1
|
Tourigny DS, Altieri B, Secener KA, Sbiera S, Schauer MP, Arampatzi P, Herterich S, Sauer S, Fassnacht M, Ronchi CL. Cellular landscape of adrenocortical carcinoma at single-nuclei resolution. Mol Cell Endocrinol 2024; 590:112272. [PMID: 38759836 DOI: 10.1016/j.mce.2024.112272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Adrenocortical carcinoma (ACC) is a rare yet devastating tumour of the adrenal gland with a molecular pathology that remains incompletely understood. To gain novel insights into the cellular landscape of ACC, we generated single-nuclei RNA sequencing (snRNA-seq) data sets from twelve ACC tumour samples and analysed these alongside snRNA-seq data sets from normal adrenal glands (NAGs). We find the ACC tumour microenvironment to be relatively devoid of immune cells compared to NAG tissues, consistent with known high tumour purity values for ACC as an immunologically "cold" tumour. Our analysis identifies three separate groups of ACC samples that are characterised by different relative compositions of adrenocortical cell types. These include cell populations that are specifically enriched in the most clinically aggressive and hormonally active tumours, displaying hallmarks of reorganised cell mechanobiology and dysregulated steroidogenesis, respectively. We also identified and validated a population of mitotically active adrenocortical cells that strongly overexpress genes POLQ, DIAPH3 and EZH2 to support tumour expansion alongside an LGR4+ progenitor-like or cell-of-origin candidate for adrenocortical carcinogenesis. Trajectory inference suggests the fate adopted by malignant adrenocortical cells upon differentiation is associated with the copy number or allelic balance state of the imprinted DLK1/MEG3 genomic locus, which we verified by assessing bulk tumour DNA methylation status. In conclusion, our results therefore provide new insights into the clinical and cellular heterogeneity of ACC, revealing how genetic perturbations to healthy adrenocortical renewal and zonation provide a molecular basis for disease pathogenesis.
Collapse
Affiliation(s)
- David S Tourigny
- School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, University Hospital of Würzburg, Würzburg, 97080, Germany
| | - Kerim A Secener
- Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany; Institute of Biochemistry, Department of Biology, Chemistry and Pharmacy, Free University Berlin, Berlin, 14195, Germany
| | - Silviu Sbiera
- Division of Endocrinology and Diabetes, University Hospital of Würzburg, Würzburg, 97080, Germany
| | - Marc P Schauer
- Division of Endocrinology and Diabetes, University Hospital of Würzburg, Würzburg, 97080, Germany; Center for Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, 97080, Germany
| | | | - Sabine Herterich
- Central Laboratory, University Hospital of Würzburg, Würzburg, 97080, Germany
| | - Sascha Sauer
- Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, University Hospital of Würzburg, Würzburg, 97080, Germany
| | - Cristina L Ronchi
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, B15 2GW, UK.
| |
Collapse
|
2
|
Borges KS, Little DW, Magalhães TDA, Ribeiro C, Dumontet T, Lapensee C, Basham KJ, Seth A, Azova S, Guagliardo NA, Barrett PQ, Berber M, O'Connell AE, Turcu AF, Lerario AM, Mohan DR, Rainey W, Carlone DL, Hirschhorn JN, Salic A, Breault DT, Hammer GD. Non-canonical Wnt signaling triggered by WNT2B drives adrenal aldosterone production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609423. [PMID: 39229119 PMCID: PMC11370552 DOI: 10.1101/2024.08.23.609423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The steroid hormone aldosterone, produced by the zona glomerulosa (zG) of the adrenal gland, is a master regulator of plasma electrolytes and blood pressure. While aldosterone control by the renin-angiotensin system is well understood, other key regulatory factors have remained elusive. Here, we replicated a prior association between a non-coding variant in WNT2B and an increased risk of primary aldosteronism, a prevalent and debilitating disease caused by excessive aldosterone production. We further show that in both mice and humans, WNT2B is expressed in the mesenchymal capsule surrounding the adrenal cortex, in close proximity to the zG. Global loss of Wnt2b in the mouse results in a dysmorphic and hypocellular zG, with impaired aldosterone production. Similarly, humans harboring WNT2B loss-of-function mutations develop a novel form of Familial Hyperreninemic Hypoaldosteronism, designated here as Type 4. Additionally, we demonstrate that WNT2B signals by activating the non-canonical Wnt/planar cell polarity pathway. Our findings identify WNT2B as a key regulator of zG function and aldosterone production with important clinical implications.
Collapse
Affiliation(s)
- Kleiton S Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Donald W Little
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Claudio Ribeiro
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Typhanie Dumontet
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chris Lapensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Aishwarya Seth
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
| | - Svetlana Azova
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Nick A Guagliardo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0735, USA
| | - Paula Q Barrett
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0735, USA
| | - Mesut Berber
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Amy E O'Connell
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Adina F Turcu
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dipika R Mohan
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - William Rainey
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Joel N Hirschhorn
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
3
|
Iwahashi N, Umakoshi H, Fujita M, Fukumoto T, Ogasawara T, Yokomoto-Umakoshi M, Kaneko H, Nakao H, Kawamura N, Uchida N, Matsuda Y, Sakamoto R, Seki M, Suzuki Y, Nakatani K, Izumi Y, Bamba T, Oda Y, Ogawa Y. Single-cell and spatial transcriptomics analysis of human adrenal aging. Mol Metab 2024; 84:101954. [PMID: 38718896 PMCID: PMC11101872 DOI: 10.1016/j.molmet.2024.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE The human adrenal cortex comprises three functionally and structurally distinct layers that produce layer-specific steroid hormones. With aging, the human adrenal cortex undergoes functional and structural alteration or "adrenal aging", leading to the unbalanced production of steroid hormones. Given the marked species differences in adrenal biology, the underlying mechanisms of human adrenal aging have not been sufficiently studied. This study was designed to elucidate the mechanisms linking the functional and structural alterations of the human adrenal cortex. METHODS We conducted single-cell RNA sequencing and spatial transcriptomics analysis of the aged human adrenal cortex. RESULTS The data of this study suggest that the layer-specific alterations of multiple signaling pathways underlie the abnormal layered structure and layer-specific changes in steroidogenic cells. We also highlighted that macrophages mediate age-related adrenocortical cell inflammation and senescence. CONCLUSIONS This study is the first detailed analysis of the aged human adrenal cortex at single-cell resolution and helps to elucidate the mechanism of human adrenal aging, thereby leading to a better understanding of the pathophysiology of age-related disorders associated with adrenal aging.
Collapse
Affiliation(s)
- Norifusa Iwahashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hironobu Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Masamichi Fujita
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tazuru Fukumoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuki Ogasawara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Maki Yokomoto-Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroki Kaneko
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Nakao
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Namiko Kawamura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naohiro Uchida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yayoi Matsuda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuichi Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kohta Nakatani
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takeshi Bamba
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
Ruiz-Babot G, Eceiza A, Abollo-Jiménez F, Malyukov M, Carlone DL, Borges K, Da Costa AR, Qarin S, Matsumoto T, Morizane R, Skarnes WC, Ludwig B, Chapple PJ, Guasti L, Storr HL, Bornstein SR, Breault DT. Generation of glucocorticoid-producing cells derived from human pluripotent stem cells. CELL REPORTS METHODS 2023; 3:100627. [PMID: 37924815 PMCID: PMC10694497 DOI: 10.1016/j.crmeth.2023.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/07/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023]
Abstract
Adrenal insufficiency is a life-threatening condition resulting from the inability to produce adrenal hormones in a dose- and time-dependent manner. Establishing a cell-based therapy would provide a physiologically responsive approach for the treatment of this condition. We report the generation of large numbers of human-induced steroidogenic cells (hiSCs) from human pluripotent stem cells (hPSCs). Directed differentiation of hPSCs into hiSCs recapitulates the initial stages of human adrenal development. Following expression of steroidogenic factor 1, activation of protein kinase A signaling drives a steroidogenic gene expression profile most comparable to human fetal adrenal cells, and leads to dynamic secretion of steroid hormones, in vitro. Moreover, expression of the adrenocorticotrophic hormone (ACTH) receptor/co-receptor (MC2R/MRAP) results in dose-dependent ACTH responsiveness. This protocol recapitulates adrenal insufficiency resulting from loss-of-function mutations in AAAS, which cause the enigmatic triple A syndrome. Our differentiation protocol generates sufficient numbers of hiSCs for cell-based therapy and offers a platform to study disorders causing adrenal insufficiency.
Collapse
Affiliation(s)
- Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Medicine, University Hospital Carl Gustav Carus, Dresden, Germany.
| | - Ariane Eceiza
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | | | - Maria Malyukov
- Department of Medicine, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Kleiton Borges
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Alexandra Rodrigues Da Costa
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shamma Qarin
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge, UK
| | - Takuya Matsumoto
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA; Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Ryuji Morizane
- Harvard Stem Cell Institute, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA; Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
| | - William C Skarnes
- Cellular Engineering, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Barbara Ludwig
- Department of Medicine, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Paul J Chapple
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stefan R Bornstein
- Department of Medicine, University Hospital Carl Gustav Carus, Dresden, Germany; Division of Endocrinology, Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
5
|
Zhu Y, Zhang X, Hu C. Structure of rosettes in the zona glomerulosa of human adrenal cortex. J Anat 2023; 243:684-689. [PMID: 37294692 PMCID: PMC10485581 DOI: 10.1111/joa.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/11/2023] Open
Abstract
Recent studies in mouse models have demonstrated that the multi-cellular rosette structure of the adrenal zona glomerulosa (ZG) is crucial for aldosterone production by ZG cells. However, the rosette structure of human ZG has remained unclear. The human adrenal cortex undergoes remodeling during aging, and one surprising change is the occurrence of aldosterone-producing cell clusters (APCCs). It is intriguing to know whether APCCs form a rosette structure like normal ZG cells. In this study, we investigated the rosette structure of ZG in human adrenal with and without APCCs, as well as the structure of APCCs. We found that glomeruli in human adrenal are enclosed by a laminin subunit β1 (lamb1)-rich basement membrane. In slices without APCCs, each glomerulus contains an average of 11 ± 1 cells. In slices with APCCs, each glomerulus in normal ZG contains around 10 ± 1 cells, while each glomerulus in APCCs has significantly more cells (average of 22 ± 1). Similar to what was observed in mice, cells in normal ZG or in APCCs of human adrenal formed rosettes through β-catenin- and F-actin-rich adherens junctions. The cells in APCCs form larger rosettes through enhanced adherens junctions. This study provides, for the first time, a detailed characterization of the rosette structure of human adrenal ZG and shows that APCCs are not an unstructured cluster of ZG cells. This suggests that the multi-cellular rosette structure may also be necessary for aldosterone production in APCCs.
