1
|
Nunes S, Bastos R, Marinho AI, Vieira R, Benício I, de Noronha MA, Lírio S, Brodskyn C, Tavares NM. Recent advances in the development and clinical application of miRNAs in infectious diseases. Noncoding RNA Res 2025; 10:41-54. [PMID: 39296638 PMCID: PMC11406675 DOI: 10.1016/j.ncrna.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
In the search for new biomarkers and therapeutic targets for infectious diseases, several molecules have been investigated. Small RNAs, known as microRNAs (miRs), are important regulators of gene expression, and have emerged as promising candidates for these purposes. MiRs are a class of small, endogenous non-coding RNAs that play critical roles in several human diseases, including host-pathogen interaction mechanisms. Recently, miRs signatures have been reported in different infectious diseases, opening new perspectives for molecular diagnosis and therapy. MiR profiles can discriminate between healthy individuals and patients, as well as distinguish different disease stages. Furthermore, the possibility of assessing miRs in biological fluids, such as serum and whole blood, renders these molecules feasible for the development of new non-invasive diagnostic and prognostic tools. In this manuscript, we will comprehensively describe miRs as biomarkers and therapeutic targets in infectious diseases and explore how they can contribute to the advance of existing and new tools. Additionally, we will discuss different miR analysis platforms to understand the obstacles and advances of this molecular approach and propose their potential clinical applications and contributions to public health.
Collapse
Affiliation(s)
- Sara Nunes
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | - Rana Bastos
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Ananda Isis Marinho
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Raissa Vieira
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Ingra Benício
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | | | - Sofia Lírio
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Bahiana School of Medicine and Public Health, Salvador, Brazil
| | - Cláudia Brodskyn
- Federal University of Bahia (UFBA), Salvador, Brazil
- Laboratory of Parasite-Host Interaction and Epidemiology (LaIPHE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) Iii - Instituto de Investigação Em Imunologia, São Paulo, Brazil
| | - Natalia Machado Tavares
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) Iii - Instituto de Investigação Em Imunologia, São Paulo, Brazil
| |
Collapse
|
2
|
Kebriaei A, Besharati R, Namdar Ahmad Abad H, Havakhah S, Khosrojerdi M, Azimian A. The relationship between microRNAs and COVID-19 complications. Noncoding RNA Res 2025; 10:16-24. [PMID: 39296641 PMCID: PMC11406673 DOI: 10.1016/j.ncrna.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Over the past three years, since the onset of COVID-19, several scientific studies have concentrated on understanding susceptibility to the virus, the progression of the illness, and possible long-term complexity. COVID-19 is broadly recognized with effects on multiple systems in the body, and various factors related to society, medicine, and genetics/epigenetics may contribute to the intensity and results of the disease. Additionally, a SARS-CoV-2 infection can activate pathological activities and expedite the emergence of existing health issues into clinical problems. Forming easily accessible, distinctive, and permeable biomarkers is essential for categorizing patients, preventing the disease, predicting its course, and tailoring treatments for COVID-19 individually. One promising candidate for such biomarkers is microRNAs, which could serve various purposes in understanding diverse forms of COVID-19, including susceptibility, intensity, disease progression, outcomes, and potential therapeutic options. This review provides an overview of the most significant findings related to the involvement of microRNAs in COVID-19 pathogenesis. Furthermore, it explores the function of microRNAs in a broad span of effects that may arise from accompanying or underlying health status. It underscores the value of comprehending how diverse conditions, such as neurological disorders, diabetes, cardiovascular diseases, and obesity, interact with COVID-19.
Collapse
Affiliation(s)
- Abdollah Kebriaei
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Besharati
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hasan Namdar Ahmad Abad
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Shahrzad Havakhah
- Department of Physiology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahsa Khosrojerdi
- Department of Immunology and Allergy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Azimian
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
3
|
Giacomoni J, Sabatier JM. Vitamin D and Mitochondrial Activity Preservation in COVID-19. Infect Disord Drug Targets 2025; 25:e190424229153. [PMID: 38644705 DOI: 10.2174/0118715265304580240405064250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024]
Affiliation(s)
- Julien Giacomoni
- Independent Researcher, 245 chemin du château 13119, Saint Savournin, France
| | - Jean-Marc Sabatier
- Institut de NeuroPhysiopathologie (INP), CNRS UMR 7051, 27 Bd Jean Moulin, 13005, Marseille, France
| |
Collapse
|
4
|
Di Pietro P, Abate AC, Izzo C, Toni AL, Rusciano MR, Folliero V, Dell'Annunziata F, Granata G, Visco V, Motta BM, Campanile A, Vitale C, Prete V, Gatto C, Scarpati G, Poggio P, Galasso G, Pagliano P, Piazza O, Santulli G, Franci G, Carrizzo A, Vecchione C, Ciccarelli M. Plasma miR-1-3p levels predict severity in hospitalized COVID-19 patients. Br J Pharmacol 2025; 182:451-467. [PMID: 39572402 DOI: 10.1111/bph.17392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/09/2024] [Indexed: 12/13/2024] Open
Abstract
Background and PurposeAccumulating evidence suggests circulating microRNAs (miRNAs) are important regulators of biological processes involved in COVID‐19 complications. We sought to assess whether circulating miRNAs are associated with COVID‐19 clinical phenotype and outcome.Experimental ApproachTo discover signatures of circulating miRNAs associated with COVID‐19 disease severity and mortality, miRNA quantification was performed on plasma samples collected at hospital admission from a cohort of 106 patients with mild or severe COVID‐19. Variable importance projection scoring with partial least squared discriminant analysis and Random Forest Classifier were employed to identify key miRNAs associated with COVID‐19 severity. ROC analysis was performed to detect promising miRNA able to discriminate between mild and severe COVID status.Key ResultsHsa‐miR‐1‐3p was the most promising miRNA in differentiating COVID‐19 patients who developed severe, rather than mild, disease. Hsa‐miR‐1‐3p levels rose with increasing disease severity, and the highest levels were associated with prolonged hospital length of stay and worse survival. Longitudinal miRNA profiling demonstrated that plasma hsa‐miR‐1‐3p expression levels were significantly increased in patients during acute infection compared with those observed 6 months after the disease onset. Specific blockade of miR‐1‐3p in SARS‐CoV‐2–infected endothelial cells decreased up‐regulation of genes involved in endothelial‐to‐mesenchymal transition, inflammation and thrombosis. Furthermore, miR‐1‐3p inhibition reversed the impaired angiogenic capacity induced by plasma from patients with severe COVID‐19.Conclusion and ImplicationsOur data establish a novel role for miR‐1‐3p in the pathogenesis of COVID‐19 infection and provide a strong rationale for its usefulness as early prognostic biomarkers of severity status and survival.
Collapse
Affiliation(s)
- Paola Di Pietro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Angela Carmelita Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Carmine Izzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Anna Laura Toni
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Maria Rosaria Rusciano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Federica Dell'Annunziata
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Granata
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Valeria Visco
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Benedetta Maria Motta
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Alfonso Campanile
- San Giovanni di Dio e Ruggi D'Aragona University Hospital, Salerno, Italy
| | - Carolina Vitale
- San Giovanni di Dio e Ruggi D'Aragona University Hospital, Salerno, Italy
| | - Valeria Prete
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Cristina Gatto
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Giuliana Scarpati
- San Giovanni di Dio e Ruggi D'Aragona University Hospital, Salerno, Italy
| | | | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
- Department of Advanced Biomedical Science, "Federico II" University, Naples, Italy
- International Translational Research and Medical Education (ITME) Consortium, Naples, Italy
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York, USA
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| |
Collapse
|
5
|
Narro-Serrano J, Marhuenda-Egea FC. Diagnosis, Severity, and Prognosis from Potential Biomarkers of COVID-19 in Urine: A Review of Clinical and Omics Results. Metabolites 2024; 14:724. [PMID: 39728505 DOI: 10.3390/metabo14120724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has spurred an extraordinary scientific effort to better understand the disease's pathophysiology and develop diagnostic and prognostic tools to guide more precise and effective clinical management. Among the biological samples analyzed for biomarker identification, urine stands out due to its low risk of infection, non-invasive collection, and suitability for frequent, large-volume sampling. Integrating data from omics studies with standard biochemical analyses offers a deeper and more comprehensive understanding of COVID-19. This review aims to provide a detailed summary of studies published to date that have applied omics and clinical analyses on urine samples to identify potential biomarkers for COVID-19. In July 2024, an advanced search was conducted in Web of Science using the query: "covid* (Topic) AND urine (Topic) AND metabol* (Topic)". The search included results published up to 14 October 2024. The studies retrieved from this digital search were evaluated through a two-step screening process: first by reviewing titles and abstracts for eligibility, and then by retrieving and assessing the full texts of articles that met the specific criteria. The initial search retrieved 913 studies, of which 45 articles were ultimately included in this review. The most robust biomarkers identified include kynurenine, neopterin, total proteins, red blood cells, ACE2, citric acid, ketone bodies, hypoxanthine, amino acids, and glucose. The biological causes underlying these alterations reflect the multisystemic impact of COVID-19, highlighting key processes such as systemic inflammation, renal dysfunction, critical hypoxia, and metabolic stress.
