1
|
Howe JR, Chan CL, Lee D, Blanquart M, Lee JH, Romero HK, Zadina AN, Lemieux ME, Mills F, Desplats PA, Tye KM, Root CM. Control of innate olfactory valence by segregated cortical amygdala circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600895. [PMID: 38979308 PMCID: PMC11230396 DOI: 10.1101/2024.06.26.600895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Animals exhibit innate behaviors that are stereotyped responses to specific evolutionarily relevant stimuli in the absence of prior learning or experience. These behaviors can be reduced to an axis of valence, whereby specific odors evoke approach or avoidance responses. The posterolateral cortical amygdala (plCoA) mediates innate attraction and aversion to odor. However, little is known about how this brain area gives rise to behaviors of opposing motivational valence. Here, we sought to define the circuit features of plCoA that give rise to innate attraction and aversion to odor. We characterized the physiology, gene expression, and projections of this structure, identifying a divergent, topographic organization that selectively controls innate attraction and avoidance to odor. First, we examined odor-evoked responses in these areas and found sparse encoding of odor identity, but not valence. We next considered a topographic organization and found that optogenetic stimulation of the anterior and posterior domains of plCoA elicits attraction and avoidance, respectively, suggesting a functional axis for valence. Using single cell and spatial RNA sequencing, we identified the molecular cell types in plCoA, revealing an anteroposterior gradient in cell types, whereby anterior glutamatergic neurons preferentially express VGluT2 and posterior neurons express VGluT1. Activation of these respective cell types recapitulates appetitive and aversive behaviors, and chemogenetic inhibition reveals partial necessity for responses to innate appetitive or aversive odors. Finally, we identified topographically organized circuits defined by projections, whereby anterior neurons preferentially project to medial amygdala, and posterior neurons preferentially project to nucleus accumbens, which are respectively sufficient and necessary for innate attraction and aversion. Together, these data advance our understanding of how the olfactory system generates stereotypic, hardwired attraction and avoidance, and supports a model whereby distinct, topographically distributed plCoA populations direct innate olfactory responses by signaling to divergent valence-specific targets, linking upstream olfactory identity to downstream valence behaviors, through a population code. This suggests a novel amygdala circuit motif in which valence encoding is represented not by the firing properties of individual neurons, but by population level identity encoding that is routed through divergent targets to mediate distinct behaviors of opposing appetitive and aversive responses.
Collapse
Affiliation(s)
- James R. Howe
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Chung-Lung Chan
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Donghyung Lee
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marlon Blanquart
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - James H. Lee
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haylie K. Romero
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Abigail N. Zadina
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | | | - Fergil Mills
- Salk Institute for Biological Sciences, La Jolla, CA 92037, USA
| | - Paula A. Desplats
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kay M. Tye
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
- Salk Institute for Biological Sciences, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, La Jolla, CA 92037, USA
| | - Cory M. Root
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Zimmerman CA, Bolkan SS, Pan-Vazquez A, Wu B, Keppler EF, Meares-Garcia JB, Guthman EM, Fetcho RN, McMannon B, Lee J, Hoag AT, Lynch LA, Janarthanan SR, López Luna JF, Bondy AG, Falkner AL, Wang SSH, Witten IB. A neural mechanism for learning from delayed postingestive feedback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561214. [PMID: 37873112 PMCID: PMC10592633 DOI: 10.1101/2023.10.06.561214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Animals learn the value of foods based on their postingestive effects and thereby develop aversions to foods that are toxic1-6 and preferences to those that are nutritious7-14. However, it remains unclear how the brain is able to assign credit to flavors experienced during a meal with postingestive feedback signals that can arise after a substantial delay. Here, we reveal an unexpected role for postingestive reactivation of neural flavor representations in this temporal credit assignment process. To begin, we leverage the fact that mice learn to associate novel15-18, but not familiar, flavors with delayed gastric malaise signals to investigate how the brain represents flavors that support aversive postingestive learning. Surveying cellular resolution brainwide activation patterns reveals that a network of amygdala regions is unique in being preferentially activated by novel flavors across every stage of the learning process: the initial meal, delayed malaise, and memory retrieval. By combining high-density recordings in the amygdala with optogenetic stimulation of genetically defined hindbrain malaise cells, we find that postingestive malaise signals potently and specifically reactivate amygdalar novel flavor representations from a recent meal. The degree of malaise-driven reactivation of individual neurons predicts strengthening of flavor responses upon memory retrieval, leading to stabilization of the population-level representation of the recently consumed flavor. In contrast, meals without postingestive consequences degrade neural flavor representations as flavors become familiar and safe. Thus, our findings demonstrate that interoceptive reactivation of amygdalar flavor representations provides a neural mechanism to resolve the temporal credit assignment problem inherent to postingestive learning.
Collapse
Affiliation(s)
| | - Scott S Bolkan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Bichan Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Emma F Keppler
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Eartha Mae Guthman
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Robert N Fetcho
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Brenna McMannon
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Junuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Austin T Hoag
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Laura A Lynch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Juan F López Luna
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Adrian G Bondy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Annegret L Falkner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Samuel S-H Wang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Tolchinsky A, Ellis GFR, Levin M, Kaňková Š, Burgdorf JS. Disgust as a primary emotional system and its clinical relevance. Front Psychol 2024; 15:1454774. [PMID: 39295749 PMCID: PMC11409098 DOI: 10.3389/fpsyg.2024.1454774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 09/21/2024] Open
Abstract
This paper advocates for considering disgust as a primary emotional system within Panksepp's Affective Neuroscience framework, which has the potential to improve the efficacy of psychotherapy with obsessive-compulsive disorder, hypochondriasis, and emetophobia. In 2007, Toronchuk and Ellis provided comprehensive evidence that DISGUST system, as they defined it, matched all Panksepp's criteria for a primary emotional system. A debate ensued and was not unambiguously resolved. This paper is an attempt to resume this discussion and supplement it with the data that accumulated since then on DISGUST's relationship with the immune system and the role of DISGUST dysregulation in psychopathology. We hope that renewed research interest in DISGUST has the potential to improve clinical efficacy with hard-to-treat conditions.
Collapse
Affiliation(s)
- Alexey Tolchinsky
- Professional Psychology Program, George Washington University, Washington, DC, United States
| | - George F R Ellis
- Department of Mathematics, University of Cape Town, Cape Town, South Africa
| | - Michael Levin
- Allen Discovery Center at Tufts University, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Šárka Kaňková
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czechia
| | - Jeffrey S Burgdorf
- Department of Biomedical Engineering, The Falk Center for Molecular Therapeutics, Northwestern University, Evanston, IL, United States
| |
Collapse
|
4
|
Rolls A. Immunoception: the insular cortex perspective. Cell Mol Immunol 2023; 20:1270-1276. [PMID: 37386172 PMCID: PMC10616063 DOI: 10.1038/s41423-023-01051-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
To define the systemic neuroimmune interactions in health and disease, we recently suggested immunoception as a term that refers to the existence of bidirectional functional loops between the brain and the immune system. This concept suggests that the brain constantly monitors changes in immune activity and, in turn, can regulate the immune system to generate a physiologically synchronized response. Therefore, the brain has to represent information regarding the state of the immune system, which can occure in multiple ways. One such representation is an immunengram, a trace that is partially stored by neurons and partially by the local tissue. This review will discuss our current understanding of immunoception and immunengrams, focusing on their manifestation in a specific brain region, the insular cortex (IC).
Collapse
Affiliation(s)
- Asya Rolls
- Department of Immunology, Department of Neuroscience, Technion, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
5
|
Sato M, Nakai N, Fujima S, Choe KY, Takumi T. Social circuits and their dysfunction in autism spectrum disorder. Mol Psychiatry 2023; 28:3194-3206. [PMID: 37612363 PMCID: PMC10618103 DOI: 10.1038/s41380-023-02201-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Social behaviors, how individuals act cooperatively and competitively with conspecifics, are widely seen across species. Rodents display various social behaviors, and many different behavioral paradigms have been used for investigating their neural circuit bases. Social behavior is highly vulnerable to brain network dysfunction caused by neurological and neuropsychiatric conditions such as autism spectrum disorders (ASDs). Studying mouse models of ASD provides a promising avenue toward elucidating mechanisms of abnormal social behavior and potential therapeutic targets for treatment. In this review, we outline recent progress and key findings on neural circuit mechanisms underlying social behavior, with particular emphasis on rodent studies that monitor and manipulate the activity of specific circuits using modern systems neuroscience approaches. Social behavior is mediated by a distributed brain-wide network among major cortical (e.g., medial prefrontal cortex (mPFC), anterior cingulate cortex, and insular cortex (IC)) and subcortical (e.g., nucleus accumbens, basolateral amygdala (BLA), and ventral tegmental area) structures, influenced by multiple neuromodulatory systems (e.g., oxytocin, dopamine, and serotonin). We particularly draw special attention to IC as a unique cortical area that mediates multisensory integration, encoding of ongoing social interaction, social decision-making, emotion, and empathy. Additionally, a synthesis of studies investigating ASD mouse models demonstrates that dysfunctions in mPFC-BLA circuitry and neuromodulation are prominent. Pharmacological rescues by local or systemic (e.g., oral) administration of various drugs have provided valuable clues for developing new therapeutic agents for ASD. Future efforts and technological advances will push forward the next frontiers in this field, such as the elucidation of brain-wide network activity and inter-brain neural dynamics during real and virtual social interactions, and the establishment of circuit-based therapy for disorders affecting social functions.
Collapse
Affiliation(s)
- Masaaki Sato
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Kita, Sapporo, 060-8638, Japan
| | - Nobuhiro Nakai
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan
| | - Shuhei Fujima
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan
| | - Katrina Y Choe
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan.