Collapse
Affiliation(s)
- Yumin Zhu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Xuefeng Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- International Human Phenome Institute (Shanghai), Shanghai, China
| | - Changlong Hu
- School of Life Sciences, Fudan University, Shanghai, China
- International Human Phenome Institute (Shanghai), Shanghai, China
| |
Collapse
|
6
|
Berber M, Leng S, Wengi A, Winter DV, Odermatt A, Beuschlein F, Loffing J, Breault DT, Penton D. Calcineurin regulates aldosterone production via dephosphorylation of NFATC4. JCI Insight 2023; 8:e157027. [PMID: 37310791 PMCID: PMC10443813 DOI: 10.1172/jci.insight.157027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
The mineralocorticoid aldosterone, secreted by the adrenal zona glomerulosa (ZG), is critical for life, maintaining ion homeostasis and blood pressure. Therapeutic inhibition of protein phosphatase 3 (calcineurin, Cn) results in inappropriately low plasma aldosterone levels despite concomitant hyperkalemia and hyperreninemia. We tested the hypothesis that Cn participates in the signal transduction pathway regulating aldosterone synthesis. Inhibition of Cn with tacrolimus abolished the potassium-stimulated (K+-stimulated) expression of aldosterone synthase, encoded by CYP11B2, in the NCI-H295R human adrenocortical cell line as well as ex vivo in mouse and human adrenal tissue. ZG-specific deletion of the regulatory Cn subunit CnB1 diminished Cyp11b2 expression in vivo and disrupted K+-mediated aldosterone synthesis. Phosphoproteomics analysis identified nuclear factor of activated T cells, cytoplasmic 4 (NFATC4), as a target for Cn-mediated dephosphorylation. Deletion of NFATC4 impaired K+-dependent stimulation of CYP11B2 expression and aldosterone production while expression of a constitutively active form of NFATC4 increased expression of CYP11B2 in NCI-H295R cells. Chromatin immunoprecipitation revealed NFATC4 directly regulated CYP11B2 expression. Thus, Cn controls aldosterone production via the Cn/NFATC4 pathway. Inhibition of Cn/NFATC4 signaling may explain low plasma aldosterone levels and hyperkalemia in patients treated with tacrolimus, and the Cn/NFATC4 pathway may provide novel molecular targets to treat primary aldosteronism.
Collapse
Affiliation(s)
- Mesut Berber
- Institute of Anatomy, University of Zurich, Switzerland
- Swiss National Centre for Competence in Research “Kidney Control of Homeostasis” (NCCR Kidney.CH), Zurich, Switzerland
| | - Sining Leng
- Department of Pediatrics, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | | | - Denise V. Winter
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Felix Beuschlein
- Swiss National Centre for Competence in Research “Kidney Control of Homeostasis” (NCCR Kidney.CH), Zurich, Switzerland
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Johannes Loffing
- Institute of Anatomy, University of Zurich, Switzerland
- Swiss National Centre for Competence in Research “Kidney Control of Homeostasis” (NCCR Kidney.CH), Zurich, Switzerland
| | - David T. Breault
- Department of Pediatrics, Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - David Penton
- Institute of Anatomy, University of Zurich, Switzerland
- Swiss National Centre for Competence in Research “Kidney Control of Homeostasis” (NCCR Kidney.CH), Zurich, Switzerland
| |
Collapse
|
7
|
Mohan DR, Borges KS, Finco I, LaPensee CR, Rege J, Solon AL, Little DW, Else T, Almeida MQ, Dang D, Haggerty-Skeans J, Apfelbaum AA, Vinco M, Wakamatsu A, Mariani BMP, Amorim LC, Latronico AC, Mendonca BB, Zerbini MCN, Lawlor ER, Ohi R, Auchus RJ, Rainey WE, Marie SKN, Giordano TJ, Venneti S, Fragoso MCBV, Breault DT, Lerario AM, Hammer GD. β-Catenin-Driven Differentiation Is a Tissue-Specific Epigenetic Vulnerability in Adrenal Cancer. Cancer Res 2023; 83:2123-2141. [PMID: 37129912 PMCID: PMC10330305 DOI: 10.1158/0008-5472.can-22-2712] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/19/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Adrenocortical carcinoma (ACC) is a rare cancer in which tissue-specific differentiation is paradoxically associated with dismal outcomes. The differentiated ACC subtype CIMP-high is prevalent, incurable, and routinely fatal. CIMP-high ACC possess abnormal DNA methylation and frequent β-catenin-activating mutations. Here, we demonstrated that ACC differentiation is maintained by a balance between nuclear, tissue-specific β-catenin-containing complexes, and the epigenome. On chromatin, β-catenin bound master adrenal transcription factor SF1 and hijacked the adrenocortical super-enhancer landscape to maintain differentiation in CIMP-high ACC; off chromatin, β-catenin bound histone methyltransferase EZH2. SF1/β-catenin and EZH2/β-catenin complexes present in normal adrenals persisted through all phases of ACC evolution. Pharmacologic EZH2 inhibition in CIMP-high ACC expelled SF1/β-catenin from chromatin and favored EZH2/β-catenin assembly, erasing differentiation and restraining cancer growth in vitro and in vivo. These studies illustrate how tissue-specific programs shape oncogene selection, surreptitiously encoding targetable therapeutic vulnerabilities. SIGNIFICANCE Oncogenic β-catenin can use tissue-specific partners to regulate cellular differentiation programs that can be reversed by epigenetic therapies, identifying epigenetic control of differentiation as a viable target for β-catenin-driven cancers.
Collapse
Affiliation(s)
- Dipika R. Mohan
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA
| | - Kleiton S. Borges
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Isabella Finco
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Christopher R. LaPensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - April L. Solon
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Donald W. Little
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Tobias Else
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Madson Q. Almeida
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Derek Dang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Laboratory of Brain Tumor Metabolism and Epigenetics, University of Michigan, Ann Arbor, MI, USA
| | - James Haggerty-Skeans
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Laboratory of Brain Tumor Metabolism and Epigenetics, University of Michigan, Ann Arbor, MI, USA
| | - April A. Apfelbaum
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA
- Seattle Children’s Research Institute, University of Washington, Seattle, WA, USA
| | - Michelle Vinco
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alda Wakamatsu
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Beatriz M. P. Mariani
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Larissa Costa Amorim
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Ana Claudia Latronico
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Berenice B. Mendonca
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | | | - Elizabeth R. Lawlor
- Seattle Children’s Research Institute, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Ryoma Ohi
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Richard J. Auchus
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Lieutenant Colonel Charles S. Kettles Veterans Affairs Medical Center, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Suely K. N. Marie
- Laboratório de Biologia Molecular e Celular/LIM15, Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Thomas J. Giordano
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center Endocrine Oncology Program, University of Michigan, Ann Arbor, MI, USA
| | - Sriram Venneti
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Laboratory of Brain Tumor Metabolism and Epigenetics, University of Michigan, Ann Arbor, MI, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Maria Candida Barisson Villares Fragoso
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - David T. Breault
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Co-senior authors
| | - Gary D. Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center Endocrine Oncology Program, University of Michigan, Ann Arbor, MI, USA
- Co-senior authors
| |
Collapse
|
8
|
Lyraki R, Grabek A, Tison A, Weerasinghe Arachchige LC, Peitzsch M, Bechmann N, Youssef SA, de Bruin A, Bakker ERM, Claessens F, Chaboissier MC, Schedl A. Crosstalk between androgen receptor and WNT/β-catenin signaling causes sex-specific adrenocortical hyperplasia in mice. Dis Model Mech 2023; 16:dmm050053. [PMID: 37102205 PMCID: PMC10184674 DOI: 10.1242/dmm.050053] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/29/2023] [Indexed: 04/28/2023] Open
Abstract
Female bias is highly prevalent in conditions such as adrenal cortex hyperplasia and neoplasia, but the reasons behind this phenomenon are poorly understood. In this study, we show that overexpression of the secreted WNT agonist R-spondin 1 (RSPO1) leads to ectopic activation of WNT/β-catenin signaling and causes sex-specific adrenocortical hyperplasia in mice. Although female adrenals show ectopic proliferation, male adrenals display excessive immune system activation and cortical thinning. Using a combination of genetic manipulations and hormonal treatment, we show that gonadal androgens suppress ectopic proliferation in the adrenal cortex and determine the selective regulation of the WNT-related genes Axin2 and Wnt4. Notably, genetic removal of androgen receptor (AR) from adrenocortical cells restores the mitogenic effect of WNT/β-catenin signaling. This is the first demonstration that AR activity in the adrenal cortex determines susceptibility to canonical WNT signaling-induced hyperplasia.
