1
|
Zhou S, Zhang Q, Xu J, Xiang R, Dong X, Zhou X, Liu Z. CAP superfamily proteins in human: a new target for cancer therapy. Med Oncol 2024; 41:306. [PMID: 39499355 DOI: 10.1007/s12032-024-02548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The CAP (Cysteine-rich secretory protein, Antigen 5, and Pathogenesis-related protein 1) superfamily proteins (CAP proteins) are found in all kingdoms of life. The cysteine-rich secreted proteins are prevalent in human organs and tissues and serve as critical signaling molecules within cells, regulating a wide range of biochemical processes in the human body. Due to their involvement in numerous biological processes, CAP proteins have recently attracted significant attention, particularly in the context of tumorigenesis and cancer therapy. This review summarizes the expression patterns and roles of CAP proteins in various cancers. Additionally, it analyzes the mechanisms by which CAP proteins affect cancer cell proliferation and survival, regulate epithelial-mesenchymal transition, influence drug resistance, and regulate epigenetics. The review reveals that CAP proteins play distinct roles in various signaling pathways, such as the MAPK, PI3K-Akt, and p53 pathways, which are crucial for tumor progression. Furthermore, this review summarizes the tumor-inhibiting function of CAP proteins and their potential as cancer biomarkers. These findings suggest that CAP proteins represent a promising new target for innovative cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shenao Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Qianqian Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jiawei Xu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ruiqi Xiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiaoping Dong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
2
|
Xie X, Wang P, Jin M, Wang Y, Qi L, Wu C, Guo S, Li C, Zhang X, Yuan Y, Ma X, Liu F, Liu W, Liu H, Duan C, Ye P, Li X, Borish L, Zhao W, Feng X. IL-1β-induced epithelial cell and fibroblast transdifferentiation promotes neutrophil recruitment in chronic rhinosinusitis with nasal polyps. Nat Commun 2024; 15:9101. [PMID: 39438439 PMCID: PMC11496833 DOI: 10.1038/s41467-024-53307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Neutrophilic inflammation contributes to multiple chronic inflammatory airway diseases, including asthma and chronic rhinosinusitis with nasal polyps (CRSwNP), and is associated with an unfavorable prognosis. Here, using single-cell RNA sequencing (scRNA-seq) to profile human nasal mucosa obtained from the inferior turbinates, middle turbinates, and nasal polyps of CRSwNP patients, we identify two IL-1 signaling-induced cell subsets-LY6D+ club cells and IDO1+ fibroblasts-that promote neutrophil recruitment by respectively releasing S100A8/A9 and CXCL1/2/3/5/6/8 into inflammatory regions. IL-1β, a pro-inflammatory cytokine involved in IL-1 signaling, induces the transdifferentiation of LY6D+ club cells and IDO1+ fibroblasts from primary epithelial cells and fibroblasts, respectively. In an LPS-induced neutrophilic CRSwNP mouse model, blocking IL-1β activity with a receptor antagonist significantly reduces the numbers of LY6D+ club cells and IDO1+ fibroblasts and mitigates nasal inflammation. This study implicates the function of two cell subsets in neutrophil recruitment and demonstrates an IL-1-based intervention for mitigating neutrophilic inflammation in CRSwNP.
Collapse
Affiliation(s)
- Xinyu Xie
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Medical and Health Discipline, Qilu Hospital of Shandong University, Jinan, China
| | - Pin Wang
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Medical and Health Discipline, Qilu Hospital of Shandong University, Jinan, China
| | - Min Jin
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yue Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Lijie Qi
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Medical and Health Discipline, Qilu Hospital of Shandong University, Jinan, China
| | - Changhua Wu
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Shu Guo
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Changqing Li
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaojun Zhang
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Medical and Health Discipline, Qilu Hospital of Shandong University, Jinan, China
| | - Ye Yuan
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyi Ma
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Fangying Liu
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Weiyuan Liu
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Heng Liu
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Chen Duan
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Medical and Health Discipline, Qilu Hospital of Shandong University, Jinan, China
| | - Ping Ye
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Medical and Health Discipline, Qilu Hospital of Shandong University, Jinan, China
| | - Xuezhong Li
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Medical and Health Discipline, Qilu Hospital of Shandong University, Jinan, China
| | - Larry Borish
- Departments of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Departments of Microbiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Wei Zhao
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, China
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, China
| | - Xin Feng
- Department of Otorhinolaryngology, National Health Commission Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China.
- Shandong Provincial Key Medical and Health Discipline, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
3
|
Yılmaz F, Karageorgiou C, Kim K, Pajic P, Scheer K, Beck CR, Torregrossa AM, Lee C, Gokcumen O. Reconstruction of the human amylase locus reveals ancient duplications seeding modern-day variation. Science 2024:eadn0609. [PMID: 39418342 DOI: 10.1126/science.adn0609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/27/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Previous studies suggested that the copy number of the human salivary amylase gene, AMY1, correlates with starch-rich diets. However, evolutionary analyses are hampered by the absence of accurate, sequence-resolved haplotype variation maps. We identified 30 structurally distinct haplotypes at nucleotide resolution among 98 present-day humans, revealing that the coding sequences of AMY1 copies are evolving under negative selection. Genomic analyses of these haplotypes in archaic hominins and ancient human genomes suggest that a common three-copy haplotype, dating as far back as 800 KYA, has seeded rapidly evolving rearrangements through recurrent non-allelic homologous recombination. Additionally, haplotypes with more than three AMY1 copies have significantly increased in frequency among European farmers over the past 4,000 years, potentially as an adaptive response to increased starch digestion.
Collapse
Affiliation(s)
- Feyza Yılmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Kwondo Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Petar Pajic
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Kendra Scheer
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Christine R Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
- University of Connecticut, Institute for Systems Genomics, Storrs, CT 06269, USA
- The University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Ann-Marie Torregrossa
- Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA
- University at Buffalo Center for Ingestive Behavior Research, University at Buffalo, Buffalo, NY 14260, USA
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
4
|
Jeon SG, Lee J, Lee SJ, Seo J, Choi J, Bae DH, Chun DH, Ko SY, Shin HS, Joo L, Lee SH, Lim YC, Choi WH, Yoo J. Salivary gland organoid transplantation as a therapeutic option for radiation-induced xerostomia. Stem Cell Res Ther 2024; 15:265. [PMID: 39183328 PMCID: PMC11346288 DOI: 10.1186/s13287-024-03833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/06/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Xerostomia is a pathological condition characterized by decreased salivation due to salivary gland dysfunction and is frequently attributed to irreversible damage as a side effect of radiation therapy. Stem cell-derived organoid therapy has garnered attention as a promising avenue for resolving this issue. However, Matrigel, a hydrogel commonly used in organoid culture, is considered inappropriate for clinical use due to its undefined composition and immunogenicity. In this study, we aimed to develop a method for culturing collagen-based human salivary gland organoids (hSGOs) suitable for clinical applications and evaluated their therapeutic effectiveness. METHODS Human salivary gland stem cells were isolated from the salivary gland tissues and cultured in both Matrigel and collagen. We compared the gene and protein expression patterns of salivary gland-specific markers and measured amylase activity in the two types of hSGOs. To evaluate the therapeutic effects, we performed xenogeneic and allogeneic transplantation using human and mouse salivary gland organoids (hSGOs and mSGOs), respectively, in a mouse model of radiation-induced xerostomia. RESULTS hSGOs cultured in Matrigel exhibited self-renewal capacity and differentiated into acinar and ductal cell lineages. In collagen, they maintained a comparable self-renewal ability and more closely replicated the characteristics of salivary gland tissue following differentiation. Upon xenotransplantation of collagen-based hSGOs, we observed engraftment, which was verified by detecting human-specific nucleoli and E-cadherin expression. The expression of mucins, especially MUC5B, within the transplanted hSGOs suggested a potential improvement in the salivary composition. Moreover, the allograft procedure using mSGOs led to increased salivation, validating the efficacy of our approach. CONCLUSIONS This study showed that collagen-based hSGOs can be used appropriately in clinical settings and demonstrated the effectiveness of an allograft procedure. Our research has laid the groundwork for the future application of collagen-based hSGOs in allogeneic clinical trials.
Collapse
Affiliation(s)
- Seong Gyeong Jeon
- R&D Institute, ORGANOIDSCIENCES Co., Ltd, 331, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
- Department of Microbiology, CHA University School of Medicine, 335, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Jaeseon Lee
- R&D Institute, ORGANOIDSCIENCES Co., Ltd, 331, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Su Jeong Lee
- R&D Institute, ORGANOIDSCIENCES Co., Ltd, 331, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
- Department of Microbiology, CHA University School of Medicine, 335, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Jaehwi Seo
- R&D Institute, ORGANOIDSCIENCES Co., Ltd, 331, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Jinkyoung Choi
- R&D Institute, ORGANOIDSCIENCES Co., Ltd, 331, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Dong Hyuck Bae
- Department of Microbiology, CHA University School of Medicine, 335, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Duk-Hee Chun
- Department of Anesthesiology and Pain Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Republic of Korea
| | - Seung Young Ko
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University, Seongnam, 13496, Republic of Korea
| | - Hyun Soo Shin
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University, Seongnam, 13496, Republic of Korea
| | - Lina Joo
- Department of Microbiology, CHA University School of Medicine, 335, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Republic of Korea
| | - Young Chang Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, The Research Institute, Konkuk University School of Medicine, 120, Neungdong-ro, Seoul, 05029, Republic of Korea.
| | - Woo Hee Choi
- R&D Institute, ORGANOIDSCIENCES Co., Ltd, 331, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea.
- Department of Microbiology, CHA University School of Medicine, 335, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea.
| | - Jongman Yoo
- R&D Institute, ORGANOIDSCIENCES Co., Ltd, 331, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea.
- Department of Microbiology, CHA University School of Medicine, 335, Pangyo-ro, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
5
|
Javaid S, Wang D, Kelly BJ, Kalim S, Yanich J, Kalmar JR, Mallery SR. Salivary gland carcinosarcoma ex pleomorphic adenoma: a case report with molecular characterization. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:301-305. [PMID: 38760285 DOI: 10.1016/j.oooo.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 05/19/2024]
Abstract
True malignant mixed tumors, also known as salivary gland carcinosarcoma (SCS), are uncommon yet highly aggressive lesions associated with a poor prognosis. These tumors exhibit a distinctive biphasic structure characterized by both epithelial and mesenchymal components. Recent research has shown that the majority of SCS cases stem from pre-existing pleomorphic adenomas (PAs), suggesting a stepwise developmental pattern. In this report, we present a case of a 73-year-old female with SCS and describe the clinical, radiographic, and pathologic observations. Notably, the SCS was associated with a residual PA. The SCS displayed a CTNNB1::PLAG1 gene rearrangement, providing a molecular basis for its origin from the PA. Further DNA genomic analysis exposed mutations in BAP1, PER1, and LRPB1. Our findings provide support to the theory that SCS emerges from a pre-existing PA while highlighting the multiple genetic changes that could contribute to malignant transformation.
