1
|
Xie B, Li J, Lou Y, Chen Q, Yang Y, Zhang R, Liu Z, He L, Cheng Y. Reprogramming macrophage metabolism following myocardial infarction: A neglected piece of a therapeutic opportunity. Int Immunopharmacol 2024; 142:113019. [PMID: 39217876 DOI: 10.1016/j.intimp.2024.113019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Given the global prevalence of myocardial infarction (MI) as the leading cause of mortality, there is an urgent need to devise novel strategies that target reducing infarct size, accelerating cardiac tissue repair, and preventing detrimental left ventricular (LV) remodeling. Macrophages, as a predominant type of innate immune cells, undergo metabolic reprogramming following MI, resulting in alterations in function and phenotype that significantly impact the progression of MI size and LV remodeling. This article aimed to delineate the characteristics of macrophage metabolites during reprogramming in MI and elucidate their targets and functions in cardioprotection. Furthermore, we summarize the currently proposed regulatory mechanisms of macrophage metabolic reprogramming and identify the regulators derived from endogenous products and natural small molecules. Finally, we discussed the challenges of macrophage metabolic reprogramming in the treatment of MI, with the goal of inspiring further fundamental and clinical research into reprogramming macrophage metabolism and validating its potential therapeutic targets for MI.
Collapse
Affiliation(s)
- Baoping Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Jiahua Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Yanmei Lou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Qi Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Ying Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China.
| | - Liu He
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong 510006, China.
| | - Yuanyuan Cheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China.
| |
Collapse
|
2
|
Chi J, Gao Q, Liu D. Tissue-Resident Macrophages in Cancer: Friend or Foe? Cancer Med 2024; 13:e70387. [PMID: 39494816 PMCID: PMC11533131 DOI: 10.1002/cam4.70387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION Macrophages are essential in maintaining homeostasis, combating infections, and influencing the process of various diseases, including cancer. Macrophages originate from diverse lineages: Notably, tissue-resident macrophages (TRMs) differ from hematopoietic stem cells and circulating monocyte-derived macrophages based on genetics, development, and function. Therefore, understanding the recruited and TRM populations is crucial for investigating disease processes. METHODS By searching literature databses, we summarized recent relevant studies. Research has shown that tumor-associated macrophages (TAMs) of distinct origins accumulate in tumor microenvironment (TME), with TRM-derived TAMs closely resembling gene signatures of normal TRMs. RESULTS Recent studies have revealed that TRMs play a crucial role in cancer progression. However, organ-specific effects complicate TRM investigations. Nonetheless, the precise involvement of TRMs in tumors is unclear. This review explores the multifaceted roles of TRMs in cancer, presenting insights into their origins, proliferation, the latest research methodologies, their impact across various tumor sites, their potential and strategies as therapeutic targets, interactions with other cells within the TME, and the internal heterogeneity of TRMs. CONCLUSIONS We believe that a comprehensive understanding of the multifaceted roles of TRMs will pave the way for targeted TRM therapies in the treatment of cancer.
Collapse
Affiliation(s)
- Jianhua Chi
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Qinglei Gao
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Dan Liu
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and MetastasisTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
3
|
Lu F, Ye M, Shen Y, Xu Y, Hu C, Chen J, Yu P, Xue B, Gu D, Xu L, Chen L, Ding Y, Bai J, Tian Y, Tang Q. Hypoxic tumor-derived exosomal miR-4488 induces macrophage M2 polarization to promote liver metastasis of pancreatic neuroendocrine neoplasm through RTN3/FABP5 mediated fatty acid oxidation. Int J Biol Sci 2024; 20:3201-3218. [PMID: 38904015 PMCID: PMC11186367 DOI: 10.7150/ijbs.96831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Tumor-associated macrophages (TAMs) represent a predominant cellular component within the tumor microenvironment (TME) of pancreatic neuroendocrine neoplasms (pNENs). There is a growing body of evidence highlighting the critical role of exosomes in facilitating communication between tumor cells and TAMs, thereby contributing to the establishment of the premetastatic niche. Nonetheless, the specific mechanisms through which exosomes derived from tumor cells influence macrophage polarization under hypoxic conditions in pNENs, and the manner in which these interactions support cancer metastasis, remain largely unexplored. Recognizing the capacity of exosomes to transfer miRNAs that can modify cellular behaviors, our research identified a significant overexpression of miR-4488 in exosomes derived from hypoxic pNEN cells. Furthermore, we observed that macrophages that absorbed circulating exosomal miR-4488 underwent M2-like polarization. Our investigations revealed that miR-4488 promotes M2-like polarization by directly targeting and suppressing RTN3 in macrophages. This suppression of RTN3 enhances fatty acid oxidation and activates the PI3K/AKT/mTOR signaling pathway through the interaction and downregulation of FABP5. Additionally, M2 polarized macrophages contribute to the formation of the premetastatic niche and advance pNENs metastasis by releasing MMP2, thereby establishing a positive feedback loop involving miR-4488, RTN3, FABP5, and MMP2 in pNEN cells. Together, these findings shed light on the role of exosomal miRNAs from hypoxic pNEN cells in mediating interactions between pNEN cells and intrahepatic macrophages, suggesting that miR-4488 holds potential as a valuable biomarker and therapeutic target for pNENs.
Collapse
Affiliation(s)
- Feiyu Lu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, The First Affiliated Hospital of Nanjing Medical University, NO.300 Guangzhou Road, Nanjing 210029, Jiangsu Province, China
| | - Mujie Ye
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, The First Affiliated Hospital of Nanjing Medical University, NO.300 Guangzhou Road, Nanjing 210029, Jiangsu Province, China
| | - Yikai Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, NO.300 Guangzhou Road, Nanjing 210029, Jiangsu Province, China
| | - Yanling Xu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, The First Affiliated Hospital of Nanjing Medical University, NO.300 Guangzhou Road, Nanjing 210029, Jiangsu Province, China
| | - Chunhua Hu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, The First Affiliated Hospital of Nanjing Medical University, NO.300 Guangzhou Road, Nanjing 210029, Jiangsu Province, China
| | - Jinhao Chen
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, The First Affiliated Hospital of Nanjing Medical University, NO.300 Guangzhou Road, Nanjing 210029, Jiangsu Province, China
| | - Ping Yu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, The First Affiliated Hospital of Nanjing Medical University, NO.300 Guangzhou Road, Nanjing 210029, Jiangsu Province, China
| | - Bingyan Xue
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, The First Affiliated Hospital of Nanjing Medical University, NO.300 Guangzhou Road, Nanjing 210029, Jiangsu Province, China
| | - Danyang Gu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, The First Affiliated Hospital of Nanjing Medical University, NO.300 Guangzhou Road, Nanjing 210029, Jiangsu Province, China
| | - Lin Xu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, The First Affiliated Hospital of Nanjing Medical University, NO.300 Guangzhou Road, Nanjing 210029, Jiangsu Province, China
| | - Lingyi Chen
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, The First Affiliated Hospital of Nanjing Medical University, NO.300 Guangzhou Road, Nanjing 210029, Jiangsu Province, China
| | - Yi Ding
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, The First Affiliated Hospital of Nanjing Medical University, NO.300 Guangzhou Road, Nanjing 210029, Jiangsu Province, China
| | - Jianan Bai
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, The First Affiliated Hospital of Nanjing Medical University, NO.300 Guangzhou Road, Nanjing 210029, Jiangsu Province, China
| | - Ye Tian
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, The First Affiliated Hospital of Nanjing Medical University, NO.300 Guangzhou Road, Nanjing 210029, Jiangsu Province, China
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, The First Affiliated Hospital of Nanjing Medical University, NO.300 Guangzhou Road, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
4
|
Huang H, Zheng S, Wu J, Liang X, Li S, Mao P, He Z, Chen Y, Sun L, Zhao X, Cai A, Wang L, Sheng H, Yao Q, Chen R, Zhao Y, Kou L. Opsonization Inveigles Macrophages Engulfing Carrier-Free Bilirubin/JPH203 Nanoparticles to Suppress Inflammation for Osteoarthritis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400713. [PMID: 38593402 PMCID: PMC11165524 DOI: 10.1002/advs.202400713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/21/2024] [Indexed: 04/11/2024]
Abstract
Osteoarthritis (OA) is a chronic inflammatory disease characterized by cartilage destruction, synovitis, and osteophyte formation. Disease-modifying treatments for OA are currently lacking. Because inflammation mediated by an imbalance of M1/M2 macrophages in the synovial cavities contributes to OA progression, regulating the M1 to M2 polarization of macrophages can be a potential therapeutic strategy. Basing on the inherent immune mechanism and pathological environment of OA, an immunoglobulin G-conjugated bilirubin/JPH203 self-assembled nanoparticle (IgG/BRJ) is developed, and its therapeutic potential for OA is evaluated. After intra-articular administration, IgG conjugation facilitates the recognition and engulfment of nanoparticles by the M1 macrophages. The internalized nanoparticles disassemble in response to the increased oxidative stress, and the released bilirubin (BR) and JPH203 scavenge reactive oxygen species (ROS), inhibit the nuclear factor kappa-B pathway, and suppress the activated mammalian target of rapamycin pathway, result in the repolarization of macrophages and enhance M2/M1 ratios. Suppression of the inflammatory environment by IgG/BRJ promotes cartilage protection and repair in an OA rat model, thereby improving therapeutic outcomes. This strategy of opsonization involving M1 macrophages to engulf carrier-free BR/JPH203 nanoparticles to suppress inflammation for OA therapy holds great potential for OA intervention and treatment.