- RIKEN Center for Biosystems Dynamics Research, Chuo, Kobe, 650-0047, Japan.
| |
Collapse
|
6
|
Pina MM, Pati D, Neira S, Taxier LR, Stanhope CM, Mahoney AA, D'Ambrosio S, Kash TL, Navarro M. Insula Dynorphin and Kappa Opioid Receptor Systems Regulate Alcohol Drinking in a Sex-Specific Manner in Mice. J Neurosci 2023; 43:5158-5171. [PMID: 37217307 PMCID: PMC10342226 DOI: 10.1523/jneurosci.0406-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/12/2023] [Accepted: 04/15/2023] [Indexed: 05/24/2023] Open
Abstract
Alcohol use disorder is complex and multifaceted, involving the coordination of multiple signaling systems across numerous brain regions. Previous work has indicated that both the insular cortex and dynorphin (DYN)/kappa opioid receptor (KOR) systems contribute to excessive alcohol use. More recently, we identified a microcircuit in the medial aspect of the insular cortex that signals through DYN/KOR. Here, we explored the role of insula DYN/KOR circuit components on alcohol intake in a long-term intermittent access (IA) procedure. Using a combination of conditional knock-out strategies and site-directed pharmacology, we discovered distinct and sex-specific roles for insula DYN and KOR in alcohol drinking and related behavior. Our findings show that insula DYN deletion blocked escalated consumption and decreased the overall intake of and preference for alcohol in male and female mice. This effect was specific to alcohol in male mice, as DYN deletion did not impact sucrose intake. Further, insula KOR antagonism reduced alcohol intake and preference during the early phase of IA in male mice only. Alcohol consumption was not affected by insula KOR knockout in either sex. In addition, we found that long-term IA decreased the intrinsic excitability of DYN and deep layer pyramidal neurons (DLPNs) in the insula of male mice. Excitatory synaptic transmission was also impacted by IA, as it drove an increase in excitatory synaptic drive in both DYN neurons and DLPNs. Combined, our findings suggest there is a dynamic interplay between excessive alcohol consumption and insula DYN/KOR microcircuitry.SIGNIFICANCE STATEMENT The insular cortex is a complex region that serves as an integratory hub for sensory inputs. In our previous work, we identified a microcircuit in the insula that signals through the kappa opioid receptor (KOR) and its endogenous ligand dynorphin (DYN). Both the insula and DYN/KOR systems have been implicated in excessive alcohol use and alcohol use disorder (AUD). Here, we use converging approaches to determine how insula DYN/KOR microcircuit components contribute to escalated alcohol consumption. Our findings show that insula DYN/KOR systems regulate distinct phases of alcohol consumption in a sex-specific manner, which may contribute to the progression to AUD.
Collapse
Affiliation(s)
- Melanie M Pina
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Anatomy & Neurobiology, and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Dipanwita Pati
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Sofia Neira
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Lisa R Taxier
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Christina M Stanhope
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Alexandra A Mahoney
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Shannon D'Ambrosio
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Montserrat Navarro
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Psychology and Neuroscience, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
7
|
Prilutski Y, Livneh Y. Physiological Needs: Sensations and Predictions in the Insular Cortex. Physiology (Bethesda) 2023; 38:0. [PMID: 36040864 DOI: 10.1152/physiol.00019.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Physiological needs create powerful motivations (e.g., thirst and hunger). Studies in humans and animal models have implicated the insular cortex in the neural regulation of physiological needs and need-driven behavior. We review prominent mechanistic models of how the insular cortex might achieve this regulation and present a conceptual and analytical framework for testing these models in healthy and pathological conditions.
Collapse
Affiliation(s)
- Yael Prilutski
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Livneh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Lavi A, Sehgal M, de Sousa AF, Ter-Mkrtchyan D, Sisan F, Luchetti A, Okabe A, Bear C, Silva AJ. Local memory allocation recruits memory ensembles across brain regions. Neuron 2023; 111:470-480.e5. [PMID: 36563678 PMCID: PMC10548338 DOI: 10.1016/j.neuron.2022.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/29/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Memories are thought to be stored in ensembles of neurons across multiple brain regions. However, whether and how these ensembles are coordinated at the time of learning remains largely unknown. Here, we combined CREB-mediated memory allocation with transsynaptic retrograde tracing to demonstrate that the allocation of aversive memories to a group of neurons in one brain region directly affects the allocation of interconnected neurons in upstream brain regions in a behavioral- and brain region-specific manner in mice. Our analysis suggests that this cross-regional recruitment of presynaptic neurons is initiated by downstream memory neurons through a retrograde mechanism. Together with statistical modeling, our results indicate that in addition to the anterograde flow of information between brain regions, the establishment of interconnected, brain-wide memory traces relies on a retrograde mechanism that coordinates memory ensembles at the time of learning.
Collapse
Affiliation(s)
- Ayal Lavi
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Megha Sehgal
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andre F de Sousa
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Donara Ter-Mkrtchyan
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fardad Sisan
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alessandro Luchetti
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna Okabe
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cameron Bear
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alcino J Silva
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Shi T, Feng S, Zhou Z, Li F, Fu Y, Zhou W. Stress-altering anterior insular cortex activity affects risk decision-making behavior in mice of different sexes. Front Cell Neurosci 2023; 17:1094808. [PMID: 36761354 PMCID: PMC9902351 DOI: 10.3389/fncel.2023.1094808] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Stress can affect people's judgment and make them take risky decisions. Abnormal decision-making behavior is a core symptom of psychiatric disorders, such as anxiety, depression, and substance abuse. However, the neuronal mechanisms underlying such impairments are largely unknown. The anterior insular cortex (AIC) is a crucial structure to integrate sensory information with emotional and motivational states. These properties suggest that AIC can influence a subjective prediction in decision-making. In this study, we demonstrated that stressed mice prefer to take more risky choices than control mice using a gambling test. Manipulating the neural activity of AIC or selectively inhibiting the AIC-BLA pathway with chemogenetic intervention resulted in alterations in risk decision-making in mice. Different sexes may have different decision-making strategies in risky situations. Endogenous estrogen levels affect emotional cognition by modulating the stress system function in women. We observed decision-making behavior in mice of different sexes with or without stress experience. The result showed that female mice did not change their choice strategy with increasing risk/reward probability and performed a lower risk preference than male mice after stress. Using the pharmacological method, we bilaterally injected an estrogen receptor (ER) antagonist that resulted in more risky behavior and decreased synaptic plasticity in the AIC of female mice. Our study suggested that the AIC is a crucial region involved in stress-induced alteration of decision-making, and estrogen in the AIC may regulate decision-making behavior by regulating synaptic plasticity.
Collapse
Affiliation(s)
- Tianyao Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shufang Feng
- Department of Medical Psychology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhonglin Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Fengan Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Fu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxia Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
10
|
Mahmood A, Steindler J, Germaine H, Miller P, Katz DB. Coupled Dynamics of Stimulus-Evoked Gustatory Cortical and Basolateral Amygdalar Activity. J Neurosci 2023; 43:386-404. [PMID: 36443002 PMCID: PMC9864615 DOI: 10.1523/jneurosci.1412-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Gustatory cortical (GC) single-neuron taste responses reflect taste quality and palatability in successive epochs. Ensemble analyses reveal epoch-to-epoch firing-rate changes in these responses to be sudden, coherent transitions. Such nonlinear dynamics suggest that GC is part of a recurrent network, producing these dynamics in concert with other structures. Basolateral amygdala (BLA), which is reciprocally connected to GC and central to hedonic processing, is a strong candidate partner for GC, in that BLA taste responses evolve on the same general clock as GC and because inhibition of activity in the BLA→GC pathway degrades the sharpness of GC transitions. These facts motivate, but do not test, our overarching hypothesis that BLA and GC act as a single, comodulated network during taste processing. Here, we provide just this test of simultaneous (BLA and GC) extracellular taste responses in female rats, probing the multiregional dynamics of activity to directly test whether BLA and GC responses contain coupled dynamics. We show that BLA and GC response magnitudes covary across trials and within single responses, and that changes in BLA-GC local field potential phase coherence are epoch specific. Such classic coherence analyses, however, obscure the most salient facet of BLA-GC coupling: sudden transitions in and out of the epoch known to be involved in driving gaping behavior happen near simultaneously in the two regions, despite huge trial-to-trial variability in transition latencies. This novel form of inter-regional coupling, which we show is easily replicated in model networks, suggests collective processing in a distributed neural network.SIGNIFICANCE STATEMENT There has been little investigation into real-time communication between brain regions during taste processing, a fact reflecting the dominant belief that taste circuitry is largely feedforward. Here, we perform an in-depth analysis of real-time interactions between GC and BLA in response to passive taste deliveries, using both conventional coherence metrics and a novel methodology that explicitly considers trial-to-trial variability and fast single-trial dynamics in evoked responses. Our results demonstrate that BLA-GC coherence changes as the taste response unfolds, and that BLA and GC specifically couple for the sudden transition into (and out of) the behaviorally relevant neural response epoch, suggesting (although not proving) that: (1) recurrent interactions subserve the function of the dyad as (2) a putative attractor network.
