1
|
Rocha RP, Zorzi M, Corbetta M. Role of homeostatic plasticity in critical brain dynamics following focal stroke lesions. Sci Rep 2024; 14:31631. [PMID: 39738232 DOI: 10.1038/s41598-024-80196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/15/2024] [Indexed: 01/01/2025] Open
Abstract
Can focal brain lesions, such as those caused by stroke, disrupt critical brain dynamics? What biological mechanisms drive its recovery? In a recent study, we showed that focal lesions generate a sub-critical state that recovers over time in parallel with behavior (Rocha et al., Nat. Commun. 13, 2022). The loss of criticality in a cohort of stroke patients was associated with structural brain disconnections, while its recovery was accompanied by the re-modeling of specific white-matter tracts. These results were challenged by Janarek et al. (Sci. Rep. 13, 2023), who proposed an alternative interpretation for the anomalous monotonic decaying of the second cluster size, which is the neural signature originally used to infer loss of criticality. The present study tackles this controversy and provides evidence that the theoretical framework proposed by Janarek et al. cannot explain the anomalous cluster dynamics observed in our patients. Notably, this invalidates the claim that the brain maintains its critical dynamics regardless of the lesion severity. In addition, we explore biological mechanisms beyond white-matter remodeling that may facilitate the recovery of criticality over time. We considered two distinct scenarios: one where we suppress homeostatic plasticity, and another where we increase the excitability of brain regions. We find that suppressing homeostatic plasticity - specifically, the inhibition-excitation balance - disfavors the emergence of criticality. Conversely, increasing brain excitability can help to restore criticality when the latter is disrupted. Our results suggest that normalizing the excitation-inhibition balance is crucial for supporting recovery of critical brain dynamics.
Collapse
Affiliation(s)
- Rodrigo P Rocha
- Departamento de Física, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| | - Marco Zorzi
- Department of General Psychology and Padova Neuroscience Center, Università di Padova, Padova, Italy.
- IRCCS San Camillo Hospital, Venice, Italy.
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center, Università di Padova, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Fondazione Biomedica, Padova, Italy
| |
Collapse
|
2
|
He H, Sun X, Doose J, Faller J, McIntosh JR, Saber GT, Huffman S, Hong L, Pantazatos SP, Yuan H, McTeague LM, Goldman RI, Brown TR, George MS, Sajda P. TMS-induced modulation of brain networks and its associations to rTMS treatment for depression: a concurrent fMRI-EEG-TMS study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.24.24319609. [PMID: 39763561 PMCID: PMC11703315 DOI: 10.1101/2024.12.24.24319609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Transcranial magnetic stimulation (TMS) over the left dorsolateral prefrontal cortex (L-DLPFC) is an established intervention for treatment-resistant depression (TRD), yet the underlying therapeutic mechanisms remain not fully understood. This study employs an integrative approach that combines TMS with concurrent functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), aimed at assessing the acute/immediate effects of TMS on brain network dynamics and their correlation with clinical outcomes. Our study demonstrates that TMS acutely modulates connectivity within vital brain circuits, particularly the cognitive control and default mode networks. We found that the baseline TMS-evoked responses in the cognitive control and limbic networks significantly predicted clinical improvement in patients receiving a novel EEG-synchronized repetitive TMS treatment. Furthermore, this study explored the brain-state dependent effects of TMS, as the brain-state indexed by the phase of EEG prefrontal alpha oscillation. We found that clinical outcomes in this novel treatment are linked to state-specific TMS-modulated functional connectivity within a pivotal brain circuit of the L-DLPFC and the posterior subgenual anterior cingulate cortex within the limbic system. These findings contribute to our understanding of the therapeutic effects underlying TMS treatment in depression and support the potential of assessing state-dependent TMS effects in TMS timing target selection. This study emphasizes the importance of personalized timing of TMS for optimizing target engagement of specific clinically relevant brain circuits. Our results are crucial for future research into the development of personalized neuromodulation therapies for TRD patients.
Collapse
Affiliation(s)
- Hengda He
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
| | - Xiaoxiao Sun
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
| | - Jayce Doose
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, 29425, SC, USA
| | - Josef Faller
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
| | - James R. McIntosh
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
- Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, 10032, NY, USA
| | - Golbarg T. Saber
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, 29425, SC, USA
- Department of Neurology, University of Chicago, Chicago, 60637, IL, USA
| | - Sarah Huffman
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, 29425, SC, USA
| | - Linbi Hong
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
| | - Spiro P. Pantazatos
- Department of Psychiatry, Columbia University Irving Medical Center, New York, 10032, NY, USA
| | - Han Yuan
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, 73019, OK, USA
| | - Lisa M. McTeague
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, 29425, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, 29401, SC, USA
| | - Robin I. Goldman
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Truman R. Brown
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, 29425, SC, USA
| | - Mark S. George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, 29425, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, 29401, SC, USA
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
- Department of Electrical Engineering, Columbia University, New York, 10027, NY, USA
- Department of Radiology, Columbia University Irving Medical Center, New York, 10032, NY, USA
- Data Science Institute, Columbia University, New York, 10027, NY, USA
| |
Collapse
|
3
|
Demeter DV, Greene DJ. The promise of precision functional mapping for neuroimaging in psychiatry. Neuropsychopharmacology 2024; 50:16-28. [PMID: 39085426 PMCID: PMC11526039 DOI: 10.1038/s41386-024-01941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Precision functional mapping (PFM) is a neuroimaging approach to reliably estimate metrics of brain function from individual people via the collection of large amounts of fMRI data (hours per person). This method has revealed much about the inter-individual variation of functional brain networks. While standard group-level studies, in which we average brain measures across groups of people, are important in understanding the generalizable neural underpinnings of neuropsychiatric disorders, many disorders are heterogeneous in nature. This heterogeneity often complicates clinical care, leading to patient uncertainty when considering prognosis or treatment options. We posit that PFM methods may help streamline clinical care in the future, fast-tracking the choice of personalized treatment that is most compatible with the individual. In this review, we provide a history of PFM studies, foundational results highlighting the benefits of PFM methods in the pursuit of an advanced understanding of individual differences in functional network organization, and possible avenues where PFM can contribute to clinical translation of neuroimaging research results in the way of personalized treatment in psychiatry.
Collapse
Affiliation(s)
- Damion V Demeter
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA.
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Peng X, Trambaiolli LR, Choi EY, Lehman JF, Linn G, Russ BE, Schroeder CE, Haber SN, Liu H. Cross-species striatal hubs: Linking anatomy to resting-state connectivity. Neuroimage 2024; 301:120866. [PMID: 39322095 DOI: 10.1016/j.neuroimage.2024.120866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/13/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024] Open
Abstract
Corticostriatal connections are essential for motivation, cognition, and behavioral flexibility. There is broad interest in using resting-state functional magnetic resonance imaging (rs-fMRI) to link circuit dysfunction in these connections with neuropsychiatric disorders. In this paper, we used tract-tracing data from non-human primates (NHPs) to assess the likelihood of monosynaptic connections being represented in rs-fMRI data of NHPs and humans. We also demonstrated that existing hub locations in the anatomical data can be identified in the rs-fMRI data from both species. To characterize this in detail, we mapped the complete striatal projection zones from 27 tract-tracer injections located in the orbitofrontal cortex (OFC), dorsal anterior cingulate cortex (dACC), ventromedial prefrontal cortex (vmPFC), ventrolateral PFC (vlPFC), and dorsal PFC (dPFC) of macaque monkeys. Rs-fMRI seeds at the same regions of NHP and homologous regions of human brains showed connectivity maps in the striatum mostly consistent with those observed in the tracer data. We then examined the location of overlap in striatal projection zones. The medial rostral dorsal caudate connected with all five frontocortical regions evaluated in this study in both modalities (tract-tracing and rs-fMRI) and species (NHP and human). Other locations in the caudate also presented an overlap of four frontocortical regions, suggesting the existence of different locations with lower levels of input diversity. Small retrograde tracer injections and rs-fMRI seeds in the striatum confirmed these cortical input patterns. This study sets the ground for future studies evaluating rs-fMRI in clinical samples to measure anatomical corticostriatal circuit dysfunction and identify connectional hubs to provide more specific treatment targets for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Xiaolong Peng
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, USA
| | - Lucas R Trambaiolli
- McLean Hospital, Harvard Medical School, Boston, USA; University of Rochester School of Medicine & Dentistry, Rochester, USA
| | - Eun Young Choi
- Department of Neurosurgery, Stanford University, Stanford, USA
| | - Julia F Lehman
- University of Rochester School of Medicine & Dentistry, Rochester, USA
| | - Gary Linn
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, USA
| | - Brian E Russ
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, USA
| | | | - Suzanne N Haber
- McLean Hospital, Harvard Medical School, Boston, USA; University of Rochester School of Medicine & Dentistry, Rochester, USA.
| | - Hesheng Liu
- Changping Laboratory, Beijing, China; Biomedical Pioneering Innovation Center, Peking University, Beijing, China.
| |
Collapse
|
5
|
Mitchell ME, Henry TR, Fogleman ND, Michael C, Nugiel T, Cohen JR. Differential reconfiguration of brain networks in children in response to standard versus rewarded go/no-go task demands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618248. [PMID: 39464087 PMCID: PMC11507708 DOI: 10.1101/2024.10.15.618248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Response inhibition and sustained attention are critical for higher-order cognition and rely upon specific patterns of functional brain network organization. This study investigated how functional brain networks reconfigure to execute these cognitive processes during a go/no-go task with and without the presence of rewards in 26 children between the ages of 8 and 12 years. First, we compared task performance between standard and rewarded versions of a go/no-go task. We found that the presence of rewards reduced commission error rate, a measure considered to indicate improved response inhibition. Tau, thought to index sustained attention, did not change across task conditions. Next, changes in functional brain network organization were assessed between the resting state, the standard go/no-go task, and the rewarded go/no-go task. Relative to the resting state, integration decreased and segregation increased during the standard go/no-go task. A further decrease in integration and increase in segregation was observed when rewards were introduced. These patterns of reconfiguration were present globally and across several key brain networks of interest, as well as in individual regions implicated in the processes of response inhibition, attention, and reward processing. These findings align with patterns of brain network organization found to support the cognitive strategy of sustained attention, rather than response inhibition, during go/no-go task performance and suggest that rewards enhance this organization. Overall, this study used large-scale brain network organization and a within-subjects multi-task design to examine different cognitive strategies and the influence of rewards on response inhibition and sustained attention in late childhood.