Collapse
Affiliation(s)
- Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Shimin Zheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
| | - Jianing Wu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
| | - Xindan Liang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Shengjie Li
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Pengfei Mao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
| | - Zhinan He
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Yahui Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Lining Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Xinyu Zhao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
| | - Aimin Cai
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
| | - Luhui Wang
- Department of UltrasonographyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325015China
| | - Huixiang Sheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
| | - Ying‐Zheng Zhao
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of PharmacyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhou325027China
| |
Collapse
|
5
|
Melnik BC. Acne Transcriptomics: Fundamentals of Acne Pathogenesis and Isotretinoin Treatment. Cells 2023; 12:2600. [PMID: 37998335 PMCID: PMC10670572 DOI: 10.3390/cells12222600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
This review on acne transcriptomics allows for deeper insights into the pathogenesis of acne and isotretinoin's mode of action. Puberty-induced insulin-like growth factor 1 (IGF-1), insulin and androgen signaling activate the kinase AKT and mechanistic target of rapamycin complex 1 (mTORC1). A Western diet (hyperglycemic carbohydrates and milk/dairy products) also co-stimulates AKT/mTORC1 signaling. The AKT-mediated phosphorylation of nuclear FoxO1 and FoxO3 results in their extrusion into the cytoplasm, a critical switch which enhances the transactivation of lipogenic and proinflammatory transcription factors, including androgen receptor (AR), sterol regulatory element-binding transcription factor 1 (SREBF1), peroxisome proliferator-activated receptor γ (PPARγ) and signal transducer and activator of transcription 3 (STAT3), but reduces the FoxO1-dependent expression of GATA binding protein 6 (GATA6), the key transcription factor for infundibular keratinocyte homeostasis. The AKT-mediated phosphorylation of the p53-binding protein MDM2 promotes the degradation of p53. In contrast, isotretinoin enhances the expression of p53, FoxO1 and FoxO3 in the sebaceous glands of acne patients. The overexpression of these proapoptotic transcription factors explains isotretinoin's desirable sebum-suppressive effect via the induction of sebocyte apoptosis and the depletion of BLIMP1(+) sebocyte progenitor cells; it also explains its adverse effects, including teratogenicity (neural crest cell apoptosis), a reduced ovarian reserve (granulosa cell apoptosis), the risk of depression (the apoptosis of hypothalamic neurons), VLDL hyperlipidemia, intracranial hypertension and dry skin.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, 49069 Osnabrück, Germany
| |
Collapse
|
6
|
Heieis GA, Patente TA, Almeida L, Vrieling F, Tak T, Perona-Wright G, Maizels RM, Stienstra R, Everts B. Metabolic heterogeneity of tissue-resident macrophages in homeostasis and during helminth infection. Nat Commun 2023; 14:5627. [PMID: 37699869 PMCID: PMC10497597 DOI: 10.1038/s41467-023-41353-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/01/2023] [Indexed: 09/14/2023] Open
Abstract
Tissue-resident macrophage populations constitute a mosaic of phenotypes, yet how their metabolic states link to the range of phenotypes and functions in vivo is still poorly defined. Here, using high-dimensional spectral flow cytometry, we observe distinct metabolic profiles between different organs and functionally link acetyl CoA carboxylase activity to efferocytotic capacity. Additionally, differences in metabolism are evident within populations from a specific site, corresponding to relative stages of macrophage maturity. Immune perturbation with intestinal helminth infection increases alternative activation and metabolic rewiring of monocyte-derived macrophage populations, while resident TIM4+ intestinal macrophages remain immunologically and metabolically hyporesponsive. Similar metabolic signatures in alternatively-activated macrophages are seen from different tissues using additional helminth models, but to different magnitudes, indicating further tissue-specific contributions to metabolic states. Thus, our high-dimensional, flow-based metabolic analyses indicates complex metabolic heterogeneity and dynamics of tissue-resident macrophage populations at homeostasis and during helminth infection.
Collapse
Affiliation(s)
- Graham A Heieis
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Thiago A Patente
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Luís Almeida
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Frank Vrieling
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708WE, Wageningen, The Netherlands
| | - Tamar Tak
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Georgia Perona-Wright
- School of Infection and Immunity, University of Glasgow, 120 University Place, G12 8TA, Glasgow, UK
| | - Rick M Maizels
- School of Infection and Immunity, University of Glasgow, 120 University Place, G12 8TA, Glasgow, UK
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708WE, Wageningen, The Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
7
|
Zhang X, Evans TD, Chen S, Sergin I, Stitham J, Jeong SJ, Rodriguez-Velez A, Yeh YS, Park A, Jung IH, Diwan A, Schilling JD, Rom O, Yurdagul A, Epelman S, Cho J, Lodhi IJ, Mittendorfer B, Razani B. Loss of Macrophage mTORC2 Drives Atherosclerosis via FoxO1 and IL-1β Signaling. Circ Res 2023; 133:200-219. [PMID: 37350264 PMCID: PMC10527041 DOI: 10.1161/circresaha.122.321542] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND The mTOR (mechanistic target of rapamycin) pathway is a complex signaling cascade that regulates cellular growth, proliferation, metabolism, and survival. Although activation of mTOR signaling has been linked to atherosclerosis, its direct role in lesion progression and in plaque macrophages remains poorly understood. We previously demonstrated that mTORC1 (mTOR complex 1) activation promotes atherogenesis through inhibition of autophagy and increased apoptosis in macrophages. METHODS Using macrophage-specific Rictor- and mTOR-deficient mice, we now dissect the distinct functions of mTORC2 pathways in atherogenesis. RESULTS In contrast to the atheroprotective effect seen with blockade of macrophage mTORC1, macrophage-specific mTORC2-deficient mice exhibit an atherogenic phenotype, with larger, more complex lesions and increased cell death. In cultured macrophages, we show that mTORC2 signaling inhibits the FoxO1 (forkhead box protein O1) transcription factor, leading to suppression of proinflammatory pathways, especially the inflammasome/IL (interleukin)-1β response, a key mediator of vascular inflammation and atherosclerosis. In addition, administration of FoxO1 inhibitors efficiently rescued the proinflammatory response caused by mTORC2 deficiency both in vitro and in vivo. Interestingly, collective deletion of macrophage mTOR, which ablates mTORC1- and mTORC2-dependent pathways, leads to minimal change in plaque size or complexity, reflecting the balanced yet opposing roles of these signaling arms. CONCLUSIONS Our data provide the first mechanistic details of macrophage mTOR signaling in atherosclerosis and suggest that therapeutic measures aimed at modulating mTOR need to account for its dichotomous functions.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Trent D. Evans
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Sunny Chen
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Ismail Sergin
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Jeremiah Stitham
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St Louis, MO, USA
| | - Se-Jin Jeong
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | | | - Yu-Sheng Yeh
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Arick Park
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - In-Hyuk Jung
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Abhinav Diwan
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
- John Cochran VA Medical Center, St. Louis, MO, USA
| | - Joel D. Schilling
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology and Department of Molecular and Cellular Physiology, Louisiana State University, Shreveport, LA
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology and Department of Molecular and Cellular Physiology, Louisiana State University, Shreveport, LA
| | - Slava Epelman
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Center, Toronto General Hospital Research Institute, University Health Network and University of Toronto, Toronto, Canada
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Irfan J. Lodhi
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St Louis, MO, USA
| | - Bettina Mittendorfer
- Division of Geriatrics and Nutritional Science, and Washington University School of Medicine, St Louis, MO, USA
| | - Babak Razani
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
- Pittsburgh VA Medical Center, Pittsburgh, PA
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, USA
- John Cochran VA Medical Center, St. Louis, MO, USA
| |
Collapse
|
8
|
Liu S, Wu J, Stolarz A, Zhang H, Boerma M, Byrum SD, Rusch NJ, Ding Z. PCSK9 attenuates efferocytosis in endothelial cells and promotes vascular aging. Theranostics 2023; 13:2914-2929. [PMID: 37284459 PMCID: PMC10240829 DOI: 10.7150/thno.83914] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 06/08/2023] Open
Abstract
Aims: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease that binds to low-density lipoprotein receptors. Efferocytosis is the process by which phagocytes remove apoptotic cells. Both PCSK9 and efferocytosis play important roles in regulating redox biology and inflammation, the key factors contributing to vascular aging. This study was designed to investigate the impact of PCSK9 on efferocytosis in endothelial cells (ECs) and its implications in vascular aging. Methods and Results: Studies were performed in primary human aortic ECs (HAECs) and primary mouse aortic ECs (MAECs) isolated from male wild-type (WT) and PCSK9-/- mice, and in young and aged mice treated with saline or the PCSK9 inhibitor Pep2-8. Our findings include that recombinant PCSK9 protein induces defective efferocytosis and aging marker senescence-associated-β-galactosidase (SA-β-gal) expression in ECs, while PCSK9-/- restores efferocytosis and inhibits SA-β-gal activity. Further studies in aged mice showed that endothelial deficiency of MerTK, a critical receptor for efferocytosis that allows phagocytes to detect the presence of apoptotic cells, may be an indicator of vascular dysfunction in the aortic arch. Pep2-8 treatment markedly restored efferocytosis in endothelium from the aged mice. A proteomics study in the aortic arch from aged mice revealed that Pep2-8 administration significantly downregulates expression of NOX4, MAPK subunits, NF-κB, and secretion of pro-inflammatory cytokines, all known to promote vascular aging. Immunofluorescent staining showed that Pep2-8 administration upregulates expression of eNOS and downregulates expression of pro-IL-1β, NF-κB and p22phox compared to saline treated group. Conclusions: These findings provide initial evidence for the ability of aortic ECs to accomplish efferocytosis and argue for a role of PCSK9 in attenuating EC efferocytosis, thereby leading to vascular dysfunction and acceleration in vascular aging.
Collapse
Affiliation(s)
- Shijie Liu
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jinzi Wu
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Amanda Stolarz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Huiliang Zhang
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Zufeng Ding
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
9
|
Tan L, Shi G, Zhao J, Xia X, Li D, Wang S, Liang J, Hou Y, Dou H. MDSCs participate in the pathogenesis of diffuse pulmonary hemorrhage in murine lupus through mTOR-FoxO1 signaling. Biochem Biophys Rep 2022; 32:101351. [PMID: 36164563 PMCID: PMC9507990 DOI: 10.1016/j.bbrep.2022.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Liping Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Guoping Shi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Junyu Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Xiaoyu Xia
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Saiwen Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
- Corresponding author. The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
- Corresponding author. The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China.
| |
Collapse
|
10
|
Zhang Y, Ouyang D, Chen YH, Xia H. Peritoneal resident macrophages in tumor metastasis and immunotherapy. Front Cell Dev Biol 2022; 10:948952. [PMID: 36035994 PMCID: PMC9402905 DOI: 10.3389/fcell.2022.948952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Macrophages residing in various tissues play crucial roles in innate immunity, tissue repair, and immune homeostasis. The development and differentiation of macrophages in non-lymphoid tissues are highly regulated by the tissue microenvironment. Peritoneum provides a unique metastatic niche for certain types of tumor cells. As the dominant immune cell type in peritoneal cavity, macrophages control the immune response to tumor and influence the efficacy of anti-tumor therapy. Considering the heterogeneity of macrophages in origin, metabolism, and function, it is always challenging to define the precise roles of macrophages in tumor microenvironment. We review here recent progresses in peritoneal resident macrophage research in the context of physiological and metastatic tumor conditions, which may benefit the development of new anti-tumor therapies through targeting macrophages.
Collapse
Affiliation(s)
- Yu Zhang
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dongyun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Youhai H. Chen
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Houjun Xia
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Houjun Xia,
| |
Collapse
|
11
|
The Essential Role of FoxO1 in the Regulation of Macrophage Function. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1068962. [PMID: 35993049 PMCID: PMC9388302 DOI: 10.1155/2022/1068962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022]
Abstract
Macrophages are widely distributed in various tissues and organs. They not only participate in the regulation of innate and adaptive immune response, but also play an important role in tissue homeostasis. Dysregulation of macrophage function is closely related to the initiation, development and prognosis of multiple diseases, including infection and tumorigenesis. Forkhead box transcription factor O1 (FoxO1) is an important member among the forkhead box transcription factor family. Through directly binding to the promoter regions of downstream target genes, FoxO1 is implicated in cell proliferation, apoptosis, metabolic activities and other biological processes. In this review, we summarized the regulatory role of FoxO1 in macrophage phagocytosis, migration, differentiation and inflammatory activation. We also emphasized that macrophage reciprocally modulated FoxO1 activity via a post-translational modification (PTM) dominant manner.