Collapse
Affiliation(s)
- Rodanthi Lyraki
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108 Nice, France
| | - Anaëlle Grabek
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108 Nice, France
| | - Amélie Tison
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108 Nice, France
| | | | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Sameh A. Youssef
- Dutch Molecular Pathology Center, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
- Janssen Research and Development, 2340 Beerse, Belgium
| | - Alain de Bruin
- Dutch Molecular Pathology Center, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, the Netherlands
| | - Elvira R. M. Bakker
- Department of Pathology, University Medical Center Utrecht, 3508 AB, Utrecht, the Netherlands
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | | | - Andreas Schedl
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108 Nice, France
| |
Collapse
|
9
|
Developmental Exposure to DDT Disrupts Transcriptional Regulation of Postnatal Growth and Cell Renewal of Adrenal Medulla. Int J Mol Sci 2023; 24:ijms24032774. [PMID: 36769098 PMCID: PMC9917778 DOI: 10.3390/ijms24032774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Dichlorodiphenyltrichloroethane (DDT) is the most widespread persistent pollutant with endocrine-disrupting properties. DDT has been shown to disrupt secretory and morphogenetic processes in the adrenal cortex. The present investigation aimed to evaluate transcriptional regulation of postnatal growth of the adrenal medulla and formation of the pools necessary for self-renewal of medullary cells in rats that developed under low-dose exposure to DDT. The study was performed using male Wistar rats exposed to low doses of o,p'-DDT during prenatal and postnatal development. Light microscopy and histomorphometry revealed diminished medulla growth in the DDT-exposed rats. Evaluation of Ki-67 expression in chromaffin cells found later activation of proliferation indicative of retarded growth of the adrenal medulla. All DDT-exposed rats exhibited a gradual decrease in tyrosine hydroxylase production by adrenal chromaffin cells. Immunohistochemical evaluation of nuclear β-catenin, transcription factor Oct4, and ligand of sonic hedgehog revealed increased expression of all factors after termination of growth in the control rats. The DDT-exposed rats demonstrated diminished increases in Oct4 and sonic hedgehog expression and lower levels of canonical Wnt signaling activation. Thus, developmental exposure to the endocrine disruptor o,p'-DDT alters the transcriptional regulation of morphogenetic processes in the adrenal medulla and evokes a slowdown in its growth and in the formation of a reserve pool of cells capable of dedifferentiation and proliferation that maintain cellular homeostasis in adult adrenals.
Collapse
|
10
|
Ectopic localization of CYP11B1 and CYP11B2-expressing cells in the normal human adrenal gland. PLoS One 2022; 17:e0279682. [PMID: 36584094 PMCID: PMC9803228 DOI: 10.1371/journal.pone.0279682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
The sharp line of demarcation between zona glomerulosa (ZG) and zona fasciculata (ZF) has been recently challenged suggesting that this interface is no longer a compartment boundary. We have used immunohistochemical analyses to study the steroid 11β-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) pattern of expression and investigate the remodeling of the adrenal cortex in relation to aging. We analyzed human adrenal glands prepared from 47 kidney donors. No aldosterone-producing micronodules (APMs) were detectable in the younger donors aged between 22-39 but the functional ZG depicted by positive CYP11B2 staining demonstrated a lack of continuity. In contrast, the development of APMs was found in samples from individuals aged 40-70. Importantly, the progressive replacement of CYP11B2-expressing cells in the histological ZG by CYP11B1-expressing cells highlights the remodeling capacity of the adrenal cortex. In 70% of our samples, immunofluorescence studies revealed the presence of isolated or clusters of CYP11B2 positive cells in the ZF and zona reticularis. Our data emphasize that mineralocorticoid- and glucocorticoid-producing cells are distributed throughout the cortex and the medulla making the determination of the functional status of a cell or group of cells a unique tool in deciphering the changes occurring in adrenal gland particularly during aging. They also suggest that, in humans, steroidogenic cell phenotype defined by function is a stable feature and thus, the functional zonation might be not solely maintained by cell lineage conversion/migration.
Collapse
|
11
|
Dufour D, Dumontet T, Sahut-Barnola I, Carusi A, Onzon M, Pussard E, Wilmouth JJ, Olabe J, Lucas C, Levasseur A, Damon-Soubeyrand C, Pointud JC, Roucher-Boulez F, Tauveron I, Bossis G, Yeh ET, Breault DT, Val P, Lefrançois-Martinez AM, Martinez A. Loss of SUMO-specific protease 2 causes isolated glucocorticoid deficiency by blocking adrenal cortex zonal transdifferentiation in mice. Nat Commun 2022; 13:7858. [PMID: 36543805 PMCID: PMC9772323 DOI: 10.1038/s41467-022-35526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
SUMOylation is a dynamic posttranslational modification, that provides fine-tuning of protein function involved in the cellular response to stress, differentiation, and tissue development. In the adrenal cortex, an emblematic endocrine organ that mediates adaptation to physiological demands, the SUMOylation gradient is inversely correlated with the gradient of cellular differentiation raising important questions about its role in functional zonation and the response to stress. Considering that SUMO-specific protease 2 (SENP2), a deSUMOylating enzyme, is upregulated by Adrenocorticotropic Hormone (ACTH)/cAMP-dependent Protein Kinase (PKA) signalling within the zona fasciculata, we generated mice with adrenal-specific Senp2 loss to address these questions. Disruption of SENP2 activity in steroidogenic cells leads to specific hypoplasia of the zona fasciculata, a blunted reponse to ACTH and isolated glucocorticoid deficiency. Mechanistically, overSUMOylation resulting from SENP2 loss shifts the balance between ACTH/PKA and WNT/β-catenin signalling leading to repression of PKA activity and ectopic activation of β-catenin. At the cellular level, this blocks transdifferentiation of β-catenin-positive zona glomerulosa cells into fasciculata cells and sensitises them to premature apoptosis. Our findings indicate that the SUMO pathway is critical for adrenal homeostasis and stress responsiveness.
Collapse
Affiliation(s)
- Damien Dufour
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Typhanie Dumontet
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, University of Michigan, Ann Arbor, MI, USA
| | - Isabelle Sahut-Barnola
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Aude Carusi
- IGMM, Université de Montpellier, CNRS, Montpellier, France
| | - Méline Onzon
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Eric Pussard
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris (APHP), Physiologie et Physiopathologie Endocriniennes, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - James Jr Wilmouth
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Julie Olabe
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Cécily Lucas
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Endocrinologie Moléculaire et Maladies Rares, Centre Hospitalier Universitaire, Université Claude Bernard Lyon 1, Bron, France
| | - Adrien Levasseur
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Christelle Damon-Soubeyrand
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Jean-Christophe Pointud
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Florence Roucher-Boulez
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Endocrinologie Moléculaire et Maladies Rares, Centre Hospitalier Universitaire, Université Claude Bernard Lyon 1, Bron, France
| | - Igor Tauveron
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Service d'Endocrinologie, Centre Hospitalier Universitaire Gabriel Montpied, Université Clermont Auvergne, Clermont-Ferrand, France
| | | | - Edward T Yeh
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Pierre Val
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Anne-Marie Lefrançois-Martinez
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Antoine Martinez
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France.
| |
Collapse
|
12
|
Lerario AM, Mohan DR, Hammer GD. Update on Biology and Genomics of Adrenocortical Carcinomas: Rationale for Emerging Therapies. Endocr Rev 2022; 43:1051-1073. [PMID: 35551369 PMCID: PMC9695111 DOI: 10.1210/endrev/bnac012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 11/19/2022]
Abstract
The adrenal glands are paired endocrine organs that produce steroid hormones and catecholamines required for life. Adrenocortical carcinoma (ACC) is a rare and often fatal cancer of the peripheral domain of the gland, the adrenal cortex. Recent research in adrenal development, homeostasis, and disease have refined our understanding of the cellular and molecular programs controlling cortical growth and renewal, uncovering crucial clues into how physiologic programs are hijacked in early and late stages of malignant neoplasia. Alongside these studies, genome-wide approaches to examine adrenocortical tumors have transformed our understanding of ACC biology, and revealed that ACC is composed of distinct molecular subtypes associated with favorable, intermediate, and dismal clinical outcomes. The homogeneous transcriptional and epigenetic programs prevailing in each ACC subtype suggest likely susceptibility to any of a plethora of existing and novel targeted agents, with the caveat that therapeutic response may ultimately be limited by cancer cell plasticity. Despite enormous biomedical research advances in the last decade, the only potentially curative therapy for ACC to date is primary surgical resection, and up to 75% of patients will develop metastatic disease refractory to standard-of-care adjuvant mitotane and cytotoxic chemotherapy. A comprehensive, integrated, and current bench-to-bedside understanding of our field's investigations into adrenocortical physiology and neoplasia is crucial to developing novel clinical tools and approaches to equip the one-in-a-million patient fighting this devastating disease.
Collapse
Affiliation(s)
- Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Dipika R Mohan
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| |
Collapse
|
13
|
Transgenic Mouse Models to Study the Development and Maintenance of the Adrenal Cortex. Int J Mol Sci 2022; 23:ijms232214388. [PMID: 36430866 PMCID: PMC9693478 DOI: 10.3390/ijms232214388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The cortex of the adrenal gland is organized into concentric zones that produce distinct steroid hormones essential for body homeostasis in mammals. Mechanisms leading to the development, zonation and maintenance of the adrenal cortex are complex and have been studied since the 1800s. However, the advent of genetic manipulation and transgenic mouse models over the past 30 years has revolutionized our understanding of these mechanisms. This review lists and details the distinct Cre recombinase mouse strains available to study the adrenal cortex, and the remarkable progress total and conditional knockout mouse models have enabled us to make in our understanding of the molecular mechanisms regulating the development and maintenance of the adrenal cortex.
