silico MedicineUniversité de LiègeAvenue de l'Hôpital 11—BAT 344000Liège 1Belgium
- Biomechanics SectionKU LeuvenCelestijnenlaan 300C, PB 24193001LeuvenBelgium
| | - Frank P. Luyten
- Prometheus Division of Skeletal Tissue EngineeringSkeletal Biology and Engineering Research CenterDepartment of Development and RegenerationKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue EngineeringSkeletal Biology and Engineering Research CenterDepartment of Development and RegenerationKU LeuvenO&N1, Herestraat 49, PB 8133000LeuvenBelgium
- Present address:
Institute of Chemical Engineering Sciences (ICE‐HT)Foundation for Research and TechnologyHellas (FORTH)Stadiou St.Platani26504PatrasGreece
| |
Collapse
|
24
|
Hojo H, Ohba S. Insights into Gene Regulatory Networks in Chondrocytes. Int J Mol Sci 2019; 20:ijms20246324. [PMID: 31847446 PMCID: PMC6940734 DOI: 10.3390/ijms20246324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
Chondrogenesis is a key developmental process that molds the framework of our body and generates the skeletal tissues by coupling with osteogenesis. The developmental processes are well-coordinated by spatiotemporal gene expressions, which are hardwired with gene regulatory elements. Those elements exist as thousands of modules of DNA sequences on the genome. Transcription factors function as key regulatory proteins by binding to regulatory elements and recruiting cofactors. Over the past 30 years, extensive attempts have been made to identify gene regulatory mechanisms in chondrogenesis, mainly through biochemical approaches and genetics. More recently, newly developed next-generation sequencers (NGS) have identified thousands of gene regulatory elements on a genome scale, and provided novel insights into the multiple layers of gene regulatory mechanisms, including the modes of actions of transcription factors, post-translational histone modifications, chromatin accessibility, the concept of pioneer factors, and three-dimensional chromatin architecture. In this review, we summarize the studies that have improved our understanding of the gene regulatory mechanisms in chondrogenesis, from the historical studies to the more recent works using NGS. Finally, we consider the future perspectives, including efforts to improve our understanding of the gene regulatory landscape in chondrogenesis and potential applications to the treatment of chondrocyte-related diseases.
Collapse
Affiliation(s)
- Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
- Correspondence: ; Tel.: +81-95-819-7630
| |
Collapse
|
25
|
Mori T, Takaoka H, Yamane J, Alev C, Fujibuchi W. Novel computational model of gastrula morphogenesis to identify spatial discriminator genes by self-organizing map (SOM) clustering. Sci Rep 2019; 9:12597. [PMID: 31467377 PMCID: PMC6715814 DOI: 10.1038/s41598-019-49031-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/12/2019] [Indexed: 02/08/2023] Open
Abstract
Deciphering the key mechanisms of morphogenesis during embryonic development is crucial to understanding the guiding principles of the body plan and promote applications in biomedical research fields. Although several computational tissue reconstruction methods using cellular gene expression data have been proposed, those methods are insufficient with regard to arranging cells in their correct positions in tissues or organs unless spatial information is explicitly provided. Here, we report SPRESSO, a new in silico three-dimensional (3D) tissue reconstruction method using stochastic self-organizing map (stochastic-SOM) clustering, to estimate the spatial domains of cells in tissues or organs from only their gene expression profiles. With only five gene sets defined by Gene Ontology (GO), we successfully demonstrated the reconstruction of a four-domain structure of mid-gastrula mouse embryo (E7.0) with high reproducibility (success rate = 99%). Interestingly, the five GOs contain 20 genes, most of which are related to differentiation and morphogenesis, such as activin A receptor and Wnt family member genes. Further analysis indicated that Id2 is the most influential gene contributing to the reconstruction. SPRESSO may provide novel and better insights on the mechanisms of 3D structure formation of living tissues via informative genes playing a role as spatial discriminators.