Collapse
|
12
|
Chen W, Xiao W, Liu X, Yuan P, Zhang S, Wang Y, Wu W. Pharmacological manipulation of macrophage autophagy effectively rejuvenates the regenerative potential of biodegrading vascular graft in aging body. Bioact Mater 2022; 11:283-299. [PMID: 34977432 PMCID: PMC8668428 DOI: 10.1016/j.bioactmat.2021.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/28/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022] Open
Abstract
Declined regenerative potential and aggravated inflammation upon aging create an inappropriate environment for arterial regeneration. Macrophages are one of vital effector cells in the immune microenvironment, especially during biomaterials mediated repairing process. Here, we revealed that the macrophage autophagy decreased with aging, which led to aggravated inflammation, thereby causing poor vascular remodeling of artificial grafts in aging body. Through loading the autophagy-targeted drugs, rapamycin and 3-MA (3-methyladenine), in PCL (polycaprolactone) sheath of the PGS (poly glycerol sebacate) - PCL vascular graft, the essential role of macrophage autophagy was confirmed in regulating macrophage polarization and biomaterial degradation. Moreover, the utilization of rapamycin promoted anti-inflammatory polarization of macrophage by activating autophagy, which further promoted myogenic differentiation of vascular progenitor cells and accelerated endothelialization. Our study elucidated the contribution of pharmacological manipulation of macrophage autophagy in promoting regeneration of small caliber artery, which may pave a new avenue for clinical translation of vascular grafts in aging body.
Collapse
Affiliation(s)
- Wanli Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yanchang Road, Shanghai 200072, China
| | - Weiwei Xiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xuzheng Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pingping Yuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Siqian Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yinggang Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
13
|
Jangani M, Vuononvirta J, Yamani L, Ward E, Capasso M, Nadkarni S, Balkwill F, Marelli-Berg F. Loss of mTORC2-induced metabolic reprogramming in monocytes uncouples migration and maturation from production of proinflammatory mediators. J Leukoc Biol 2022; 111:967-980. [PMID: 34585416 DOI: 10.1002/jlb.1a0920-588r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Monocyte migration to the sites of inflammation and maturation into macrophages are key steps for their immune effector function. Here, we show that mechanistic target of rapamycin complex 2 (mTORC2)-dependent Akt activation is instrumental for metabolic reprogramming at the early stages of macrophage-mediated immunity. Despite an increased production of proinflammatory mediators, monocytes lacking expression of the mTORC2 component Rictor fail to efficiently migrate to inflammatory sites and fully mature into macrophages, resulting in reduced inflammatory responses in vivo. The mTORC2-dependent phosphorylation of Akt is instrumental for the enhancement of glycolysis and mitochondrial respiration, required to sustain monocyte maturation and motility. These observations are discussed in the context of therapeutic strategies aimed at selective inhibition of mTORC2 activity.
Collapse
Affiliation(s)
- Maryam Jangani
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Juho Vuononvirta
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Lamya Yamani
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Eleanor Ward
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Melania Capasso
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Bonn, Germany
| | - Suchita Nadkarni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Frances Balkwill
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
14
|
Rawle DJ, Dumenil T, Tang B, Bishop CR, Yan K, Le TT, Suhrbier A. Microplastic consumption induces inflammatory signatures in the colon and prolongs a viral arthritis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152212. [PMID: 34890673 DOI: 10.1016/j.scitotenv.2021.152212] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Global microplastic (MP) contamination and the effects on the environment are well described. However, the potential for MP consumption to affect human health remains controversial. Mice consuming ≈80 μg/kg/day of 1 μm polystyrene MPs via their drinking water showed no weight loss, nor were MPs detected in internal organs. The microbiome was also not significantly changed. MP consumption did lead to small transcriptional changes in the colon suggesting plasma membrane perturbations and mild inflammation. Mice were challenged with the arthritogenic chikungunya virus, with MP consumption leading to a significantly prolonged arthritic foot swelling that was associated with elevated Th1, NK cell and neutrophil signatures. Immunohistochemistry also showed a significant increase in the ratio of neutrophils to monocyte/macrophages. The picture that emerges is reminiscent of enteropathic arthritis, whereby perturbations in the colon are thought to activate innate lymphoid cells that can inter alia migrate to joint tissues to promote inflammation.
Collapse
Affiliation(s)
- Daniel J Rawle
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Troy Dumenil
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Bing Tang
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Cameron R Bishop
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Kexin Yan
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Thuy T Le
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Andreas Suhrbier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia; Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, Queensland 4029 and 4072, Australia.
| |
Collapse
|
15
|
Andreuzzi E, Fejza A, Polano M, Poletto E, Camicia L, Carobolante G, Tarticchio G, Todaro F, Di Carlo E, Scarpa M, Scarpa M, Paulitti A, Capuano A, Canzonieri V, Maiero S, Fornasarig M, Cannizzaro R, Doliana R, Colombatti A, Spessotto P, Mongiat M. Colorectal cancer development is affected by the ECM molecule EMILIN-2 hinging on macrophage polarization via the TLR-4/MyD88 pathway. J Exp Clin Cancer Res 2022; 41:60. [PMID: 35148799 PMCID: PMC8840294 DOI: 10.1186/s13046-022-02271-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/22/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Colorectal cancer is one of the most frequent and deadly tumors. Among the key regulators of CRC growth and progression, the microenvironment has emerged as a crucial player and as a possible route for the development of new therapeutic opportunities. More specifically, the extracellular matrix acts directly on cancer cells and indirectly affecting the behavior of stromal and inflammatory cells, as well as the bioavailability of growth factors. Among the ECM molecules, EMILIN-2 is frequently down-regulated by methylation in CRC and the purpose of this study was to verify the impact of EMILIN-2 loss in CRC development and its possible value as a prognostic biomarker. METHODS The AOM/DSS CRC protocol was applied to Emilin-2 null and wild type mice. Tumor development was monitored by endoscopy, the molecular analyses performed by IHC, IF and WB and the immune subpopulations characterized by flow cytometry. Ex vivo cultures of monocyte/macrophages from the murine models were used to verify the molecular pathways. Publicly available datasets were exploited to determine the CRC patients' expression profile; Spearman's correlation analyses and Cox regression were applied to evaluate the association with the inflammatory response; the clinical outcome was predicted by Kaplan-Meier survival curves. Pearson correlation analyses were also applied to a cohort of patients enrolled in our Institute. RESULTS In preclinical settings, loss of EMILIN-2 associated with an increased number of tumor lesions upon AOM/DSS treatment. In addition, in the early stages of the disease, the Emilin-2 knockout mice displayed a myeloid-derived suppressor cells-rich infiltrate. Instead, in the late stages, lack of EMILIN-2 associated with a decreased number of M1 macrophages, resulting in a higher percentage of the tumor-promoting M2 macrophages. Mechanistically, EMILIN-2 triggered the activation of the Toll-like Receptor 4/MyD88/NF-κB pathway, instrumental for the polarization of macrophages towards the M1 phenotype. Accordingly, dataset and immunofluorescence analyses indicated that low EMILIN-2 expression levels correlated with an increased M2/M1 ratio and with poor CRC patients' prognosis. CONCLUSIONS These novel results indicate that EMILIN-2 is a key regulator of the tumor-associated inflammatory environment and may represent a promising prognostic biomarker for CRC patients.
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Lucrezia Camicia
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Greta Carobolante
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giulia Tarticchio
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Federico Todaro
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Melania Scarpa
- Ricerca Traslazionale Avanzata, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | - Marco Scarpa
- Clinica Chirurgica I- Azienda Ospedaliera di Padova, Padua, Italy
| | - Alice Paulitti
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Stefania Maiero
- Division of Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Mara Fornasarig
- Division of Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Renato Cannizzaro
- Division of Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alfonso Colombatti
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.
| |
Collapse
|
16
|
García-Peñarrubia P, Ruiz-Alcaraz AJ, Ruiz-Ballester M, Ramírez-Pávez TN, Martínez-Esparza M. Recent insights into the characteristics and role of peritoneal macrophages from ascites of cirrhotic patients. World J Gastroenterol 2021; 27:7014-7024. [PMID: 34887625 PMCID: PMC8613641 DOI: 10.3748/wjg.v27.i41.7014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/02/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Macrophages are a diverse myeloid cell population involved in innate and adaptive immune responses, embryonic development, wound repair, and regulation of tissue homeostasis. These cells link the innate and adaptive immunities and are crucial in the development and sustainment of various inflammatory diseases. Macrophages are tissue-resident cells in steady-state conditions; however, they are also recruited from blood monocytes after local pathogen invasion or tissue injury. Peritoneal macrophages vary based on their cell complexity, phenotype, and functional capabilities. These cells regulate inflammation and control bacterial infections in the ascites of decompensated cirrhotic patients. Our recent work reported several phenotypic and functional characteristics of these cells under both healthy and pathological conditions. A direct association between cell size, CD14/CD16 expression, intracellular level of GATA-6, and expression of CD206 and HLA-DR activation/maturation markers, indicate that the large peritoneal macrophage CD14highCD16high subset constitutes the mature phenotype of human resident peritoneal macrophages during homeostasis. Moreover, elevated expression of CD14/CD16 is related to the phagocytic capacity. The novel large CD14highCD16high peritoneal subpopulation is increased in the ascites of cirrhotic patients and is highly sensitive to lipopolysaccharide (LPS)-induced activation, thereby exhibiting features of inflammatory priming. Thus, phosphorylation of ERK1/2, PKB/Akt, and c-Jun is remarkably increased in response to LPS in vitro, whereas that of p38 MAPK is reduced compared with the monocyte-derived macrophages from the blood of healthy controls. Furthermore, in vitro activated monocyte-derived macrophages from ascites of cirrhotic patients secreted significantly higher levels of IL-6, IL-10, and TNF-α and lower amounts of IL-1β and IL-12 than the corresponding cells from healthy donor’s blood. Based on these results, other authors have recently reported that the surface expression level of CD206 can be used to identify mature, resident, inflammatory peritoneal macrophages in patients with cirrhosis. Soluble CD206 is released from activated large peritoneal macrophages, and increased concentrations in patients with cirrhosis and spontaneous bacterial peritonitis (SBP) indicate reduced odds of survival for 90 d. Hence, the level of soluble CD206 in ascites might be used to identify patients with SBP at risk of death. In conclusion, peritoneal macrophages present in ascites of cirrhotic patients display multiple phenotypic modifications characterized by reduced ratio of cells expressing several membrane markers, together with an increase in the ratios of complex and intermediate subpopulations and a decrease in the classic-like subset. These modifications may lead to the identification of novel pharmaceutical targets for prevention and treatment of hepatic damage.