Collapse
Affiliation(s)
- Sehrish Javaid
- Woody L. Hunt School of Dental Medicine, Texas Tech University Health Science Center El Paso, El Paso, TX, USA.
| | - Daren Wang
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Benjamin J Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Sonya Kalim
- Workman School of Dental Medicine, High Point University, NC, USA
| | - Jason Yanich
- Yanich Oral Surgery and Dental Implants, Marion, OH, USA
| | - John R Kalmar
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Susan R Mallery
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, Columbus, OH, USA; Yanich Oral Surgery and Dental Implants, Marion, OH, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
6
|
Peiffer AL, Dugan AE, Kiessling LL. Soluble Human Lectins at the Host-Microbe Interface. Annu Rev Biochem 2024; 93:565-601. [PMID: 38640018 PMCID: PMC11296910 DOI: 10.1146/annurev-biochem-062917-012322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Human lectins are integral to maintaining microbial homeostasis on the skin, in the blood, and at mucosal barriers. These proteins can recognize microbial glycans and inform the host about its microbial status. In accordance with their roles, their production can vary with tissue type. They also can have unique structural and biochemical properties, and they can influence microbial colonization at sites proximal and distal to their tissue of origin. In line with their classification as innate immune proteins, soluble lectins have long been studied in the context of acute infectious disease, but only recently have we begun to appreciate their roles in maintaining commensal microbial communities (i.e., the human microbiota). This review provides an overview of soluble lectins that operate at host-microbe interfaces, their glycan recognition properties, and their roles in physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Amanda L Peiffer
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - A E Dugan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - L L Kiessling
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
7
|
Tasoulas J, Schrank TP, Bharambe H, Mehta J, Johnson S, Divaris K, Hackman TG, Sheth S, Kirtane K, Hernandez-Prera JC, Chung CH, Yarbrough WG, Ferrarotto R, Issaeva N, Theocharis S, Amelio AL. Molecular characterization of the salivary adenoid cystic carcinoma immune landscape by anatomic subsites. Sci Rep 2024; 14:15821. [PMID: 38982149 PMCID: PMC11233590 DOI: 10.1038/s41598-024-66709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
Adenoid cystic carcinoma (AdCC) is a slow-growing salivary gland malignancy that relapses frequently. AdCCs of the submandibular gland exhibit unique differences in prognosis and treatment response to adjuvant radiotherapy compared to other sites, yet the role of tumor anatomic subsite on gene expression and tumor immune microenvironment (TIME) composition remains unclear. We used 87 samples, including 48 samples (27 AdCC and 21 normal salivary gland tissue samples) from 4 publicly available AdCC RNA sequencing datasets, a validation set of 33 minor gland AdCCs, and 39 samples from an in-house cohort (30 AdCC and 9 normal salivary gland samples). RNA sequencing data were used for single sample gene set enrichment analysis and TIME deconvolution. Quantitative PCR and multiplex immunofluorescence were performed on the in-house cohort. Wilcoxon rank-sum, nonparametric equality-of-medians tests and linear regression models were used to evaluate tumor subsite differences. AdCCs of different anatomic subsites including parotid, submandibular, sublingual, and minor salivary glands differed with respect to expression of several key tumorigenic pathways. Among the three major salivary glands, the reactive oxygen species (ROS)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway signature was significantly underexpressed in AdCC of submandibular compared to parotid and sublingual glands while this association was not observed among normal glands. Additionally, the NRF2 pathway, whose expression was associated with favorable overall survival, was overexpressed in AdCCs of parotid gland compared to minor and submandibular glands. The TIME deconvolution identified differences in CD4+ T cell populations between AdCC of major and minor glands and natural killer (NK) cells among AdCC of minor, submandibular, and parotid glands while plasma cells were enriched in normal submandibular glands compared to other normal gland controls. Our data reveal key molecular differences in AdCC of different anatomic subsites. The ROS and NRF2 pathways are underexpressed in submandibular and minor AdCCs compared to parotid gland AdCCs, and NRF2 pathway expression is associated with favorable overall survival. The CD4+ T, NK, and plasma cell populations also vary by tumor subsites, suggesting that the observed submandibular AdCC tumor-intrinsic pathway differences may be responsible for influencing the TIME composition and survival differences.
Collapse
Affiliation(s)
- Jason Tasoulas
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Travis P Schrank
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Harish Bharambe
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Jay Mehta
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Steven Johnson
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kimon Divaris
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trevor G Hackman
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Siddharth Sheth
- Division of Hematology/Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Kedar Kirtane
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Juan C Hernandez-Prera
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Christine H Chung
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Wendell G Yarbrough
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Renata Ferrarotto
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalia Issaeva
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stamatios Theocharis
- Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonio L Amelio
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA.
| |
Collapse
|
8
|
Zhu Y, Feng X, Wang Z, Zhang Y, Zhang Y, Chen J, Liu Y. Umami Altering Salivary Proteome: A Study across a Sensitivity Spectrum on Subjects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13451-13464. [PMID: 38728234 DOI: 10.1021/acs.jafc.4c01326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
This study delved into the relationship between umami taste sensitivity (UTS) and variations in the salivary proteome among 12 healthy nonsmokers utilizing 4D data-independent acquisition-based proteomics. By assessing UTS through monosodium l-glutamate (MSG) detection thresholds, we discovered notable differences: individuals with high UTS detected umami at significantly lower MSG concentrations (0.20 ± 0.12 mM) compared to their low UTS counterparts (2.51 ± 1.21 mM). Both groups showed an upregulation of the S100A1 protein under MSG stimulation, indicating a potent biochemical response to umami stimuli. The high UTS group exhibited enhanced metabolic pathways including those for amino acid, lipid, and organic acid biosynthesis, essential for maintaining taste receptor functionality and enhancing signal transduction. This group also demonstrated increased activity in cytochrome P450 enzymes and ribonucleoprotein complexes, suggesting a readiness to manage metabolic challenges and optimize umami perception. In contrast, the low UTS group showed adaptive mechanisms, possibly through modulation of receptor availability and function, with an upregulation of structural and ribosomal proteins that may support taste receptor production and turnover. These findings suggest that varying biological mechanisms underpin differences in umami perception, which could significantly influence dietary preferences and nutritional outcomes, highlighting the intricate interplay of genetic, physiological, and metabolic factors in taste sensitivity.
Collapse
Affiliation(s)
- Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoxiao Feng
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyu Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jianshe Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Food Oral Processing Laboratory, Hangzhou, Zhejiang 310018, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
9
|
Ashford JR. Impaired oral health: a required companion of bacterial aspiration pneumonia. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1337920. [PMID: 38894716 PMCID: PMC11183832 DOI: 10.3389/fresc.2024.1337920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Laryngotracheal aspiration has a widely-held reputation as a primary cause of lower respiratory infections, such as pneumonia, and is a major concern of care providers of the seriously ill orelderly frail patient. Laryngeal mechanical inefficiency resulting in aspiration into the lower respiratory tract, by itself, is not the cause of pneumonia. It is but one of several factors that must be present simultaneously for pneumonia to develop. Aspiration of oral and gastric contentsoccurs often in healthy people of all ages and without significant pulmonary consequences. Inthe seriously ill or elderly frail patient, higher concentrations of pathogens in the contents of theaspirate are the primary catalyst for pulmonary infection development if in an immunocompromised lower respiratory system. The oral cavity is a complex and ever changing eco-environment striving to maintain homogeneity among the numerous microbial communities inhabiting its surfaces. Poor maintenance of these surfaces to prevent infection can result inpathogenic changes to these microbial communities and, with subsequent proliferation, can altermicrobial communities in the tracheal and bronchial passages. Higher bacterial pathogen concentrations mixing with oral secretions, or with foods, when aspirated into an immunecompromised lower respiratory complex, may result in bacterial aspiration pneumonia development, or other respiratory or systemic diseases. A large volume of clinical evidence makes it clear that oral cleaning regimens, when used in caring for ill or frail patients in hospitals and long-term care facilities, drastically reduce the incidence of respiratory infection and death. The purpose of this narrative review is to examine oral health as a required causative companionin bacterial aspiration pneumonia development, and the effectiveness of oral infection control inthe prevention of this disease.
Collapse
|
10
|
Gao X, Mukaibo T, Wei X, Faustoferri RC, Oei MS, Hwang SK, Yan AJ, Melvin JE, Ovitt CE. Nkx2.3 transcription factor is a key regulator of mucous cell identity in salivary glands. Dev Biol 2024; 509:1-10. [PMID: 38311164 PMCID: PMC10939741 DOI: 10.1016/j.ydbio.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Saliva is vital to oral health, fulfilling multiple functions in the oral cavity. Three pairs of major salivary glands and hundreds of minor salivary glands contribute to saliva production. The secretory acinar cells within these glands include two distinct populations. Serous acinar cells secrete a watery saliva containing enzymes, while mucous acinar cells secrete a more viscous fluid containing highly glycosylated mucins. Despite their shared developmental origins, the parotid gland (PG) is comprised of only serous acinar cells, while the sublingual gland (SLG) contains predominantly mucous acinar cells. The instructive signals that govern the identity of serous versus mucous acinar cell phenotypes are not yet known. The homeobox transcription factor Nkx2.3 is uniquely expressed in the SLG. Disruption of the Nkx2.3 gene was reported to delay the maturation of SLG mucous acinar cells. To examine whether Nkx2.3 plays a role in directing the mucous cell phenotype, we analyzed SLG from Nkx2.3-/- mice using RNAseq, immunostaining and proteomic analysis of saliva. Our results indicate that Nkx2.3, most likely in concert with other transcription factors uniquely expressed in the SLG, is a key regulator of the molecular program that specifies the identity of mucous acinar cells.
Collapse
Affiliation(s)
- Xin Gao
- Secretory Mechanisms and Dysfunctions Section, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Taro Mukaibo
- Secretory Mechanisms and Dysfunctions Section, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaolu Wei
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Roberta C Faustoferri
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Maria S Oei
- Secretory Mechanisms and Dysfunctions Section, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seo-Kyoung Hwang
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Adela Jingyi Yan
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - James E Melvin
- Secretory Mechanisms and Dysfunctions Section, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine E Ovitt
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA; Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA.
| |
Collapse
|
11
|
Mattos-Graner RO, Klein MI, Alves LA. The complement system as a key modulator of the oral microbiome in health and disease. Crit Rev Microbiol 2024; 50:138-167. [PMID: 36622855 DOI: 10.1080/1040841x.2022.2163614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023]
Abstract
In this review, we address the interplay between the complement system and host microbiomes in health and disease, focussing on oral bacteria known to contribute to homeostasis or to promote dysbiosis associated with dental caries and periodontal diseases. Host proteins modulating complement activities in the oral environment and expression profiles of complement proteins in oral tissues were described. In addition, we highlight a sub-set of bacterial proteins involved in complement evasion and/or dysregulation previously characterized in pathogenic species (or strains), but further conserved among prototypical commensal species of the oral microbiome. Potential roles of these proteins in host-microbiome homeostasis and in the emergence of commensal strain lineages with increased virulence were also addressed. Finally, we provide examples of how commensal bacteria might exploit the complement system in competitive or cooperative interactions within the complex microbial communities of oral biofilms. These issues highlight the need for studies investigating the effects of the complement system on bacterial behaviour and competitiveness during their complex interactions within oral and extra-oral host sites.
Collapse
Affiliation(s)
- Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Marlise I Klein
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Lívia Araújo Alves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Sao Paulo, Brazil
- School of Dentistry, Cruzeiro do Sul University (UNICSUL), Sao Paulo, Brazil
| |
Collapse
|
12
|
Pajic P, Landau L, Gokcumen O, Ruhl S. Emergence of saliva protein genes in the secretory calcium-binding phosphoprotein (SCPP) locus and accelerated evolution in primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580359. [PMID: 38405690 PMCID: PMC10888740 DOI: 10.1101/2024.02.14.580359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Genes within the secretory calcium-binding phosphoprotein (SCPP) family evolved in conjunction with major evolutionary milestones: the formation of a calcified skeleton in vertebrates, the emergence of tooth enamel in fish, and the introduction of lactation in mammals. The SCPP gene family also contains genes expressed primarily and abundantly in human saliva. Here, we explored the evolution of the saliva-related SCPP genes by harnessing currently available genomic and transcriptomic resources. Our findings provide insights into the expansion and diversification of SCPP genes, notably identifying previously undocumented convergent gene duplications. In primate genomes, we found additional duplication and diversification events that affected genes coding for proteins secreted in saliva. These saliva-related SCPP genes exhibit signatures of positive selection in the primate lineage while the other genes in the same locus remain conserved. We found that regulatory shifts and gene turnover events facilitated the accelerated gain of salivary expression. Collectively, our results position the SCPP gene family as a hotbed of evolutionary innovation, suggesting the potential role of dietary and pathogenic pressures in the adaptive diversification of the saliva composition in primates, including humans.
