1
|
Wu X, Song Y, Yuan Z, Wu S. Preclinical insights into the potential of itaconate and its derivatives for liver disease therapy. Metabolism 2025; 165:156152. [PMID: 39909101 DOI: 10.1016/j.metabol.2025.156152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/12/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Annually, approximately 3.5 % of the world's population dies of cirrhosis or liver cancer, and the burden of liver disease is steadily expanding owing to multiple factors such as alcohol consumption, irrational diets, viral transmission, and exposure to drugs and toxins. However, the lack of effective therapies and the adverse effects of some medications remain a threat to the management of liver disease. Recently, immunometabolism, as an emerging discipline, appears to be the focus of unprecedented research. As a natural metabolite that regulates cellular functions, itaconate is a crucial bridge connecting metabolism and immune response. Remodeling immune function through metabolic modulation may be a promising alternative for disease intervention strategies. In this review, we first briefly describe the historical origin of itaconate and the development of its derivatives. This was followed by a review of the molecular mechanisms by which itaconate regulated immune-metabolic responses. Furthermore, we analyzed the effects of itaconate regulation on immune cells of the hepatic system. Finally, we summarized the experimental evidence for itaconate and its derivatives in the therapeutic application of liver diseases. Itaconate is potentially an invaluable component of emerging therapeutic strategies for liver disease.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanhong Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Shuodong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Zhao Y, Zhang J, Yan W, Jiang P, Li J, He H, Ma H, Zhang Y, Yang K, Jiang M, Xi X. Folium Hibisci Mutabilis extract suppresses M1 macrophage polarization through mitochondrial function enhancement in murine acute gouty arthritis. Chin Med 2025; 20:28. [PMID: 40022141 PMCID: PMC11869456 DOI: 10.1186/s13020-025-01081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Acute gout arthritis (AGA) is a common metabolic joint disease and urgently needs a safer alternative therapy due to the significant side effects from long-term use of primary medications. Folium Hibisci Mutabilis, a traditional medicinal herb, has demonstrated promising therapeutic efficacy in the clinical management of AGA, but its pharmacological mechanisms remain to be elucidated. METHODS Folium Hibisci Mutabili was isolated and refined into the Folium Hibisci Mutabilis Extract (FHME). Then, monosodium urate-induced AGA animal models were applied to identify the anti-inflammatory and analgesic effects of FHME in vivo through various techniques, including ultrasonography, Paw withdrawal thresholds, histological staining, etc. We used RNA-seq, qRT-PCR, ELISA, and flow cytometry to evaluate the efficacy of FHME on M1 polarization. Utilizing transmission electron microscope and oxygen consumption rate examinations in conjunction with Mito-Tracker staining, we observed the effects of FHME on mitochondrial morphology and function. Finally, we employed proteomics analysis, siRNA, qRT-PCR, western blot and other techniques to investigate the underlying mechanism of FHME's actions between the two phenotypes and the key targets. RESULTS We observed a notable reduction in inflammation and pain, as well as the decreased infiltration of inflammatory cells and expression of IL-1β in synovial tissue of AGA mice upon treatment with FHME. FHME suppressed TNF-α, IL-1β, iNOS, and IL-18 expression in BMDM-derived macrophages and inhibited the formation of F4/80+CD86+ cells. Mechanically, FHME protected mitochondrial morphology and stimulated the expression of key oxidative phosphorylation proteins, such as Ubiquinol Cytochrome c Reductase Core Protein I (UQCRC1), UQCRC2, CYCS, and NDUFA4. Additionally, it enhanced the activity of respiratory complex III, recovered cellular aerobic respiration under LPS and MSU induction. FHME lost its effect to downregulate M1 macrophage polarization with the presence of rotenone or si-UQCRC1. Finally, 10 compounds were identified from FHME having potential binding affinity with the UQCRC1 protein. CONCLUSIONS The therapeutic potential of FHME for AGA is associated with the maintenance of mitochondrial function to inhibit M1 macrophage polarization, which is intimately linked to the UQCRC1. Our findings highlight the potential of Folium Hibisci Mutabilis as a safe and effective approach for AGA.
Collapse
Affiliation(s)
- Yichen Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiahui Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Clinical Laboratory, Wuxi Branch of Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Wuxi, 214111, China
| | - Wei Yan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ping Jiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Juncheng Li
- Wenzhou Medical University, Wenzhou, 325035, China
| | - Haojun He
- Wenzhou Medical University, Wenzhou, 325035, China
| | - Honghong Ma
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuxin Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kai Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Min Jiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xiaobing Xi
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Lin Y, Zhang X, Sun D, Wang Q, Dou S, Zhou Q. Decoding the corneal immune microenvironment in healthy and diabetic mice during corneal wound healing. Ocul Surf 2025; 37:68-79. [PMID: 40023495 DOI: 10.1016/j.jtos.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Diabetic keratopathy (DK) is an underdiagnosed ocular complication of diabetes mellitus. The changes of ocular immune microenvironment contribute to the pathogenesis of DK, while precise mechanisms remain inadequately understood. Here, we employed single-cell RNA sequencing (scRNA-seq) to elucidate the transcriptional alterations of immune cells from diabetic and healthy control mouse corneas during homeostasis and wound healing. Unbiased clustering analysis unveiled 3 major cell subsets and 11 subdivided cell clusters, including T cells, monocyte lineages, and neutrophil subpopulations. The further sub-clustering analysis demonstrated that T cells exhibited cytotoxicity characteristics in both homeostasis and wound healing of diabetic cornea. Moreover, dendritic cells preferred the migratory and maturation phenotype and may recruit and maintain cytotoxic T cells. Macrophages in diabetic cornea preferred the pro-inflammatory M1 phenotype. Under injury conditions, diabetic corneal neutrophils exhibited a more mature and functional possession of neutrophil extracellular traps (NETs). Furthermore, cell-cell communication revealed that the immune cells exhibited hyperactivation and pro-inflammatory responses, while the monocyte lineages exhibited the activating effect on T cells in diabetic cornea. This study represents the inaugural effort to establish a comprehensive scRNA-Seq transcriptomic profile of corneal immune cells during wound healing in healthy and diabetic mice, which offers a valuable reference for subsequent investigations into the pathological roles of immune cells in DK.
Collapse
Affiliation(s)
- Yujing Lin
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Xiaowen Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Di Sun
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Qun Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
4
|
Li R, Tang Y, Huang W, Li R, Liu J. The Roles of Apolipoprotein A1-Binding Protein in Metabolic Diseases. Nutr Rev 2025:nuaf021. [PMID: 40036350 DOI: 10.1093/nutrit/nuaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Metabolic disorders, including atherosclerosis, diabetes, and metabolic dysfunction-associated steatotic liver disease, are closely related to increased cardiovascular risks, significantly harming human life and health. Apolipoprotein A1-binding protein (AIBP), a multifunctional protein, plays crucial role in cholesterol metabolism. AIBP exerts an important action in managing metabolic diseases by interacting with apolipoprotein A-I and ATP-binding cassette transporter A1 activities to regulate high-density lipoprotein)-mediated cholesterol transport and to maintain lipid homeostasis. In addition, AIBP suppresses inflammatory stress and abnormal angiogenesis, and acts as an NAD(P)HX epimerase to optimize energy metabolism. In this review, the multiple roles of AIBP in clinical metabolic diseases are summarized, and AIBP is proposed to be a potential therapeutic target against metabolic diseases.
Collapse
Affiliation(s)
- Ruihan Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541199, PR China
| | - Yuqi Tang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541199, PR China
| | - Wenjun Huang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541199, PR China
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541199, PR China
| | - Jiaqi Liu
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541199, PR China
| |
Collapse
|
5
|
Banki K, Perl A. Cell type-specific regulation of the pentose phosphate pathway during development and metabolic stress-driven autoimmune diseases: Relevance for inflammatory liver, renal, endocrine, cardiovascular and neurobehavioral comorbidities, carcinogenesis, and aging. Autoimmun Rev 2025; 24:103781. [PMID: 40010622 DOI: 10.1016/j.autrev.2025.103781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
The pathogenesis of autoimmunity is incompletely understood which limits the development of effective therapies. New compelling evidence indicates that the pentose phosphate pathway (PPP) profoundly regulate lineage development in the immune system that are influenced by genetic and environmental factors during metabolic stress underlying the development of autoimmunity. The PPP provides two unique metabolites, ribose 5-phosphate for nucleotide biosynthesis in support of cell proliferation and NADPH for protection against oxidative stress. The PPP operates two separate branches, oxidative (OxPPP) and non-oxidative (NOxPPP). While the OxPPP functions in all organisms, the NOxPPP reflects adaptation to niche-specific metabolic requirements. The OxPPP primarily depends on glucose 6-phosphate dehydrogenase (G6PD), whereas transaldolase (TAL) controls the rate and directionality of metabolic flux though the NOxPPP. G6PD is essential for normal development but its partial deficiency protects from malaria. Although men and mice lacking TAL develop normally, they exhibit liver cirrhosis progressing to hepatocellular carcinoma. Mechanistic target of rapamycin-dependent loss of paraoxonase 1 drives autoimmunity and cirrhosis in TAL deficiency, while hepatocarcinogenesis hinges on polyol pathway activation via aldose reductase (AR). Accumulated polyols, such as erythritol, xylitol, and sorbitol, which are commonly used as non-caloric sweeteners, may act as pro-inflammatory oncometabolites under metabolic stress, such as TAL deficiency. The TAL/AR axis is identified as a checkpoint of pathogenesis and target for treatment of metabolic stress-driven systemic autoimmunity with relevance for inflammatory liver, renal and cardiovascular disorders, diabetes, carcinogenesis, and aging.
Collapse
Affiliation(s)
- Katalin Banki
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, and Pathology, State University of New York Upstate Medical University, Norton College of Medicine, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Andras Perl
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, and Pathology, State University of New York Upstate Medical University, Norton College of Medicine, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
6
|
Zhang Q, Yu BX, Long J, Chen XW, Huang F, Wu WQ, Liu YD, Zeng GH, Huang LH, Sun XY. An Ultrasmall Self-Assembled Gallic-Acid-Based Natural Multifunctional Defense Networks for Therapeutic Application in Calcium Oxalate Nephropathies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500270. [PMID: 39981771 DOI: 10.1002/smll.202500270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Kidney stones, which have high prevalence and recurrence rates, often cause severe oxidative damage and inflammation. The ultrasmall hydrodynamic diameter of nanoparticles is crucial for their enrichment in the kidneys to exert biological activity. However, integrating crystallization inhibition and therapeutic functions into a single ultrasmall nanoparticle is challenging. A novel ultrasmall iron (Fe)-gallic acid (Ga) metal-phenolic networks (Fe-Ga MPNs) is developed for treating calcium oxalate (CaOx) nephropathies. These MPNs can specifically adsorb on the high-energy (1 ¯ 01 $\bar{1}01$ ) crystal face to inhibit the growth of CaOx monohydrate (COM), promoting the phase transition from highly toxic COM to low-risk CaOx dihydrate. Fe-Ga MPNs have broad-spectrum free radical scavenging abilities, reducing oxidative damage and inhibiting cell apoptosis. They exhibit sensitivity toward kidney damage, accumulating in injured renal tissue, reducing tubule injury and inflammation, improving tubule function, and inhibiting crystal formation. Fe-Ga MPNs also inhibit pro-inflammatory macrophage polarization and upregulate anti-inflammatory and highly phagocytic macrophage polarization. RNA sequencing analysis shows that Fe-Ga MPNs induce transcriptomic changes mainly involving immune regulation and citrate homeostasis pathways. In conclusion, the multifunctional nanonetwork Fe-Ga MPNs, with crystallization inhibition, antioxidant, and immune regulation properties, show great potential in treating CaOx nephropathies.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Urology, Guangzhou Institute of Urology, Guangdong Provincial Key Laboratory of Urological Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Bang-Xian Yu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Provincial Key Laboratory of Urological Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Jun Long
- Department of Urology, Guangzhou Institute of Urology, Guangdong Provincial Key Laboratory of Urological Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Xue-Wu Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Provincial Key Laboratory of Urological Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Fang Huang
- Department of Urology, Guangzhou Institute of Urology, Guangdong Provincial Key Laboratory of Urological Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Wen-Qi Wu
- Department of Urology, Guangdong Provincial Key Laboratory of Urological Diseases, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Yong-Da Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Provincial Key Laboratory of Urological Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Guo-Hua Zeng
- Department of Urology, Guangzhou Institute of Urology, Guangdong Provincial Key Laboratory of Urological Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Ling-Hong Huang
- Department of Urology, Guangzhou Institute of Urology, Guangdong Provincial Key Laboratory of Urological Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Xin-Yuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Provincial Key Laboratory of Urological Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| |
Collapse
|
7
|
Huang Y, Chen T, Ren C, Bao B, Huang R, Sun Y, Yu C, Yang Y, Wong WT, Zeng Q, Jiang L, Liu T, Lin Q, Zhu L, Liao Y. High-Strength Gelatin Hydrogel Scaffold with Drug Loading Remodels the Inflammatory Microenvironment to Enhance Osteoporotic Bone Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501051. [PMID: 39972948 DOI: 10.1002/adma.202501051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/10/2025] [Indexed: 02/21/2025]
Abstract
Osteoporosis is a widespread condition that induces an inflammatory microenvironment, limiting the effectiveness of conventional therapies and presenting significant challenges for bone defect repair. To address these issues, a high-strength gelatin hydrogel scaffold loaded with roxadustat is developed, specifically designed to remodel the inflammatory microenvironment and enhance osteoporotic bone regeneration. By incorporating minimal methacrylated hyaluronic acid (HAMA) into an o-nitrobenzyl functionalized gelatin (GelNB) matrix, a gelatin hydrogel with a fracture strength of 10 MPa is achieved, providing exceptional structural stability and enabling precise scaffold fabrication through digital light processing (DLP) 3D printing. Validated through cell experiments and animal studies, the hydrogel scaffold supports cell adhesion and migration, offers excellent tissue compatibility, and is fully degradable, meeting the requirements of a therapeutic scaffold. Including roxadustat further enhances the scaffold's functionality by regulating the inflammatory microenvironment via hypoxia-inducible factor-1α (HIF-1α) signaling, significantly improving bone defect repair in osteoporotic models. This drug-loaded scaffold effectively addresses inflammation-induced limitations and enhances the regenerative capacity of the affected area, paving the way for improved therapeutic outcomes in osteoporotic bone repair.