Collapse
|
14
|
Toews JNC, Philippe TJ, Hill LA, Dordevic M, Miguelez-Crespo A, Homer NZM, Nixon M, Hammond GL, Viau V. Corticosteroid-binding Globulin (SERPINA6) Establishes Postpubertal Sex Differences in Rat Adrenal Development. Endocrinology 2022; 163:6702154. [PMID: 36112420 DOI: 10.1210/endocr/bqac152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 12/24/2022]
Abstract
Encoded by SerpinA6, plasma corticosteroid-binding globulin (CBG) transports glucocorticoids and regulates their access to cells. We determined how CBG influences plasma corticosterone and adrenal development in rats during the pubertal to adult transition using CRISPR/cas9 to disrupt SerpinA6 gene expression. In the absence of CBG, total plasma corticosterone levels were ∼80% lower in adult rats of both sexes, with a greater absolute reduction in females than in males. Notably, free corticosterone and adrenocorticotropic hormone were comparable between all groups. Between 30 and 90 days of age, wild-type female rats showed increases in adrenal weight and the size of the corticosterone-producing region, the zona fasciculata (zf), in tandem with increases in plasma CBG and corticosterone concentrations, whereas no such changes were observed in males. This sex difference was lost in rats without CBG, such that adrenal growth and zf expansion were similar between sexes. The sex-specific effects of CBG on adrenal morphology were accompanied by remarkable changes in gene expression: ∼40% of the adrenal transcriptome was altered in females lacking CBG, whereas almost no effect was seen in males. Over half of the adrenal genes that normally exhibit sexually dimorphic expression after puberty were similarly expressed in males and females without CBG, including those responsible for cholesterol biosynthesis and mobilization, steroidogenesis, and growth. Rat adrenal SerpinA6 transcript levels were very low or undetectable. Thus, sex differences in adrenal growth, morphology and gene expression profiles that emerge during puberty in rats are dependent on concomitant increases in plasma CBG produced by the liver.
Collapse
Affiliation(s)
- Julia N C Toews
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tristan J Philippe
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lesley A Hill
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Matthew Dordevic
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Allende Miguelez-Crespo
- British Heart Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Natalie Z M Homer
- British Heart Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, Edinburgh, UK
| | - Mark Nixon
- British Heart Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Geoffrey L Hammond
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Victor Viau
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
15
|
Vetrivel S, Zhang R, Engel M, Oßwald A, Watts D, Chen A, Wielockx B, Sbiera S, Reincke M, Riester A. Characterization of Adrenal miRNA-Based Dysregulations in Cushing's Syndrome. Int J Mol Sci 2022; 23:ijms23147676. [PMID: 35887024 PMCID: PMC9320303 DOI: 10.3390/ijms23147676] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 02/05/2023] Open
Abstract
MiRNAs are important epigenetic players with tissue- and disease-specific effects. In this study, our aim was to investigate the putative differential expression of miRNAs in adrenal tissues from different forms of Cushing’s syndrome (CS). For this, miRNA-based next-generation sequencing was performed in adrenal tissues taken from patients with ACTH-independent cortisol-producing adrenocortical adenomas (CPA), from patients with ACTH-dependent pituitary Cushing’s disease (CD) after bilateral adrenalectomy, and from control subjects. A confirmatory QPCR was also performed in adrenals from patients with other CS subtypes, such as primary bilateral macronodular hyperplasia and ectopic CS. Sequencing revealed significant differences in the miRNA profiles of CD and CPA. QPCR revealed the upregulated expression of miR-1247-5p in CPA and PBMAH (log2 fold change > 2.5, p < 0.05). MiR-379-5p was found to be upregulated in PBMAH and CD (log2 fold change > 1.8, p < 0.05). Analyses of miR-1247-5p and miR-379-5p expression in the adrenals of mice which had been exposed to short-term ACTH stimulation showed no influence on the adrenal miRNA expression profiles. For miRNA-specific target prediction, RNA-seq data from the adrenals of CPA, PBMAH, and control samples were analyzed with different bioinformatic platforms. The analyses revealed that both miR-1247-5p and miR-379-5p target specific genes in the WNT signaling pathway. In conclusion, this study identified distinct adrenal miRNAs as being associated with CS subtypes.
Collapse
Affiliation(s)
- Sharmilee Vetrivel
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.V.); (R.Z.); (A.O.); (M.R.)
| | - Ru Zhang
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.V.); (R.Z.); (A.O.); (M.R.)
| | - Mareen Engel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; (M.E.); (A.C.)
| | - Andrea Oßwald
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.V.); (R.Z.); (A.O.); (M.R.)
| | - Deepika Watts
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (D.W.); (B.W.)
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; (M.E.); (A.C.)
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (D.W.); (B.W.)
| | - Silviu Sbiera
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany;
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.V.); (R.Z.); (A.O.); (M.R.)
| | - Anna Riester
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-Maximilians-University, 80336 Munich, Germany; (S.V.); (R.Z.); (A.O.); (M.R.)
- Correspondence: ; Tel.: +49-89-440052111
| |
Collapse
|
16
|
Abstract
Primary aldosteronism is considered the commonest cause of secondary hypertension. In affected individuals, aldosterone is produced in an at least partially autonomous fashion in adrenal lesions (adenomas, [micro]nodules or diffuse hyperplasia). Over the past decade, next-generation sequencing studies have led to the insight that primary aldosteronism is largely a genetic disorder. Sporadic cases are due to somatic mutations, mostly in ion channels and pumps, and rare cases of familial hyperaldosteronism are caused by germline mutations in an overlapping set of genes. More than 90% of aldosterone-producing adenomas carry somatic mutations in K+ channel Kir3.4 (KCNJ5), Ca2+ channel CaV1.3 (CACNA1D), alpha-1 subunit of the Na+/K+ ATPase (ATP1A1), plasma membrane Ca2+ transporting ATPase 3 (ATP2B3), Ca2+ channel CaV3.2 (CACNA1H), Cl− channel ClC-2 (CLCN2), β-catenin (CTNNB1), and/or G-protein subunits alpha q/11 (GNAQ/11). Mutations in some of these genes have also been identified in aldosterone-producing (micro)nodules, suggesting a disease continuum from a single cell, acquiring a somatic mutation, via a nodule to adenoma formation, and from a healthy state to subclinical to overt primary aldosteronism. Individual glands can have multiple such lesions, and they can occur on both glands in bilateral disease. Familial hyperaldosteronism, typically with early onset, is caused by germline mutations in steroid 11-beta hydroxylase/ aldosterone synthase (CYP11B1/2), CLCN2, KCNJ5, CACNA1H, and CACNA1D.
Collapse
Affiliation(s)
- Ute I Scholl
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Center of Functional Genomics, Germany
| |
Collapse
|
17
|
De Sousa K, Abdellatif AB, Giscos-Douriez I, Meatchi T, Amar L, Fernandes-Rosa FL, Boulkroun S, Zennaro MC. Colocalization of Wnt/β-Catenin and ACTH Signaling Pathways and Paracrine Regulation in Aldosterone-producing Adenoma. J Clin Endocrinol Metab 2022; 107:419-434. [PMID: 34570225 DOI: 10.1210/clinem/dgab707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Aldosterone-producing adenomas (APAs) are a common cause of primary aldosteronism (PA). Despite the discovery of somatic mutations in APA and the characterization of multiple factors regulating adrenal differentiation and function, the sequence of events leading to APA formation remains to be determined. OBJECTIVE We investigated the role of Wnt/β-catenin and adrenocorticotropin signaling, as well as elements of paracrine regulation of aldosterone biosynthesis in adrenals with APA and their relationship to intratumoral heterogeneity and mutational status. METHODS We analyzed the expression of aldosterone-synthase (CYP11B2), CYP17A1, β-catenin, melanocortin type 2 receptor (MC2R), phosphorlyated cAMP response element-binding protein (pCREB), tryptase, S100, CD34 by multiplex immunofluorescence, and immunohistochemistry-guided reverse transcription-quantitative polymerase chain reaction. Eleven adrenals with APA and 1 with micronodular hyperplasia from patients with PA were analyzed. Main outcome measures included localization of CYP11B2, CYP17A1, β-catenin, MC2R, pCREB, tryptase, S100, CD34 in APA and aldosterone-producing cell clusters (APCCs). RESULTS Immunofluorescence revealed abundant mast cells and a dense vascular network in APA, independent of mutational status. Within APA, mast cells were localized in areas expressing CYP11B2 and were rarely colocalized with nerve fibers, suggesting that their degranulation is not controlled by innervation. In these same areas, ß-catenin was activated, suggesting a zona glomerulosa cell identity. In heterogeneous APA with KCNJ5 mutations, MC2R and vascular endothelial growth factor A expression was higher in areas expressing CYP11B2. A similar pattern was observed in APCC, with high expression of CYP11B2, activated β-catenin, and numerous mast cells. CONCLUSION Our results suggest that aldosterone-producing structures in adrenals with APA share common molecular characteristics and cellular environment, despite different mutation status, suggesting common developmental mechanisms.
Collapse
Affiliation(s)
| | | | | | - Tchao Meatchi
- Université de Paris, PARCC, Inserm, 75015 Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d'Anatomie Pathologique, 75015 Paris, France
| | - Laurence Amar
- Université de Paris, PARCC, Inserm, 75015 Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité Hypertension artérielle, 75015 Paris, France
| | | | | | - Maria-Christina Zennaro
- Université de Paris, PARCC, Inserm, 75015 Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, 75015 Paris, France
| |
Collapse
|
18
|
Williams TA, Reincke M. Pathophysiology and histopathology of primary aldosteronism. Trends Endocrinol Metab 2022; 33:36-49. [PMID: 34743804 DOI: 10.1016/j.tem.2021.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 10/19/2022]
Abstract
Primary aldosteronism (PA) can be sporadic or familial and classified into unilateral and bilateral forms. Sporadic PA predominates with excessive aldosterone production usually arising from a unilateral aldosterone-producing adenoma (APA) or bilateral adrenocortical hyperplasia. Familial PA is rare and caused by germline variants, that partly correspond to somatic alterations in APAs. Classification into unilateral and bilateral PA determines the treatment approach but does not accurately mirror disease pathology. Some evidence indicates a disease continuum ranging from balanced aldosterone production from each adrenal to extreme asymmetrical bilateral aldosterone production. Nonetheless, surgical removal of the overactive adrenal in unilateral PA achieves highly successful outcomes and almost all patients are biochemically cured of their aldosteronism.