Collapse
Affiliation(s)
- Petar Pajic
- Department of Biological Sciences, University at Buffalo, The State University of New York, NY 14260, USA
| | - Luane Landau
- Department of Biological Sciences, University at Buffalo, The State University of New York, NY 14260, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, NY 14260, USA
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, NY 14214, USA
| |
Collapse
|
13
|
Ko EK, Anderson A, D'souza C, Zou J, Huang S, Cho S, Alawi F, Prouty S, Lee V, Yoon S, Krick K, Horiuchi Y, Ge K, Seykora JT, Capell BC. Disruption of H3K36 methylation provokes cellular plasticity to drive aberrant glandular formation and squamous carcinogenesis. Dev Cell 2024; 59:187-198.e7. [PMID: 38198888 PMCID: PMC10872381 DOI: 10.1016/j.devcel.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/06/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Chromatin organization is essential for maintaining cell-fate trajectories and developmental programs. Here, we find that disruption of H3K36 methylation dramatically impairs normal epithelial differentiation and development, which promotes increased cellular plasticity and enrichment of alternative cell fates. Specifically, we observe a striking increase in the aberrant generation of excessive epithelial glandular tissues, including hypertrophic salivary, sebaceous, and meibomian glands, as well as enhanced squamous tumorigenesis. These phenotypic and gene expression manifestations are associated with loss of H3K36me2 and rewiring of repressive H3K27me3, changes we also observe in human patients with glandular hyperplasia. Collectively, these results have identified a critical role for H3K36 methylation in both in vivo epithelial cell-fate decisions and the prevention of squamous carcinogenesis and suggest that H3K36 methylation modulation may offer new avenues for the treatment of numerous common disorders driven by altered glandular function, which collectively affect large segments of the human population.
Collapse
Affiliation(s)
- Eun Kyung Ko
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy Anderson
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Carina D'souza
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan Zou
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sijia Huang
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Institute of Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sohyun Cho
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Faizan Alawi
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn School of Dental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephen Prouty
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Vivian Lee
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sora Yoon
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Keegan Krick
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yoko Horiuchi
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | - John T Seykora
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Brian C Capell
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Mukaibo T, Yamada M. Evaluation of Rheological Properties of Saliva by Determining the Spinnbarkeit. Methods Mol Biol 2024; 2763:395-401. [PMID: 38347429 DOI: 10.1007/978-1-0716-3670-1_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Saliva is crucial to maintaining oral health and facilitating chewing, swallowing, and speech functions. Decreased saliva secretion, known as hyposalivation, impairs these functions and increases the risk of dental caries and other infectious diseases in the oral cavity.Saliva exhibits various rheological properties, with mucin being a factor in determining these properties. Alterations in these properties can also affect the sensation of dry mouth. In this article, we focus on the spinnbarkeit of saliva using the Neva Meter instrument and provide a methodology for fully understanding the appropriate conditions for its use.
Collapse
Affiliation(s)
- Taro Mukaibo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Japan.
| | - Mikio Yamada
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Japan
| |
Collapse
|
15
|
Kim YJ. Xerostomia: Advances and Challenges in Drug Development. Curr Drug Targets 2024; 25:301-305. [PMID: 38424432 DOI: 10.2174/0113894501293941240228050343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Affiliation(s)
- Yoon-Jung Kim
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Korea
| |
Collapse
|
16
|
Russell M, Aqi A, Saitou M, Gokcumen O, Masuda N. Gene communities in co-expression networks across different tissues. ARXIV 2023:arXiv:2305.12963v2. [PMID: 37292479 PMCID: PMC10246089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the recent availability of tissue-specific gene expression data, e.g., provided by the GTEx Consortium, there is interest in comparing gene co-expression patterns across tissues. One promising approach to this problem is to use a multilayer network analysis framework and perform multilayer community detection. Communities in gene co-expression networks reveal groups of genes similarly expressed across individuals, potentially involved in related biological processes responding to specific environmental stimuli or sharing common regulatory variations. We construct a multilayer network in which each of the four layers is an exocrine gland tissue-specific gene co-expression network. We develop methods for multilayer community detection with correlation matrix input and an appropriate null model. Our correlation matrix input method identifies five groups of genes that are similarly co-expressed in multiple tissues (a community that spans multiple layers, which we call a generalist community) and two groups of genes that are co-expressed in just one tissue (a community that lies primarily within just one layer, which we call a specialist community). We further found gene co-expression communities where the genes physically cluster across the genome significantly more than expected by chance (on chromosomes 1 and 11). This clustering hints at underlying regulatory elements determining similar expression patterns across individuals and cell types. We suggest that KRTAP3-1, KRTAP3-3, and KRTAP3-5 share regulatory elements in skin and pancreas. Furthermore, we find that CELA3A and CELA3B share associated expression quantitative trait loci in the pancreas. The results indicate that our multilayer community detection method for correlation matrix input extracts biologically interesting communities of genes.
Collapse
Affiliation(s)
| | - Alber Aqi
- Department of Biological Sciences, University at Buffalo
| | - Marie Saitou
- Faculty of Biosciences, Norwegian University of Life Sciences
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo
| | - Naoki Masuda
- Department of Mathematics, University at Buffalo
- Institute for Artificial Intelligence and Data Science, University at Buffalo
| |
Collapse
|
17
|
Verscheure E, Stierum R, Schlünssen V, Lund Würtz AM, Vanneste D, Kogevinas M, Harding BN, Broberg K, Zienolddiny-Narui S, Erdem JS, Das MK, Makris KC, Konstantinou C, Andrianou X, Dekkers S, Morris L, Pronk A, Godderis L, Ghosh M. Characterization of the internal working-life exposome using minimally and non-invasive sampling methods - a narrative review. ENVIRONMENTAL RESEARCH 2023; 238:117001. [PMID: 37683788 DOI: 10.1016/j.envres.2023.117001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
During recent years, we are moving away from the 'one exposure, one disease'-approach in occupational settings and towards a more comprehensive approach, taking into account the totality of exposures during a life course by using an exposome approach. Taking an exposome approach however is accompanied by many challenges, one of which, for example, relates to the collection of biological samples. Methods used for sample collection in occupational exposome studies should ideally be minimally invasive, while at the same time sensitive, and enable meaningful repeated sampling in a large population and over a longer time period. This might be hampered in specific situations e.g., people working in remote areas, during pandemics or with flexible work hours. In these situations, using self-sampling techniques might offer a solution. Therefore, our aim was to identify existing self-sampling techniques and to evaluate the applicability of these techniques in an occupational exposome context by conducting a literature review. We here present an overview of current self-sampling methodologies used to characterize the internal exposome. In addition, the use of different biological matrices was evaluated and subdivided based on their level of invasiveness and applicability in an occupational exposome context. In conclusion, this review and the overview of self-sampling techniques presented herein can serve as a guide in the design of future (occupational) exposome studies while circumventing sample collection challenges associated with exposome studies.
Collapse
Affiliation(s)
- Eline Verscheure
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Vivi Schlünssen
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Anne Mette Lund Würtz
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Dorian Vanneste
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Manolis Kogevinas
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Barbara N Harding
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Mrinal K Das
- National Institute of Occupational Health, Oslo, Norway
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Corina Konstantinou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Xanthi Andrianou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Susan Dekkers
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | | | - Anjoeka Pronk
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at work, Heverlee, Belgium.
| | - Manosij Ghosh
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Akula S, Welinder C, Fu Z, Olsson AK, Hellman L. Identification of the Major Protein Components of Human and Cow Saliva. Int J Mol Sci 2023; 24:16838. [PMID: 38069163 PMCID: PMC10705902 DOI: 10.3390/ijms242316838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Cows produce saliva in very large quantities to lubricate and facilitate food processing. Estimates indicate an amount of 50-150 L per day. Human saliva has previously been found to contain numerous antibacterial components, such as lysozyme, histatins, members of the S-100 family and lactoferrin, to limit pathogen colonization. Cows depend on a complex microbial community in their digestive system for food digestion. Our aim here was to analyze how this would influence the content of their saliva. We therefore sampled saliva from five humans and both nose secretions and saliva from six cows and separated the saliva on SDS-PAGE gradient gels and analyzed the major protein bands with LC-MS/MS. The cow saliva was found to be dominated by a few major proteins only, carbonic anhydrase 6, a pH-stabilizing enzyme and the short palate, lung and nasal epithelium carcinoma-associated protein 2A (SPLUNC2A), also named bovine salivary protein 30 kDa (BSP30) or BPIFA2B. This latter protein has been proposed to play a role in local antibacterial response by binding bacterial lipopolysaccharides (LPSs) and inhibiting bacterial growth but may instead, according to more recent data, primarily have surfactant activity. Numerous peptide fragments of mucin-5B were also detected in different regions of the gel in the MS analysis. Interestingly, no major band on gel was detected representing any of the antibacterial proteins, indicating that cows may produce them at very low levels that do not harm the microbial flora of their digestive system. The nose secretions of the cows primarily contained the odorant protein, a protein thought to be involved in enhancing the sense of smell of the olfactory receptors and the possibility of quickly sensing potential poisonous food components. High levels of secretory IgA were also found in one sample of cow mouth drippings, indicating a strong upregulation during an infection. The human saliva was more complex, containing secretory IgA, amylase, carbonic anhydrase 6, lysozyme, histatins and a number of other less abundant proteins, indicating a major difference to the saliva of cows that show very low levels of antibacterial components, most likely to not harm the microbial flora of the rumen.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.)
| | - Charlotte Welinder
- Department of Clinical Sciences Lund, Division of Mass Spectrometry, Lund University, SE-221 00 Lund, Sweden;
| | - Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.)
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-751 23 Uppsala, Sweden;
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.)
| |
Collapse
|
19
|
Camacho MF, Stuginski DR, Andrade-Silva D, Nishiyama-Jr MY, Valente RH, Zelanis A. A snapshot of Bothrops jararaca snake venom gland subcellular proteome. Biochimie 2023; 214:1-10. [PMID: 37315762 DOI: 10.1016/j.biochi.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/01/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Snake venom protein synthesis undergoes finely regulated processes in the specialized secretory epithelium within the venom gland. Such processes occur within a defined period in the cell and at specific cellular locations. Thus, the determination of subcellular proteomes allows the characterization of protein groups for which the site may be relevant to their biological roles, thereby allowing the deconvolution of complex biological circuits into functional information. In this regard, we performed subcellular fractionation of proteins from B. jararaca venom gland, focusing on nuclear proteins since this cellular compartment comprises key effectors that shape gene expression. Our results provided a snapshot of B. jararaca's subcellular venom gland proteome and pointed to a 'conserved' proteome core among different life stages (newborn and adult) and between sexes (adult male and female). Overall, the top 15 highly abundant proteins identified in B. jararaca venom glands mirrored the panel of highly expressed genes in human salivary glands. Therefore, the expression profile observed for such a protein set could be considered a conserved core signature of salivary gland secretory epithelium. Moreover, the newborn venom gland displayed a unique expression signature of transcription factors involved in regulating transcription and biosynthetic processes and may mirror biological constraints of the ontogenetic development of B. jararaca, contributing to venom proteome diversity.