Collapse
Affiliation(s)
- Yangguang Huang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Ting Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunling Ren
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bingkun Bao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rongkun Huang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yingxiao Sun
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Changlong Yu
- Burn Plastic Wound Repair Surgery of Ganzhou Hospital of Guangdong Provincial People's Hospital, GanZhou, 341000, China
| | - Yunlong Yang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Wing Tak Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Qingmei Zeng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Jiang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tuan Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiuning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linyong Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yun Liao
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
8
|
Huang J, Shi J, Ma N, Li Y, Jin W, Zhang H, Zhang X, Luo N, Ding Y, Xie Q, Li Q, Xiong Y. Celastrol-loaded ginsenoside Rg3 liposomes enhance anti-programmed death ligand 1 immunotherapy by inducing immunogenic cell death in triple-negative breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156514. [PMID: 39986227 DOI: 10.1016/j.phymed.2025.156514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC), characterized by high heterogeneity and invasiveness. Currently, inducing immunogenic cell death (ICD) of tumor cells through approaches such as radiotherapy and chemotherapy is an effective strategy to enhance the response to anti-programmed death-ligand 1 antibody (aPD-L1) therapy in TNBC. However, radiotherapy and chemotherapy treatments often upregulate PD-L1 expression in tumor cells, thereby weakening the tumor cells' response to aPD-L1. Celastrol exhibits broad-spectrum and potent anti-tumor activity, efficiently inducing ICD without increasing PD-L1 levels in tumor cells. PURPOSE This study aims to elucidate the tumor-targeting effects of celastrol-loaded liposomes and its synergistic efficacy and mechanism of action in combination with aPD-L1 against TNBC. METHODS The Rg3 liposomes loaded with celastrol (Cel-Rg3-Lp) were prepared using the thin-film hydration method. BALB/c mice were utilized to establish an in situ breast cancer model. Mice were intravenously injected with Cel-Rg3-Lp at a dosage of celastrol 1 mg/kg once every two days for a total of 7 injections. Flow cytometry, western blot, and immunofluorescence techniques were employed to investigate the synergistic effects and mechanisms of Cel-Rg3-Lp combined with aPD-L1 in the treatment of TNBC. RESULTS The findings of this study demonstrate that after 7 administrations of Cel-Rg3-Lp (1 mg/kg celastrol, intravenously), significant anti-tumor effects are observed, including the recruitment of CD8+T cells and dendritic cells (DCs), while reducing the infiltration of immunosuppressive cells. The therapeutic efficacy was further enhanced when combined with aPD-L1. Additionally, Cel-Rg3-Lp markedly downregulated glucose-regulated protein 78 (GRP78) expression, thereby inducing ICD in tumor cells. CONCLUSION This study successfully constructed a multifunctional liposome and proposed a mechanism for inducing ICD through the GRP78-endoplasmic reticulum stress pathway. The liposome downregulates GRP78, triggering endoplasmic reticulum stress in tumor cells, inducing ICD, activating DCs, and enhancing antigen presentation to T cells. This improves the tumor immune microenvironment and provides a theoretical foundation for combining Cel-Rg3-Lp with aPD-L1 in the treatment of TNBC. This mechanism opens unique prospects for using celastrol in TNBC therapy and enhancing the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Jingyi Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jingbin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ninghui Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yujie Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Wanyu Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Hongyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Xin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ningchao Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ye Ding
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Qiong Xie
- Gynecology Department, Zhoushan Hospital of Traditional Chinese Medicine (Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University), Zhoushan, Zhejiang 316000, China.
| | - Qiushuang Li
- Center of Clinical Evaluation and Analysis, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310053, China.
| | - Yang Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
9
|
Li Y, Ai S, Li Y, Ye W, Li R, Xu X, Liu Q. The role of natural products targeting macrophage polarization in sepsis-induced lung injury. Chin Med 2025; 20:19. [PMID: 39910395 PMCID: PMC11800549 DOI: 10.1186/s13020-025-01067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Sepsis-induced acute lung injury (SALI) is characterized by a dysregulated inflammatory and immune response. As a key component of the innate immune system, macrophages play a vital role in SALI, in which a macrophage phenotype imbalance caused by an increase in M1 macrophages or a decrease in M2 macrophages is common. Despite significant advances in SALI research, effective drug therapies are still lacking. Therefore, the development of new treatments for SALI is urgently needed. An increasing number of studies suggest that natural products (NPs) can alleviate SALI by modulating macrophage polarization through various targets and pathways. This review examines the regulatory mechanisms of macrophage polarization and their involvement in the progression of SALI. It highlights how NPs mitigate macrophage imbalances to alleviate SALI, focusing on key signaling pathways such as PI3K/AKT, TLR4/NF-κB, JAK/STAT, IRF, HIF, NRF2, HMGB1, TREM2, PKM2, and exosome-mediated signaling. NPs influencing macrophage polarization are classified into five groups: terpenoids, polyphenols, alkaloids, flavonoids, and others. This work provides valuable insights into the therapeutic potential of NPs in targeting macrophage polarization to treat SALI.
Collapse
Affiliation(s)
- Yake Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Sinan Ai
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yuan Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wangyu Ye
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Rui Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
10
|
He Z, Pan X, Xie K, Sakao K, Chen J, Komatsu M, Hou DX. The Effects of Fisetin on Gene Expression Profile and Cellular Metabolism in IFN-γ-Stimulated Macrophage Inflammation. Antioxidants (Basel) 2025; 14:182. [PMID: 40002369 PMCID: PMC11852181 DOI: 10.3390/antiox14020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/22/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Although interferon-gamma (IFN-γ) is known as a critical factor in polarizing macrophages into the pro-inflammatory state for immune response, how dietary flavonoids regulate IFN-γ response for anti-inflammation is incompletely elucidated. This study aims to investigate the effect of fisetin, a typical flavonol, on the inhibition of IFN-γ-induced inflammation by RNA sequencing (RNA-Seq) and cellular metabolism analysis. RAW264 macrophages pretreated with fisetin following IFN-γ stimulation were subjected to RNA-Seq to analyze alterations in gene expression. Cellular signaling and transcription were investigated using enrichment analysis, motif analysis, and transcription factor prediction. Cellular metabolic state was assessed by measuring the oxygen consumption rate (OCR) and lactate level to reflect mitochondrial respiration and glycolysis. Alterations in signaling proteins were confirmed by Western blot. The results revealed that fisetin downregulated the IFN-γ-induced expression of pro-inflammatory genes and M1 marker genes such as Cxcl9, Il6, Cd80, Cd86, and Nos2. In cellular metabolism, fisetin upregulated the oxidative phosphorylation (OXPHOS) pathway, restored impaired OCR, and reduced lactate production induced by IFN-γ. Motif analysis suggested that fisetin suppressed the activation of IFN-regulatory factor 1 (IRF1). Western blot data further confirmed that fisetin inhibited the phosphorylation of Jak1, Jak2, and STAT1, and decreased the nuclear accumulation of phosphorylated STAT1 and IRF1 induced by IFN-γ. Taken together, our data revealed that fisetin is a potent flavonoid that attenuates IFN-γ-stimulated murine macrophage inflammation and ameliorates disrupted cellular metabolism with a possible Jak1/2-STAT1-IRF1 pathway.
Collapse
Affiliation(s)
- Ziyu He
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (Z.H.); (K.S.); (M.K.)
| | - Xuchi Pan
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kun Xie
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Kozue Sakao
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (Z.H.); (K.S.); (M.K.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Jihua Chen
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410128, China;
| | - Masaharu Komatsu
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (Z.H.); (K.S.); (M.K.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - De-Xing Hou
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (Z.H.); (K.S.); (M.K.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
11
|
Zhang J, Hao L, Li S, He Y, Zhang Y, Li N, Hu X. mTOR/HIF-1α pathway-mediated glucose reprogramming and macrophage polarization by Sini decoction plus ginseng soup in ALF. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156374. [PMID: 39798342 DOI: 10.1016/j.phymed.2025.156374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/22/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Acute liver failure (ALF) has a high mortality rate, and despite treatment advancements, long-term outcomes remain poor. PURPOSE This study explores the therapeutic targets and pathways of Sini Decoction plus Ginseng Soup (SNRS) in ALF using bioinformatics and network pharmacology, focusing on its impact on macrophage polarization through glucose metabolism reprogramming. The efficacy of SNRS was validated in an LPS/D-GalN-induced ALF model, and its optimal concentration was determined for in vitro macrophage intervention. STUDY DESIGN AND METHODS Differentially expressed genes (DEGs) in HBV-induced and acetaminophen-induced ALF were identified from GEO datasets. The correlation between target gene expression and immune cell infiltration in ALF liver tissue was analyzed. AST, ALT, TNF-α, HMGB1, IL-1β, IL-6, and IL-10 levels were measured, and liver histopathology was assessed. Macrophage polarization was analyzed via immunofluorescence, flow cytometry, and Western blot. Glycolysis-related enzymes and metabolites, including HK2, PFK-1, PKM2, and LDHA, were quantified. Cellular ultrastructure was examined by transmission electron microscopy. RESULTS Five key glycolysis-regulating genes (HK2, CDK1, SOD1, VEGFA, GOT1) were identified, with significant involvement in the HIF-1 signaling pathway. Immune infiltration was markedly higher in ALF liver tissue. SNRS improved survival, reduced ALT/AST levels, alleviated liver injury, and modulated macrophage polarization by decreasing CD86 and increasing CD163 expression. In vitro, SNRS inhibited LPS-induced inflammatory cytokine release, lactate production, p-mTOR/mTOR ratio, and HIF-1α expression. CONCLUSION SNRS modulates macrophage polarization and glucose metabolism reprogramming via the mTOR/HIF-1α pathway, showing promise as a treatment for ALF.
Collapse
Affiliation(s)
- Junli Zhang
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinghuai District, Nanjing, Jiangsu 210029, PR China
| | - Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Shenghao Li
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Ying He
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Yang Zhang
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Na Li
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China.
| |
Collapse
|
12
|
Yang T, Zhang Y, Duan C, Liu H, Wang D, Liang Q, Chen X, Ma J, Cheng K, Chen Y, Zhuang R, Yin J. CD300E + macrophages facilitate liver regeneration after splenectomy in decompensated cirrhotic patients. Exp Mol Med 2025; 57:72-85. [PMID: 39741181 PMCID: PMC11799435 DOI: 10.1038/s12276-024-01371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/15/2024] [Accepted: 09/30/2024] [Indexed: 01/02/2025] Open
Abstract
Liver cirrhosis is prognostically associated with poor life expectancy owing to subsequent liver failure. Thus, understanding liver regeneration processes during cirrhotic injury is highly important. This study explored the role of macrophage heterogeneity in liver regeneration following splenectomy. We collected detailed clinical information from 54 patients with decompensated cirrhosis before and after splenectomy. Obvious liver regeneration was observed after splenectomy in cirrhotic patients. Single-cell RNA sequencing (scRNA-seq) was performed on three paired liver tissues from patients before and after surgery to explore the immune microenvironment map and the characteristics of liver regeneration-associated macrophages (RAMs). scRNA-seq analysis revealed that the composition of hepatic immune cells changed after splenectomy; among these changes, the proportion of CD300E+ RAMs significantly increased after surgery, and high expression levels of functional genes associated with cell proliferation promoted liver regeneration. Moreover, a mouse model of carbon tetrachloride-induced cirrhosis and a coculture system consisting of primary bone marrow-derived macrophages and hepatocytes were established for validation. We observed a similar phenomenon of liver regeneration in cirrhotic mice and further confirmed that CD300E+ monocyte-derived macrophages facilitated hepatocyte NAD+ synthesis via the secretion of NAMPT, which subsequently promoted hepatocyte proliferation. This study characterized the hepatic immune microenvironment in patients with cirrhosis following splenectomy. Our findings demonstrated that CD300E+ macrophages play a crucial role in remodeling the hepatic immune microenvironment after splenectomy, thereby promoting liver regeneration in patients with decompensated cirrhosis. CD300E+ macrophages are anticipated to emerge as a novel therapeutic strategy for the treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Tao Yang
- Department of General Surgery, Tangdu Hospital of the Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shaanxi, China
| | - Yuan Zhang
- Department of Immunology, Air Force Medical University, 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Chujun Duan
- Department of Immunology, Air Force Medical University, 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Hui Liu
- Department of General Surgery, Tangdu Hospital of the Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shaanxi, China
| | - Dong Wang
- Department of General Surgery, Tangdu Hospital of the Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shaanxi, China
| | - Qingshan Liang
- Department of General Surgery, Tangdu Hospital of the Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shaanxi, China
| | - Xiao Chen
- Department of General Surgery, Tangdu Hospital of the Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shaanxi, China
| | - Jingchang Ma
- Department of Immunology, Air Force Medical University, 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Kun Cheng
- Department of Immunology, Air Force Medical University, 169 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, Xijing Hospital of the Air Force Medical University, 15 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Ran Zhuang
- Department of Immunology, Air Force Medical University, 169 West Changle Road, Xi'an, 710032, Shaanxi, China.