Collapse
Affiliation(s)
- Abuzar Mahmood
- Graduate Program in Neuroscience, Brandeis University, Waltham, Massachusetts 02453
| | | | - Hannah Germaine
- Graduate Program in Neuroscience, Brandeis University, Waltham, Massachusetts 02453
| | - Paul Miller
- Graduate Program in Neuroscience, Brandeis University, Waltham, Massachusetts 02453
- Biology, Brandeis University, Waltham, Massachusetts 02453
- Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453
| | - Donald B Katz
- Graduate Program in Neuroscience, Brandeis University, Waltham, Massachusetts 02453
- Departments of Psychology
- Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453
| |
Collapse
|
11
|
d'Isa R, Gerlai R. Designing animal-friendly behavioral tests for neuroscience research: The importance of an ethological approach. Front Behav Neurosci 2023; 16:1090248. [PMID: 36703720 PMCID: PMC9871504 DOI: 10.3389/fnbeh.2022.1090248] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Affiliation(s)
- Raffaele d'Isa
- Institute of Experimental Neurology (INSPE), Division of Neuroscience (DNS), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
12
|
Kolatt Chandran S, Yiannakas A, Kayyal H, Salalha R, Cruciani F, Mizrahi L, Khamaisy M, Stern S, Rosenblum K. Intrinsic Excitability in Layer IV-VI Anterior Insula to Basolateral Amygdala Projection Neurons Correlates with the Confidence of Taste Valence Encoding. eNeuro 2023; 10:ENEURO.0302-22.2022. [PMID: 36635250 PMCID: PMC9850927 DOI: 10.1523/eneuro.0302-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 12/14/2022] Open
Abstract
Avoiding potentially harmful, and consuming safe food is crucial for the survival of living organisms. However, the perceived valence of sensory information can change following conflicting experiences. Pleasurability and aversiveness are two crucial parameters defining the perceived valence of a taste and can be impacted by novelty. Importantly, the ability of a given taste to serve as the conditioned stimulus (CS) in conditioned taste aversion (CTA) is dependent on its valence. Activity in anterior insula (aIC) Layer IV-VI pyramidal neurons projecting to the basolateral amygdala (BLA) is correlated with and necessary for CTA learning and retrieval, as well as the expression of neophobia toward novel tastants, but not learning taste familiarity. Yet, the cellular mechanisms underlying the updating of taste valence representation in this specific pathway are poorly understood. Here, using retrograde viral tracing and whole-cell patch-clamp electrophysiology in trained mice, we demonstrate that the intrinsic properties of deep-lying Layer IV-VI, but not superficial Layer I-III aIC-BLA neurons, are differentially modulated by both novelty and valence, reflecting the subjective predictability of taste valence arising from prior experience. These correlative changes in the profile of intrinsic properties of LIV-VI aIC-BLA neurons were detectable following both simple taste experiences, as well as following memory retrieval, extinction learning, and reinstatement.
Collapse
Affiliation(s)
| | - Adonis Yiannakas
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Haneen Kayyal
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Randa Salalha
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Federica Cruciani
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Liron Mizrahi
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Mohammad Khamaisy
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
13
|
Gore-Langton JK, Varlinskaya EI, Werner DF. Ethanol-induced conditioned taste aversion and associated neural activation in male rats: Impact of age and adolescent intermittent ethanol exposure. PLoS One 2022; 17:e0279507. [PMID: 36548243 PMCID: PMC9778589 DOI: 10.1371/journal.pone.0279507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Individuals that initiate alcohol use at younger ages and binge drink during adolescence are more susceptible to developing alcohol use disorder. Adolescents are relatively insensitive to the aversive effects of alcohol and tend to consume significantly more alcohol per occasion than adults, an effect that is conserved in rodent models. Adolescent typical insensitivity to the aversive effects of alcohol may promote greater alcohol intake by attenuating internal cues that curb its consumption. Attenuated sensitivity to the aversive effects of alcohol is also retained into adulthood following protracted abstinence from adolescent intermittent ethanol (AIE) exposure. Despite these effects, much remains unknown regarding the neural contributors. In the present study, we used a conditioned taste aversion (CTA) paradigm to investigate neuronal activation in late-developing forebrain structures of male adolescents and adult cFos-LacZ transgenic rats as well as in AIE adults following consumption of 0.9% sodium chloride previously paired with an intraperitoneal injection of 0, 1.5 or 2.5 g/kg of ethanol. Adults that were non-manipulated or received water exposure during adolescence showed CTA to both ethanol doses, whereas adolescents displayed CTA only to the 2.5 g/kg ethanol dose. Adults who experienced AIE did not show CTA. Adults displayed increased neuronal activation indexed via number of β-galactosidase positive (β-gal+) cells in the prefrontal and insular cortex that was absent in adolescents, whereas adolescents but not adults had a reduced number of β-gal+ cells in the central amygdala. Adults also displayed greater cortical-insular functional connectivity than adolescents as well as insular-amygdalar and prefrontal cortex-accumbens core functional connectivity. Like adolescents, adults previously exposed to AIE displayed reduced prefrontal-insular cortex and prefrontal-accumbal core functional connectivity. Taken together, these results suggest that attenuated sensitivity to the aversive effects of ethanol is related to a loss of an insular-prefrontal cortex-accumbens core circuit.
Collapse
Affiliation(s)
- Jonathan K. Gore-Langton
- Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, New York, United States of America
- Department of Psychology, Binghamton University, Binghamton, New York, United States of America
| | - Elena I. Varlinskaya
- Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, New York, United States of America
- Department of Psychology, Binghamton University, Binghamton, New York, United States of America
- Developmental Exposure Alcohol Research Center, Binghamton, New York, United States of America
| | - David F. Werner
- Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, New York, United States of America
- Department of Psychology, Binghamton University, Binghamton, New York, United States of America
- Developmental Exposure Alcohol Research Center, Binghamton, New York, United States of America
- * E-mail:
| | | |
Collapse
|
14
|
Staszko SM, Boughter JD, Fletcher ML. The impact of familiarity on cortical taste coding. Curr Biol 2022; 32:4914-4924.e4. [PMID: 36261035 PMCID: PMC9691541 DOI: 10.1016/j.cub.2022.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/08/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
The role of the gustatory region of the insular cortex in mediating associative taste learning, such as conditioned taste aversion, has been well studied. However, while associative learning plays a role in some taste behaviors, such as avoiding toxins, animals often encounter taste stimuli in their natural environment without explicit consequences. This type of inconsequential experience with sensory stimuli has been studied in other sensory systems, generally with the finding that neuronal responses habituate with repeated sensory exposure. This study sought to determine the effect of taste familiarity on population taste coding in the mouse gustatory cortex (GC). Using microendoscope calcium imaging, we studied the taste responses of visually identifiable neurons over 5 days of taste experience, during which animals could freely choose to consume taste stimuli. We found that the number of active cells in the insular cortex, as well as the number of cells characterized as taste-responsive, significantly decreased as animals became familiar with taste stimuli. Moreover, the magnitude of taste-evoked excited responses increased while inhibited responses decreased with experience. By tracking individual neurons over time, we identified a subpopulation of stable neurons present on all days of the taste familiarity paradigm and further characterized their taste coding properties. The population-level response across these stable cells was distinct for each taste quality when taste stimuli were novel, but population responses for readily consumed stimuli became more correlated as the stimuli became familiar. Overall, these results highlight the effects of familiarity on both taste-specific and non-taste responses in the gustatory cortex.
Collapse
Affiliation(s)
- Stephanie M Staszko
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - John D Boughter
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Max L Fletcher
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
15
|
Insular cortical circuits as an executive gateway to decipher threat or extinction memory via distinct subcortical pathways. Nat Commun 2022; 13:5540. [PMID: 36130959 PMCID: PMC9492683 DOI: 10.1038/s41467-022-33241-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Threat and extinction memories are crucial for organisms’ survival in changing environments. These memories are believed to be encoded by separate ensembles of neurons in the brain, but their whereabouts remain elusive. Using an auditory fear-conditioning and extinction paradigm in male mice, here we discovered that two distinct projection neuron subpopulations in physical proximity within the insular cortex (IC), targeting the central amygdala (CeA) and nucleus accumbens (NAc), respectively, to encode fear and extinction memories. Reciprocal intracortical inhibition of these two IC subpopulations gates the emergence of either fear or extinction memory. Using rabies-virus-assisted tracing, we found IC-NAc projection neurons to be preferentially innervated by intercortical inputs from the orbitofrontal cortex (OFC), specifically enhancing extinction to override fear memory. These results demonstrate that IC serves as an operation node harboring distinct projection neurons that decipher fear or extinction memory under the top-down executive control from OFC. Ensembles of fear and extinction memories compete and interact to drive opposing behaviors. Here the authors identified insular cortical circuits as an executive gateway that decipher between fear and extinction memories via distinct subcortical pathways.
Collapse
|
16
|
Effect of early-life stress or fluoxetine exposure on later-life conditioned taste aversion learning in Sprague-Dawley rats. Neurosci Lett 2022; 787:136818. [PMID: 35931277 DOI: 10.1016/j.neulet.2022.136818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Accepted: 07/23/2022] [Indexed: 01/06/2023]
Abstract
In rodents, early-life exposure to environmental stress or antidepressant medication treatment has been shown to induce similar long-term consequences on memory- and depression-related behavior in adulthood. To expand on this line of work, we evaluated how juvenile exposure to chronic variable stress (CVS) or the selective serotonin reuptake inhibitor fluoxetine (FLX) influences conditioned taste aversion (CTA) learning in adulthood. To do this, in Experiment 1, we examined how adolescent CVS alone (postnatal day [PND] 35-48), or with prenatal stress (PNS) history (PNS + CVS), influenced the acquisition and extinction of CTA in adult male Sprague Dawley rats. Specifically, at PND70+ (adulthood), rats were presented with 0.15 % saccharin followed by an intraperitoneal (i.p.) injection of lithium chloride (LiCl) to induce visceral malaise. A total of four saccharin (conditioned stimulus) and LiCl (unconditioned stimulus) pairings occurred across the CTA acquisition phase. Next, saccharin was presented without aversive consequences, and intake was measured across consecutive days of the extinction phase. No differences in body weight gain across the experimental days, rate of CTA acquisition, or extinction of CTA, were observed among the experimental groups (control, n = 7; CVS, n = 12; PNS + CVS, n = 9). In Experiment 2, we evaluated if early-life FLX exposure alters CTA learning in adulthood. Specifically, adolescent stress naïve male and female rats received FLX (0 or 20 mg/kg/i.p) once daily for 15 consecutive days (PND35-49). During antidepressant exposure, FLX decreased body weight gain in both male (n = 7) and female rats (n = 7), when compared to respective controls (male control, n = 8; female control, n = 8). However, juvenile FLX exposure decreased body weight-gain in adult male, but not female, rats. Lastly, adolescent FLX history had no effect on CTA acquisition or extinction in adulthood (PND70), in neither male nor female rats. Together, the data indicate that juvenile FLX exposure results in a long-term decrease of body weight-gain in a male-specific manner. Yet, independent of sex, neither early-life stress nor FLX exposure alters CTA learning in adulthood.