Collapse
Affiliation(s)
- Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, München, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, München, Germany
| |
Collapse
|
19
|
Abou Nader N, Boyer A. Adrenal Cortex Development and Maintenance: Knowledge Acquired From Mouse Models. Endocrinology 2021; 162:6362524. [PMID: 34473283 DOI: 10.1210/endocr/bqab187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 11/19/2022]
Abstract
The adrenal cortex is an endocrine organ organized into concentric zones that are specialized to produce specific steroid hormones essential for life. The development and maintenance of the adrenal cortex are complex, as a fetal adrenal is first formed from a common primordium with the gonads, followed by its separation in a distinct primordium, the invasion of the adrenal primordium by neural crest-derived cells to form the medulla, and finally its encapsulation. The fetal cortex is then replaced by a definitive cortex, which will establish zonation and be maintained throughout life by regeneration relying on the proliferation, centripetal migration, and differentiation of several stem/progenitor cell populations whose activities are sex-specific. Here, we highlight the advances made, using transgenic mouse models, to delineate the molecular mechanisms regulating these processes.
Collapse
Affiliation(s)
- Nour Abou Nader
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Alexandre Boyer
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| |
Collapse
|
20
|
Reincke M, Bancos I, Mulatero P, Scholl UI, Stowasser M, Williams TA. Diagnosis and treatment of primary aldosteronism. Lancet Diabetes Endocrinol 2021; 9:876-892. [PMID: 34798068 DOI: 10.1016/s2213-8587(21)00210-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Primary aldosteronism is a common cause of secondary hypertension associated with excess cardiovascular morbidities. Primary aldosteronism is underdiagnosed because it does not have a specific, easily identifiable feature and clinicians can be poorly aware of the disease. The diagnostic investigation is a multistep process of screening, confirmatory testing, and subtype differentiation of unilateral from bilateral forms for therapeutic management. Adrenal venous sampling is key for reliable subtype identification, but can be bypassed in patients with specific characteristics. For unilateral disease, surgery offers the possibility of cure, with total laparoscopic unilateral adrenalectomy being the treatment of choice. Bilateral forms are treated mainly with mineralocorticoid receptor antagonists. The goals of treatment are to normalise both blood pressure and excessive aldosterone production, and the primary aims are to reduce associated comorbidities, improve quality of life, and reduce mortality. Prompt diagnosis of primary aldosteronism and the use of targeted treatment strategies mitigate aldosterone-specific target organ damage and with appropriate patient management outcomes can be excellent. Advances in molecular histopathology challenge the traditional concept of primary aldosteronism as a binary disease, caused by either a unilateral aldosterone-producing adenoma or bilateral adrenal hyperplasia. Somatic mutations drive autonomous aldosterone production in most adenomas. Many of these same mutations have been identified in nodular lesions adjacent to an aldosterone-producing adenoma and in patients with bilateral disease. In addition, germline mutations cause rare familial forms of aldosteronism (familial hyperaldosteronism types 1-4). Genetic testing for inherited forms in suspected cases of familial hyperaldosteronism avoids the burdensome diagnostic investigation in positive patients. In this Review, we discuss advances and future management approaches in the diagnosis of primary aldosteronism.
Collapse
Affiliation(s)
- Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| | - Irina Bancos
- Division of Endocrinology, Metabolism and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Ute I Scholl
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Functional Genomics, Berlin, Germany
| | - Michael Stowasser
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, QLD, Australia
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany; Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
21
|
Lopez AG, Duparc C, Wils J, Naccache A, Castanet M, Lefebvre H, Louiset E. Steroidogenic cell microenvironment and adrenal function in physiological and pathophysiological conditions. Mol Cell Endocrinol 2021; 535:111377. [PMID: 34216641 DOI: 10.1016/j.mce.2021.111377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
The human adrenal cortex is a complex organ which is composed of various cell types including not only steroidogenic cells but also mesenchymal cells, immunocompetent cells and neurons. Intermingling of these diverse cell populations favors cell-to-cell communication processes involving local release of numerous bioactive signals such as biogenic amines, cytokines and neuropeptides. The resulting paracrine interactions play an important role in the regulation of adrenocortical cell functions both in physiological and pathophysiological conditions. Especially, recent evidence indicates that adrenocortical cell microenvironment is involved in the pathogenesis of adrenal disorders associated with corticosteroid excess. The paracrine factors involved in these intraadrenal regulatory mechanisms may thus represent valuable targets for future pharmacological treatments of adrenal diseases.
Collapse
Affiliation(s)
- Antoine-Guy Lopez
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France; Rouen University Hospital, Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen, France
| | - Céline Duparc
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France
| | - Julien Wils
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France; Rouen University Hospital, Department of Pharmacology, Rouen, France
| | - Alexandre Naccache
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France; Rouen University Hospital, Department of Pediatrics, Rouen, France
| | - Mireille Castanet
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France; Rouen University Hospital, Department of Pediatrics, Rouen, France
| | - Hervé Lefebvre
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France; Rouen University Hospital, Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen, France.
| | - Estelle Louiset
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France
| |
Collapse
|
22
|
Zhou J, Azizan EAB, Cabrera CP, Fernandes-Rosa FL, Boulkroun S, Argentesi G, Cottrell E, Amar L, Wu X, O'Toole S, Goodchild E, Marker A, Senanayake R, Garg S, Åkerström T, Backman S, Jordan S, Polubothu S, Berney DM, Gluck A, Lines KE, Thakker RV, Tuthill A, Joyce C, Kaski JP, Karet Frankl FE, Metherell LA, Teo AED, Gurnell M, Parvanta L, Drake WM, Wozniak E, Klinzing D, Kuan JL, Tiang Z, Gomez Sanchez CE, Hellman P, Foo RSY, Mein CA, Kinsler VA, Björklund P, Storr HL, Zennaro MC, Brown MJ. Somatic mutations of GNA11 and GNAQ in CTNNB1-mutant aldosterone-producing adenomas presenting in puberty, pregnancy or menopause. Nat Genet 2021; 53:1360-1372. [PMID: 34385710 PMCID: PMC9082578 DOI: 10.1038/s41588-021-00906-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 06/29/2021] [Indexed: 01/05/2023]
Abstract
Most aldosterone-producing adenomas (APAs) have gain-of-function somatic mutations of ion channels or transporters. However, their frequency in aldosterone-producing cell clusters of normal adrenal gland suggests a requirement for codriver mutations in APAs. Here we identified gain-of-function mutations in both CTNNB1 and GNA11 by whole-exome sequencing of 3/41 APAs. Further sequencing of known CTNNB1-mutant APAs led to a total of 16 of 27 (59%) with a somatic p.Gln209His, p.Gln209Pro or p.Gln209Leu mutation of GNA11 or GNAQ. Solitary GNA11 mutations were found in hyperplastic zona glomerulosa adjacent to double-mutant APAs. Nine of ten patients in our UK/Irish cohort presented in puberty, pregnancy or menopause. Among multiple transcripts upregulated more than tenfold in double-mutant APAs was LHCGR, the receptor for luteinizing or pregnancy hormone (human chorionic gonadotropin). Transfections of adrenocortical cells demonstrated additive effects of GNA11 and CTNNB1 mutations on aldosterone secretion and expression of genes upregulated in double-mutant APAs. In adrenal cortex, GNA11/Q mutations appear clinically silent without a codriver mutation of CTNNB1.
Collapse
Affiliation(s)
- Junhua Zhou
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Elena A B Azizan
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK.
- Department of Medicine, The National University of Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia.
| | - Claudia P Cabrera
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Translational Bioinformatics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | | | - Giulia Argentesi
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Emily Cottrell
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Laurence Amar
- Université de Paris, PARCC, Inserm, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité Hypertension Artérielle, Paris, France
| | - Xilin Wu
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sam O'Toole
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Emily Goodchild
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alison Marker
- Department of Histopathology, Addenbrooke's Hospital, Cambridge, UK
| | - Russell Senanayake
- Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Sumedha Garg
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Tobias Åkerström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Samuel Backman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Suzanne Jordan
- Cellular Pathology Department, Royal London Hospital, London, UK
| | - Satyamaanasa Polubothu
- Genetics and Genomic Medicine, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Daniel M Berney
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Anna Gluck
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kate E Lines
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Antoinette Tuthill
- Department of Endocrinology and Diabetes, Cork University Hospital, Cork, Ireland
| | - Caroline Joyce
- Clinical Biochemistry, Cork University Hospital, Cork, Ireland
| | - Juan Pablo Kaski
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital and University College London Institute of Cardiovascular Science, London, UK
| | - Fiona E Karet Frankl
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Lou A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Ada E D Teo
- Dept of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mark Gurnell
- Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Laila Parvanta
- Department of Surgery, St Bartholomew's Hospital, London, UK
| | - William M Drake
- Department of Endocrinology, St Bartholomew's Hospital, London, UK
| | - Eva Wozniak
- Barts and London Genome Centre, School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - David Klinzing
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jyn Ling Kuan
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zenia Tiang
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Celso E Gomez Sanchez
- G.V. (Sonny) Montgomery VA Medical Center and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Per Hellman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Roger S Y Foo
- Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Charles A Mein
- Barts and London Genome Centre, School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | | | - Peyman Björklund
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Maria-Christina Zennaro
- Université de Paris, PARCC, Inserm, Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France.
| | - Morris J Brown
- Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK.
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
23
|
Abstract
Resident progenitor and/or stem cell populations in the adult adrenal cortex enable cortical cells to undergo homeostatic renewal and regeneration after injury. Renewal occurs predominantly in the outer layers of the adrenal gland but newly formed cells undergo centripetal migration, differentiation and lineage conversion in the process of forming the different functional steroidogenic zones. Over the past 10 years, advances in the genetic characterization of adrenal diseases and studies of mouse models with altered adrenal phenotypes have helped to elucidate the molecular pathways that regulate adrenal tissue renewal, several of which are fine-tuned via complex paracrine and endocrine influences. Moreover, the adrenal gland is a sexually dimorphic organ, and testicular androgens have inhibitory effects on cell proliferation and progenitor cell recruitment in the adrenal cortex. This Review integrates these advances, including the emerging role of sex hormones, into existing knowledge on adrenocortical cell renewal. An in-depth understanding of these mechanisms is expected to contribute to the development of novel therapies for severe endocrine diseases, for which current treatments are unsatisfactory.