| | - Jikai Yin
- Department of General Surgery, Tangdu Hospital of the Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
13
|
Ball AB, Jones AE, Nguyễn KB, Rios A, Marx N, Hsieh WY, Yang K, Desousa BR, Kim KKO, Veliova M, Del Mundo ZM, Shirihai OS, Benincá C, Stiles L, Bensinger SJ, Divakaruni AS. Pro-inflammatory macrophage activation does not require inhibition of oxidative phosphorylation. EMBO Rep 2025; 26:982-1002. [PMID: 39753784 PMCID: PMC11850891 DOI: 10.1038/s44319-024-00351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 02/26/2025] Open
Abstract
Pro-inflammatory macrophage activation is a hallmark example of how mitochondria serve as signaling organelles. Oxidative phosphorylation sharply decreases upon classical macrophage activation, as mitochondria are thought to shift from ATP production towards accumulating signals that amplify effector function. However, evidence is conflicting regarding whether this collapse in respiration is essential or dispensable. Here we systematically examine this question and show that reduced oxidative phosphorylation is not required for pro-inflammatory macrophage activation. Different pro-inflammatory stimuli elicit varying effects on bioenergetic parameters, and pharmacologic and genetic models of electron transport chain inhibition show no causative link between respiration and macrophage activation. Furthermore, the signaling metabolites succinate and itaconate can accumulate independently of characteristic breaks in the TCA cycle in mouse and human macrophages, and peritoneal macrophages can be activated in vivo without inhibition of oxidative phosphorylation. The results indicate there is plasticity in the metabolic phenotypes that can support pro-inflammatory macrophage activation.
Collapse
Affiliation(s)
- Andréa B Ball
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kaitlyn B Nguyễn
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amy Rios
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nico Marx
- Institute of Integrative Cell Biology and Physiology, Bioenergetics and Mitochondrial Dynamics Section, University of Münster, Schloßplatz 5, D-49078, Münster, Germany
| | - Wei Yuan Hsieh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Krista Yang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brandon R Desousa
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristen K O Kim
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michaela Veliova
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zena Marie Del Mundo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Orian S Shirihai
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cristiane Benincá
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Linsey Stiles
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Steven J Bensinger
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Hou J, Zheng L, Li X, Sun Y. CircZNF609 sponges miR-135b to up-regulate SEMA3A expression to alleviate ox-LDL-induced atherosclerosis. Mol Cell Biochem 2025; 480:1105-1120. [PMID: 38819599 DOI: 10.1007/s11010-024-05031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/04/2024] [Indexed: 06/01/2024]
Abstract
The initiation and progression of atherosclerotic plaque caused by abnormal lipid metabolism is one of the main causes of atherosclerosis (AS). Lipid droplet accumulation has become a novel research pointcut for AS treatment in recent years. In AS patients, miR-135b level was up-regulated relative to the normal cases, which showed negative correlations with the levels of Semaphorin 3A (SEMA3A) and circZNF609, separately. The U937-derived macrophages were cultured with ox-LDL to establish AS models in vitro. After that, the lipid accumulation, inflammation, mitochondrial dysfunction and cell death were evaluated by ORO, ELISA, RT-qPCR, western blot, JC-1 and FCM assays respectively. Transfection of the circZNF609 expression vector notably declined lipid accumulation, attenuated inflammation, reduced mitochondrial dysfunction and inhibited cell death in ox-LDL-stimulated cells. The direct binding of miR-135b to circZNF609 in vitro was confirmed using RIP assay, and SEMA3A expression was up-regulated by circZNF609 overexpression. After manipulating the endogenous expressions of circZNF609, miR-135b and SEMA3A, the above damages in ox-LDL-stimulated cells were rescued by inhibition of miR-135b expression and overexpression of circZNF609 or SEMA3A. Besides, the AS mice model was built to demonstrate the excessive lipid accumulation, increasing inflammation and cell death in AS pathogenesis according to the results of HE staining, ELISA and IHC assays, while these damages were reversed after overexpression of circZNF609 or SEMA3A. In AS models, overexpressed circZNF609 prevents the AS progression through depleting miR-135b expression and subsequent up-regulation of SEMA3A expression to overwhelm lipid accumulation, mitochondrial dysfunction and cell death.
Collapse
Affiliation(s)
- Jian Hou
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, No. 366, Taishan Street, Tai'an, 271021, Shandong, People's Republic of China
| | - Lingling Zheng
- Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying District, Dongying, 257000, Shandong, People's Republic of China
| | - Xiangyun Li
- Outpatient Department, Feicheng People's Hospital, Tai'an, 271600, Shandong, People's Republic of China
| | - Yao Sun
- Department of General Practice, Zibo Central Hospital, No.54, Gongqingtuan Road, Zhangdian District, Zibo, 255036, Shandong, People's Republic of China.
| |
Collapse
|
15
|
Zhao M, Jankovic D, Link VM, Souza COS, Hornick KM, Oyesola O, Belkaid Y, Lack J, Loke P. Genetic variation in IL-4 activated tissue resident macrophages determines strain-specific synergistic responses to LPS epigenetically. Nat Commun 2025; 16:1030. [PMID: 39863579 PMCID: PMC11762786 DOI: 10.1038/s41467-025-56379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries. IL-4-directed epigenomic remodeling reveals C57BL/6 specific enrichment of NF-κB, IRF, and STAT motifs. Additionally, IL-4-activated C57BL/6 TRMs demonstrate an augmented synergistic response upon in vitro lipopolysaccharide (LPS) exposure, despite naïve BALB/c TRMs displaying a more robust transcriptional response to LPS. Single-cell RNA sequencing (scRNA-seq) analysis of mixed bone marrow chimeras indicates that transcriptional differences and synergy are cell intrinsic within the same tissue environment. Hence, genetic variation alters IL-4-induced cell intrinsic epigenetic reprogramming resulting in strain specific synergistic responses to LPS exposure.
Collapse
Affiliation(s)
- Mingming Zhao
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Dragana Jankovic
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Camila Oliveira Silva Souza
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Katherine M Hornick
- NIAID Collaborative Bioinformatics Resource, Integrated Data Sciences Section, Research Technology Branch, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Oyebola Oyesola
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource, Integrated Data Sciences Section, Research Technology Branch, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Png Loke
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
16
|
Karadima E, Chavakis T, Alexaki VI. Arginine metabolism in myeloid cells in health and disease. Semin Immunopathol 2025; 47:11. [PMID: 39863828 PMCID: PMC11762783 DOI: 10.1007/s00281-025-01038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses. Conversely, the arginase 1 (ARG1)-dependent switch between the branch of NO production and polyamine synthesis downregulates inflammation and promotes recovery of tissue homeostasis. Creatine metabolism is key for energy supply and proline metabolism is required for collagen synthesis. Myeloid ARG1 also regulates extracellular arginine availability and T cell responses in parasitic diseases and cancer. Cancer, surgery, sepsis and persistent inflammation in chronic inflammatory diseases, such as neuroinflammatory diseases or arthritis, are associated with dysregulation of arginine metabolism in myeloid cells. Here, we review current knowledge on arginine metabolism in different myeloid cell types, such as macrophages, neutrophils, microglia, osteoclasts, tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs) and myeloid-derived suppressor cells (MDSCs). A deeper understanding of the function of arginine metabolism in myeloid cells will improve our knowledge on the pathology of several diseases and may set the platform for novel therapeutic applications.
Collapse
Affiliation(s)
- Eleftheria Karadima
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
17
|
Stoolman JS, Grant RA, Billingham LK, Poor TA, Weinberg SE, Harding MC, Lu Z, Miska J, Szibor M, Budinger GRS, Chandel NS. Mitochondria complex III-generated superoxide is essential for IL-10 secretion in macrophages. SCIENCE ADVANCES 2025; 11:eadu4369. [PMID: 39841842 PMCID: PMC11753406 DOI: 10.1126/sciadv.adu4369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Mitochondrial electron transport chain (ETC) function modulates macrophage biology; however, mechanisms underlying mitochondria ETC control of macrophage immune responses are not fully understood. Here, we report that mutant mice with mitochondria ETC complex III (CIII)-deficient macrophages exhibit increased susceptibility to influenza A virus (IAV) and LPS-induced endotoxic shock. Cultured bone marrow-derived macrophages (BMDMs) isolated from these mitochondria CIII-deficient mice released less IL-10 than controls following TLR3 or TLR4 stimulation. Unexpectedly, restoring mitochondrial respiration without generating superoxide using alternative oxidase (AOX) was not sufficient to reverse LPS-induced endotoxic shock susceptibility or restore IL-10 release. However, activation of protein kinase A (PKA) rescued IL-10 release in mitochondria CIII-deficient BMDMs following LPS stimulation. In addition, mitochondria CIII deficiency did not affect BMDM responses to interleukin-4 (IL-4) stimulation. Thus, our results highlight the essential role of mitochondria CIII-generated superoxide in the release of anti-inflammatory IL-10 in response to TLR stimulation.
Collapse
Affiliation(s)
- Joshua S. Stoolman
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rogan A. Grant
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Leah K. Billingham
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Taylor A. Poor
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Samuel E. Weinberg
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Madeline C. Harding
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ziyan Lu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marten Szibor
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, Am Klinikum 1, 07747 Jena, Germany
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Tampere, Finland
| | - GR Scott Budinger
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Navdeep S. Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
18
|
Tan T, Li J, Fan W, Shang K, Yang C, Liu X, Zhu S, Liu T, Wang J, Li Y, Lin Y. Tetrahedral Framework Nucleic Acid Relieves Sepsis-Induced Intestinal Injury by Regulating M2 Macrophages. Cell Prolif 2025:e13803. [PMID: 39844345 DOI: 10.1111/cpr.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025] Open
Abstract
This study aimed to clarify the role and mechanism of tetrahedral framework nucleic acids (tFNAs) in regulating M2 macrophages to reduce intestinal injury. An intestinal injury model was established by intraperitoneal injection of lipopolysaccharides (LPS) in mice to explore the alleviating effects of tFNAs on intestinal injury. Inflammatory factors were detected by quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA). The intestinal barrier and permeability were assessed using western blotting and immunohistochemistry. Macrophages in the gut were localised and quantified using immunofluorescence. Western blotting was used to investigate the role and mechanism of tFNAs in regulating macrophages and alleviating inflammation in the injured intestines. These results show that tFNAs attenuated sepsis-induced intestinal injury. tFNAs can also promote the intestinal barrier reconstruction and reduce intestinal permeability. In vivo, tFNAs accelerated the aggregation of M2 macrophages at an early stage of injury and reduced the number of M1 macrophages in the intestine. In addition, tFNAs enhanced the clearance ability of intestinal macrophages. They activated the signalling and transcription activating factor 1(STAT1) and cytokine signalling inhibitory factor 1/3 (SOCS1/3) pathways by increasing the expression of the phagocytic receptor Mertk. These findings indicated that tFNAs can alleviate sepsis-induced intestinal injury by regulating M2 macrophages, providing a new option for treating intestinal injury.
Collapse
Affiliation(s)
- Tingting Tan
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
- Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Beijing, People's Republic of China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jiajie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Department of Burns and Plastic Surgery, Chengdu, People's Republic of China
| | - Wensi Fan
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Kangni Shang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Chujun Yang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiaohao Liu
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shihui Zhu
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tong Liu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Junjie Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
- Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Beijing, People's Republic of China
| | - Yingchuan Li
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
- Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Beijing, People's Republic of China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Department of Burns and Plastic Surgery, Chengdu, People's Republic of China
| |
Collapse
|
19
|
Yang SS, Brooks NAH, Da Silva DE, Gibon J, Islam H, Klegeris A. Extracellular ATP regulates phagocytic activity, mitochondrial respiration, and cytokine secretion of human astrocytic cells. Purinergic Signal 2025:10.1007/s11302-025-10066-x. [PMID: 39833586 DOI: 10.1007/s11302-025-10066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
The two main glial cell types of the central nervous system (CNS), astrocytes and microglia, are responsible for neuroimmune homeostasis. Recent evidence indicates astrocytes can participate in removal of pathological structures by becoming phagocytic under conditions of neurodegenerative disease when microglia, the professional phagocytes, are impaired. We hypothesized that adenosine triphosphate (ATP), which acts as damage-associated molecular pattern (DAMP), when released at high concentrations into extracellular space, upregulates phagocytic activity of human astrocytes. This study is the first to measure changes in phagocytic activity and mitochondrial respiration of human astrocytic cells in response to extracellular ATP. We demonstrate that ATP-induced phagocytic activity of U118 MG astrocytic cells is accompanied by upregulated mitochondrial oxidative phosphorylation, which likely supports this energy-dependent process. Application of a selective antagonist A438079 provides evidence identifying astrocytic purinergic P2X7 receptor (P2X7R) as the potential regulator of their phagocytic function. We also report a rapid ATP-induced increase in intracellular calcium ([Ca2+]i), which could serve as regulator of both the phagocytic activity and mitochondrial metabolism, but this hypothesis will need to be tested in future studies. Since ATP upregulates interleukin (IL)-8 secretion by astrocytes but has no effect on their cytotoxicity towards neuronal cells, we conclude that extracellular ATP affects only specific functions of astrocytes. The selectivity of P2X7R-dependent regulation of astrocyte functions by extracellular ATP could allow targeting this receptor-ligand interaction to upregulate their phagocytic function. This could have beneficial outcomes in neurodegenerative disorders, such as Alzheimer's disease, that are characterized by reactive astrocytes and defective phagocytic processes.