Collapse
Affiliation(s)
- Maurício Frota Camacho
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, SP, 12231-280, Brazil
| | - Daniel R Stuginski
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, 05503-900, Brazil
| | - Débora Andrade-Silva
- Telomeres Laboratory, Chemical and Biological Sciences Department, IBB-UNESP, Botucatu, São Paulo, Brazil
| | - Milton Y Nishiyama-Jr
- Laboratory of Applied Toxinology, Butantan Institute, Sao Paulo, SP, 05503-900, Brazil
| | - Richard H Valente
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, SP, 12231-280, Brazil.
| |
Collapse
|
20
|
Chen YT, Liao WR, Wang HT, Chen HW, Chen SF. Targeted protein quantitation in human body fluids by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2379-2403. [PMID: 35702881 DOI: 10.1002/mas.21788] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Human body fluids (biofluids) contain various proteins, some of which reflect individuals' physiological conditions or predict diseases. Therefore, the analysis of biofluids can provide substantial information on novel biomarkers for clinical diagnosis and prognosis. In the past decades, mass spectrometry (MS)-based technologies have been developed as proteomic strategies not only for the identification of protein biomarkers but also for biomarker verification/validation in body fluids for clinical applications. The main advantage of targeted MS-based methodologies is the accurate and specific simultaneous quantitation of multiple biomarkers with high sensitivity. Here, we review MS-based methodologies that are currently used for the targeted quantitation of protein components in human body fluids, especially in plasma, urine, cerebrospinal fluid, and saliva. In addition, the currently used MS-based methodologies are summarized with a specific focus on applicable clinical sample types, MS configurations, and acquisition modes.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Rou Liao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Hsueh-Ting Wang
- Instrumentation Center, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiao-Wei Chen
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Sung-Fang Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
- Instrumentation Center, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
21
|
Russell M, Aqil A, Saitou M, Gokcumen O, Masuda N. Gene communities in co-expression networks across different tissues. PLoS Comput Biol 2023; 19:e1011616. [PMID: 37976327 PMCID: PMC10691702 DOI: 10.1371/journal.pcbi.1011616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/01/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
With the recent availability of tissue-specific gene expression data, e.g., provided by the GTEx Consortium, there is interest in comparing gene co-expression patterns across tissues. One promising approach to this problem is to use a multilayer network analysis framework and perform multilayer community detection. Communities in gene co-expression networks reveal groups of genes similarly expressed across individuals, potentially involved in related biological processes responding to specific environmental stimuli or sharing common regulatory variations. We construct a multilayer network in which each of the four layers is an exocrine gland tissue-specific gene co-expression network. We develop methods for multilayer community detection with correlation matrix input and an appropriate null model. Our correlation matrix input method identifies five groups of genes that are similarly co-expressed in multiple tissues (a community that spans multiple layers, which we call a generalist community) and two groups of genes that are co-expressed in just one tissue (a community that lies primarily within just one layer, which we call a specialist community). We further found gene co-expression communities where the genes physically cluster across the genome significantly more than expected by chance (on chromosomes 1 and 11). This clustering hints at underlying regulatory elements determining similar expression patterns across individuals and cell types. We suggest that KRTAP3-1, KRTAP3-3, and KRTAP3-5 share regulatory elements in skin and pancreas. Furthermore, we find that CELA3A and CELA3B share associated expression quantitative trait loci in the pancreas. The results indicate that our multilayer community detection method for correlation matrix input extracts biologically interesting communities of genes.
Collapse
Affiliation(s)
- Madison Russell
- Department of Mathematics, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Alber Aqil
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Marie Saitou
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, New York, United States of America
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
22
|
Aure MH, Symonds JM, Villapudua CU, Dodge JT, Werner S, Knosp WM, Hoffman MP. FGFR2 is essential for salivary gland duct homeostasis and MAPK-dependent seromucous acinar cell differentiation. Nat Commun 2023; 14:6485. [PMID: 37838739 PMCID: PMC10576811 DOI: 10.1038/s41467-023-42243-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
Exocrine acinar cells in salivary glands (SG) are critical for oral health and loss of functional acinar cells is a major clinical challenge. Fibroblast growth factor receptors (FGFR) are essential for early development of multiple organs, including SG. However, the role of FGFR signaling in specific populations later in development and during acinar differentiation are unknown. Here, we use scRNAseq and conditional deletion of murine FGFRs in vivo to identify essential roles for FGFRs in craniofacial, early SG development and progenitor function during duct homeostasis. Importantly, we also discover that FGFR2 via MAPK signaling is critical for seromucous acinar differentiation and secretory gene expression, while FGFR1 is dispensable. We show that FGF7, expressed by myoepithelial cells (MEC), activates the FGFR2-dependent seromucous transcriptional program. Here, we propose a model where MEC-derived FGF7 drives seromucous acinar differentiation, providing a rationale for targeting FGFR2 signaling in regenerative therapies to restore acinar function.
Collapse
Affiliation(s)
- Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Jennifer M Symonds
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Carlos U Villapudua
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Joshua T Dodge
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Zurich, Switzerland
| | - Wendy M Knosp
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
23
|
Abhangi KK, Choudhari SR, Butala PB, Goyal SR, Yadav TG. Salivary Total Protein and Alkaline Phosphatase Activity as Biomarkers for Skeletal Maturity and Growth Prediction in Healthy Children: An In Vivo Study. Int J Clin Pediatr Dent 2023; 16:603-607. [PMID: 37731811 PMCID: PMC10507299 DOI: 10.5005/jp-journals-10005-2629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Introduction Skeletal maturity assessment involves radiographic analysis and visual inspection of developing bone and their initial appearance or sequential ossification and related changes in size and shape along with the expression of various biomarkers in body fluids. Aim To investigate the correlation of biomarkers such as salivary alkaline phosphatase (S-ALP) and salivary total protein (STP) with skeletal maturity assessment and growth prediction in growing children. Materials and methods A total of 8-15-year-old 150 healthy children were divided into five groups depending upon radiographic stage maturity of the middle phalanx of the left hand's third finger according to the Hagg and Taranger method. Radiographs were taken using intraoral periapical (IOPA) radiographic films. Results Salivary alkaline phosphatase (S-ALP) activity in the MP3 G group was significantly higher than MP3 F group and MP3 I group. Total protein levels in MP3 F were significantly lower than in MP3 G. The mean value of S-ALP (33541.45 IU/L) and that of STP (2.77 mg/mL) was observed to be highest in the MP3 G group (G3) group. Conclusion Salivary total protein (STP) and S-ALP may be used as an additional diagnostic tool to assess skeletal maturation and optimize growth prediction during myofunctional orthodontic treatment. Clinical significance Skeletal maturity assessment plays a significant role in orthodontic diagnosis, treatment planning, and stability of orthodontic treatment. Radiographic parameters involve radiographic exposure; hence in this study noninvasive biomarkers such as S-ALP and STP have been evaluated for skeletal maturity assessment and growth prediction. How to cite this article Abhangi KK, Choudhari SR, Butala PB, et al. Salivary Total Protein and Alkaline Phosphatase Activity as Biomarkers for Skeletal Maturity and Growth Prediction in Healthy Children: An In Vivo Study. Int J Clin Pediatr Dent 2023;16(4):603-607.
Collapse
Affiliation(s)
- Khyati K Abhangi
- Department of Pedodontics and Preventive Dentistry, Government Dental College & Hospital, Ahmedabad, Gujarat, India
| | - Shantanu R Choudhari
- Department of Pedodontics and Preventive Dentistry, Government Dental College & Hospital, Ahmedabad, Gujarat, India
| | - Purva B Butala
- Department of Pedodontics and Preventive Dentistry, Government Dental College & Hospital, Ahmedabad, Gujarat, India
| | - Swati R Goyal
- Department of Pedodontics and Preventive Dentistry, Government Dental College & Hospital, Ahmedabad, Gujarat, India
| | - Tej G Yadav
- Department of Pedodontics and Preventive Dentistry, Government Dental College & Hospital, Ahmedabad, Gujarat, India
| |
Collapse
|
24
|
Ghosh S, Ahearn CP, Isabella CR, Marando VM, Dodge GJ, Bartlett H, McPherson RL, Dugan AE, Jain S, Neznanova L, Tettelin H, Putnik R, Grimes CL, Ruhl S, Kiessling LL, Imperiali B. Human oral lectin ZG16B acts as a cell wall polysaccharide probe to decode host-microbe interactions with oral commensals. Proc Natl Acad Sci U S A 2023; 120:e2216304120. [PMID: 37216558 PMCID: PMC10235990 DOI: 10.1073/pnas.2216304120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
The oral microbiome is critical to human health and disease, yet the role that host salivary proteins play in maintaining oral health is unclear. A highly expressed gene in human salivary glands encodes the lectin zymogen granule protein 16 homolog B (ZG16B). Despite the abundance of this protein, its interaction partners in the oral microbiome are unknown. ZG16B possesses a lectin fold, but whether it binds carbohydrates is unclear. We postulated that ZG16B would bind microbial glycans to mediate recognition of oral microbes. To this end, we developed a microbial glycan analysis probe (mGAP) strategy based on conjugating the recombinant protein to fluorescent or biotin reporter functionality. Applying the ZG16B-mGAP to dental plaque isolates revealed that ZG16B predominantly binds to a limited set of oral microbes, including Streptococcus mitis, Gemella haemolysans, and, most prominently, Streptococcus vestibularis. S. vestibularis is a commensal bacterium widely distributed in healthy individuals. ZG16B binds to S. vestibularis through the cell wall polysaccharides attached to the peptidoglycan, indicating that the protein is a lectin. ZG16B slows the growth of S. vestibularis with no cytotoxicity, suggesting that it regulates S. vestibularis abundance. The mGAP probes also revealed that ZG16B interacts with the salivary mucin MUC7. Analysis of S. vestibularis and MUC7 with ZG16B using super-resolution microscopy supports ternary complex formation that can promote microbe clustering. Together, our data suggest that ZG16B influences the compositional balance of the oral microbiome by capturing commensal microbes and regulating their growth using a mucin-assisted clearance mechanism.
Collapse
Affiliation(s)
- Soumi Ghosh
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Christian P. Ahearn
- Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, NY14214
| | | | - Victoria M. Marando
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Gregory J. Dodge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Helen Bartlett
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Robert L. McPherson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Amanda E. Dugan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Shikha Jain
- Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, NY14214
| | - Lubov Neznanova
- Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, NY14214
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD21201
| | - Rachel Putnik
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716
| | - Catherine L. Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, NY14214
| | - Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
25
|
Li N, Ye Y, Wu Y, Li L, Hu J, Luo D, Li Y, Yang J, Gao Y, Hai W, Xie Y, Jiang L. Alterations in histology of the aging salivary gland and correlation with the glandular inflammatory microenvironment. iScience 2023; 26:106571. [PMID: 37124415 PMCID: PMC10131127 DOI: 10.1016/j.isci.2023.106571] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/29/2022] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Aging-related salivary dysfunction typically causes reduced saliva volumes, which leads to debilitating consequences, even affecting patient quality of life. Understanding the respective clinicopathological characteristics and molecular mechanisms underlying salivary gland functioning during aging is vital for therapeutic purposes. Here, we provide a detailed atlas of the salivary gland microenvironment during aging, and we identified several phenotypes characteristic of aging salivary glands, including acini atrophy, increased inflammatory cells, altered immune responses, and accumulation of lysosomes and autophagosomes in aging cells, which may reflect progressive degeneration of salivary gland function. Furthermore, our analyses suggested significant enrichment of metabolic pathways in aging glands. Our results revealed complex cellular cross-talk among aging acinar cells, inflammatory factors, and immune responses. A natural aging animal model was established to verify these findings. This study provides mechanistic insights into age-related clinicopathogenesis, important implications for early diagnosis, and identification of new targets for improving salivary gland dysfunction.
