1
|
Zhi Y, Shi Y, Lu D, Xu D. Neurodevelopmental Implications Underpinning Hereditary Spastic Paraplegia. CNS Neurosci Ther 2025; 31:e70260. [PMID: 39932116 PMCID: PMC11811889 DOI: 10.1111/cns.70260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/25/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Hereditary spastic paraplegia (HSP) is a group of rare genetic neurodegenerative disorders characterized by corticospinal tract abnormalities. But frequently, abnormalities of proteins implicated in HSP have been identified in brain disorders of childhood, raising the possibility that early brain developmental mechanism underlying HSP. RESULTS AND CONCLUSIONS Here we summarized the clinical features of 89 HSP subtypes and found most have onset of symptoms earliest reported in infancy or early childhood. Importantly, HSP patients showed early brain developmental related phenotypes such as microcephaly, ventricular enlargement, and corpus callosum dysplasia. In addition, the expression trajectories analysis showed HSP genes were diffusely expressed across all human prenatal cortical regions and most genes enriched from post-conception weeks 8-24, periods characterized by neuro progenitor proliferation and neurogenesis. Furthermore, studies utilizing patient derived induced pluripotent stem cells (iPSCs)/organoids and mouse models have suggested that most HSP proteins play either direct or indirect roles in the development of the central nervous system. Therefore, HSP possesses a neurodevelopmental aspect and is not merely a degenerative disease, which may aid in better understanding the pathogenesis of this disease.
Collapse
Affiliation(s)
- Yiqiang Zhi
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, School of Basic Medical SciencesFujian Medical UniversityFuzhouChina
| | - Yan Shi
- Fujian Key Laboratory of Molecular Neurology, Institute of NeuroscienceFujian Medical UniversityFuzhouChina
| | - Danping Lu
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of NeuroscienceFujian Medical UniversityFuzhouChina
| |
Collapse
|
2
|
Lee MJ, Park HJ, Lee JM, Lee JH. "Ear of the Lynx" Sign in Hereditary Spastic Paraplegia 76. J Clin Neurol 2025; 21:77-79. [PMID: 39778570 PMCID: PMC11711263 DOI: 10.3988/jcn.2024.0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 01/11/2025] Open
Affiliation(s)
- Myung Jun Lee
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea.
| | - Hyung Jun Park
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Meen Lee
- Department of Neurosurgery, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea
| | - Jae-Hyeok Lee
- Department of Neurology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Korea
| |
Collapse
|
3
|
Sadr Z, Ghasemi A, Rohani M, Khorram Khorshid HR, Habibi-Kavashkohie MR, Mohammadi Y, Alavi A. Three Iranian patients with rare subtypes of hereditary spastic paraplegia (HSP): SPG76, SPG56, and SPG69. Neurogenetics 2024; 26:12. [PMID: 39607444 DOI: 10.1007/s10048-024-00789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/07/2024] [Indexed: 11/29/2024]
Abstract
Some subtypes of hereditary spastic paraplegia (HSP), especially with autosomal recessive inheritance (AR-HSP), have been reported rarely. In this study, we report the clinical features and molecular results of three unrelated Iranian patients with rare subtypes of HSP, including SPG76, SPG56, and SPG69; thereafter, we compare them to other reported cases. Three patients who were clinically diagnosed with HSP and born to consanguineous parents underwent molecular assessment by whole-exome sequencing (WES), followed by Sanger sequencing and co-segregation analysis. Two patients carried biallelic pathogenic variants in CAPN1, or CYP2U1, resulting in SPG76, and SPG56, respectively. Additionally, another patient presented with a variant of uncertain significance (VUS) in the gene associated with SPG69, known as RAB3GAP2. Variants of CAPN1 and RAB3GAP2 are novel while the CYP2U1 variant has been previously reported. The patient with the RAB3GAP2 variant is the second reported SPG69 case. Our findings emphasize that the rare forms of AR-HSP may be more prevalent in communities with a high rate of consanguineous marriages, and WES can be a highly effective tool for identifying pathogenic variants in these communities. Also, the CYP2U1 variant seems to be a founder mutation because it was previously reported in 8 patients of three families from the Middle East. These results expand the variant spectrum of the CAPN1 and RAB3GAP2 genes. Also, given the association of variants in CAPN1 and RAB3GAP2 with a diverse array of phenotypes, we propose the use of the terms "CAPN1-related disorders" and "RAB3GAP2-related disorders" as alternatives to HSP76 and HSP69, respectively.
Collapse
Affiliation(s)
- Zahra Sadr
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Aida Ghasemi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Habibi-Kavashkohie
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- CHU Sainte Justine Research Center, University of Montreal, Montréal, Canada
| | - Yusuf Mohammadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Yang S, Hu J, Chen Y, Zhang Z, Wang J, Zhu G. DCC, a potential target for controlling fear memory extinction and hippocampal LTP in male mice receiving single prolonged stress. Neurobiol Stress 2024; 32:100666. [PMID: 39224830 PMCID: PMC11366904 DOI: 10.1016/j.ynstr.2024.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/29/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a severe stress-dependent psychiatric disorder characterized by impairment of fear memory extinction; however, biological markers to determine impaired fear memory extinction in PTSD remain unclear. In male mice with PTSD-like behaviors elicited by single prolonged stress (SPS), 19 differentially expressed proteins in the hippocampus were identified compared with controls. Among them, a biological macromolecular protein named deleted in colorectal cancer (DCC) was highly upregulated. Specific overexpression of DCC in the hippocampus induced similar impairment of long-term potentiation (LTP) and fear memory extinction as observed in SPS mice. The impairment of fear memory extinction in SPS mice was improved by inhibiting the function of hippocampal DCC using a neutralizing antibody. Mechanistic studies have shown that knocking down or inhibiting μ-calpain in hippocampal neurons increased DCC expression and induced impairment of fear memory extinction. Additionally, SPS-triggered impairment of hippocampal LTP and fear memory extinction could be rescued through activation of the Rac1-Pak1 signaling pathway. Our study provides evidence that calpain-mediated regulation of DCC controls hippocampal LTP and fear memory extinction in SPS mice, which likely through activation of the Rac1-Pak1 signaling pathway.
Collapse
Affiliation(s)
- Shaojie Yang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Shouchun Road 300, Hefei, 230061, China
| | - Jiamin Hu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Longzhihu Road 350, Hefei, 230012, China
| | - Yuzhuang Chen
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Longzhihu Road 350, Hefei, 230012, China
| | - Zhengrong Zhang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Longzhihu Road 350, Hefei, 230012, China
| | - Jingji Wang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Shouchun Road 300, Hefei, 230061, China
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Longzhihu Road 350, Hefei, 230012, China
| |
Collapse
|
5
|
Johnson LG, Zhai C, Brown K, Prenni JE, N Nair M, Huff-Lonergan E, Lonergan SM. Secondary Lipid Oxidation Products as Modulators of Calpain-2 Functionality In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12229-12239. [PMID: 38743679 DOI: 10.1021/acs.jafc.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The objective was to understand the impacts of secondary lipid oxidation products on calpain-2 activity and autolysis and, subsequently, to determine the quantity and localization of modification sites. 2-Hexenal and 4-hydroxynonenal incubation significantly decreased calpain-2 activity and slowed the progression of autolysis, while malondialdehyde had minimal impact on calpain-2 activity and autolysis. Specific modification sites were determined with LC-MS/MS, including distinct malondialdehyde modification sites on the calpain-2 catalytic and regulatory subunits. 2-Hexenal modification sites were observed on the calpain-2 catalytic subunit. Intact protein mass analysis with MALDI-MS revealed that a significant number of modifications on the calpain-2 catalytic and regulatory subunits are likely to exist. These observations confirm that specific lipid oxidation products modify calpain-2 and may affect the calpain-2 functionality. The results of these novel experiments have implications for healthy tissue metabolism, skeletal muscle growth, and post-mortem meat tenderness development.
Collapse
Affiliation(s)
- Logan G Johnson
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, United States
| | - Chaoyu Zhai
- Department of Animal Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Kitty Brown
- Analytical Resources Core- Bioanalysis & Omics, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Mahesh N Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | | | - Steven M Lonergan
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
6
|
Liu W, Liu X, Li L, Tai Z, Li G, Liu JX. EPC1/2 regulate hematopoietic stem and progenitor cell proliferation by modulating H3 acetylation and DLST. iScience 2024; 27:109263. [PMID: 38439957 PMCID: PMC10910311 DOI: 10.1016/j.isci.2024.109263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/21/2023] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
Enhancers of polycomb 1 (EPC1) and 2 (EPC2) are involved in multiple biological processes as components of histone acetyltransferases/deacetylase complexes and transcriptional cofactors, and their dysfunction was associated with developmental defects and diseases. However, it remains unknown how their dysfunction induces hematopoietic stem and progenitor cell (HSPC) defects. Here, we show that depletion of EPC1/2 significantly reduced the number of hematopoietic stem and progenitor cells (HSPCs) in the aorta-gonad mesonephros and caudal hematopoietic tissue regions by impairing HSPC proliferation, and consistently downregulated the expression of HSPC genes in K562 cells. This study demonstrates the functions of EPC1/2 in regulating histone H3 acetylation, and in regulating DLST (dihydrolipoamide S-succinyltransferase) via H3 acetylation and cooperating with transcription factors serum response factor and FOXR2 together, and in the subsequent HSPC emergence and proliferation. Our results demonstrate the essential roles of EPC1/2 in regulating H3 acetylation, and DLST as a linkage between EPC1 and EPC2 with mitochondria metabolism, in HSPC emergence and proliferation.
Collapse
Affiliation(s)
- WenYe Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - LingYa Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - ZhiPeng Tai
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - GuoLiang Li
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Baudry M, Bi X. Revisiting the calpain hypothesis of learning and memory 40 years later. Front Mol Neurosci 2024; 17:1337850. [PMID: 38361744 PMCID: PMC10867166 DOI: 10.3389/fnmol.2024.1337850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
In 1984, Gary Lynch and Michel Baudry published in Science a novel biochemical hypothesis for learning and memory, in which they postulated that the calcium-dependent protease, calpain, played a critical role in regulating synaptic properties and the distribution of glutamate receptors, thereby participating in memory formation in hippocampus. Over the following 40 years, much work has been done to refine this hypothesis and to provide convincing arguments supporting what was viewed at the time as a simplistic view of synaptic biochemistry. We have now demonstrated that the two major calpain isoforms in the brain, calpain-1 and calpain-2, execute opposite functions in both synaptic plasticity/learning and memory and in neuroprotection/neurodegeneration. Thus, calpain-1 activation is required for triggering long-term potentiation (LTP) of synaptic transmission and learning of episodic memory, while calpain-2 activation limits the magnitude of LTP and the extent of learning. On the other hand, calpain-1 is neuroprotective while calpain-2 is neurodegenerative, and its prolonged activation following various types of brain insults leads to neurodegeneration. The signaling pathways responsible for these functions have been identified and involve local protein synthesis, cytoskeletal regulation, and regulation of glutamate receptors. Human families with mutations in calpain-1 have been reported to have impairment in motor and cognitive functions. Selective calpain-2 inhibitors have been synthesized and clinical studies to test their potential use to treat disorders associated with acute neuronal damage, such as traumatic brain injury, are being planned. This review will illustrate the long and difficult journey to validate a bold hypothesis.