Collapse
Affiliation(s)
- Sijie Shirley Yang
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Noah A H Brooks
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Dylan E Da Silva
- School of Health and Exercise Sciences, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Julien Gibon
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada.
| | - Andis Klegeris
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
20
|
Smyth TR, Brocke S, Kim YH, Christianson C, Kovalcik KD, Pancras JP, Hays MD, Wu W, An Z, Jaspers I. Human Monocyte-Derived Macrophages Demonstrate Distinct Responses to Ambient Particulate Matter in a Polarization State- and Particle Seasonality-Specific Manner. Chem Res Toxicol 2025; 38:73-90. [PMID: 39704336 DOI: 10.1021/acs.chemrestox.4c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Macrophages are professional phagocytic immune cells that, following activation, polarize on a spectrum between the proinflammatory M1 and the proresolution M2 states. Macrophages have further been demonstrated to retain plasticity, allowing for the reprogramming of their polarization states following exposure to new stimuli. Particulate matter (PM) has been repeatedly shown to modify macrophage function and polarization while also inducing worsening respiratory infection morbidity and mortality. However, limited work has considered the impact of the initial macrophage polarization state on subsequent responses to PM exposure. PM composition can demonstrate seasonality-specific compositional changes based on differences in seasonal weather patterns and energy needs, introducing the need to consider the seasonality-specific effects of airborne PM when investigating its impact on human health. This study sought to determine the impact of airborne PM collected during different seasons of the year in Xinxiang, China, on macrophage function in a polarization state-dependent manner. Macrophages were differentiated using the macrophage colony-stimulating factor (M-CSF) on CD14+CD16- monocytes isolated from the blood of healthy human volunteers. The resulting macrophages were polarized into indicated states using well-characterized polarization methods and assessed for phagocytic function, bioenergetic properties, and secretory profile following exposure to PM collected during a single day during each season of the year. Macrophages demonstrated clear polarization state-dependent phagocytic, bioenergetic, and secretory properties at the baseline and following PM exposure. Specific PM seasonality had a minimal impact on phagocytic function and a minor effect on bioenergetic properties but had clear impacts on the secretory profile as demonstrated by the enriched secretion of well-characterized mediator clusters by particle season. Together, these data suggest that both particle seasonality and macrophage polarization state must be considered when investigating the impact of PM on macrophage function. These factors may contribute to the negative outcomes linked to PM exposure during respiratory infections.
Collapse
Affiliation(s)
- Timothy R Smyth
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
| | - Stephanie Brocke
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
| | - Yong Ho Kim
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States of America
| | - Cara Christianson
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States of America
| | - Kasey D Kovalcik
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States of America
| | - Joseph Patrick Pancras
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States of America
| | - Michael D Hays
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States of America
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang 453004, China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang 453004, China
| | - Ilona Jaspers
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
| |
Collapse
|
21
|
Jones AE, Rios A, Ibrahimovic N, Chavez C, Bayley NA, Ball AB, Hsieh WY, Sammarco A, Bianchi AR, Cortez AA, Graeber TG, Hoffmann A, Bensinger SJ, Divakaruni AS. The metabolic cofactor Coenzyme A enhances alternative macrophage activation via MyD88-linked signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.28.587096. [PMID: 38585887 PMCID: PMC10996702 DOI: 10.1101/2024.03.28.587096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Metabolites and metabolic co-factors can shape the innate immune response, though the pathways by which these molecules adjust inflammation remain incompletely understood. Here we show that the metabolic cofactor Coenzyme A (CoA) enhances IL-4 driven alternative macrophage activation [m(IL-4)] in vitro and in vivo . Unexpectedly, we found that perturbations in intracellular CoA metabolism did not influence m(IL-4) differentiation. Rather, we discovered that exogenous CoA provides a weak TLR4 signal which primes macrophages for increased receptivity to IL-4 signals and resolution of inflammation via MyD88. Mechanistic studies revealed MyD88-linked signals prime for IL-4 responsiveness, in part, by reshaping chromatin accessibility to enhance transcription of IL-4-linked genes. The results identify CoA as a host metabolic co-factor that influences macrophage function through an extrinsic TLR4-dependent mechanism, and suggests that damage-associated molecular patterns (DAMPs) can prime macrophages for alternative activation and resolution of inflammation.
Collapse
|
22
|
Ivanova D, Semkova S, Grigorov B, Tzanova M, Georgieva A, Danchev D, Nikolova B, Yaneva Z. The General Principle of the Warburg Effect as a Possible Approach for Cancer Immunotherapy: The Regulatory Effect of Plant Extracts Could Change the Game. Molecules 2025; 30:393. [PMID: 39860262 PMCID: PMC11767411 DOI: 10.3390/molecules30020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
The interpretation of the biochemistry of immune metabolism could be considered an attractive scientific field of biomedicine research. In this review, the role of glycolysis in macrophage polarization is discussed together with mitochondrial metabolism in cancer cells. In the first part, the focus is on the Warburg effect and redox metabolism during macrophage polarization, cancer development, and management of the immune response by the cancer cells. The second part addresses the possibility of impacts on the Warburg effect through targeting peroxisome proliferator-activated receptors (PPARs). This could be an activator of native immune responses. Because of the reported serious adverse effects of using synthetic ligands for PPARs in combination with chemotherapeutics, searches for less toxic and more active PPAR inhibitors, as well as blocking undesirable cellular PPAR-dependent processes, are in progress. On the other hand, recent research in modern immunotherapy has focused on the search for gentle immune-modulating natural compounds with harmless synergistic chemotherapeutic efficacy that can be used as an adjuvant. It is a well-known fact that the plant kingdom is a source of important therapeutic agents with multifaceted effectiveness. One of these is the known association with PPAR activities. In this regard, the secondary metabolites extracted from plants could change the game.
Collapse
Affiliation(s)
- Donika Ivanova
- Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
- Department of Chemistry and Biochemistry, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Severina Semkova
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Boncho Grigorov
- Department of Molecular Biology, Immunology and Medical Genetics, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Milena Tzanova
- Department of Biological Sciences, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| | | | | | - Biliana Nikolova
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Zvezdelina Yaneva
- Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
23
|
Zhao F, Jiang X, Li Y, Huang T, Xiahou Z, Nie W, Li Q. Characterizing tumor biology and immune microenvironment in high-grade serous ovarian cancer via single-cell RNA sequencing: insights for targeted and personalized immunotherapy strategies. Front Immunol 2025; 15:1500153. [PMID: 39896800 PMCID: PMC11782144 DOI: 10.3389/fimmu.2024.1500153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025] Open
Abstract
Background High-grade serous ovarian cancer (HGSOC), the predominant subtype of epithelial ovarian cancer, is frequently diagnosed at an advanced stage due to its nonspecific early symptoms. Despite standard treatments, including cytoreductive surgery and platinum-based chemotherapy, significant improvements in survival have been limited. Understanding the molecular mechanisms, immune landscape, and drug sensitivity of HGSOC is crucial for developing more effective and personalized therapies. This study integrates insights from cancer immunology, molecular profiling, and drug sensitivity analysis to identify novel therapeutic targets and improve treatment outcomes. Utilizing single-cell RNA sequencing (scRNA-seq), the study systematically examines tumor heterogeneity and immune microenvironment, focusing on biomarkers influencing drug response and immune activity, aiming to enhance patient outcomes and quality of life. Methods scRNA-seq data was obtained from the GEO database in this study. Differential gene expression was analyzed using gene ontology and gene set enrichment methods. InferCNV identified malignant epithelial cells, while Monocle, Cytotrace, and Slingshot software inferred subtype differentiation trajectories. The CellChat software package predicted cellular communication between malignant cell subtypes and other cells, while pySCENIC analysis was utilized to identify transcription factor regulatory networks within malignant cell subtypes. Finally, the analysis results were validated through functional experiments, and a prognostic model was developed to assess prognosis, immune infiltration, and drug sensitivity across various risk groups. Results This study investigated the cellular heterogeneity of HGSOC using scRNA-seq, focusing on tumor cell subtypes and their interactions within the tumor microenvironment. We confirmed the key role of the C2 IGF2+ tumor cell subtype in HGSOC, which was significantly associated with poor prognosis and high levels of chromosomal copy number variations. This subtype was located at the terminal differentiation of the tumor, displaying a higher degree of malignancy and close association with stage IIIC tissue types. The C2 subtype was also associated with various metabolic pathways, such as glycolysis and riboflavin metabolism, as well as programmed cell death processes. The study highlighted the complex interactions between the C2 subtype and fibroblasts through the MK signaling pathway, which may be closely related to tumor-associated fibroblasts and tumor progression. Elevated expression of PRRX1 was significantly connected to the C2 subtype and may impact disease progression by modulating gene transcription. A prognostic model based on the C2 subtype demonstrated its association with adverse prognosis outcomes, emphasizing the importance of immune infiltration and drug sensitivity analysis in clinical intervention strategies. Conclusion This study integrates molecular oncology, immunotherapy, and drug sensitivity analysis to reveal the mechanisms driving HGSOC progression and treatment resistance. The C2 IGF2+ tumor subtype, linked to poor prognosis, offers a promising target for future therapies. Emphasizing immune infiltration and drug sensitivity, the research highlights personalized strategies to improve survival and quality of life for HGSOC patients.
Collapse
MESH Headings
- Female
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Humans
- Single-Cell Analysis
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/therapy
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/pathology
- Precision Medicine
- Immunotherapy/methods
- Biomarkers, Tumor/genetics
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/immunology
- Cystadenocarcinoma, Serous/therapy
- Cystadenocarcinoma, Serous/pathology
- Cystadenocarcinoma, Serous/mortality
- Gene Expression Regulation, Neoplastic
- Sequence Analysis, RNA
- Neoplasm Grading
- Gene Expression Profiling
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/immunology
- Carcinoma, Ovarian Epithelial/therapy
- Transcriptome
Collapse
Affiliation(s)
- Fu Zhao
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaojing Jiang
- Affiliated Hospital of Shandong Academy of Traditional Chinese Medicine, Jinan, China
| | - Yumeng Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianjiao Huang
- The First School of Clinical Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Zhikai Xiahou
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Wenyang Nie
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Li
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Greenman R, Weston CJ. CCL24 and Fibrosis: A Narrative Review of Existing Evidence and Mechanisms. Cells 2025; 14:105. [PMID: 39851534 PMCID: PMC11763828 DOI: 10.3390/cells14020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Tissue fibrosis results from a dysregulated and chronic wound healing response accompanied by chronic inflammation and angiogenesis. Regardless of the affected organ, fibrosis shares the following common hallmarks: the recruitment of immune cells, fibroblast activation/proliferation, and excessive extracellular matrix deposition. Chemokines play a pivotal role in initiating and advancing these fibrotic processes. CCL24 (eotaxin-2) is a chemokine secreted by immune cells and epithelial cells, which promotes the trafficking of immune cells and the activation of profibrotic cells through CCR3 receptor binding. Higher levels of CCL24 and CCR3 were found in the tissue and sera of patients with fibro-inflammatory diseases, including primary sclerosing cholangitis (PSC), systemic sclerosis (SSc), and metabolic dysfunction-associated steatohepatitis (MASH). This review delves into the intricate role of CCL24 in fibrotic diseases, highlighting its impact on fibrotic, immune, and vascular pathways. We focus on the preclinical and clinical evidence supporting the therapeutic potential of blocking CCL24 in diseases that involve excessive inflammation and fibrosis.