Collapse
Affiliation(s)
- Pilar García-Peñarrubia
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Murcia 30100, Spain
| | - Antonio José Ruiz-Alcaraz
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Murcia 30100, Spain
| | - Miriam Ruiz-Ballester
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Murcia 30100, Spain
| | - Tamara Nadira Ramírez-Pávez
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Murcia 30100, Spain
| | - María Martínez-Esparza
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Murcia 30100, Spain
| |
Collapse
|
17
|
Jha MK, Passero JV, Rawat A, Ament XH, Yang F, Vidensky S, Collins SL, Horton MR, Hoke A, Rutter GA, Latremoliere A, Rothstein JD, Morrison BM. Macrophage monocarboxylate transporter 1 promotes peripheral nerve regeneration after injury in mice. J Clin Invest 2021; 131:e141964. [PMID: 34491913 DOI: 10.1172/jci141964] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/02/2021] [Indexed: 12/28/2022] Open
Abstract
Peripheral nerves have the capacity for regeneration, but the rate of regeneration is so slow that many nerve injuries lead to incomplete recovery and permanent disability for patients. Macrophages play a critical role in the peripheral nerve response to injury, contributing to both Wallerian degeneration and nerve regeneration, and their function has recently been shown to be dependent on intracellular metabolism. To date, the impact of their intracellular metabolism on peripheral nerve regeneration has not been studied. We examined conditional transgenic mice with selective ablation in macrophages of solute carrier family 16, member 1 (Slc16a1), which encodes monocarboxylate transporter 1 (MCT1), and found that MCT1 contributed to macrophage metabolism, phenotype, and function, specifically in regard to phagocytosis and peripheral nerve regeneration. Adoptive cell transfer of wild-type macrophages ameliorated the impaired nerve regeneration in macrophage-selective MCT1-null mice. We also developed a mouse model that overexpressed MCT1 in macrophages and found that peripheral nerves in these mice regenerated more rapidly than in control mice. Our study provides further evidence that MCT1 has an important biological role in macrophages and that manipulations of macrophage metabolism can enhance recovery from peripheral nerve injuries, for which there are currently no approved medical therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Samuel L Collins
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maureen R Horton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Alban Latremoliere
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
18
|
Mesquita PHC, Vann CG, Phillips SM, McKendry J, Young KC, Kavazis AN, Roberts MD. Skeletal Muscle Ribosome and Mitochondrial Biogenesis in Response to Different Exercise Training Modalities. Front Physiol 2021; 12:725866. [PMID: 34646153 PMCID: PMC8504538 DOI: 10.3389/fphys.2021.725866] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022] Open
Abstract
Skeletal muscle adaptations to resistance and endurance training include increased ribosome and mitochondrial biogenesis, respectively. Such adaptations are believed to contribute to the notable increases in hypertrophy and aerobic capacity observed with each exercise mode. Data from multiple studies suggest the existence of a competition between ribosome and mitochondrial biogenesis, in which the first adaptation is prioritized with resistance training while the latter is prioritized with endurance training. In addition, reports have shown an interference effect when both exercise modes are performed concurrently. This prioritization/interference may be due to the interplay between the 5’ AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1) signaling cascades and/or the high skeletal muscle energy requirements for the synthesis and maintenance of cellular organelles. Negative associations between ribosomal DNA and mitochondrial DNA copy number in human blood cells also provide evidence of potential competition in skeletal muscle. However, several lines of evidence suggest that ribosome and mitochondrial biogenesis can occur simultaneously in response to different types of exercise and that the AMPK-mTORC1 interaction is more complex than initially thought. The purpose of this review is to provide in-depth discussions of these topics. We discuss whether a curious competition between mitochondrial and ribosome biogenesis exists and show the available evidence both in favor and against it. Finally, we provide future research avenues in this area of exercise physiology.
Collapse
Affiliation(s)
| | | | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - James McKendry
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn, AL, United States
| | | | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn, AL, United States
| |
Collapse
|
19
|
Slusarczyk P, Mleczko-Sanecka K. The Multiple Facets of Iron Recycling. Genes (Basel) 2021; 12:genes12091364. [PMID: 34573346 PMCID: PMC8469827 DOI: 10.3390/genes12091364] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
The production of around 2.5 million red blood cells (RBCs) per second in erythropoiesis is one of the most intense activities in the body. It continuously consumes large amounts of iron, approximately 80% of which is recycled from aged erythrocytes. Therefore, similar to the “making”, the “breaking” of red blood cells is also very rapid and represents one of the key processes in mammalian physiology. Under steady-state conditions, this important task is accomplished by specialized macrophages, mostly liver Kupffer cells (KCs) and splenic red pulp macrophages (RPMs). It relies to a large extent on the engulfment of red blood cells via so-called erythrophagocytosis. Surprisingly, we still understand little about the mechanistic details of the removal and processing of red blood cells by these specialized macrophages. We have only started to uncover the signaling pathways that imprint their identity, control their functions and enable their plasticity. Recent findings also identify other myeloid cell types capable of red blood cell removal and establish reciprocal cross-talk between the intensity of erythrophagocytosis and other cellular activities. Here, we aimed to review the multiple and emerging facets of iron recycling to illustrate how this exciting field of study is currently expanding.
Collapse
|
20
|
Collins SL, Oh MH, Sun IH, Chan-Li Y, Zhao L, Powell JD, Horton MR. mTORC1 Signaling Regulates Proinflammatory Macrophage Function and Metabolism. THE JOURNAL OF IMMUNOLOGY 2021; 207:913-922. [PMID: 34290107 DOI: 10.4049/jimmunol.2100230] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022]
Abstract
Metabolic programming is integrally linked to immune cell function. Nowhere is this clearer than in the differentiation of macrophages. Proinflammatory M1 macrophages primarily use glycolysis as a rapid energy source but also to generate antimicrobial compounds, whereas alternatively activated M2 macrophages primarily rely on oxidative phosphorylation for the longevity required for proper wound healing. mTOR signaling has been demonstrated to be a key regulator of immune cell metabolism and function. mTORC2 signaling is required for the generation of M2 macrophages, whereas the role of mTORC1 signaling, a key regulator of glycolysis, has been controversial. By using genetic deletion of mTORC1 signaling in C57BL/6 mouse macrophages, we observed enhanced M1 macrophage function in vitro and in vivo. Surprisingly, this enhancement occurred despite a significant defect in M1 macrophage glycolytic metabolism. Mechanistically, enhanced M1 function occurred because of inhibition of the class III histone deacetylases the sirtuins, resulting in enhanced histone acetylation. Our findings provide a counterpoint to the paradigm that enhanced immune cell function must occur in the presence of increased cellular metabolism and identifies a potential, pharmacologic target for the regulation of inflammatory responses.
Collapse
Affiliation(s)
- Samuel L Collins
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Min-Hee Oh
- Department of Immunobiology, Yale University, New Haven, CT; and
| | - Im-Hong Sun
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yee Chan-Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Liang Zhao
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jonathan D Powell
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Maureen R Horton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD;
| |
Collapse
|
21
|
Hu Y, Wen J, Zhang B, Xiao H. Precision control of mTORC1 is crucial for the maintenance and IL-13 responsiveness of alveolar macrophages. Int Immunopharmacol 2021; 95:107552. [PMID: 33743315 DOI: 10.1016/j.intimp.2021.107552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
Alveolar macrophages (AMs) are the lung resident macrophages critically involved in pulmonary homeostasis and immune response. Recent researches have uncovered a diversity of regulators responsible for the development, maintenance, and function of AMs. Nevertheless, the molecular underpinnings that determine the developmental and functional specification of AMs remain incompletely understood. Here, we investigated the role of the TSC1-mTOR pathway in murine AMs by genetic ablating Tsc1 or mTor alleles through Cd11c-Cre or LysM-Cre. Flow cytometry analyses revealed a prominent decrease in AMs in Tsc1f/f-Cd11c-Cre and Tsc1f/f/-LysM-Cre mice. Moreover, a reduction in AMs was also noted in mTorf/f-Cd11c-Cre or Rptorf/f-Cd11c-Cre mice. Further evidence implicated that elevation in cell death, most likely aberrant apoptosis or/and necroptosis, might be attributable to disrupted AM homeostasis. Whereas a diversity of cytokines involved in AM homeostasis and function triggered mTOR activation, only the IL-13 signaling, particularly Jak1 and Stat3 activation, was affected by TSC1 in macrophages. Further, select genes induced by IL-13, including AM surface markers such as Pparg, Fabp4/5, Nfil3 and Car4, and M2 hallmarks such as Arg1, Fizz, Ym1 and Clec7a were fine-tuned by the TSC1-mTOR pathway. Therefore, our results demonstrated that the TSC1-mTOR pathway has a crucial role in the homeostasis and functional specification of AMs through integrating cytokine signaling with metabolic cues.
Collapse
Affiliation(s)
- Yanxiang Hu
- Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China; CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Wen
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bei Zhang
- Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China.
| | - Hui Xiao
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
22
|
Zago G, Saavedra PHV, Keshari KR, Perry JSA. Immunometabolism of Tissue-Resident Macrophages - An Appraisal of the Current Knowledge and Cutting-Edge Methods and Technologies. Front Immunol 2021; 12:665782. [PMID: 34025667 PMCID: PMC8138590 DOI: 10.3389/fimmu.2021.665782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022] Open
Abstract
Tissue-resident macrophages exist in unique environments, or niches, that inform their identity and function. There is an emerging body of literature suggesting that the qualities of this environment, such as the types of cells and debris they eat, the intercellular interactions they form, and the length of time spent in residence, collectively what we call habitare, directly inform their metabolic state. In turn, a tissue-resident macrophage’s metabolic state can inform their function, including whether they resolve inflammation and protect the host from excessive perturbations of homeostasis. In this review, we summarize recent work that seeks to understand the metabolic requirements for tissue-resident macrophage identity and maintenance, for how they respond to inflammatory challenges, and for how they perform homeostatic functions or resolve inflammatory insults. We end with a discussion of the emerging technologies that are enabling, or will enable, in situ study of tissue-resident macrophage metabolism.