Collapse
|
17
|
Courtin J, Bitterman Y, Müller S, Hinz J, Hagihara KM, Müller C, Lüthi A. A neuronal mechanism for motivational control of behavior. Science 2022; 375:eabg7277. [PMID: 34990249 DOI: 10.1126/science.abg7277] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Acting to achieve goals depends on the ability to motivate specific behaviors based on their predicted consequences given an individual’s internal state. However, the underlying neuronal mechanisms that encode and maintain such specific motivational control of behavior are poorly understood. Here, we used Ca2+ imaging and optogenetic manipulations in the basolateral amygdala of freely moving mice performing noncued, self-paced instrumental goal-directed actions to receive and consume rewards. We found that distinct neuronal activity patterns sequentially represent the entire action-consumption behavioral sequence. Whereas action-associated patterns integrated the identity, value, and expectancy of pursued goals, consumption-associated patterns reflected the identity and value of experienced outcomes. Thus, the interplay between these patterns allows the maintenance of specific motivational states necessary to adaptively direct behavior toward prospective rewards.
Collapse
Affiliation(s)
- J Courtin
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Y Bitterman
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - S Müller
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - J Hinz
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,University of Basel, CH-4000 Basel, Switzerland
| | - K M Hagihara
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,University of Basel, CH-4000 Basel, Switzerland
| | - C Müller
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - A Lüthi
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,University of Basel, CH-4000 Basel, Switzerland
| |
Collapse
|
18
|
Bernanke A, Burnette E, Murphy J, Hernandez N, Zimmerman S, Walker QD, Wander R, Sette S, Reavis Z, Francis R, Armstrong C, Risher ML, Kuhn C. Behavior and Fos activation reveal that male and female rats differentially assess affective valence during CTA learning and expression. PLoS One 2021; 16:e0260577. [PMID: 34898621 PMCID: PMC8668140 DOI: 10.1371/journal.pone.0260577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 12/02/2022] Open
Abstract
Females are more affected by psychiatric illnesses including eating disorders, depression, and post-traumatic stress disorder than males. However, the neural mechanisms mediating these sex differences are poorly understood. Animal models can be useful in exploring such neural mechanisms. Conditioned taste aversion (CTA) is a behavioral task that assesses how animals process the competition between associated reinforcing and aversive stimuli in subsequent task performance, a process critical to healthy behavior in many domains. The purpose of the present study was to identify sex differences in this behavior and associated neural responses. We hypothesized that females would value the rewarding stimulus (Boost®) relative to the aversive stimulus (LiCl) more than males in performing CTA. We evaluated behavior (Boost® intake, LiCl-induced behaviors, ultrasonic vocalizations (USVs), CTA performance) and Fos activation in relevant brain regions after the acute stimuli [acute Boost® (AB), acute LiCl (AL)] and the context-only task control (COT), Boost® only task (BOT) and Boost®-LiCl task (BLT). Acutely, females drank more Boost® than males but showed similar aversive behaviors after LiCl. Females and males performed CTA similarly. Both sexes produced 55 kHz USVs anticipating BOT and inhibited these calls in the BLT. However, more females emitted both 22 kHz and 55 kHz USVs in the BLT than males: the latter correlated with less CTA. Estrous cycle stage also influenced 55 kHz USVs. Fos responses were similar in males and females after AB or AL. Females engaged the gustatory cortex and ventral tegmental area (VTA) more than males during the BOT and males engaged the amygdala more than females in both the BOT and BLT. Network analysis of correlated Fos responses across brain regions identified two unique networks characterizing the BOT and BLT, in both of which the VTA played a central role. In situ hybridization with RNAscope identified a population of D1-receptor expressing cells in the CeA that responded to Boost® and D2 receptor-expressing cells that responded to LiCl. The present study suggests that males and females differentially process the affective valence of a stimulus to produce the same goal-directed behavior.
Collapse
Affiliation(s)
- Alyssa Bernanke
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Elizabeth Burnette
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Justine Murphy
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Nathaniel Hernandez
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Sara Zimmerman
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Q. David Walker
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Rylee Wander
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Samantha Sette
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Zackery Reavis
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Reynold Francis
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Christopher Armstrong
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Mary-Louise Risher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
19
|
Livneh Y, Andermann ML. Cellular activity in insular cortex across seconds to hours: Sensations and predictions of bodily states. Neuron 2021; 109:3576-3593. [PMID: 34582784 PMCID: PMC8602715 DOI: 10.1016/j.neuron.2021.08.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 02/09/2023]
Abstract
Our wellness relies on continuous interactions between our brain and body: different organs relay their current state to the brain and are regulated, in turn, by descending visceromotor commands from our brain and by actions such as eating, drinking, thermotaxis, and predator escape. Human neuroimaging and theoretical studies suggest a key role for predictive processing by insular cortex in guiding these efforts to maintain bodily homeostasis. Here, we review recent studies recording and manipulating cellular activity in rodent insular cortex at timescales from seconds to hours. We argue that consideration of these findings in the context of predictive processing of future bodily states may reconcile several apparent discrepancies and offer a unifying, heuristic model for guiding future work.
Collapse
Affiliation(s)
- Yoav Livneh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
20
|
McCool BA. Ethanol modulation of cortico-basolateral amygdala circuits: Neurophysiology and behavior. Neuropharmacology 2021; 197:108750. [PMID: 34371080 DOI: 10.1016/j.neuropharm.2021.108750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
This review highlights literature relating the anatomy, physiology, and behavioral contributions by projections between rodent prefrontal cortical areas and the basolateral amygdala. These projections are robustly modulated by both environmental experience and exposure to drugs of abuse including ethanol. Recent literature relating optogenetic and chemogenetic dissection of these circuits within behavior both compliments and occasionally challenges roles defined by more traditional pharmacological or lesion-based approaches. In particular, cortico-amygdala circuits help control both aversive and reward-seeking. Exposure to pathology-producing environments or abused drugs dysregulates the relative 'balance' of these outcomes. Modern circuit-based approaches have also shown that overlapping populations of neurons within a given brain region frequently govern both aversion and reward-seeking. In addition, these circuits often dramatically influence 'local' cortical or basolateral amygdala excitatory or inhibitory circuits. Our understanding of these neurobiological processes, particularly in relation to ethanol research, has just begun and represents a significant opportunity.
Collapse
Affiliation(s)
- Brian A McCool
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
21
|
Kayyal H, Chandran SK, Yiannakas A, Gould N, Khamaisy M, Rosenblum K. Insula to mPFC reciprocal connectivity differentially underlies novel taste neophobic response and learning in mice. eLife 2021; 10:66686. [PMID: 34219650 PMCID: PMC8282338 DOI: 10.7554/elife.66686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
To survive in an ever-changing environment, animals must detect and learn salient information. The anterior insular cortex (aIC) and medial prefrontal cortex (mPFC) are heavily implicated in salience and novelty processing, and specifically, the processing of taste sensory information. Here, we examined the role of aIC-mPFC reciprocal connectivity in novel taste neophobia and memory formation, in mice. Using pERK and neuronal intrinsic properties as markers for neuronal activation, and retrograde AAV (rAAV) constructs for connectivity, we demonstrate a correlation between aIC-mPFC activity and novel taste experience. Furthermore, by expressing inhibitory chemogenetic receptors in these projections, we show that aIC-to-mPFC activity is necessary for both taste neophobia and its attenuation. However, activity within mPFC-to-aIC projections is essential only for the neophobic reaction but not for the learning process. These results provide an insight into the cortical circuitry needed to detect, react to- and learn salient stimuli, a process critically involved in psychiatric disorders.
Collapse
Affiliation(s)
- Haneen Kayyal
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Israel
| | | | - Adonis Yiannakas
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Israel
| | - Nathaniel Gould
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Israel
| | - Mohammad Khamaisy
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Israel.,Center for Gene Manipulation in the Brain, University of Haifa, Mount Carmel, Israel
| |
Collapse
|
22
|
Lin JY, Mukherjee N, Bernstein MJ, Katz DB. Perturbation of amygdala-cortical projections reduces ensemble coherence of palatability coding in gustatory cortex. eLife 2021; 10:e65766. [PMID: 34018924 PMCID: PMC8139825 DOI: 10.7554/elife.65766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/30/2021] [Indexed: 01/01/2023] Open
Abstract
Taste palatability is centrally involved in consumption decisions-we ingest foods that taste good and reject those that don't. Gustatory cortex (GC) and basolateral amygdala (BLA) almost certainly work together to mediate palatability-driven behavior, but the precise nature of their interplay during taste decision-making is still unknown. To probe this issue, we discretely perturbed (with optogenetics) activity in rats' BLA→GC axons during taste deliveries. This perturbation strongly altered GC taste responses, but while the perturbation itself was tonic (2.5 s), the alterations were not-changes preferentially aligned with the onset times of previously-described taste response epochs, and reduced evidence of palatability-related activity in the 'late-epoch' of the responses without reducing the amount of taste identity information available in the 'middle epoch.' Finally, BLA→GC perturbations changed behavior-linked taste response dynamics themselves, distinctively diminishing the abruptness of ensemble transitions into the late epoch. These results suggest that BLA 'organizes' behavior-related GC taste dynamics.
Collapse
Affiliation(s)
- Jian-You Lin
- Department of PsychologyWalthamUnited States
- The Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | - Narendra Mukherjee
- The Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | - Max J Bernstein
- Department of PsychologyWalthamUnited States
- The Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | - Donald B Katz
- Department of PsychologyWalthamUnited States
- The Volen National Center for Complex Systems, Brandeis UniversityWalthamUnited States
| |
Collapse
|
23
|
Yiannakas A, Kolatt Chandran S, Kayyal H, Gould N, Khamaisy M, Rosenblum K. Parvalbumin interneuron inhibition onto anterior insula neurons projecting to the basolateral amygdala drives aversive taste memory retrieval. Curr Biol 2021; 31:2770-2784.e6. [PMID: 33930301 DOI: 10.1016/j.cub.2021.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/08/2020] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Memory retrieval refers to the fundamental ability of organisms to make use of acquired, sometimes inconsistent, information about the world. Although memory acquisition has been studied extensively, the neurobiological mechanisms underlying memory retrieval remain largely unknown. Conditioned taste aversion (CTA) is a robust associative paradigm, through which animals can be trained to express aversion toward innately appetitive tastants. The anterior insula (aIC) is indispensable in the ability of mammals to retrieve associative information regarding tastants that have been previously linked with gastric malaise. Here, we show that CTA memory retrieval promotes cell-type-specific activation in the aIC. Using chemogenetic tools in the aIC, we found that CTA memory acquisition requires activation of excitatory neurons and inhibition of inhibitory neurons, whereas retrieval necessitates activation of both excitatory and inhibitory aIC circuits. CTA memory retrieval at the aIC activates parvalbumin (PV) interneurons and increases synaptic inhibition onto activated pyramidal neurons projecting to the basolateral amygdala (aIC-BLA). Unlike innately appetitive taste memory retrieval, CTA retrieval increases synaptic inhibition onto aIC-BLA-projecting neurons that is dependent on activity in aIC PV interneurons. PV aIC interneurons coordinate CTA memory retrieval and are necessary for its dominance when conflicting internal representations are encountered over time. The reinstatement of CTA memories following extinction is also dependent on activation of aIC PV interneurons, which increase the frequency of inhibition onto aIC-BLA-projecting neurons. This newly described interaction of PV and a subset of excitatory neurons can explain the coherency of aversive memory retrieval, an evolutionary pre-requisite for animal survival.