Collapse
Affiliation(s)
- Ning Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yulin Ye
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yicheng Wu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lei Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawei Hu
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Danyang Luo
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yusi Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Yang
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Corresponding author
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Corresponding author
| | - Liting Jiang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Corresponding author
| |
Collapse
|
26
|
Lee J, Kim S, Lee B, Kim YB, Kim KH, Chung G, Lee SJ, Lee S, Sun W, Park HK, Choi SY. Major depression-related factor NEGR1 controls salivary secretion in mouse submandibular glands. iScience 2023; 26:106773. [PMID: 37216094 PMCID: PMC10196562 DOI: 10.1016/j.isci.2023.106773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/26/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Salivary gland cells, which secrete water in response to neuronal stimulation, are closely connected to other neurons. Transcriptomic studies show that salivary glands also express some proteins responsible for neuronal function. However, the physiological functions of these common neuro-exocrine factors in salivary glands are largely unknown. Here, we studied the function of Neuronal growth regulator 1 (NEGR1) in the salivary gland cells. NEGR1 was also expressed in mouse and human salivary glands. The structure of salivary glands of Negr1 knockout (KO) mice was normal. Negr1 KO mice showed tempered carbachol- or thapsigargin-induced intracellular Ca2+ increases and store-operated Ca2+ entry. Of interest, the activity of the large-conductance Ca2+-activated K+ channel (BK channel) was increased, whereas Ca2+-activated Cl- channel ANO1 channel activity was not altered in Negr1 KO mice. Pilocarpine- and carbachol-induced salivation was decreased in Negr1 KO mice. These results suggest that NEGR1 influence salivary secretion though the muscarinic Ca2+ signaling.
Collapse
Affiliation(s)
- Jisoo Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Soohyun Kim
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Boram Lee
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yoo-Bin Kim
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Kwang Hwan Kim
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Gehoon Chung
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Sung Joong Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hee-Kyung Park
- Department of Oral Medicine and Oral Diagnosis, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| |
Collapse
|
27
|
Horeth E, Bard J, Che M, Wrynn T, Song E, Marzullo B, Burke M, Popat S, Loree T, Zemer J, Tapia J, Frustino J, Kramer J, Sinha S, Romano R. High-Resolution Transcriptomic Landscape of the Human Submandibular Gland. J Dent Res 2023; 102:525-535. [PMID: 36726292 PMCID: PMC10249006 DOI: 10.1177/00220345221147908] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Saliva-secreting and transporting cells are part of the complex cellular milieu of the human salivary gland, where they play important roles in normal glandular physiology and diseased states. However, comprehensive molecular characterization, particularly at single-cell resolution, is still incomplete, in part due to difficulty in procuring normal human tissues. Here, we perform an in-depth analysis of male and female adult human submandibular gland (SMG) samples by bulk RNA sequencing (RNA-seq) and examine the molecular underpinnings of the heterogeneous cell populations by single-cell (sc) RNA-seq. Our results from scRNA-seq highlight the remarkable diversity of clusters of epithelial and nonepithelial cells that reside in the SMG that is also faithfully recapitulated by deconvolution of the bulk-RNA data sets. Our analyses reveal complex transcriptomic heterogeneity within both the ductal and acinar subpopulations and identify atypical SMG cell types, such as mucoacinar cells that are unique to humans and ionocytes that have been recently described in the mouse. We use CellChat to explore ligand-receptor interactome predictions that likely mediate crucial cell-cell communications between the various cell clusters. Finally, we apply a trajectory inference method to investigate specific cellular branching points and topology that offers insights into the dynamic and complex differentiation process of the adult SMG. The data sets and the analyses herein comprise an extensive wealth of high-resolution information and a valuable resource for a deeper mechanistic understanding of human SMG biology and pathophysiology.
Collapse
Affiliation(s)
- E. Horeth
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - J. Bard
- Genomics and Bioinformatics Core, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - M. Che
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - T. Wrynn
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - E.A.C. Song
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - B. Marzullo
- Genomics and Bioinformatics Core, State University of New York at Buffalo, Buffalo, NY, USA
| | - M.S. Burke
- Erie County Medical Center, Department of Head & Neck/Plastic & Reconstructive Surgery, Buffalo, NY, USA
| | - S. Popat
- Erie County Medical Center, Department of Head & Neck/Plastic & Reconstructive Surgery, Buffalo, NY, USA
| | - T. Loree
- Erie County Medical Center, Department of Head & Neck/Plastic & Reconstructive Surgery, Buffalo, NY, USA
| | - J. Zemer
- Erie County Medical Center Division of Oral Oncology & Maxillofacial Prosthetics, Buffalo, NY, USA
| | - J.L. Tapia
- Department of Oral Diagnostic Sciences, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - J. Frustino
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
- Erie County Medical Center Division of Oral Oncology & Maxillofacial Prosthetics, Buffalo, NY, USA
| | - J.M. Kramer
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - S. Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - R.A. Romano
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
28
|
Freitas-Fernandes LB, Fontes GP, Letieri ADS, Valente AP, Souza IPRD, Fidalgo TKDS. NMR-Based Metabolomics Demonstrates a Metabolic Change during Early Developmental Stages from Healthy Infants to Young Children. Metabolites 2023; 13:metabo13030445. [PMID: 36984885 PMCID: PMC10058828 DOI: 10.3390/metabo13030445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The present study aims to identify the salivary metabolic profile of healthy infants and young children, and to correlate this with age, salivary gland maturation, and dentition. Forty-eight children were selected after clinical evaluation in which all intraoral structures were examined. Total unstimulated saliva was collected, and salivary metabolites were analyzed by 1H Nuclear Magnetic Resonance (NMR) at 25 °C. Partial least squares discriminant analysis (PLS-DA), orthogonal PLS-DA (O-PLS-DA), and univariate analysis were used, adopting a 95% confidence interval. The study showed a distinct salivary metabolomic profile related to age and developmental phase. The saliva of children in the pre-eruption teeth period showed a different metabolite profile than that of children after the eruption. However, more evident changes were observed in the saliva profile of children older than 30 months. Alanine, choline, ethanol, lactate, and sugar region were found in higher levels in the saliva of patients before 30 months old. Acetate, N-acetyl sugar, butyrate, caproate, creatinine, leucine, phenylalanine, propionate, valine, succinate, and valerate were found to be more abundant in the saliva of children after 30 months old. The saliva profile is a result of changes in age and dental eruption, and these findings can be useful for monitoring the physiological changes that occur in infancy.
Collapse
Affiliation(s)
- Liana Bastos Freitas-Fernandes
- National Center for Nuclear Magnetic Resonance, Medical Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Gabriela Pereira Fontes
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
| | - Aline Dos Santos Letieri
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
| | - Ana Paula Valente
- National Center for Nuclear Magnetic Resonance, Medical Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Ivete Pomarico Ribeiro de Souza
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
| | - Tatiana Kelly da Silva Fidalgo
- Department of Preventive and Community Dentistry, School of Dentistry, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, RJ, Brazil
| |
Collapse
|
29
|
Kim YJ. Xerostomia and Its Cellular Targets. Int J Mol Sci 2023; 24:ijms24065358. [PMID: 36982432 PMCID: PMC10049126 DOI: 10.3390/ijms24065358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Xerostomia, the subjective feeling of a dry mouth associated with dysfunction of the salivary glands, is mainly caused by radiation and chemotherapy, various systemic and autoimmune diseases, and drugs. As saliva plays numerous essential roles in oral and systemic health, xerostomia significantly reduces quality of life, but its prevalence is increasing. Salivation mainly depends on parasympathetic and sympathetic nerves, and the salivary glands responsible for this secretion move fluid unidirectionally through structural features such as the polarity of acinar cells. Saliva secretion is initiated by the binding of released neurotransmitters from nerves to specific G-protein-coupled receptors (GPCRs) on acinar cells. This signal induces two intracellular calcium (Ca2+) pathways (Ca2+ release from the endoplasmic reticulum and Ca2+ influx across the plasma membrane), and this increased intracellular Ca2+ concentration ([Ca2+]i) causes the translocation of the water channel aquaporin 5 (AQP5) to the apical membrane. Consequently, the GPCR-mediated increased [Ca2+]i in acinar cells promotes saliva secretion, and this saliva moves into the oral cavity through the ducts. In this review, we seek to elucidate the potential of GPCRs, the inositol 1,4,5-trisphosphate receptor (IP3R), store-operated Ca2+ entry (SOCE), and AQP5, which are essential for salivation, as cellular targets in the etiology of xerostomia.
Collapse
Affiliation(s)
- Yoon-Jung Kim
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| |
Collapse
|
30
|
Matuck B, Ferraz da Silva LF, Warner BM, Byrd KM. The need for integrated research autopsies in the era of precision oral medicine. J Am Dent Assoc 2023; 154:194-205. [PMID: 36710158 PMCID: PMC9974796 DOI: 10.1016/j.adaj.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Autopsy has benefited the practice of medicine for centuries; however, its use to advance the practice of oral health care is relatively limited. In the era of precision oral medicine, the research autopsy is poised to play an important role in understanding oral-systemic health, including infectious disease, autoimmunity, craniofacial genetics, and cancer. TYPES OF STUDIES REVIEWED The authors reviewed relevant articles that used medical and dental research autopsies to summarize the advantages of minimally invasive autopsies of dental, oral, and craniofacial tissues and to outline practices for supporting research autopsies of the oral and craniofacial complex. RESULTS The authors provide a historical summary of research autopsy in dentistry and provide a perspective on the value of autopsies for high-resolution multiomic studies to benefit precision oral medicine. As the promise of high-resolution multiomics is being realized, there is a need to integrate the oral and craniofacial complex into the practice of autopsy in medicine. Furthermore, the collaboration of autopsy centers with researchers will accelerate the understanding of dental, oral, and craniofacial tissues as part of the whole body. CONCLUSIONS Autopsies must integrate oral and craniofacial tissues as part of biobanking procedures. As new technologies allow for high-resolution, multimodal phenotyping of human samples, using optimized sampling procedures will allow for unprecedented understanding of common and rare dental, oral, and craniofacial diseases in the future. PRACTICAL IMPLICATIONS The COVID-19 pandemic highlighted the oral cavity as a site for viral infection and transmission potential; this was only discovered via clinical autopsies. The realization of the integrated autopsy's value in full body health initiatives will benefit patients across the globe.
Collapse
Affiliation(s)
- Bruno Matuck
- Department of Pathology, School of Medicine University of São Paulo, São Paulo, Brazil
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Blake M. Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin Matthew Byrd
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lab of Oral & Craniofacial Innovation (LOCI), Department of Innovation and Technology Research, ADA Science & Research Institute, Gaithersburg, MD, USA
| |
Collapse
|
31
|
Narendra R, Ninche N, Ghazizadeh S. Functional Differences in the Role of Ductal Stem Cells in Mouse Major Salivary Glands. Stem Cells Dev 2023; 32:152-161. [PMID: 36541354 PMCID: PMC9986005 DOI: 10.1089/scd.2022.0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Salivary gland (SG) stem cells are the only cell population capable of extended growth in organotypic cultures, and thus they are considered a source for cell-based therapies aimed at SG regeneration. Studies in the mouse submandibular gland have identified only one population of tissue stem cells capable of salisphere formation in culture. These cells are actively dividing ductal cells that express epithelial progenitor markers keratin (K) 5/14 and normally function as lineage-restricted stem cells for differentiated ductal cells. In response to severe injury, however, these cells undergo a multipotency switch and contribute to regeneration of multiple cell lineages, including secretory units or acini. Little is known about the mechanism of cell renewal and regeneration in the other major SGs and whether comparable stem cell populations exist in the parotid (PG) and sublingual (SLG) glands. Using in vivo and ex vivo models, we show that both the PG and SLG contain a small population of K14-expressing ductal cells. Although they do not cycle frequently, K14-expressing ductal cells are the source of salisphere-forming cells in these glands. Long-term lineage tracing studies in adult mouse PGs showed a progenitor-progeny relationship between the K14-expressing ductal cells and the K19-expressing ductal cells in the striated ducts. In the SLGs, however, K14-expressing ductal cells did not generate a differentiated cell progeny for a 6-month period of observation and did not make a significant contribution to regeneration of gland after severe injury. These studies reveal the functional similarities and differences in tissue stem cells among the major SGs and have implications for developing strategies for SG regenerative therapies.