Collapse
Affiliation(s)
- Tomoya Mori
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Haruka Takaoka
- Department of Life Science and Informatics, Faculty of Engineering, Maebashi Institute of Technology, 460-1 Kamisadori, Maebashi City, Gunma, 371-0816, Japan
| | - Junko Yamane
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Cantas Alev
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Wataru Fujibuchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
26
|
Tam WL, Luyten FP, Roberts SJ. From skeletal development to the creation of pluripotent stem cell-derived bone-forming progenitors. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0218. [PMID: 29786553 DOI: 10.1098/rstb.2017.0218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2017] [Indexed: 02/06/2023] Open
Abstract
Bone has many functions. It is responsible for protecting the underlying soft organs, it allows locomotion, houses the bone marrow and stores minerals such as calcium and phosphate. Upon damage, bone tissue can efficiently repair itself. However, healing is hampered if the defect exceeds a critical size and/or is in compromised conditions. The isolation or generation of bone-forming progenitors has applicability to skeletal repair and may be used in tissue engineering approaches. Traditionally, bone engineering uses osteochondrogenic stem cells, which are combined with scaffold materials and growth factors. Despite promising preclinical data, limited translation towards the clinic has been observed to date. There may be several reasons for this including the lack of robust cell populations with favourable proliferative and differentiation capacities. However, perhaps the most pertinent reason is the failure to produce an implant that can replicate the developmental programme that is observed during skeletal repair. Pluripotent stem cells (PSCs) can potentially offer a solution for bone tissue engineering by providing unlimited cell sources at various stages of differentiation. In this review, we summarize key embryonic signalling pathways in bone formation coupled with PSC differentiation strategies for the derivation of bone-forming progenitors.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- Wai Long Tam
- Laboratory for Developmental and Stem Cell Biology (DSB), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, Herestraat 49 Box 813, 3000 Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 bus 813, 3000 Leuven, Belgium
| | - Frank P Luyten
- Laboratory for Developmental and Stem Cell Biology (DSB), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, Herestraat 49 Box 813, 3000 Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 bus 813, 3000 Leuven, Belgium
| | - Scott J Roberts
- Laboratory for Developmental and Stem Cell Biology (DSB), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, Herestraat 49 Box 813, 3000 Leuven, Belgium .,Bone Therapeutic Area, UCB Pharma, 208 Bath Road, Slough, Berkshire SL1 3WE, UK
| |
Collapse
|
27
|
Campbell KR, Yau C. A descriptive marker gene approach to single-cell pseudotime inference. Bioinformatics 2019; 35:28-35. [PMID: 29939207 PMCID: PMC6298060 DOI: 10.1093/bioinformatics/bty498] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/05/2018] [Accepted: 06/20/2018] [Indexed: 12/25/2022] Open
Abstract
Motivation Pseudotime estimation from single-cell gene expression data allows the recovery of temporal information from otherwise static profiles of individual cells. Conventional pseudotime inference methods emphasize an unsupervised transcriptome-wide approach and use retrospective analysis to evaluate the behaviour of individual genes. However, the resulting trajectories can only be understood in terms of abstract geometric structures and not in terms of interpretable models of gene behaviour. Results Here we introduce an orthogonal Bayesian approach termed 'Ouija' that learns pseudotimes from a small set of marker genes that might ordinarily be used to retrospectively confirm the accuracy of unsupervised pseudotime algorithms. Crucially, we model these genes in terms of switch-like or transient behaviour along the trajectory, allowing us to understand why the pseudotimes have been inferred and learn informative parameters about the behaviour of each gene. Since each gene is associated with a switch or peak time the genes are effectively ordered along with the cells, allowing each part of the trajectory to be understood in terms of the behaviour of certain genes. We demonstrate that this small panel of marker genes can recover pseudotimes that are consistent with those obtained using the entire transcriptome. Furthermore, we show that our method can detect differences in the regulation timings between two genes and identify 'metastable' states-discrete cell types along the continuous trajectories-that recapitulate known cell types. Availability and implementation An open source implementation is available as an R package at http://www.github.com/kieranrcampbell/ouija and as a Python/TensorFlow package at http://www.github.com/kieranrcampbell/ouijaflow. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kieran R Campbell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics University of Oxford, Oxford, UK
| | - Christopher Yau
- Wellcome Trust Centre for Human Genetics University of Oxford, Oxford, UK
- Department of Statistics, University of Oxford, Oxford, UK
- Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, UK
| |
Collapse
|
28
|
Lesage R, Kerkhofs J, Geris L. Computational Modeling and Reverse Engineering to Reveal Dominant Regulatory Interactions Controlling Osteochondral Differentiation: Potential for Regenerative Medicine. Front Bioeng Biotechnol 2018; 6:165. [PMID: 30483498 PMCID: PMC6243751 DOI: 10.3389/fbioe.2018.00165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/22/2018] [Indexed: 01/11/2023] Open
Abstract
The specialization of cartilage cells, or chondrogenic differentiation, is an intricate and meticulously regulated process that plays a vital role in both bone formation and cartilage regeneration. Understanding the molecular regulation of this process might help to identify key regulatory factors that can serve as potential therapeutic targets, or that might improve the development of qualitative and robust skeletal tissue engineering approaches. However, each gene involved in this process is influenced by a myriad of feedback mechanisms that keep its expression in a desirable range, making the prediction of what will happen if one of these genes defaults or is targeted with drugs, challenging. Computer modeling provides a tool to simulate this intricate interplay from a network perspective. This paper aims to give an overview of the current methodologies employed to analyze cell differentiation in the context of skeletal tissue engineering in general and osteochondral differentiation in particular. In network modeling, a network can either be derived from mechanisms and pathways that have been reported in the literature (knowledge-based approach) or it can be inferred directly from the data (data-driven approach). Combinatory approaches allow further optimization of the network. Once a network is established, several modeling technologies are available to interpret dynamically the relationships that have been put forward in the network graph (implication of the activation or inhibition of certain pathways on the evolution of the system over time) and to simulate the possible outcomes of the established network such as a given cell state. This review provides for each of the aforementioned steps (building, optimizing, and modeling the network) a brief theoretical perspective, followed by a concise overview of published works, focusing solely on applications related to cell fate decisions, cartilage differentiation and growth plate biology. Particular attention is paid to an in-house developed example of gene regulatory network modeling of growth plate chondrocyte differentiation as all the aforementioned steps can be illustrated. In summary, this paper discusses and explores a series of tools that form a first step toward a rigorous and systems-level modeling of osteochondral differentiation in the context of regenerative medicine.
Collapse
Affiliation(s)
- Raphaelle Lesage
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium.,Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Johan Kerkhofs
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium.,Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium.,Biomechanics Section, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, GIGA in silico Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
29
|
Tsushima H, Tang YJ, Puviindran V, Hsu SHC, Nadesan P, Yu C, Zhang H, Mirando AJ, Hilton MJ, Alman BA. Intracellular biosynthesis of lipids and cholesterol by Scap and Insig in mesenchymal cells regulates long bone growth and chondrocyte homeostasis. Development 2018; 145:dev.162396. [PMID: 29899135 PMCID: PMC6053657 DOI: 10.1242/dev.162396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/01/2018] [Indexed: 01/12/2023]
Abstract
During enchondral ossification, mesenchymal cells express genes regulating the intracellular biosynthesis of cholesterol and lipids. Here, we have investigated conditional deletion of Scap or of Insig1 and Insig2 (Scap inhibits intracellular biosynthesis and Insig proteins activate intracellular biosynthesis). Mesenchymal condensation and chondrogenesis was disrupted in mice lacking Scap in mesenchymal progenitors, whereas mice lacking the Insig genes in mesenchymal progenitors had short limbs, but normal chondrogenesis. Mice lacking Scap in chondrocytes showed severe dwarfism, with ectopic hypertrophic cells, whereas deletion of Insig genes in chondrocytes caused a mild dwarfism and shortening of the hypertrophic zone. In vitro studies showed that intracellular cholesterol in chondrocytes can derive from exogenous and endogenous sources, but that exogenous sources cannot completely overcome the phenotypic effect of Scap deficiency. Genes encoding cholesterol biosynthetic proteins are regulated by Hedgehog (Hh) signaling, and Hh signaling is also regulated by intracellular cholesterol in chondrocytes, suggesting a feedback loop in chondrocyte differentiation. Precise regulation of intracellular biosynthesis is required for chondrocyte homeostasis and long bone growth, and these data support pharmacological modulation of cholesterol biosynthesis as a therapy for select cartilage pathologies. Summary: Conditional deletion of genes that regulate intracellular cholesterol biosynthesis in mesenchymal cells or chondrocytes shows that precise regulation of biosynthesis is required for chondrocyte homeostasis and long bone growth.