Collapse
Affiliation(s)
- Adonis Yiannakas
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Haifa, Israel.
| | | | - Haneen Kayyal
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Haifa, Israel
| | - Nathaniel Gould
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Haifa, Israel
| | - Mohammad Khamaisy
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Haifa, Israel; Center for Gene Manipulation in the Brain, University of Haifa, Mount Carmel, Haifa, Israel.
| |
Collapse
|
24
|
Boughter JD, Fletcher M. Rethinking the role of taste processing in insular cortex and forebrain circuits. CURRENT OPINION IN PHYSIOLOGY 2021; 20:52-56. [PMID: 33681544 PMCID: PMC7932132 DOI: 10.1016/j.cophys.2020.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the years, many approaches towards studying the taste-responsive area of insular cortex have focused on how basic taste information is represented, and how lesions or silencing of this area impact taste-focused behaviors. Here, we review and highlight recent studies that imply that insular cortex does not contain a "primary" taste cortex in the traditional sense. Rather, taste is employed in concert with other internal and external sensory modalities by highly interconnected regions of insular cortex to guide ingestive decision-making, especially in context of estimating risk and reward. In rodent models, this may best be seen in context of foraging behaviors, which require flexibility and are dependent on learning and memory processes.
Collapse
Affiliation(s)
- John D. Boughter
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave., Memphis TN 38163 USA
| | - Max Fletcher
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave., Memphis TN 38163 USA
| |
Collapse
|
25
|
|
26
|
Piette C, Touboul J, Venance L. Engrams of Fast Learning. Front Cell Neurosci 2020; 14:575915. [PMID: 33250712 PMCID: PMC7676431 DOI: 10.3389/fncel.2020.575915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/24/2020] [Indexed: 01/22/2023] Open
Abstract
Fast learning designates the behavioral and neuronal mechanisms underlying the acquisition of a long-term memory trace after a unique and brief experience. As such it is opposed to incremental, slower reinforcement or procedural learning requiring repetitive training. This learning process, found in most animal species, exists in a large spectrum of natural behaviors, such as one-shot associative, spatial, or perceptual learning, and is a core principle of human episodic memory. We review here the neuronal and synaptic long-term changes associated with fast learning in mammals and discuss some hypotheses related to their underlying mechanisms. We first describe the variety of behavioral paradigms used to test fast learning memories: those preferentially involve a single and brief (from few hundred milliseconds to few minutes) exposures to salient stimuli, sufficient to trigger a long-lasting memory trace and new adaptive responses. We then focus on neuronal activity patterns observed during fast learning and the emergence of long-term selective responses, before documenting the physiological correlates of fast learning. In the search for the engrams of fast learning, a growing body of evidence highlights long-term changes in gene expression, structural, intrinsic, and synaptic plasticities. Finally, we discuss the potential role of the sparse and bursting nature of neuronal activity observed during the fast learning, especially in the induction plasticity mechanisms leading to the rapid establishment of long-term synaptic modifications. We conclude with more theoretical perspectives on network dynamics that could enable fast learning, with an overview of some theoretical approaches in cognitive neuroscience and artificial intelligence.
Collapse
Affiliation(s)
- Charlotte Piette
- Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR7241, Université PSL, Paris, France.,Department of Mathematics and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Jonathan Touboul
- Department of Mathematics and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR7241, Université PSL, Paris, France
| |
Collapse
|
27
|
Chen K, Kogan JF, Fontanini A. Spatially Distributed Representation of Taste Quality in the Gustatory Insular Cortex of Behaving Mice. Curr Biol 2020; 31:247-256.e4. [PMID: 33186554 PMCID: PMC7855361 DOI: 10.1016/j.cub.2020.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 12/28/2022]
Abstract
Visual, auditory, and somatosensory cortices are topographically organized, with neurons responding to similar sensory features clustering in adjacent portions of the cortex. Such topography has not been observed in the piriform cortex, whose responses to odorants are sparsely distributed across the cortex. The spatial organization of taste responses in the gustatory insular cortex (GC) is currently debated, with conflicting evidence from anesthetized rodents pointing to alternative and mutually exclusive models. Here, we rely on calcium imaging to determine how taste and task-related variables are represented in the superficial layers of GC of alert, licking mice. Our data show that the various stimuli evoke sparse responses from a combination of broadly and narrowly tuned neurons. Analysis of the distribution of responses over multiple spatial scales demonstrates that taste representations are distributed across the cortex, with no sign of spatial clustering or topography. Altogether, data presented here support the idea that the representation of taste qualities in GC of alert mice is sparse and distributed, analogous to the representation of odorants in piriform cortex.
Collapse
Affiliation(s)
- Ke Chen
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Joshua F Kogan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA; Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
28
|
Haley MS, Bruno S, Fontanini A, Maffei A. LTD at amygdalocortical synapses as a novel mechanism for hedonic learning. eLife 2020; 9:e55175. [PMID: 33169666 PMCID: PMC7655100 DOI: 10.7554/elife.55175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/23/2020] [Indexed: 01/28/2023] Open
Abstract
A novel, pleasant taste stimulus becomes aversive if associated with gastric malaise, a form of learning known as conditioned taste aversion (CTA). CTA is common to vertebrates and invertebrates and is an important survival response: eating the wrong food may be deadly. CTA depends on the gustatory portion of the insular cortex (GC) and the basolateral nucleus of the amygdala (BLA) however, its synaptic underpinnings are unknown. Here we report that CTA was associated with decreased expression of immediate early genes in rat GC of both sexes, and with reduced amplitude of BLA-GC synaptic responses, pointing to long-term depression (LTD) as a mechanism for learning. Indeed, association of a novel tastant with induction of LTD at the BLA-GC input in vivo was sufficient to change the hedonic value of a taste stimulus. Our results demonstrate a direct role for amygdalocortical LTD in taste aversion learning.
Collapse
Affiliation(s)
- Melissa S Haley
- Department of Neurobiology and Behavior, SUNY – Stony BrookStony BrookUnited States
| | - Stephen Bruno
- Department of Neurobiology and Behavior, SUNY – Stony BrookStony BrookUnited States
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior, SUNY – Stony BrookStony BrookUnited States
| | - Arianna Maffei
- Department of Neurobiology and Behavior, SUNY – Stony BrookStony BrookUnited States
| |
Collapse
|
29
|
Muscarinic receptor signaling in the amygdala is required for conditioned taste aversion. Neurosci Lett 2020; 740:135466. [PMID: 33152457 DOI: 10.1016/j.neulet.2020.135466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022]
Abstract
The sense of taste provides information regarding the nutrient content, safety or potential toxicity of an edible. This is accomplished via a combination of innate and learned taste preferences. In conditioned taste aversion (CTA), rats learn to avoid ingesting a taste that has previously been paired with gastric malaise. Recent evidence points to a role of cholinergic muscarinic signaling in the amygdala for the learning and storage of emotional memories. The present study tested the participation of muscarinic receptors in the amygdala during the formation of CTA by infusing the non-specific antagonist scopolamine into the basolateral or central subnuclei before or after conditioning, as well as before retrieval. Our data show that regardless of the site of infusion, pre-conditioning administration of scopolamine impaired CTA acquisition whereas post-conditioning infusion did not affect its storage. Also, infusions into the basolateral but not in the central amygdala before retrieval test partially reduced the expression of CTA. Our results indicate that muscarinic receptors activity is required for acquisition but not consolidation of CTA. In addition, our data add to recent evidence pointing to a role of cholinergic signaling in peri-hippocampal structures in the process of memory retrieval.
Collapse
|
30
|
Grijalva LE, Miranda MI, Paredes RG. Differential changes in GAP-43 or synaptophysin during appetitive and aversive taste memory formation. Behav Brain Res 2020; 397:112937. [PMID: 32991926 DOI: 10.1016/j.bbr.2020.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Association between events in time and space is a major mechanism for all animals, including humans, which allows them to learn about the world and potentially change their behavior in the future to adapt to different environments. Conditioning taste aversion (CTA) is a single-trial learning paradigm where animals are trained to avoid a novel flavor which is associated with malaise. Many variables can be analyzed with this model and the circuits involved are well described. Thus, the amygdala and the gustatory cortex (GC) are some of the most relevant structures involved in CTA. In the present study we focused in plastic changes that occur during appetitive and/or aversive taste memory formation. Previous studies have demonstrated that memory consolidation, in hippocampal dependent paradigms, induces plastic changes like increase in the concentration of proteins considered as markers of neuronal plasticity, such as the growth associated protein 43 (GAP-43) and synaptophysin (SYN). In the present experiment in male rats we evaluated changes in GAP-43 and SYN expression, using immunofluorescence, induce by the formation of aversive and appetitive taste memory. We found that taste aversive memory formation can induce an increase in GAP-43 in the granular layer of the GC. Furthermore, we also found an increase in SYN expression in both layers of the GC, the basolateral amygdala (BLA) and the central amygdala (CeA). These results suggest that aversive memory representation induces a new circuitry (inferred from an increase in GAP 43). On the other hand, an appetitive taste learning increased SYN expression in the GC (both layers), the BLA and the CeA without any changes in GAP 43. Together these results indicate that aversive memory formation induces structural and synaptic changes, while appetitive memory formation induces synaptic changes; suggesting that aversive and appetitive memories require a different set of cortical and amygdala plastic changes.