Collapse
Affiliation(s)
- Michel Baudry
- Western University of Health Sciences, Pomona, CA, United States
| | | |
Collapse
|
8
|
Alkhalifa A, Chen S, Hasiloglu ZI, Filosto M, Cali E, Houlden H, Sgobbi de Souza P, Alavi A, Goizet C, Stevanin G, Taithe F, Nicita F, Vasco G, Tozza S, Cocozza S, Carboni N, Figus A, Wu J, Basak AN, Brais B, Rouleau G, La Piana R. White matter abnormalities in 15 subjects with SPG76. J Neurol 2023; 270:5784-5792. [PMID: 37578488 DOI: 10.1007/s00415-023-11918-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND OBJECTIVES Hereditary spastic paraplegias (HSPs) are heterogenous genetic disorders characterized by progressive pyramidal tract involvement. SPG76 is a recently identified form of HSP, caused by biallelic calpain-1 (CAPN1) variants. The most frequently described MRI abnormality in SPG76 is mild cerebellar atrophy and non-specific white matter abnormalities were reported in only one case. Following the identification of prominent white matter abnormalities in a subject with CAPN1 variants, which delayed the diagnosis, we aimed to verify the presence of MRI patterns of white matter involvement specific to this HSP. METHODS We performed a retrospective radiological qualitative analysis of 15 subjects with SPG76 (4 previously unreported) initially screened for white matter involvement. Moreover, we performed quantitative analyses in our proband with available longitudinal studies. RESULTS We observed bilateral, periventricular white matter involvement in 12 subjects (80%), associated with multifocal subcortical abnormalities in 5 of them (33.3%). Three subjects (20%) presented only multifocal subcortical involvement. Longitudinal quantitative analyses of our proband revealed increase in multifocal white matter lesion count and increased area of periventricular white matter involvement over time. DISCUSSION SPG76 should be added to the list of HSPs with associated white matter abnormalities. We identified periventricular white matter involvement in subjects with SPG76, variably associated with multifocal subcortical white matter abnormalities. These findings, in the presence of progressive spastic paraparesis, can mislead the diagnostic process towards an acquired white matter disorder.
Collapse
Affiliation(s)
- Abdulrahman Alkhalifa
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, QC, H3A 2B4, Canada
- Bahrain Defence Force Royal Medical Services, Military Hospital, Riffa, Bahrain
| | - Shihan Chen
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, QC, H3A 2B4, Canada
| | - Zehra Isik Hasiloglu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, QC, H3A 2B4, Canada
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | - Elisa Cali
- Department of Neuromuscular Disease, University College London; The National Hospital for Neurology and Neurosurgery, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disease, University College London; The National Hospital for Neurology and Neurosurgery, London, UK
| | - Paulo Sgobbi de Souza
- Department of Neurology and Neurosurgery, Division of Neuromuscular Diseases, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Afagh Alavi
- University of Social Welfare and Rehabilitation Sciences, Genetics Research Center, Tehran, Iran
| | - Cyril Goizet
- NRGEN Team, Univ. Bordeaux, CNRS, INCIA, UMR 5287, EPHE, 33000, Bordeaux, France
- Centre de Référence Maladies Rares Neurogénétique, Service de Génétique Médicale, Bordeaux University Hospital (CHU Bordeaux), Bordeaux, France
| | - Giovanni Stevanin
- Centre de Référence Maladies Rares Neurogénétique, Service de Génétique Médicale, Bordeaux University Hospital (CHU Bordeaux), Bordeaux, France
| | - Frederic Taithe
- Service de Neurologie, Hôpital Gabriel Montpied, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Francesco Nicita
- Genetics and Rare Diseases Research Division, Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Hospital, IRCCS, Rome, Italy
| | - Gessica Vasco
- Department of Neurosciences, Unit of Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Tozza
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Nicola Carboni
- Department of Neurology, San Francesco Hospital, Nuoro, Italy
| | - Andrea Figus
- Department of Radiology, San Francesco Hospital, Nuoro, Italy
| | - Jianjun Wu
- National Center for Neurological Disorders and National Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - A Nazli Basak
- Translational Medicine Research Center-NDAL, School of Medicine, Koc University, Istanbul, Turkey
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, QC, H3A 2B4, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Canada
| | - Guy Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, QC, H3A 2B4, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Canada
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, QC, H3A 2B4, Canada.
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Canada.
- Department of Diagnostic Radiology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Guedes JR, Ferreira PA, Costa J, Laranjo M, Pinto MJ, Reis T, Cardoso AM, Lebre C, Casquinha M, Gomes M, Shkatova V, Pereira M, Beltrão N, Hanuscheck N, Greenhalgh AD, Vogelaar CF, Carvalho AL, Zipp F, Cardoso AL, Peça J. IL-4 shapes microglia-dependent pruning of the cerebellum during postnatal development. Neuron 2023; 111:3435-3449.e8. [PMID: 37918358 DOI: 10.1016/j.neuron.2023.09.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/26/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023]
Abstract
Interleukin-4 (IL-4) is a type 2 cytokine with pleiotropic functions in adaptive immunity, allergies, and cognitive processes. Here, we show that low levels of IL-4 in the early postnatal stage delineate a critical period in which microglia extensively prune cerebellar neurons. Elevating the levels of this cytokine via peripheral injection, or using a mouse model of allergic asthma, leads to defective pruning, permanent increase in cerebellar granule cells, and circuit alterations. These animals also show a hyperkinetic and impulsive-like phenotype, reminiscent of attention-deficit hyperactivity disorder (ADHD). These alterations are blocked in Il4rαfl/fl::Cx3cr1-CreER mice, which are deficient in IL-4 receptor signaling in microglia. These findings demonstrate a previously unknown role for IL-4 during a neuroimmune critical period of cerebellar maturation and provide a first putative mechanism for the comorbidity between allergic disease and ADHD observed in humans.
Collapse
Affiliation(s)
- Joana R Guedes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Pedro A Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Program in Biosciences, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Jéssica Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; PDBEB-Doctoral Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Mariana Laranjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; PDBEB-Doctoral Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Maria J Pinto
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Tiago Reis
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; PDBEB-Doctoral Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana Maria Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Carolina Lebre
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria Casquinha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Marcos Gomes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; PDBEB-Doctoral Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Viktoriya Shkatova
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Marta Pereira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Nuno Beltrão
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; PDBEB-Doctoral Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Nicholas Hanuscheck
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, 06131 Mainz, Germany
| | - Andrew D Greenhalgh
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Christina Francisca Vogelaar
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, 06131 Mainz, Germany
| | - Ana Luísa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Frauke Zipp
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, 06131 Mainz, Germany.
| | - Ana Luísa Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| | - João Peça
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
10
|
Zhu Z, Hou W, Cao Y, Zheng H, Tian W, Cao L. Spastic paraplegia type 76 due to novel CAPN1 mutations: three case reports with literature review. Neurogenetics 2023; 24:243-250. [PMID: 37468791 DOI: 10.1007/s10048-023-00726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Spastic paraplegia type 76 (SPG76) is a subtype of hereditary spastic paraplegia (HSP) caused by calpain-1 (CAPN1) mutations. Our study described the phenotypic and genetic characteristics of three families with spastic ataxia due to various CAPN1 mutations and further explored the pathogenesis of the two novel mutations. The three patients were 48, 39, and 48 years old, respectively. Patients 1 and 3 were from consanguineous families, while patient 2 was sporadic. Physical examination showed hypertonia, hyperreflexia, and Babinski signs in the lower limbs. Patients 2 and 3 additionally had dysarthria and depression. CAPN1 mutations were identified by whole-exome sequencing, followed by Sanger sequencing and co-segregation analysis within the family. Functional examination of the newly identified mutations was further explored. Two homozygous mutations were detected in patient 1 (c.213dupG, p.D72Gfs*95) and patient 3 (c.1729+1G>A) with HSP, respectively. Patient 2 had compound heterozygous mutations c.853C>T (p.R285X) and c.1324G>A (p.G442S). Western blotting revealed the p.D72Gfs*95 with a smaller molecular weight than WT and p.G442S. In vitro, the wild-type calpain-1 is mostly located in the cytoplasm and colocalized with tubulin by immunostaining. However, p.D72Gfs*95 and p.G442S abnormally formed intracellular aggregation, with little colocalization with tubulin. In this study, we identified three cases with SPG76, due to four various CAPN1 mutations, presenting lower limb spasticity and ataxia, with or without bulbar involvement and emotional disorder. Among these, c.213dupG and c.1324G>A are first identified in this paper. The genotype-phenotype correlation of the SPG76 cases reported worldwide was further summarized.
Collapse
Affiliation(s)
- Zeyu Zhu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Wenzhe Hou
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Suzhou Hospital of Anhui Medical University, Suzhou Municipal Hospital of Anhui Province, Suzhou, 234000, China
| | - Yuwen Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Haoran Zheng
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Wotu Tian
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Li Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
11
|
Xue X, Xi W, Li W, Xiao J, Wang Z, Zhang Y. Hydrogen-rich saline alleviates cardiomyocyte apoptosis by reducing expression of calpain1 via miR-124-3p. ESC Heart Fail 2023; 10:3077-3090. [PMID: 37602925 PMCID: PMC10567641 DOI: 10.1002/ehf2.14492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 06/16/2023] [Accepted: 07/16/2023] [Indexed: 08/22/2023] Open
Abstract
AIMS Molecular hydrogen has been exhibited a protective function in heart diseases. Our previous study demonstrated that hydrogen-rich saline (HRS) could scavenge free radicals selectively and alleviate the inflammatory response in the myocardial ischaemia/reperfusion (I/R) injury, but the underlying mechanism has not been fully clarified. METHODS AND RESULTS Adult (10 weeks) C57BL/6 male mice and neonatal rat cardiomyocytes were used to establish I/R and hypoxia/reoxygenation (H/R) injury models. I/R and H/R models were treated with HRS to classify the mechanisms of cardioproctective function. In this study, we found that miR-124-3p was significantly decreased in both I/R and H/R models, while it was partially ameliorated by HRS pretreatment. HRS treatment also alleviated ischaemia-induced apoptotic cell death and increased cell viability during I/R process, whereas silencing expression of miR-124-3p abolished this protective effect. In addition, we identified calpain1 as a direct target of miR-124-3p, and up-regulation of miR-124-3 produced both activity and expression of calpain1. It was also found that compared with the HRS group, overexpression of calpain1 increased caspase-3 activities, promoted cleaved-caspase3 and Bax protein expressions, and correspondingly decreased Bcl-2, further reducing cell viability. These results illustrated that calpain1 overexpression attenuated protective effect of HRS on cardiomyocytes in H/R model. CONCLUSIONS The present study showed a protective effect of HRS on I/R injury, which may be associated with miR-124-3p-calpain1 signalling pathway.