Collapse
Affiliation(s)
| | - Frutos Carlos Marhuenda-Egea
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, University of Alicante, 03690 Alicante, Spain
| |
Collapse
|
6
|
Zali M, Sadat Larijani M, Bavand A, Moradi L, Ashrafian F, Ramezani A. Circulatory microRNAs as potential biomarkers for different aspects of COVID-19. Arch Virol 2024; 170:8. [PMID: 39666114 DOI: 10.1007/s00705-024-06184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/03/2024] [Indexed: 12/13/2024]
Abstract
The coronavirus disease of 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can alter the expression levels of host microRNAs (miRNAs). Increasing evidence suggests that circulating miRNAs can potentially play an important role in the diagnosis and prognosis of respiratory infectious diseases, especially COVID-19, and might serve as sensitive indicators of disease before the emergence of clinical symptoms. Here, we review the potential of circulatory microRNAs as novel biomarkers for different aspects of COVID-19. Recent studies have suggested that they can be useful not only for COVID-19 prognosis but also for prediction of disease severity and mortality among intensive care unit (ICU) and ward patients. Moreover, extracellular vesicle (EV) miRNAs can be associated with antibody titer after COVID-19 vaccination. This review provides an overview of miRNA-based biomarkers.
Collapse
Affiliation(s)
- Mahsan Zali
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Mona Sadat Larijani
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Anahita Bavand
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Ladan Moradi
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Fatemeh Ashrafian
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran.
| | - Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran.
| |
Collapse
|
7
|
Topper MJ, Guarnieri JW, Haltom JA, Chadburn A, Cope H, Frere J, An J, Borczuk A, Sinha S, Kim J, Park J, Butler D, Meydan C, Foox J, Bram Y, Richard SA, Epsi NJ, Agan B, Chenoweth JG, Simons MP, Tribble D, Burgess T, Dalgard C, Heise MT, Moorman NJ, Baxter VK, Madden EA, Taft-Benz SA, Anderson EJ, Sanders WA, Dickmander RJ, Beigel K, Widjaja GA, Janssen KA, Lie T, Murdock DG, Angelin A, Soto Albrecht YE, Olali AZ, Cen Z, Dybas J, Priebe W, Emmett MR, Best SM, Kelsey Johnson M, Trovao NS, Clark KB, Zaksas V, Meller R, Grabham P, Schisler JC, Moraes-Vieira PM, Pollett S, Mason CE, Syrkin Wurtele E, Taylor D, Schwartz RE, Beheshti A, Wallace DC, Baylin SB. Lethal COVID-19 associates with RAAS-induced inflammation for multiple organ damage including mediastinal lymph nodes. Proc Natl Acad Sci U S A 2024; 121:e2401968121. [PMID: 39602262 PMCID: PMC11626201 DOI: 10.1073/pnas.2401968121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/07/2024] [Indexed: 11/29/2024] Open
Abstract
Lethal COVID-19 outcomes are attributed to classic cytokine storm. We revisit this using RNA sequencing of nasopharyngeal and 40 autopsy samples from patients dying of SARS-CoV-2. Subsets of the 100 top-upregulated genes in nasal swabs are upregulated in the heart, lung, kidney, and liver, but not mediastinal lymph nodes. Twenty-two of these are "noncanonical" immune genes, which we link to components of the renin-angiotensin-activation-system that manifest as increased fibrin deposition, leaky vessels, thrombotic tendency, PANoptosis, and mitochondrial dysfunction. Immunohistochemistry of mediastinal lymph nodes reveals altered architecture, excess collagen deposition, and pathogenic fibroblast infiltration. Many of the above findings are paralleled in animal models of SARS-CoV-2 infection and human peripheral blood mononuclear and whole blood samples from individuals with early and later SARS-CoV-2 variants. We then redefine cytokine storm in lethal COVID-19 as driven by upstream immune gene and mitochondrial signaling producing downstream RAAS (renin-angiotensin-aldosterone system) overactivation and organ damage, including compromised mediastinal lymph node function.
Collapse
Affiliation(s)
- Michael J. Topper
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Joseph W. Guarnieri
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Jeffrey A. Haltom
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Amy Chadburn
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Henry Cope
- School of Medicine, University of Nottingham, DerbyDE22 3DT, United Kingdom
| | - Justin Frere
- Icahn School of Medicine, Mount Sinai, New York, NY10023
| | - Julia An
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | | | | | | | | | | | - Cem Meydan
- Weill Cornell Medicine, New York, NY10065
| | | | - Yaron Bram
- Weill Cornell Medicine, New York, NY10065
| | - Stephanie A. Richard
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Nusrat J. Epsi
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Brian Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Josh G. Chenoweth
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Mark P. Simons
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - David Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - Timothy Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - Clifton Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD20814
| | | | | | | | | | | | | | | | | | - Katherine Beigel
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biomedical and Health, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Gabrielle A. Widjaja
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Kevin A. Janssen
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Timothy Lie
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Deborah G. Murdock
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Alessia Angelin
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Yentli E. Soto Albrecht
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- The University of Pennsylvania, Philadelphia, PA19104
| | - Arnold Z. Olali
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Zimu Cen
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Joseph Dybas
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Waldemar Priebe
- COVID-19 International Research Team, Medford, MA02155
- University of Texas Monroe Dunaway Anderson Cancer Center, Houston, TX77030
| | - Mark R. Emmett
- COVID-19 International Research Team, Medford, MA02155
- University of Texas Medical Branch, Galveston, TX77555
| | - Sonja M. Best
- COVID-19 International Research Team, Medford, MA02155
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT59840
| | - Maya Kelsey Johnson
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Nidia S. Trovao
- COVID-19 International Research Team, Medford, MA02155
- Fogarty International Center, NIH, Bethesda, MD20892
| | - Kevin B. Clark
- COVID-19 International Research Team, Medford, MA02155
- Cures Within Reach, Chicago, IL60602
- Champions Service, Computational Sciences Support Network, Multi-Tier Assistance, Training, and Computational Help Track, NSF's Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support, Carnegie-Mellon University, Pittsburgh, PA15213
| | - Victoria Zaksas
- COVID-19 International Research Team, Medford, MA02155
- Center for Translational Data Science, University of Chicago, Chicago, IL60615
- Clever Research Lab, Springfield, IL62704
| | - Robert Meller
- COVID-19 International Research Team, Medford, MA02155
- Morehouse School of Medicine, Atlanta, GA30310
| | - Peter Grabham
- COVID-19 International Research Team, Medford, MA02155
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY19103
| | - Jonathan C. Schisler
- COVID-19 International Research Team, Medford, MA02155
- University of North Carolina, Chapel Hill, NC27599
| | - Pedro M. Moraes-Vieira
- COVID-19 International Research Team, Medford, MA02155
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil13083-862
| | - Simon Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Christopher E. Mason
- COVID-19 International Research Team, Medford, MA02155
- Weill Cornell Medicine, New York, NY10065
- New York Genome Center, New York, NY10013
| | - Eve Syrkin Wurtele
- COVID-19 International Research Team, Medford, MA02155
- Center for Metabolic Biology, Bioinformatics and Computational Biology, and Genetics Development, and Cell Biology, Iowa State University, Ames, IA50011
- Center for Bioinformatics and Computational Biology Iowa State University, Ames, IA50011
- Center for Genetics Development, and Cell Biology Iowa State University, Ames, IA50011
| | - Deanne Taylor
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biomedical and Health, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
| | - Robert E. Schwartz
- COVID-19 International Research Team, Medford, MA02155
- Weill Cornell Medicine, New York, NY10065
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA02155
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Blue Marble Space Institute of Science, Seattle, WA98104
- McGowan Institute for Regenerative Medicine and Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA15219
| | - Douglas C. Wallace
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Division of Human Genetics, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA19104
| | - Stephen B. Baylin
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Van Andel Institute, Grand Rapids, MI49503
| |
Collapse
|
8
|
Risen S, Sharma S, Gilberto VS, Brindley S, Aguilar M, Brown JM, Chatterjee A, Moreno JA, Nagpal P. Large- and Small-Animal Studies of Safety, Pharmacokinetics, and Biodistribution of Inflammasome-Targeting Nanoligomer in the Brain and Other Target Organs. ACS Pharmacol Transl Sci 2024; 7:3439-3451. [PMID: 39539269 PMCID: PMC11555505 DOI: 10.1021/acsptsci.4c00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 11/16/2024]
Abstract
Immune malfunction or misrecognition of healthy cells and tissue, termed autoimmune disease, is implicated in more than 80 disease conditions and multiple other secondary pathologies. While pan-immunosuppressive therapies like steroids can offer limited relief for systemic inflammation for some organs, many patients never achieve remission, and such drugs do not cross the blood-brain barrier, making them ineffective for tackling neuroinflammation. Especially in the brain, unintended activation of microglia and astrocytes is hypothesized to be directly or indirectly responsible for multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. Recent studies have also shown that targeting inflammasomes and specific immune targets can be beneficial for these diseases. Furthermore, our previous studies have shown targeting NF-κB and NLRP3 through brain penetrant Nanoligomer cocktail SB_NI_112 (abbreviated as NI112) can be therapeutic for several neurodegenerative diseases. Here, we show safety-toxicity studies, followed by pharmacokinetics and biodistribution in small- (mice) and large-animal (dog) studies of this inflammasome-targeting Nanoligomer cocktail NI112. We conducted studies using four different routes of administration: intravenous, subcutaneous, intraperitoneal, and intranasal, and identified the drug concentration over time using inductively coupled plasma mass spectrometry in the blood serum, the brain (including different brain regions), and other target organs such as liver, kidney, and colon. Our results indicate that the Nanoligomer cocktail has a strong safety profile and shows high biodistribution (F ∼ 0.98) and delivery across multiple routes of administration. Further analysis showed high brain bioavailability with a ratio of NI112 in brain tissue to blood serum of ∼30%. Our model accurately shows dose scaling, translation between different routes of administration, and interspecies scaling. These results provide an excellent platform for human clinical translation and prediction of therapeutic dosage between different routes of administration.