Collapse
Affiliation(s)
| | - Chris J. Weston
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health and Care Research (NIHR), Birmingham Biomedical Research Centre, Birmingham B15 2TT, UK
| |
Collapse
|
25
|
Verberk SGS, Hahn N, Heister D, Haverkamp J, Snelder KS, de Goede KE, Gorki FS, Hendriks JJA, Houtkooper RH, Visser G, Sjouke B, Langeveld M, Van den Bossche J. Monocyte and macrophage profiles in patients with inherited long-chain fatty acid oxidation disorders. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167524. [PMID: 39307292 DOI: 10.1016/j.bbadis.2024.167524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Patients with inherited disorders of the long-chain fatty acid oxidation (lcFAO) machinery present with a heterogeneous profile of disease manifestations and aggravation of symptoms is often triggered by inflammatory activation. Monocytes and macrophages are innate immune cells that play a major role in the onset and resolution of inflammation. These cells undergo metabolic rewiring upon activation including the regulation of the FAO rate. The rewiring of FAO and the effect of lcFAO disorders (lcFAOD) on human monocyte and macrophage phenotype and function remain largely unknown. Here, we performed extensive phenotyping of circulating monocytes and analyzed plasma cytokine levels in 11 lcFAOD patients and 11 matched control subjects. In patients with lcFAOD, we observed induced plasma levels of the inflammatory cytokines IL-1β and IL-6, and enhanced CD206 and CD62L surface marker expression in circulating monocyte subsets. To mimic the most common lcFAOD very-long-chain acyl-CoA dehydrogenase disorder (VLCADD), we used siRNA-mediated knockdown of the ACADVL gene (encoding VLCAD) in macrophages derived from healthy volunteers. Hereby, we found that siVLCAD affected IL-4-induced alternative macrophage activation while leaving LPS responses and cellular metabolism intact. In the same line, monocyte-derived macrophages from lcFAOD patients had elevated levels of the IL-4-induced alternative macrophage markers CD206 and CD200R. Still, they did not show major metabolic defects or changes in the LPS-induced inflammatory response. Our results indicate that monocytes and macrophages from lcFAOD patients present no major inflammatory or metabolic differences and show that IL-4-induced surface markers are intertwined with lcFAO in human macrophages.
Collapse
Affiliation(s)
- Sanne G S Verberk
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Nico Hahn
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Daan Heister
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jorien Haverkamp
- Department Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Khya S Snelder
- Department Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kyra E de Goede
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Friederieke S Gorki
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn 53127, Germany
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gepke Visser
- Emma Children's Hospital, Department of Pediatrics, Division of Metabolic Diseases, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Barbara Sjouke
- Department Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Mirjam Langeveld
- Department Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
26
|
Burgan J, Rahmati M, Lee M, Saiz AM. Innate immune response to bone fracture healing. Bone 2025; 190:117327. [PMID: 39522707 DOI: 10.1016/j.bone.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The field of osteoimmunology has primarily focused on fracture healing in isolated musculoskeletal injuries. The innate immune system is the initial response to fracture, with inflammatory macrophages, cytokines, and neutrophils arriving first at the fracture hematoma, followed by an anti-inflammatory phase to begin the process of new bone formation. This review aims to first discuss the current literature and knowledge gaps on the immune responses governing single fracture healing by encompassing the individual role of macrophages, neutrophils, cytokines, mesenchymal stem cells, bone cells, and other immune cells. This paper discusses the interactive effects of these cellular responses underscoring the field of osteoimmunology. The critical role of the metabolic environment in guiding the immune system properties will be highlighted along with some effective therapeutics for fracture healing in the context of osteoimmunology. However, compared to isolated fractures, which frequently heal well, long bone fractures in over 30 % of polytrauma patients exhibit impaired healing. Clinical evidence suggests there may be distinct physiologic and inflammatory pathways altered in polytrauma resulting in nonunion. Nonunion is associated with worse patient outcomes and increased societal healthcare costs. The dysregulated immunomodulatory/inflammatory response seen in polytrauma may lead to this increased nonunion rate. This paper will investigate the differences in immune response between isolated and polytrauma fractures. Finally, future directions for fracture studies are explored with consideration of the emerging roles of newly discovered immune cell functions in fracture healing, the existing challenges and conflicting results in the field, the translational potential of these studies in clinic, and the more complex nature of polytrauma fractures that can alter cell functions in different tissues.
Collapse
Affiliation(s)
- Jane Burgan
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maryam Rahmati
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Mark Lee
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA
| | - Augustine Mark Saiz
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA.
| |
Collapse
|
27
|
Guo R, Wang R, Zhang W, Li Y, Wang Y, Wang H, Li X, Song J. Macrophage Polarisation in the Tumour Microenvironment: Recent Research Advances and Therapeutic Potential of Different Macrophage Reprogramming. Cancer Control 2025; 32:10732748251316604. [PMID: 39849988 PMCID: PMC11758544 DOI: 10.1177/10732748251316604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Macrophages are a critical component of the innate immune system, derived from monocytes, with significant roles in anti-inflammatory and anti-tumour activities. In the tumour microenvironment, however, macrophages are often reprogrammed into tumour-associated macrophages (TAMs), which promote tumour growth, metastasis, and therapeutic resistance. PURPOSE To review recent advancements in the understanding of macrophage polarisation and reprogramming, highlighting their role in tumour progression and potential as therapeutic targets. RESEARCH DESIGN This is a review article synthesising findings from recent studies on macrophage polarisation and reprogramming in tumour biology. STUDY SAMPLE Not applicable (review of existing literature). DATA COLLECTION AND/OR ANALYSIS Key studies were identified and summarised to explore mechanisms of macrophage polarisation and reprogramming, focusing on M1/M2 polarisation, metabolic and epigenetic changes, and pathway regulation. RESULTS Macrophage reprogramming in the tumour microenvironment involves complex mechanisms, including phenotypic and functional alterations. These processes are influenced by M1/M2 polarisation, metabolic and epigenetic reprogramming, and various signalling pathways. TAMs play a pivotal role in tumour progression, metastasis, and therapy resistance, making them prime targets for combination therapies. CONCLUSIONS Understanding the mechanisms underlying macrophage polarisation and reprogramming offers promising avenues for developing therapies to counteract tumour progression. Future research should focus on translating these insights into clinical applications for effective cancer treatment.
Collapse
Affiliation(s)
- Rongqi Guo
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Rui Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Weisong Zhang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Yangyang Li
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Yihao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Hao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Xia Li
- Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Jianxiang Song
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| |
Collapse
|
28
|
Ma S, He H, Ren X. Single-Cell and Transcriptome Analysis of Periodontitis: Molecular Subtypes and Biomarkers Linked to Mitochondrial Dysfunction and Immunity. J Inflamm Res 2024; 17:11659-11678. [PMID: 39741754 PMCID: PMC11687296 DOI: 10.2147/jir.s498739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/10/2024] [Indexed: 01/03/2025] Open
Abstract
Background Periodontitis represents an inflammatory disease with multiple contributing factors, affecting both oral and systemic health. The mechanisms linking mitochondrial dysfunction to immune responses in periodontitis remain unclear, limiting the development of individualized diagnostic and therapeutic approaches. Objective This study aims to elucidate the roles of mitochondrial dysfunction and immune responses in the pathogenesis of periodontitis, identify distinct molecular subtypes, and discover robust diagnostic biomarkers to support precision medicine approaches. Methods Single-cell RNA sequencing and transcriptome data from periodontitis patients were analyzed to identify gene signatures linked to macrophages and mitochondria. Consensus clustering was applied to classify molecular subtypes. Potential biomarkers were identified using five machine learning algorithms and validated in clinical samples through qPCR and IHC. Results Four molecular subtypes were identified: quiescent, macrophage-dominant, mitochondria-dominant, and mixed, each exhibiting unique gene expression patterns. From 13 potential biomarkers, eight were shortlisted using machine learning, and five (BNIP3, FAHD1, UNG, CBR3, and SLC25A43) were validated in clinical samples. Among them, BNIP3, FAHD1, and UNG were significantly downregulated (p < 0.05). Conclusion This study identifies novel molecular subtypes and biomarkers that elucidate the interplay between immune responses and mitochondrial dysfunction in periodontitis. These findings provide insights into the disease's heterogeneity and lay the foundation for developing non-invasive diagnostic tools and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Sijia Ma
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, People’s Republic of China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, People’s Republic of China
| | - Hongbing He
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, People’s Republic of China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, People’s Republic of China
| | - Xiaobin Ren
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, People’s Republic of China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, People’s Republic of China
| |
Collapse
|
29
|
Vasilopoulou F, Piers TM, Wei J, Hardy J, Pocock JM. Amelioration of signaling deficits underlying metabolic shortfall in TREM2 R47H human iPSC-derived microglia. FEBS J 2024. [PMID: 39726135 DOI: 10.1111/febs.17353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/13/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
The microglial triggering receptor expressed on myeloid cells 2 (TREM2) is required for diverse microglia responses in neurodegeneration, including immunometabolic plasticity, phagocytosis, and survival. We previously identified that patient iPSC-derived microglia (iPS-Mg) harboring the Alzheimer's disease (AD) TREM2R47H hypomorph display several functional deficits linked to metabolism. To investigate whether these deficits are associated with disruptions in metabolite signaling, we generated common variant, TREM2R47H and TREM2-/- variant human iPS-Mg. We assessed the ability of supplementation with citrate or succinate, key metabolites and cell cycle breaking points upon microglia activation, to overcome these functional deficits with potential impact on neurons. Succinate supplementation was more effective than citrate at overcoming mitochondrial deficits in OXPHOS and did not promote a glycolytic switch. Citrate enhanced the lipid content of TREM2R47H iPS-Mg and was more effective at overcoming Αβ phagocytic deficits, whereas succinate increased lipid content and phagocytic capacity in TREM2-/- iPS-Mg. Microglia cytokine secretion upon pro-inflammatory activation was moderately affected by citrate or succinate showing a condition-dependent increasing trend. Neither metabolite altered basal levels of soluble TREM2 shedding. In addition, neither citrate nor succinate enhanced glycolysis; instead, drove their effects through oxidative phosphorylation. IPS-neurons exposed to conditioned medium from TREM2 variant iPS-Mg showed changes in oxidative phosphorylation, which could be ameliorated when iPS-Mg were first treated with citrate or succinate. Our data point to discrete pathway linkage between microglial metabolism and functional outcomes with implications for AD pathogenesis and treatments.
Collapse
Affiliation(s)
- Foteini Vasilopoulou
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, UK
| | - Thomas M Piers
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, UK
| | - Jingzhang Wei
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, UK
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute, UCL Queen Square Institute of Neurology, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- NIHR University College London Hospitals Biomedical Research Centre and Institute for Advanced Study, The Hong Kong University of Science and Technology, China
| | - Jennifer M Pocock
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
30
|
Chaudhary A, Patil P, Raina P, Kaul-Ghanekar R. Matairesinol repolarizes M2 macrophages to M1 phenotype to induce apoptosis in triple-negative breast cancer cells. Immunopharmacol Immunotoxicol 2024:1-15. [PMID: 39722605 DOI: 10.1080/08923973.2024.2425028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/27/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Triple-Negative Breast Cancer (TNBC), the most challenging subtype of Breast Cancer (BC), currently lacks targeted therapy, presenting a significant therapeutic gap in its management. Tumor Associated Macrophages (TAMs) play a significant role in TNBC progression and could be targeted by repolarizing them from M2 to M1 phenotype. Matairesinol (MAT), a plant lignan, has been shown to exhibit anticancer, anti-inflammatory and immunomodulatory activities. In this study, we explored how MAT-induced repolarization of THP-1-derived M2 macrophages towards the M1 phenotype, which could effectively target the TNBC cell line, MDA-MB-231. METHODS The differential expression of genes in THP-1-derived macrophages at mRNA levels was evaluated by RNAseq assay. An inverted microscope equipped with a CMOS camera was utilized to capture the morphological variations in THP-1 cells and THP-1-derived macrophages. Relative mRNA expression of M1 and M2 specific marker genes was quantified by qRT-PCR. Cell viability and induction of apoptosis were evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1 dye) assays, respectively. RESULTS MAT reduced the viability of M2a and M2d macrophages and repolarized them to M1 phenotype. Conditioned medium (CM) from MAT-treated M2a and M2d macrophages significantly reduced the viability of TNBC cells by apoptosis. CONCLUSION Targeting M2 macrophages is an important strategy to regulate cancer progression. Our study provides evidence that MAT may be a promising drug candidate for developing novel anti-TNBC therapy. However, further studies are warranted to thoroughly elucidate the molecular mechanism of action of MAT and evaluate its therapeutic potential in TNBC in vitro and in vivo models.
Collapse
Affiliation(s)
- Amol Chaudhary
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Prajakta Patil
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Prerna Raina
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
- Analytical Department (ADT), Lupin Limited, Pune, India
| | - Ruchika Kaul-Ghanekar
- Cancer Research Lab, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
- Symbiosis Centre for Research and Innovation (SCRI); Symbiosis International Deemed University (SIU), Pune, India
- Cancer Research Lab, Symbiosis School of Biological Sciences (SSBS), Symbiosis International Deemed University (SIU), Pune, India
| |
Collapse
|
31
|
Luo M, Zhang W, Yang J, Du X, Wang X, Xu G, Tang H, Wang Z, Zhong X, Feng J, Ma N. CD83 mediates the inhibitory effect of the S1PR1 agonist CYM5442 on LPS-induced M1 polarization of macrophages through the ERK-STAT-1 signaling pathway. Int Immunopharmacol 2024; 143:113526. [PMID: 39486189 DOI: 10.1016/j.intimp.2024.113526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Macrophages possess M1/M2 polarization, which perform an essential role in immunology and inflammation studies. However, few studies have investigated the specific molecules involved in the polarization process beyond its induction and characterization. Here, we determined that the molecule S1PR1 regulates M1 polarization in macrophages and that the surface marker CD83 is involved in this process. The S1PR1 agonist CYM5442 specifically increases CD83 expression in macrophages. Although the agonist CYM5442 and LPS regulate CD83 differently in macrophages, they have a synergistic effect that enhances CD83 expression. Notably, CYM5442 does not act synergistically with IL-4 regarding CD83 expression and does not affect IL-4-induced macrophage M2 polarization. Furthermore, CYM5442 inhibits the expression of LPS-induced inflammatory cytokines and the phosphorylation of ERK1/2 and STAT-1 in macrophages. However, this inhibition was significantly diminished or absent when CD83 is deficient, highlighting the importance of CD83 in mediating S1PR1 signaling in LPS-induced M1 polarization of macrophages. Overall, our findings provide valuable insights into the molecular mechanisms underlying macrophage polarization, particularly the roles of S1PR1 and CD83 in modulating inflammatory responses.