Collapse
Affiliation(s)
- Xiaofei Xue
- Department of Cardiothoracic SurgeryChangzheng Hospital, Naval Military Medical University415 Fengyang RoadShanghai200003China
| | - Wang Xi
- Department of Cardiothoracic SurgeryChangzheng Hospital, Naval Military Medical University415 Fengyang RoadShanghai200003China
| | - Wei Li
- Department of Cardiothoracic SurgeryGeneral Hospital of Central Theater CommandWuhanChina
| | - Jian Xiao
- Department of Cardiothoracic SurgeryChangzheng Hospital, Naval Military Medical University415 Fengyang RoadShanghai200003China
| | - Zhinong Wang
- Department of Cardiothoracic SurgeryChangzheng Hospital, Naval Military Medical University415 Fengyang RoadShanghai200003China
| | - Yufeng Zhang
- Department of Cardiothoracic SurgeryChangzheng Hospital, Naval Military Medical University415 Fengyang RoadShanghai200003China
| |
Collapse
|
12
|
Metwally E, Al-Abbadi HA, Hussain T, Murtaza G, Abdellatif AM, Ahmed MF. Calpain signaling: from biology to therapeutic opportunities in neurodegenerative disorders. Front Vet Sci 2023; 10:1235163. [PMID: 37732142 PMCID: PMC10507866 DOI: 10.3389/fvets.2023.1235163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Neurodegenerative disorders represent a major and growing healthcare challenge globally. Among the numerous molecular pathways implicated in their pathogenesis, calpain signaling has emerged as a crucial player in neuronal dysfunction and cell death. Calpain is a family of calcium-dependent cysteine proteases that is involved in many biological processes, such as signal transduction, cytoskeleton remodeling, and protein turnover. Dysregulation of calpain activation and activity has been associated with several neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Understanding the intricate structure of calpains is crucial for unraveling their roles in cellular physiology and their implications in pathology. In addition, the identification of diverse abnormalities in both humans and other animal models with deficiencies in calpain highlights the significant progress made in understanding calpain biology. In this comprehensive review, we delve into the recent roles attributed to calpains and provide an overview of the mechanisms that govern their activity during the progression of neurodegenerative diseases. The possibility of utilizing calpain inhibition as a potential therapeutic approach for treating neuronal dysfunctions in neurodegenerative disorders would be an area of interest in future calpain research.
Collapse
Affiliation(s)
- Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Hatim A. Al-Abbadi
- Faculty of Medicine, University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Ghulam Murtaza
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Ahmed M. Abdellatif
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud F. Ahmed
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
13
|
Kotova IM, Pestereva NS, Traktirov DS, Absalyamova MT, Karpenko MN. Functions and distribution of calpain-calpastatin system components in brain during mammal ontogeny. Biochim Biophys Acta Gen Subj 2023; 1867:130345. [PMID: 36889447 DOI: 10.1016/j.bbagen.2023.130345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Calpain and calpastatin are the key components of the calcium-dependent proteolytic system. Calpains are regulatory, calcium-dependent, cytoplasmic proteinases, and calpastatin is the endogenous inhibitor of calpains. Due to the correlation between changes in the activity of the calpain-calpastatin system in the brain and central nervous system (CNS) pathology states, this proteolytic system is a prime focus of research on CNS pathological processes, generally characterized by calpain activity upregulation. The present review aims to generalize existing data on cerebral calpain distribution and function through mammalian ontogenesis. Special attention is given to the most recent studies on the topic as more information on calpain-calpastatin system involvement in normal CNS development and functioning has become available. We also discuss data on calpain and calpastatin activity and production in different brain regions during ontogenesis as comparative analysis of these results in association with ontogeny processes can reveal brain regions and developmental stages with pronounced function of the calpain system.
Collapse
Affiliation(s)
- Irina M Kotova
- Institute of Experimental Medicine, St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
14
|
Sharma J, Mulherkar S, Chen UI, Xiong Y, Bajaj L, Cho BK, Goo YA, Leung HCE, Tolias KF, Sardiello M. Calpain activity is negatively regulated by a KCTD7-Cullin-3 complex via non-degradative ubiquitination. Cell Discov 2023; 9:32. [PMID: 36964131 PMCID: PMC10038992 DOI: 10.1038/s41421-023-00533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/24/2023] [Indexed: 03/26/2023] Open
Abstract
Calpains are a class of non-lysosomal cysteine proteases that exert their regulatory functions via limited proteolysis of their substrates. Similar to the lysosomal and proteasomal systems, calpain dysregulation is implicated in the pathogenesis of neurodegenerative disease and cancer. Despite intensive efforts placed on the identification of mechanisms that regulate calpains, however, calpain protein modifications that regulate calpain activity are incompletely understood. Here we show that calpains are regulated by KCTD7, a cytosolic protein of previously uncharacterized function whose pathogenic mutations result in epilepsy, progressive ataxia, and severe neurocognitive deterioration. We show that KCTD7 works in complex with Cullin-3 and Rbx1 to execute atypical, non-degradative ubiquitination of calpains at specific sites (K398 of calpain 1, and K280 and K674 of calpain 2). Experiments based on single-lysine mutants of ubiquitin determined that KCTD7 mediates ubiquitination of calpain 1 via K6-, K27-, K29-, and K63-linked chains, whereas it uses K6-mediated ubiquitination to modify calpain 2. Loss of KCTD7-mediated ubiquitination of calpains led to calpain hyperactivation, aberrant cleavage of downstream targets, and caspase-3 activation. CRISPR/Cas9-mediated knockout of Kctd7 in mice phenotypically recapitulated human KCTD7 deficiency and resulted in calpain hyperactivation, behavioral impairments, and neurodegeneration. These phenotypes were largely prevented by pharmacological inhibition of calpains, thus demonstrating a major role of calpain dysregulation in KCTD7-associated disease. Finally, we determined that Cullin-3-KCTD7 mediates ubiquitination of all ubiquitous calpains. These results unveil a novel mechanism and potential target to restrain calpain activity in human disease and shed light on the molecular pathogenesis of KCTD7-associated disease.
Collapse
Affiliation(s)
- Jaiprakash Sharma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, Genetics and Genomic Medicine, Saint Louis, MO, USA.
| | - Shalaka Mulherkar
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, Genetics and Genomic Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Uan-I Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Yan Xiong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, Genetics and Genomic Medicine, Saint Louis, MO, USA
| | - Lakshya Bajaj
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Byoung-Kyu Cho
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Young Ah Goo
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Hon-Chiu Eastwood Leung
- Departments of Medicine, Pediatrics, and Molecular and Cellular Biology, Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, Genetics and Genomic Medicine, Saint Louis, MO, USA.
| |
Collapse
|
15
|
Miller JA, Drouet DE, Yermakov LM, Elbasiouny MS, Bensabeur FZ, Bottomley M, Susuki K. Distinct Changes in Calpain and Calpastatin during PNS Myelination and Demyelination in Rodent Models. Int J Mol Sci 2022; 23:15443. [PMID: 36499770 PMCID: PMC9737575 DOI: 10.3390/ijms232315443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Myelin forming around axons provides electrical insulation and ensures rapid and efficient transmission of electrical impulses. Disruptions to myelinated nerves often result in nerve conduction failure along with neurological symptoms and long-term disability. In the central nervous system, calpains, a family of calcium dependent cysteine proteases, have been shown to have a role in developmental myelination and in demyelinating diseases. The roles of calpains in myelination and demyelination in the peripheral nervous system remain unclear. Here, we show a transient increase of activated CAPN1, a major calpain isoform, in postnatal rat sciatic nerves when myelin is actively formed. Expression of the endogenous calpain inhibitor, calpastatin, showed a steady decrease throughout the period of peripheral nerve development. In the sciatic nerves of Trembler-J mice characterized by dysmyelination, expression levels of CAPN1 and calpastatin and calpain activity were significantly increased. In lysolecithin-induced acute demyelination in adult rat sciatic nerves, we show an increase of CAPN1 and decrease of calpastatin expression. These changes in the calpain-calpastatin system are distinct from those during central nervous system development or in acute axonal degeneration in peripheral nerves. Our results suggest that the calpain-calpastatin system has putative roles in myelination and demyelinating diseases of peripheral nerves.
Collapse
Affiliation(s)
- John A. Miller
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Domenica E. Drouet
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Leonid M. Yermakov
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Mahmoud S. Elbasiouny
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Fatima Z. Bensabeur
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Michael Bottomley
- Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, USA
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
16
|
Incebacak Eltemur RD, Nguyen HP, Weber JJ. Calpain-mediated proteolysis as driver and modulator of polyglutamine toxicity. Front Mol Neurosci 2022; 15:1020104. [PMID: 36385755 PMCID: PMC9648470 DOI: 10.3389/fnmol.2022.1020104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 09/22/2023] Open
Abstract
Among posttranslational modifications, directed proteolytic processes have the strongest impact on protein integrity. They are executed by a variety of cellular machineries and lead to a wide range of molecular consequences. Compared to other forms of proteolytic enzymes, the class of calcium-activated calpains is considered as modulator proteases due to their limited proteolytic activity, which changes the structure and function of their target substrates. In the context of neurodegeneration and - in particular - polyglutamine disorders, proteolytic events have been linked to modulatory effects on the molecular pathogenesis by generating harmful breakdown products of disease proteins. These findings led to the formulation of the toxic fragment hypothesis, and calpains appeared to be one of the key players and auspicious therapeutic targets in Huntington disease and Machado Joseph disease. This review provides a current survey of the role of calpains in proteolytic processes found in polyglutamine disorders. Together with insights into general concepts behind toxic fragments and findings in polyglutamine disorders, this work aims to inspire researchers to broaden and deepen the knowledge in this field, which will help to evaluate calpain-mediated proteolysis as a unifying and therapeutically targetable posttranslational mechanism in neurodegeneration.
Collapse
Affiliation(s)
- Rana Dilara Incebacak Eltemur
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Jonasz Jeremiasz Weber
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Therapeutic use of calpeptin in COVID-19 infection. Clin Sci (Lond) 2022; 136:1439-1447. [PMID: 36268783 PMCID: PMC9594985 DOI: 10.1042/cs20220638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
This perspective considers the benefits of the potential future use of the cell permeant calpain inhibitor, calpeptin, as a drug to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Recent work has reported calpeptin’s capacity to inhibit entry of the virus into cells. Elsewhere, several drugs, including calpeptin, were found to be able to inhibit extracellular vesicle (EV) biogenesis. Unsurprisingly, because of similarities between viral and EV release mechanisms, calpeptin has also been shown to inhibit viral egress. This approach, identifying calpeptin, through large-scale screening studies as a candidate drug to treat COVID-19, however, has not considered the longer term likely benefits of calpain inhibition, post-COVID-19. This perspective will reflect on the capacity of calpeptin for treating long COVID by inhibiting the overproduction of neutrophil extracellular traps potentially damaging lung cells and promoting clotting, together with limiting associated chronic inflammation, tissue damage and pulmonary fibrosis. It will also reflect on the tolerated and detrimental in vivo side-effects of calpain inhibition from various preclinical studies.