Collapse
Affiliation(s)
- Raksha Narendra
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York, USA
| | - Ninche Ninche
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York, USA
| | - Soosan Ghazizadeh
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
32
|
Cooper RBV, Kim KB, Oliver DR, Armbrecht E, Behrents RG, Montaño AM. DLX6 and MSX1 from saliva samples as potential predictors of mandibular size: A cross-sectional study. Am J Orthod Dentofacial Orthop 2023; 163:368-377. [PMID: 36494218 DOI: 10.1016/j.ajodo.2021.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Morphologic features of the mandible are influenced by the genes of each individual. Mandible size is important to orthodontists because the mandible is the mechanism by which the lower face influences facial esthetics and dental function. To date, no biological marker has been identified that indicates eventual mandible size. This study aimed to correlate the expression of DLX5, DLX6, EDN1, HAND2, PRRX1, and MSX1 to mandible size. METHODS Fifty-nine orthodontic patients aged >6 years who had available cephalometric radiographs were studied. Patients were classified on the basis of condylion-to-gnathion measurements. Messenger RNA was isolated from saliva and subjected to real-time quantitative polymerase chain reaction. RESULTS Threshold cycle values for subjects with small mandibles (>1 standard deviation [SD] from the mean) had the least expression of DLX6 and MSX1. Threshold cycle values for subjects with large mandibles (>1 SD) had less expression of DLX6 and MSX1 than subjects within 1 SD but more than those with small mandibles. CONCLUSIONS DLX6 and MSX1 are related to mandible development and size. This finding could be used to improve treatment planning for medical and dental professionals seeking to understand the impact of genetics on bone growth.
Collapse
Affiliation(s)
- Rachel Bryn V Cooper
- Formerly, Department of Orthodontics, School of Medicine, Saint Louis University, St Louis, Mo currently, Private practice, Houston, Tex.
| | - Ki Beom Kim
- Department of Orthodontics, School of Medicine, Saint Louis University, St Louis, Mo
| | - Donald R Oliver
- Department of Orthodontics, School of Medicine, Saint Louis University, St Louis, Mo
| | - Eric Armbrecht
- Center for Health Outcomes Research, Saint Louis University, St Louis, Mo
| | - Rolf G Behrents
- Department of Orthodontics, School of Medicine, Saint Louis University, St Louis, Mo
| | - Adriana M Montaño
- Departments of Pediatrics and Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, St Louis, Mo.
| |
Collapse
|
33
|
Aure MH, Symonds JM, Villapudua CU, Dodge JT, Werner S, Knosp WM, Hoffman MP. FGFR2b is essential for salivary gland duct homeostasis and MAPK-dependent seromucous acinar cell differentiation. RESEARCH SQUARE 2023:rs.3.rs-2557484. [PMID: 36824936 PMCID: PMC9949235 DOI: 10.21203/rs.3.rs-2557484/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Exocrine secretory acinar cells in salivary glands (SG) are critical for oral health and loss of functional acinar cells is a major clinical challenge. Fibroblast growth factor receptors (FGFR) are essential for early development of multiple organs, including SG. However, the role of FGFR signaling in specific epithelial SG populations later in development and during acinar differentiation are unknown. Here, we predicted FGFR dependence in specific populations using scRNAseq data and conditional mouse models to delete FGFRs in vivo. We identifed essential roles for FGFRs in craniofacial and early SG development, as well as progenitor function during duct homeostasis. Importantly, we discovered that FGFR2b was critical for seromucous and serous acinar cell differentiation and secretory gene expression (Bpifa2 and Lpo) via MAPK signaling, while FGFR1b was dispensable. We show that FGF7, expressed by myoepithelial cells (MEC), activated the FGFR2b-dependent seromucous transcriptional program. We propose a model where MEC-derived FGF7 drives seromucous acinar differentiaton, providing a rationale for targeting FGFR2b signaling in regenerative therapies to restore acinar function.
Collapse
Affiliation(s)
- Marit H. Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jennifer M. Symonds
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Carlos U. Villapudua
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Joshua T. Dodge
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Wendy M. Knosp
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Matthew P. Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
34
|
Zhang S, Sui Y, Zhang Y, Yan S, Ding C, Feng Y, Xiong J, Wei S. Derivation of Human Salivary Epithelial Progenitors from Pluripotent Stem Cells via Activation of RA and Wnt Signaling. Stem Cell Rev Rep 2023; 19:430-442. [PMID: 35948781 DOI: 10.1007/s12015-022-10431-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 02/07/2023]
Abstract
Derivation of salivary gland epithelial progenitors (SGEPs) from human pluripotent stem cells (hPSCs) has great potential in developmental biology and regenerative medicine. At present, no efficient method is available to generate salivary gland cells from hPSCs. Here, we described for the first time a robust protocol for direct differentiation of hPSCs into SGEPs by mimicking retinoic acid and Wnt signaling. These hPSC-derived SGEPs expressed SOX9, KRT5, and KRT19, important progenitor markers of developing salivary glands. CD24 and α-SMA positive cells, capable of restoring the functions of injured salivary glands, were also present in SGEP cultures. Importantly, RNA-sequencing revealed that the SGEPs resembled the transcript profiles of human fetal submandibular glands. Therefore, we provided an efficient protocol to induce hPSCs differentiation into SGEPs. Our study provides a foundation for generating functional hPSCs derived salivary gland acinar cells and three-dimensional organoids, potentially serving as new models for basic study and future translational research.
Collapse
Affiliation(s)
- Siqi Zhang
- Central Laboratory, and Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology, Peking University, Beijing, 100081, China.,Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Yi Sui
- Central Laboratory, and Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Yifei Zhang
- Central Laboratory, and Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Shuang Yan
- Central Laboratory, and Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Chong Ding
- Central Laboratory, and Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Yanrui Feng
- Central Laboratory, and Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology, Peking University, Beijing, 100081, China
| | - Jingwei Xiong
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Shicheng Wei
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China. .,Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
35
|
Li Y, Liu J, Guan T, Zhang Y, Cheng Q, Liu H, Liu C, Luo W, Chen H, Chen L, Zhao T. The submandibular and sublingual glands maintain oral microbial homeostasis through multiple antimicrobial proteins. Front Cell Infect Microbiol 2023; 12:1057327. [PMID: 36704102 PMCID: PMC9872150 DOI: 10.3389/fcimb.2022.1057327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Oral microbial homeostasis is a key factor affecting oral health, and saliva plays a significant role in maintaining oral microbial homeostasis. The submandibular gland (SMG) and sublingual gland (SLG) together produce the most saliva at rest. Organic ingredients, including antimicrobial proteins, are rich and distinctive and depend on the type of acinar cells in the SMG and SLG. However, the functions of the SMG and SLG in maintaining oral microbial homeostasis have been difficult to identify and distinguish, given their unique anatomical structures. Methods In this study, we independently removed either the SMG or SLG from mouse models. SMGs were aseptically removed in three mice in the SMG-removal group, and SLGs were aseptically removed in three mice in the SLG-removal group. Three mice from the sham-operated group were only anesthetized and incised the skin. After one month, we analyzed their oral microbiome through 16S rRNA sequencing. And then, we analyzed each gland using proteomics and single-cell RNA sequencing. Results Our study revealed that the microbiome balance was significantly disturbed, with decreased bacterial richness, diversity, and uniformity in the groups with the SMG or SLG removed compared with the sham-operated group. We identified eight secreted proteins in the SMG and two in the SLG that could be involved in maintaining oral microbial homeostasis. Finally, we identified multiple types of cells in the SMG and SLG (including serous acinar, mucinous acinar, ductal epithelial, mesenchymal, and immune cells) that express potential microbiota homeostasis regulatory proteins. Our results suggest that both the SMG and SLG play crucial roles in maintaining oral microbial homeostasis via excretion. Furthermore, the contribution of the SMG in maintaining oral microbial homeostasis appears to be superior to that of the SLG. These findings also revealed the possible antimicrobial function of gland secreta. Discussion Our results suggest that control of oral microbial dysbiosis is necessary when the secretory function of the SMG or SLG is impaired. Our study could be the basis for further research on the prevention of oral diseases caused by microbial dysbiosis.
Collapse
Affiliation(s)
- Yanan Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jingming Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Tong Guan
- First Clinical College, Chongqing Medical University, Chongqing, China
| | - Yuxin Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qianyu Cheng
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Huikai Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chang Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Wenping Luo
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Liang Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China,*Correspondence: Tianyu Zhao, ; Liang Chen,
| | - Tianyu Zhao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China,*Correspondence: Tianyu Zhao, ; Liang Chen,
| |
Collapse
|
36
|
Zhou M, Ma T, Wang X, Zhang S, Yang G, Song R, Chen X. High-risk subtype: Clinical manifestations and molecular characteristics of submandibular gland adenoid cystic carcinoma. Front Oncol 2022; 12:1021169. [PMID: 36591454 PMCID: PMC9800506 DOI: 10.3389/fonc.2022.1021169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Objective Adenoid cystic carcinoma of the head and neck mainly occurs in the major salivary glands, of which the parotid gland and submandibular gland are the most common. The purpose of this study was to clarify the site-specific differences in prognosis and molecular expression characteristics of the patients and to achieve stratified risk management of the clinical prognosis. Materials By performing a single-centre retrospective analysis combined with analyses of the Surveillance, Epidemiology, and End Results (SEER) database, cBioPortal and GEO databases, the clinical prognostic characteristics and the differences in molecular expression patterns of ACC in the submandibular gland and parotid gland were analysed. Cox regression analysis, the chi-square test, Fisher's test and the log-rank test were used to compare the significance of differences. Results Compared with patients with parotid gland ACC, the submandibular gland ACC is more likely to have metastases in the cervical lymph node (21.7% vs. 3.3%) and shows a higher rate of distant metastasis within 1 year after the primary site diagnosis (47.8% vs. 23.3%), a worse overall prognosis, more frequent mutations of MYB/MYBL1 (50% vs. 25%) and abnormal upregulation of the phosphatidylinositol-3 kinase (PI3K) pathway. Conclusions Submandibular gland ACC is associated with site-specific early cervical lymph node metastasis and hidden distant metastasis, along with rapid progression and a poor prognosis. A high MYB/MYBL1 mutation rate and abnormal upregulation of the PI3K pathway with MYB involvement were identified.