Collapse
Affiliation(s)
- Giulia Zago
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Pedro H V Saavedra
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Justin S A Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
23
|
Zhang XM, Chen DG, Li SC, Zhu B, Li ZJ. Embryonic Origin and Subclonal Evolution of Tumor-Associated Macrophages Imply Preventive Care for Cancer. Cells 2021; 10:903. [PMID: 33919979 PMCID: PMC8071014 DOI: 10.3390/cells10040903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 01/16/2023] Open
Abstract
Macrophages are widely distributed in tissues and function in homeostasis. During cancer development, tumor-associated macrophages (TAMs) dominatingly support disease progression and resistance to therapy by promoting tumor proliferation, angiogenesis, metastasis, and immunosuppression, thereby making TAMs a target for tumor immunotherapy. Here, we started with evidence that TAMs are highly plastic and heterogeneous in phenotype and function in response to microenvironmental cues. We pointed out that efforts to tear off the heterogeneous "camouflage" in TAMs conduce to target de facto protumoral TAMs efficiently. In particular, several fate-mapping models suggest that most tissue-resident macrophages (TRMs) are generated from embryonic progenitors, and new paradigms uncover the ontogeny of TAMs. First, TAMs from embryonic modeling of TRMs and circulating monocytes have distinct transcriptional profiling and function, suggesting that the ontogeny of TAMs is responsible for the functional heterogeneity of TAMs, in addition to microenvironmental cues. Second, metabolic remodeling helps determine the mechanism of phenotypic and functional characteristics in TAMs, including metabolic bias from macrophages' ontogeny in macrophages' functional plasticity under physiological and pathological conditions. Both models aim at dissecting the ontogeny-related metabolic regulation in the phenotypic and functional heterogeneity in TAMs. We argue that gleaning from the single-cell transcriptomics on subclonal TAMs' origins may help understand the classification of TAMs' population in subclonal evolution and their distinct roles in tumor development. We envision that TAM-subclone-specific metabolic reprogramming may round-up with future cancer therapies.
Collapse
Affiliation(s)
- Xiao-Mei Zhang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing 400037, China;
| | - De-Gao Chen
- Institute of Cancer, The Second Affiliated Hospital, Army Military Medical University, Chongqing 400037, China;
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children’s Research Institute, Children’s Hospital of Orange County (CHOC), 1201 West La Veta Ave., Orange, CA 92868, USA
- Department of Neurology, University of California-Irvine School of Medicine, 200 S Manchester Ave., Ste 206, Orange, CA 92868, USA
| | - Bo Zhu
- Institute of Cancer, The Second Affiliated Hospital, Army Military Medical University, Chongqing 400037, China;
| | - Zhong-Jun Li
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing 400037, China;
| |
Collapse
|
24
|
Kieler M, Hofmann M, Schabbauer G. More than just protein building blocks: how amino acids and related metabolic pathways fuel macrophage polarization. FEBS J 2021; 288:3694-3714. [PMID: 33460504 PMCID: PMC8359336 DOI: 10.1111/febs.15715] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/17/2022]
Abstract
Macrophages represent the first line of defence in innate immune responses and additionally serve important functions for the regulation of host inflammation and tissue homeostasis. The M1/M2 model describes the two extremes of macrophage polarization states, which can be induced by multiple stimuli, most notably by LPS/IFN‐γ and IL‐4/IL‐13. Historically, the expression of two genes encoding for enzymes, which use the same amino acid as their substrate, iNOS and ARG1, has been used to define classically activated M1 (iNOS) and alternatively activated M2 (ARG1) macrophages. This ‘arginine dichotomy’ has recently become a matter of debate; however, in parallel with the emerging field of immunometabolism there is accumulating evidence that these two enzymes and their related metabolites are fundamentally involved in the intrinsic regulation of macrophage polarization and function. The aim of this review is to highlight recent advances in macrophage biology and immunometabolism with a specific focus on amino acid metabolism and their related metabolic pathways: iNOS/ARG1 (arginine), TCA cycle and OXPHOS (glutamine) as well as the one‐carbon metabolism (serine, glycine).
Collapse
Affiliation(s)
- Markus Kieler
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria.,Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Melanie Hofmann
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria.,Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Gernot Schabbauer
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria.,Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| |
Collapse
|
25
|
Luo J, He W, Li X, Ji X, Liu J. Anti-acne vulgaris effects of chlorogenic acid by anti-inflammatory activity and lipogenesis inhibition. Exp Dermatol 2021; 30:865-871. [PMID: 33433016 DOI: 10.1111/exd.14277] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/07/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
Chlorogenic acid (CGA) exhibits substantial biological function in antioxidant, antibacterial, anti-lipogenesis and anti-inflammatory activities. Increased sebum production and inflammation are considered important for the development of acne. However, the therapeutic effects of CGA on acne vulgaris remain unexplored. In this study, to assess the effects and underlying mechanisms of CGA on acne, a model of skin inflammation in ears of ICR mouse induced by living Propionibacterium acnes was used. 24 hours after 1.0 × 107 CFU, P. acnes were intradermally injected into the ears of the ICR mouse. 1, 5 and 10 mg of CGA mixed with vaseline were applied to the surface of the skin every 12 hours for 3 days. Then, skin inflammation in the ears was assessed and the change of SREBP1 and TNF-α expression was analysed after CGA treatment. The mechanisms of CGA in anti-inflammatory activity and lipogenesis were also studied in primary sebocytes and HaCaT cells. We found that CGA treatment effectively rescued ear swelling, redness and erythema skin in ears of ICR mouse induced by P. acnes and significantly downregulated the expression of inflammatory cytokines by reducing the activity of the NF-κB signalling pathway. Furthermore, CGA could inhibit lipogenesis at the protein secretion and transcription level by decreasing the AKT/mTOR/SREBP signalling pathway. Our findings suggest that CGA could become a potential alternative drug for the treatment of acne vulgaris.
Collapse
Affiliation(s)
- Jiao Luo
- Institute for Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weiyi He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, China
| | - Xuan Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Gerontology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xunmin Ji
- Guangdong Provincial Institute of Biological Products and Materia, Guangzhou, Guangdong, China
| | - Jiabang Liu
- Institute for Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
26
|
An Emerging Target in the Battle against Osteoarthritis: Macrophage Polarization. Int J Mol Sci 2020; 21:ijms21228513. [PMID: 33198196 PMCID: PMC7697192 DOI: 10.3390/ijms21228513] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent chronic joint diseases worldwide, which causes a series of problems, such as joint pain, muscle atrophy, and joint deformities. Benefiting from some advances in the clinical treatment of OA, the quality of life of OA patients has been improved. However, the clinical need for more effective treatments for OA is still very urgent. Increasing findings show that macrophages are a critical breakthrough in OA therapy. Stimulated by different factors, macrophages are differentiated into two phenotypes: the pro-inflammatory M1 type and anti-inflammatory M2 type. In this study, various therapeutic reagents for macrophage-dependent OA treatment are summarized, including physical stimuli, chemical compounds, and biological molecules. Subsequently, the mechanisms of action of various approaches to modulating macrophages are discussed, and the signaling pathways underlying these treatments are interpreted. The NF-κB signaling pathway plays a vital role in the occurrence and development of macrophage-mediated OA, as NF-κB signaling pathway agonists promote the occurrence of OA, whereas NF-κB inhibitors ameliorate OA. Besides, several signaling pathways are also involved in the process of OA, including the JNK, Akt, MAPK, STAT6, Wnt/β-catenin, and mTOR pathways. In summary, macrophage polarization is a critical node in regulating the inflammatory response of OA. Reagents targeting the polarization of macrophages can effectively inhibit inflammation in the joints, which finally relieves OA symptoms. Our work lays the foundation for the development of macrophage-targeted therapeutic molecules and helps to elucidate the role of macrophages in OA.
Collapse
|
27
|
Lohrmann F, Forde AJ, Merck P, Henneke P. Control of myeloid cell density in barrier tissues. FEBS J 2020; 288:405-426. [PMID: 32502309 DOI: 10.1111/febs.15436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/21/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
The interface between the mammalian host and its environment is formed by barrier tissues, for example, of the skin, and the respiratory and the intestinal tracts. On the one hand, barrier tissues are colonized by site-adapted microbial communities, and on the other hand, they contain specific myeloid cell networks comprising macrophages, dendritic cells, and granulocytes. These immune cells are tightly regulated in function and cell number, indicating important roles in maintaining tissue homeostasis and immune balance in the presence of commensal microorganisms. The regulation of myeloid cell density and activation involves cell-autonomous 'single-loop circuits' including autocrine mechanisms. However, an array of microenvironmental factors originating from nonimmune cells and the microbiota, as well as the microanatomical structure, impose additional layers of regulation onto resident myeloid cells. This review discusses models integrating these factors into cell-specific programs to instruct differentiation and proliferation best suited for the maintenance and renewal of immune homeostasis in the tissue-specific environment.
Collapse
Affiliation(s)
- Florens Lohrmann
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Germany.,Institute for Immunodeficiency (IFI), Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Germany.,Spemann Graduate School for Biology and Medicine, University of Freiburg, Germany.,IMM-PACT Clinician Scientist Program, Faculty of Medicine, University of Freiburg, Germany
| | - Aaron J Forde
- Institute for Immunodeficiency (IFI), Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Germany.,Faculty of Biology, university of Freiburg, Germany
| | - Philipp Merck
- Institute for Immunodeficiency (IFI), Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Germany
| | - Philipp Henneke
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Germany.,Institute for Immunodeficiency (IFI), Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Germany
| |
Collapse
|
28
|
Liu Y, Feng M, Chen H, Yang G, Qiu J, Zhao F, Cao Z, Luo W, Xiao J, You L, Zheng L, Zhang T. Mechanistic target of rapamycin in the tumor microenvironment and its potential as a therapeutic target for pancreatic cancer. Cancer Lett 2020; 485:1-13. [PMID: 32428662 DOI: 10.1016/j.canlet.2020.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer(PC) is a devastating disease with a poor prognosis; however, few treatment options are available and the search continues for feasible molecular therapeutic targets, both in the tumor itself and in the tumor microenvironment. The mechanistic target of rapamycin (mTOR) signaling pathway has emerged as an attractive target due to its regulatory role in multiple cellular processes, including metabolism, proliferation, survival, and differentiation, under physiological and pathological conditions. Although mTOR-regulated events in tumor cells and the tumor microenvironment are known to restrict the development and growth of tumor cells, monotherapy with mTOR inhibitors has shown limited efficacy against PC to date, suggesting the need for alternative approaches. In this review, we describe the mechanisms by which mTOR modulates the PC microenvironment and suggest ways its function in immune cells might be exploited for the treatment of PC. We also discuss preclinical and clinical studies with mTOR inhibitors in combination with other therapeutic strategies, most notably immunotherapy. Finally, we highlight the promise that mTOR combinatorial therapy may hold for the treatment of PC in the near future.