Collapse
|
18
|
Lan MY, Lu CS, Wu SL, Chen YF, Sung YF, Tu MC, Chang YY. Clinical and genetic characterization of a Taiwanese cohort with spastic paraparesis combined with cerebellar involvement. Front Neurol 2022; 13:1005670. [PMID: 36247768 PMCID: PMC9563621 DOI: 10.3389/fneur.2022.1005670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurodegenerative disorders clinically characterized by progressive lower-limb spasticity. Cerebellar ataxia commonly co-occurs with complicated HSPs. HSP with concurrent cerebellar ataxia has significant clinical and genetic overlaps with hereditary cerebellar ataxia (HCA) and other inherited neurological diseases, adding to the challenge of planning genetic testing for the disease. In this study, we characterized clinical features of a cohort of 24 patients (male/female: 15/9) from 22 families who presented spastic paraparesis combined with cerebellar involvement, with a median disease onset age 20.5 (range 5–53) years. Aside from the core phenotype, 18 (75%) patients had additional neuropsychiatric and systemic manifestations. A stepwise genetic testing strategy stratified by mode of inheritance, distinct neuroimaging features (e.g., thin corpus callosum), population-specific prevalence and whole-exome sequencing was utilized to investigate the genetic etiology. Causative mutations in up to 10 genes traditionally related to HSP, HCA and other neurogenetic diseases (autosomal recessive spastic ataxia of Charlevoix-Saguenay, neurodegeneration with brain iron accumulation, and progressive encephalopathy with brain atrophy and thin corpus callosum) were detected in 16 (73%) of the 22 pedigrees. Our study revealed the genetic complexity of HSP combined with cerebellar involvement. In contrast to the marked genetic diversity, the functions of the causative genes are restricted to a limited number of physiological themes. The functional overlap might reflect common underlying pathogenic mechanisms, to which the corticospinal tract and cerebellar neuron circuits may be especially vulnerable.
Collapse
Affiliation(s)
- Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Song Lu
- Professor Lu Neurological Clinic, Taoyuan, Taiwan
- Department of Neurology, Landseed International Hospital, Taoyuan, Taiwan
| | - Shey-Lin Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Electrical Engineering, National Changhua University of Education, Changhua, Taiwan
| | - Ying-Fa Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yueh-Feng Sung
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Chien Tu
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- Department of Neurology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yung-Yee Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- *Correspondence: Yung-Yee Chang
| |
Collapse
|
19
|
Cerebellar Abiotrophy in Australian Working Kelpies Is Associated with Two Major Risk Loci. Genes (Basel) 2022; 13:genes13101709. [PMID: 36292596 PMCID: PMC9602046 DOI: 10.3390/genes13101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
An autosomal recessive form of inherited cerebellar abiotrophy (CA) that is characterized by a degeneration of Purkinje and granule cells in the cerebellar cortex occurs in the Australian working kelpie dog breed. The clinical signs of CA include ataxia, head tremor, motor in-coordination, wide-based stance, and high-stepping gait. Investigation of clinical and pathological features indicated two closely related diseases with differences in age of onset. A genome-wide association study on 45 CA affected and 290 normal healthy Kelpies identified two significantly associated loci, one on CFA9 and a second on CFA20. Dogs homozygous for the risk haplotype on CFA20 (23 dogs) show clinical signs before ten weeks of age. Missense variants in the sixth exon of disruptor of telomeric silencing 1-like (DOT1Lp.R200Q) and in the only exon of Leucine Rich Repeat And Ig Domain Containing 3 (LINGO3p.R359C), both on CFA20, segregate with the associated risk marker which has incomplete penetrance (42%). Affected dogs homozygous for the risk haplotype on CFA9 have later onset ataxia. A missense variant in exon 5 of Vacuole Membrane Protein 1 (VMP1 p.P160Q) on CFA9 segregates as a fully penetrant Mendelian recessive with later-onset CA. Across mammals, the variety of causative loci so far identified as influencing cerebellar disorders reinforces the complexity of the pathways that contribute to cerebellar development and function, and to the pathophysiological mechanisms that may lead to cerebellar ataxia.
Collapse
|
20
|
Weber JJ, Anger SC, Pereira Sena P, Incebacak Eltemur RD, Huridou C, Fath F, Gross C, Casadei N, Riess O, Nguyen HP. Calpains as novel players in the molecular pathogenesis of spinocerebellar ataxia type 17. Cell Mol Life Sci 2022; 79:262. [PMID: 35482253 PMCID: PMC9050766 DOI: 10.1007/s00018-022-04274-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/07/2022] [Accepted: 03/25/2022] [Indexed: 11/23/2022]
Abstract
Spinocerebellar ataxia type 17 (SCA17) is a neurodegenerative disease caused by a polyglutamine-encoding trinucleotide repeat expansion in the gene of transcription factor TATA box-binding protein (TBP). While its underlying pathomechanism is elusive, polyglutamine-expanded TBP fragments of unknown origin mediate the mutant protein’s toxicity. Calcium-dependent calpain proteases are protagonists in neurodegenerative disorders. Here, we demonstrate that calpains cleave TBP, and emerging C-terminal fragments mislocalize to the cytoplasm. SCA17 cell and rat models exhibited calpain overactivation, leading to excessive fragmentation and depletion of neuronal proteins in vivo. Transcriptome analysis of SCA17 cells revealed synaptogenesis and calcium signaling perturbations, indicating the potential cause of elevated calpain activity. Pharmacological or genetic calpain inhibition reduced TBP cleavage and aggregation, consequently improving cell viability. Our work underlines the general significance of calpains and their activating pathways in neurodegenerative disorders and presents these proteases as novel players in the molecular pathogenesis of SCA17.
Collapse
Affiliation(s)
- Jonasz Jeremiasz Weber
- Department of Human Genetics, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Stefanie Cari Anger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Priscila Pereira Sena
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany.,Graduate School of Cellular Neuroscience, University of Tübingen, 72074, Tübingen, Germany
| | - Rana Dilara Incebacak Eltemur
- Department of Human Genetics, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Chrisovalantou Huridou
- Department of Human Genetics, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Florian Fath
- Department of Human Genetics, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Caspar Gross
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany.,NGS Competence Center Tübingen, 72076, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany.,NGS Competence Center Tübingen, 72076, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany.,NGS Competence Center Tübingen, 72076, Tübingen, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| |
Collapse
|
21
|
Lange LM, Gonzalez-Latapi P, Rajalingam R, Tijssen MAJ, Ebrahimi-Fakhari D, Gabbert C, Ganos C, Ghosh R, Kumar KR, Lang AE, Rossi M, van der Veen S, van de Warrenburg B, Warner T, Lohmann K, Klein C, Marras C. Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force - An Update. Mov Disord 2022; 37:905-935. [PMID: 35481685 DOI: 10.1002/mds.28982] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Movement Disorder Society Task Force for the Nomenclature of Genetic Movement Disorders presented a new system for naming genetically determined movement disorders and provided a criterion-based list of confirmed monogenic movement disorders. Since then, a substantial number of novel disease-causing genes have been described, which warrant classification using this system. In addition, with this update, we further refined the system and propose dissolving the imaging-based categories of Primary Familial Brain Calcification and Neurodegeneration with Brain Iron Accumulation and reclassifying these genetic conditions according to their predominant phenotype. We also introduce the novel category of Mixed Movement Disorders (MxMD), which includes conditions linked to multiple equally prominent movement disorder phenotypes. In this article, we present updated lists of newly confirmed monogenic causes of movement disorders. We found a total of 89 different newly identified genes that warrant a prefix based on our criteria; 6 genes for parkinsonism, 21 for dystonia, 38 for dominant and recessive ataxia, 5 for chorea, 7 for myoclonus, 13 for spastic paraplegia, 3 for paroxysmal movement disorders, and 6 for mixed movement disorder phenotypes; 10 genes were linked to combined phenotypes and have been assigned two new prefixes. The updated lists represent a resource for clinicians and researchers alike and they have also been published on the website of the Task Force for the Nomenclature of Genetic Movement Disorders on the homepage of the International Parkinson and Movement Disorder Society (https://www.movementdisorders.org/MDS/About/Committees--Other-Groups/MDS-Task-Forces/Task-Force-on-Nomenclature-in-Movement-Disorders.htm). © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Paulina Gonzalez-Latapi
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada.,Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rajasumi Rajalingam
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Marina A J Tijssen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christos Ganos
- Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Rhia Ghosh
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Sterre van der Veen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom Warner
- Department of Clinical & Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | |
Collapse
|
22
|
Feng L, Tian R, Mu X, Chen C, Zhang Y, Cui J, Song Y, Liu Y, Zhang M, Shi L, Sun Y, Li L, Yi W. Identification of Genes Linking Natural Killer Cells to Apoptosis in Acute Myocardial Infarction and Ischemic Stroke. Front Immunol 2022; 13:817377. [PMID: 35432334 PMCID: PMC9012496 DOI: 10.3389/fimmu.2022.817377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/11/2022] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells are a type of innate lymphoid cell that are involved in the progression of acute myocardial infarction and ischemic stroke. Although multiple forms of programmed cell death are known to play important roles in these diseases, the correlation between NK cells and apoptosis-related genes during acute myocardial infarction and ischemic stroke remains unclear. In this study, we explored the distinct patterns of NK cell infiltration and apoptosis during the pathological progression of acute myocardial infarction and ischemic stroke using mRNA expression microarrays from the Gene Expression Omnibus database. Since the abundance of NK cells correlated positively with apoptosis in both diseases, we further examined the correlation between NK cell abundance and the expression of apoptosis-related genes. Interestingly, APAF1 and IRAK3 expression correlated negatively with NK cell abundance in both acute myocardial infarction and ischemic stroke, whereas ATM, CAPN1, IL1B, IL1R1, PRKACA, PRKACB, and TNFRSF1A correlated negatively with NK cell abundance in acute myocardial infarction. Together, these findings suggest that these apoptosis-related genes may play important roles in the mechanisms underlying the patterns of NK cell abundance and apoptosis in acute myocardial infarction and ischemic stroke. Our study, therefore, provides novel insights for the further elucidation of the pathogenic mechanism of ischemic injury in both the heart and the brain, as well as potential useful therapeutic targets.