Collapse
Affiliation(s)
- Lucia E Grijalva
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, 76230, Mexico
| | - María I Miranda
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, 76230, Mexico
| | - Raúl G Paredes
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, 76230, Mexico; Escuela Nacional de Estudios Superiores, Unidad Juriquilla, UNAM, Querétaro, 76230 Mexico.
| |
Collapse
|
31
|
Gehrlach DA, Weiand C, Gaitanos TN, Cho E, Klein AS, Hennrich AA, Conzelmann KK, Gogolla N. A whole-brain connectivity map of mouse insular cortex. eLife 2020; 9:e55585. [PMID: 32940600 PMCID: PMC7538160 DOI: 10.7554/elife.55585] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/16/2020] [Indexed: 01/03/2023] Open
Abstract
The insular cortex (IC) plays key roles in emotional and regulatory brain functions and is affected across psychiatric diseases. However, the brain-wide connections of the mouse IC have not been comprehensively mapped. Here, we traced the whole-brain inputs and outputs of the mouse IC across its rostro-caudal extent. We employed cell-type-specific monosynaptic rabies virus tracings to characterize afferent connections onto either excitatory or inhibitory IC neurons, and adeno-associated viral tracings to label excitatory efferent axons. While the connectivity between the IC and other cortical regions was highly bidirectional, the IC connectivity with subcortical structures was often unidirectional, revealing prominent cortical-to-subcortical or subcortical-to-cortical pathways. The posterior and medial IC exhibited resembling connectivity patterns, while the anterior IC connectivity was distinct, suggesting two major functional compartments. Our results provide insights into the anatomical architecture of the mouse IC and thus a structural basis to guide investigations into its complex functions.
Collapse
Affiliation(s)
- Daniel A Gehrlach
- Max Planck Institute of Neurobiology, Circuits for Emotion Research GroupMartinsriedGermany
- International Max-Planck Research School for Molecular Life SciencesMunichGermany
| | - Caroline Weiand
- Max Planck Institute of Neurobiology, Circuits for Emotion Research GroupMartinsriedGermany
- International Max-Planck Research School for Translational PsychiatryMunichGermany
| | - Thomas N Gaitanos
- Max Planck Institute of Neurobiology, Circuits for Emotion Research GroupMartinsriedGermany
| | - Eunjae Cho
- Max Planck Institute of Neurobiology, Circuits for Emotion Research GroupMartinsriedGermany
| | - Alexandra S Klein
- Max Planck Institute of Neurobiology, Circuits for Emotion Research GroupMartinsriedGermany
- International Max-Planck Research School for Molecular Life SciencesMunichGermany
| | - Alexandru A Hennrich
- Max von Pettenkofer-Institute and Gene Center, Medical Faculty, Ludwig-Maximilians-University MunichMunichGermany
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer-Institute and Gene Center, Medical Faculty, Ludwig-Maximilians-University MunichMunichGermany
| | - Nadine Gogolla
- Max Planck Institute of Neurobiology, Circuits for Emotion Research GroupMartinsriedGermany
| |
Collapse
|
32
|
Gutierrez R, Fonseca E, Simon SA. The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cell Mol Life Sci 2020; 77:3469-3502. [PMID: 32006052 PMCID: PMC11105013 DOI: 10.1007/s00018-020-03458-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022]
Abstract
Throughout the animal kingdom sucrose is one of the most palatable and preferred tastants. From an evolutionary perspective, this is not surprising as it is a primary source of energy. However, its overconsumption can result in obesity and an associated cornucopia of maladies, including type 2 diabetes and cardiovascular disease. Here we describe three physiological levels of processing sucrose that are involved in the decision to ingest it: the tongue, gut, and brain. The first section describes the peripheral cellular and molecular mechanisms of sweet taste identification that project to higher brain centers. We argue that stimulation of the tongue with sucrose triggers the formation of three distinct pathways that convey sensory attributes about its quality, palatability, and intensity that results in a perception of sweet taste. We also discuss the coding of sucrose throughout the gustatory pathway. The second section reviews how sucrose, and other palatable foods, interact with the gut-brain axis either through the hepatoportal system and/or vagal pathways in a manner that encodes both the rewarding and of nutritional value of foods. The third section reviews the homeostatic, hedonic, and aversive brain circuits involved in the control of food intake. Finally, we discuss evidence that overconsumption of sugars (or high fat diets) blunts taste perception, the post-ingestive nutritional reward value, and the circuits that control feeding in a manner that can lead to the development of obesity.
Collapse
Affiliation(s)
- Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, 07360, Mexico City, Mexico.
| | - Esmeralda Fonseca
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, 07360, Mexico City, Mexico
| | - Sidney A Simon
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
33
|
Abe K, Kuroda M, Narumi Y, Kobayashi Y, Itohara S, Furuichi T, Sano Y. Cortico-amygdala interaction determines the insular cortical neurons involved in taste memory retrieval. Mol Brain 2020; 13:107. [PMID: 32723372 PMCID: PMC7385890 DOI: 10.1186/s13041-020-00646-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022] Open
Abstract
The insular cortex (IC) is the primary gustatory cortex, and it is a critical structure for encoding and retrieving the conditioned taste aversion (CTA) memory. In the CTA, consumption of an appetitive tastant is associated with aversive experience such as visceral malaise, which results in avoidance of consuming a learned tastant. Previously, we showed that levels of the cyclic-AMP-response-element-binding protein (CREB) determine the insular cortical neurons that proceed to encode a conditioned taste memory. In the amygdala and hippocampus, it is shown that CREB and neuronal activity regulate memory allocation and the neuronal mechanism that determines the specific neurons in a neural network that will store a given memory. However, cellular mechanism of memory allocation in the insular cortex is not fully understood. In the current study, we manipulated the neuronal activity in a subset of insular cortical and/or basolateral amygdala (BLA) neurons in mice, at the time of learning; for this purpose, we used an hM3Dq designer receptor exclusively activated by a designer drug system (DREADD). Subsequently, we examined whether the neuronal population whose activity is increased during learning, is reactivated by memory retrieval, using the expression of immediate early gene c-fos. When an hM3Dq receptor was activated only in a subset of IC neurons, c-fos expression following memory retrieval was not significantly observed in hM3Dq-positive neurons. Interestingly, the probability of c-fos expression in hM3Dq-positive IC neurons after retrieval was significantly increased when the IC and BLA were co-activated during conditioning. Our findings suggest that functional interactions between the IC and BLA regulates CTA memory allocation in the insular cortex, which shed light on understanding the mechanism of memory allocation regulated by interaction between relevant brain areas.
Collapse
Affiliation(s)
- Konami Abe
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510 Japan
| | - Marin Kuroda
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510 Japan
| | - Yosuke Narumi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510 Japan
| | - Yuki Kobayashi
- Laboratory for Behavioral Genetics, Center for Brain Science, Wako, Saitama 351-0198 Japan
- Present Address: Brain/MINDS, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, Center for Brain Science, Wako, Saitama 351-0198 Japan
- Present Address: Brain/MINDS, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510 Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510 Japan
| |
Collapse
|
34
|
Molero-Chamizo A, Rivera-Urbina GN. Taste Processing: Insights from Animal Models. Molecules 2020; 25:molecules25143112. [PMID: 32650432 PMCID: PMC7397205 DOI: 10.3390/molecules25143112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Taste processing is an adaptive mechanism involving complex physiological, motivational and cognitive processes. Animal models have provided relevant data about the neuroanatomical and neurobiological components of taste processing. From these models, two important domains of taste responses are described in this review. The first part focuses on the neuroanatomical and neurophysiological bases of olfactory and taste processing. The second part describes the biological and behavioral characteristics of taste learning, with an emphasis on conditioned taste aversion as a key process for the survival and health of many species, including humans.
Collapse
Affiliation(s)
- Andrés Molero-Chamizo
- Department of Psychology, Psychobiology Area, University of Huelva, Campus El Carmen, 21071 Huelva, Spain
- Correspondence: ; Tel.: +34-959-21-84-78
| | | |
Collapse
|
35
|
Bouaichi CG, Vincis R. Cortical processing of chemosensory and hedonic features of taste in active licking mice. J Neurophysiol 2020; 123:1995-2009. [PMID: 32319839 DOI: 10.1152/jn.00069.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In the last two decades, a considerable amount of work has been devoted to investigating the neural processing and dynamics of the primary taste cortex of rats. Surprisingly, much less information is available on cortical taste electrophysiology in awake mice, an animal model that is taking on a more prominent role in taste research. Here we present electrophysiological evidence demonstrating how the gustatory cortex (GC) encodes the basic taste qualities (sweet, salty, sour, and bitter) and water when stimuli are actively sampled through licking, the stereotyped behavior by which mice control the access of fluids in the mouth. Mice were trained to receive each stimulus on a fixed ratio schedule in which they had to lick a dry spout six times to receive a tastant on the seventh lick. Electrophysiological recordings confirmed that GC neurons encode both chemosensory and hedonic aspects of actively sampled tastants. In addition, our data revealed two other main findings: GC neurons rapidly encode information about taste qualities in as little as 120 ms, and nearly half of the recorded neurons exhibit spiking activity entrained to licking at rates up to 8 Hz. Overall, our results highlight how the GC of active licking mice rapidly encodes information about taste qualities as well as ongoing sampling behavior, expanding our knowledge on cortical taste processing.NEW & NOTEWORTHY Relatively little information is available on the neural dynamics of taste processing in the mouse gustatory cortex (GC). In this study we investigate how the GC encodes chemosensory and palatability features of a wide panel of gustatory stimuli when actively sampled through licking. Our results show that GC neurons broadly encode basic taste qualities but also process taste hedonics and licking information in a temporally dynamic manner.