Collapse
Affiliation(s)
- Rodanthi Lyraki
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose, Nice, France
| | - Andreas Schedl
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
24
|
Leng S, Carlone DL, Guagliardo NA, Barrett PQ, Breault DT. Rosette morphology in zona glomerulosa formation and function. Mol Cell Endocrinol 2021; 530:111287. [PMID: 33891993 PMCID: PMC8159910 DOI: 10.1016/j.mce.2021.111287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022]
Abstract
How morphology informs function is a fundamental biological question. Here, we review the morphological features of the adrenal zona glomerulosa (zG), highlighting recent cellular and molecular discoveries that govern its formation. The zG consists of glomeruli enwrapped in a Laminin-β1-enriched basement membrane (BM). Within each glomerulus, zG cells are organized as rosettes, a multicellular structure widely used throughout development to mediate epithelial remodeling, but not often found in healthy adult tissues. Rosettes arise by constriction at a common cellular contact point mediated/facilitated by adherens junctions (AJs). In mice, small, dispersed AJs first appear postnatally and enrich along the entire cell-cell contact around 10 days after birth. Subsequently, these AJ-rich contacts contract, allowing rosettes to form. Concurrently, flat sheet-like domains in the nascent zG, undergo invagination and folding, gradually giving rise to the compact round glomeruli that comprise the adult zG. How these structures impact adrenal function is discussed.
Collapse
Affiliation(s)
- Sining Leng
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.
| | - Nick A Guagliardo
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Paula Q Barrett
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
25
|
Yaglova NV, Obernikhin SS, Tsomartova DA, Nazimova SV, Yaglov VV, Tsomartova ES, Chereshneva EV, Ivanova MY, Lomanovskaya TA. Impaired Morphogenesis and Function of Rat Adrenal Zona Glomerulosa by Developmental Low-Dose Exposure to DDT Is Associated with Altered Oct4 Expression. Int J Mol Sci 2021; 22:6324. [PMID: 34204839 PMCID: PMC8231536 DOI: 10.3390/ijms22126324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Dichlorodiphenyltrichloroethane (DDT) is a persistent organic pollutant and one of the most widespread endocrine disrupting chemicals. The impact of low-dose exposure to DDT on the morphogenesis of the adrenal gland is still poorly understood. The development and function of zona glomerulosa in rats has been found to be associated with changes in the expression of the transcription factor Oct4 (Octamer 4), which is the most important player in cell pluripotency. The aim of the study was to investigate the morphogenesis and function of rat adrenal zona glomerulosa in rats exposed to low doses of DDT during prenatal and postnatal development and to determine the possible role of Oct4 in DDT-mediated structural and functional changes. The DDT-exposed rats demonstrated slower development and lower functional activity of the zona glomerulosa during the pubertal period associated with higher expression of Oct4. Further, accelerated growth and restoration of hormone production was associated with, firstly, a decrease in Oct4 expressing cells and secondly, the loss of the inverse relationship between basal aldosterone levels and the number of Oct4 expressing cells. Thus, the transcriptional factor Oct4 exhibited an altered pattern of expression in the DDT-exposed rats during postnatal development. The results of the study uncover a novel putative mechanism by which low doses of DDT disrupt the development of adrenal zona glomerulosa.
Collapse
Affiliation(s)
- Nataliya V. Yaglova
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (S.S.O.); (D.A.T.); (S.V.N.); (V.V.Y.); (E.S.T.)
| | - Sergey S. Obernikhin
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (S.S.O.); (D.A.T.); (S.V.N.); (V.V.Y.); (E.S.T.)
| | - Dibakhan A. Tsomartova
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (S.S.O.); (D.A.T.); (S.V.N.); (V.V.Y.); (E.S.T.)
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Svetlana V. Nazimova
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (S.S.O.); (D.A.T.); (S.V.N.); (V.V.Y.); (E.S.T.)
| | - Valentin V. Yaglov
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (S.S.O.); (D.A.T.); (S.V.N.); (V.V.Y.); (E.S.T.)
| | - Elina S. Tsomartova
- Laboratory of Endocrine System Development, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology”, 117418 Moscow, Russia; (S.S.O.); (D.A.T.); (S.V.N.); (V.V.Y.); (E.S.T.)
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Elizaveta V. Chereshneva
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Marina Y. Ivanova
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| | - Tatiana A. Lomanovskaya
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (E.V.C.); (M.Y.I.); (T.A.L.)
| |
Collapse
|
26
|
Nanba K, Rainey WE. GENETICS IN ENDOCRINOLOGY: Impact of race and sex on genetic causes of aldosterone-producing adenomas. Eur J Endocrinol 2021; 185:R1-R11. [PMID: 33900205 PMCID: PMC8480207 DOI: 10.1530/eje-21-0031] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
Primary aldosteronism (PA) is a common cause of secondary hypertension. Recent technological advances in genetic analysis have provided a better understanding of the molecular pathogenesis of this disease. The application of next-generation sequencing has resulted in the identification of somatic mutations in aldosterone-producing adenoma (APA), a major subtype of PA. Based on the recent findings using a sequencing method that selectively targets the tumor region where aldosterone synthase (CYP11B2) is expressed, the vast majority of APAs appear to harbor a somatic mutation in one of the aldosterone-driver genes, including KCNJ5, ATP1A1, ATP2B3, CACNA1D, CACNA1H, and CLCN2. Mutations in these genes alter intracellular ion homeostasis and enhance aldosterone production. In a small subset of APAs, somatic activating mutations in the CTNNB1 gene, which encodes β-catenin, have also been detected. Accumulating evidence suggests that race and sex impact the somatic mutation spectrum of APA. Specifically, somatic mutations in the KCNJ5 gene, encoding an inwardly rectifying K+ channel, are common in APAs from Asian populations as well as women regardless of race. Associations between APA histology, genotype, and patient clinical characteristics have also been proposed, suggesting a potential need to consider race and sex for the management of PA patients. Herein, we review recent findings regarding somatic mutations in APA and discuss potential roles of race and sex on the pathophysiology of APA as well as possible clinical implications.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555, Japan
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109
| |
Collapse
|
27
|
Dumontet T, Martinez A. Adrenal androgens, adrenarche, and zona reticularis: A human affair? Mol Cell Endocrinol 2021; 528:111239. [PMID: 33676986 DOI: 10.1016/j.mce.2021.111239] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
In humans, reticularis cells of the adrenal cortex fuel the production of androgen steroids, constituting the driver of numerous morphological changes during childhood. These steps are considered a precocious stage of sexual maturation and are grouped under the term "adrenarche". This review describes the molecular and enzymatic characteristics of the zona reticularis, along with the possible signals and mechanisms that control its emergence and the associated clinical features. We investigate the differences between species and discuss new studies such as genetic lineage tracing and transcriptomic analysis, highlighting the rodent inner cortex's cellular and molecular heterogeneity. The recent development and characterization of mouse models deficient for Prkar1a presenting with adrenocortical reticularis-like features prompt us to review our vision of the mouse adrenal gland maturation. We expect these new insights will help increase our understanding of the adrenarche process and the pathologies associated with its deregulation.
Collapse
Affiliation(s)
- Typhanie Dumontet
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA; Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, University of Michigan, Ann Arbor, MI, USA.
| | - Antoine Martinez
- Génétique, Reproduction et Développement (GReD), Centre National de La Recherche Scientifique CNRS, Institut National de La Santé & de La Recherche Médicale (INSERM), Université Clermont-Auvergne (UCA), France.
| |
Collapse
|
28
|
Maria AG, Silva Borges K, Lira RCP, Hassib Thomé C, Berthon A, Drougat L, Kiseljak-Vassiliades K, Wierman ME, Faucz FR, Faça VM, Tone LG, Stratakis CA. Inhibition of Aurora kinase A activity enhances the antitumor response of beta-catenin blockade in human adrenocortical cancer cells. Mol Cell Endocrinol 2021; 528:111243. [PMID: 33716050 PMCID: PMC8297658 DOI: 10.1016/j.mce.2021.111243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
Adrenocortical cancer (ACC) is a rare and aggressive type of endocrine tumor with high risk of recurrence and metastasis. The overall survival of patients diagnosed with ACC is low and treatment for metastatic stages remain limited to mitotane, which has low efficiency in advanced stages of the disease and is associated with high toxicity. Therefore, identification of new biological targets to improve ACC treatment is crucial. Blockade of the Wnt/beta-catenin pathway decreased adrenal steroidogenesis and increased apoptosis of NCI-H295 human ACC cells, in vitro and in a xenograft mouse model. Aurora kinases play important roles in cell division during the G1-M phase and their aberrant expression is correlated with a poor prognosis in different types of tumors. Hence, we hypothesized that inhibition of aurora kinases activity combined with the beta-catenin pathway blockade would improve the impairment of ACC cell growth in vitro. We studied the combinatorial effects of AMG 900, an aurora kinase inhibitor and PNU-74654, a beta-catenin pathway blocker, on proliferation, survival and tumor progression in multiple ACC cell lines: NCI-H295, CU-ACC1 and CU-ACC2. Exposure of ACC cells to the combination of AMG 900 with PNU-74654 decreased cell proliferation and viability compared to either treatment alone. In addition, AMG 900 inhibited cell invasion and clonogenesis compared to PNU-74654, and the combination showed no greater effects. In contrast, PNU-74654 was more effective in decreasing cortisol secretion. These data suggest that inhibition of aurora kinases activity combined with blockade of the beta-catenin pathway may provide a combinatorial approach for targeting ACC tumors.