Collapse
Affiliation(s)
- Lele Feng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Ruofei Tian
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi’an, China
| | - Xingdou Mu
- Department of Breast and Thyroid Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Cheng Chen
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- Department of Internal Medicine, Central Health Center of Huilong Town, Shangluo, China
| | - Yuxi Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yujie Song
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yingying Liu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- College of Life Science, Northwest University, Xi’an, China
| | - Miao Zhang
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- The Second Clinical Medicine College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lei Shi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Yang Sun, ; Ling Li, ; Wei Yi,
| | - Ling Li
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Yang Sun, ; Ling Li, ; Wei Yi,
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Yang Sun, ; Ling Li, ; Wei Yi,
| |
Collapse
|
23
|
Abstract
INTRODUCTION Calpain-1 and calpain-2 are prototypical classical isoforms of the calpain family of calcium-activated cysteine proteases. Their substrate proteins participate in a wide range of cellular processes, including transcription, survival, proliferation, apoptosis, migration, and invasion. Dysregulated calpain activity has been implicated in tumorigenesis, suggesting that calpains may be promising therapeutic targets. AREAS COVERED This review covers clinical and basic research studies implicating calpain-1 and calpain-2 expression and activity in tumorigenesis and metastasis. We highlight isoform specific functions and provide an overview of substrates and cancer-related signalling pathways affected by calpain-mediated proteolytic cleavage. We also discuss efforts to develop clinically relevant calpain specific inhibitors and spotlight the challenges facing inhibitor development. EXPERT OPINION Rationale for targeting calpain-1 and calpain-2 in cancer is supported by pre-clinical and clinical studies demonstrating that calpain inhibition has the potential to attenuate carcinogenesis and block metastasis of aggressive tumors. The wide range of substrates and cleavage products, paired with inconsistencies in model systems, underscores the need for more complete understanding of physiological substrates and how calpain cleavage alters their function in cellular processes. The development of isoform specific calpain inhibitors remains an important goal with therapeutic potential in cancer and other diseases.
Collapse
Affiliation(s)
- Ivan Shapovalov
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Danielle Harper
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| |
Collapse
|
24
|
Perez-Siles G, Ellis M, Ashe A, Grosz B, Vucic S, Kiernan MC, Morris KA, Reddel SW, Kennerson ML. A Compound Heterozygous Mutation in Calpain 1 Identifies a New Genetic Cause for Spinal Muscular Atrophy Type 4 (SMA4). Front Genet 2022; 12:801253. [PMID: 35126465 PMCID: PMC8807693 DOI: 10.3389/fgene.2021.801253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a heterogeneous group of neuromuscular diseases characterized by degeneration of anterior horn cells of the spinal cord, leading to muscular atrophy and weakness. Although the major cause of SMA is autosomal recessive exon deletions or loss-of-function mutations of survival motor neuron 1 (SMN1) gene, next generation sequencing technologies are increasing the genetic heterogeneity of SMA. SMA type 4 (SMA4) is an adult onset, less severe form of SMA for which genetic and pathogenic causes remain elusive.Whole exome sequencing in a 30-year-old brother and sister with SMA4 identified a compound heterozygous mutation (p. G492R/p. F610C) in calpain-1 (CAPN1). Mutations in CAPN1 have been previously associated with cerebellar ataxia and hereditary spastic paraplegia. Using skin fibroblasts from a patient bearing the p. G492R/p. F610C mutation, we demonstrate reduced levels of CAPN1 protein and protease activity. Functional characterization of the SMA4 fibroblasts revealed no changes in SMN protein levels and subcellular distribution. Additional cellular pathways associated with SMA remain unaffected in the patient fibroblasts, highlighting the tissue specificity of CAPN1 dysfunction in SMA4 pathophysiology. This study provides genetic and functional evidence of CAPN1 as a novel gene for the SMA4 phenotype and expands the phenotype of CAPN1 mutation disorders.
Collapse
Affiliation(s)
- G. Perez-Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- *Correspondence: G. Perez-Siles , ; M. L. Kennerson,
| | - M. Ellis
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
| | - A. Ashe
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - B. Grosz
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - S. Vucic
- Brain and Nerve Research Center, Concord Clinical School, University of Sydney, Sydney, NSW, Australia
| | - M. C. Kiernan
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - K. A. Morris
- Department of Neurology, Concord Repatriation General Hospital, Sydney, Sydney, NSW, Australia
| | - S. W. Reddel
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - M. L. Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Sydney, NSW, Australia
- *Correspondence: G. Perez-Siles , ; M. L. Kennerson,
| |
Collapse
|
25
|
Yang JO, Yoon JY, Sung DH, Yun S, Lee JJ, Jun SY, Halder D, Jeon SJ, Woo EJ, Seok JM, Cho JW, Jang JH, Choi JK, Kim BJ, Kim NS. The emerging genetic diversity of hereditary spastic paraplegia in Korean patients. Genomics 2021; 113:4136-4148. [PMID: 34715294 DOI: 10.1016/j.ygeno.2021.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/09/2021] [Accepted: 10/24/2021] [Indexed: 02/05/2023]
Abstract
Hereditary Spastic Paraplegias (HSP) are a group of rare inherited neurological disorders characterized by progressive loss of corticospinal motor-tract function. Numerous patients with HSP remain undiagnosed despite screening for known genetic causes of HSP. Therefore, identification of novel genetic variations related to HSP is needed. In this study, we identified 88 genetic variants in 54 genes from whole-exome data of 82 clinically well-defined Korean HSP families. Fifty-six percent were known HSP genes, and 44% were composed of putative candidate HSP genes involved in the HSPome and originally reported neuron-related genes, not previously diagnosed in HSP patients. Their inheritance modes were 39, de novo; 33, autosomal dominant; and 10, autosomal recessive. Notably, ALDH18A1 showed the second highest frequency. Fourteen known HSP genes were firstly reported in Koreans, with some of their variants being predictive of HSP-causing protein malfunction. SPAST and REEP1 mutants with unknown function induced neurite abnormality. Further, 54 HSP-related genes were closely linked to the HSP progression-related network. Additionally, the genetic spectrum and variation of known HSP genes differed across ethnic groups. These results expand the genetic spectrum for HSP and may contribute to the accurate diagnosis and treatment for rare HSP.
Collapse
Affiliation(s)
- Jin Ok Yang
- Korea BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji-Yong Yoon
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Duk Hyun Sung
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sohyun Yun
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jeong-Ju Lee
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Soo Young Jun
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Debasish Halder
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Su-Jin Jeon
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eui-Jeon Woo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Analytical Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jin Myoung Seok
- Department of Neurology, Soonchunhyang University College of Medicine, Soonchunhyang University Hospital Cheonan, Cheonan, Republic of Korea
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Byoung Joon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Nam-Soon Kim
- Rare-disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
26
|
Song Z, Bian Z, Zhang Z, Wang X, Zhu A, Zhu G. Astrocytic Kir4.1 regulates NMDAR/calpain signaling axis in lipopolysaccharide-induced depression-like behaviors in mice. Toxicol Appl Pharmacol 2021; 429:115711. [PMID: 34474083 DOI: 10.1016/j.taap.2021.115711] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/16/2022]
Abstract
The activation of Nod-like receptor protein 3 (NLRP3) inflammasome propagates pro-inflammatory signaling cascades linking to depression-like behaviors. However, the signaling pathway contributing to NLRP3 inflammasome activation and depression-like behaviors is still not clear. In this study, we evidenced that lipopolysaccharide (LPS) injection (i.p.) triggered depression-like behaviors, promoted the expression of Kir4.1, p-GluN2B and calpain-1, and activated NLRP3 inflammasome. The blockage of N-methyl-d-aspartate receptors (NMDAR) by memantine reduced LPS-induced depression-like behaviors, NLRP3 inflammasome and astrocyte activation, and calpain-1 expression. Additionally, memantine also inhibited LPS-induced reduction of postsynaptic density protein 95 (PSD-95) and Arc expression. Specific reduction of Kir4.1 in astrocytes attenuated LPS-induced expression of NLRP3 and calpain-1, and phosphorylation of GluN2B. Interestingly, LPS-induced expression of calpain-1 largely co-localized with GFAP, indicating the specific function of calpain-1 in astrocytes. Together, these data indicate that astrocytic Kir4.1 could regulate NMDAR/calpain-1 signaling axis, contributing to depression-like behaviors, likely through regulating NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Zhujin Song
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhijuan Bian
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Zhengrong Zhang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Aisong Zhu
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|
27
|
Metwally E, Zhao G, Zhang YQ. The calcium-dependent protease calpain in neuronal remodeling and neurodegeneration. Trends Neurosci 2021; 44:741-752. [PMID: 34417060 DOI: 10.1016/j.tins.2021.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/30/2022]
Abstract
Calpains are evolutionarily conserved and widely expressed Ca2+-activated cysteine proteases that act at neutral pH. The activity of calpains is tightly regulated, given that their abnormal activation can have deleterious effects leading to promiscuous cleavage of various targets. Genetic mutations in the genes encoding calpains are associated with human diseases, while abnormally elevated Ca2+ levels promote Ca2+-dependent calpain activation in pathologies associated with ischemic insults and neurodegeneration. In this review, we discuss recent findings on the regulation of calpain activity and activation as revealed through pharmacological, genetic, and optogenetic approaches. Furthermore, we highlight studies elucidating the role of calpains in dendrite pruning and axon degeneration in the context of Ca2+ homeostasis. Finally, we discuss future directions for the study of calpains and potential therapeutic strategies for inhibiting calpain activity in neurodegenerative diseases.
Collapse
Affiliation(s)
- Elsayed Metwally
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 10080, China; Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Guoli Zhao
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Q Zhang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 10080, China.