Collapse
Affiliation(s)
- Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Mengyu Feng
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China; Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Hao Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jianchun Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
29
|
Chen N, Zhou P, Liu X, Li J, Wan Y, Liu S, Wei F. Overexpression of Rictor in the injured spinal cord promotes functional recovery in a rat model of spinal cord injury. FASEB J 2020; 34:6984-6998. [PMID: 32232913 DOI: 10.1096/fj.201903171r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/26/2020] [Accepted: 03/17/2020] [Indexed: 11/11/2022]
Abstract
Rictor is an essential component that directly activates the mammalian target of rapamycin (mTOR) activity, which contributes to the intrinsic axon growth capacity of adult sensory neurons after injury. However, whether its action also applies to regeneration after spinal cord injury (SCI) remains unknown. In this study, rats were given spinal cord contusion at the T9-10 level to establish the SCI model and were subsequently treated with intraspinal cord injection of a Rictor overexpression lentiviral vector to locally upregulate the Rictor expression in the injured spinal cord. Thereafter, we investigated the therapeutic effects of Rictor overexpression in the injured spinal cords of SCI rats. Rictor overexpression not only significantly attenuated the acute inflammatory response and cell death after SCI but also markedly increased the shift in macrophages around the lesion from the M1 to M2 phenotype compared to those of the control lentiviral vector injection-treated group. Furthermore, Rictor overexpression dramatically increased neurogenesis in the lesion epicenter, subsequently promoting the tissue repair and functional recovery in SCI rats. Interestingly, the mechanism underlying the beneficial effects of Rictor overexpression on SCI may be associated with the Rictor overexpression playing a role in the anti-inflammatory response and driving macrophage polarization toward the M2 phenotype, which benefits resident neuronal and oligodendrocyte survival. Our findings demonstrate that Rictor is an effective target that affects the generation of molecules that inhibit spinal cord regeneration. In conclusion, localized Rictor overexpression represents a promising potential strategy for the repair of SCI.
Collapse
Affiliation(s)
- Ningning Chen
- Department of Orthopedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Pengxiang Zhou
- Department of Physical Diagnostic, Daqing Longnan Hospital, Daqing, China
| | - Xizhe Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiachun Li
- Department of Orthopedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoyu Liu
- Department of Orthopedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Fuxin Wei
- Department of Orthopedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
30
|
Targeting immunometabolism as an anti-inflammatory strategy. Cell Res 2020; 30:300-314. [PMID: 32132672 PMCID: PMC7118080 DOI: 10.1038/s41422-020-0291-z] [Citation(s) in RCA: 312] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
The growing field of immunometabolism has taught us how metabolic cellular reactions and processes not only provide a means to generate ATP and biosynthetic precursors, but are also a way of controlling immunity and inflammation. Metabolic reprogramming of immune cells is essential for both inflammatory as well as anti-inflammatory responses. Four anti-inflammatory therapies, DMF, Metformin, Methotrexate and Rapamycin all work by affecting metabolism and/or regulating or mimicking endogenous metabolites with anti-inflammatory effects. Evidence is emerging for the targeting of specific metabolic events as a strategy to limit inflammation in different contexts. Here we discuss these recent developments and speculate on the prospect of targeting immunometabolism in the effort to develop novel anti-inflammatory therapeutics. As accumulating evidence for roles of an intricate and elaborate network of metabolic processes, including lipid, amino acid and nucleotide metabolism provides key focal points for developing new therapies, we here turn our attention to glycolysis and the TCA cycle to provide examples of how metabolic intermediates and enzymes can provide potential novel therapeutic targets.
Collapse
|
31
|
Suto T, Karonitsch T. The immunobiology of mTOR in autoimmunity. J Autoimmun 2019; 110:102373. [PMID: 31831256 DOI: 10.1016/j.jaut.2019.102373] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 01/11/2023]
Abstract
The mechanistic target of rapamycin (mTOR) is a master regulator of the inflammatory response in immune and non-immune cells. In immune cells mTOR regulates metabolism to fuel cell fate decision, proliferation and effector functions. In non-immune cells, such as fibroblast, it controls inflammation-associated proliferation and migration/invasion, shapes the expression of cytokines and chemokines and promotes extracellular matrix remodeling and fibrosis. Hence, mTOR plays a critical role in chronic inflammation, where a continuous feedback between stromal cells and infiltrating immune cells result in tissue remodeling and organ damage. Activation of mTOR has been implicated in a number of chronic inflammatory diseases, especially rheumatic diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), sjögren syndrome (SS) and seronegative spondyloarthropathy (SpA). Here we review recent advances in our understanding of the mechanism of mTOR activation in inflammation, especially in rheumatic diseases. We further discuss recent findings regarding the beneficial and side effects of mTOR inhibition in rheumatic conditions.
Collapse
Affiliation(s)
- Takahito Suto
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria; Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Thomas Karonitsch
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
32
|
Bhatia D, Chung KP, Nakahira K, Patino E, Rice MC, Torres LK, Muthukumar T, Choi AM, Akchurin OM, Choi ME. Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis. JCI Insight 2019; 4:132826. [PMID: 31639106 DOI: 10.1172/jci.insight.132826] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022] Open
Abstract
Mitophagy, by maintaining mitochondrial quality control, plays a key role in maintaining kidney function and is impaired in pathologic states. Macrophages are well known for their pathogenic role in kidney fibrosis. Here, we report that PINK1/Parkin-mediated mitophagy in macrophages is compromised in experimental and human kidney fibrosis. We demonstrate downregulation of mitophagy regulators mitofusin-2 (MFN2) and Parkin downstream of PINK1 in kidney fibrosis. Loss of either Pink1 or Prkn promoted renal extracellular matrix accumulation and frequency of profibrotic/M2 macrophages. Pink1-/- or Prkn-/- BM-derived macrophages (BMDMs) showed enhanced expression of rictor. Mitochondria from TGF-β1-treated Pink1-/- BMDMs exhibited increased superoxide levels, along with reduced respiration and ATP production. In addition, mitophagy in macrophages involves PINK1-mediated phosphorylation of downstream MFN2, MFN2-facilitated recruitment of Parkin to damaged mitochondria, and macrophage-specific deletion of Mfn2 aggravates kidney fibrosis. Moreover, mitophagy regulators were downregulated in human CKD kidney and TGF-β1-treated human renal macrophages, whereas Mdivi1 treatment suppressed mitophagy mediators and promoted fibrotic response. Taken together, our study is the first to our knowledge to demonstrate that macrophage mitophagy plays a protective role against kidney fibrosis via regulating the PINK1/MFN2/Parkin-mediated pathway.
Collapse
Affiliation(s)
| | - Kuei-Pin Chung
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA.,National Taiwan University Hospital, Taipei, Taiwan
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | | - Lisa K Torres
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension and.,NewYork-Presbyterian Hospital, New York, New York, USA
| | - Augustine Mk Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA.,NewYork-Presbyterian Hospital, New York, New York, USA
| | - Oleh M Akchurin
- NewYork-Presbyterian Hospital, New York, New York, USA.,Division of Pediatric Nephrology, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Mary E Choi
- Division of Nephrology and Hypertension and.,NewYork-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
33
|
Katholnig K, Schütz B, Fritsch SD, Schörghofer D, Linke M, Sukhbaatar N, Matschinger JM, Unterleuthner D, Hirtl M, Lang M, Herac M, Spittler A, Bergthaler A, Schabbauer G, Bergmann M, Dolznig H, Hengstschläger M, Magnuson MA, Mikula M, Weichhart T. Inactivation of mTORC2 in macrophages is a signature of colorectal cancer that promotes tumorigenesis. JCI Insight 2019; 4:124164. [PMID: 31619583 PMCID: PMC6824305 DOI: 10.1172/jci.insight.124164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/06/2019] [Indexed: 12/30/2022] Open
Abstract
The mechanistic target of rapamycin complex 2 (mTORC2) is a potentially novel and promising anticancer target due to its critical roles in proliferation, apoptosis, and metabolic reprogramming of cancer cells. However, the activity and function of mTORC2 in distinct cells within malignant tissue in vivo is insufficiently explored. Surprisingly, in primary human and mouse colorectal cancer (CRC) samples, mTORC2 signaling could not be detected in tumor cells. In contrast, only macrophages in tumor-adjacent areas showed mTORC2 activity, which was downregulated in stromal macrophages residing within human and mouse tumor tissues. Functionally, inhibition of mTORC2 by specific deletion of Rictor in macrophages stimulated tumorigenesis in a colitis-associated CRC mouse model. This phenotype was driven by a proinflammatory reprogramming of mTORC2-deficient macrophages that promoted colitis via the cytokine SPP1/osteopontin to stimulate tumor growth. In human CRC patients, high SPP1 levels and low mTORC2 activity in tumor-associated macrophages correlated with a worsened clinical prognosis. Treatment of mice with a second-generation mTOR inhibitor that inhibits mTORC2 and mTORC1 exacerbated experimental colorectal tumorigenesis in vivo. In conclusion, mTORC2 activity is confined to macrophages in CRC and limits tumorigenesis. These results suggest activation but not inhibition of mTORC2 as a therapeutic strategy for colitis-associated CRC.
Collapse
Affiliation(s)
- Karl Katholnig
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | - Birgit Schütz
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | | | - David Schörghofer
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | - Monika Linke
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | | | | | | | - Martin Hirtl
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | - Michaela Lang
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology
| | | | - Andreas Spittler
- Core Facility Flow Cytometry & Surgical Research Laboratories, Medical University of Vienna, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Gernot Schabbauer
- Institute for Physiology, Center for Physiology and Pharmacology, and
| | - Michael Bergmann
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Helmut Dolznig
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | | | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mario Mikula
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| |
Collapse
|
34
|
Wu H, Han Y, Rodriguez Sillke Y, Deng H, Siddiqui S, Treese C, Schmidt F, Friedrich M, Keye J, Wan J, Qin Y, Kühl AA, Qin Z, Siegmund B, Glauben R. Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages. EMBO Mol Med 2019; 11:e10698. [PMID: 31602788 PMCID: PMC6835560 DOI: 10.15252/emmm.201910698] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
Tumor‐associated macrophages (TAMs) promote tumor growth and metastasis by suppressing tumor immune surveillance. Herein, we provide evidence that the immunosuppressive phenotype of TAMs is controlled by long‐chain fatty acid metabolism, specifically unsaturated fatty acids, here exemplified by oleate. Consequently, en‐route enriched lipid droplets were identified as essential organelles, which represent effective targets for chemical inhibitors to block in vitro polarization of TAMs and tumor growth in vivo. In line, analysis of human tumors revealed that myeloid cells infiltrating colon cancer but not gastric cancer tissue indeed accumulate lipid droplets. Mechanistically, our data indicate that oleate‐induced polarization of myeloid cells depends on the mammalian target of the rapamycin pathway. Thus, our findings reveal an alternative therapeutic strategy by targeting the pro‐tumoral myeloid cells on a metabolic level.