Collapse
Affiliation(s)
- Sydney Risen
- Environmental
& Radiological Health Sciences and Brain Research Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sadhana Sharma
- Sachi
Bio, 685 S Arthur Avenue, Colorado Technology
Center, Louisville, Colorado 80027, United States
| | - Vincenzo S. Gilberto
- Sachi
Bio, 685 S Arthur Avenue, Colorado Technology
Center, Louisville, Colorado 80027, United States
| | - Stephen Brindley
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Mikayla Aguilar
- Department
of Clinical Sciences and Brain Research Center, College of Veterinary
Medicine and Biomedical Sciences, Colorado
State University, Fort Collins, Colorado 80523, United States
| | - Jared M. Brown
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Anushree Chatterjee
- Sachi
Bio, 685 S Arthur Avenue, Colorado Technology
Center, Louisville, Colorado 80027, United States
| | - Julie A. Moreno
- Environmental
& Radiological Health Sciences and Brain Research Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Prashant Nagpal
- Sachi
Bio, 685 S Arthur Avenue, Colorado Technology
Center, Louisville, Colorado 80027, United States
| |
Collapse
|
9
|
Galeano D, Imrat, Haltom J, Andolino C, Yousey A, Zaksas V, Das S, Baylin SB, Wallace DC, Slack FJ, Enguita FJ, Wurtele ES, Teegarden D, Meller R, Cifuentes D, Beheshti A. sChemNET: a deep learning framework for predicting small molecules targeting microRNA function. Nat Commun 2024; 15:9149. [PMID: 39443444 PMCID: PMC11500171 DOI: 10.1038/s41467-024-49813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/14/2024] [Indexed: 10/25/2024] Open
Abstract
MicroRNAs (miRNAs) have been implicated in human disorders, from cancers to infectious diseases. Targeting miRNAs or their target genes with small molecules offers opportunities to modulate dysregulated cellular processes linked to diseases. Yet, predicting small molecules associated with miRNAs remains challenging due to the small size of small molecule-miRNA datasets. Herein, we develop a generalized deep learning framework, sChemNET, for predicting small molecules affecting miRNA bioactivity based on chemical structure and sequence information. sChemNET overcomes the limitation of sparse chemical information by an objective function that allows the neural network to learn chemical space from a large body of chemical structures yet unknown to affect miRNAs. We experimentally validated small molecules predicted to act on miR-451 or its targets and tested their role in erythrocyte maturation during zebrafish embryogenesis. We also tested small molecules targeting the miR-181 network and other miRNAs using in-vitro and in-vivo experiments. We demonstrate that our machine-learning framework can predict bioactive small molecules targeting miRNAs or their targets in humans and other mammalian organisms.
Collapse
Affiliation(s)
- Diego Galeano
- Department of Electronics and Mechatronics Engineering, Facultad de Ingeniería, Universidad Nacional de Asunción - FIUNA, Luque, Paraguay.
- COVID-19 International Research Team, Medford, MA, USA.
| | - Imrat
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jeffrey Haltom
- COVID-19 International Research Team, Medford, MA, USA
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chaylen Andolino
- Department of Nutrition Science, Purdue University, Indiana, USA
- Purdue Institute for Cancer Research, Purdue University, Indiana, USA
| | - Aliza Yousey
- COVID-19 International Research Team, Medford, MA, USA
- Neuroscience Institute, Department of Neurobiology/ Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Victoria Zaksas
- COVID-19 International Research Team, Medford, MA, USA
- Center for Translational Data Science, University of Chicago, Chicago, IL, USA
- Clever Research Lab, Springfield, IL, USA
| | - Saswati Das
- COVID-19 International Research Team, Medford, MA, USA
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Stephen B Baylin
- COVID-19 International Research Team, Medford, MA, USA
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Van Andel Institute, Grand Rapids, MI, USA
| | - Douglas C Wallace
- COVID-19 International Research Team, Medford, MA, USA
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Francisco J Enguita
- COVID-19 International Research Team, Medford, MA, USA
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Dorothy Teegarden
- Department of Nutrition Science, Purdue University, Indiana, USA
- Purdue Institute for Cancer Research, Purdue University, Indiana, USA
| | - Robert Meller
- COVID-19 International Research Team, Medford, MA, USA
- Neuroscience Institute, Department of Neurobiology/ Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Daniel Cifuentes
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA, USA
- Blue Marble Space Institute of Science, NASA Ames Research Center, Moffett Field, CA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGowan Institute for Regenerative Medicine - Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Wang X, Zhao W. Research progress on miRNAs function in the interaction between human infectious viruses and hosts: A review. BIOMOLECULES & BIOMEDICINE 2024; 24:1452-1462. [PMID: 39101759 PMCID: PMC11496870 DOI: 10.17305/bb.2024.10821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
MicroRNAs (miRNAs) represent a class of non-coding small RNAs that are prevalent in eukaryotes, typically comprising approximately 22 nucleotides, and have the ability to post-transcriptionally regulate gene expression. miRNAs exhibit diverse types and functions, with mechanisms of action that include cell differentiation, proliferation, apoptosis, and regulation of signaling pathways. Both viruses and their hosts can encode miRNAs, which serve as crucial effector molecules in the complex interaction between viruses and host cells. Host miRNAs can either directly interact with the virus genome to inhibit virus replication or facilitate virus replication by providing necessary substances. Viral miRNAs can directly bind to host mRNAs, thereby influencing translation efficiency, suppressing the immune response, and ultimately enhancing virus replication. This article comprehensively reviews the roles of miRNAs in virus-host interactions, aiming to provide valuable insights into viral pathogenic mechanisms and potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaotong Wang
- Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Wenchang Zhao
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
11
|
Smail SW, Hirmiz SM, Ahmed AA, Albarzinji N, Awla HK, Amin K, Janson C. Decoding the intricacies: a comprehensive analysis of microRNAs in the pathogenesis, diagnosis, prognosis and therapeutic strategies for COVID-19. Front Med (Lausanne) 2024; 11:1430974. [PMID: 39434774 PMCID: PMC11492531 DOI: 10.3389/fmed.2024.1430974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
The pandemic of coronavirus disease-19 (COVID-19), provoked by the appearance of a novel coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), required a worldwide healthcare emergency. This has elicited an immediate need for accelerated research into its mechanisms of disease, criteria for diagnosis, methods for forecasting outcomes, and treatment approaches. microRNAs (miRNAs), are diminutive RNA molecules, that are non-coding and participate in gene expression regulation post-transcriptionally, having an important participation in regulating immune processes. miRNAs have granted substantial interest in their impact on viral replication, cell proliferation, and modulation of how the host's immune system responds. This narrative review delves into host miRNAs' multifaceted roles within the COVID-19 context, highlighting their involvement in disease progression, diagnostics, and prognostics aspects, given their stability in biological fluids and varied expression profiles when responding to an infection. Additionally, we discuss complicated interactions between SARS-CoV-2 and host cellular machinery facilitated by host miRNAs revealing how dysregulation of host miRNA expression profiles advances viral replication, immune evasion, and inflammatory responses. Furthermore, it investigates the potential of host miRNAs as therapeutic agents, whether synthetic or naturally occurring, which could be harnessed to either mitigate harmful inflammation or enhance antiviral responses. However, searching more deeply is needed to clarify how host's miRNAs are involved in pathogenesis of COVID-19, its diagnosis processes, prognostic assessments, and treatment approaches for patients.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- College of Pharmacy, Cihan University-Erbil, Kurdistan Region, Erbil, Iraq
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Sarah Mousa Hirmiz
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Akhter Ahmed Ahmed
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Niaz Albarzinji
- Department of Medicine, Hawler Medical University, Erbil, Iraq
| | - Harem Khdir Awla
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Kawa Amin
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Corti G, Kim J, Enguita FJ, Guarnieri JW, Grossman LI, Costes SV, Fuentealba M, Scott RT, Magrini A, Sanders LM, Singh K, Sen CK, Juran CM, Paul AM, Furman D, Calleja-Agius J, Mason CE, Galeano D, Bottini M, Beheshti A. To boldly go where no microRNAs have gone before: spaceflight impact on risk for small-for-gestational-age infants. Commun Biol 2024; 7:1268. [PMID: 39369042 PMCID: PMC11455966 DOI: 10.1038/s42003-024-06944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
In the era of renewed space exploration, comprehending the effects of the space environment on human health, particularly for deep space missions, is crucial. While extensive research exists on the impacts of spaceflight, there is a gap regarding female reproductive risks. We hypothesize that space stressors could have enduring effects on female health, potentially increasing risks for future pregnancies upon return to Earth, particularly related to small-for-gestational-age (SGA) fetuses. To address this, we identify a shared microRNA (miRNA) signature between SGA and the space environment, conserved across humans and mice. These miRNAs target genes and pathways relevant to diseases and development. Employing a machine learning approach, we identify potential FDA-approved drugs to mitigate these risks, including estrogen and progesterone receptor antagonists, vitamin D receptor antagonists, and DNA polymerase inhibitors. This study underscores potential pregnancy-related health risks for female astronauts and proposes pharmaceutical interventions to counteract the impact of space travel on female health.