Collapse
|
6
|
Tian Y, Peng XR, Tang Z, Long Z, Xie C, Lei X. Enhanced diversity on connector hubs following sleep deprivation: Evidence from diffusion and functional magnetic resonance imaging. Neuroimage 2024; 299:120837. [PMID: 39241898 DOI: 10.1016/j.neuroimage.2024.120837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/08/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
Sleep deprivation has been demonstrated to exert widespread and intricate impacts on the brain network. The human brain network is a modular network composed of interconnected nodes. This network consists of provincial hubs and connector hubs, with provincial hubs having diverse connectivities within their own modules, while connector hubs distribute their connectivities across different modules. The latter is crucial for integrating information from various modules and ensuring the normal functioning of the modular brain. However, there has been a lack of systematic investigation into the impact of sleep deprivation on brain connector hubs. In this study, we utilized functional connectivity from resting-state functional magnetic resonance imaging, as well as structural connectivity from diffusion-weighted imaging, to systematically explore the variation of connector hub properties in the cerebral cortex after one night of sleep deprivation. The normalized participation coefficients (PCnorm) were utilized to identify connector hubs. In both the functional and structural networks, connector hubs exhibited a significant increase in average PCnorm, indicating the diversity enhancement of the connector hub following sleep deprivation. This enhancement is associated with increased network cost, reduced modularity, and decreased small-worldness, but enhanced global efficiency. This may potentially signify a compensatory mechanism within the brain following sleep deprivation. The significantly affected connector hubs were primarily observed in both the Control Network and Salience Network. We believe that the observed results reflect the increasing demand on the brain to invest more effort at preventing performance deterioration after sleep loss, in exchange for increased communication efficiency, especially involving systems responsible for neural resource allocation and cognitive control. These results have been replicated in an independent dataset. In conclusion, this study has enhanced our understanding of the compensatory mechanism in the brain response to sleep deprivation. This compensation is characterized by an enhancement in the connector hubs responsible for inter-modular communication, especially those related to neural resource and cognitive control. As a result, this compensation comes with a higher network cost but leads to an improvement in global communication efficiency, akin to a more random-like network manner.
Collapse
Affiliation(s)
- Yun Tian
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing 400715, China
| | - Xue-Rui Peng
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Zihan Tang
- Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing 400715, China
| | - Zhiliang Long
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing 400715, China
| | - Chao Xie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing 400715, China.
| |
Collapse
|
7
|
Hsieh JK, Prakash PR, Flint RD, Fitzgerald Z, Mugler E, Wang Y, Crone NE, Templer JW, Rosenow JM, Tate MC, Betzel R, Slutzky MW. Cortical sites critical to language function act as connectors between language subnetworks. Nat Commun 2024; 15:7897. [PMID: 39284848 PMCID: PMC11405775 DOI: 10.1038/s41467-024-51839-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/15/2024] [Indexed: 09/20/2024] Open
Abstract
Historically, eloquent functions have been viewed as localized to focal areas of human cerebral cortex, while more recent studies suggest they are encoded by distributed networks. We examined the network properties of cortical sites defined by stimulation to be critical for speech and language, using electrocorticography from sixteen participants during word-reading. We discovered distinct network signatures for sites where stimulation caused speech arrest and language errors. Both demonstrated lower local and global connectivity, whereas sites causing language errors exhibited higher inter-community connectivity, identifying them as connectors between modules in the language network. We used machine learning to classify these site types with reasonably high accuracy, even across participants, suggesting that a site's pattern of connections within the task-activated language network helps determine its importance to function. These findings help to bridge the gap in our understanding of how focal cortical stimulation interacts with complex brain networks to elicit language deficits.
Collapse
Affiliation(s)
- Jason K Hsieh
- Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Prashanth R Prakash
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60611, USA
| | - Robert D Flint
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zachary Fitzgerald
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Emily Mugler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yujing Wang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jessica W Templer
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Joshua M Rosenow
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Matthew C Tate
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Cognitive Science Program, Program in Neuroscience, and Network Science Institute, Indiana University, Bloomington, IN, 47401, USA
| | - Marc W Slutzky
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60611, USA.
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Neuroscience, Northwestern University, Chicago, IL, 60611, USA.
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
8
|
Nusslock R, Kogan SM, Yu T, Armstrong CC, Chen E, Miller GE, Brody GH, Sweet LH. Higher substance use is associated with low executive control neural activity and higher inflammation. Brain Behav Immun 2024; 120:532-542. [PMID: 38925415 DOI: 10.1016/j.bbi.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/14/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024] Open
Abstract
Individuals with substance use problems show lower executive control and alterations in prefrontal brain systems supporting emotion regulation and impulse control. A separate literature suggests that heightened inflammation also increases risk for substance use, in part, through targeting brain systems involved in executive control. Research on neural and inflammatory signaling in substance use, however, has occurred in parallel. Drawing on recent neuroimmune network models, we used fMRI to examine the relationships between executive control-related brain activity (as elicited by an n-back working memory task), peripheral inflammation, as quantified by inflammatory cytokines and C-reactive protein (CRP), and substance use for the past month in 93 participants [mean age = 24.4 (SD = 0.6)]. We operationalized low executive control as a neural inefficiency during the n-back task to achieve normative performance, as reflected in higher working memory-related brain activity and lower activity in the default mode network (DMN). Consistent with prediction, individuals with low executive control and high inflammation reported more substance use over the past month, controlling for behavioral performance on the n-back, sex, time between assessments, body-mass-index (BMI), and personal socioeconomic status (SES) (interaction between inflammation and working memory-related brain activity, b = 0.210, p = 0.005; interaction between inflammation and DMN, b = -0.219, p < 0.001). Findings suggest that low executive control and high inflammation may be associated with higher substance use. This has implications for understanding psychological, neural, and immunological risk for substance use problems and the development of interventions to target each of these components.
Collapse
Affiliation(s)
- Robin Nusslock
- Department of Psychology, Northwestern University, USA; Institute for Policy Research, Northwestern University, USA.
| | | | - Tianyi Yu
- Center for Family Research, University of Georgia, USA
| | | | - Edith Chen
- Department of Psychology, Northwestern University, USA; Institute for Policy Research, Northwestern University, USA
| | - Gregory E Miller
- Department of Psychology, Northwestern University, USA; Institute for Policy Research, Northwestern University, USA
| | - Gene H Brody
- Center for Family Research, University of Georgia, USA
| | | |
Collapse
|
9
|
Koslov SR, Kable JW, Foster BL. Dissociable Contributions of the Medial Parietal Cortex to Recognition Memory. J Neurosci 2024; 44:e2220232024. [PMID: 38527809 PMCID: PMC11063824 DOI: 10.1523/jneurosci.2220-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Human neuroimaging studies of episodic memory retrieval routinely observe the engagement of specific cortical regions beyond the medial temporal lobe. Of these, medial parietal cortex (MPC) is of particular interest given its distinct functional characteristics during different retrieval tasks. Specifically, while recognition and autobiographical recall tasks are both used to probe episodic retrieval, these paradigms consistently drive distinct spatial patterns of response within MPC. However, other studies have emphasized alternate MPC functional dissociations in terms of brain network connectivity profiles or stimulus category selectivity. As the unique contributions of MPC to episodic memory remain unclear, adjudicating between these different accounts can provide better consensus regarding MPC function. Therefore, we used a precision-neuroimaging dataset (7T functional magnetic resonance imaging) to examine how MPC regions are differentially engaged during recognition memory and how these task-related dissociations may also reflect distinct connectivity and stimulus category functional profiles. We observed interleaved, though spatially distinct, subregions of MPC where responses were sensitive to either recognition decisions or the semantic representation of stimuli. In addition, this dissociation was further accentuated by functional subregions displaying distinct profiles of connectivity with the hippocampus during task and rest. Finally, we show that recent observations of dissociable person and place selectivity within the MPC reflect category-specific responses from within identified semantic regions that are sensitive to mnemonic demands. Together, by examining precision functional mapping within individuals, these data suggest that previously distinct observations of functional dissociation within MPC conform to a common principle of organization throughout hippocampal-neocortical memory systems.
Collapse
Affiliation(s)
- Seth R Koslov
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joseph W Kable
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Brett L Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
10
|
Luo Z, Yin E, Yan Y, Zhao S, Xie L, Shen H, Zeng LL, Wang L, Hu D. Sleep deprivation changes frequency-specific functional organization of the resting human brain. Brain Res Bull 2024; 210:110925. [PMID: 38493835 DOI: 10.1016/j.brainresbull.2024.110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
Previous resting-state functional magnetic resonance imaging (rs-fMRI) studies have widely explored the temporal connection changes in the human brain following long-term sleep deprivation (SD). However, the frequency-specific topological properties of sleep-deprived functional networks remain virtually unclear. In this study, thirty-seven healthy male subjects underwent resting-state fMRI during rested wakefulness (RW) and after 36 hours of SD, and we examined frequency-specific spectral connection changes (0.01-0.08 Hz, interval = 0.01 Hz) caused by SD. First, we conducted a multivariate pattern analysis combining linear SVM classifiers with a robust feature selection algorithm, and the results revealed that accuracies of 74.29%-84.29% could be achieved in the classification between RW and SD states in leave-one-out cross-validation at different frequency bands, moreover, the spectral connection at the lowest and highest frequency bands exhibited higher discriminative power. Connection involving the cingulo-opercular network increased most, while connection involving the default-mode network decreased most following SD. Then we performed a graph-theoretic analysis and observed reduced low-frequency modularity and high-frequency global efficiency in the SD state. Moreover, hub regions, which were primarily situated in the cerebellum and the cingulo-opercular network after SD, exhibited high discriminative power in the aforementioned classification consistently. The findings may indicate the frequency-dependent effects of SD on the functional network topology and its efficiency of information exchange, providing new insights into the impact of SD on the human brain.
Collapse
Affiliation(s)
- Zhiguo Luo
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China; Intelligent Game and Decision Laboratory, Beijing 100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China; College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Erwei Yin
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China; Intelligent Game and Decision Laboratory, Beijing 100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China.
| | - Ye Yan
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China; Intelligent Game and Decision Laboratory, Beijing 100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Shaokai Zhao
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China; Intelligent Game and Decision Laboratory, Beijing 100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Liang Xie
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China; Intelligent Game and Decision Laboratory, Beijing 100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Ling-Li Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Lubin Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 102206, China
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China.
| |
Collapse
|
11
|
Hermosillo RJM, Moore LA, Feczko E, Miranda-Domínguez Ó, Pines A, Dworetsky A, Conan G, Mooney MA, Randolph A, Graham A, Adeyemo B, Earl E, Perrone A, Carrasco CM, Uriarte-Lopez J, Snider K, Doyle O, Cordova M, Koirala S, Grimsrud GJ, Byington N, Nelson SM, Gratton C, Petersen S, Feldstein Ewing SW, Nagel BJ, Dosenbach NUF, Satterthwaite TD, Fair DA. A precision functional atlas of personalized network topography and probabilities. Nat Neurosci 2024; 27:1000-1013. [PMID: 38532024 PMCID: PMC11089006 DOI: 10.1038/s41593-024-01596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/08/2024] [Indexed: 03/28/2024]
Abstract
Although the general location of functional neural networks is similar across individuals, there is vast person-to-person topographic variability. To capture this, we implemented precision brain mapping functional magnetic resonance imaging methods to establish an open-source, method-flexible set of precision functional network atlases-the Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas. This atlas is an evolving resource comprising 53,273 individual-specific network maps, from more than 9,900 individuals, across ages and cohorts, including the Adolescent Brain Cognitive Development study, the Developmental Human Connectome Project and others. We also generated probabilistic network maps across multiple ages and integration zones (using a new overlapping mapping technique, Overlapping MultiNetwork Imaging). Using regions of high network invariance improved the reproducibility of executive function statistical maps in brain-wide associations compared to group average-based parcellations. Finally, we provide a potential use case for probabilistic maps for targeted neuromodulation. The atlas is expandable to alternative datasets with an online interface encouraging the scientific community to explore and contribute to understanding the human brain function more precisely.