Collapse
Affiliation(s)
- Mengjiao Zhou
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Tingyao Ma
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Xuelian Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Shujing Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Guoliang Yang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Ruohui Song
- Department of Otolaryngology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China,*Correspondence: Ruohui Song, ; Xiaohong Chen,
| | - Xiaohong Chen
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China,*Correspondence: Ruohui Song, ; Xiaohong Chen,
| |
Collapse
|
37
|
Warinner C. An Archaeology of Microbes. JOURNAL OF ANTHROPOLOGICAL RESEARCH 2022. [DOI: 10.1086/721976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christina Warinner
- Department of Anthropology, Harvard University, Cambridge MA, USA 02138, and Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany 04103
| |
Collapse
|
38
|
McNicholas K, François M, Liu JW, Doecke JD, Hecker J, Faunt J, Maddison J, Johns S, Pukala TL, Rush RA, Leifert WR. Salivary inflammatory biomarkers are predictive of mild cognitive impairment and Alzheimer's disease in a feasibility study. Front Aging Neurosci 2022; 14:1019296. [PMID: 36438010 PMCID: PMC9685799 DOI: 10.3389/fnagi.2022.1019296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is an insidious disease. Its distinctive pathology forms over a considerable length of time without symptoms. There is a need to detect this disease, before even subtle changes occur in cognition. Hallmark AD biomarkers, tau and amyloid-β, have shown promising results in CSF and blood. However, detecting early changes in these biomarkers and others will involve screening a wide group of healthy, asymptomatic individuals. Saliva is a feasible alternative. Sample collection is economical, non-invasive and saliva is an abundant source of proteins including tau and amyloid-β. This work sought to extend an earlier promising untargeted mass spectrometry study in saliva from individuals with mild cognitive impairment (MCI) or AD with age- and gender-matched cognitively normal from the South Australian Neurodegenerative Disease cohort. Five proteins, with key roles in inflammation, were chosen from this study and measured by ELISA from individuals with AD (n = 16), MCI (n = 15) and cognitively normal (n = 29). The concentrations of Cystatin-C, Interleukin-1 receptor antagonist, Stratifin, Matrix metalloproteinase 9 and Haptoglobin proteins had altered abundance in saliva from AD and MCI, consistent with the earlier study. Receiver operating characteristic analysis showed that combinations of these proteins demonstrated excellent diagnostic accuracy for distinguishing both MCI (area under curve = 0.97) and AD (area under curve = 0.97) from cognitively normal. These results provide evidence for saliva being a valuable source of biomarkers for early detection of cognitive impairment in individuals on the AD continuum and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Kym McNicholas
- Molecular Diagnostic Solutions Group, Human Health Program, CSIRO Health and Biosecurity, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Maxime François
- Molecular Diagnostic Solutions Group, Human Health Program, CSIRO Health and Biosecurity, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jian-Wei Liu
- CSIRO Land and Water, Black Mountain Research and Innovation Park, Canberra, ACT, Australia
| | - James D. Doecke
- Australian e-Health Research Centre, CSIRO, Herston, QLD, Australia
| | - Jane Hecker
- Department of Internal Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Jeff Faunt
- Department of General Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - John Maddison
- Aged Care Rehabilitation and Palliative Care, SA Health, Modbury Hospital, Modbury, SA, Australia
| | - Sally Johns
- Aged Care Rehabilitation and Palliative Care, SA Health, Modbury Hospital, Modbury, SA, Australia
| | - Tara L. Pukala
- School of Physical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | | | - Wayne R. Leifert
- Molecular Diagnostic Solutions Group, Human Health Program, CSIRO Health and Biosecurity, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
39
|
Jesuthasan A, Ali A, Lee JKW, Rutherfurd-Markwick K. Assessment of Changes in Physiological Markers in Different Body Fluids at Rest and after Exercise. Nutrients 2022; 14:nu14214685. [PMID: 36364948 PMCID: PMC9654217 DOI: 10.3390/nu14214685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Physiological and biological markers in different body fluids are used to measure the body’s physiological or pathological status. In the field of sports and exercise medicine, the use of these markers has recently become more popular for monitoring an athlete’s training response and assessing the immediate or long-term effects of exercise. Although the effect of exercise on different physiological markers using various body fluids is well substantiated, no article has undertaken a review across multiple body fluids such as blood, saliva, urine and sweat. This narrative review aims to assess various physiological markers in blood, urine and saliva, at rest and after exercise and examines physiological marker levels obtained across similar studies, with a focus on the population and study methodology used. Literature searches were conducted using PRISMA guidelines for keywords such as exercise, physical activity, serum, sweat, urine, and biomarkers, resulting in an analysis of 15 studies for this review paper. When comparing the effects of exercise on physiological markers across different body fluids (blood, urine, and saliva), the changes detected were generally in the same direction. However, the extent of the change varied, potentially as a result of the type and duration of exercise, the sample population and subject numbers, fitness levels, and/or dietary intake. In addition, none of the studies used solely female participants; instead, including males only or both male and female subjects together. The results of some physiological markers are sex-dependent. Therefore, to better understand how the levels of these biomarkers change in relation to exercise and performance, the sex of the participants should also be taken into consideration.
Collapse
Affiliation(s)
- Amalini Jesuthasan
- School of Health Sciences, Massey University, Auckland 0745, New Zealand
| | - Ajmol Ali
- School of Sport, Exercise and Nutrition, Massey University, Auckland 0745, New Zealand
- Centre for Metabolic Health Research, Massey University, Auckland 0745, New Zealand
| | - Jason Kai Wei Lee
- Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Kay Rutherfurd-Markwick
- School of Health Sciences, Massey University, Auckland 0745, New Zealand
- Centre for Metabolic Health Research, Massey University, Auckland 0745, New Zealand
- Correspondence: ; Tel.: +64-9-213-6646
| |
Collapse
|
40
|
Ehnes DD, Alghadeer A, Hanson-Drury S, Zhao YT, Tilmes G, Mathieu J, Ruohola-Baker H. Sci-Seq of Human Fetal Salivary Tissue Introduces Human Transcriptional Paradigms and a Novel Cell Population. FRONTIERS IN DENTAL MEDICINE 2022; 3:887057. [PMID: 36540608 PMCID: PMC9762771 DOI: 10.3389/fdmed.2022.887057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Multiple pathologies and non-pathological factors can disrupt the function of the non-regenerative human salivary gland including cancer and cancer therapeutics, autoimmune diseases, infections, pharmaceutical side effects, and traumatic injury. Despite the wide range of pathologies, no therapeutic or regenerative approaches exist to address salivary gland loss, likely due to significant gaps in our understanding of salivary gland development. Moreover, identifying the tissue of origin when diagnosing salivary carcinomas requires an understanding of human fetal development. Using computational tools, we identify developmental branchpoints, a novel stem cell-like population, and key signaling pathways in the human developing salivary glands by analyzing our human fetal single-cell sequencing data. Trajectory and transcriptional analysis suggest that the earliest progenitors yield excretory duct and myoepithelial cells and a transitional population that will yield later ductal cell types. Importantly, this single-cell analysis revealed a previously undescribed population of stem cell-like cells that are derived from SD and expresses high levels of genes associated with stem cell-like function. We have observed these rare cells, not in a single niche location but dispersed within the developing duct at later developmental stages. Our studies introduce new human-specific developmental paradigms for the salivary gland and lay the groundwork for the development of translational human therapeutics.
Collapse
Affiliation(s)
- Devon Duron Ehnes
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Ammar Alghadeer
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Sesha Hanson-Drury
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Yan Ting Zhao
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Gwen Tilmes
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
41
|
Fowler EW, van Venrooy EJ, Witt RL, Jia X. A TGFβR inhibitor represses keratin-7 expression in 3D cultures of human salivary gland progenitor cells. Sci Rep 2022; 12:15008. [PMID: 36056161 PMCID: PMC9440137 DOI: 10.1038/s41598-022-19253-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
Salivary gland tissue engineering offers an attractive alternative for the treatment of radiation-induced xerostomia. Key to the success of this approach is the maintenance and expansion of secretory acinar cells in vitro. However, recent studies revealed that in vitro culture of primary salivary gland epithelial cells led to undesirable upregulation of the expression of keratin-7 (K7), a marker of ductal phenotype and frequently associated with cellular stress. We have previously shown that hyaluronic acid (HA)-based, RGDSP-decorated hydrogels support the 3D growth and assembly of primary human salivary gland stem/progenitor cells (hS/PCs). Here, we investigate whether the RGDSP culture also promotes K7 expression, and if so, what factors govern the K7 expression. Compared to hS/PCs maintained in blank HA gels, those grown in RGDSP cultures expressed a significantly higher level of K7. In other tissues, various transforming growth factor-β (TGF-β) superfamily members are reported to regulate K7 expression. Similarly, our immunoblot array and ELISA experiments confirmed the increased expression of TGF-β1 and growth/differentiation factor-15 (GDF-15) in RGDSP cultures. However, 2D model studies show that only TGF-β1 is required to induce K7 expression in hS/PCs. Immunocytochemical analysis of the intracellular effectors of TGF-β signaling, SMAD 2/3, further confirmed the elevated TGF-β signaling in RGDSP cultures. To maximize the regenerative potential of h/SPCs, cultures were treated with a pharmacological inhibitor of TGF-β receptor, A83-01. Our results show that A83-01 treatment can repress K7 expression not only in 3D RGDSP cultures but also under 2D conditions with exogenous TGF-β1. Collectively, we provide a link between TGF-β signaling and K7 expression in hS/PC cultures and demonstrate the effectiveness of TGF-β inhibition to repress K7 expression while maintaining the ability of RGDSP-conjugated HA gels to facilitate the rapid development of amylase expressing spheroids. These findings represent an important step towards regenerating salivary function with a tissue-engineered salivary gland.
Collapse
Affiliation(s)
- Eric W Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
| | - Emmett J van Venrooy
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Robert L Witt
- Helen F. Graham Cancer Center and Research Institute, Christiana Care, Newark, DE, 19713, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA.
- Delaware Biotechnology Institute, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
42
|
Pajic P, Shen S, Qu J, May AJ, Knox S, Ruhl S, Gokcumen O. A mechanism of gene evolution generating mucin function. SCIENCE ADVANCES 2022; 8:eabm8757. [PMID: 36026444 PMCID: PMC9417175 DOI: 10.1126/sciadv.abm8757] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 07/12/2022] [Indexed: 05/12/2023]
Abstract
How novel gene functions evolve is a fundamental question in biology. Mucin proteins, a functionally but not evolutionarily defined group of proteins, allow the study of convergent evolution of gene function. By analyzing the genomic variation of mucins across a wide range of mammalian genomes, we propose that exonic repeats and their copy number variation contribute substantially to the de novo evolution of new gene functions. By integrating bioinformatic, phylogenetic, proteomic, and immunohistochemical approaches, we identified 15 undescribed instances of evolutionary convergence, where novel mucins originated by gaining densely O-glycosylated exonic repeat domains. Our results suggest that secreted proteins rich in proline are natural precursors for acquiring mucin function. Our findings have broad implications for understanding the role of exonic repeats in the parallel evolution of new gene functions, especially those involving protein glycosylation.
Collapse
Affiliation(s)
- Petar Pajic
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- Center of Excellence in Bioinformatics and Life Science, Buffalo, NY 14203, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- Center of Excellence in Bioinformatics and Life Science, Buffalo, NY 14203, USA
| | - Alison J. May
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sarah Knox
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
43
|
Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiol Rev 2022; 102:1495-1552. [PMID: 35343828 PMCID: PMC9126227 DOI: 10.1152/physrev.00015.2021] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/27/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salivary glands produce and secrete saliva, which is essential for maintaining oral health and overall health. Understanding both the unique structure and physiological function of salivary glands, as well as how they are affected by disease and injury, will direct the development of therapy to repair and regenerate them. Significant recent advances, particularly in the OMICS field, increase our understanding of how salivary glands develop at the cellular, molecular, and genetic levels: the signaling pathways involved, the dynamics of progenitor cell lineages in development, homeostasis, and regeneration, and the role of the extracellular matrix microenvironment. These provide a template for cell and gene therapies as well as bioengineering approaches to repair or regenerate salivary function.