Collapse
Affiliation(s)
- Hidetoshi Tsushima
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Yuning J Tang
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Vijitha Puviindran
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Shu-Hsuan Claire Hsu
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Puviindran Nadesan
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Chunying Yu
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Hongyuan Zhang
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Anthony J Mirando
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Matthew J Hilton
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| | - Benjamin A Alman
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC 27710, USA
| |
Collapse
|
30
|
Fiers MWEJ, Minnoye L, Aibar S, Bravo González-Blas C, Kalender Atak Z, Aerts S. Mapping gene regulatory networks from single-cell omics data. Brief Funct Genomics 2018; 17:246-254. [PMID: 29342231 PMCID: PMC6063279 DOI: 10.1093/bfgp/elx046] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Single-cell techniques are advancing rapidly and are yielding unprecedented insight into cellular heterogeneity. Mapping the gene regulatory networks (GRNs) underlying cell states provides attractive opportunities to mechanistically understand this heterogeneity. In this review, we discuss recently emerging methods to map GRNs from single-cell transcriptomics data, tackling the challenge of increased noise levels and data sparsity compared with bulk data, alongside increasing data volumes. Next, we discuss how new techniques for single-cell epigenomics, such as single-cell ATAC-seq and single-cell DNA methylation profiling, can be used to decipher gene regulatory programmes. We finally look forward to the application of single-cell multi-omics and perturbation techniques that will likely play important roles for GRN inference in the future.
Collapse
Affiliation(s)
- Mark W E J Fiers
- VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium
| | - Liesbeth Minnoye
- VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Sara Aibar
- VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Carmen Bravo González-Blas
- VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Zeynep Kalender Atak
- VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Stein Aerts
- VIB Center for Brain & Disease Research, Laboratory of Computational Biology, Leuven, Belgium
- KU Leuven, Department of Human Genetics, Leuven, Belgium
| |
Collapse
|
31
|
Tan Z, Niu B, Tsang KY, Melhado IG, Ohba S, He X, Huang Y, Wang C, McMahon AP, Jauch R, Chan D, Zhang MQ, Cheah KSE. Synergistic co-regulation and competition by a SOX9-GLI-FOXA phasic transcriptional network coordinate chondrocyte differentiation transitions. PLoS Genet 2018; 14:e1007346. [PMID: 29659575 PMCID: PMC5919691 DOI: 10.1371/journal.pgen.1007346] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/26/2018] [Accepted: 03/29/2018] [Indexed: 11/18/2022] Open
Abstract
The growth plate mediates bone growth where SOX9 and GLI factors control chondrocyte proliferation, differentiation and entry into hypertrophy. FOXA factors regulate hypertrophic chondrocyte maturation. How these factors integrate into a Gene Regulatory Network (GRN) controlling these differentiation transitions is incompletely understood. We adopted a genome-wide whole tissue approach to establish a Growth Plate Differential Gene Expression Library (GP-DGEL) for fractionated proliferating, pre-hypertrophic, early and late hypertrophic chondrocytes, as an overarching resource for discovery of pathways and disease candidates. De novo motif discovery revealed the enrichment of SOX9 and GLI binding sites in the genes preferentially expressed in proliferating and prehypertrophic chondrocytes, suggesting the potential cooperation between SOX9 and GLI proteins. We integrated the analyses of the transcriptome, SOX9, GLI1 and GLI3 ChIP-seq datasets, with functional validation by transactivation assays and mouse mutants. We identified new SOX9 targets and showed SOX9-GLI directly and cooperatively regulate many genes such as Trps1, Sox9, Sox5, Sox6, Col2a1, Ptch1, Gli1 and Gli2. Further, FOXA2 competes with SOX9 for the transactivation of target genes. The data support a model of SOX9-GLI-FOXA phasic GRN in chondrocyte development. Together, SOX9-GLI auto-regulate and cooperate to activate and repress genes in proliferating chondrocytes. Upon hypertrophy, FOXA competes with SOX9, and control toward terminal differentiation passes to FOXA, RUNX, AP1 and MEF2 factors. In the development of the mammalian growth plate, while several transcription factors are individually well known for their key roles in regulating phases of chondrocyte differentiation, there is little information on how they interact and cooperate with each other. We took an unbiased genome wide approach to identify the transcription factors and signaling pathways that play dominant roles in the chondrocyte differentiation cascade. We developed a searchable library of differentially expressed genes, GP-DGEL, which has fine spatial resolution and global transcriptomic coverage for discovery of processes, pathways and disease candidates. Our work identifies a novel regulatory mechanism that integrates the action of three transcription factors, SOX9, GLI and FOXA. SOX9-GLI auto-regulate and cooperate to activate and repress genes in proliferating chondrocytes. Upon entry into prehypertrophy, FOXA competes with SOX9, and control of hypertrophy passes to FOXA, RUNX, AP1 and MEF2 factors.