| |
Collapse
|
28
|
Weber JJ, Haas E, Maringer Y, Hauser S, Casadei NLP, Chishti AH, Riess O, Hübener-Schmid J. Calpain-1 ablation partially rescues disease-associated hallmarks in models of Machado-Joseph disease. Hum Mol Genet 2021; 29:892-906. [PMID: 31960910 DOI: 10.1093/hmg/ddaa010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Proteolytic fragmentation of polyglutamine-expanded ataxin-3 is a concomitant and modifier of the molecular pathogenesis of Machado-Joseph disease (MJD), the most common autosomal dominant cerebellar ataxia. Calpains, a group of calcium-dependent cysteine proteases, are important mediators of ataxin-3 cleavage and implicated in multiple neurodegenerative conditions. Pharmacologic and genetic approaches lowering calpain activity showed beneficial effects on molecular and behavioural disease characteristics in MJD model organisms. However, specifically targeting one of the calpain isoforms by genetic means has not yet been evaluated as a potential therapeutic strategy. In our study, we tested whether calpains are overactivated in the MJD context and if reduction or ablation of calpain-1 expression ameliorates the disease-associated phenotype in MJD cells and mice. In all analysed MJD models, we detected an elevated calpain activity at baseline. Lowering or removal of calpain-1 in cells or mice counteracted calpain system overactivation and led to reduced cleavage of ataxin-3 without affecting its aggregation. Moreover, calpain-1 knockout in YAC84Q mice alleviated excessive fragmentation of important synaptic proteins. Despite worsening some motor characteristics, YAC84Q mice showed a rescue of body weight loss and extended survival upon calpain-1 knockout. Together, our findings emphasize the general potential of calpains as a therapeutic target in MJD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonasz J Weber
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen 72076, Germany.,Department of Human Genetics, Ruhr-University Bochum, Bochum 44801, Germany
| | - Eva Haas
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen 72076, Germany
| | - Yacine Maringer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen 72076, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases, Tübingen 72076, Germany
| | - Nicolas L P Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen 72076, Germany
| | - Athar H Chishti
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen 72076, Germany
| | - Jeannette Hübener-Schmid
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
29
|
Baudry M, Su W, Seinfeld J, Sun J, Bi X. Role of Calpain-1 in Neurogenesis. Front Mol Biosci 2021; 8:685938. [PMID: 34212005 PMCID: PMC8239220 DOI: 10.3389/fmolb.2021.685938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022] Open
Abstract
While calpains have been implicated in neurogenesis for a long time, there is still little information regarding the specific contributions of various isoforms in this process. We took advantage of the availability of mutant mice with complete deletion of calpain-1 to analyze its contribution to neurogenesis. We first used the incorporation of BrdU in newly-generated cells in the subgranular zone of the dentate gyrus to determine the role of calpain-1 deletion in neuronal proliferation. Our results showed that the lack of calpain-1 decreased the rate of cell proliferation in adult hippocampus. As previously shown, it also decreased the long-term survival of newly-generated neurons. We also used data from previously reported RNA and miRNA sequencing analyses to identify differentially expressed genes in brain of calpain-1 knock-out mice related to cell division, cell migration, cell proliferation and cell survival. A number of differentially expressed genes were identified, which could play a significant role in the changes in neurogenesis in calpain-1 knock out mice. The results provide new information regarding the role of calpain-1 in neurogenesis and have implications for better understanding the pathologies associated with calpain-1 mutations in humans.
Collapse
Affiliation(s)
- Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Wenyue Su
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Jeffrey Seinfeld
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Jiandong Sun
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
30
|
Brownstein CA, Smith RS, Rodan LH, Gorman MP, Hojlo MA, Garvey EA, Li J, Cabral K, Bowen JJ, Rao AS, Genetti CA, Carroll D, Deaso EA, Agrawal PB, Rosenfeld JA, Bi W, Howe J, Stavropoulos DJ, Hansen AW, Hamoda HM, Pinard F, Caracansi A, Walsh CA, D'Angelo EJ, Beggs AH, Zarrei M, Gibbs RA, Scherer SW, Glahn DC, Gonzalez-Heydrich J. RCL1 copy number variants are associated with a range of neuropsychiatric phenotypes. Mol Psychiatry 2021; 26:1706-1718. [PMID: 33597717 PMCID: PMC8159744 DOI: 10.1038/s41380-021-01035-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Mendelian and early-onset severe psychiatric phenotypes often involve genetic variants having a large effect, offering opportunities for genetic discoveries and early therapeutic interventions. Here, the index case is an 18-year-old boy, who at 14 years of age had a decline in cognitive functioning over the course of a year and subsequently presented with catatonia, auditory and visual hallucinations, paranoia, aggression, mood dysregulation, and disorganized thoughts. Exome sequencing revealed a stop-gain mutation in RCL1 (NM_005772.4:c.370 C > T, p.Gln124Ter), encoding an RNA 3'-terminal phosphate cyclase-like protein that is highly conserved across eukaryotic species. Subsequent investigations across two academic medical centers identified eleven additional cases of RCL1 copy number variations (CNVs) with varying neurodevelopmental or psychiatric phenotypes. These findings suggest that dosage variation of RCL1 contributes to a range of neurological and clinical phenotypes.
Collapse
Affiliation(s)
- Catherine A Brownstein
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA.
- EPICenter, Boston Children's Hospital, Boston, MA, USA.
| | - Richard S Smith
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- EPICenter, Boston Children's Hospital, Boston, MA, USA
| | - Lance H Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Mark P Gorman
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Margaret A Hojlo
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- EPICenter, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Emily A Garvey
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- EPICenter, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Jianqiao Li
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Kristin Cabral
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Joshua J Bowen
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Abhijit S Rao
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Casie A Genetti
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Devon Carroll
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Emma A Deaso
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- EPICenter, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Jill A Rosenfeld
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Weimin Bi
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Jennifer Howe
- The Centre for Applied Genomics and Programs in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dimitri J Stavropoulos
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adam W Hansen
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Hesham M Hamoda
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Ferne Pinard
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Annmarie Caracansi
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Eugene J D'Angelo
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Mehdi Zarrei
- The Centre for Applied Genomics and Programs in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Richard A Gibbs
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Stephen W Scherer
- The Centre for Applied Genomics and Programs in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - David C Glahn
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- EPICenter, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - Joseph Gonzalez-Heydrich
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- EPICenter, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Calpain-2 participates in the process of calpain-1 inactivation. Biosci Rep 2021; 40:226716. [PMID: 33078830 PMCID: PMC7610153 DOI: 10.1042/bsr20200552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/18/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Calpain-1 and calpain-2 are highly structurally similar isoforms of calpain. The calpains, a family of intracellular cysteine proteases, cleave their substrates at specific sites, thus modifying their properties such as function or activity. These isoforms have long been considered to function in a redundant or complementary manner, as they are both ubiquitously expressed and activated in a Ca2+- dependent manner. However, studies using isoform-specific knockout and knockdown strategies revealed that each calpain species carries out specific functions in vivo. To understand the mechanisms that differentiate calpain-1 and calpain-2, we focused on the efficiency and longevity of each calpain species after activation. Using an in vitro proteolysis assay of troponin T in combination with mass spectrometry, we revealed distinctive aspects of each isoform. Proteolysis mediated by calpain-1 was more sustained, lasting as long as several hours, whereas proteolysis mediated by calpain-2 was quickly blunted. Calpain-1 and calpain-2 also differed from each other in their patterns of autolysis. Calpain-2–specific autolysis sites in its PC1 domain are not cleaved by calpain-1, but calpain-2 cuts calpain-1 at the corresponding position. Moreover, at least in vitro, calpain-1 and calpain-2 do not perform substrate proteolysis in a synergistic manner. On the contrary, calpain-1 activity is suppressed in the presence of calpain-2, possibly because it is cleaved by the latter protein. These results suggest that calpain-2 functions as a down-regulation of calpain-1, a mechanism that may be applicable to other calpain species as well.
Collapse
|
32
|
Lallemant-Dudek P, Darios F, Durr A. Recent advances in understanding hereditary spastic paraplegias and emerging therapies. Fac Rev 2021; 10:27. [PMID: 33817696 PMCID: PMC8009193 DOI: 10.12703/r/10-27] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a group of rare, inherited, neurological diseases characterized by broad clinical and genetic heterogeneity. Lower-limb spasticity with first motoneuron involvement is the core symptom of all HSPs. As spasticity is a syndrome and not a disease, it develops on top of other neurological signs (ataxia, dystonia, and parkinsonism). Indeed, the definition of genes responsible for HSPs goes beyond the 79 identified SPG genes. In order to avoid making a catalog of the different genes involved in HSP in any way, we have chosen to focus on the HSP with cerebellar ataxias since this is a frequent association described for several genes. This overlap leads to an intermediary group of spastic ataxias which is actively genetically and clinically studied. The most striking example is SPG7, which is responsible for HSP or cerebellar ataxia or both. There are no specific therapies against HSPs, and there is a dearth of randomized trials in patients with HSP, especially on spasticity when it likely results from other mechanisms. Thus far, no gene-specific therapy has been developed for HSP, but emerging therapies in animal models and neurons derived from induced pluripotent stem cells are potential treatments for patients.
Collapse
Affiliation(s)
- Pauline Lallemant-Dudek
- Paris Brain Institute (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Frederic Darios
- Paris Brain Institute (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Alexandra Durr
- Paris Brain Institute (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Genetic Department, Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
33
|
Baudry M. Meet Our Editorial Board Member. Curr Neuropharmacol 2021. [DOI: 10.2174/1570159x1903210216110739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Michel Baudry
- University Professor Western University of Health Sciences 309 E. 2nd St Pomona, CA 91766,United States
| |
Collapse
|
34
|
Meet Our Editorial Board Member. Curr Neuropharmacol 2021. [PMCID: PMC8033963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
35
|
Saputra L, Kumar KR. Challenges and Controversies in the Genetic Diagnosis of Hereditary Spastic Paraplegia. Curr Neurol Neurosci Rep 2021; 21:15. [PMID: 33646413 PMCID: PMC7921051 DOI: 10.1007/s11910-021-01099-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
Purpose of Review The hereditary spastic paraplegias (HSPs) are a group of disorders characterised by progressive lower limb weakness and spasticity. We address the challenges and controversies involved in the genetic diagnosis of HSP. Recent Findings There is a large and rapidly expanding list of genes implicated in HSP, making it difficult to keep gene testing panels updated. There is also a high degree of phenotypic overlap between HSP and other disorders, leading to problems in choosing the right panel to analyse. We discuss genetic testing strategies for overcoming these diagnostic hurdles, including the use of targeted sequencing gene panels, whole-exome sequencing and whole-genome sequencing. Personalised treatments for HSP are on the horizon, and a genetic diagnosis may hold the key to access these treatments. Summary Developing strategies to overcome the challenges and controversies in HSP may hold the key to a rapid and accurate genetic diagnosis.
Collapse
Affiliation(s)
- Lydia Saputra
- Northern Beaches Hospital, Frenchs Forest, New South Wales, Australia
| | - Kishore Raj Kumar
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. .,Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, Sydney, New South Wales, Australia. .,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia. .,Institute of Precision Medicine & Bioinformatics, Sydney Local Health District, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.
| |
Collapse
|
36
|
Su W, Bi X, Wang Y, Baudry M. Changes in neurodegeneration-related miRNAs in brains from CAPN1 -/- mice. BBA ADVANCES 2021; 1. [PMID: 34286311 PMCID: PMC8289118 DOI: 10.1016/j.bbadva.2021.100004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Calpain-1 knock-out (KO) mice exhibit enhanced susceptibility to neurodegeneration due to the lack of the neuroprotective function of calpain-1. Dicer has been shown to play a fundamental role in the biogenesis of most miRNAs. Here, we identified 45 differentially expressed miRNAs (DE miRNAs) in the brain of calpain-1 KO mice, as compared to wild-type mice. In particular, among all the DE miRNAs, 7 neurodegeneration-related miRNAs were found to be down-regulated in calpain-1 KO mice. We also found that Dicer is cleaved by calpain-1 in mouse brain, which generates an active fragment of Dicer with RNAse III activity and increases miRNA formation. Levels of active Dicer were reduced in brain homogenates from calpain-1 KO mice and incubation with calpain-1 and calcium restored Dicer activity and miRNA expression. Our results indicate that calpain-1 deletion results in decreased levels of active Dicer and changes in neurodegenerative-related miRNAs. These findings could account for some of the pathological changes found in brain of various mammals, including humans, with calpain-1 mutations or down-regulation.