Collapse
Affiliation(s)
- MeiHua Luo
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Wei Zhang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Juan Yang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Xi Du
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Hongmei Tang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Zhibin Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Jianguo Feng
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou 646000 Sichuan, China.
| | - Ning Ma
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China.
| |
Collapse
|
32
|
Akhter N, Contreras J, Ansari MA, Ducruet AF, Hoda MN, Ahmad AS, Gangwani LD, Bhatia K, Ahmad S. Remote Ischemic Post-Conditioning (RIC) Mediates Anti-Inflammatory Signaling via Myeloid AMPKα1 in Murine Traumatic Optic Neuropathy (TON). Int J Mol Sci 2024; 25:13626. [PMID: 39769388 PMCID: PMC11728166 DOI: 10.3390/ijms252413626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Traumatic optic neuropathy (TON) has been regarded a vision-threatening condition caused by either ocular or blunt/penetrating head trauma, which is characterized by direct or indirect TON. Injury happens during sports, vehicle accidents and mainly in military war and combat exposure. Earlier, we have demonstrated that remote ischemic post-conditioning (RIC) therapy is protective in TON, and here we report that AMPKα1 activation is crucial. AMPKα1 is the catalytic subunit of the heterotrimeric enzyme AMPK, the master regulator of cellular energetics and metabolism. The α1 isoform predominates in immune cells including macrophages (Mφs). Myeloid-specific AMPKα1 KO mice were generated by crossing AMPKα1Flox/Flox and LysMcre to carry out the study. We induced TON in mice by using a controlled impact system. Mice (mixed sex) were randomized in six experimental groups for Sham (mock); Sham (RIC); AMPKα1F/F (TON); AMPKα1F/F (TON+RIC); AMPKα1F/F LysMCre (TON); AMPKα1F/F LysMCre (TON+RIC). RIC therapy was given every day (5-7 days following TON). Data were generated by using Western blotting (pAMPKα1, ICAM1, Brn3 and GAP43), immunofluorescence (pAMPKα1, cd11b, TMEM119 and ICAM1), flow cytometry (CD11b, F4/80, CD68, CD206, IL-10 and LY6G), ELISA (TNF-α and IL-10) and transmission electron microscopy (TEM, for demyelination and axonal degeneration), and retinal oxygenation was measured by a Unisense sensor system. First, we observed retinal morphology with funduscopic images and found TON has vascular inflammation. H&E staining data suggested that TON increased retinal inflammation and RIC attenuates retinal ganglion cell death. Immunofluorescence and Western blot data showed increased microglial activation and decreased retinal ganglion cell (RGCs) marker Brn3 and axonal regeneration marker GAP43 expression in the TON [AMPKα1F/F] vs. Sham group, but TON+RIC [AMPKα1F/F] attenuated the expression level of these markers. Interestingly, higher microglia activation was observed in the myeloid AMPKα1F/F KO group following TON, and RIC therapy did not attenuate microglial expression. Flow cytometry, ELISA and retinal tissue oxygen data revealed that RIC therapy significantly reduced the pro-inflammatory signaling markers, increased anti-inflammatory macrophage polarization and improved oxygen level in the TON+RIC [AMPKα1F/F] group; however, RIC therapy did not reduce inflammatory signaling activation in the myeloid AMPKα1 KO mice. The transmission electron microscopy (TEM) data of the optic nerve showed increased demyelination and axonal degeneration in the TON [AMPKα1F/F] group, and RIC improved the myelination process in TON [AMPKα1F/F], but RIC had no significant effect in the AMPKα1 KO mice. The myeloid AMPKα1c deletion attenuated RIC induced anti-inflammatory macrophage polarization, and that suggests a molecular link between RIC and immune activation. Overall, these data suggest that RIC therapy provided protection against inflammation and neurodegeneration via myeloid AMPKα1 activation, but the deletion of myeloid AMPKα1 is not protective in TON. Further investigation of RIC and AMPKα1 signaling is warranted in TON.
Collapse
Affiliation(s)
- Naseem Akhter
- Department of Biology, Arizona State University, Lake Havasu City, AZ 86403, USA
| | - Jessica Contreras
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center (SJHMC), Phoenix, AZ 85013, USA (K.B.)
| | - Mairaj A. Ansari
- Department of Biotechnology, Centre for Virology, Hamdard University, New Delhi 110062, India
| | - Andrew F. Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center (SJHMC), Phoenix, AZ 85013, USA
| | - Md Nasrul Hoda
- Department of Neurology, Henry Ford Medical Center, Detroit, MI 48202, USA
| | - Abdullah S. Ahmad
- Department of Neurology, Henry Ford Medical Center, Detroit, MI 48202, USA
| | - Laxman D. Gangwani
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Kanchan Bhatia
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center (SJHMC), Phoenix, AZ 85013, USA (K.B.)
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Saif Ahmad
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center (SJHMC), Phoenix, AZ 85013, USA (K.B.)
- Phoenix Veteran Affairs (VA), Phoenix, AZ 85012, USA
| |
Collapse
|
33
|
Chen Z, Pang Q, Zhan J, Liu J, Zhao W, Dong L, Huang W. MSCs-derived ECM functionalized hydrogel regulates macrophage reprogramming for osteoarthritis treatment by improving mitochondrial function and energy metabolism. Mater Today Bio 2024; 29:101340. [PMID: 39640869 PMCID: PMC11617891 DOI: 10.1016/j.mtbio.2024.101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/20/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative disease that affects the entire joint, with synovial inflammation being a major pathological feature. Macrophages, as the most abundant immune cells in the synovium, have an M1/M2 imbalance that is closely related to the occurrence and development of OA. Mesenchymal stem cells (MSCs) have been shown to effectively suppress inflammation in the treatment of OA, but they still pose issues such as immune rejection and tumorigenicity. The extracellular matrix (ECM), as a major mediator of MSCs' immunoregulatory effects, offers a cell-free therapy to circumvent these risks. In this study, we developed an ECM-functionalized hydrogel by combining MSC-derived ECM with gelatin methacryloyl (GelMA). To enhance the immunomodulatory potential of MSCs, we pre-stimulated MSCs with the inflammatory factor interleukin-6 (IL-6) present in OA. In vitro results showed that the ECM-functionalized hydrogel promoted M2 macrophage polarization and inhibited the expression of various inflammatory genes, strongly indicating the hydrogel's powerful immunoregulatory capabilities. In an in vivo rat OA model, the ECM-functionalized hydrogel significantly reduced synovial inflammation and cartilage matrix degradation, alleviating the progression of OA. Furthermore, we utilized proteomics and transcriptomics analysis to reveal that the hydrogel accomplished macrophage metabolic reprogramming by regulating mitochondrial function and energy metabolism, thereby reducing inflammation. These findings suggest that the ECM-functionalized hydrogel is a promising biomaterial-based strategy for treating OA by targeting key pathological mechanisms.
Collapse
Affiliation(s)
- Zhuolin Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Qiming Pang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Jingdi Zhan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Junyan Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Weikang Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lili Dong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
34
|
Cobo‐Vuilleumier N, Rodríguez‐Fernandez S, López‐Noriega L, Lorenzo PI, Franco JM, Lachaud CC, Vazquez EM, Legido RA, Dorronsoro A, López‐Férnandez‐Sobrino R, Fernández‐Santos B, Serrano CE, Salas‐Lloret D, van Overbeek N, Ramos‐Rodriguez M, Mateo‐Rodríguez C, Hidalgo L, Marin‐Canas S, Nano R, Arroba AI, Caro AC, Vertegaal ACO, Martín‐Montalvo A, Martín F, Aguilar‐Diosdado M, Piemonti L, Pasquali L, Prieto RG, Sánchez MIG, Eizirik DL, Martínez‐Brocca MA, Vives‐Pi M, Gauthier BR. LRH-1/NR5A2 targets mitochondrial dynamics to reprogram type 1 diabetes macrophages and dendritic cells into an immune tolerance phenotype. Clin Transl Med 2024; 14:e70134. [PMID: 39702941 PMCID: PMC11659195 DOI: 10.1002/ctm2.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/01/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The complex aetiology of type 1 diabetes (T1D), characterised by a detrimental cross-talk between the immune system and insulin-producing beta cells, has hindered the development of effective disease-modifying therapies. The discovery that the pharmacological activation of LRH-1/NR5A2 can reverse hyperglycaemia in mouse models of T1D by attenuating the autoimmune attack coupled to beta cell survival/regeneration prompted us to investigate whether immune tolerisation could be translated to individuals with T1D by LRH-1/NR5A2 activation and improve islet survival. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from individuals with and without T1D and derived into various immune cells, including macrophages and dendritic cells. Cell subpopulations were then treated or not with BL001, a pharmacological agonist of LRH-1/NR5A2, and processed for: (1) Cell surface marker profiling, (2) cytokine secretome profiling, (3) autologous T-cell proliferation, (4) RNAseq and (5) proteomic analysis. BL001-target gene expression levels were confirmed by quantitative PCR. Mitochondrial function was evaluated through the measurement of oxygen consumption rate using a Seahorse XF analyser. Co-cultures of PBMCs and iPSCs-derived islet organoids were performed to assess the impact of BL001 on beta cell viability. RESULTS LRH-1/NR5A2 activation induced a genetic and immunometabolic reprogramming of T1D immune cells, marked by reduced pro-inflammatory markers and cytokine secretion, along with enhanced mitohormesis in pro-inflammatory M1 macrophages and mitochondrial turnover in mature dendritic cells. These changes induced a shift from a pro-inflammatory to an anti-inflammatory/tolerogenic state, resulting in the inhibition of CD4+ and CD8+ T-cell proliferation. BL001 treatment also increased CD4+/CD25+/FoxP3+ regulatory T-cells and Th2 cells within PBMCs while decreasing CD8+ T-cell proliferation. Additionally, BL001 alleviated PBMC-induced apoptosis and maintained insulin expression in human iPSC-derived islet organoids. CONCLUSION These findings demonstrate the potential of LRH-1/NR5A2 activation to modulate immune responses and support beta cell viability in T1D, suggesting a new therapeutic approach. KEY POINTS LRH-1/NR5A2 activation in inflammatory cells of individuals with type 1 diabetes (T1D) reduces pro-inflammatory cell surface markers and cytokine release. LRH-1/NR5A2 promotes a mitohormesis-induced immuno-resistant phenotype to pro-inflammatory macrophages. Mature dendritic cells acquire a tolerogenic phenotype via LRH-1/NR5A2-stimulated mitochondria turnover. LRH-1/NR5A2 agonistic activation expands a CD4+/CD25+/FoxP3+ T-cell subpopulation. Pharmacological activation of LRH-1/NR5A2 improves the survival iPSC-islets-like organoids co-cultured with PBMCs from individuals with T1D.
Collapse
|
35
|
Lin P, Qian Z, Liu S, Ye X, Xue P, Shao Y, Zhao J, Guan Y, Liu Z, Chen Y, Wang Q, Yi Z, Zhu M, Yu M, Ling D, Li F. A Single-Cell RNA Sequencing Guided Multienzymatic Hydrogel Design for Self-Regenerative Repair in Diabetic Mandibular Defects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410962. [PMID: 39436107 DOI: 10.1002/adma.202410962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Indexed: 10/23/2024]
Abstract
Conventional bone tissue engineering materials struggle to reinstate physiological bone remodeling in a diabetic context, primarily due to the compromised repolarization of proinflammatory macrophages to anti-inflammatory macrophages. Here, leveraging single-cell RNA sequencing (scRNA-seq) technology, the pivotal role of nitric oxide (NO) and reactive oxygen species (ROS) is unveiled in impeding macrophage repolarization during physiological bone remodeling amidst diabetes. Guided by scRNA-seq analysis, we engineer a multienzymatic bone tissue engineering hydrogel scaffold (MEBTHS) composed is engineered of methylpropenylated gelatin hydrogel integrated with ruthenium nanozymes, possessing both Ru0 and Ru4+ components. This design facilitates efficient NO elimination via Ru0 while simultaneously exhibiting ROS scavenging properties through Ru4+. Consequently, MEBTHS orchestrates macrophage reprogramming by neutralizing ROS and reversing NO-mediated mitochondrial metabolism, thereby rejuvenating bone marrow-derived mesenchymal stem cells and endothelial cells within diabetic mandibular defects, producing newly formed bone with quality comparable to that of normal bone. The scRNA-seq guided multienzymatic hydrogel design fosters the restoration of self-regenerative repair, marking a significant advancement in bone tissue engineering.