Collapse
Affiliation(s)
- Zhijia Tan
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Ben Niu
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Kwok Yeung Tsang
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Ian G. Melhado
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Shinsuke Ohba
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Xinjun He
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Yongheng Huang
- Genome Regulation Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Cheng Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Ralf Jauch
- Genome Regulation Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Danny Chan
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Michael Q. Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Dallas, Texas, United States of America
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing, China
| | - Kathryn S. E. Cheah
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
- * E-mail:
| |
Collapse
|
32
|
Matsumoto H, Kiryu H, Furusawa C, Ko MSH, Ko SBH, Gouda N, Hayashi T, Nikaido I. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics 2018; 33:2314-2321. [PMID: 28379368 PMCID: PMC5860123 DOI: 10.1093/bioinformatics/btx194] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/02/2017] [Indexed: 01/17/2023] Open
Abstract
Motivation The analysis of RNA-Seq data from individual differentiating cells enables us to reconstruct the differentiation process and the degree of differentiation (in pseudo-time) of each cell. Such analyses can reveal detailed expression dynamics and functional relationships for differentiation. To further elucidate differentiation processes, more insight into gene regulatory networks is required. The pseudo-time can be regarded as time information and, therefore, single-cell RNA-Seq data are time-course data with high time resolution. Although time-course data are useful for inferring networks, conventional inference algorithms for such data suffer from high time complexity when the number of samples and genes is large. Therefore, a novel algorithm is necessary to infer networks from single-cell RNA-Seq during differentiation. Results In this study, we developed the novel and efficient algorithm SCODE to infer regulatory networks, based on ordinary differential equations. We applied SCODE to three single-cell RNA-Seq datasets and confirmed that SCODE can reconstruct observed expression dynamics. We evaluated SCODE by comparing its inferred networks with use of a DNaseI-footprint based network. The performance of SCODE was best for two of the datasets and nearly best for the remaining dataset. We also compared the runtimes and showed that the runtimes for SCODE are significantly shorter than for alternatives. Thus, our algorithm provides a promising approach for further single-cell differentiation analyses. Availability and Implementation The R source code of SCODE is available at https://github.com/hmatsu1226/SCODE Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hirotaka Matsumoto
- Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako, Saitama 351-0198, Japan
| | - Hisanori Kiryu
- Department of Computational Biology and Medical Sciences, Faculty of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Chikara Furusawa
- Quantitative Biology Center (QBiC), RIKEN, Suita, Osaka 565-0874, Japan.,Universal Biology Institute, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Minoru S H Ko
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shigeru B H Ko
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Norio Gouda
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tetsutaro Hayashi
- Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako, Saitama 351-0198, Japan
| | - Itoshi Nikaido
- Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
33
|
Zhang YJ, Chen X, Li G, Chan KM, Heng BC, Yin Z, Ouyang HW. Concise Review: Stem Cell Fate Guided By Bioactive Molecules for Tendon Regeneration. Stem Cells Transl Med 2018; 7:404-414. [PMID: 29573225 PMCID: PMC5905226 DOI: 10.1002/sctm.17-0206] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
Tendon disorders, which are commonly presented in the clinical setting, disrupt the patients' normal work and life routines, and they damage the careers of athletes. However, there is still no effective treatment for tendon disorders. In the field of tissue engineering, the potential of the therapeutic application of exogenous stem cells to treat tendon pathology has been demonstrated to be promising. With the development of stem cell biology and chemical biology, strategies that use inductive tenogenic factors to program stem cell fate in situ are the most easily and readily translatable to clinical applications. In this review, we focus on bioactive molecules that can potentially induce tenogenesis in adult stem cells, and we summarize the various differentiation factors found in comparative studies. Moreover, we discuss the molecular regulatory mechanisms of tenogenesis, and we examine the various challenges in developing standardized protocols for achieving efficient and reproducible tenogenesis. Finally, we discuss and predict future directions for tendon regeneration. Stem Cells Translational Medicine 2018;7:404-414.