Collapse
Affiliation(s)
- Giada Corti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - JangKeun Kim
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joseph W Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Lauren M Sanders
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Kanhaiya Singh
- McGowan Institute for Regenerative Medicine and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chandan K Sen
- McGowan Institute for Regenerative Medicine and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cassandra M Juran
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, USA
| | - Amber M Paul
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, USA
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
- Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Diego Galeano
- Facultad de Ingeniería, Universidad Nacional de Asunción, MF9M + 958, San Lorenzo, Paraguay
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Sanford Children's Health Research Center, Sanford Burnham Prebys, La Jolla, CA, USA
| | - Afshin Beheshti
- McGowan Institute for Regenerative Medicine and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Space Biomedicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Ward C, Schlichtholz B. Post-Acute Sequelae and Mitochondrial Aberration in SARS-CoV-2 Infection. Int J Mol Sci 2024; 25:9050. [PMID: 39201736 PMCID: PMC11354507 DOI: 10.3390/ijms25169050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
This review investigates links between post-acute sequelae of SARS-CoV-2 infection (PASC), post-infection viral persistence, mitochondrial involvement and aberrant innate immune response and cellular metabolism during SARS-CoV-2 infection. Advancement of proteomic and metabolomic studies now allows deeper investigation of alterations to cellular metabolism, autophagic processes and mitochondrial dysfunction caused by SARS-CoV-2 infection, while computational biology and machine learning have advanced methodologies of predicting virus-host gene and protein interactions. Particular focus is given to the interaction between viral genes and proteins with mitochondrial function and that of the innate immune system. Finally, the authors hypothesise that viral persistence may be a function of mitochondrial involvement in the sequestration of viral genetic material. While further work is necessary to understand the mechanisms definitively, a number of studies now point to the resolution of questions regarding the pathogenesis of PASC.
Collapse
Affiliation(s)
| | - Beata Schlichtholz
- Department of Biochemistry, Gdańsk University of Medicine, 80-210 Gdańsk, Poland;
| |
Collapse
|
14
|
Sharma S, Gilberto VS, Rask J, Chatterjee A, Nagpal P. Inflammasome-Inhibiting Nanoligomers Are Neuroprotective against Space-Induced Pathology in Healthy and Diseased Three-Dimensional Human Motor and Prefrontal Cortex Brain Organoids. ACS Chem Neurosci 2024; 15:3009-3021. [PMID: 39084211 DOI: 10.1021/acschemneuro.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
The microgravity and space environment has been linked to deficits in neuromuscular and cognitive capabilities, hypothesized to occur due to accelerated aging and neurodegeneration in space. While the specific mechanisms are still being investigated, spaceflight-associated neuropathology is an important health risk to astronauts and space tourists and is being actively investigated for the development of appropriate countermeasures. However, such space-induced neuropathology offers an opportunity for accelerated screening of therapeutic targets and lead molecules for treating neurodegenerative diseases. Here, we show a proof-of-concept high-throughput target screening (on Earth), target validation, and mitigation of microgravity-induced neuropathology using our Nanoligomer platform, onboard the 43-day SpaceX CRS-29 mission to the International Space Station. First, comparing 3D healthy and diseased prefrontal cortex (PFC, for cognition) and motor neuron (MN, for neuromuscular function) organoids, we assessed space-induced pathology using biomarkers relevant to Alzheimer's disease (AD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). Both healthy and diseased PFC and MN organoids showed significantly enhanced neurodegeneration in space, as measured through relevant disease biomarkers, when compared to their respective Earth controls. Second, we tested the top two lead molecules, NI112 that targeted NF-κB and NI113 that targeted IL-6. We observed that these Nanoligomers significantly mitigate the AD, FTD, and ALS relevant biomarkers like amyloid beta-42 (Aβ42), phosphorylated tau (pTau), Kallikrein (KLK-6), Tar DNA-binding protein 43 (TDP-43), and others. Moreover, the 43-day Nanoligomer treatment of these brain organoids did not appear to cause any observable toxicity or safety issues in the target organoid tissue, suggesting good tolerability for these molecules in the brain at physiologically relevant doses. Together, these results show significant potential for both the development and translation of NI112 and NI113 molecules as potential neuroprotective countermeasures for safer space travel and demonstrate the usefulness of the space environment for rapid, high-throughput screening of targets and lead molecules for clinical translation. We assert that the use of microgravity in drug development and screening may ultimately benefit millions of patients suffering from debilitating neurodegenerative diseases on Earth.
Collapse
Affiliation(s)
- Sadhana Sharma
- Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States
| | - Vincenzo S Gilberto
- Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States
| | - Jon Rask
- NASA Ames Research Center, Moffett Field, California, California 94035, United States
| | - Anushree Chatterjee
- Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States
| | - Prashant Nagpal
- Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States
| |
Collapse
|
15
|
Molinero M, Perez-Pons M, González J, Barbé F, de Gonzalo-Calvo D. Decoding viral and host microRNA signatures in airway-derived biosamples: Insights for biomarker discovery in viral respiratory infections. Biomed Pharmacother 2024; 177:116984. [PMID: 38908203 DOI: 10.1016/j.biopha.2024.116984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
The global public health crisis caused by the COVID-19 pandemic has intensified the global concern regarding viral respiratory tract infections. Despite their considerable impact on health, society and the economy, effective management of these conditions remains a significant challenge. Integrating high-throughput analyses is pivotal for early detection, prognostication of adverse outcomes, elucidating pathogenetic pathways and developing therapeutic approaches. In recent years, microRNAs (miRNAs), a subset of small noncoding RNAs (ncRNAs), have emerged as promising tools for molecular phenotyping. Current evidence suggests that miRNAs could serve as innovative biological markers, aiding in informed medical decision-making. The cost-effective quantification of miRNAs in standardized samples using techniques routinely employed in clinical laboratories has become feasible. In this context, samples obtained from the airways represent a valuable source of information due to their direct exposure to the infectious agent and host response within the respiratory tract. This review explores viral and host miRNA profiling in airway-derived biosamples as a source of molecular information to guide patient management, with a specific emphasis on SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Marta Molinero
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Manel Perez-Pons
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
16
|
Wahl D, Risen SJ, Osburn SC, Emge T, Sharma S, Gilberto VS, Chatterjee A, Nagpal P, Moreno JA, LaRocca TJ. Nanoligomers targeting NF-κB and NLRP3 reduce neuroinflammation and improve cognitive function with aging and tauopathy. J Neuroinflammation 2024; 21:182. [PMID: 39068433 PMCID: PMC11283709 DOI: 10.1186/s12974-024-03182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Neuroinflammation contributes to impaired cognitive function in brain aging and neurodegenerative disorders like Alzheimer's disease, which is characterized by the aggregation of pathological tau. One major driver of both age- and tau-associated neuroinflammation is the NF-κB and NLRP3 signaling axis. However, current treatments targeting NF-κB or NLRP3 may have adverse/systemic effects, and most have not been clinically translatable. In this study, we tested the efficacy of a novel, nucleic acid therapeutic (Nanoligomer) cocktail specifically targeting both NF-κB and NLRP3 in the brain for reducing neuroinflammation and improving cognitive function in old (aged 19 months) wildtype mice, and in rTg4510 tau pathology mice (aged 2 months). We found that 4 weeks of NF-κB/NLRP3-targeting Nanoligomer treatment strongly reduced neuro-inflammatory cytokine profiles in the brain and improved cognitive-behavioral function in both old and rTg4510 mice. These effects of NF-κB/NLRP3-targeting Nanoligomers were also associated with reduced glial cell activation and pathology, favorable changes in transcriptome signatures of glia-associated inflammation (reduced) and neuronal health (increased), and positive systemic effects. Collectively, our results provide a basis for future translational studies targeting both NF-κB and NLRP3 in the brain, perhaps using Nanoligomers, to inhibit neuroinflammation and improve cognitive function with aging and neurodegeneration.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Sydney J Risen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Brain Research Center, Colorado State University, Fort Collins, CO, USA
| | - Shelby C Osburn
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Tobias Emge
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Sadhana Sharma
- Sachi Bio, Colorado Technology Center, Louisville, CO, USA
| | | | | | | | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Brain Research Center, Colorado State University, Fort Collins, CO, USA
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA.