Collapse
Affiliation(s)
- Hao Wu
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Yijie Han
- Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yasmina Rodriguez Sillke
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Hongzhang Deng
- Department of Polymer Science and Engineering, Key Laboratory of Systems, Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Sophiya Siddiqui
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christoph Treese
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Franziska Schmidt
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marie Friedrich
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Jacqueline Keye
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Jiajia Wan
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yue Qin
- National Center for Nanoscience and Technology, Beijing, China
| | - Anja A Kühl
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,iPATH.Berlin - Core Unit of the Charité, Berlin Institute of Health, Berlin, Germany
| | - Zhihai Qin
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Britta Siegmund
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany
| | - Rainer Glauben
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
35
|
Schroder WA, Hirata TD, Le TT, Gardner J, Boyle GM, Ellis J, Nakayama E, Pathirana D, Nakaya HI, Suhrbier A. SerpinB2 inhibits migration and promotes a resolution phase signature in large peritoneal macrophages. Sci Rep 2019; 9:12421. [PMID: 31455834 PMCID: PMC6712035 DOI: 10.1038/s41598-019-48741-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
SerpinB2 (plasminogen activator inhibitor type 2) has been called the "undecided serpin" with no clear consensus on its physiological role, although it is well described as an inhibitor of urokinase plasminogen activator (uPA). In macrophages, pro-inflammatory stimuli usually induce SerpinB2; however, expression is constitutive in Gata6+ large peritoneal macrophages (LPM). Interrogation of expression data from human macrophages treated with a range of stimuli using a new bioinformatics tool, CEMiTool, suggested that SerpinB2 is most tightly co- and counter-regulated with genes associated with cell movement. Using LPM from SerpinB2-/- and SerpinB2R380A (active site mutant) mice, we show that migration on Matrigel was faster than for their wild-type controls. Confocal microscopy illustrated that SerpinB2 and F-actin staining overlapped in focal adhesions and lamellipodia. Genes associated with migration and extracellular matrix interactions were also identified by RNA-Seq analysis of migrating RPM from wild-type and SerpinB2R380A mice. Subsequent gene set enrichment analyses (GSEA) suggested SerpinB2 counter-regulates many Gata6-regulated genes associated with migration. These data argue that the role of SerpinB2 in macrophages is inhibition of uPA-mediated plasmin generation during cell migration. GSEA also suggested that SerpinB2 expression (likely via ensuing modulation of uPA-receptor/integrin signaling) promotes the adoption of a resolution phase signature.
Collapse
Affiliation(s)
- Wayne A Schroder
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Thiago D Hirata
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Thuy T Le
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Joy Gardner
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Jonathan Ellis
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Dilan Pathirana
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia
| | - Helder I Nakaya
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, 4029, Australia.
| |
Collapse
|
36
|
Watson AR, Dai H, Zheng Y, Nakano R, Giannou AD, Menk AV, Stolz DB, Delgoffe GM, Thomson AW. mTORC2 Deficiency Alters the Metabolic Profile of Conventional Dendritic Cells. Front Immunol 2019; 10:1451. [PMID: 31338091 PMCID: PMC6626913 DOI: 10.3389/fimmu.2019.01451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/10/2019] [Indexed: 12/16/2022] Open
Abstract
In myeloid dendritic cells (DC), deletion of the mechanistic target of rapamycin complex 2 (TORC2) results in an augmented pro-inflammatory phenotype and T cell stimulatory activity; however, the underlying mechanism has not been resolved. Here, we demonstrate that mouse bone marrow-derived TORC2-deficient myeloid DC (TORC2−/− DC) utilize an altered metabolic program, characterized by enhanced baseline glycolytic function compared to wild-type WT control (Ctrl) DC, increased dependence on glycolytic ATP production, elevated lipid content and higher viability following stimulation with LPS. In addition, TORC2−/− DC display an increased spare respiratory capacity (SRC) compared to WT Ctrl DC; this metabolic phenotype corresponds with increased mitochondrial mass and mean mitochondrial DNA copy number, and failure of TORC2−/− DC mitochondria to depolarize following LPS stimulation. Our data suggest that the enhanced metabolic activity of TORC2−/− DC may be due to compensatory TORC1 pathway activity, namely increased expression of multiple genes upstream of Akt/TORC1 activity, including the integrin alpha IIb, protein tyrosine kinase 2/focal adhesion kinase, IL-7R and Janus kinase 1(JAK1), and the activation of downstream targets of TORC1, including p70S6K, eukaryotic translation initiation factor 4E binding protein 1 (4EBP1) and CD36 (fatty acid translocase). These enhanced TORC1 pathway activities may culminate in increased expression of the nuclear receptor peroxisome proliferator-activated receptor γ (Pparγ) that regulates fatty acid storage, and the transcription factor sterol regulatory element-binding transcription factor 1 (Srebf1). Taken together, our data suggest that TORC2 may function to restrain TORC1-driven metabolic activity and mitochondrial regulation in myeloid DC.
Collapse
Affiliation(s)
- Alicia R Watson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Helong Dai
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yawen Zheng
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ryosuke Nakano
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Anastasios D Giannou
- Section of Molecular Immunology and Gastroenterology, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ashley V Menk
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Greg M Delgoffe
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angus W Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
37
|
Dai H, Thomson AW. The "other" mTOR complex: New insights into mTORC2 immunobiology and their implications. Am J Transplant 2019; 19:1614-1621. [PMID: 30801921 PMCID: PMC6538441 DOI: 10.1111/ajt.15320] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/10/2019] [Accepted: 02/15/2019] [Indexed: 01/25/2023]
Abstract
A central role of the mechanistic target of rapamycin (mTOR) in regulation of fundamental cell processes is well recognized. mTOR functions in two distinct complexes: rapamycin-sensitive mTOR complex (C) 1 and rapamycin-insensitive mTORC2. While the role of mTORC1 in shaping immune responses, including transplant rejection, and the influence of its antagonism in promoting allograft tolerance have been studied extensively using rapamycin, lack of selective small molecule inhibitors has limited understanding of mTORC2 biology. Within the past few years, however, intracellular localization of mTORC2, its contribution to mitochondrial fitness, cell metabolism, cytoskeletal modeling and cell migration, and its role in differentiation and function of immune cells have been described. Studies in mTORC2 knockdown/knockout mouse models and a new class of dual mTORC1/2 inhibitors, have shed light on the immune regulatory functions of mTORC2. These include regulation of antigen-presenting cell, NK cell, T cell subset, and B cell differentiation and function. mTORC2 has been implicated in regulation of ischemia/reperfusion injury and graft rejection. Potential therapeutic benefits of antagonizing mTORC2 to inhibit chronic rejection have also been described, while selective in vivo targeting strategies using nanotechnology have been developed. We briefly review and discuss these developments and their implications.
Collapse
Affiliation(s)
- Helong Dai
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Angus W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
38
|
Watson AR, Dai H, Diaz-Perez JA, Killeen ME, Mathers AR, Thomson AW. mTORC2 deficiency in cutaneous dendritic cells potentiates CD8 + effector T cell responses and accelerates skin graft rejection. Am J Transplant 2019; 19:646-661. [PMID: 30129283 PMCID: PMC6384165 DOI: 10.1111/ajt.15083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/27/2018] [Accepted: 08/14/2018] [Indexed: 01/25/2023]
Abstract
Mechanistic target of rapamycin (mTOR) complex (mTORC)1 and mTORC2 regulate the differentiation and function of immune cells. While inhibition of mTORC1 antagonizes dendritic cell (DC) differentiation and suppresses graft rejection, the role of mTORC2 in DCs in determining host responses to transplanted tissue remains undefined. Using a mouse model in which mTORC2 was deleted specifically in CD11c+ DCs (TORC2DC-/- ), we show that the transplant of minor histocompatibility Ag (HY)-mismatched skin grafts from TORC2DC-/- donors into wild-type recipients results in accelerated rejection characterized by enhanced CD8+ T cell responses in the graft and regional lymphoid tissue [Correction added on January 9, 2019, after first online publication: in the previous sentence, major was changed to minor]. Similar enhancement of CD8+ effector T cell responses was observed in MHC-mismatched recipients of TORC2DC-/- grafts. Augmented CD8+ T cell responses were also observed in a delayed-type hypersensitivity model in which mTORC2 was absent in cutaneous DCs. These elevated responses could be ascribed to an increased T cell stimulatory phenotype of TORC2DC-/- and not to enhanced lymph node homing of the cells. In contrast, rejection of ovalbumin transgenic skin grafts in TORC2DC-/- recipients was unaffected. These findings suggest that mTORC2 in skin DCs restrains effector CD8+ T cell responses and have implications for understanding of the influence of mTOR inhibitors that target mTORC2 in transplant.
Collapse
Affiliation(s)
- Alicia R. Watson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Helong Dai
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Julio A. Diaz-Perez
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Meaghan E. Killeen
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Alicia R. Mathers
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Angus W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Correspondence: Angus W. Thomson, PhD, DSc, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, BST W1540, Pittsburgh, PA 15261, , (412) 624-6392
| |
Collapse
|
39
|
Abuzenadah A, Al-Saedi S, Karim S, Al-Qahtani M. Role of Overexpressed Transcription Factor FOXO1 in Fatal Cardiovascular Septal Defects in Patau Syndrome: Molecular and Therapeutic Strategies. Int J Mol Sci 2018; 19:ijms19113547. [PMID: 30423812 PMCID: PMC6274780 DOI: 10.3390/ijms19113547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
Patau Syndrome (PS), characterized as a lethal disease, allows less than 15% survival over the first year of life. Most deaths owe to brain and heart disorders, more so due to septal defects because of altered gene regulations. We ascertained the cytogenetic basis of PS first, followed by molecular analysis and docking studies. Thirty-seven PS cases were referred from the Department of Pediatrics, King Abdulaziz University Hospital to the Center of Excellence in Genomic Medicine Research, Jeddah during 2008 to 2018. Cytogenetic analyses were performed by standard G-band method and trisomy13 were found in all the PS cases. Studies have suggested that genes of chromosome 13 and other chromosomes are associated with PS. We, therefore, did molecular pathway analysis, gene interaction, and ontology studies to identify their associations. Genomic analysis revealed important chr13 genes such as FOXO1, Col4A1, HMGBB1, FLT1, EFNB2, EDNRB, GAS6, TNFSF1, STARD13, TRPC4, TUBA3C, and TUBA3D, and their regulatory partners on other chromosomes associated with cardiovascular disorders, atrial and ventricular septal defects. There is strong indication of involving FOXO1 (Forkhead Box O1) gene-a strong transcription factor present on chr13, interacting with many septal defects link genes. The study was extended using molecular docking to find a potential drug lead for overexpressed FOXO1 inhibition. The phenothiazine and trifluoperazine showed efficiency to inhibit overexpressed FOXO1 protein, and could be potential drugs for PS/trisomy13 after validation.
Collapse
Affiliation(s)
- Adel Abuzenadah
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| | - Saad Al-Saedi
- Department of Pediatric, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, P.O. Box 80215, Jeddah 21589, Saudi Arabia.