Collapse
Affiliation(s)
- Wenyue Su
- Graduate College of Biomedical Sciences, United States
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Yubin Wang
- Graduate College of Biomedical Sciences, United States
| | - Michel Baudry
- Graduate College of Biomedical Sciences, United States
| |
Collapse
|
37
|
Spinozzi S, Albini S, Best H, Richard I. Calpains for dummies: What you need to know about the calpain family. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140616. [PMID: 33545367 DOI: 10.1016/j.bbapap.2021.140616] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
This review was written in memory of our late friend, Dr. Hiroyuki Sorimachi, who, following the steps of his mentor Koichi Suzuki, a pioneer in calpain research, has made tremendous contributions to the field. During his career, Hiro also wrote several reviews on calpain, the last of which, published in 2016, was comprehensive. In this manuscript, we decided to put together a review with the basic information a novice may need to know about calpains. We also tried to avoid similarities with previous reviews and reported the most significant new findings, at the same time highlighting Hiro's contributions to the field. The review will cover a short history of calpain discovery, the presentation of the family, the life of calpain from transcription to activity, human diseases caused by calpain mutations and therapeutic perspectives.
Collapse
Affiliation(s)
- Simone Spinozzi
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Sonia Albini
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Heather Best
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Isabelle Richard
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France.
| |
Collapse
|
38
|
Sato M, Ohta T, Morikawa Y, Konno A, Hirai H, Kurauchi Y, Hisatsune A, Katsuki H, Seki T. Ataxic phenotype and neurodegeneration are triggered by the impairment of chaperone-mediated autophagy in cerebellar neurons. Neuropathol Appl Neurobiol 2021; 47:198-209. [PMID: 32722888 DOI: 10.1111/nan.12649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
Abstract
AIMS Chaperone-mediated autophagy (CMA) is a pathway involved in the autophagy lysosome protein degradation system. CMA has attracted attention as a contributing factor to neurodegenerative diseases since it participates in the degradation of disease-causing proteins. We previously showed that CMA is generally impaired in cells expressing the proteins causing spinocerebellar ataxias (SCAs). Therefore, we investigated the effect of CMA impairment on motor function and the neural survival of cerebellar neurons using the micro RNA (miRNA)-mediated knockdown of lysosome-associated protein 2A (LAMP2A), a CMA-related protein. METHODS We injected adeno-associated virus serotype 9 vectors, which express green fluorescent protein (GFP) and miRNA (negative control miRNA or LAMP2A miRNA) under neuron-specific synapsin I promoter, into cerebellar parenchyma of 4-week-old ICR mice. Motor function of mice was evaluated by beam walking and footprint tests. Immunofluorescence experiments of cerebellar slices were conducted to evaluate histological changes in cerebella. RESULTS GFP and miRNA were expressed in interneurons (satellite cells and basket cells) in molecular layers and granule cells in the cerebellar cortices, but not in cerebellar Purkinje cells. LAMP2A knockdown in cerebellar neurons triggered progressive motor impairment, prominent loss of cerebellar Purkinje cells, interneurons, granule cells at the late stage, and astrogliosis and microgliosis from the early stage. CONCLUSIONS CMA impairment in cerebellar interneurons and granule cells triggers the progressive ataxic phenotype, gliosis and the subsequent degeneration of cerebellar neurons, including Purkinje cells. Our present findings strongly suggest that CMA impairment is related to the pathogenesis of various SCAs.
Collapse
Affiliation(s)
- Masahiro Sato
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama, Japan
| | - Tomoko Ohta
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuri Morikawa
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akinori Hisatsune
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
39
|
Increasing involvement of CAPN1 variants in spastic ataxias and phenotype-genotype correlations. Neurogenetics 2021; 22:71-79. [PMID: 33486633 PMCID: PMC7997841 DOI: 10.1007/s10048-020-00633-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/31/2020] [Indexed: 01/21/2023]
Abstract
Spastic ataxias are rare neurogenetic disorders involving spinocerebellar and pyramidal tracts. Many genes are involved. Among them, CAPN1, when mutated, is responsible for a complex inherited form of spastic paraplegia (SPG76). We report the largest published series of 21 novel patients with nine new CAPN1 disease-causing variants and their clinical characteristics from two European university hospitals (Paris and Stockholm). After a formal clinical examination, causative variants were identified by next-generation sequencing and confirmed by Sanger sequencing. CAPN1 variants are a rare cause (~ 1.4%) of young-adult-onset spastic ataxia; however, together with all published cases, they allowed us to better describe the clinical and genetic spectra of this form. Truncating variants are the most frequent, and missense variants lead to earlier age at onset in favor of an additional deleterious effect. Cerebellar ataxia with cerebellar atrophy, dysarthria and lower limb weakness are often associated with spasticity. We also suggest that cognitive impairment and depression should be assessed specifically in the follow-up of SPG76 cases.
Collapse
|
40
|
Wang Y, Liu Y, Bi X, Baudry M. Calpain-1 and Calpain-2 in the Brain: New Evidence for a Critical Role of Calpain-2 in Neuronal Death. Cells 2020; 9:E2698. [PMID: 33339205 PMCID: PMC7765587 DOI: 10.3390/cells9122698] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 01/24/2023] Open
Abstract
Calpains are a family of soluble calcium-dependent proteases that are involved in multiple regulatory pathways. Our laboratory has focused on the understanding of the functions of two ubiquitous calpain isoforms, calpain-1 and calpain-2, in the brain. Results obtained over the last 30 years led to the remarkable conclusion that these two calpain isoforms exhibit opposite functions in the brain. Calpain-1 activation is required for certain forms of synaptic plasticity and corresponding types of learning and memory, while calpain-2 activation limits the extent of plasticity and learning. Calpain-1 is neuroprotective both during postnatal development and in adulthood, while calpain-2 is neurodegenerative. Several key protein targets participating in these opposite functions have been identified and linked to known pathways involved in synaptic plasticity and neuroprotection/neurodegeneration. We have proposed the hypothesis that the existence of different PDZ (PSD-95, DLG and ZO-1) binding domains in the C-terminal of calpain-1 and calpain-2 is responsible for their association with different signaling pathways and thereby their different functions. Results with calpain-2 knock-out mice or with mice treated with a selective calpain-2 inhibitor indicate that calpain-2 is a potential therapeutic target in various forms of neurodegeneration, including traumatic brain injury and repeated concussions.
Collapse
Affiliation(s)
- Yubin Wang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (Y.W.); (Y.L.)
| | - Yan Liu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (Y.W.); (Y.L.)
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (Y.W.); (Y.L.)
| |
Collapse
|
41
|
Song Z, Shen F, Zhang Z, Wu S, Zhu G. Calpain inhibition ameliorates depression-like behaviors by reducing inflammation and promoting synaptic protein expression in the hippocampus. Neuropharmacology 2020; 174:108175. [DOI: 10.1016/j.neuropharm.2020.108175] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
|
42
|
Lai LL, Chen YJ, Li YL, Lin XH, Wang MW, Dong EL, Wang N, Chen WJ, Lin X. Novel CAPN1 mutations extend the phenotypic heterogeneity in combined spastic paraplegia and ataxia. Ann Clin Transl Neurol 2020; 7:1862-1869. [PMID: 32860341 PMCID: PMC7545613 DOI: 10.1002/acn3.51169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Recessive mutations in the CAPN1 gene have recently been identified in spastic paraplegia 76 (SPG76), a complex hereditary spastic paraplegia (HSP) that is combined with cerebellar ataxia, resulting in an ataxia-spasticity disease spectrum. This study aims to assess the influence of CAPN1 variants on the occurrence of SPG76 and identify factors potentially contributing to phenotypic heterogeneity. METHODS We screened a cohort of 240 unrelated HSP families for variants in CAPN1 using high-throughput sequencing analysis. We described in detail the clinical and genetic features of the SPG76 patients in our cohort and summarized all reported cases. RESULTS Six unreported CAPN1-associated families containing eight patients with or without cerebellar ataxia were found in our cohort of HSP cases. These patients carried three previously reported homozygous truncating mutations (p.V64Gfs* 103, c.759+1G>A, and p.R285* ), and three additional novel compound heterozygous missense mutations (p.R481Q, p.P498L, and p.R618W). Lower limbs spasticity, hyperreflexia, and Babinski signs developed in about 94% of patients, with ataxia developing in 63% of cases. In total, 33 pathogenic mutations were distributed along the three reported functional domains of calpain-1 protein, encoded by CAPN1, with no hotspot region. A comparison of gender distribution between the two groups indicated that female SPG76 patients were significantly more likely to present with complicated HSP than male patients (P = 0.015). INTERPRETATION Our study supports the clinically heterogeneous inter- and intra-family variability of SPG76 patients, and demonstrates that gender and calpain-1 linker structure may contribute to clinical heterogeneity in SPG76 cases.
Collapse
Affiliation(s)
- Lu-Lu Lai
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
| | - Yi-Jun Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
| | - Yun-Lu Li
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
| | - Xiao-Hong Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
| | - Meng-Wen Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
| | - En-Lin Dong
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| |
Collapse
|
43
|
Ttm50 facilitates calpain activation by anchoring it to calcium stores and increasing its sensitivity to calcium. Cell Res 2020; 31:433-449. [PMID: 32848200 DOI: 10.1038/s41422-020-0388-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/20/2020] [Indexed: 11/08/2022] Open
Abstract
Calcium-dependent proteolytic calpains are implicated in a variety of physiological processes, as well as pathologies associated with calcium overload. However, the mechanism by which calpain is activated remains elusive since intracellular calcium levels under physiological conditions do not reach the high concentration range required to trigger calpain activation. From a candidate screening using the abundance of the calpain target glutamate receptor GluRIIA at the Drosophila neuromuscular junction as a readout, we uncovered that calpain activity was inhibited upon knockdown of Ttm50, a subunit of the Tim23 complex known to be involved in the import of proteins across the mitochondrial inner membrane. Unexpectedly, Ttm50 and calpain are co-localized at calcium stores Golgi and endoplasmic reticulum (ER), and Ttm50 interacts with calpain via its C-terminal domain. This interaction is required for calpain localization at Golgi/ER, and increases calcium sensitivity of calpain by roughly an order of magnitude. Our findings reveal the regulation of calpain activation by Ttm50, and shed new light on calpain-associated pathologies.