Collapse
Affiliation(s)
- Robert J M Hermosillo
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Lucille A Moore
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Eric Feczko
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Óscar Miranda-Domínguez
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Adam Pines
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ally Dworetsky
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Gregory Conan
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Michael A Mooney
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Center for Mental Health Innovation, Oregon Health and Science University, Portland, OR, USA
| | - Anita Randolph
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Alice Graham
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric Earl
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Anders Perrone
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Cristian Morales Carrasco
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | - Kathy Snider
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Olivia Doyle
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Michaela Cordova
- Joint Doctoral Program in Clinical Psychology, San Diego State University, San Diego, CA, USA
- Joint Doctoral Program in Clinical Psychology, University of California San Diego, San Diego, CA, USA
| | - Sanju Koirala
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Gracie J Grimsrud
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Nora Byington
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven Petersen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Bonnie J Nagel
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
Guichet C, Banjac S, Achard S, Mermillod M, Baciu M. Modeling the neurocognitive dynamics of language across the lifespan. Hum Brain Mapp 2024; 45:e26650. [PMID: 38553863 PMCID: PMC10980845 DOI: 10.1002/hbm.26650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Healthy aging is associated with a heterogeneous decline across cognitive functions, typically observed between language comprehension and language production (LP). Examining resting-state fMRI and neuropsychological data from 628 healthy adults (age 18-88) from the CamCAN cohort, we performed state-of-the-art graph theoretical analysis to uncover the neural mechanisms underlying this variability. At the cognitive level, our findings suggest that LP is not an isolated function but is modulated throughout the lifespan by the extent of inter-cognitive synergy between semantic and domain-general processes. At the cerebral level, we show that default mode network (DMN) suppression coupled with fronto-parietal network (FPN) integration is the way for the brain to compensate for the effects of dedifferentiation at a minimal cost, efficiently mitigating the age-related decline in LP. Relatedly, reduced DMN suppression in midlife could compromise the ability to manage the cost of FPN integration. This may prompt older adults to adopt a more cost-efficient compensatory strategy that maintains global homeostasis at the expense of LP performances. Taken together, we propose that midlife represents a critical neurocognitive juncture that signifies the onset of LP decline, as older adults gradually lose control over semantic representations. We summarize our findings in a novel synergistic, economical, nonlinear, emergent, cognitive aging model, integrating connectomic and cognitive dimensions within a complex system perspective.
Collapse
Affiliation(s)
| | - Sonja Banjac
- Université Grenoble Alpes, CNRS LPNC UMR 5105GrenobleFrance
| | - Sophie Achard
- LJK, UMR CNRS 5224, Université Grenoble AlpesGrenobleFrance
| | | | - Monica Baciu
- Université Grenoble Alpes, CNRS LPNC UMR 5105GrenobleFrance
| |
Collapse
|
13
|
Luo Z, Yin E, Zeng LL, Shen H, Su J, Peng L, Yan Y, Hu D. Frequency-specific segregation and integration of human cerebral cortex: An intrinsic functional atlas. iScience 2024; 27:109206. [PMID: 38439977 PMCID: PMC10910261 DOI: 10.1016/j.isci.2024.109206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/24/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
The cognitive and behavioral functions of the human brain are supported by its frequency multiplexing mechanism. However, there is limited understanding of the dynamics of the functional network topology. This study aims to investigate the frequency-specific topology of the functional human brain using 7T rs-fMRI data. Frequency-specific parcellations were first performed, revealing frequency-dependent dynamics within the frontoparietal control, parietal memory, and visual networks. An intrinsic functional atlas containing 456 parcels was proposed and validated using stereo-EEG. Graph theory analysis suggested that, in addition to the task-positive vs. task-negative organization observed in static networks, there was a cognitive control system additionally from a frequency perspective. The reproducibility and plausibility of the identified hub sets were confirmed through 3T fMRI analysis, and their artificial removal had distinct effects on network topology. These results indicate a more intricate and subtle dynamics of the functional human brain and emphasize the significance of accurate topography.
Collapse
Affiliation(s)
- Zhiguo Luo
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China
- Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Erwei Yin
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China
- Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Ling-Li Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Jianpo Su
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Limin Peng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Ye Yan
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China
- Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| |
Collapse
|
14
|
Kwak S, Kim H, Kim KY, Oh DY, Lee D, Nam G, Lee JY. Neuroanatomical and neurocognitive correlates of delusion in Alzheimer's disease and mild cognitive impairment. BMC Neurol 2024; 24:89. [PMID: 38448803 PMCID: PMC10916051 DOI: 10.1186/s12883-024-03568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Neuropsychiatric symptoms and delusions are highly prevalent among people with dementia. However, multiple roots of neurobiological bases and shared neural basis of delusion and cognitive function remain to be characterized. By utilizing a fine-grained multivariable approach, we investigated distinct neuroanatomical correlates of delusion symptoms across a large population of dementing illnesses. METHODS In this study, 750 older adults with mild cognitive impairment and Alzheimer's disease completed brain structural imaging and neuropsychological assessment. We utilized principal component analysis followed by varimax rotation to identify the distinct multivariate correlates of cortical thinning patterns. Five of the cognitive domains were assessed whether the general cognitive abilities mediate the association between cortical thickness and delusion. RESULTS The result showed that distributed thickness patterns of temporal and ventral insular cortex (component 2), inferior and lateral prefrontal cortex (component 1), and somatosensory-visual cortex (component 5) showed negative correlations with delusions. Subsequent mediation analysis showed that component 1 and 2, which comprises inferior frontal, anterior insula, and superior temporal regional thickness accounted for delusion largely through lower cognitive functions. Specifically, executive control function assessed with the Trail Making Test mediated the relationship between two cortical thickness patterns and delusions. DISCUSSION Our findings suggest that multiple distinct subsets of brain regions underlie the delusions among older adults with cognitive impairment. Moreover, a neural loss may affect the occurrence of delusion in dementia largely due to impaired general cognitive abilities.
Collapse
Affiliation(s)
- Seyul Kwak
- Department of Psychology, Pusan National University, Busan, Republic of Korea
| | - Hairin Kim
- Department of Psychiatry, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Keun You Kim
- Department of Psychiatry, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Da Young Oh
- Department of Psychiatry, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Dasom Lee
- Department of Psychiatry, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Gieun Nam
- Department of Psychiatry, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry, Seoul National University College of Medicine & SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea.
- Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Guerrero-Gonzalez JM, Kirk GR, Birn R, Bigler ED, Bowen K, Broman AT, Rosario BL, Butt W, Beers SR, Bell MJ, Alexander AL, Ferrazzano PA. Multi-modal MRI of hippocampal morphometry and connectivity after pediatric severe TBI. Brain Imaging Behav 2024; 18:159-170. [PMID: 37955810 PMCID: PMC10844146 DOI: 10.1007/s11682-023-00818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
This investigation explores memory performance using the California Verbal Learning Test in relation to morphometric and connectivity measures of the memory network in severe traumatic brain injury. Twenty-two adolescents with severe traumatic brain injury were recruited for multimodal MRI scanning 1-2 years post-injury at 13 participating sites. Analyses included hippocampal volume derived from anatomical T1-weighted imaging, fornix white matter microstructure from diffusion tensor imaging, and hippocampal resting-state functional magnetic resonance imaging connectivity as well as diffusion-based structural connectivity. A typically developing control cohort of forty-nine age-matched children also underwent scanning and neurocognitive assessment. Results showed hippocampus volume was decreased in traumatic brain injury with respect to controls. Further, hippocampal volume loss was associated with worse performance on memory and learning in traumatic brain injury subjects. Similarly, hippocampal fornix fractional anisotropy was reduced in traumatic brain injury with respect to controls, while decreased fractional anisotropy in the hippocampal fornix also was associated with worse performance on memory and learning in traumatic brain injury subjects. Additionally, reduced structural connectivity of left hippocampus to thalamus and calcarine sulcus was associated with memory and learning in traumatic brain injury subjects. Functional connectivity in the left hippocampal network was also associated with memory and learning in traumatic brain injury subjects. These regional findings from a multi-modal neuroimaging approach should not only be useful for gaining valuable insight into traumatic brain injury induced memory and learning disfunction, but may also be informative for monitoring injury progression, recovery, and for developing rehabilitation as well as therapy strategies.
Collapse
Affiliation(s)
- Jose M Guerrero-Gonzalez
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA.
| | - Gregory R Kirk
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA
| | - Rasmus Birn
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Erin D Bigler
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, USA
- Department of Neurology & Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | | | - Aimee T Broman
- Department of Biostatistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Bedda L Rosario
- Department of Epidemiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Warwick Butt
- Department of Critical Care, Faculty of Medicine, Melbourne University, Melbourne, Australia
| | - Sue R Beers
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael J Bell
- Department of Pediatrics, Children's National Medical Center, Washington, DC, USA
| | - Andrew L Alexander
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA
| | - Peter A Ferrazzano
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA
| |
Collapse
|
16
|
Wulaer B, Holtz MA, Nagai J. Homeostasis to Allostasis: Prefrontal Astrocyte Roles in Cognitive Flexibility and Stress Biology. ADVANCES IN NEUROBIOLOGY 2024; 39:137-163. [PMID: 39190074 DOI: 10.1007/978-3-031-64839-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
In the intricate landscape of neurophysiology, astrocytes have been traditionally cast as homeostatic cells; however, their mechanistic involvement in allostasis-particularly how they modulate the adaptive response to stress and its accumulative impact that disrupts cognitive functions and precipitates psychiatric disorders-is now starting to be unraveled. Here, we address the gap by positing astrocytes as crucial allostatic players whose molecular adaptations underlie cognitive flexibility in stress-related neuropsychiatric conditions. We review how astrocytes, responding to stress mediators such as glucocorticoid and epinephrine/norepinephrine, undergo morphological and functional transformations that parallel the maladaptive changes. Our synthesis of recent findings reveals that these glial changes, especially in the metabolically demanding prefrontal cortex, may underlie some of the neuropsychiatric mechanisms characterized by the disruption of energy metabolism and astrocytic networks, compromised glutamate clearance, and diminished synaptic support. We argue that astrocytes extend beyond their homeostatic role, actively participating in the brain's allostatic response, especially by modulating energy substrates critical for cognitive functions.