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
40
|
Davies LC, Rice CM, McVicar DW, Weiss JM. Diversity and environmental adaptation of phagocytic cell metabolism. J Leukoc Biol 2018; 105:37-48. [PMID: 30247792 PMCID: PMC6334519 DOI: 10.1002/jlb.4ri0518-195r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/29/2022] Open
Abstract
Phagocytes are cells of the immune system that play important roles in phagocytosis, respiratory burst and degranulation—key components of innate immunity and response to infection. This diverse group of cells includes monocytes, macrophages, dendritic cells, neutrophils, eosinophils, and basophils—heterogeneous cell populations possessing cell and tissue‐specific functions of which cellular metabolism comprises a critical underpinning. Core functions of phagocytic cells are diverse and sensitive to alterations in environmental‐ and tissue‐specific nutrients and growth factors. As phagocytic cells adapt to these extracellular cues, cellular processes are altered and may contribute to pathogenesis. The considerable degree of functional heterogeneity among monocyte, neutrophil, and other phagocytic cell populations necessitates diverse metabolism. As we review our current understanding of metabolism in phagocytic cells, gaps are focused on to highlight the need for additional studies that hopefully enable improved cell‐based strategies for counteracting cancer and other diseases.
Collapse
Affiliation(s)
- Luke C Davies
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA.,Division of Infection & Immunity, School of Medicine, Cardiff University, Heath Park, UK
| | - Christopher M Rice
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| | - Daniel W McVicar
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| | - Jonathan M Weiss
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
41
|
de Carvalho Marchesin J, Celiberto LS, Orlando AB, de Medeiros AI, Pinto RA, Zuanon JAS, Spolidorio LC, dos Santos A, Taranto MP, Cavallini DCU. A soy-based probiotic drink modulates the microbiota and reduces body weight gain in diet-induced obese mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
42
|
Röszer T. Understanding the Biology of Self-Renewing Macrophages. Cells 2018; 7:cells7080103. [PMID: 30096862 PMCID: PMC6115929 DOI: 10.3390/cells7080103] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
Macrophages reside in specific territories in organs, where they contribute to the development, homeostasis, and repair of tissues. Recent work has shown that the size of tissue macrophage populations has an impact on tissue functions and is determined by the balance between replenishment and elimination. Macrophage replenishment is mainly due to self-renewal of macrophages, with a secondary contribution from blood monocytes. Self-renewal is a recently discovered trait of macrophages, which can have a major impact on their physiological functions and hence on the wellbeing of the organism. In this review, I discuss our current understanding of the developmental origin of self-renewing macrophages and the mechanisms used to maintain a physiologically stable macrophage pool.
Collapse
Affiliation(s)
- Tamás Röszer
- Institute of Neurobiology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
43
|
The biology of serous cavity macrophages. Cell Immunol 2018; 330:126-135. [DOI: 10.1016/j.cellimm.2018.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022]
|
44
|
Zhang H, Lin C, Zeng C, Wang Z, Wang H, Lu J, Liu X, Shao Y, Zhao C, Pan J, Xu S, Zhang Y, Xie D, Cai D, Bai X. Synovial macrophage M1 polarisation exacerbates experimental osteoarthritis partially through R-spondin-2. Ann Rheum Dis 2018; 77:1524-1534. [DOI: 10.1136/annrheumdis-2018-213450] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/12/2018] [Accepted: 06/17/2018] [Indexed: 12/14/2022]
Abstract
ObjectivesTo investigate the roles and regulatory mechanisms of synovial macrophages and their polarisation in the development of osteoarthritis (OA).MethodsSynovial tissues from normal patients and patients with OA were collected. M1 or M2-polarised macrophages in synovial tissues of patients with OA and OA mice were analysed by immunofluorescence and immunohistochemical staining. Mice with tuberous sclerosis complex 1 (TSC1) or Rheb deletion specifically in the myeloid lineage were generated and subjected to intra-articular injection of collagenase (collagenase-induced osteoarthritis, CIOA) and destabilisation of the medial meniscus (DMM) surgery to induce OA. Cartilage damage and osteophyte size were measured by Osteoarthritis Research Society International score and micro-CT, respectively. mRNA sequencing was performed in M1 and control macrophages. Mice and ATDC5 cells were treated with R-spondin-2 (Rspo2) or anti-Rspo2 to investigate the role of Rspo2 in OA.ResultsM1 but not M2-polarised macrophages accumulated in human and mouse OA synovial tissue. TSC1 deletion in the myeloid lineage constitutively activated mechanistic target of rapamycin complex 1 (mTORC1), increased M1 polarisation in synovial macrophages and exacerbated experimental OA in both CIOA and DMM models, while Rheb deletion inhibited mTORC1, enhanced M2 polarisation and alleviated CIOA in mice. The results show that promoting the macrophage M1 polarisation leads to exacerbation of experimental OA partially through secretion of Rspo2 and activation of β-catenin signalling in chondrocytes.ConclusionsSynovial macrophage M1 polarisation exacerbates experimental CIOA partially through Rspo2. M1 macrophages and Rspo2 are potential therapeutic targets for OA treatment.
Collapse
|
45
|
Emerging roles of microRNAs in the metabolic control of immune cells. Cancer Lett 2018; 433:10-17. [PMID: 29935373 DOI: 10.1016/j.canlet.2018.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/09/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022]
Abstract
Immunometabolism is an emerging field that focuses on the role of cellular metabolism in the regulation of immune cells. Recent studies have revealed an intensive link between the metabolic state and the functions of immune cells. MicroRNAs (miRNAs) are small non-coding, single-stranded RNAs generally consisting of 18-25 nucleotides that exert crucial roles in regulating gene expression at the posttranscriptional level. Although the role of miRNAs in immune regulation has long been recognized, their roles in immunometabolism have not yet been well established. Over the past decade, increasing studies have proven that miRNAs are intensively involved in the metabolic control of immune cells including macrophages, T cells, B cells and dendritic cells. In this review, we highlight recent emerging findings in the miRNA-mediated metabolic control of immune cells.
Collapse
|
46
|
Who does TORC2 talk to? Biochem J 2018; 475:1721-1738. [PMID: 29794170 DOI: 10.1042/bcj20180130] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022]
Abstract
The target of rapamycin (TOR) is a protein kinase that, by forming complexes with partner proteins, governs diverse cellular signalling networks to regulate a wide range of processes. TOR thus plays central roles in maintaining normal cellular functions and, when dysregulated, in diverse diseases. TOR forms two distinct types of multiprotein complexes (TOR complexes 1 and 2, TORC1 and TORC2). TORC1 and TORC2 differ in their composition, their control and their substrates, so that they play quite distinct roles in cellular physiology. Much effort has been focused on deciphering the detailed regulatory links within the TOR pathways and the structure and control of TOR complexes. In this review, we summarize recent advances in understanding mammalian (m) TORC2, its structure, its regulation, and its substrates, which link TORC2 signalling to the control of cell functions. It is now clear that TORC2 regulates several aspects of cell metabolism, including lipogenesis and glucose transport. It also regulates gene transcription, the cytoskeleton, and the activity of a subset of other protein kinases.
Collapse
|
47
|
Babaev VR, Huang J, Ding L, Zhang Y, May JM, Linton MF. Loss of Rictor in Monocyte/Macrophages Suppresses Their Proliferation and Viability Reducing Atherosclerosis in LDLR Null Mice. Front Immunol 2018; 9:215. [PMID: 29487597 PMCID: PMC5816794 DOI: 10.3389/fimmu.2018.00215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/25/2018] [Indexed: 12/23/2022] Open
Abstract
Background Rictor is an essential component of mammalian target of rapamycin (mTOR) complex 2 (mTORC2), a conserved serine/threonine kinase that may play a role in cell proliferation, survival and innate or adaptive immune responses. Genetic loss of Rictor inactivates mTORC2, which directly activates Akt S473 phosphorylation and promotes pro-survival cell signaling and proliferation. Methods and results To study the role of mTORC2 signaling in monocytes and macrophages, we generated mice with myeloid lineage-specific Rictor deletion (MRictor−/−). These MRictor−/− mice exhibited dramatic reductions of white blood cells, B-cells, T-cells, and monocytes but had similar levels of neutrophils compared to control Rictor flox-flox (Rictorfl/fl) mice. MRictor−/− bone marrow monocytes and peritoneal macrophages expressed reduced levels of mTORC2 signaling and decreased Akt S473 phosphorylation, and they displayed significantly less proliferation than control Rictorfl/fl cells. In addition, blood monocytes and peritoneal macrophages isolated from MRictor−/− mice were significantly more sensitive to pro-apoptotic stimuli. In response to LPS, MRictor−/− macrophages exhibited the M1 phenotype with higher levels of pro-inflammatory gene expression and lower levels of Il10 gene expression than control Rictorfl/fl cells. Further suppression of LPS-stimulated Akt signaling with a low dose of an Akt inhibitor, increased inflammatory gene expression in macrophages, but genetic inactivation of Raptor reversed this rise, indicating that mTORC1 mediates this increase of inflammatory gene expression. Next, to elucidate whether mTORC2 has an impact on atherosclerosis in vivo, female and male Ldlr null mice were reconstituted with bone marrow from MRictor−/− or Rictorfl/fl mice. After 10 weeks of the Western diet, there were no differences between the recipients of the same gender in body weight, blood glucose or plasma lipid levels. However, both female and male MRictor−/− → Ldlr−/− mice developed smaller atherosclerotic lesions in the distal and proximal aorta. These lesions contained less macrophage area and more apoptosis than lesions of control Rictorfl/fl → Ldlr−/− mice. Thus, loss of Rictor and, consequently, mTORC2 significantly compromised monocyte/macrophage survival, and this markedly diminished early atherosclerosis in Ldlr−/− mice. Conclusion Our results demonstrate that mTORC2 is a key signaling regulator of macrophage survival and its depletion suppresses early atherosclerosis.
Collapse
Affiliation(s)
- Vladimir R Babaev
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Jiansheng Huang
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Lei Ding
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Youmin Zhang
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - James M May
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - MacRae F Linton
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
48
|
Liu T, Liu F, Peng LW, Chang L, Jiang YM. The Peritoneal Macrophages in Inflammatory Diseases and Abdominal Cancers. Oncol Res 2017; 26:817-826. [PMID: 29237519 PMCID: PMC7844755 DOI: 10.3727/096504017x15130753659625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Peritoneal macrophages (PMs) are the major cell type of peritoneal cells that participate in multiple aspects of innate and acquired immunity in the peritoneal cavity. PMs have an ability to release a large amount of proinflammatory and anti-inflammatory cytokines and therefore play a critical role in regulating the differentiation of innate immune cells and inflammatory T cells. Accumulating studies demonstrate that the immunological reactions and inflammatory responses of PMs are strongly related to the pathogenic processes of various inflammatory diseases and abdominal cancers. Consequently, the regulation of PM activation has gradually emerged as a promising target for immunotherapy, and better understanding of the distinctly biological function of PMs in individual diseases is crucial for designing specific and effective therapeutic agents. This review covers the characterization and immunological function of PMs in hosts with inflammatory diseases and abdominal cancers.
Collapse
Affiliation(s)
- Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, P.R. China
| | - Fang Liu
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, P.R. China
| | - Lei-Wen Peng
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, P.R. China
| | - Li Chang
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, P.R. China
| | - Yong-Mei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, P.R. China
| |
Collapse
|