Collapse
Affiliation(s)
- Yan-Jie Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China
| | - Gang Li
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China.,Faculty of Medicine, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China
| | - Kai-Ming Chan
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Faculty of Medicine, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China
| | - Boon Chin Heng
- Faculty of Dentistry, Department of Endodontology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China.,Faculty of Medicine, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China
| | - Hong-Wei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China
| |
Collapse
|
34
|
Li IMH, Liu K, Neal A, Clegg PD, De Val S, Bou-Gharios G. Differential tissue specific, temporal and spatial expression patterns of the Aggrecan gene is modulated by independent enhancer elements. Sci Rep 2018; 8:950. [PMID: 29343853 PMCID: PMC5772622 DOI: 10.1038/s41598-018-19186-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023] Open
Abstract
The transcriptional mechanism through which chondrocytes control the spatial and temporal composition of the cartilage tissue has remained largely elusive. The central aim of this study was to identify whether transcriptional enhancers played a role in the organisation of the chondrocytes in cartilaginous tissue. We focused on the Aggrecan gene (Acan) as it is essential for the normal structure and function of cartilage and it is expressed developmentally in different stages of chondrocyte maturation. Using transgenic reporter studies in mice we identified four elements, two of which showed individual chondrocyte developmental stage specificity. In particular, one enhancer (-80) distinguishes itself from the others by being predominantly active in adult cartilage. Furthermore, the -62 element uniquely drove reporter activity in early chondrocytes. The remaining chondrocyte specific enhancers, +28 and -30, showed no preference to chondrocyte type. The transcription factor SOX9 interacted with all the enhancers in vitro and mutation of SOX9 binding sites in one of the enhancers (-30) resulted in a loss of its chondrocyte specificity and ectopic enhancer reporter activity. Thus, the Acan enhancers orchestrate the precise spatiotemporal expression of this gene in cartilage types at different stages of development and adulthood.
Collapse
Affiliation(s)
- Ian M H Li
- Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Liverpool, L7 8TX, UK
| | - Ke Liu
- Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Liverpool, L7 8TX, UK
| | - Alice Neal
- Ludwig Cancer Research Ltd, University of Oxford, Oxford, UK
| | - Peter D Clegg
- Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Liverpool, L7 8TX, UK
| | - Sarah De Val
- Ludwig Cancer Research Ltd, University of Oxford, Oxford, UK
| | - George Bou-Gharios
- Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Liverpool, L7 8TX, UK.
| |
Collapse
|
35
|
Velazquez JJ, Su E, Cahan P, Ebrahimkhani MR. Programming Morphogenesis through Systems and Synthetic Biology. Trends Biotechnol 2017; 36:415-429. [PMID: 29229492 DOI: 10.1016/j.tibtech.2017.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 01/07/2023]
Abstract
Mammalian tissue development is an intricate, spatiotemporal process of self-organization that emerges from gene regulatory networks of differentiating stem cells. A major goal in stem cell biology is to gain a sufficient understanding of gene regulatory networks and cell-cell interactions to enable the reliable and robust engineering of morphogenesis. Here, we review advances in synthetic biology, single cell genomics, and multiscale modeling, which, when synthesized, provide a framework to achieve the ambitious goal of programming morphogenesis in complex tissues and organoids.
Collapse
Affiliation(s)
- Jeremy J Velazquez
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA; Authors contributed equally
| | - Emily Su
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Authors contributed equally
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Mo R Ebrahimkhani
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA; Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Phoenix, AZ, USA.
| |
Collapse
|
36
|
Kumar P, Tan Y, Cahan P. Understanding development and stem cells using single cell-based analyses of gene expression. Development 2017; 144:17-32. [PMID: 28049689 DOI: 10.1242/dev.133058] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In recent years, genome-wide profiling approaches have begun to uncover the molecular programs that drive developmental processes. In particular, technical advances that enable genome-wide profiling of thousands of individual cells have provided the tantalizing prospect of cataloging cell type diversity and developmental dynamics in a quantitative and comprehensive manner. Here, we review how single-cell RNA sequencing has provided key insights into mammalian developmental and stem cell biology, emphasizing the analytical approaches that are specific to studying gene expression in single cells.