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
17
|
Bauer AN, Williams JF, Pokhrel LR, Garcia S, Majumdar N, Eells JB, Cook PP, Akula SM. Evaluating Molecular Mechanism of Viral Inhibition of Aerosolized Smart Nano-Enabled Antiviral Therapeutic (SNAT) on SARS-CoV-2-Infected Hamsters. TOXICS 2024; 12:495. [PMID: 39058147 PMCID: PMC11280845 DOI: 10.3390/toxics12070495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Smart Nano-enabled Antiviral Therapeutic (SNAT) is a promising nanodrug that previously demonstrated efficacy in preclinical studies to alleviate SARS-CoV-2 pathology in hamsters. SNAT comprises taxoid (Tx)-decorated amino (NH2)-functionalized near-atomic size positively charged silver nanoparticles (Tx-[NH2-AgNPs]). Herein, we aimed to elucidate the molecular mechanism of the viral inhibition and safety of aerosolized SNAT treatment in SARS-CoV-2-infected golden Syrian hamsters. High-resolution transmission electron microscopy (HR-TEM) coupled with energy dispersive spectroscopy (EDS) and ELISAs showed SNAT binds directly to the SARS-CoV-2 virus by interacting with intact spike (S) protein, specifically to S2 subunit. SNAT (≥1 µg/mL) treatment significantly lowered SARS-CoV-2 infections of Calu-3 cells. Extraction-free whole transcriptome assay was used to detect changes in circulatory micronome in hamsters treated intranasally with SNAT (two doses of 10 µg/mL of 2 mL each administered 24 h apart). Uninfected hamsters treated with SNAT had altered circulatory concentrations of 18 microRNAs (8 miRNAs upregulated, 10 downregulated) on day 3 post-treatment compared to uninfected controls. SNAT-induced downregulation of miR-141-3p and miR-200b-3p may reduce viral replication and inflammation by targeting Ythdf2 and Slit2, respectively. Further, SNAT treatment significantly lowered IL-6 expression in infected hamster lungs compared to untreated infected hamsters. Taken together, we demonstrate that SNAT binds directly to SARS-CoV-2 via the S protein to prevent viral entry and propose a model by which SNAT alters the cellular miRNA-directed milieu to promote antiviral cellular processes and neutralize infection. Our results provide insights into the use of low-dose intranasally delivered SNAT in treating SARS-CoV-2 infections in a hamster model.
Collapse
Affiliation(s)
- Anais N. Bauer
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (J.F.W.); (S.G.); (N.M.)
| | - John F. Williams
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (J.F.W.); (S.G.); (N.M.)
| | - Lok R. Pokhrel
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Selena Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (J.F.W.); (S.G.); (N.M.)
| | - Niska Majumdar
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (J.F.W.); (S.G.); (N.M.)
| | - Jeffrey B. Eells
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Paul P. Cook
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Shaw M. Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (J.F.W.); (S.G.); (N.M.)
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| |
Collapse
|
18
|
Bang S, Choi D, Shin J, Kim J, Choi Y, Lee SE, Hong S. Automated System for Attomolar-Level Detection of MiRNA as a Biomarker for Influenza A Virus. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33897-33906. [PMID: 38902962 DOI: 10.1021/acsami.4c04898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
We have developed an automated sensing system for the repeated detection of a specific microRNA (miRNA) of the influenza A (H1N1) virus. In this work, magnetic particles functionalized with DNAs, target miRNAs, and alkaline phosphate (ALP) enzymes formed sandwich structures. These particles were trapped on nickel (Ni) patterns of our sensor chip by an external magnetic field. Then, additional electrical signals from electrochemical markers generated by ALP enzymes were measured using the sensor, enabling the highly sensitive detection of target miRNA. The magnetic particles used on the sensor were easily removed by applying the opposite direction of external magnetic fields, which allowed us to repeat sensing measurements. As a proof of concept, we demonstrated the detection of miRNA-1254, one of the biomarkers for the H1N1 virus, with a high sensitivity down to 1 aM in real time. Moreover, our sensor could selectively detect the target from other miRNA samples. Importantly, our sensor chip showed reliable electrical signals even after six repeated miRNA sensing measurements. Furthermore, we achieved technical advances to utilize our sensor platform as part of an automated sensing system. In this regard, our reusable sensing platform could be utilized for versatile applications in the field of miRNA detection and basic research.
Collapse
Affiliation(s)
- Sunwoo Bang
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Danmin Choi
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Junghyun Shin
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Jeongsu Kim
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Yoonji Choi
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Sang-Eun Lee
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Seunghun Hong
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
19
|
Wahl D, Risen SJ, Osburn SC, Emge T, Sharma S, Gilberto VS, Chatterjee A, Nagpal P, Moreno JA, LaRocca TJ. Nanoligomers targeting NF-κB and NLRP3 reduce neuroinflammation and improve cognitive function with aging and tauopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578493. [PMID: 38370618 PMCID: PMC10871285 DOI: 10.1101/2024.02.03.578493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Neuroinflammation contributes to impaired cognitive function in brain aging and neurodegenerative disorders like Alzheimer's disease, which is characterized by the aggregation of pathological tau. One major driver of both age- and tau-associated neuroinflammation is the NF-κB and NLRP3 signaling axis. However, current treatments targeting NF-κB or NLRP3 may have adverse/systemic effects, and most have not been clinically translatable. In this study, we tested the efficacy of a novel, nucleic acid therapeutic (Nanoligomer) cocktail specifically targeting both NF-κB and NLRP3 in the brain for reducing neuroinflammation and improving cognitive function in old (aged 19 months) wildtype mice, and in rTg4510 tau pathology mice (aged 2 months). We found that 4 weeks of NF-κB/NLRP3-targeting Nanoligomer treatment strongly reduced neuro-inflammatory cytokine profiles in the brain and improved cognitive-behavioral function in both old and rTg4510 mice. These effects of NF-κB/NLRP3-targeting Nanoligomers were also associated with reduced glial cell activation and pathology, favorable changes in transcriptome signatures of glia-associated inflammation (reduced) and neuronal health (increased), and positive systemic effects. Collectively, our results provide a basis for future translational studies targeting both NF-κB and NLRP3 in the brain, perhaps using Nanoligomers, to inhibit neuroinflammation and improve cognitive function with aging and neurodegeneration.