Collapse
Affiliation(s)
- Bolati Wulaer
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Mika A Holtz
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Jun Nagai
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan.
| |
Collapse
|
17
|
Filippi M, Cividini C, Basaia S, Spinelli EG, Castelnovo V, Leocadi M, Canu E, Agosta F. Age-related vulnerability of the human brain connectome. Mol Psychiatry 2023; 28:5350-5358. [PMID: 37414925 DOI: 10.1038/s41380-023-02157-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Multifactorial models integrating brain variables at multiple scales are warranted to investigate aging and its relationship with neurodegeneration. Our aim was to evaluate how aging affects functional connectivity of pivotal regions of the human brain connectome (i.e., hubs), which represent potential vulnerability 'stations' to aging, and whether such effects influence the functional and structural changes of the whole brain. We combined the information of the functional connectome vulnerability, studied through an innovative graph-analysis approach (stepwise functional connectivity), with brain cortical thinning in aging. Using data from 128 cognitively normal participants (aged 20-85 years), we firstly investigated the topological functional network organization in the optimal healthy condition (i.e., young adults) and observed that fronto-temporo-parietal hubs showed a highly direct functional connectivity with themselves and among each other, while occipital hubs showed a direct functional connectivity within occipital regions and sensorimotor areas. Subsequently, we modeled cortical thickness changes over lifespan, revealing that fronto-temporo-parietal hubs were among the brain regions that changed the most, whereas occipital hubs showed a quite spared cortical thickness across ages. Finally, we found that cortical regions highly functionally linked to the fronto-temporo-parietal hubs in healthy adults were characterized by the greatest cortical thinning along the lifespan, demonstrating that the topology and geometry of hub functional connectome govern the region-specific structural alterations of the brain regions.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Camilla Cividini
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo G Spinelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michela Leocadi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
18
|
Deck BL, Kelkar A, Erickson B, Erani F, McConathey E, Sacchetti D, Faseyitan O, Hamilton R, Medaglia JD. Individual-level functional connectivity predicts cognitive control efficiency. Neuroimage 2023; 283:120386. [PMID: 37820860 DOI: 10.1016/j.neuroimage.2023.120386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/30/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Cognitive control (CC) is essential for problem-solving in everyday life, and CC-related deficits occur alongside costly and debilitating disorders. The tri-partite model suggests that CC comprises multiple behaviors, including switching, inhibiting, and updating. Activity within the fronto-parietal control network B (FPCN-B), the dorsal attention network (DAN), the cingulo-opercular network (CON), and the lateral default-mode network (L-DMN) is related to switching and inhibiting behaviors. However, our understanding of how these brain regions interact to bring about cognitive switching and inhibiting in individuals is unclear. In the current study, subjects performed two in-scanner tasks that required switching and inhibiting. We used support vector regression (SVR) models containing individually-estimated functional connectivity between the FPCN-B, DAN, CON and L-DMN to predict switching and inhibiting behaviors. We observed that: inter-network connectivity can predict inhibiting and switching behaviors in individuals, and the L-DMN plays a role in switching and inhibiting behaviors. Therefore, individually estimated inter-network connections are markers of CC behaviors, and CC behaviors may arise due to interactions between a set of networks.
Collapse
Affiliation(s)
- Benjamin L Deck
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Apoorva Kelkar
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Brian Erickson
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Fareshte Erani
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Eric McConathey
- Department of Neurology, The University of Pennsylvania: Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, 19104, PA, USA
| | - Daniela Sacchetti
- Department of Neurology, The University of Pennsylvania: Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, 19104, PA, USA
| | - Olufunsho Faseyitan
- Department of Neurology, The University of Pennsylvania: Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, 19104, PA, USA
| | - Roy Hamilton
- Department of Neurology, The University of Pennsylvania: Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, 19104, PA, USA
| | - John D Medaglia
- Department of Psychological and Brain Sciences, Drexel University, 3201 Chestnut Street, Philadelphia, 19104, PA, USA; Department of Neurology, The University of Pennsylvania: Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, 19104, PA, USA.
| |
Collapse
|
19
|
Zhuang K, Zeitlen DC, Beaty RE, Vatansever D, Chen Q, Qiu J. Diverse functional interaction driven by control-default network hubs supports creative thinking. Cereb Cortex 2023; 33:11206-11224. [PMID: 37823346 DOI: 10.1093/cercor/bhad356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Complex cognitive processes, like creative thinking, rely on interactions among multiple neurocognitive processes to generate effective and innovative behaviors on demand, for which the brain's connector hubs play a crucial role. However, the unique contribution of specific hub sets to creative thinking is unknown. Employing three functional magnetic resonance imaging datasets (total N = 1,911), we demonstrate that connector hub sets are organized in a hierarchical manner based on diversity, with "control-default hubs"-which combine regions from the frontoparietal control and default mode networks-positioned at the apex. Specifically, control-default hubs exhibit the most diverse resting-state connectivity profiles and play the most substantial role in facilitating interactions between regions with dissimilar neurocognitive functions, a phenomenon we refer to as "diverse functional interaction". Critically, we found that the involvement of control-default hubs in facilitating diverse functional interaction robustly relates to creativity, explaining both task-induced functional connectivity changes and individual creative performance. Our findings suggest that control-default hubs drive diverse functional interaction in the brain, enabling complex cognition, including creative thinking. We thus uncover a biologically plausible explanation that further elucidates the widely reported contributions of certain frontoparietal control and default mode network regions in creativity studies.
Collapse
Affiliation(s)
- Kaixiang Zhuang
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Daniel C Zeitlen
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Roger E Beaty
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Qunlin Chen
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Jiang Qiu
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| |
Collapse
|
20
|
Coray RC, Zimmermann J, Haugg A, Baumgartner MR, Steuer AE, Seifritz E, Stock AK, Beste C, Cole DM, Quednow BB. The functional connectome of 3,4-methyldioxymethamphetamine-related declarative memory impairments. Hum Brain Mapp 2023; 44:5079-5094. [PMID: 37530403 PMCID: PMC10502674 DOI: 10.1002/hbm.26438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023] Open
Abstract
The chronic intake of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") bears a strong risk for sustained declarative memory impairments. Although such memory deficits have been repeatedly reported, their neurofunctional origin remains elusive. Therefore, we here investigate the neuronal basis of altered declarative memory in recurrent MDMA users at the level of brain connectivity. We examined a group of 44 chronic MDMA users and 41 demographically matched controls. Declarative memory performance was assessed by the Rey Auditory Verbal Learning Test and a visual associative learning test. To uncover alterations in the whole brain connectome between groups, we employed a data-driven multi-voxel pattern analysis (MVPA) approach on participants' resting-state functional magnetic resonance imaging data. Recent MDMA use was confirmed by hair analyses. MDMA users showed lower performance in delayed recall across tasks compared to well-matched controls with moderate-to-strong effect sizes. MVPA revealed a large cluster located in the left postcentral gyrus of global connectivity differences between groups. Post hoc seed-based connectivity analyses with this cluster unraveled hypoconnectivity to temporal areas belonging to the auditory network and hyperconnectivity to dorsal parietal regions belonging to the dorsal attention network in MDMA users. Seed-based connectivity strength was associated with verbal memory performance in the whole sample as well as with MDMA intake patterns in the user group. Our findings suggest that functional underpinnings of MDMA-related memory impairments encompass altered patterns of multimodal sensory integration within auditory processing regions to a functional heteromodal connector hub, the left postcentral gyrus. In addition, hyperconnectivity in regions of a cognitive control network might indicate compensation for degraded sensory processing.
Collapse
Affiliation(s)
- Rebecca C Coray
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Josua Zimmermann
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Amelie Haugg
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Markus R Baumgartner
- Center for Forensic Hair Analytics, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Andrea E Steuer
- Department of Forensic Pharmacology and Toxicology, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - David M Cole
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
D'Andrea CB, Laumann TO, Newbold DJ, Nelson SM, Nielsen AN, Chauvin R, Marek S, Greene DJ, Dosenbach NUF, Gordon EM. Substructure of the brain's Cingulo-Opercular network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561772. [PMID: 37873065 PMCID: PMC10592749 DOI: 10.1101/2023.10.10.561772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The Cingulo-Opercular network (CON) is an executive network of the human brain that regulates actions. CON is composed of many widely distributed cortical regions that are involved in top-down control over both lower-level (i.e., motor) and higher-level (i.e., cognitive) functions, as well as in processing of painful stimuli. Given the topographical and functional heterogeneity of the CON, we investigated whether subnetworks within the CON support separable aspects of action control. Using precision functional mapping (PFM) in 15 participants with > 5 hours of resting state functional connectivity (RSFC) and task data, we identified three anatomically and functionally distinct CON subnetworks within each individual. These three distinct subnetworks were linked to Decisions, Actions, and Feedback (including pain processing), respectively, in convergence with a meta-analytic task database. These Decision, Action and Feedback subnetworks represent pathways by which the brain establishes top-down goals, transforms those goals into actions, implemented as movements, and processes critical action feedback such as pain.
Collapse
Affiliation(s)
- Carolina Badke D'Andrea
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Cognitive Science, University of California San Diego, La Jolla, California 92093, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63310, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Dillan J Newbold
- Department of Neurology, New York University Medical Center, New York, New York 10016, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Ashley N Nielsen
- Department of Neurology, New York University Medical Center, New York, New York 10016, USA
| | - Roselyne Chauvin
- Department of Neurology, New York University Medical Center, New York, New York 10016, USA
| | - Scott Marek
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, California 92093, USA
| | - Nico U F Dosenbach
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
22
|
Zhang J, Yang Y, Liu T, Shi Z, Pei G, Wang L, Wu J, Funahashi S, Suo D, Wang C, Yan T. Functional connectivity in people at clinical and familial high risk for schizophrenia. Psychiatry Res 2023; 328:115464. [PMID: 37690192 DOI: 10.1016/j.psychres.2023.115464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Patients diagnosed with schizophrenia (SZ) exhibit compromised functional connectivity within extensive brain networks. However, the precise development of this impairment during disease progression in the clinical high-risk (CHR) population and their relatives remains unclear. Our study leveraged data from 128 resting electroencephalography (EEG) channels acquired from 30 SZ patients, 21 CHR individuals, 17 unaffected healthy relatives (RSs; those at heightened SZ risk due to family history), and 31 healthy controls (HCs). These data were harnessed to establish functional connectivity patterns. By calculating the geometric distance between EEG sequences, we unveiled local and global nonlinear relationships within the entire brain. The process of dimensionality reduction led to low-dimensional representations, providing insights into high-dimensional EEG data. Our findings indicated that CHR participants exhibited aberrant functional connectivity across hemispheres, whereas RS individuals showcased anomalies primarily concentrated within hemispheres. In the realm of low-dimensional analysis, RS participants' third-dimensional occipital lobe values lay between those of the CHR individuals and HCs, significantly correlating with scale scores. This low-dimensional approach facilitated the visualization of brain states, potentially offering enhanced comprehension of brain structure, function, and early-stage functional impairment, such as occipital visual deficits, in RS individuals before cognitive decline onset.