Collapse
Affiliation(s)
- Peihua Lin
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
- Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Zhouyang Qian
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanbiao Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin Ye
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengpeng Xue
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yangjie Shao
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yunan Guan
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhichao Liu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhua Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhigao Yi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Mingjian Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mengfei Yu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangyuan Li
- Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| |
Collapse
|
36
|
Biscu F, Zouzaf A, Cicia D, Pridans C, Matteoli G. Innate immunity champions: The diverse functions of macrophages. Eur J Immunol 2024; 54:e2451139. [PMID: 39308210 DOI: 10.1002/eji.202451139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 12/11/2024]
Abstract
Macrophages are instrumental in maintaining tissue homeostasis, modulating inflammation, and driving regeneration. The advent of omics techniques has led to the identification of numerous tissue-specific macrophage subtypes, thereby introducing the concept of the "macrophage niche". This paradigm underscores the ability of macrophages to adapt their functions based on environmental cues, such as tissue-specific signals. This adaptability is closely linked to their metabolic states, which are crucial for their function and role in health and disease. Macrophage metabolism is central to their ability to switch between proinflammatory and anti-inflammatory states. In this regard, environmental factors, including the extracellular matrix, cellular interactions, and microbial metabolites, profoundly influence macrophage behavior. Moreover, diet and gut microbiota significantly impact macrophage function, with nutrients and microbial metabolites influencing their activity and contributing to conditions like inflammatory bowel disease. Targeting specific macrophage functions and their metabolic processes is leading to the development of novel treatments for a range of chronic inflammatory conditions. The exploration of macrophage biology enriches our understanding of immune regulation and holds the promise of innovative approaches to managing diseases marked by inflammation and immune dysfunction, offering a frontier for scientific and clinical advancement.
Collapse
Affiliation(s)
- Francesca Biscu
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Anissa Zouzaf
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Donatella Cicia
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Clare Pridans
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Gianluca Matteoli
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Zhang C, Lv P, Liang Q, Zhou J, Wu B, Xu W. Conditioned Medium Derived From Human Dental Follicle Mesenchymal Stem Cells Alleviates Macrophage Proinflammatory Responses Through MAPK-ERK-EGR1 Axis. Stem Cells Int 2024; 2024:5514771. [PMID: 39650749 PMCID: PMC11623994 DOI: 10.1155/sci/5514771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/09/2024] [Accepted: 11/02/2024] [Indexed: 12/11/2024] Open
Abstract
The regulation of macrophage polarization by mesenchymal stem cells (MSCs) is a prominent area of research but faces challenges due to limited MSC sources and incomplete understanding of underlying mechanisms. We sought to identify an accessible MSC source and investigate how MSCs regulate macrophage polarization using high-throughput sequencing. We isolated dental follicle MSCs from discarded human third molar dental follicles and cocultured them with THP-1-derived macrophages in the conditioned medium. Transcriptome sequencing identified differentially expressed genes (DEGs) in macrophages, integrating with multiomics database analysis to uncover polarization mechanisms. Our findings demonstrated successful MSC extraction from dental follicles, with the conditioned medium suppressing proinflammatory macrophage functions and influencing macrophage subtyping. MSCs, through paracrine signaling, activated the mitogen-activated protein kinase (MAPK) pathway, leading to extracellular regulated protein kinases (ERK)1/2 phosphorylation and upregulation of early growth response 1 (EGR1) protein. Elevated EGR1 levels inhibited inflammatory gene expression, inhibiting the pro-inflammatory immunoregulatory function of macrophages in inflammatory states. This study provides an efficient method for in vitro macrophage polarization identification. It offers insights into MSC-regulated polarization mechanisms, with potential clinical implications for anti-inflammatory therapy and immune regulation.
Collapse
Affiliation(s)
- Chuhan Zhang
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Peiyi Lv
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Qiuying Liang
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Buling Wu
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Wenan Xu
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| |
Collapse
|
38
|
Chen S, Xu H, Li W, Nie Y, Xie Q, Chen W. Deciphering Immune Modulation in Chickens Co-Infected with ALV-J and CIAV: A Transcriptomic Approach. Microorganisms 2024; 12:2453. [PMID: 39770656 PMCID: PMC11676111 DOI: 10.3390/microorganisms12122453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Viral co-infections pose significant challenges, causing substantial economic losses worldwide in the poultry industry. Among these, avian lLeukosis virus subgroup J (ALV-J) and chicken infectious anemia virus (CIAV) are particularly concerning, as they frequently lead to co-infections in chickens, further compromising their immune defenses, increasing susceptibility to secondary infections and diminishing vaccine efficacy. While our previous studies have examined the pathogenicity and immunosuppressive effects of these co-infections in vitro and in vivo, the key genes and molecular pathways involved remain largely unexplored. This study investigates the synergistic effects of co-infection with ALV-J and CIAV through comprehensive transcriptome analysis using high-throughput sequencing. We identified 1007 differentially expressed mRNAs (DEmRNAs) and 62 differentially expressed miRNAs (DEmiRNAs) associated with the synergistic activation effects of co-infection, along with 331 DEmRNAs and 62 DEmiRNAs linked to specific activation processes. Notably, the immune suppression observed in co-infected chickens may be influenced by the enhanced utilization of reactive oxygen species (ROS) and oxidative stress pathways, which impact host immune responses. Furthermore, co-infection appears to employ distinct immune evasion strategies through the modulation of rRNA metabolism, differing from single infections. These insights provide a deeper understanding of the molecular mechanisms underlying immune suppression during viral co-infections and help develop targeted therapies and improve disease control in poultry, reducing economic losses.
Collapse
Affiliation(s)
- Sheng Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.C.); (H.X.); (W.L.); (Y.N.); (Q.X.)
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Huijuan Xu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.C.); (H.X.); (W.L.); (Y.N.); (Q.X.)
| | - Wenxue Li
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.C.); (H.X.); (W.L.); (Y.N.); (Q.X.)
| | - Yu Nie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.C.); (H.X.); (W.L.); (Y.N.); (Q.X.)
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.C.); (H.X.); (W.L.); (Y.N.); (Q.X.)
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Weiguo Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.C.); (H.X.); (W.L.); (Y.N.); (Q.X.)
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| |
Collapse
|
39
|
Kumari M, Sharma A, Tirpude NV. Herbacetin ameliorates lipopolysaccharide-elicited inflammatory response by suppressing NLRP-3/AIM-2 inflammasome activation, PI3K/Akt/MAPKs/NF-κB redox inflammatory signalling, modulating autophagy and macrophage polarization imbalance. Mol Biol Rep 2024; 51:1159. [PMID: 39549151 DOI: 10.1007/s11033-024-10068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Herbacetin, a flavonol abundant in traditional medicines, is documented as an anti-inflammatory agent. However, information regarding its attributes on lipopolysaccharide (LPS)-induced inflammatory immunopathies has not been delineated yet. The present study aimed to comprehend herbacetin effects on LPS-induced aspects of unwarranted, non-resolving inflammation, particularly via targeting the vicious circle of oxi-inflammatory stress, autophagy-apoptosis, macrophages polarization, impaired inflammasome activation, and inflammatory cascades. METHODS AND RESULTS In-vitro model of LPS-stimulated RAW 264.7 macrophage was recapitulated to investigate different inflammatory anomalies using enzyme-linked immunosorbent assay, qRT-PCR (Real-Time Quantitative Reverse Transcription PCR), immunoblotting. Concanavalin A challenged splenocytes and in silico studies were performed to measure Tregs population and binding affinity, respectively. RESULTS Herbacetin administration caused remarkable reduction in nitric oxide, reactive oxygen species, mitochondrial membrane potential hyperpolarization, tumor necrosis factor-α, interferon-γ, interleukin-6, inducible nitric oxide synthase and ratio of M1/M2 markers (inducible nitric oxide synthase/arginase-1/macrophage scavenger receptor-1/mannose receptor C type-1) in in vitro model of persistent inflammation. Suppression of interleukins-5,17 and matrix metalloproteinases-2,3,9,13 and proliferating cell nuclear antigen, signifies its anti-inflammatory attributes. Noticeable decline in monodansylcadaverine-Lysotracker staining, caspase-6, and enhanced p62, B-cell lymphoma-2 expression indicates apoptosis-autophagosome accumulation inhibition and lysosomal destabilization. These were accompanied by reduced NLRP3 activation, caspase-1, AIM-2 expression, and interleukin-1β release. Subsequently, up-regulated activation of TLR-4, NF-κB, PI3K, Akt, ERK1/2, and JNK was decisively thwarted by herbacetin. In silico investigation signified the interaction of herbacetin with these targets. Decreased cytokines and enhanced Tregs conferred its role in extenuating inflammation facilitated by T-cells depletion. CONCLUSION Collectively, these findings comprehend attributes of herbacetin as an alternative therapeutic strategy in relieving LPS-associated chronic inflammatory disorders.
Collapse
Affiliation(s)
- Monika Kumari
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No: 6, Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research, Ghaziabad, UP, India
| | - Anamika Sharma
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No: 6, Palampur, HP, 176061, India
| | - Narendra Vijay Tirpude
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No: 6, Palampur, HP, 176061, India.
- Academy of Scientific and Innovative Research, Ghaziabad, UP, India.
| |
Collapse
|
40
|
Bögel G, Sváb G, Murányi J, Szokol B, Kukor Z, Kardon T, Őrfi L, Tretter L, Hrabák A. The role of PI3K-Akt-mTOR axis in Warburg effect and its modification by specific protein kinase inhibitors in human and rat inflammatory macrophages. Int Immunopharmacol 2024; 141:112957. [PMID: 39197292 DOI: 10.1016/j.intimp.2024.112957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024]
Abstract
The Warburg effect occurs both in cancer cells and in inflammatory macrophages. The aim of our work was to demonstrate the role of PI3K-Akt-mTOR axis in the Warburg effect in HL-60 derived, rat peritoneal and human blood macrophages and to investigate the potential of selected inhibitors of this pathway to antagonize it. M1 polarization in HL-60-derived and human blood monocyte-derived macrophages was supported by the increased expression of NOS2 and inflammatory cytokines. All M1 polarized and inflammatory macrophages investigated expressed higher levels of HIF-1α and NOS2, which were reduced by selected kinase inhibitors, supporting the role of PI3K-Akt-mTOR axis. Using Seahorse XF plates, we found that in HL-60-derived and human blood-derived macrophages, glucose loading reduced oxygen consumption (OCR) and increased glycolysis (ECAR) in M1 polarization, which was antagonized by selected kinase inhibitors and by dichloroacetate. In rat peritoneal macrophages, the changes in oxidative and glycolytic metabolism were less marked and the NOS2 inhibitor decreased OCR and increased ECAR. Non-mitochondrial oxygen consumption and ROS production were likely due to NADPH oxidase, expressed in each macrophage type, independently of PI3K-Akt-mTOR axis. Our results suggest that inflammation changed the metabolism in each macrophage model, but a clear relationship between polarization and Warburg effect was confirmed only after glucose loading in HL-60 and human blood derived macrophages. The effect of kinase inhibitors on Warburg effect was variable in different cell types, whereas dichloroacetate caused a shift toward oxidative metabolism. Our findings suggest that these originally anti-cancer inhibitors may also be candidates for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Gábor Bögel
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - Gergely Sváb
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - József Murányi
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - Bálint Szokol
- Vichem Chemie Research Ltd., Veszprém, H-8200, Viola u. 2., Hungary
| | - Zoltán Kukor
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - Tamás Kardon
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - László Őrfi
- Vichem Chemie Research Ltd., Veszprém, H-8200, Viola u. 2., Hungary; Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, H-1092 Hőgyes E. u. 9., Hungary
| | - László Tretter
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - András Hrabák
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary.
| |
Collapse
|
41
|
Liu X, Lyu Y, Yu Y, Wang Z, Sun Y, Li M, Liang C, Tian W, Liao L. ApoEVs Transfer Mitochondrial Component to Modulate Macrophages in Periodontal Regeneration. Oral Dis 2024. [PMID: 39530336 DOI: 10.1111/odi.15181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Macrophages are key players in the host immune response to periodontal pathogens and tissue repair. The aim of this study was to explore the potential of apoptotic cell-derived extracellular vesicles (ApoEVs) in modulating the mitochondrial function of macrophages as a mean to enhance periodontal tissue regeneration. SUBJECTS AND METHODS ApoEVs were extracted from periodontal ligament stem cells (PDLSCs) and characterized to observe their effects on macrophage function. In vivo experiments, ApoEVs were mixed with hyaluronic acid and injected into the periodontal pockets of rats with periodontitis to observe their impact on periodontal tissue regeneration and the immune microenvironment. Functional assays were conducted to confirm whether ApoEVs contained mitochondrial components and which specific components were transferred to regulate macrophage function. RESULTS The experimental findings showed that treatment of ApoEVs efficiently restored the homeostasis of macrophage and improved tissue regeneration in a periodontitis rat model. Mechanism investigation demonstrated that the efferocytosis of ApoEVs resulted in the transfer of mitochondrial components from PDLSCs to macrophage. The increased mitochondrial components within macrophages improved mitochondrial function and polarization of macrophages towards the anti-inflammatory M2 phenotype, resulting in the improvement of inflammatory environment in periodontal tissues. CONCLUSION ApoEVs can transfer mtDNA to enhance mitochondrial function in macrophages, fostering their transition to an anti-inflammatory phenotype. Ultimately, this process improves the immune microenvironment in periodontitis and promotes periodontal tissue regeneration.