Collapse
|
20
|
Zhang Z, Liu T, Dong M, Ahamed MA, Guan W. Sample-to-answer salivary miRNA testing: New frontiers in point-of-care diagnostic technologies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1969. [PMID: 38783564 PMCID: PMC11141732 DOI: 10.1002/wnan.1969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/10/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
MicroRNA (miRNA), crucial non-coding RNAs, have emerged as key biomarkers in molecular diagnostics, prognosis, and personalized medicine due to their significant role in gene expression regulation. Salivary miRNA, in particular, stands out for its non-invasive collection method and ease of accessibility, offering promising avenues for the development of point-of-care diagnostics for a spectrum of diseases, including cancer, neurodegenerative disorders, and infectious diseases. Such development promises rapid and precise diagnosis, enabling timely treatment. Despite significant advancements in salivary miRNA-based testing, challenges persist in the quantification, multiplexing, sensitivity, and specificity, particularly for miRNA at low concentrations in complex biological mixtures. This work delves into these challenges, focusing on the development and application of salivary miRNA tests for point-of-care use. We explore the biogenesis of salivary miRNA and analyze their quantitative expression and their disease relevance in cancer, infection, and neurodegenerative disorders. We also examined recent progress in miRNA extraction, amplification, and multiplexed detection methods. This study offers a comprehensive view of the development of salivary miRNA-based point-of-care testing (POCT). Its successful advancement could revolutionize the early detection, monitoring, and management of various conditions, enhancing healthcare outcomes. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Zhikun Zhang
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Tianyi Liu
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Ming Dong
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Md. Ahasan Ahamed
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA
| |
Collapse
|
21
|
Shah AU, Hemida MG. The Potential Roles of Host Cell miRNAs in Fine-Tuning Bovine Coronavirus (BCoV) Molecular Pathogenesis, Tissue Tropism, and Immune Regulation. Microorganisms 2024; 12:897. [PMID: 38792727 PMCID: PMC11124416 DOI: 10.3390/microorganisms12050897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Bovine coronavirus (BCoV) infection causes significant economic loss to the dairy and beef industries worldwide. BCoV exhibits dual tropism, infecting the respiratory and enteric tracts of cattle. The enteric BCoV isolates could also induce respiratory manifestations under certain circumstances. However, the mechanism of this dual tropism of BCoV infection has not yet been studied well. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a dual role in virus infection, mediating virus or modulating host immune regulatory genes through complex virus-host cell interactions. However, their role in BCoV infection remains unclear. This study aims to identify bovine miRNAs crucial for regulating virus-host interaction, influencing tissue tropism, and explore their potential as biomarkers and therapeutic agents against BCoV. We downloaded 18 full-length BCoV genomes (10 enteric and eight respiratory) from GenBank. We applied several bioinformatic tools to study the host miRNAs targeting various regions in the viral genome. We used the criteria of differential targeting between the enteric/respiratory isolates to identify some critical miRNAs as biological markers for BCoV infection. Using various online bioinformatic tools, we also searched for host miRNA target genes involved in BCoV infection, immune evasion, and regulation. Our results show that four bovine miRNAs (miR-2375, miR-193a-3p, miR-12059, and miR-494) potentially target the BCoV spike protein at multiple sites. These miRNAs also regulate the host immune suppressor pathways, which negatively impacts BCoV replication. Furthermore, we found that bta-(miR-2338, miR-6535, miR-2392, and miR-12054) also target the BCoV genome at certain regions but are involved in regulating host immune signal transduction pathways, i.e., type I interferon (IFN) and retinoic acid-inducible gene I (RIG-I) pathways. Moreover, both miR-2338 and miR-2392 also target host transcriptional factors RORA, YY1, and HLF, which are potential diagnostic markers for BCoV infection. Therefore, miR-2338, miR-6535, miR-2392, and miR-12054 have the potential to fine-tune BCoV tropism and immune evasion and enhance viral pathogenesis. Our results indicate that host miRNAs play essential roles in the BCoV tissue tropism, pathogenesis, and immune regulation. Four bovine miRNAs (miR-2375, bta-miR-193a-3p, bta-miR-12059, and bta-miR-494) target BCoV-S glycoprotein and are potentially involved in several immune suppression pathways during the viral infection. These miRNA candidates could serve as good genetic markers for BCoV infection. However, further studies are urgently needed to validate these identified miRNAs and their target genes in the context of BCoV infection and dual tropism and as genetic markers.
Collapse
Affiliation(s)
| | - Maged Gomaa Hemida
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA;
| |
Collapse
|
22
|
Sharma S, Risen S, Gilberto VS, Boland S, Chatterjee A, Moreno JA, Nagpal P. Targeted-Neuroinflammation Mitigation Using Inflammasome-Inhibiting Nanoligomers is Therapeutic in an Experimental Autoimmune Encephalomyelitis Mouse Model. ACS Chem Neurosci 2024; 15:1596-1608. [PMID: 38526238 DOI: 10.1021/acschemneuro.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Multiple sclerosis (MS) is a debilitating autoimmune disease that impacts millions of patients worldwide, disproportionately impacting women (4:1), and often presenting at highly productive stages of life. This disease affects the spinal cord and brain and is characterized by severe neuroinflammation, demyelination, and subsequent neuronal damage, resulting in symptoms like loss of mobility. While untargeted and pan-immunosuppressive therapies have proven to be disease-modifying and manage (or prolong the time between) symptoms in many patients, a significant fraction are unable to achieve remission. Recent work has suggested that targeted neuroinflammation mitigation through selective inflammasome inhibition can offer relief to patients while preserving key components of immune function. Here, we show a screening of potential therapeutic targets using inflammasome-inhibiting Nanoligomers (NF-κB1, TNFR1, TNF-α, IL-6) that meet or far-exceed commercially available small-molecule counterparts like ruxolitinib, MCC950, and deucravacitinib. Using the human brain organoid model, top Nanoligomer combinations (NF-κB1 + TNFR1: NI111, and NF-κB1 + NLRP3: NI112) were shown to significantly reduce neuroinflammation without any observable negative impact on organoid function. Further testing of these top Nanoligomer combinations in an aggressive experimental autoimmune encephalomyelitis (EAE) mouse model for MS using intraperitoneal (IP) injections showed that NF-κB1 and NLRP3 targeting Nanoligomer combination NI112 rescues mice without observable loss of mobility or disability, minimal inflammation in brain and spinal cord histology, and minimal to no immune cell infiltration of the spinal cord and no demyelination, similar to or at par with mice that received no EAE injections (negative control). Mice receiving NI111 (NF-κB1 + TNFR1) also showed reduced neuroinflammation compared to saline (sham)-treated EAE mice and at par/similar to other inflammasome-inhibiting small molecule treatments, although it was significantly higher than NI112 leading to subsequent worsening clinical outcomes. Furthermore, treatment with an oral formulation of NI112 at lower doses showed a significant reduction in EAE severity, albeit with higher variance owing to administration and formulation/fill-and-finish variability. Overall, these results point to the potential of further development and testing of these inflammasome-targeting Nanoliogmers as an effective neuroinflammation treatment for multiple neurodegenerative diseases and potentially benefit several patients suffering from such debilitating autoimmune diseases like MS.
Collapse
Affiliation(s)
- Sadhana Sharma
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 80027, United States
| | - Sydney Risen
- Environmental & Radiological Health Sciences, and Brain Research Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Vincenzo S Gilberto
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 80027, United States
| | - Sean Boland
- Environmental & Radiological Health Sciences, and Brain Research Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Anushree Chatterjee
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 80027, United States
| | - Julie A Moreno
- Environmental & Radiological Health Sciences, and Brain Research Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Prashant Nagpal
- Sachi Bio, Colorado Technology Center, 685 S Arthur Avenue, Louisville, Colorado 80027, United States
| |
Collapse
|
23
|
Risen SJ, Boland SW, Sharma S, Weisman GM, Shirley PM, Latham AS, Hay AJD, Gilberto VS, Hines AD, Brindley S, Brown JM, McGrath S, Chatterjee A, Nagpal P, Moreno JA. Targeting Neuroinflammation by Pharmacologic Downregulation of Inflammatory Pathways Is Neuroprotective in Protein Misfolding Disorders. ACS Chem Neurosci 2024; 15:1533-1547. [PMID: 38507813 DOI: 10.1021/acschemneuro.3c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Neuroinflammation plays a crucial role in the development of neurodegenerative protein misfolding disorders. This category of progressive diseases includes, but is not limited to, Alzheimer's disease, Parkinson's disease, and prion diseases. Shared pathogenesis involves the accumulation of misfolded proteins, chronic neuroinflammation, and synaptic dysfunction, ultimately leading to irreversible neuronal loss, measurable cognitive deficits, and death. Presently, there are few to no effective treatments to halt the advancement of neurodegenerative diseases. We hypothesized that directly targeting neuroinflammation by downregulating the transcription factor, NF-κB, and the inflammasome protein, NLRP3, would be neuroprotective. To achieve this, we used a cocktail of RNA targeting therapeutics (SB_NI_112) shown to be brain-penetrant, nontoxic, and effective inhibitors of both NF-κB and NLRP3. We utilized a mouse-adapted prion strain as a model for neurodegenerative diseases to assess the aggregation of misfolded proteins, glial inflammation, neuronal loss, cognitive deficits, and lifespan. Prion-diseased mice were treated either intraperitoneally or intranasally with SB_NI_112. Behavioral and cognitive deficits were significantly protected by this combination of NF-κB and NLRP3 downregulators. Treatment reduced glial inflammation, protected against neuronal loss, prevented spongiotic change, rescued cognitive deficits, and significantly lengthened the lifespan of prion-diseased mice. We have identified a nontoxic, systemic pharmacologic that downregulates NF-κB and NLRP3, prevents neuronal death, and slows the progression of neurodegenerative diseases. Though mouse models do not always predict human patient success and the study was limited due to sample size and number of dosing methods utilized, these findings serve as a proof of principle for continued translation of the therapeutic SB_NI_112 for prion disease and other neurodegenerative diseases. Based on the success in a murine prion model, we will continue testing SB_NI_112 in a variety of neurodegenerative disease models, including Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Sydney J Risen
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
- Brain Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sean W Boland
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
- Brain Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sadhana Sharma
- Sachi Bioworks Inc., Colorado Technology Center, 685 South Arthur Avenue, Louisville, Colorado 80027, United States
| | - Grace M Weisman
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Payton M Shirley
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Amanda S Latham
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Arielle J D Hay