Collapse
Affiliation(s)
- Andrea Gutierrez Maria
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA; Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
| | - Kleiton Silva Borges
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - R C P Lira
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Carolina Hassib Thomé
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Annabel Berthon
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Ludivine Drougat
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, 80045, USA; Research Service Veterans Affairs Medical Center, Denver, CO, 80045, USA
| | - Margaret E Wierman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, 80045, USA; Research Service Veterans Affairs Medical Center, Denver, CO, 80045, USA
| | - Fabio R Faucz
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Vitor Marcel Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Luiz Gonzaga Tone
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Constantine A Stratakis
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA; Pediatric Endocrinology Inter-institute Training Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD20892, USA
| |
Collapse
|
29
|
Pignatti E, Flück CE. Adrenal cortex development and related disorders leading to adrenal insufficiency. Mol Cell Endocrinol 2021; 527:111206. [PMID: 33607267 DOI: 10.1016/j.mce.2021.111206] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
The adult human adrenal cortex produces steroid hormones that are crucial for life, supporting immune response, glucose homeostasis, salt balance and sexual maturation. It consists of three histologically distinct and functionally specialized zones. The fetal adrenal forms from mesodermal material and produces predominantly adrenal C19 steroids from its fetal zone, which involutes after birth. Transition to the adult cortex occurs immediately after birth for the formation of the zona glomerulosa and fasciculata for aldosterone and cortisol production and continues through infancy until the zona reticularis for adrenal androgen production is formed with adrenarche. The development of this indispensable organ is complex and not fully understood. This article gives an overview of recent knowledge gained of adrenal biology from two perspectives: one, from basic science studying adrenal development, zonation and homeostasis; and two, from adrenal disorders identified in persons manifesting with various isolated or syndromic forms of primary adrenal insufficiency.
Collapse
Affiliation(s)
- Emanuele Pignatti
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern and Department of BioMedical Research, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland.
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern and Department of BioMedical Research, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
30
|
Enhanced Ca 2+ signaling, mild primary aldosteronism, and hypertension in a familial hyperaldosteronism mouse model ( Cacna1h M1560V/+ ). Proc Natl Acad Sci U S A 2021; 118:2014876118. [PMID: 33879608 PMCID: PMC8092574 DOI: 10.1073/pnas.2014876118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Primary aldosteronism (increased production of the adrenal steroid hormone aldosterone) is the most common cause of secondary hypertension. We here generated a mouse model of familial hyperaldosteronism type IV with a heterozygous gain-of-function mutation in a calcium channel gene (Cacna1hM1560V/+). Cacna1hM1560V/+ mice have about twofold elevated aldosterone:renin ratios (a screening parameter for primary aldosteronism) and elevated blood pressure, with an overall mild phenotype. Elevated adrenal aldosterone synthase expression in Cacna1hM1560V/+ mice is associated with increased intracellular calcium concentrations in glomerulosa cells. This model allows for the ex vivo analysis of calcium signaling in aldosterone-producing glomerulosa cells of the adrenal gland. Cacna1h−/− mice have normal aldosterone synthase expression, with implications for the evaluation of CACNA1H as a therapeutic target. Gain-of-function mutations in the CACNA1H gene (encoding the T-type calcium channel CaV3.2) cause autosomal-dominant familial hyperaldosteronism type IV (FH-IV) and early-onset hypertension in humans. We used CRISPR/Cas9 to generate Cacna1hM1560V/+ knockin mice as a model of the most common FH-IV mutation, along with corresponding knockout mice (Cacna1h−/−). Adrenal morphology of both Cacna1hM1560V/+ and Cacna1h−/− mice was normal. Cacna1hM1560V/+ mice had elevated aldosterone:renin ratios (a screening parameter for primary aldosteronism). Their adrenal Cyp11b2 (aldosterone synthase) expression was increased and remained elevated on a high-salt diet (relative autonomy, characteristic of primary aldosteronism), but plasma aldosterone was only elevated in male animals. The systolic blood pressure of Cacna1hM1560V/+ mice was 8 mmHg higher than in wild-type littermates and remained elevated on a high-salt diet. Cacna1h−/− mice had elevated renal Ren1 (renin-1) expression but normal adrenal Cyp11b2 levels, suggesting that in the absence of CaV3.2, stimulation of the renin-angiotensin system activates alternative calcium entry pathways to maintain normal aldosterone production. On a cellular level, Cacna1hM1560V/+ adrenal slices showed increased baseline and peak intracellular calcium concentrations in the zona glomerulosa compared to controls, but the frequency of calcium spikes did not rise. We conclude that FH-IV, on a molecular level, is caused by elevated intracellular Ca2+ concentrations as a signal for aldosterone production in adrenal glomerulosa cells. We demonstrate that a germline Cacna1h gain-of-function mutation is sufficient to cause mild primary aldosteronism, whereas loss of CaV3.2 channel function can be compensated for in a chronic setting.
Collapse
|
31
|
Oikonomakos I, Weerasinghe Arachchige LC, Schedl A. Developmental mechanisms of adrenal cortex formation and their links with adult progenitor populations. Mol Cell Endocrinol 2021; 524:111172. [PMID: 33484742 DOI: 10.1016/j.mce.2021.111172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/15/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
The adrenal cortex is the main steroid producing organ of the human body. Studies on adrenal tissue renewal have been neglected for many years, but recent intensified research has seen tremendous progress in our understanding of the formation and homeostasis of this organ. However, cell turnover of the adrenal cortex appears to be complex and several cell populations have been identified that can differentiate into steroidogenic cells and contribute to adrenal cortex renewal. The purpose of this review is to provide an overview of how the adrenal cortex develops and how stem cell populations relate to its developmental progenitors. Finally, we will summarize present and future approaches to harvest the potential of progenitor/stem cells for future cell replacement therapies.
Collapse
Affiliation(s)
- Ioannis Oikonomakos
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108, Nice, France.
| | | | - Andreas Schedl
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108, Nice, France.
| |
Collapse
|
32
|
Little DW, Dumontet T, LaPensee CR, Hammer GD. β-catenin in adrenal zonation and disease. Mol Cell Endocrinol 2021; 522:111120. [PMID: 33338548 PMCID: PMC8006471 DOI: 10.1016/j.mce.2020.111120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022]
Abstract
The Wnt signaling pathway is a critical mediator of the development and maintenance of several tissues. The adrenal cortex is highly dependent upon Wnt/β-catenin signaling for proper zonation and endocrine function. Adrenocortical cells emerge in the peripheral capsule and subcapsular cortex of the gland as progenitor cells that centripetally differentiate into steroid hormone-producing cells of three functionally distinct concentric zones that respond robustly to various endocrine stimuli. Wnt/β-catenin signaling mediates adrenocortical progenitor cell fate and tissue renewal to maintain the gland throughout life. Aberrant Wnt/β-catenin signaling contributes to various adrenal disorders of steroid production and growth that range from hypofunction and hypoplasia to hyperfunction, hyperplasia, benign adrenocortical adenomas, and malignant adrenocortical carcinomas. Great strides have been made in defining the molecular underpinnings of adrenocortical homeostasis and disease, including the interplay between the capsule and cortex, critical components involved in maintaining the adrenocortical Wnt/β-catenin signaling gradient, and new targets in adrenal cancer. This review seeks to examine these and other recent advancements in understanding adrenocortical Wnt/β-catenin signaling and how this knowledge can inform therapeutic options for adrenal disease.
Collapse
Affiliation(s)
| | - Typhanie Dumontet
- Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA
| | - Christopher R LaPensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA
| | - Gary D Hammer
- Doctoral Program in Cancer Biology, USA; Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
Yaglova NV, Tsomartova DA, Obernikhin SS, Nazimova SV, Ivanova MY, Chereshneva EV, Yaglov VV, Lomanovskaya TA. Transcription factors β-catenin and Hex in postnatal development of the rat adrenal cortex: implication in proliferation control. Heliyon 2021; 7:e05932. [PMID: 33490685 PMCID: PMC7809185 DOI: 10.1016/j.heliyon.2021.e05932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022] Open
Abstract
Transcriptional regulation of growth, maturation, and cell turnover in adrenal cortex during postnatal development has been significantly less studied than in embryonic period, while elucidation of factors mediating its normal postnatal morphogenesis could clarify mechanisms of tumorigenesis in adrenal cortex. Expression of transcription factors Hex, β-catenin, and Wnt signaling in the adrenal cortex of male pubertal and postpubertal Wistar rats were examined. Adrenal cortex morphology and hormone production during postnatal development were also studied. Adrenocortical zones demonstrated similar reduction of Ki-67-expressing cells, but different patterns of morphological and functional changes. Age-dependent decrease in percentage of cells with membrane localization of β-catenin and stable rate of cells with nuclear β-catenin, indicative of Wnt signaling activation, were revealed in each cortical zone. Nuclear β-catenin was not observed in immature areas of zona fasciculata. No association between Wnt signaling activation and rates of proliferation as well as changes in secretion of adrenocortical hormones was observed in postnatal development of rat adrenal cortex. Hex, known as antiproliferative factor, showed up-regulation of expression after puberty. Strong inverse correlations between ratio of Hex-positive cells and proliferating cells were found in zona glomerulosa and zona fasciculata. Zona reticularis demonstrated moderate correlation. Thus, these findings suggest a role for Hex in proliferation control during postnatal development of the rat adrenal cortex and possible implication of Hex down-regulation in adrenocortical dysplasia and neoplasia, which requires further study. Evaluation of Hex expression may also be considered a potent tool in assessment of cell proliferation in rat adrenal cortex.