Collapse
Affiliation(s)
- Xiaodong Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yun Lyu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yejia Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhuo Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Sun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Maojiao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chao Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
42
|
Lu M, Luo D, Zhang Z, Ouyang F, Shi Y, Hu C, Su H, Li Y, Zhang J, Gui Q, Yang TS. Branched-chain amino acid catabolism promotes M2 macrophage polarization. Front Immunol 2024; 15:1469163. [PMID: 39582859 PMCID: PMC11582057 DOI: 10.3389/fimmu.2024.1469163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction During an immune response, macrophages undergo systematic metabolic rewiring tailored to support their functions. Branched-chain amino acid (BCAA) metabolism has been reported to modulate macrophage function; however, its role in macrophage alternative activation remain unclear. We aimed to investigate the role of BCAA metabolism in macrophage alternative activation. Method The metabolomics of BMDM-derived M0 and M2 macrophages were analyzed using LC-MS. BCAAs were supplemented and genes involved in BCAA catabolism were inhibited during M2 macrophage polarization. The expression of M2 marker genes was assessed through RT-qPCR, immunofluorescence, and flow cytometry. Results and discussion Metabolomic analysis identified increased BCAA metabolism as one of the most significantly rewired pathways upon alternative activation. M2 macrophages had significantly lower BCAA levels compared to controls. BCAA supplementation promoted M2 macrophage polarization both in vitro and in vivo and increased oxidative phosphorylation in M2 macrophages. Blocking BCAA entry into mitochondria by knockdown of SLC25A44 inhibited M2 macrophage polarization. Furthermore, M2 macrophages polarization was suppressed by knockdown of Branched-chain amino-acid transaminase 2 (BCAT2) and branched chain keto acid dehydrogenase E1 subunit alpha (BCKDHA), both of which are key enzymes involved in BCAA oxidation. Overall, our findings suggest that BCAA catabolism plays an important role in polarization toward M2 macrophages.
Collapse
Affiliation(s)
- Manxi Lu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Da Luo
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Zixuan Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Feng Ouyang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yihong Shi
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Changyong Hu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Hang Su
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yining Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Jiayi Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Qian Gui
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Tian-Shu Yang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
- School of Life Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Yang L, Ren Q, Wang Y, Zheng Y, Du F, Wang F, Zhou J, Gui L, Chen S, Chen X, Zhang W, Sun Y, Zhong X, Liu H, Jiang X, Zhang Z. Research progress of mitochondrial dysfunction induced pyroptosis in acute lung injury. Respir Res 2024; 25:398. [PMID: 39511593 PMCID: PMC11545853 DOI: 10.1186/s12931-024-03028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
Acute lung injury (ALI) is a common critical respiratory disease in clinical practice, especially in the ICU, with a high mortality rate. The pathogenesis of ALI is relatively complex, mainly involving inflammatory response imbalance, oxidative stress, cell apoptosis, and other aspects. However, currently, the treatment measures taken based on the above mechanisms have not had significant effects. Recent research shows that mitochondrial dysfunction and pyroptosis play an important role in ALI, but there is not much analysis on the relationship between mitochondrial dysfunction and pyroptosis at present. This article reviews the situation of mitochondrial dysfunction in ALI, pyroptosis in ALI, whether mitochondrial dysfunction is related to pyroptosis in ALI, and how to do so, and further analyzes the relationship between them in ALI. This review describes how to alleviate mitochondrial dysfunction, and then suppress the associated immunological pyroptosis, providing new ideas for the clinical treatment of ALI.
Collapse
Affiliation(s)
- Luhan Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qingyi Ren
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yaohui Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yucheng Zheng
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fei Du
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fang Wang
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jie Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Linxi Gui
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shengdong Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiurui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Wanting Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yuhong Sun
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaolin Zhong
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Xian Jiang
- Department of Anesthesiology, Luzhou People's Hospital, Luzhou, 646000, China.
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
44
|
Pisani DF, Lettieri-Barbato D, Ivanov S. Polyamine metabolism in macrophage-adipose tissue function and homeostasis. Trends Endocrinol Metab 2024; 35:937-950. [PMID: 38897879 DOI: 10.1016/j.tem.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Intracellular metabolism is a crucial regulator of macrophage function. Recent evidence revealed that the polyamine pathway and subsequent hypusination of eukaryotic initiation factor 5A (eIF5A) are master regulators of immune cell functions. In brown adipose tissue (BAT), macrophages show an impressive degree of heterogenicity, with specific subsets supporting adaptive thermogenesis during cold exposure. In this review, we discuss the impact of polyamine metabolism on macrophage diversity and function, with a particular focus on their role in adipose tissue homeostasis. Thus, we highlight the exploration of how polyamine metabolism in macrophages contributes to BAT homeostasis as an attractive and exciting new field of research.
Collapse
Affiliation(s)
| | - Daniele Lettieri-Barbato
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; IRCCS-Fondazione Bietti, Rome, Italy.
| | | |
Collapse
|
45
|
Hou N, Zhou H, Li J, Xiong X, Deng H, Xiong S. Macrophage polarization and metabolic reprogramming in abdominal aortic aneurysm. Immun Inflamm Dis 2024; 12:e1268. [PMID: 39530309 PMCID: PMC11555488 DOI: 10.1002/iid3.1268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a macrovascular disease with high morbidity and mortality in the elderly. The limitation of the current management is that most patients can only be followed up until the AAA diameter increases to a threshold, and surgical intervention is recommended. The development of preventive and curative drugs for AAA is urgently needed. Macrophage-mediated immune inflammation is one of the key pathological links in the occurrence and development of AAA. AIMS This review article aims to evaluate the impact of immunometabolism on macrophage biology and its role in AAA. METHODS We analyze publications focusing on the polarization and metabolic reprogramming in macrophages as well as their potential impact on AAA, and summarize the potential interventions that are currently available to regulate these processes. RESULTS The phenotypic and functional changes in macrophages are accompanied by significant alterations in metabolic pathways. The interaction between macrophage polarization and metabolic pathways significantly influences the progression of AAA. CONCLUSION Macrophage polarization is a manifestation of the gross dichotomy of macrophage function into pro-inflammatory killing and tissue repair, that is, classically activated M1 macrophages and alternatively activated M2 macrophages. Macrophage functions are closely linked to metabolic changes, and the emerging field of immunometabolism is providing unique insights into the role of macrophages in AAA. It is essential to further investigate the precise metabolic changes and their functional consequences in AAA-associated macrophages.
Collapse
Affiliation(s)
- Ningxin Hou
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongmin Zhou
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jun Li
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hongping Deng
- Department of Vascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Sizheng Xiong
- Department of Vascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
46
|
Chelvanambi S, Decano JL, Winkels H, Giannarelli C, Aikawa M. Decoding Macrophage Heterogeneity to Unravel Vascular Inflammation as a Path to Precision Medicine. Arterioscler Thromb Vasc Biol 2024; 44:2253-2257. [PMID: 39441912 PMCID: PMC11715277 DOI: 10.1161/atvbaha.124.319571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Affiliation(s)
- Sarvesh Chelvanambi
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Julius L. Decano
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Holger Winkels
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Chiara Giannarelli
- Cardiovascular Research Center, Division of Cardiology, Departments of Medicine and Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Kong Y, Zhang Q, Wang S, Li R, Fu C, Wei Q. Mitochondrial metabolism regulated macrophage phenotype in myocardial infarction. Biomed Pharmacother 2024; 180:117494. [PMID: 39321509 DOI: 10.1016/j.biopha.2024.117494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide, with myocardial infarction (MI) being the primary contributor to mortality and disability associated with CVD. Reperfusion therapies are widely recognized as effective strategies for treating MI. However, while intended to restore blood flow, the reperfusion processes paradoxically initiate a series of pathophysiological events that worsen myocardial injury, resulting in ischemia-reperfusion (I/R) injury. Therefore, there is a pressing need for new treatment strategies to reduce the size of MI and enhance cardiac function post-infarction. Macrophages are crucial for maintaining homeostasis and mitigating undesirable remodeling following MI. Extensive research has established a strong link between cellular metabolism and macrophage function. In the context of MI, macrophages undergo adaptive metabolic reprogramming to mount an immune response. Moreover, mitochondrial metabolism in macrophages is evident, leading to significant changes in their metabolism. Therefore, we need to delve deeper into summarizing and understanding the relationship and role between mitochondrial metabolism and macrophage phenotype, and summarize existing treatment methods. In this review, we explore the role of mitochondria in shaping the macrophage phenotype and function. Additionally, we summarize current therapeutic strategies aimed at modulating mitochondrial metabolism of macrophages, which may offer new insights treating of MI.
Collapse
Affiliation(s)
- Youli Kong
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Qing Zhang
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Shiqi Wang
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Ran Li
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China
| | - Chenying Fu
- State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Quan Wei
- Department of Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, PR China.
| |
Collapse
|
48
|
Yuan Y, Li R, Zhang Y, Zhao Y, Liu Q, Wang J, Yan X, Su J. Attenuating mitochondrial dysfunction-derived reactive oxygen species and reducing inflammation: the potential of Daphnetin in the viral pneumonia crisis. Front Pharmacol 2024; 15:1477680. [PMID: 39494349 PMCID: PMC11527716 DOI: 10.3389/fphar.2024.1477680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Amidst the global burden of viral pneumonia, mitigating the excessive inflammatory response induced by viral pneumonia has emerged as a significant challenge. Pneumovirus infections can lead to the persistent activation of M1 macrophages, culminating in cytokine storms that exacerbate pulmonary inflammation and contribute to the development of pulmonary fibrosis. Mitochondria, beyond their role as cellular powerhouses, are pivotal in integrating inflammatory signals and regulating macrophage polarization. Mitochondrial damage in alveolar macrophages is postulated to trigger excessive release of reactive oxygen species (ROS), thereby amplifying macrophage-mediated inflammatory pathways. Recent investigations have highlighted the anti-inflammatory potential of Daphnetin, particularly in the context of cardiovascular and renal disorders. This review elucidates the mechanisms by which viral infection-induced mitochondrial damage promotes ROS generation, leading to the phenotypic shift of alveolar macrophages towards a pro-inflammatory state. Furthermore, we propose a mechanism whereby Daphnetin attenuates inflammatory signaling by inhibiting excessive release of mitochondrial ROS, thus offering mitochondrial protection. Daphnetin may represent a promising pharmacological intervention for viral pneumonia and could play a crucial role in addressing future pandemics.
Collapse
Affiliation(s)
- Yuan Yuan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Runyuan Li
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yinji Zhang
- Jilin Province Xidian Pharmaceutical Sci-Tech Development Co.,Ltd, Panshi, Jilin, China
| | - Yuanxin Zhao
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qingqing Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jian Wang
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoyu Yan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
49
|
Liu Y, Fu X, Zhao X, Cui R, Yang W. The role of exercise-related FNDC5/irisin in depression. Front Pharmacol 2024; 15:1461995. [PMID: 39484160 PMCID: PMC11524886 DOI: 10.3389/fphar.2024.1461995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024] Open
Abstract
The complexity of depression presents a significant challenge to traditional treatment methods, such as medication and psychotherapy. Recent studies have shown that exercise can effectively reduce depressive symptoms, offering a new alternative for treating depression. However, some depressed patients are unable to engage in regular physical activity due to age, physical limitations, and other factors. Therefore, pharmacological agents that mimic the effects of exercise become a potential treatment option. A newly discovered myokine, irisin, which is produced during exercise via cleavage of its precursor protein fibronectin type III domain-containing protein 5 (FNDC5), plays a key role in regulating energy metabolism, promoting adipose tissue browning, and improving insulin resistance. Importantly, FNDC5 can promote neural stem cell differentiation, enhance neuroplasticity, and improve mood and cognitive function. This review systematically reviews the mechanisms of action of exercise in the treatment of depression, outlines the physiology of exercise-related irisin, explores possible mechanisms of irisin's antidepressant effects. The aim of this review is to encourage future research and clinical applications of irisin in the prevention and treatment of depression.
Collapse
Affiliation(s)
- Yaqi Liu
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiying Fu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xing Zhao
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Yang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
50
|
Jeong H, Kim NK, Park D, Youn H, Osuji CO, Doh J. Cu(II)-Organic Coordination Polymer Networks for Persistent Nitric Oxide Release in Tumor Therapy. Biomacromolecules 2024; 25:6830-6839. [PMID: 39283833 DOI: 10.1021/acs.biomac.4c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Nitric oxide (NO) plays a key role in regulating the immune system by polarizing macrophages toward the proinflammatory M1 phenotype, which is beneficial for cancer immunotherapy. We developed a Cu-organic coordination polymer network to sustainably release NO from endogenous donors. This robust polymer network was constructed through a dual-interaction process: complexation and cross-linking. The carboxylate groups of deprotonated 4-((6-(acryloyloxy)hexyl)oxy)benzoic acid (BA) served as bidentate ligands for the formation of Cu(II) complexes. The acrylate moiety of BA anchored these complexes in the polymer network, forming a cross-linked film. Cu ions within the network catalytically promoted NO release from S-nitrosoglutathione, maintaining this release even after 90 days in a physiological environment. The released NO effectively polarized both resting (M0) and tumor-promoting (M2) macrophages to the M1 phenotype. With their demonstrated physiological stability and sustained NO release performance, BA-Cu films hold potential as anticancer patches capable of continuously promoting antitumoral macrophages.
Collapse
Affiliation(s)
- Hyejoong Jeong
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
| | - Na Kyung Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daehwan Park
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry & Cosmetics, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do 63234, Republic of Korea
| | - Heesoo Youn
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chinedum O Osuji
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|