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Vincenzo S Gilberto
- Sachi Bioworks Inc., Colorado Technology Center, 685 South Arthur Avenue, Louisville, Colorado 80027, United States
| | - Amelia D Hines
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Stephen Brindley
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Jared M Brown
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Stephanie McGrath
- Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Anushree Chatterjee
- Sachi Bioworks Inc., Colorado Technology Center, 685 South Arthur Avenue, Louisville, Colorado 80027, United States
| | - Prashant Nagpal
- Sachi Bioworks Inc., Colorado Technology Center, 685 South Arthur Avenue, Louisville, Colorado 80027, United States
| | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
- Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
- Brain Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
24
|
Chakraborty C, Bhattacharya M, Lee SS. Regulatory role of miRNAs in the human immune and inflammatory response during the infection of SARS-CoV-2 and other respiratory viruses: A comprehensive review. Rev Med Virol 2024; 34:e2526. [PMID: 38446531 DOI: 10.1002/rmv.2526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
miRNAs are single-stranded ncRNAs that act as regulators of different human body processes. Several miRNAs have been noted to control the human immune and inflammatory response during severe acute respiratory infection syndrome (SARS-CoV-2) infection. Similarly, many miRNAs were upregulated and downregulated during different respiratory virus infections. Here, an attempt has been made to capture the regulatory role of miRNAs in the human immune and inflammatory response during the infection of SARS-CoV-2 and other respiratory viruses. Firstly, the role of miRNAs has been depicted in the human immune and inflammatory response during the infection of SARS-CoV-2. In this direction, several significant points have been discussed about SARS-CoV-2 infection, such as the role of miRNAs in human innate immune response; miRNAs and its regulation of granulocytes; the role of miRNAs in macrophage activation and polarisation; miRNAs and neutrophil extracellular trap formation; miRNA-related inflammatory response; and miRNAs association in adaptive immunity. Secondly, the miRNAs landscape has been depicted during human respiratory virus infections such as human coronavirus, respiratory syncytial virus, influenza virus, rhinovirus, and human metapneumovirus. The article will provide more understanding of the miRNA-controlled mechanism of the immune and inflammatory response during COVID-19, which will help more therapeutics discoveries to fight against the future pandemic.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Gangwon-do, Republic of Korea
| |
Collapse
|
25
|
Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet 2024; 25:211-232. [PMID: 37968332 DOI: 10.1038/s41576-023-00662-1] [Citation(s) in RCA: 155] [Impact Index Per Article: 155.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 11/17/2023]
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group of transcripts that, by definition, are not translated into proteins. Since their discovery, ncRNAs have emerged as important regulators of multiple biological functions across a range of cell types and tissues, and their dysregulation has been implicated in disease. Notably, much research has focused on the link between microRNAs (miRNAs) and human cancers, although other ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as relevant contributors to human disease. In this Review, we summarize our current understanding of the roles of miRNAs, lncRNAs and circRNAs in cancer and other major human diseases, notably cardiovascular, neurological and infectious diseases. Further, we discuss the potential use of ncRNAs as biomarkers of disease and as therapeutic targets.
Collapse
Affiliation(s)
- Kinga Nemeth
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - George A Calin
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The RNA Interference and Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
26
|
Narayanan SA, Jamison DA, Guarnieri JW, Zaksas V, Topper M, Koutnik AP, Park J, Clark KB, Enguita FJ, Leitão AL, Das S, Moraes-Vieira PM, Galeano D, Mason CE, Trovão NS, Schwartz RE, Schisler JC, Coelho-Dos-Reis JGA, Wurtele ES, Beheshti A. A comprehensive SARS-CoV-2 and COVID-19 review, Part 2: host extracellular to systemic effects of SARS-CoV-2 infection. Eur J Hum Genet 2024; 32:10-20. [PMID: 37938797 PMCID: PMC10772081 DOI: 10.1038/s41431-023-01462-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 11/09/2023] Open
Abstract
COVID-19, the disease caused by SARS-CoV-2, has caused significant morbidity and mortality worldwide. The betacoronavirus continues to evolve with global health implications as we race to learn more to curb its transmission, evolution, and sequelae. The focus of this review, the second of a three-part series, is on the biological effects of the SARS-CoV-2 virus on post-acute disease in the context of tissue and organ adaptations and damage. We highlight the current knowledge and describe how virological, animal, and clinical studies have shed light on the mechanisms driving the varied clinical diagnoses and observations of COVID-19 patients. Moreover, we describe how investigations into SARS-CoV-2 effects have informed the understanding of viral pathogenesis and provide innovative pathways for future research on the mechanisms of viral diseases.
Collapse
Affiliation(s)
- S Anand Narayanan
- COVID-19 International Research Team, Medford, MA, 02155, USA.
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, 32301, USA.
| | - David A Jamison
- COVID-19 International Research Team, Medford, MA, 02155, USA
| | - Joseph W Guarnieri
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Victoria Zaksas
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Center for Translational Data Science, University of Chicago, Chicago, IL, 60637, USA
- Clever Research Lab, Springfield, IL, 62704, USA
| | - Michael Topper
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Departments of Oncology and Medicine and the Sidney Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Andrew P Koutnik
- Human Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, Pensacola, FL, 32502, USA
- Sansum Diabetes Research Institute, Santa Barbara, CA, 93015, USA
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, 10065, USA
| | - Kevin B Clark
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Cures Within Reach, Chicago, IL, 60602, USA
- Campus and Domain Champions Program, Multi-Tier Assistance, Training, and Computational Help (MATCH) Track, National Science Foundation's Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support (ACCESS), Philadelphia, PA, USA
- Expert Network, Penn Center for Innovation, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Biometrics and Nanotechnology Councils, Institute for Electrical and Electronics Engineers, New York, NY, 10016, USA
- Peace Innovation Institute, The Hague 2511, Netherlands and Stanford University, Palo Alto, 94305, CA, USA
| | - Francisco J Enguita
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Ana Lúcia Leitão
- MEtRICs, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Saswati Das
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Mannohar Lohia Hospital, New Delhi, 110001, India
| | - Pedro M Moraes-Vieira
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC) and Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - Diego Galeano
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Facultad de Ingeniería, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Christopher E Mason
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nídia S Trovão
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robert E Schwartz
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan C Schisler
- COVID-19 International Research Team, Medford, MA, 02155, USA
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jordana G A Coelho-Dos-Reis
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Basic and Applied Virology Lab, Department of Microbiology, Institute for Biological Sciences (ICB), Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eve Syrkin Wurtele
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Genetics Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
- Bioinformatics and Computational Biology Program, Center for Metabolomics, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA, 02155, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, Santa Clara, CA, 94035, USA.
| |
Collapse
|
27
|
Liu X, Xiong W, Ye M, Lu T, Yuan K, Chang S, Han Y, Wang Y, Lu L, Bao Y. Non-coding RNAs expression in SARS-CoV-2 infection: pathogenesis, clinical significance, and therapeutic targets. Signal Transduct Target Ther 2023; 8:441. [PMID: 38057315 PMCID: PMC10700414 DOI: 10.1038/s41392-023-01669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been looming globally for three years, yet the diagnostic and treatment methods for COVID-19 are still undergoing extensive exploration, which holds paramount importance in mitigating future epidemics. Host non-coding RNAs (ncRNAs) display aberrations in the context of COVID-19. Specifically, microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) exhibit a close association with viral infection and disease progression. In this comprehensive review, an overview was presented of the expression profiles of host ncRNAs following SARS-CoV-2 invasion and of the potential functions in COVID-19 development, encompassing viral invasion, replication, immune response, and multiorgan deficits which include respiratory system, cardiac system, central nervous system, peripheral nervous system as well as long COVID. Furthermore, we provide an overview of several promising host ncRNA biomarkers for diverse clinical scenarios related to COVID-19, such as stratification biomarkers, prognostic biomarkers, and predictive biomarkers for treatment response. In addition, we also discuss the therapeutic potential of ncRNAs for COVID-19, presenting ncRNA-based strategies to facilitate the development of novel treatments. Through an in-depth analysis of the interplay between ncRNA and COVID-19 combined with our bioinformatic analysis, we hope to offer valuable insights into the stratification, prognosis, and treatment of COVID-19.
Collapse
Affiliation(s)
- Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Wandi Xiong
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, 570228, Haikou, China
| | - Maosen Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, 650204, Kunming, Yunnan, China
| | - Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Yongxiang Wang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, Shandong, China.
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, Shandong, China.
- School of Public Health, Peking University, 100191, Beijing, China.
| |
Collapse
|
28
|
Chen Y, Zhang Y, Luo S, Yang X, Liu C, Zhang Q, Liu Y, Zhang X. Foldback-crRNA-Enhanced CRISPR/Cas13a System (FCECas13a) Enables Direct Detection of Ultrashort sncRNA. Anal Chem 2023; 95:15606-15613. [PMID: 37824705 DOI: 10.1021/acs.analchem.3c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The CRISPR/Cas13a system has promising applications in clinical small noncoding RNA (sncRNA) detection because it is free from the interference of genomic DNA. However, detecting ultrashort sncRNAs (less than 20 nucleotides) has been challenging because the Cas13a nuclease requires longer crRNA-target RNA hybrids to be activated. Here, we report the development of a foldback-crRNA-enhanced CRISPR/Cas13a (FCECas13a) system that overcomes the limitations of the current CRISPR/Cas13a system in detecting ultrashort sncRNAs. The FCECas13a system employs a 3'-terminal foldback crRNA that hybridizes with the target ultrashort sncRNA, forming a double strand that "tricks" the Cas13a nuclease into activating the HEPN structural domain and generating trans-cleavage activity. The FCECas13a system can accurately detect miRNA720 (a sncRNA currently known as tRNA-derived small RNA), which is only 17 nucleotides long and has a concentration as low as 15 fM within 20 min. This FCECas13a system opens new avenues for ultrashort sncRNA detection with significant implications for basic biological research, disease prognosis, and molecular diagnosis.