Collapse
Affiliation(s)
- Cecilia G Bouaichi
- Department of Biological Science, Florida State University, Tallahassee, Florida.,Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Roberto Vincis
- Department of Biological Science, Florida State University, Tallahassee, Florida.,Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
36
|
Sensing Senses: Optical Biosensors to Study Gustation. SENSORS 2020; 20:s20071811. [PMID: 32218129 PMCID: PMC7180777 DOI: 10.3390/s20071811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022]
Abstract
The five basic taste modalities, sweet, bitter, umami, salty and sour induce changes of Ca2+ levels, pH and/or membrane potential in taste cells of the tongue and/or in neurons that convey and decode gustatory signals to the brain. Optical biosensors, which can be either synthetic dyes or genetically encoded proteins whose fluorescence spectra depend on levels of Ca2+, pH or membrane potential, have been used in primary cells/tissues or in recombinant systems to study taste-related intra- and intercellular signaling mechanisms or to discover new ligands. Taste-evoked responses were measured by microscopy achieving high spatial and temporal resolution, while plate readers were employed for higher throughput screening. Here, these approaches making use of fluorescent optical biosensors to investigate specific taste-related questions or to screen new agonists/antagonists for the different taste modalities were reviewed systematically. Furthermore, in the context of recent developments in genetically encoded sensors, 3D cultures and imaging technologies, we propose new feasible approaches for studying taste physiology and for compound screening.
Collapse
|
37
|
Livneh Y, Sugden AU, Madara JC, Essner RA, Flores VI, Sugden LA, Resch JM, Lowell BB, Andermann ML. Estimation of Current and Future Physiological States in Insular Cortex. Neuron 2020; 105:1094-1111.e10. [PMID: 31955944 PMCID: PMC7083695 DOI: 10.1016/j.neuron.2019.12.027] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/18/2019] [Accepted: 12/20/2019] [Indexed: 01/31/2023]
Abstract
Interoception, the sense of internal bodily signals, is essential for physiological homeostasis, cognition, and emotions. While human insular cortex (InsCtx) is implicated in interoception, the cellular and circuit mechanisms remain unclear. We imaged mouse InsCtx neurons during two physiological deficiency states: hunger and thirst. InsCtx ongoing activity patterns reliably tracked the gradual return to homeostasis but not changes in behavior. Accordingly, while artificial induction of hunger or thirst in sated mice via activation of specific hypothalamic neurons (AgRP or SFOGLUT) restored cue-evoked food- or water-seeking, InsCtx ongoing activity continued to reflect physiological satiety. During natural hunger or thirst, food or water cues rapidly and transiently shifted InsCtx population activity to the future satiety-related pattern. During artificial hunger or thirst, food or water cues further shifted activity beyond the current satiety-related pattern. Together with circuit-mapping experiments, these findings suggest that InsCtx integrates visceral-sensory signals of current physiological state with hypothalamus-gated amygdala inputs that signal upcoming ingestion of food or water to compute a prediction of future physiological state.
Collapse
Affiliation(s)
- Yoav Livneh
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Arthur U Sugden
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rachel A Essner
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Vanessa I Flores
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lauren A Sugden
- Department of Mathematics and Computer Science, Duquesne University, Pittsburgh, PA 15232, USA
| | - Jon M Resch
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Lavoie A, Liu BH. Canine Adenovirus 2: A Natural Choice for Brain Circuit Dissection. Front Mol Neurosci 2020; 13:9. [PMID: 32174812 PMCID: PMC7056889 DOI: 10.3389/fnmol.2020.00009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Canine adenovirus-2 (CAV) is a canine pathogen that has been used in a variety of applications, from vaccines against more infectious strains of CAV to treatments for neurological disorders. With recent engineering, CAV has become a natural choice for neuroscientists dissecting the connectivity and function of brain circuits. Specifically, as a reliable genetic vector with minimal immunogenic and cytotoxic reactivity, CAV has been used for the retrograde transduction of various types of projection neurons. Consequently, CAV is particularly useful when studying the anatomy and functions of long-range projections. Moreover, combining CAV with conditional expression and transsynaptic tracing results in the ability to study circuits with cell- and/or projection-type specificity. Lastly, with the well-documented knowledge of viral transduction, new innovations have been developed to increase the transduction efficiency of CAV and circumvent its tropism, expanding the potential of CAV for circuit analysis.
Collapse
Affiliation(s)
- Andréanne Lavoie
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Bao-Hua Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Staszko SM, Boughter JD, Fletcher ML. Taste coding strategies in insular cortex. Exp Biol Med (Maywood) 2020; 245:448-455. [PMID: 32106700 DOI: 10.1177/1535370220909096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While the cortical representation of sensory stimuli is well described for some sensory systems, a clear understanding of the cortical representation of taste stimuli remains elusive. Recent investigations have focused on both spatial and temporal organization of taste responses in the putative taste region of insular cortex. This review highlights recent literature focused on spatiotemporal coding strategies in insular cortex. These studies are examined in the context of the organization and function of the entire insular cortex, rather than a specific gustatory region of insular cortex. In regard to a taste quality-specific map, imaging studies have reported conflicting results, whereas electrophysiology studies have described a broad distribution of taste-responsive neurons found throughout insular cortex with no spatial organization. The current collection of evidence suggests that insular cortex may be organized into a hedonic or “viscerotopic” map, rather than one ordered according to taste quality. Further, it has been proposed that cortical taste responses can be separated into temporal “epochs” representing stimulus identity and palatability. This coding strategy presents a potential framework, whereby the coordinated activity of a population of neurons allows for the same neurons to respond to multiple taste stimuli or even other sensory modalities, a well-documented phenomenon in insular cortex neurons. However, these representations may not be static, as several studies have demonstrated that both spatial representation and temporal dynamics of taste coding change with experience. Collectively, these studies suggest that cortical taste representation is not organized in a spatially discrete map, but rather is plastic and spatially dispersed, using temporal information to encode multiple types of information about ingested stimuli. Impact statement The organization of taste coding in insular cortex is widely debated. While early work has focused on whether taste quality is encoded via labeled line or ensemble mechanisms, recent work has attempted to delineate the spatial organization and temporal components of taste processing in insular cortex. Recent imaging and electrophysiology studies have reported conflicting results in regard to the spatial organization of cortical taste responses, and many studies ignore potentially important temporal dynamics when investigating taste processing. This review highlights the latest research in these areas and examines them in the context of the anatomy and physiology of the insular cortex in general to provide a more comprehensive description of taste coding in insular cortex.
Collapse
Affiliation(s)
- Stephanie M Staszko
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - John D Boughter
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Max L Fletcher
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
40
|
Alapin JM, Dines M, Lamprecht R. EphB2 receptor forward signaling is needed for normal long-term memory formation in aged mice. Neurobiol Aging 2020; 86:11-15. [DOI: 10.1016/j.neurobiolaging.2019.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/25/2019] [Accepted: 10/27/2019] [Indexed: 12/26/2022]
|
41
|
Hammoud MZ, Foa EB, Milad MR. Oestradiol, threat conditioning and extinction, post-traumatic stress disorder, and prolonged exposure therapy: A common link. J Neuroendocrinol 2020; 32:e12800. [PMID: 31595559 DOI: 10.1111/jne.12800] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/12/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022]
Abstract
The accumulating evidence regarding the impact of estradiol on learning and memory synergized studies to examine its influence on enhancing animal's ability to quell fear and anxiety. In this review, we first provide a foundational platform regarding the impact of oestradiol on cellular mechanisms of learning and memory and we review recent advances from rodent and human data showing that oestrogen enhances extinction learning across species. We then propose clinical application to these data. We discuss the potential role of oestradiol variance on the aetiology, maintenance and treatment for post-traumatic stress disorder. Specifically, we argue that the use of oestradiol as an adjunct to prolonged exposure (PE) therapy for PTSD may provide a new treatment approach for enhancing the efficacy of PE in women with PTSD. This could advance our understanding of the mechanisms of PTSD and help tailor sex-specific treatments for this disorder.
Collapse
Affiliation(s)
- Mira Z Hammoud
- Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Edna B Foa
- Department of Psychiatry, Center for the Treatment and Study of Anxiety, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohammed R Milad
- Department of Psychiatry, New York University Medical Center, New York, NY, USA
| |
Collapse
|
42
|
Activity of Insula to Basolateral Amygdala Projecting Neurons is Necessary and Sufficient for Taste Valence Representation. J Neurosci 2019; 39:9369-9382. [PMID: 31597726 DOI: 10.1523/jneurosci.0752-19.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Conditioned taste aversion (CTA) is an associative learning paradigm, wherein consumption of an appetitive tastant (e.g., saccharin) is paired to the administration of a malaise-inducing agent, such as intraperitoneal injection of LiCl. Aversive taste learning and retrieval require neuronal activity within the anterior insula (aIC) and the basolateral amygdala (BLA). Here, we labeled neurons of the aIC projecting to the BLA in adult male mice using a retro-AAV construct and assessed their necessity in aversive and appetitive taste learning. By restricting the expression of chemogenetic receptors in aIC-to-BLA neurons, we demonstrate that activity within the aIC-to-BLA projection is necessary for both aversive taste memory acquisition and retrieval, but not for its maintenance, nor its extinction. Moreover, inhibition of the projection did not affect incidental taste learning per se, but effectively suppressed aversive taste memory retrieval when applied either during or before the encoding of the unconditioned stimulus for CTA (i.e., malaise). Remarkably, activation of the projection after novel taste consumption, without experiencing any internal discomfort, was sufficient to form an artificial aversive taste memory, resulting in strong aversive behavior upon retrieval. Our results indicate that aIC-to-BLA projecting neurons are an essential component in the ability of the brain to associate taste sensory stimuli with body states of negative valence and guide the expression of valence-specific behavior upon taste memory retrieval.SIGNIFICANCE STATEMENT In the present study we subjected mice to the conditioned taste aversion paradigm, where animals learn to associate novel taste with malaise (i.e., assign it negative valence). We show that activation of neurons in the anterior insular cortex (aIC) that project into the basolateral amygdala (BLA) in response to conditioned taste aversion is necessary to form a memory for a taste of negative valence. Moreover, artificial activation of this pathway (without any feeling of pain) after the sampling of a taste can also lead to such associative memory. Thus, activation of aIC-to-BLA projecting neurons is necessary and sufficient to form and retrieve aversive taste memory.