Collapse
Affiliation(s)
- Jian Zhang
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun St, Haidian District, Beijing 100081, China
| | - Yaxin Yang
- School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun St, Haidian District, Beijing 100081, China
| | - Tiantian Liu
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun St, Haidian District, Beijing 100081, China
| | - Zhongyan Shi
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun St, Haidian District, Beijing 100081, China
| | - Guangying Pei
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun St, Haidian District, Beijing 100081, China
| | - Li Wang
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun St, Haidian District, Beijing 100081, China
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun St, Haidian District, Beijing 100081, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, 5 South Zhongguancun St, Haidian District, Beijing 100081, China
| | - Dingjie Suo
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun St, Haidian District, Beijing 100081, China
| | - Changming Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun St, Haidian District, Beijing 100081, China.
| |
Collapse
|
23
|
de Pasquale F, Chiacchiaretta P, Pavone L, Sparano A, Capotosto P, Grillea G, Committeri G, Baldassarre A. Brain Topological Reorganization Associated with Visual Neglect After Stroke. Brain Connect 2023; 13:473-486. [PMID: 34269620 PMCID: PMC10618825 DOI: 10.1089/brain.2020.0969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background/Purpose: To identify brain hubs that are behaviorally relevant for neglect after stroke as well as to characterize their functional architecture of communication. Methods: Twenty acute right hemisphere damaged patients underwent neuropsychological and resting-state functional magnetic resonance imaging sessions. Spatial neglect was assessed by means of the Center of Cancellation on the Bells Cancellation Test. For each patient, resting-state functional connectivity matrices were derived by adopting a brain parcellation scheme consisting of 153 nodes. For every node, we extracted its betweenness centrality (BC) defined as the portion of all shortest paths in the connectome involving such node. Then, neglect hubs were identified as those regions showing a high correlation between their BC and neglect scores. Results: A first set of neglect hubs was identified in multiple systems including dorsal attention and ventral attention, default mode, and frontoparietal executive-control networks within the damaged hemisphere as well as in the posterior and anterior cingulate cortex. Such cortical regions exhibited a loss of BC and increased (i.e., less efficient) weighted shortest path length (WSPL) related to severe neglect. Conversely, a second group of neglect hubs found in visual and motor networks, in the undamaged hemisphere, exhibited a pathological increase of BC and reduction of WSPL associated with severe neglect. Conclusion: The topological reorganization of the brain in neglect patients might reflect a maladaptive shift in processing spatial information from higher level associative-control systems to lower level visual and sensory-motor processing areas after a right hemisphere lesion.
Collapse
Affiliation(s)
| | - Piero Chiacchiaretta
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | | | - Paolo Capotosto
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | - Giorgia Committeri
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- IRCCS NEUROMED, Pozzilli, Italy
| |
Collapse
|
24
|
Bijsterbosch JD, Farahibozorg SR, Glasser MF, Essen DV, Snyder LH, Woolrich MW, Smith SM. Evaluating functional brain organization in individuals and identifying contributions to network overlap. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558809. [PMID: 37790508 PMCID: PMC10542549 DOI: 10.1101/2023.09.21.558809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Individual differences in the spatial organization of resting state networks have received increased attention in recent years. Measures of individual-specific spatial organization of brain networks and overlapping network organization have been linked to important behavioral and clinical traits and are therefore potential biomarker targets for personalized psychiatry approaches. To better understand individual-specific spatial brain organization, this paper addressed three key goals. First, we determined whether it is possible to reliably estimate weighted (non-binarized) resting state network maps using data from only a single individual, while also maintaining maximum spatial correspondence across individuals. Second, we determined the degree of spatial overlap between distinct networks, using test-retest and twin data. Third, we systematically tested multiple hypotheses (spatial mixing, temporal switching, and coupling) as candidate explanations for why networks overlap spatially. To estimate weighted network organization, we adopt the Probabilistic Functional Modes (PROFUMO) algorithm, which implements a Bayesian framework with hemodynamic and connectivity priors to supplement optimization for spatial sparsity/independence. Our findings showed that replicable individual-specific estimates of weighted resting state networks can be derived using high quality fMRI data within individual subjects. Network organization estimates using only data from each individual subject closely resembled group-informed network estimates (which was not explicitly modeled in our individual-specific analyses), suggesting that cross-subject correspondence was largely maintained. Furthermore, our results confirmed the presence of spatial overlap in network organization, which was replicable across sessions within individuals and in monozygotic twin pairs. Intriguingly, our findings provide evidence that network overlap is indicative of linear additive coupling. These results suggest that regions of network overlap concurrently process information from all contributing networks, potentially pointing to the role of overlapping network organization in the integration of information across multiple brain systems.
Collapse
Affiliation(s)
- Janine D Bijsterbosch
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | - Matthew F Glasser
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - David Van Essen
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Lawrence H Snyder
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), Oxford University, Oxford, United Kingdom
| |
Collapse
|
25
|
Han Z, Liu T, Shi Z, Zhang J, Suo D, Wang L, Chen D, Wu J, Yan T. Investigating the heterogeneity within the somatosensory-motor network and its relationship with the attention and default systems. PNAS NEXUS 2023; 2:pgad276. [PMID: 37693210 PMCID: PMC10485902 DOI: 10.1093/pnasnexus/pgad276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/23/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
The somatosensory-motor network (SMN) not only plays an important role in primary somatosensory and motor processing but is also central to many disorders. However, the SMN heterogeneity related to higher-order systems still remains unclear. Here, we investigated SMN heterogeneity from multiple perspectives. To characterize the SMN substructures in more detail, we used ultra-high-field functional MRI to delineate a finer-grained cortical parcellation containing 430 parcels that is more homogenous than the state-of-the-art parcellation. We personalized the new parcellation to account for individual differences and identified multiscale individual-specific brain structures. We found that the SMN subnetworks showed distinct resting-state functional connectivity (RSFC) patterns. The Hand subnetwork was central within the SMN and exhibited stronger RSFC with the attention systems than the other subnetworks, whereas the Tongue subnetwork exhibited stronger RSFC with the default systems. This two-fold differentiation was observed in the temporal ordering patterns within the SMN. Furthermore, we characterized how the distinct attention and default streams were carried forward into the functions of the SMN using dynamic causal modeling and identified two behavioral domains associated with this SMN fractionation using meta-analytic tools. Overall, our findings provided important insights into the heterogeneous SMN organization at the system level and suggested that the Hand subnetwork may be preferentially involved in exogenous processes, whereas the Tongue subnetwork may be more important in endogenous processes.
Collapse
Affiliation(s)
- Ziteng Han
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Tiantian Liu
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Zhongyan Shi
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Jian Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Dingjie Suo
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Li Wang
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Duanduan Chen
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| |
Collapse
|
26
|
Chai Y, Sheline YI, Oathes DJ, Balderston NL, Rao H, Yu M. Functional connectomics in depression: insights into therapies. Trends Cogn Sci 2023; 27:814-832. [PMID: 37286432 PMCID: PMC10476530 DOI: 10.1016/j.tics.2023.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
Depression is a common mental disorder characterized by heterogeneous cognitive and behavioral symptoms. The emerging research paradigm of functional connectomics has provided a quantitative theoretical framework and analytic tools for parsing variations in the organization and function of brain networks in depression. In this review, we first discuss recent progress in depression-associated functional connectome variations. We then discuss treatment-specific brain network outcomes in depression and propose a hypothetical model highlighting the advantages and uniqueness of each treatment in relation to the modulation of specific brain network connectivity and symptoms of depression. Finally, we look to the future promise of combining multiple treatment types in clinical practice, using multisite datasets and multimodal neuroimaging approaches, and identifying biological depression subtypes.
Collapse
Affiliation(s)
- Ya Chai
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; Center for Functional Neuroimaging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette I Sheline
- Center for Neuromodulation in Depression and Stress (CNDS), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Desmond J Oathes
- Center for Neuromodulation in Depression and Stress (CNDS), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Brain Science, Translation, Innovation and Modulation Center (brainSTIM), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Nicholas L Balderston
- Center for Neuromodulation in Depression and Stress (CNDS), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hengyi Rao
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; Center for Functional Neuroimaging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Meichen Yu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA.
| |
Collapse
|
27
|
Menon V. 20 years of the default mode network: A review and synthesis. Neuron 2023; 111:2469-2487. [PMID: 37167968 PMCID: PMC10524518 DOI: 10.1016/j.neuron.2023.04.023] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023]
Abstract
The discovery of the default mode network (DMN) has revolutionized our understanding of the workings of the human brain. Here, I review developments that led to the discovery of the DMN, offer a personal reflection, and consider how our ideas of DMN function have evolved over the past two decades. I summarize literature examining the role of the DMN in self-reference, social cognition, episodic and autobiographical memory, language and semantic memory, and mind wandering. I identify unifying themes and propose new perspectives on the DMN's role in human cognition. I argue that the DMN integrates and broadcasts memory, language, and semantic representations to create a coherent "internal narrative" reflecting our individual experiences. This narrative is central to the construction of a sense of self, shapes how we perceive ourselves and interact with others, may have ontogenetic origins in self-directed speech during childhood, and forms a vital component of human consciousness.
Collapse
Affiliation(s)
- Vinod Menon
- Department of Psychiatry & Behavioral Sciences and Department of Neurology & Neurological Sciences, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
28
|
Smith DM, Kraus BT, Dworetsky A, Gordon EM, Gratton C. Brain hubs defined in the group do not overlap with regions of high inter-individual variability. Neuroimage 2023; 277:120195. [PMID: 37286152 PMCID: PMC10427117 DOI: 10.1016/j.neuroimage.2023.120195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 04/18/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
Connector 'hubs' are brain regions with links to multiple networks. These regions are hypothesized to play a critical role in brain function. While hubs are often identified based on group-average functional magnetic resonance imaging (fMRI) data, there is considerable inter-subject variation in the functional connectivity profiles of the brain, especially in association regions where hubs tend to be located. Here we investigated how group hubs are related to locations of inter-individual variability. To answer this question, we examined inter-individual variation at group-level hubs in both the Midnight Scan Club and Human Connectome Project datasets. The top group hubs defined based on the participation coefficient did not overlap strongly with the most prominent regions of inter-individual variation (termed 'variants' in prior work). These hubs have relatively strong similarity across participants and consistent cross-network profiles, similar to what was seen for many other areas of cortex. Consistency across participants was further improved when these hubs were allowed to shift slightly in local position. Thus, our results demonstrate that the top group hubs defined with the participation coefficient are generally consistent across people, suggesting they may represent conserved cross-network bridges. More caution is warranted with alternative hub measures, such as community density (which are based on spatial proximity to network borders) and intermediate hub regions which show higher correspondence to locations of individual variability.