Collapse
Affiliation(s)
- Pavithra Kumar
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yuqi Tan
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
37
|
Hojo H, Chung UI, Ohba S. Identification of the gene-regulatory landscape in skeletal development and potential links to skeletal regeneration. Regen Ther 2017; 6:100-107. [PMID: 30271844 PMCID: PMC6134913 DOI: 10.1016/j.reth.2017.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
A class of gene-regulatory elements called enhancers are the main mediators controlling quantitative, temporal and spatial gene expressions. In the course of evolution, the enhancer landscape of higher organisms such as mammals has become quite complex, exerting biological functions precisely and coordinately. In mammalian skeletal development, the master transcription factors Sox9, Runx2 and Sp7/Osterix function primarily through enhancers on the genome to achieve specification and differentiation of skeletal cells. Recently developed genome-scale analyses have shed light on multiple layers of gene regulations, uncovering not only the primary mode of actions of these transcription factors on skeletal enhancers, but also the relation of the epigenetic landscape to three-dimensional chromatin architecture. Here, we review findings on the emerging framework of gene-regulatory networks involved in skeletal development. We further discuss the power of genome-scale analyses to provide new insights into genetic diseases and regenerative medicine in skeletal tissues. Skeletal development is coordinated by master transcription factors. ChIP-seq analyses for the skeletal regulators identified their modes of actions. Analyses of epigenetic landscape features distinct cell types in skeletal tissues. Integrated analyses of the gene regulatory networks link to skeletal regeneration.
Collapse
Affiliation(s)
- Hironori Hojo
- Department of Bioengineering, The University of Tokyo Graduate School of Engineering, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ung-Il Chung
- Department of Bioengineering, The University of Tokyo Graduate School of Engineering, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Ohba
- Department of Bioengineering, The University of Tokyo Graduate School of Engineering, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
38
|
Abstract
Hematopoiesis is probably the best-understood stem cell differentiation system; hematopoietic stem cell (HSC) transplantation represents the most widely used regenerative therapy. The classical view of lineage hierarchy in hematopoiesis is built on cell type definition system by a group of cell surface markers. However, the traditional model is facing increasing challenges, as many classical cell types are proved to be heterogeneous. Recently, the developments of new technologies allow genome, transcriptome, proteome, and epigenome analysis at the single-cell level. For the first time, we can study hematopoietic system at single-cell resolution on a multi-omic scale. Here, we review recent technical advances in single-cell analysis technology, as well as their current applications. We will also discuss the impact of single-cell technologies on both basic research and clinical application in hematology.
Collapse
|
39
|
An Emerging Regulatory Landscape for Skeletal Development. Trends Genet 2016; 32:774-787. [PMID: 27814929 DOI: 10.1016/j.tig.2016.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/21/2016] [Accepted: 10/04/2016] [Indexed: 02/02/2023]
Abstract
Skeletal development creates the physical framework that shapes our body and its actions. In the past two decades, genetic studies have provided important insights into the molecular processes at play, including the roles of signaling pathways and transcriptional effectors that coordinate an orderly, progressive emergence and expansion of distinct cartilage and bone cell fates in an invariant temporal and spatial pattern for any given skeletal element within that specific vertebrate species. Genome-scale studies have provided additional layers of understanding, moving from individual genes to the gene regulatory landscape, integrating regulatory information through cis-regulatory modules into cell type-specific gene regulatory programs. This review discusses our current understanding of the transcriptional control of mammalian skeletal development, focusing on recent genome-scale studies.
Collapse
|
40
|
Samsa WE, Zhou X, Zhou G. Signaling pathways regulating cartilage growth plate formation and activity. Semin Cell Dev Biol 2016; 62:3-15. [PMID: 27418125 DOI: 10.1016/j.semcdb.2016.07.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/17/2022]
Abstract
The growth plate is a highly specialized and dynamic cartilage structure that serves many essential functions in skeleton patterning, growth and endochondral ossification in developing vertebrates. Major signaling pathways initiated by classical morphogens and by other systemic and tissue-specific factors are intimately involved in key aspects of growth plate development. As a corollary of these essential functions, disturbances in these pathways due to mutations or environmental factors lead to severe skeleton disorders. Here, we review these pathways and the most recent progress made in understanding their roles in chondrocyte differentiation in growth plate development and activity. Furthermore, we discuss newly uncovered pathways involved in growth plate formation, including mTOR, the circadian clock, and the COP9 signalosome.
Collapse
Affiliation(s)
- William E Samsa
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Zhou
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guang Zhou
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|