Collapse
Affiliation(s)
- Natalya V Yaglova
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, Moscow, Russia
| | - Dibakhan A Tsomartova
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, Moscow, Russia.,Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergey S Obernikhin
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, Moscow, Russia
| | - Svetlana V Nazimova
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, Moscow, Russia
| | - Marina Y Ivanova
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elizaveta V Chereshneva
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Valentin V Yaglov
- Laboratory of Endocrine System Development, Federal State Budgetary Institution Research Institute of Human Morphology, Moscow, Russia
| | - Tatiana A Lomanovskaya
- Department of Histology, Cytology, and Embryology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
34
|
HIF1α is a direct regulator of steroidogenesis in the adrenal gland. Cell Mol Life Sci 2021; 78:3577-3590. [PMID: 33464382 PMCID: PMC8038963 DOI: 10.1007/s00018-020-03750-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
Endogenous steroid hormones, especially glucocorticoids and mineralocorticoids, derive from the adrenal cortex, and drastic or sustained changes in their circulatory levels affect multiple organ systems. Although hypoxia signaling in steroidogenesis has been suggested, knowledge on the true impact of the HIFs (Hypoxia-Inducible Factors) in the adrenocortical cells of vertebrates is scant. By creating a unique set of transgenic mouse lines, we reveal a prominent role for HIF1α in the synthesis of virtually all steroids in vivo. Specifically, mice deficient in HIF1α in adrenocortical cells displayed enhanced levels of enzymes responsible for steroidogenesis and a cognate increase in circulatory steroid levels. These changes resulted in cytokine alterations and changes in the profile of circulatory mature hematopoietic cells. Conversely, HIF1α overexpression resulted in the opposite phenotype of insufficient steroid production due to impaired transcription of necessary enzymes. Based on these results, we propose HIF1α to be a vital regulator of steroidogenesis as its modulation in adrenocortical cells dramatically impacts hormone synthesis with systemic consequences. In addition, these mice can have potential clinical significances as they may serve as essential tools to understand the pathophysiology of hormone modulations in a number of diseases associated with metabolic syndrome, auto-immunity or even cancer.
Collapse
|
35
|
Hammer GD, Basham KJ. Stem cell function and plasticity in the normal physiology of the adrenal cortex. Mol Cell Endocrinol 2021; 519:111043. [PMID: 33058950 PMCID: PMC7736543 DOI: 10.1016/j.mce.2020.111043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/07/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
The adrenal cortex functions to produce steroid hormones necessary for life. To maintain its functional capacity throughout life, the adrenal cortex must be continually replenished and rapidly repaired following injury. Moreover, the adrenal responds to endocrine-mediated organismal needs, which are highly dynamic and necessitate a precise steroidogenic response. To meet these diverse needs, the adrenal employs multiple cell populations with stem cell function. Here, we discuss the literature on adrenocortical stem cells using hematopoietic stem cells as a benchmark to examine the functional capacity of particular cell populations, including those located in the capsule and peripheral cortex. These populations are coordinately regulated by paracrine and endocrine signaling mechanisms, and display remarkable plasticity to adapt to different physiological and pathological conditions. Some populations also exhibit sex-specific activity, which contributes to highly divergent proliferation rates between sexes. Understanding mechanisms that govern adrenocortical renewal has broad implications for both regenerative medicine and cancer.
Collapse
Affiliation(s)
- Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Kaitlin J Basham
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
36
|
Rassi-Cruz M, Maria AG, Faucz FR, London E, Vilela LAP, Santana LS, Benedetti AFF, Goldbaum TS, Tanno FY, Srougi V, Chambo JL, Pereira MAA, Cavalcante ACBS, Carnevale FC, Pilan B, Bortolotto LA, Drager LF, Lerario AM, Latronico AC, Fragoso MCBV, Mendonca BB, Zerbini MCN, Stratakis CA, Almeida MQ. Phosphodiesterase 2A and 3B variants are associated with primary aldosteronism. Endocr Relat Cancer 2021; 28:1-13. [PMID: 33112806 PMCID: PMC7757641 DOI: 10.1530/erc-20-0384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022]
Abstract
Familial primary aldosteronism (PA) is rare and mostly diagnosed in early-onset hypertension (HT). However, 'sporadic' bilateral adrenal hyperplasia (BAH) is the most frequent cause of PA and remains without genetic etiology in most cases. Our aim was to investigate new genetic defects associated with BAH and PA. We performed whole-exome sequencing (paired blood and adrenal tissue) in six patients with PA caused by BAH that underwent unilateral adrenalectomy. Additionally, we conducted functional studies in adrenal hyperplastic tissue and transfected cells to confirm the pathogenicity of the identified genetic variants. Rare germline variants in phosphodiesterase 2A (PDE2A) and 3B (PDE3B) genes were identified in three patients. The PDE2A heterozygous variant (p.Ile629Val) was identified in a patient with BAH and early-onset HT at 13 years of age. Two PDE3B heterozygous variants (p.Arg217Gln and p.Gly392Val) were identified in patients with BAH and HT diagnosed at 18 and 33 years of age, respectively. A strong PDE2A staining was found in all cases of BAH in zona glomerulosa and/or micronodules (that were also positive for CYP11B2). PKA activity in frozen tissue was significantly higher in BAH from patients harboring PDE2A and PDE3B variants. PDE2A and PDE3B variants significantly reduced protein expression in mutant transfected cells compared to WT. Interestingly, PDE2A and PDE3B variants increased SGK1 and SCNN1G/ENaCg at mRNA or protein levels. In conclusion, PDE2A and PDE3B variants were associated with PA caused by BAH. These novel genetic findings expand the spectrum of genetic etiologies of PA.
Collapse
Affiliation(s)
- Marcela Rassi-Cruz
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Andrea G. Maria
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Fabio R. Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Edra London
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Leticia A. P. Vilela
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Lucas S. Santana
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Anna Flavia F. Benedetti
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Tatiana S. Goldbaum
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Fabio Y. Tanno
- Serviço de Urologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Vitor Srougi
- Serviço de Urologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Jose L. Chambo
- Serviço de Urologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Maria Adelaide A. Pereira
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Aline C. B. S. Cavalcante
- Instituto de Radiologia InRad, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Francisco C. Carnevale
- Instituto de Radiologia InRad, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Bruna Pilan
- Instituto de Radiologia InRad, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Luiz A. Bortolotto
- Unidade de Hipertensão, Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-900, Brasil
| | - Luciano F. Drager
- Unidade de Hipertensão, Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-900, Brasil
- Unidade de Hipertensão, Disciplina de Nefrologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Antonio M. Lerario
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
- Endocrinology, Metabolism and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Ana Claudia Latronico
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Maria Candida B. V. Fragoso
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
- Servico de Endocrinologia, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, 01246-000, Brasil
| | - Berenice B. Mendonca
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Maria Claudia N. Zerbini
- Divisão de Anatomia Patológica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Madson Q. Almeida
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
- Servico de Endocrinologia, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, 01246-000, Brasil
| |
Collapse
|
37
|
Casoni F, Croci L, Vincenti F, Podini P, Riba M, Massimino L, Cremona O, Consalez GG. ZFP423 regulates early patterning and multiciliogenesis in the hindbrain choroid plexus. Development 2020; 147:dev.190173. [PMID: 33046507 DOI: 10.1242/dev.190173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/05/2020] [Indexed: 12/28/2022]
Abstract
The choroid plexus (ChP) is a secretory tissue that produces cerebrospinal fluid (CSF) secreted into the ventricular system. It is a monolayer of secretory, multiciliated epithelial cells derived from neuroepithelial progenitors and overlying a stroma of mesenchymal cells of mesodermal origin. Zfp423, which encodes a Kruppel-type zinc-finger transcription factor essential for cerebellar development and mutated in rare cases of cerebellar vermis hypoplasia/Joubert syndrome and other ciliopathies, is expressed in the hindbrain roof plate, from which the IV ventricle ChP arises, and, later, in mesenchymal cells, which give rise to the stroma and leptomeninges. Mouse Zfp423 mutants display a marked reduction of the hindbrain ChP (hChP), which: (1) fails to express established markers of its secretory function and genes implicated in its development and maintenance (Lmx1a and Otx2); (2) shows a perturbed expression of signaling pathways previously unexplored in hChP patterning (Wnt3); and (3) displays a lack of multiciliated epithelial cells and a profound dysregulation of master genes of multiciliogenesis (Gmnc). Our results propose that Zfp423 is a master gene and one of the earliest known determinants of hChP development.
Collapse
Affiliation(s)
- Filippo Casoni
- Università Vita-Salute San Raffaele, Milan, Italy .,Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Laura Croci
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | | | - Paola Podini
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Michela Riba
- Center for Omics Sciences, IRCCS, San Raffaele Hospital, Milan 20132, Italy
| | - Luca Massimino
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Ottavio Cremona
- Università Vita-Salute San Raffaele, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - G Giacomo Consalez
- Università Vita-Salute San Raffaele, Milan, Italy.,Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
38
|
|
39
|
Borges KS, Pignatti E, Leng S, Kariyawasam D, Ruiz-Babot G, Ramalho FS, Taketo MM, Carlone DL, Breault DT. Wnt/β-catenin activation cooperates with loss of p53 to cause adrenocortical carcinoma in mice. Oncogene 2020; 39:5282-5291. [PMID: 32561853 PMCID: PMC7378041 DOI: 10.1038/s41388-020-1358-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 12/23/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy with limited therapeutic options. The lack of mouse models that recapitulate the genetics of ACC has hampered progress in the field. We analyzed The Cancer Genome Atlas (TCGA) dataset for ACC and found that patients harboring alterations in both p53/Rb and Wnt/β-catenin signaling pathways show a worse prognosis compared with patients that harbored alterations in only one. To model this, we utilized the Cyp11b2(AS)Cre mouse line to generate mice with adrenocortical-specific Wnt/β-catenin activation, Trp53 deletion, or the combination of both. Mice with targeted Wnt/β-catenin activation or Trp53 deletion showed no changes associated with tumor formation. In contrast, alterations in both pathways led to ACC with pulmonary metastases. Similar to ACCs in humans, these tumors produced increased levels of corticosterone and aldosterone and showed a high proliferation index. Gene expression analysis revealed that mouse tumors exhibited downregulation of Star and Cyp11b1 and upregulation of Ezh2, similar to ACC patients with a poor prognosis. Altogether, these data show that altering both Wnt/β-catenin and p53/Rb signaling is sufficient to drive ACC in mouse. This autochthonous model of ACC represents a new tool to investigate the biology of ACC and to identify new treatment strategies.
Collapse
Affiliation(s)
- Kleiton Silva Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.,Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Emanuele Pignatti
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Sining Leng
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.,Division of Medical Sciences, Harvard Medical School, Boston, MA, 02115, USA
| | - Dulanjalee Kariyawasam
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Fernando Silva Ramalho
- Department of Pathology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8506, Japan
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|