Collapse
Affiliation(s)
- Derek M Smith
- Department of Psychology, Northwestern University, Evanston, IL, United States; Department of Neurology, Division of Cognitive Neurology/Neuropsychology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Brian T Kraus
- Department of Psychology, Northwestern University, Evanston, IL, United States
| | - Ally Dworetsky
- Department of Psychology, Northwestern University, Evanston, IL, United States; Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, United States; Department of Psychology, Florida State University, Tallahassee, FL, United States; Department of Neurology, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
29
|
Camacho MC, Nielsen AN, Balser D, Furtado E, Steinberger DC, Fruchtman L, Culver JP, Sylvester CM, Barch DM. Large-scale encoding of emotion concepts becomes increasingly similar between individuals from childhood to adolescence. Nat Neurosci 2023; 26:1256-1266. [PMID: 37291338 DOI: 10.1038/s41593-023-01358-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 05/12/2023] [Indexed: 06/10/2023]
Abstract
Humans require a shared conceptualization of others' emotions for adaptive social functioning. A concept is a mental blueprint that gives our brains parameters for predicting what will happen next. Emotion concepts undergo refinement with development, but it is not known whether their neural representations change in parallel. Here, in a sample of 5-15-year-old children (n = 823), we show that the brain represents different emotion concepts distinctly throughout the cortex, cerebellum and caudate. Patterns of activation to each emotion changed little across development. Using a model-free approach, we show that activation patterns were more similar between older children than between younger children. Moreover, scenes that required inferring negative emotional states elicited higher default mode network activation similarity in older children than younger children. These results suggest that representations of emotion concepts are relatively stable by mid to late childhood and synchronize between individuals during adolescence.
Collapse
Affiliation(s)
- M Catalina Camacho
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA.
| | - Ashley N Nielsen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Dori Balser
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Emily Furtado
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - David C Steinberger
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Leah Fruchtman
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Joseph P Culver
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Physics, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Chad M Sylvester
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Deanna M Barch
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
30
|
Yu Y, Gratton C, Smith DM. From correlation to communication: Disentangling hidden factors from functional connectivity changes. Netw Neurosci 2023; 7:411-430. [PMID: 37397894 PMCID: PMC10312287 DOI: 10.1162/netn_a_00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/02/2022] [Indexed: 01/11/2024] Open
Abstract
While correlations in the BOLD fMRI signal are widely used to capture functional connectivity (FC) and its changes across contexts, its interpretation is often ambiguous. The entanglement of multiple factors including local coupling of two neighbors and nonlocal inputs from the rest of the network (affecting one or both regions) limits the scope of the conclusions that can be drawn from correlation measures alone. Here we present a method of estimating the contribution of nonlocal network input to FC changes across different contexts. To disentangle the effect of task-induced coupling change from the network input change, we propose a new metric, "communication change," utilizing BOLD signal correlation and variance. With a combination of simulation and empirical analysis, we demonstrate that (1) input from the rest of the network accounts for a moderate but significant amount of task-induced FC change and (2) the proposed "communication change" is a promising candidate for tracking the local coupling in task context-induced change. Additionally, when compared to FC change across three different tasks, communication change can better discriminate specific task types. Taken together, this novel index of local coupling may have many applications in improving our understanding of local and widespread interactions across large-scale functional networks.
Collapse
Affiliation(s)
- Yuhua Yu
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Neurology, Northwestern University, Evanston, IL, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Derek M. Smith
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Neurology, Division of Cognitive Neurology/Neuropsychology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Demeter DV, Gordon EM, Nugiel T, Garza A, Larguinho TL, Church JA. Resting-state cortical hubs in youth organize into four categories. Cell Rep 2023; 42:112521. [PMID: 37200192 PMCID: PMC10281712 DOI: 10.1016/j.celrep.2023.112521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 02/13/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023] Open
Abstract
During childhood, neural systems supporting high-level cognitive processes undergo periods of rapid growth and refinement, which rely on the successful coordination of activation across the brain. Some coordination occurs via cortical hubs-brain regions that coactivate with functional networks other than their own. Adult cortical hubs map into three distinct profiles, but less is known about hub categories during development, when critical improvement in cognition occurs. We identify four distinct hub categories in a large youth sample (n = 567, ages 8.5-17.2), each exhibiting more diverse connectivity profiles than adults. Youth hubs integrating control-sensory processing split into two distinct categories (visual control and auditory/motor control), whereas adult hubs unite under one. This split suggests a need for segregating sensory stimuli while functional networks are experiencing rapid development. Functional coactivation strength for youth control-processing hubs are associated with task performance, suggesting a specialized role in routing sensory information to and from the brain's control system.
Collapse
Affiliation(s)
- Damion V Demeter
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093, USA.
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tehila Nugiel
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - AnnaCarolina Garza
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tyler L Larguinho
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jessica A Church
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
32
|
Onoda K, Akama H. Complex of global functional network as the core of consciousness. Neurosci Res 2023; 190:67-77. [PMID: 36535365 DOI: 10.1016/j.neures.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/20/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Finding the neural basis of consciousness is challenging, and the distribution location of the core of consciousness remains inconclusive. Integrated information theory (IIT) argues that the posterior part of the brain is the hot zone of consciousness, especially phenological consciousness. The IIT has proposed a "main complex", a set of elements determined such that the information loss in a hierarchical partition approach is the largest among those of any other supersets and subsets, as the core of consciousness in a dynamic system. This approach may be applicable not only to phenomenal but also to access-consciousness. This study estimated the main complex of brain dynamics using functional magnetic resonance imaging in Human Connectome Project (HCP) and sleep datasets. The complex analyses revealed the common networks across various tasks and rest-state in HCP, composed of executive control, salience, and dorsal/ventral attention networks. The set of networks of the main complex was maintained during sleep. However, compared with the wakefulness stage, the amount of information of these networks and the default mode network, was reduced for the hypnagogic stage. The global interconnected structure composed of major functional networks can comprise the core of consciousness.
Collapse
Affiliation(s)
- Keiichi Onoda
- Department of Psychology, Otemon Gakuin University, Ibaraki, Osaka 567-8502, Japan.
| | - Hiroyuki Akama
- Department of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| |
Collapse
|
33
|
Montez DF, Van AN, Miller RL, Seider NA, Marek S, Zheng A, Newbold DJ, Scheidter K, Feczko E, Perrone AJ, Miranda-Dominguez O, Earl EA, Kay BP, Jha AK, Sotiras A, Laumann TO, Greene DJ, Gordon EM, Tisdall MD, van der Kouwe A, Fair DA, Dosenbach NUF. Using synthetic MR images for distortion correction. Dev Cogn Neurosci 2023; 60:101234. [PMID: 37023632 PMCID: PMC10106483 DOI: 10.1016/j.dcn.2023.101234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Functional MRI (fMRI) data acquired using echo-planar imaging (EPI) are highly distorted by magnetic field inhomogeneities. Distortion and differences in image contrast between EPI and T1-weighted and T2-weighted (T1w/T2w) images makes their alignment a challenge. Typically, field map data are used to correct EPI distortions. Alignments achieved with field maps can vary greatly and depends on the quality of field map data. However, many public datasets lack field map data entirely. Additionally, reliable field map data is often difficult to acquire in high-motion pediatric or developmental cohorts. To address this, we developed Synth, a software package for distortion correction and cross-modal image registration that does not require field map data. Synth combines information from T1w and T2w anatomical images to construct an idealized undistorted synthetic image with similar contrast properties to EPI data. This synthetic image acts as an effective reference for individual-specific distortion correction. Using pediatric (ABCD: Adolescent Brain Cognitive Development) and adult (MSC: Midnight Scan Club; HCP: Human Connectome Project) data, we demonstrate that Synth performs comparably to field map distortion correction approaches, and often outperforms them. Field map-less distortion correction with Synth allows accurate and precise registration of fMRI data with missing or corrupted field map information.
Collapse
Affiliation(s)
- David F Montez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America.
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Ryland L Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Nicole A Seider
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Scott Marek
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Annie Zheng
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Neurology, New York University Langone Medical Center, New York, NY 10016, United States of America
| | - Kristen Scheidter
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America
| | - Anders J Perrone
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America; Department of Psychiatry, Oregon Health and Science University, Portland, OR 97239, United States of America
| | - Oscar Miranda-Dominguez
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America
| | - Eric A Earl
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America; Department of Psychiatry, Oregon Health and Science University, Portland, OR 97239, United States of America
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Abhinav K Jha
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Aristeidis Sotiras
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Institute for Informatics, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Deanna J Greene
- Department of Cognitive Science, University of California, San Diego, La Jolla CA 92093, United States of America
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - M Dylan Tisdall
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Andre van der Kouwe
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, United States of America; Department of Radiology, Harvard Medical School, Boston, MA 02115, United States of America
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America; Institute of Child Development, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| |
Collapse
|
34
|
Volumetric MRI Findings in Mild Traumatic Brain Injury (mTBI) and Neuropsychological Outcome. Neuropsychol Rev 2023; 33:5-41. [PMID: 33656702 DOI: 10.1007/s11065-020-09474-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Region of interest (ROI) volumetric assessment has become a standard technique in quantitative neuroimaging. ROI volume is thought to represent a coarse proxy for making inferences about the structural integrity of a brain region when compared to normative values representative of a healthy sample, adjusted for age and various demographic factors. This review focuses on structural volumetric analyses that have been performed in the study of neuropathological effects from mild traumatic brain injury (mTBI) in relation to neuropsychological outcome. From a ROI perspective, the probable candidate structures that are most likely affected in mTBI represent the target regions covered in this review. These include the corpus callosum, cingulate, thalamus, pituitary-hypothalamic area, basal ganglia, amygdala, and hippocampus and associated structures including the fornix and mammillary bodies, as well as whole brain and cerebral cortex along with the cerebellum. Ventricular volumetrics are also reviewed as an indirect assessment of parenchymal change in response to injury. This review demonstrates the potential role and limitations of examining structural changes in the ROIs mentioned above in relation to neuropsychological outcome. There is also discussion and review of the role that post-traumatic stress disorder (PTSD) may play in structural outcome in mTBI. As emphasized in the conclusions, structural volumetric findings in mTBI are likely just a single facet of what should be a multimodality approach to image analysis in mTBI, with an emphasis on how the injury damages or disrupts neural network integrity. The review provides an historical context to quantitative neuroimaging in neuropsychology along with commentary about future directions for volumetric neuroimaging research in mTBI.