Collapse
|
44
|
Rahimi Bidgoli MM, Javanparast L, Rohani M, Najmabadi H, Zamani B, Alavi A. CAPN1 and hereditary spastic paraplegia: a novel variant in an Iranian family and overview of the genotype-phenotype correlation. Int J Neurosci 2020; 131:962-974. [PMID: 32352326 DOI: 10.1080/00207454.2020.1763344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE SPG76 is one of the rare forms of hereditary spastic paraplegia (HSP) which causes by mutations in the CAPN1 gene. The mode of inheritance of SPG76 is autosomal recessive (AR) and so far, only 24 families and 25 mutations in this gene have been reported worldwide. These mutations have been associated with a spectrum of disorders from pure HSP to spastic ataxia. HSP genetically is one of the most heterogeneous neurological disorders and to date, 79 types of HSP (SPG1-SPG79) have been identified, however, it has been suggested that many HSP-genes, particularly in AR-HSPs, remained unknown. AR-HSPs clinically overlap with other neurodegenerative disorders, making an accurate diagnosis of the disease difficult. Therefore, in addition to clinical examination, a high throughout genetic method like whole exome sequencing (WES) may be necessary for the diagnosis of this type of neurodegenerative disorders. METHODS AND RESULTS Herein, we present the clinical features and results of WES in the first Iranian family with a novel CAPN1 variant, c.C853T:p.R285* and pure HSP. CONCLUSION Some of the previous studies have mentioned that the "spasticity-ataxia phenotype might be conducted to the diagnosis of SPG76" but recently the number of pure HSP patients with CAPN1 mutation is increasing. The present study also expands the mutation spectrum of pure CAPN1-related SPG76; emphasizing that CAPN1 screening is required in both pure HSP and spasticity-ataxia phenotypes. As noted in some other literature, we suggest the clinical spectrum of this disorder to be considered as "CAPN1-associated neurodegeneration".
Collapse
Affiliation(s)
| | - Leila Javanparast
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Iran University of Medical Sciences, Hazrat Rasool Hospital, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Babak Zamani
- Neurology Department, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
45
|
Su W, Zhou Q, Wang Y, Chishti A, Li QQ, Dayal S, Shiehzadegan S, Cheng A, Moore C, Bi X, Baudry M. Deletion of the Capn1 Gene Results in Alterations in Signaling Pathways Related to Alzheimer's Disease, Protein Quality Control and Synaptic Plasticity in Mouse Brain. Front Genet 2020; 11:334. [PMID: 32328086 PMCID: PMC7161415 DOI: 10.3389/fgene.2020.00334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Calpains represent a family of calcium-dependent proteases participating in a multitude of functions under physiological or pathological conditions. Calpain-1 is one of the most studied members of the family, is ubiquitously distributed in organs and tissues, and has been shown to be involved in synaptic plasticity and neuroprotection in mammalian brain. Calpain-1 deletion results in a number of phenotypic alterations. While some of these alterations can be explained by the acute functions of calpain-1, the present study was directed at studying alterations in gene expression that could also account for these phenotypic modifications. RNA-seq analysis identified 354 differentially expressed genes (DEGs) in brain of calpain-1 knock-out mice, as compared to their wild-type strain. Most DEGs were classified in 10 KEGG pathways, with the highest representations in Protein Processing in Endoplasmic Reticulum, MAP kinase and Alzheimer's disease pathways. Most DEGs were down-regulated and validation of a number of these genes indicated a corresponding decreased expression of their encoded proteins. The results indicate that calpain-1 is involved in the regulation of a significant number of genes affecting multiple brain functions. They also indicate that mutations in calpain-1 are likely to be involved in a number of brain disorders.
Collapse
Affiliation(s)
- Wenyue Su
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Qian Zhou
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yubin Wang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Athar Chishti
- Sackler School of Biomedical Sciences, Tufts University, Boston, MA, United States
| | - Qingshun Q. Li
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Sujay Dayal
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Shayan Shiehzadegan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Ariel Cheng
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Clare Moore
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
46
|
A muscle-specific calpain, CAPN3, forms a homotrimer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140411. [PMID: 32200007 DOI: 10.1016/j.bbapap.2020.140411] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/25/2022]
Abstract
Calpain-3 (CAPN3), a 94-kDa member of the calpain protease family, is abundant in skeletal muscle. Mutations in the CAPN3 gene cause limb girdle muscular dystrophy type 2A, indicating that CAPN3 plays important roles in muscle physiology. CAPN3 has several unique features. A crystallographic study revealed that its C-terminal penta-EF-hand domains form a homodimer, suggesting that CAPN3 functions as a homodimeric protease. To analyze complex formation of CAPN3 in a more convenient manner, we performed blue native polyacrylamide gel electrophoresis and found that the observed molecular weight of native CAPN3, as well as recombinant CAPN3, was larger than 240 kDa. Further analysis by cross-linking and sequential immunoprecipitation revealed that CAPN3 in fact forms a homotrimer. Trimer formation was abolished by the deletion of the PEF domain, but not the CAPN3-specific insertion sequences NS, IS1, and IS2. The PEF domain alone formed a homodimer, as reported, but addition of the adjacent CBSW domain to its N-terminus reinforced the trimer-forming property. Collectively, these results suggest that CAPN3 forms a homotrimer in which the PEF domain's dimer-forming ability is influenced by other domains.
Collapse
|
47
|
Mutation analysis of CAPN1 in Chinese populations with spastic paraplegia and related neurodegenerative diseases. J Neurol Sci 2020; 411:116691. [PMID: 31982778 DOI: 10.1016/j.jns.2020.116691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/31/2019] [Accepted: 01/17/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mutations in CAPN1 have recently been reported to cause the spastic paraplegia 76 (SPG76) subtype of hereditary spastic paraplegia (HSP). To investigate the role of CAPN1 in spastic paraplegia and other neurodegenerative diseases, including spinocerebellar ataxia (SCA), early-onset Parkinson's disease (EOPD), and amyotrophic lateral sclerosis (ALS) we conducted a mutation analysis of CAPN1 in a cohort of Chinese patients with SPG, SCA, EOPD, and ALS. METHODS Variants of CAPN1 were detected in the three cohorts by Sanger or whole-exome sequencing, and all exons and exon-intron boundaries of CAPN1 were analysed. RESULTS A novel CAPN1 splicing variant (NM_001198868: c.338-1G > A) identified in a familial SPG/SCA showed a complex phenotype, including spastic paraplegia, ataxia, and extensor plantar response. This mutation was confirmed by Sanger sequencing and completely co-segregated with the phenotypes. Sequencing of the cDNA from the three affected patients detected a guanine deletion (c.340_340delG) that was predicted to result in an early stop codon after 61 amino acids (p. D114Tfs*62). No CAPN1 pathogenic mutation was found in the EOPD or ALS groups. CONCLUSION Our data reveal a novel CAPN1 mutation found in patients with SPG/SCA and emphasize the spastic and ataxic phenotypes of SPG76, but CAPN1 may not play a major role in EOPD and ALS.
Collapse
|
48
|
Shetty A, Gan-Or Z, Ashtiani S, Ruskey JA, van de Warrenburg B, Wassenberg T, Kamsteeg EJ, Rouleau GA, Suchowersky O. CAPN1 mutations: Expanding the CAPN1-related phenotype: From hereditary spastic paraparesis to spastic ataxia. Eur J Med Genet 2019; 62:103605. [DOI: 10.1016/j.ejmg.2018.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/31/2018] [Accepted: 12/15/2018] [Indexed: 01/20/2023]
|
49
|
Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H, Tsuji S, Schmahmann JD, Manto M, Rouleau GA, Klein C, Dupre N. The Classification of Autosomal Recessive Cerebellar Ataxias: a Consensus Statement from the Society for Research on the Cerebellum and Ataxias Task Force. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1098-1125. [PMID: 31267374 PMCID: PMC6867988 DOI: 10.1007/s12311-019-01052-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is currently no accepted classification of autosomal recessive cerebellar ataxias, a group of disorders characterized by important genetic heterogeneity and complex phenotypes. The objective of this task force was to build a consensus on the classification of autosomal recessive ataxias in order to develop a general approach to a patient presenting with ataxia, organize disorders according to clinical presentation, and define this field of research by identifying common pathogenic molecular mechanisms in these disorders. The work of this task force was based on a previously published systematic scoping review of the literature that identified autosomal recessive disorders characterized primarily by cerebellar motor dysfunction and cerebellar degeneration. The task force regrouped 12 international ataxia experts who decided on general orientation and specific issues. We identified 59 disorders that are classified as primary autosomal recessive cerebellar ataxias. For each of these disorders, we present geographical and ethnical specificities along with distinctive clinical and imagery features. These primary recessive ataxias were organized in a clinical and a pathophysiological classification, and we present a general clinical approach to the patient presenting with ataxia. We also identified a list of 48 complex multisystem disorders that are associated with ataxia and should be included in the differential diagnosis of autosomal recessive ataxias. This classification is the result of a consensus among a panel of international experts, and it promotes a unified understanding of autosomal recessive cerebellar disorders for clinicians and researchers.
Collapse
Affiliation(s)
- Marie Beaudin
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Antoni Matilla-Dueñas
- Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Bing-Weng Soong
- Department of Neurology, Shuang Ho Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan, Republic of China
- National Yang-Ming University School of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Jose Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Orlando G Barsottini
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Shoji Tsuji
- The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare, Chiba, Japan
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, UMons, Mons, Belgium
| | | | | | - Nicolas Dupre
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
50
|
Bitar M, Kuiper S, O'Brien EA, Barry G. Genes with human-specific features are primarily involved with brain, immune and metabolic evolution. BMC Bioinformatics 2019; 20:406. [PMID: 31757203 PMCID: PMC6873653 DOI: 10.1186/s12859-019-2886-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022] Open
Abstract
Background Humans have adapted to widespread changes during the past 2 million
years in both environmental and lifestyle factors. This is evident in overall
body alterations such as average height and brain size. Although we can
appreciate the uniqueness of our species in many aspects, molecular variations
that drive such changes are far from being fully known and explained.
Comparative genomics is able to determine variations in genomic sequence that
may provide functional information to better understand species-specific
adaptations. A large number of human-specific genomic variations have been
reported but no currently available dataset comprises all of these, a problem
which contributes to hinder progress in the field. Results Here we critically update high confidence human-specific genomic
variants that mostly associate with protein-coding regions and find 856 related
genes. Events that create such human-specificity are mainly gene duplications,
the emergence of novel gene regions and sequence and structural alterations.
Functional analysis of these human-specific genes identifies adaptations to
brain, immune and metabolic systems to be highly involved. We further show that
many of these genes may be functionally associated with neural activity and
generating the expanded human cortex in dynamic spatial and temporal
contexts. Conclusions This comprehensive study contributes to the current knowledge by
considerably updating the number of human-specific genes following a critical
bibliographic survey. Human-specific genes were functionally assessed for the
first time to such extent, thus providing unique information. Our results are
consistent with environmental changes, such as immune challenges and alterations
in diet, as well as neural sophistication, as significant contributors to recent
human evolution. Electronic supplementary material The online version of this article (10.1186/s12859-019-2886-2) contains supplementary material, which is available to authorized
users.
Collapse
Affiliation(s)
- Mainá Bitar
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia.
| | - Stefanie Kuiper
- School of Natural Sciences, Griffith University, Nathan, QLD, 4111, Australia
| | - Elizabeth A O'Brien
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia
| | - Guy Barry
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia.,The School of Medicine, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|