Collapse
|
43
|
Levitan D, Lin JY, Wachutka J, Mukherjee N, Nelson SB, Katz DB. Single and population coding of taste in the gustatory cortex of awake mice. J Neurophysiol 2019; 122:1342-1356. [PMID: 31339800 DOI: 10.1152/jn.00357.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Electrophysiological analysis has revealed much about the broad coding and neural ensemble dynamics that characterize gustatory cortical (GC) taste processing in awake rats and about how these dynamics relate to behavior. With regard to mice, however, data concerning cortical taste coding have largely been restricted to imaging, a technique that reveals average levels of neural responsiveness but that (currently) lacks the temporal sensitivity necessary for evaluation of fast response dynamics; furthermore, the few extant studies have thus far failed to provide consensus on basic features of coding. We have recorded the spiking activity of ensembles of GC neurons while presenting representatives of the basic taste modalities (sweet, salty, sour, and bitter) to awake mice. Our first central result is the identification of similarities between rat and mouse taste processing: most mouse GC neurons (~66%) responded distinctly to multiple (3-4) tastes; temporal coding analyses further reveal, for the first time, that single mouse GC neurons sequentially code taste identity and palatability, the latter responses emerging ~0.5 s after the former, with whole GC ensembles transitioning suddenly and coherently from coding taste identity to coding taste palatability. The second finding is that spatial location plays very little role in any aspect of taste responses: neither between- (anterior-posterior) nor within-mouse (dorsal-ventral) mapping revealed anatomic regions with narrow or temporally simple taste responses. These data confirm recent results showing that mouse cortical taste responses are not "gustotopic" but also go beyond these imaging results to show that mice process tastes through time.NEW & NOTEWORTHY Here, we analyzed taste-related spiking activity in awake mouse gustatory cortical (GC) neural ensembles, revealing deep similarities between mouse cortical taste processing and that repeatedly demonstrated in rat: mouse GC ensembles code multiple aspects of taste in a coarse-coded, time-varying manner that is essentially invariant across the spatial extent of GC. These data demonstrate that, contrary to some reports, cortical network processing is distributed, rather than being separated out into spatial subregion.
Collapse
Affiliation(s)
- David Levitan
- Department of Biology, Brandeis University, Waltham, Massachusetts
| | - Jian-You Lin
- Department of Psychology, Brandeis University, Waltham, Massachusetts.,Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts
| | - Joseph Wachutka
- Department of Psychology, Brandeis University, Waltham, Massachusetts
| | | | - Sacha B Nelson
- Department of Biology, Brandeis University, Waltham, Massachusetts.,Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts
| | - Donald B Katz
- Department of Psychology, Brandeis University, Waltham, Massachusetts.,Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts
| |
Collapse
|
44
|
Tanaka DH, Li S, Mukae S, Tanabe T. Genetic Access to Gustatory Disgust-Associated Neurons in the Interstitial Nucleus of the Posterior Limb of the Anterior Commissure in Male Mice. Neuroscience 2019; 413:45-63. [PMID: 31229633 DOI: 10.1016/j.neuroscience.2019.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022]
Abstract
Orofacial and somatic disgust reactions are observed in rats following intraoral infusion of not only bitter quinine (innate disgust) but also sweet saccharin previously paired with illness (learned disgust). It remains unclear, however, whether these innate and learned disgust reactions share a common neural basis and which brain regions, if any, host it. In addition, there is no established method to genetically access neurons whose firing is associated with disgust (disgust-associated neurons). Here, we examined the expression of cFos and Arc, two markers of neuronal activity, in the interstitial nucleus of the posterior limb of the anterior commissure (IPAC) of male mice that showed innate disgust and mice that showed learned disgust. Furthermore, we used a targeted recombination in active populations (TRAP) method to genetically label the disgust-associated neurons in the IPAC with YFP. We found a significant increase of both cFos-positive neurons and Arc-positive neurons in the IPAC of mice that showed innate disgust and mice that showed learned disgust. In addition, TRAP following quinine infusion (Quinine-TRAP) resulted in significantly more YFP-positive neurons in the IPAC, compared to TRAP following water infusion. A significant number of the YFP-positive neurons following Quinine-TRAP were co-labeled with Arc following the second quinine infusion, confirming that Quinine-TRAP preferentially labeled quinine-activated neurons in the IPAC. Our results suggest that the IPAC activity is associated with both innate and learned disgust and that disgust-associated neurons in the IPAC are genetically accessible by TRAP.
Collapse
Affiliation(s)
- Daisuke H Tanaka
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shusheng Li
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shiori Mukae
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Tsutomu Tanabe
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
45
|
Berret E, Kintscher M, Palchaudhuri S, Tang W, Osypenko D, Kochubey O, Schneggenburger R. RETRACTED: Insular cortex processes aversive somatosensory information and is crucial for threat learning. Science 2019; 364:science.aaw0474. [PMID: 31097492 DOI: 10.1126/science.aaw0474] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 11/02/2022]
Abstract
Learning about threats is essential for survival. During threat learning, an innocuous sensory percept such as a tone acquires an emotional meaning when paired with an aversive stimulus such as a mild footshock. The amygdala is critical for threat memory formation, but little is known about upstream brain areas that process aversive somatosensory information. Using optogenetic techniques in mice, we found that silencing of the posterior insula during footshock reduced acute fear behavior and impaired 1-day threat memory. Insular cortex neurons respond to footshocks, acquire responses to tones during threat learning, and project to distinct amygdala divisions to drive acute fear versus threat memory formation. Thus, the posterior insula conveys aversive footshock information to the amygdala and is crucial for learning about potential dangers in the environment.
Collapse
Affiliation(s)
- Emmanuelle Berret
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Michael Kintscher
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Shriya Palchaudhuri
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Wei Tang
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Denys Osypenko
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Olexiy Kochubey
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
46
|
Ohla K, Yoshida R, Roper SD, Di Lorenzo PM, Victor JD, Boughter JD, Fletcher M, Katz DB, Chaudhari N. Recognizing Taste: Coding Patterns Along the Neural Axis in Mammals. Chem Senses 2019; 44:237-247. [PMID: 30788507 PMCID: PMC6462759 DOI: 10.1093/chemse/bjz013] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The gustatory system encodes information about chemical identity, nutritional value, and concentration of sensory stimuli before transmitting the signal from taste buds to central neurons that process and transform the signal. Deciphering the coding logic for taste quality requires examining responses at each level along the neural axis-from peripheral sensory organs to gustatory cortex. From the earliest single-fiber recordings, it was clear that some afferent neurons respond uniquely and others to stimuli of multiple qualities. There is frequently a "best stimulus" for a given neuron, leading to the suggestion that taste exhibits "labeled line coding." In the extreme, a strict "labeled line" requires neurons and pathways dedicated to single qualities (e.g., sweet, bitter, etc.). At the other end of the spectrum, "across-fiber," "combinatorial," or "ensemble" coding requires minimal specific information to be imparted by a single neuron. Instead, taste quality information is encoded by simultaneous activity in ensembles of afferent fibers. Further, "temporal coding" models have proposed that certain features of taste quality may be embedded in the cadence of impulse activity. Taste receptor proteins are often expressed in nonoverlapping sets of cells in taste buds apparently supporting "labeled lines." Yet, taste buds include both narrowly and broadly tuned cells. As gustatory signals proceed to the hindbrain and on to higher centers, coding becomes more distributed and temporal patterns of activity become important. Here, we present the conundrum of taste coding in the light of current electrophysiological and imaging techniques at several levels of the gustatory processing pathway.
Collapse
Affiliation(s)
- Kathrin Ohla
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Ryusuke Yoshida
- Section of Oral Neuroscience and OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama City, Japan
| | - Stephen D Roper
- Department of Physiology and Biophysics, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Jonathan D Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - John D Boughter
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Max Fletcher
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Donald B Katz
- Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Nirupa Chaudhari
- Department of Physiology and Biophysics, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
47
|
Interaction of Taste and Place Coding in the Hippocampus. J Neurosci 2019; 39:3057-3069. [PMID: 30777885 DOI: 10.1523/jneurosci.2478-18.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 01/20/2023] Open
Abstract
An animal's survival depends on finding food and the memory of food and contexts are often linked. Given that the hippocampus is required for spatial and contextual memory, it is reasonable to expect related coding of space and food stimuli in hippocampal neurons. However, relatively little is known about how the hippocampus responds to tastes, the most central sensory property of food. In this study, we examined the taste-evoked responses and spatial firing properties of single units in the dorsal CA1 hippocampal region as male rats received a battery of taste stimuli differing in both chemical composition and palatability within a specific spatial context. We identified a subset of hippocampal neurons that responded to tastes, some of which were place cells. These taste and place responses had a distinct interaction: taste-responsive cells tended to have less spatially specific firing fields and place cells only responded to tastes delivered inside their place field. Like neurons in the amygdala and lateral hypothalamus, hippocampal neurons discriminated between tastes predominantly on the basis of palatability, with taste selectivity emerging concurrently with palatability-relatedness; these responses did not reflect movement or arousal. However, hippocampal taste responses emerged several hundred milliseconds later than responses in other parts of the taste system, suggesting that the hippocampus does not influence real-time taste decisions, instead associating the hedonic value of tastes with a particular context. This incorporation of taste responses into existing hippocampal maps could be one way that animals use past experience to locate food sources.SIGNIFICANCE STATEMENT Finding food is essential for animals' survival and taste and context memory are often linked. Although hippocampal responses to space and contexts have been well characterized, little is known about how the hippocampus responds to tastes. Here, we identified a subset of hippocampal neurons that discriminated between tastes based on palatability. Cells with stronger taste responses typically had weaker spatial responses and taste responses were confined to place cells' firing fields. Hippocampal taste responses emerged later than in other parts of the taste system, suggesting that the hippocampus does not influence taste decisions, but rather associates the hedonic value of tastes consumed within a particular context. This could be one way that animals use past experience to locate food sources.
Collapse
|