Collapse
|
35
|
Seghier ML. Multiple functions of the angular gyrus at high temporal resolution. Brain Struct Funct 2023; 228:7-46. [PMID: 35674917 DOI: 10.1007/s00429-022-02512-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Here, the functions of the angular gyrus (AG) are evaluated in the light of current evidence from transcranial magnetic/electric stimulation (TMS/TES) and EEG/MEG studies. 65 TMS/TES and 52 EEG/MEG studies were examined in this review. TMS/TES literature points to a causal role in semantic processing, word and number processing, attention and visual search, self-guided movement, memory, and self-processing. EEG/MEG studies reported AG effects at latencies varying between 32 and 800 ms in a wide range of domains, with a high probability to detect an effect at 300-350 ms post-stimulus onset. A three-phase unifying model revolving around the process of sensemaking is then suggested: (1) early AG involvement in defining the current context, within the first 200 ms, with a bias toward the right hemisphere; (2) attention re-orientation and retrieval of relevant information within 200-500 ms; and (3) cross-modal integration at late latencies with a bias toward the left hemisphere. This sensemaking process can favour accuracy (e.g. for word and number processing) or plausibility (e.g. for comprehension and social cognition). Such functions of the AG depend on the status of other connected regions. The much-debated semantic role is also discussed as follows: (1) there is a strong TMS/TES evidence for a causal semantic role, (2) current EEG/MEG evidence is however weak, but (3) the existing arguments against a semantic role for the AG are not strong. Some outstanding questions for future research are proposed. This review recognizes that cracking the role(s) of the AG in cognition is possible only when its exact contributions within the default mode network are teased apart.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE. .,Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
36
|
Resting state functional connectivity as a marker of internalizing disorder onset in high-risk youth. Sci Rep 2022; 12:21337. [PMID: 36494495 PMCID: PMC9734132 DOI: 10.1038/s41598-022-25805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
While research has linked alterations in functional connectivity of the default mode (DMN), cognitive control (CCN), and salience networks (SN) to depression and anxiety, little research has examined whether these alterations may be premorbid vulnerabilities. This study examined resting state functional connectivity (RSFC) of the CCN, DMN, and SN as markers of risk for developing an onset of a depressive or anxiety disorder in adolescents at high familial risk for these disorders. At baseline, 135 participants aged 11-17 completed resting-state functional magnetic resonance imaging, measures of internalizing symptoms, and diagnostic interviews to assess history of depressive and anxiety disorders. Diagnostic assessments were completed again at 9- or 18-month follow-up for 112 participants. At baseline, increased CCN connectivity to areas of the visual network, and decreased connectivity between the left SN and the precentral gyrus, predicted an increased likelihood of a new onset at follow-up. Increased connectivity between the right SN and postcentral gyrus at baseline predicted first episode onsets at follow-up. Altered connectivity between these regions may represent a risk factor for developing a clinically significant onset of an internalizing disorder. Results may have implications for understanding the neural bases of internalizing disorders for early identification and prevention efforts.
Collapse
|
37
|
Brown JA, Lee AJ, Pasquini L, Seeley WW. A dynamic gradient architecture generates brain activity states. Neuroimage 2022; 261:119526. [PMID: 35914669 PMCID: PMC9585924 DOI: 10.1016/j.neuroimage.2022.119526] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022] Open
Abstract
The human brain exhibits a diverse yet constrained range of activity states. While these states can be faithfully represented in a low-dimensional latent space, our understanding of the constitutive functional anatomy is still evolving. Here we applied dimensionality reduction to task-free and task fMRI data to address whether latent dimensions reflect intrinsic systems and if so, how these systems may interact to generate different activity states. We find that each dimension represents a dynamic activity gradient, including a primary unipolar sensory-association gradient underlying the global signal. The gradients appear stable across individuals and cognitive states, while recapitulating key functional connectivity properties including anticorrelation, modularity, and regional hubness. We then use dynamical systems modeling to show that gradients causally interact via state-specific coupling parameters to create distinct brain activity patterns. Together, these findings indicate that a set of dynamic, intrinsic spatial gradients interact to determine the repertoire of possible brain activity states.
Collapse
Affiliation(s)
- Jesse A Brown
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| | - Alex J Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Lorenzo Pasquini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
38
|
Xu Z, Xia M, Wang X, Liao X, Zhao T, He Y. Meta-connectomic analysis maps consistent, reproducible, and transcriptionally relevant functional connectome hubs in the human brain. Commun Biol 2022; 5:1056. [PMID: 36195744 PMCID: PMC9532385 DOI: 10.1038/s42003-022-04028-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Human brain connectomes include sets of densely connected hub regions. However, the consistency and reproducibility of functional connectome hubs have not been established to date and the genetic signatures underlying robust hubs remain unknown. Here, we conduct a worldwide harmonized meta-connectomic analysis by pooling resting-state functional MRI data of 5212 healthy young adults across 61 independent cohorts. We identify highly consistent and reproducible connectome hubs in heteromodal and unimodal regions both across cohorts and across individuals, with the greatest effects observed in lateral parietal cortex. These hubs show heterogeneous connectivity profiles and are critical for both intra- and inter-network communications. Using post-mortem transcriptome datasets, we show that as compared to non-hubs, connectome hubs have a spatiotemporally distinctive transcriptomic pattern dominated by genes involved in the neuropeptide signaling pathway, neurodevelopmental processes, and metabolic processes. These results highlight the robustness of macroscopic connectome hubs and their potential cellular and molecular underpinnings, which markedly furthers our understanding of how connectome hubs emerge in development, support complex cognition in health, and are involved in disease.
Collapse
Affiliation(s)
- Zhilei Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xindi Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xuhong Liao
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
39
|
Willbrand EH, Parker BJ, Voorhies WI, Miller JA, Lyu I, Hallock T, Aponik-Gremillion L, Koslov SR, Bunge SA, Foster BL, Weiner KS. Uncovering a tripartite landmark in posterior cingulate cortex. SCIENCE ADVANCES 2022; 8:eabn9516. [PMID: 36070384 PMCID: PMC9451146 DOI: 10.1126/sciadv.abn9516] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/21/2022] [Indexed: 05/18/2023]
Abstract
Understanding brain structure-function relationships, and their development and evolution, is central to neuroscience research. Here, we show that morphological differences in posterior cingulate cortex (PCC), a hub of functional brain networks, predict individual differences in macroanatomical, microstructural, and functional features of PCC. Manually labeling 4511 sulci in 572 hemispheres, we found a shallow cortical indentation (termed the inframarginal sulcus; ifrms) within PCC that is absent from neuroanatomical atlases yet colocalized with a focal, functional region of the lateral frontoparietal network implicated in cognitive control. This structural-functional coupling generalized to meta-analyses consisting of hundreds of studies and thousands of participants. Additional morphological analyses showed that unique properties of the ifrms differ across the life span and between hominoid species. These findings support a classic theory that shallow, tertiary sulci serve as landmarks in association cortices. They also beg the question: How many other cortical indentations have we missed?
Collapse
Affiliation(s)
- Ethan H. Willbrand
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Benjamin J. Parker
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Willa I. Voorhies
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Jacob A. Miller
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Ilwoo Lyu
- Department of Computer Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Tyler Hallock
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720 USA
| | | | - Seth R. Koslov
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Silvia A. Bunge
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Brett L. Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin S. Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
40
|
Alvand A, Kuruvilla-Mathew A, Kirk IJ, Roberts RP, Pedersen M, Purdy SC. Altered brain network topology in children with auditory processing disorder: A resting-state multi-echo fMRI study. Neuroimage Clin 2022; 35:103139. [PMID: 36002970 PMCID: PMC9421544 DOI: 10.1016/j.nicl.2022.103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
Children with auditory processing disorder (APD) experience hearing difficulties, particularly in the presence of competing sounds, despite having normal audiograms. There is considerable debate on whether APD symptoms originate from bottom-up (e.g., auditory sensory processing) and/or top-down processing (e.g., cognitive, language, memory). A related issue is that little is known about whether functional brain network topology is altered in APD. Therefore, we used resting-state functional magnetic resonance imaging data to investigate the functional brain network organization of 57 children from 8 to 14 years old, diagnosed with APD (n = 28) and without hearing difficulties (healthy control, HC; n = 29). We applied complex network analysis using graph theory to assess the whole-brain integration and segregation of functional networks and brain hub architecture. Our results showed children with APD and HC have similar global network properties -i.e., an average of all brain regions- and modular organization. Still, the APD group showed different hub architecture in default mode-ventral attention, somatomotor and frontoparietal-dorsal attention modules. At the nodal level -i.e., single-brain regions-, we observed decreased participation coefficient (PC - a measure quantifying the diversity of between-network connectivity) in auditory cortical regions in APD, including bilateral superior temporal gyrus and left middle temporal gyrus. Beyond auditory regions, PC was also decreased in APD in bilateral posterior temporo-occipital cortices, left intraparietal sulcus, and right posterior insular cortex. Correlation analysis suggested a positive association between PC in the left parahippocampal gyrus and the listening-in-spatialized-noise -sentences task where APD children were engaged in auditory perception. In conclusion, our findings provide evidence of altered brain network organization in children with APD, specific to auditory networks, and shed new light on the neural systems underlying children's listening difficulties.
Collapse
Affiliation(s)
- Ashkan Alvand
- School of Psychology, Faculty of Science, The University of Auckland, Auckland, New Zealand; Eisdell Moore Centre, Auckland, New Zealand.
| | - Abin Kuruvilla-Mathew
- School of Psychology, Faculty of Science, The University of Auckland, Auckland, New Zealand; Eisdell Moore Centre, Auckland, New Zealand.
| | - Ian J Kirk
- School of Psychology, Faculty of Science, The University of Auckland, Auckland, New Zealand; Eisdell Moore Centre, Auckland, New Zealand; Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| | - Reece P Roberts
- School of Psychology, Faculty of Science, The University of Auckland, Auckland, New Zealand; Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| | - Mangor Pedersen
- School of Psychology and Neuroscience, Auckland University of Technology, Auckland, New Zealand.
| | - Suzanne C Purdy
- School of Psychology, Faculty of Science, The University of Auckland, Auckland, New Zealand; Eisdell Moore Centre, Auckland, New Zealand; Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
41
|
Voss MW, Jain S. Getting Fit to Counteract Cognitive Aging: Evidence and Future Directions. Physiology (Bethesda) 2022; 37:0. [PMID: 35001656 PMCID: PMC9191193 DOI: 10.1152/physiol.00038.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Physical activity has shown tremendous promise for counteracting cognitive aging, but also tremendous variability in cognitive benefits. We describe evidence for how exercise affects cognitive and brain aging, and whether cardiorespiratory fitness is a key factor. We highlight a brain network framework as a valuable paradigm for the mechanistic insight needed to tailor physical activity for cognitive benefits.
Collapse
Affiliation(s)
- Michelle W. Voss
- 1Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa,2Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa,3Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Shivangi Jain
- 1Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| |
Collapse
|
42
|
Willis DE, Goldstein PA. Targeting Affective Mood Disorders With Ketamine to Prevent Chronic Postsurgical Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:872696. [PMID: 35832728 PMCID: PMC9271565 DOI: 10.3389/fpain.2022.872696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
The phencyclidine-derivative ketamine [2-(2-chlorophenyl)-2-(methylamino)cyclohexan-1-one] was added to the World Health Organization's Model List of Essential Medicines in 1985 and is also on the Model List of Essential Medicines for Children due to its efficacy and safety as an intravenous anesthetic. In sub-anesthetic doses, ketamine is an effective analgesic for the treatment of acute pain (such as may occur in the perioperative setting). Additionally, ketamine may have efficacy in relieving some forms of chronic pain. In 2019, Janssen Pharmaceuticals received regulatory-approval in both the United States and Europe for use of the S-enantiomer of ketamine in adults living with treatment-resistant major depressive disorder. Pre-existing anxiety/depression and the severity of postoperative pain are risk factors for development of chronic postsurgical pain. An important question is whether short-term administration of ketamine can prevent the conversion of acute postsurgical pain to chronic postsurgical pain. Here, we have reviewed ketamine's effects on the biopsychological processes underlying pain perception and affective mood disorders, focusing on non-NMDA receptor-mediated effects, with an emphasis on results from human trials where available.