Collapse
Affiliation(s)
- Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
44
|
Yoon YJ, Kim D, Tak KY, Hwang S, Kim J, Sim NS, Cho JM, Choi D, Ji Y, Hur JK, Kim H, Park JE, Lim JY. Salivary gland organoid culture maintains distinct glandular properties of murine and human major salivary glands. Nat Commun 2022; 13:3291. [PMID: 35672412 PMCID: PMC9174290 DOI: 10.1038/s41467-022-30934-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
Salivary glands that produce and secrete saliva, which is essential for lubrication, digestion, immunity, and oral homeostasis, consist of diverse cells. The long-term maintenance of diverse salivary gland cells in organoids remains problematic. Here, we establish long-term murine and human salivary gland organoid cultures. Murine and human salivary gland organoids express gland-specific genes and proteins of acinar, myoepithelial, and duct cells, and exhibit gland functions when stimulated with neurotransmitters. Furthermore, human salivary gland organoids are established from isolated basal or luminal cells, retaining their characteristics. Single-cell RNA sequencing also indicates that human salivary gland organoids contain heterogeneous cell types and replicate glandular diversity. Our protocol also enables the generation of tumoroid cultures from benign and malignant salivary gland tumor types, in which tumor-specific gene signatures are well-conserved. In this study, we provide an experimental platform for the exploration of precision medicine in the era of tissue regeneration and anticancer treatment.
Collapse
Affiliation(s)
- Yeo-Jun Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Donghyun Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kwon Yong Tak
- Graduate School of Medical Science and Engineering, Korean Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seungyeon Hwang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jisun Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam Suk Sim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Min Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Dojin Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Youngmi Ji
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Junho K Hur
- Department of Genetics, College of Medicine, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, South Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korean Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
45
|
Bondhus L, Varma R, Hernandez Y, Arboleda VA. Balancing the transcriptome: leveraging sample similarity to improve measures of gene specificity. Brief Bioinform 2022; 23:6582882. [PMID: 35534150 PMCID: PMC9487600 DOI: 10.1093/bib/bbac158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 01/28/2023] Open
Abstract
The spatial and temporal domain of a gene's expression can range from ubiquitous to highly specific. Quantifying the degree to which this expression is unique to a specific tissue or developmental timepoint can provide insight into the etiology of genetic diseases. However, quantifying specificity remains challenging as measures of specificity are sensitive to similarity between samples in the sample set. For example, in the Gene-Tissue Expression project (GTEx), brain subregions are overrepresented at 13 of 54 (24%) unique tissues sampled. In this dataset, existing specificity measures have a decreased ability to identify genes specific to the brain relative to other organs. To solve this problem, we leverage sample similarity information to weight samples such that overrepresented tissues do not have an outsized effect on specificity estimates. We test this reweighting procedure on 4 measures of specificity, Z-score, Tau, Tsi and Gini, in the GTEx data and in single cell datasets for zebrafish and mouse. For all of these measures, incorporating sample similarity information to weight samples results in greater stability of sets of genes called as specific and decreases the overall variance in the change of specificity estimates as sample sets become more unbalanced. Furthermore, the genes with the largest improvement in their specificity estimate's stability are those with functions related to the overrepresented sample types. Our results demonstrate that incorporating similarity information improves specificity estimates' stability to the choice of the sample set used to define the transcriptome, providing more robust and reproducible measures of specificity for downstream analyses.
Collapse
Affiliation(s)
- Leroy Bondhus
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095,Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
| | - Roshni Varma
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095,Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
| | - Yenifer Hernandez
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095,Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095,Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095,Molecular Biology Institute, UCLA, Los Angeles, CA 90095,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095,Corresponding author. Valerie A. Arboleda, 615 Charles E. Young Drive South, Los Angeles, CA 90095, USA. Tel.: +1-310-983-3568; E-mail:
| |
Collapse
|
46
|
Protein-bound sialic acid in saliva contributes directly to salivary anti-influenza virus activity. Sci Rep 2022; 12:6636. [PMID: 35459785 PMCID: PMC9033866 DOI: 10.1038/s41598-022-10559-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
The oral cavity is an entrance for respiratory viruses, such as influenza. Recently, saliva has been shown to exert both antimicrobial and antiviral activities. Thus, saliva may be a biological factor that contributes to the prevention of influenza infection. However, the actual salivary anti-influenza A virus (IAV) activity in individuals and its determinant factors are unknown. By assessing individual variations in salivary anti-IAV activity in 92 people using an established new high-throughput system in this study, we found that the anti-IAV activity varied widely between individuals and showed a significant positive correlation with protein-bound sialic acid (BSA) level (ρ = 0.473; p < 0.001). Furthermore, the anti-IAV activity of saliva with enzymatically reduced BSA content was significantly lower. These results indicate that BSA is a direct regulator of salivary anti-IAV activity and is a determinant of individual differences. Additionally, after comparing the anti-IAV activity across the groups by age, anti-IAV activity in young people (aged 5–19 years) were lower than in adults aged 20–59 years and elderly people aged 60–79 years. Our study suggests that BSA levels in saliva may be important in preventing influenza infection.
Collapse
|
47
|
Cui Y, Zhang H, Zhu J, Liao Z, Wang S, Liu W. Correlations of Salivary and Blood Glucose Levels among Six Saliva Collection Methods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074122. [PMID: 35409805 PMCID: PMC8999001 DOI: 10.3390/ijerph19074122] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023]
Abstract
Background: Saliva has been studied as a better indicator of disorders and diseases than blood. Specifically, the salivary glucose level is considered to be an indicator of diabetes mellitus (DM). However, saliva collection methods can affect the salivary glucose level, thereby affecting the correlation between salivary glucose and blood glucose. Therefore, this study aims to identify an ideal saliva collection method and to use this method to determine the population and individual correlations between salivary glucose and blood glucose levels in DM patients and healthy controls. Finally, an analysis of the stability of the individual correlations is conducted. Methods: This study included 40 age-matched DM patients and 40 healthy controls. In the fasting state, saliva was collected using six saliva collection methods, venous blood was collected simultaneously from each study participant, and both samples were analyzed at the same time using glucose oxidase peroxidase. A total of 20 DM patients and 20 healthy controls were arbitrarily selected from the above participants for one week of daily testing. The correlations between salivary glucose and blood glucose before and after breakfast were analyzed. Finally, 10 DM patients and 10 healthy controls were arbitrarily selected for one month of daily testing to analyze the stability of individual correlations. Results: Salivary glucose levels were higher in DM patients than healthy controls for the six saliva collection methods. Compared with unstimulated saliva, stimulated saliva had decreased glucose level and increased salivary flow. In addition, unstimulated parotid salivary glucose was most correlated with blood glucose level (R2 = 0.9153), and the ROC curve area was 0.9316, which could accurately distinguish DM patients. Finally, it was found that the correlations between salivary glucose and blood glucose in different DM patients were quite different. The average correlation before breakfast was 0.83, and the average correlation after breakfast was 0.77. The coefficient of variation of the correlation coefficient before breakfast within 1 month was less than 5%. Conclusion: Unstimulated parotid salivary glucose level is the highest and is most correlated with blood glucose level, which can be accurately used to distinguish DM patients. Meanwhile, the correlation between salivary glucose and blood glucose was found to be relatively high and stable before breakfast. In general, the unstimulated parotid salivary glucose before breakfast presents an ideal saliva collecting method with which to replace blood-glucose use to detect DM, which provides a reference for the prediction of DM.
Collapse
Affiliation(s)
- Yangyang Cui
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Y.C.); (H.Z.); (J.Z.)
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China;
| | - Hankun Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Y.C.); (H.Z.); (J.Z.)
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China;
| | - Jia Zhu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Y.C.); (H.Z.); (J.Z.)
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China;
| | - Zhenhua Liao
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China;
| | - Song Wang
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China;
- Correspondence: (S.W.); (W.L.); Tel.: +86-0755-26558633 (S.W.); +86-0755-26551376 (W.L.)
| | - Weiqiang Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Y.C.); (H.Z.); (J.Z.)
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China;
- Correspondence: (S.W.); (W.L.); Tel.: +86-0755-26558633 (S.W.); +86-0755-26551376 (W.L.)
| |
Collapse
|
48
|
Uchida H, Ovitt CE. Novel impacts of saliva with regard to oral health. J Prosthet Dent 2022; 127:383-391. [PMID: 34140141 PMCID: PMC8669010 DOI: 10.1016/j.prosdent.2021.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
The maintenance of balanced oral homeostasis depends on saliva. A readily available and molecularly rich source of biological fluid, saliva fulfills many functions in the oral cavity, including lubrication, pH buffering, and tooth mineralization. Saliva composition and flow can be modulated by different factors, including circadian rhythm, diet, age, drugs, and disease. Recent events have revealed that saliva plays a central role in the dissemination and detection of the SARS-CoV-2 coronavirus. A working knowledge of saliva function and physiology is essential for dental health professionals.
Collapse
Affiliation(s)
- Hitoshi Uchida
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Catherine E. Ovitt
- Department of Biomedical Genetics, Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
49
|
Chen M, Lin W, Gan J, Lu W, Wang M, Wang X, Yi J, Zhao Z. Transcriptomic Mapping of Human Parotid Gland at Single-Cell Resolution. J Dent Res 2022; 101:972-982. [PMID: 35220796 DOI: 10.1177/00220345221076069] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As the largest salivary gland in oral cavity, the parotid gland plays an important role in initial digesting and lubricating food. The abnormal secretory function of the parotid gland can lead to dental caries and oral mucosal inflammation. In recent years, single-cell RNA sequencing (scRNA-seq) has been used to explore the heterogeneity and diversity of cells in various organs and tissues. However, the transcription profile of the human parotid gland at single-cell resolution has not been reported yet. In this study, we constructed the cell atlas of human parotid gland using the 10× Genomics platform. Characteristic gene analysis identified the biological functions of serous acinar cell populations in secreting digestive enzymes and antibacterial proteins. We revealed the specificity and similarity of the parotid gland compared to other digestive glands through comparative analyses of other published scRNA-seq data sets. We also identified the cell-specific expression of hub genes for Sjögren syndrome in the human parotid gland by integrating the results of genome-wide association studies and bulk RNA-seq, which highlighted the importance of immune cell dysfunction in parotid Sjögren syndrome pathogenesis.
Collapse
Affiliation(s)
- M. Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - W. Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J. Gan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - W. Lu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - M. Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X. Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J. Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Z. Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Costa-da-Silva AC, Aure MH, Dodge J, Martin D, Dhamala S, Cho M, Rose JJ, Bassim CW, Ambatipudi K, Hakim FT, Pavletic SZ, Mays JW. Salivary ZG16B expression loss follows exocrine gland dysfunction related to oral chronic graft-versus-host disease. iScience 2022; 25:103592. [PMID: 35005541 PMCID: PMC8718990 DOI: 10.1016/j.isci.2021.103592] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) targets include the oral mucosa and salivary glands after allogeneic hematopoietic stem cell transplant (HSCT). Without incisional biopsy, no diagnostic test exists to confirm oral cGVHD. Consequently, therapy is often withheld until severe manifestations develop. This proteomic study examined saliva and human salivary gland for a biomarker profile at first onset of oral cGVHD prior to initiation of topical steroid therapy. Whole saliva collected at onset of biopsy-proven oral GVHD was assessed using liquid chromatography-coupled tandem mass spectrometry with identification of 569 proteins, of which 77 significantly changed in abundance. ZG16B, a secretory lectin protein, was reduced 2-fold in oral cGVHD saliva (p <0.05), and significantly decreased in salivary gland secretory cells affected by cGVHD. Single-cell RNA-seq analysis of healthy MSG localized ZG16B expression to two discrete acinar cell populations. Reduced ZG16B expression may indicate specific cGVHD activity and possibly general salivary gland dysfunction.
Collapse
Affiliation(s)
- Ana Caroline Costa-da-Silva
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Marit H. Aure
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Joshua Dodge
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Daniel Martin
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Susan Dhamala
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Monica Cho
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Carol W. Bassim
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Kiran Ambatipudi
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| | | | | | - Jacqueline W. Mays
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|