Collapse
Affiliation(s)
- Dianna E. Willis
- Burke Neurological Institute, White Plains, NY, United States
- Feil Family Brain and Mind Institute, Weill Cornell Medicine, New York, NY, United States
| | - Peter A. Goldstein
- Feil Family Brain and Mind Institute, Weill Cornell Medicine, New York, NY, United States
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Peter A. Goldstein
| |
Collapse
|
43
|
Kawabata K, Bagarinao E, Watanabe H, Maesawa S, Mori D, Hara K, Ohdake R, Masuda M, Ogura A, Kato T, Koyama S, Katsuno M, Wakabayashi T, Kuzuya M, Hoshiyama M, Isoda H, Naganawa S, Ozaki N, Sobue G. Functional connector hubs in the cerebellum. Neuroimage 2022; 257:119263. [PMID: 35500805 DOI: 10.1016/j.neuroimage.2022.119263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 01/11/2023] Open
Abstract
Accumulating evidence from anatomical and neuroimaging studies suggests that the cerebellum is engaged in a variety of motor and cognitive tasks. Given its various functions, a key question is whether the cerebellum also plays an important role in the brain's integrative functions. Here, we hypothesize the existence of connector regions, also known as connector hubs, where multiple resting state networks converged in the cerebellum. To verify this, we employed a recently developed voxel-level network measure called functional connectivity overlap ratio (FCOR), which could be used to quantify the spatial extent of a region's connection to several large-scale cortical networks. Using resting state functional MRI data from 101 healthy participants, cerebellar FCOR maps were constructed and used to identify the locations of connector hubs in the cerebellum. Results showed that a number of cerebellar regions exhibited strong connectivity with multiple functional networks, verifying our hypothesis. These highly connected regions were located in the posterior cerebellum, especially in lobules VI, VII, and IX, and mainly connected to the core neurocognitive networks such as default mode and executive control networks. Regions associated with the sensorimotor network were also localized in lobule V, VI, and VIII, albeit in small clusters. These cerebellar connector hubs may play an essential role in the processing of information across the core neurocognitive networks.
Collapse
Affiliation(s)
- Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Neurology, Medical University of Innsbruck, Austria.
| | - Epifanio Bagarinao
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Satoshi Maesawa
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Daisuke Mori
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Reiko Ohdake
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Shuji Koyama
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masafumi Kuzuya
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine and Institutes of Innovation for Future Society, Nagoya, Aichi, Japan
| | - Minoru Hoshiyama
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Haruo Isoda
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Norio Ozaki
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Aichi Medical University, Nagakute, Japan.
| |
Collapse
|
44
|
Fekonja LS, Wang Z, Cacciola A, Roine T, Aydogan DB, Mewes D, Vellmer S, Vajkoczy P, Picht T. Network analysis shows decreased ipsilesional structural connectivity in glioma patients. Commun Biol 2022; 5:258. [PMID: 35322812 PMCID: PMC8943189 DOI: 10.1038/s42003-022-03190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
Gliomas that infiltrate networks and systems, such as the motor system, often lead to substantial functional impairment in multiple systems. Network-based statistics (NBS) allow to assess local network differences and graph theoretical analyses enable investigation of global and local network properties. Here, we used network measures to characterize glioma-related decreases in structural connectivity by comparing the ipsi- with the contralesional hemispheres of patients and correlated findings with neurological assessment. We found that lesion location resulted in differential impairment of both short and long connectivity patterns. Network analysis showed reduced global and local efficiency in the ipsilesional hemisphere compared to the contralesional hemispheric networks, which reflect the impairment of information transfer across different regions of a network. Tumors and their location distinctly alter both local and global brain connectivity within the ipsilesional hemisphere of glioma patients.
Collapse
Affiliation(s)
- Lucius S Fekonja
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany.
| | - Ziqian Wang
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alberto Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Timo Roine
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - D Baran Aydogan
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,Department of Psychiatry, Helsinki University and Helsinki University Hospital, Helsinki, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Darius Mewes
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Vellmer
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| |
Collapse
|
45
|
Massullo C, Imperatori C, De Vico Fallani F, Ardito RB, Adenzato M, Palmiero L, Carbone GA, Farina B. Decreased brain network global efficiency after attachment memories retrieval in individuals with unresolved/disorganized attachment-related state of mind. Sci Rep 2022; 12:4725. [PMID: 35304536 PMCID: PMC8933467 DOI: 10.1038/s41598-022-08685-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
The main aim of the study was to examine how brain network metrics change after retrieval of attachment memories in individuals with unresolved/disorganized (U/D) attachment-related state of mind and those with organized/resolved (O/R) state of mind. We focused on three main network metrics associated with integration and segregation: global (Eglob) efficiency for the first function, local (Eloc) efficiency and modularity for the second. We also examined assortativity and centrality metrics. Electroencephalography (EEG) recordings were performed before and after the Adult Attachment Interview (AAI) in a sample of 50 individuals previously assessed for parenting quality. Functional connectivity matrices were constructed by means of the exact Low-Resolution Electromagnetic Tomography (eLORETA) software and then imported into MATLAB to compute brain network metrics. Compared to individuals with O/R attachment-related state of mind, those with U/D show a significant decrease in beta Eglob after AAI. No statistically significant difference among groups emerged in Eloc and modularity metrics after AAI, neither in assortativity nor in betweenness centrality. These results may help to better understand the neurophysiological patterns underlying the disintegrative effects of retrieving traumatic attachment memories in individuals with disorganized state of mind in relation to attachment.
Collapse
Affiliation(s)
| | - Claudio Imperatori
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | | | - Rita B Ardito
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco, 15, 10126, Turin, Italy.
| | - Mauro Adenzato
- Department of Psychology, University of Turin, Turin, Italy
| | - Luigia Palmiero
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Giuseppe Alessio Carbone
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Benedetto Farina
- Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| |
Collapse
|
46
|
Human Taste-Perception: Brain Computer Interface (BCI) and Its Application as an Engineering Tool for Taste-Driven Sensory Studies. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09308-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Faskowitz J, Betzel RF, Sporns O. Edges in brain networks: Contributions to models of structure and function. Netw Neurosci 2022; 6:1-28. [PMID: 35350585 PMCID: PMC8942607 DOI: 10.1162/netn_a_00204] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
Network models describe the brain as sets of nodes and edges that represent its distributed organization. So far, most discoveries in network neuroscience have prioritized insights that highlight distinct groupings and specialized functional contributions of network nodes. Importantly, these functional contributions are determined and expressed by the web of their interrelationships, formed by network edges. Here, we underscore the important contributions made by brain network edges for understanding distributed brain organization. Different types of edges represent different types of relationships, including connectivity and similarity among nodes. Adopting a specific definition of edges can fundamentally alter how we analyze and interpret a brain network. Furthermore, edges can associate into collectives and higher order arrangements, describe time series, and form edge communities that provide insights into brain network topology complementary to the traditional node-centric perspective. Focusing on the edges, and the higher order or dynamic information they can provide, discloses previously underappreciated aspects of structural and functional network organization.
Collapse
Affiliation(s)
- Joshua Faskowitz
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Richard F. Betzel
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Indiana University Network Science Institute, Indiana University, Bloomington, IN, USA
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
| | - Olaf Sporns
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Indiana University Network Science Institute, Indiana University, Bloomington, IN, USA
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
| |
Collapse
|
48
|
Focal neural perturbations reshape low-dimensional trajectories of brain activity supporting cognitive performance. Nat Commun 2022; 13:4. [PMID: 35013147 PMCID: PMC8749005 DOI: 10.1038/s41467-021-26978-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/26/2021] [Indexed: 11/11/2022] Open
Abstract
The emergence of distributed patterns of neural activity supporting brain functions and behavior can be understood by study of the brain's low-dimensional topology. Functional neuroimaging demonstrates that brain activity linked to adaptive behavior is constrained to low-dimensional manifolds. In human participants, we tested whether these low-dimensional constraints preserve working memory performance following local neuronal perturbations. We combined multi-session functional magnetic resonance imaging, non-invasive transcranial magnetic stimulation (TMS), and methods translated from the fields of complex systems and computational biology to assess the functional link between changes in local neural activity and the reshaping of task-related low dimensional trajectories of brain activity. We show that specific reconfigurations of low-dimensional trajectories of brain activity sustain effective working memory performance following TMS manipulation of local activity on, but not off, the space traversed by these trajectories. We highlight an association between the multi-scale changes in brain activity underpinning cognitive function.
Collapse
|
49
|
A Comparison Between the Performances of Verbal and Nonverbal Fluency Tests in Discriminating Between Mild Cognitive Impairments and Alzheimer’s Disease Patients and Their Brain Morphological Correlates. Dement Neurocogn Disord 2022; 21:17-29. [PMID: 35154337 PMCID: PMC8811206 DOI: 10.12779/dnd.2022.21.1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022] Open
Abstract
Background and Purpose Methods Results Conclusions
Collapse
|
50
|
Haber SN, Liu H, Seidlitz J, Bullmore E. Prefrontal connectomics: from anatomy to human imaging. Neuropsychopharmacology 2022; 47:20-40. [PMID: 34584210 PMCID: PMC8617085 DOI: 10.1038/s41386-021-01156-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022]
Abstract
The fundamental importance of prefrontal cortical connectivity to information processing and, therefore, disorders of cognition, emotion, and behavior has been recognized for decades. Anatomic tracing studies in animals have formed the basis for delineating the direct monosynaptic connectivity, from cells of origin, through axon trajectories, to synaptic terminals. Advances in neuroimaging combined with network science have taken the lead in developing complex wiring diagrams or connectomes of the human brain. A key question is how well these magnetic resonance imaging (MRI)-derived networks and hubs reflect the anatomic "hard wiring" first proposed to underlie the distribution of information for large-scale network interactions. In this review, we address this challenge by focusing on what is known about monosynaptic prefrontal cortical connections in non-human primates and how this compares to MRI-derived measurements of network organization in humans. First, we outline the anatomic cortical connections and pathways for each prefrontal cortex (PFC) region. We then review the available MRI-based techniques for indirectly measuring structural and functional connectivity, and introduce graph theoretical methods for analysis of hubs, modules, and topologically integrative features of the connectome. Finally, we bring these two approaches together, using specific examples, to demonstrate how monosynaptic connections, demonstrated by tract-tracing studies, can directly inform understanding of the composition of PFC nodes and hubs, and the edges or pathways that connect PFC to cortical and subcortical areas.
Collapse
Affiliation(s)
- Suzanne N. Haber
- grid.412750.50000 0004 1936 9166Department of Pharmacology and Physiology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642 USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478 USA
| | - Hesheng Liu
- grid.259828.c0000 0001 2189 3475Department of Neuroscience, Medical University of South Carolina, Charleston, SC USA ,grid.38142.3c000000041936754XDepartment of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Jakob Seidlitz
- grid.25879.310000 0004 1936 8972Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Ed Bullmore
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Cambridge Biomedical Campus, Cambridge, CB2 0SZ UK
| |
Collapse
|