Collapse
Affiliation(s)
- Yong Chen
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Yibin Zhang
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Siyuan Luo
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Xinyao Yang
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Conghui Liu
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Qianling Zhang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Yizhen Liu
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Shenzhen 518060, Guangdong, P. R. China
| | - Xueji Zhang
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Shenzhen 518060, Guangdong, P. R. China
| |
Collapse
|
29
|
Moatar AI, Chis AR, Romanescu M, Ciordas PD, Nitusca D, Marian C, Oancea C, Sirbu IO. Plasma miR-195-5p predicts the severity of Covid-19 in hospitalized patients. Sci Rep 2023; 13:13806. [PMID: 37612439 PMCID: PMC10447562 DOI: 10.1038/s41598-023-40754-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Predicting the clinical course of Covid-19 is a challenging task, given the multi-systemic character of the disease and the paucity of minimally invasive biomarkers of disease severity. Here, we evaluated the early (first two days post-admission) level of circulating hsa-miR-195-5p (miR-195, a known responder to viral infections and SARS-CoV-2 interactor) in Covid-19 patients and assessed its potential as a biomarker of disease severity. We show that plasma miR-195 correlates with several clinical and paraclinical parameters, and is an excellent discriminator between the severe and mild forms of the disease. Our Gene Ontology analysis of miR-195 targets differentially expressed in Covid-19 indicates a strong impact on cardiac mitochondria homeostasis, suggesting a possible role in long Covid and chronic fatigue syndrome (CFS) syndromes.
Collapse
Affiliation(s)
- Alexandra Ioana Moatar
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Doctoral School, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Aimee Rodica Chis
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Center for Complex Network Science, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Mirabela Romanescu
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Doctoral School, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Paula-Diana Ciordas
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Doctoral School, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Diana Nitusca
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Doctoral School, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Catalin Marian
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
- Center for Complex Network Science, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania
| | - Cristian Oancea
- Department of Infectious Diseases, Discipline of Pulmonology, University of Medicine and Pharmacy "Victor Babes", E. Murgu Square no.2, 300041, Timisoara, Romania
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy Timisoara, E. Murgu Square 2, 300041, Timisoara, Romania
| | - Ioan-Ovidiu Sirbu
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania.
- Center for Complex Network Science, University of Medicine and Pharmacy "Victor Babes", E Murgu Square no.2, 300041, Timisoara, Romania.
- Timisoara Institute of Complex Systems, 18 Vasile Lucaciu Str, 300044, Timisoara, Romania.
| |
Collapse
|
30
|
Guarnieri JW, Dybas JM, Fazelinia H, Kim MS, Frere J, Zhang Y, Albrecht YS, Murdock DG, Angelin A, Singh LN, Weiss SL, Best SM, Lott MT, Zhang S, Cope H, Zaksas V, Saravia-Butler A, Meydan C, Foox J, Mozsary C, Bram Y, Kidane Y, Priebe W, Emmett MR, Meller R, Demharter S, Stentoft-Hansen V, Salvatore M, Galeano D, Enguita FJ, Grabham P, Trovao NS, Singh U, Haltom J, Heise MT, Moorman NJ, Baxter VK, Madden EA, Taft-Benz SA, Anderson EJ, Sanders WA, Dickmander RJ, Baylin SB, Wurtele ES, Moraes-Vieira PM, Taylor D, Mason CE, Schisler JC, Schwartz RE, Beheshti A, Wallace DC. Core mitochondrial genes are down-regulated during SARS-CoV-2 infection of rodent and human hosts. Sci Transl Med 2023; 15:eabq1533. [PMID: 37556555 PMCID: PMC11624572 DOI: 10.1126/scitranslmed.abq1533] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/20/2023] [Indexed: 08/11/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins bind to host mitochondrial proteins, likely inhibiting oxidative phosphorylation (OXPHOS) and stimulating glycolysis. We analyzed mitochondrial gene expression in nasopharyngeal and autopsy tissues from patients with coronavirus disease 2019 (COVID-19). In nasopharyngeal samples with declining viral titers, the virus blocked the transcription of a subset of nuclear DNA (nDNA)-encoded mitochondrial OXPHOS genes, induced the expression of microRNA 2392, activated HIF-1α to induce glycolysis, and activated host immune defenses including the integrated stress response. In autopsy tissues from patients with COVID-19, SARS-CoV-2 was no longer present, and mitochondrial gene transcription had recovered in the lungs. However, nDNA mitochondrial gene expression remained suppressed in autopsy tissue from the heart and, to a lesser extent, kidney, and liver, whereas mitochondrial DNA transcription was induced and host-immune defense pathways were activated. During early SARS-CoV-2 infection of hamsters with peak lung viral load, mitochondrial gene expression in the lung was minimally perturbed but was down-regulated in the cerebellum and up-regulated in the striatum even though no SARS-CoV-2 was detected in the brain. During the mid-phase SARS-CoV-2 infection of mice, mitochondrial gene expression was starting to recover in mouse lungs. These data suggest that when the viral titer first peaks, there is a systemic host response followed by viral suppression of mitochondrial gene transcription and induction of glycolysis leading to the deployment of antiviral immune defenses. Even when the virus was cleared and lung mitochondrial function had recovered, mitochondrial function in the heart, kidney, liver, and lymph nodes remained impaired, potentially leading to severe COVID-19 pathology.
Collapse
Affiliation(s)
- Joseph W. Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Joseph M. Dybas
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Hossein Fazelinia
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Man S. Kim
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
- Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | - Justin Frere
- Icahn School of Medicine at Mount Sinai, New York, NY 10023, USA
| | - Yuanchao Zhang
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Yentli Soto Albrecht
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Deborah G. Murdock
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Larry N. Singh
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Scott L. Weiss
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sonja M. Best
- COVID-19 International Research Team, Medford, MA 02155, USA
- Rocky Mountain Laboratory, National Institute of Allergy and Infectious Disease, NIH, Hamilton, MT 59840, USA
| | - Marie T. Lott
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shiping Zhang
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Henry Cope
- University of Nottingham, Nottingham, UK
| | - Victoria Zaksas
- COVID-19 International Research Team, Medford, MA 02155, USA
- University of Chicago, Chicago, IL 60615, USA
- Clever Research Lab, Springfield, IL 62704, USA
| | - Amanda Saravia-Butler
- COVID-19 International Research Team, Medford, MA 02155, USA
- Logyx, LLC, Mountain View, CA 94043, USA
- NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Cem Meydan
- COVID-19 International Research Team, Medford, MA 02155, USA
- Weill Cornell Medicine, New York, NY 10065, USA
| | | | | | - Yaron Bram
- Weill Cornell Medicine, New York, NY 10065, USA
| | - Yared Kidane
- COVID-19 International Research Team, Medford, MA 02155, USA
- Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA
| | - Waldemar Priebe
- COVID-19 International Research Team, Medford, MA 02155, USA
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark R. Emmett
- COVID-19 International Research Team, Medford, MA 02155, USA
- University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert Meller
- COVID-19 International Research Team, Medford, MA 02155, USA
- Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | | | | - Diego Galeano
- COVID-19 International Research Team, Medford, MA 02155, USA
- Facultad de Ingeniería, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Francisco J. Enguita
- COVID-19 International Research Team, Medford, MA 02155, USA
- Faculdade de Medicina, Universidade de Lisboa, Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisboa, Portugal
| | - Peter Grabham
- College of Physicians and Surgeons, Columbia University, New York, NY 19103, USA
| | - Nidia S. Trovao
- COVID-19 International Research Team, Medford, MA 02155, USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Urminder Singh
- COVID-19 International Research Team, Medford, MA 02155, USA
- Iowa State University, Ames, IA 50011, USA
| | - Jeffrey Haltom
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
- Iowa State University, Ames, IA 50011, USA
| | - Mark T. Heise
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | - Emily A. Madden
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | - Wes A. Sanders
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Stephen B. Baylin
- COVID-19 International Research Team, Medford, MA 02155, USA
- Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Eve Syrkin Wurtele
- COVID-19 International Research Team, Medford, MA 02155, USA
- Iowa State University, Ames, IA 50011, USA
| | - Pedro M. Moraes-Vieira
- COVID-19 International Research Team, Medford, MA 02155, USA
- University of Campinas, Campinas, SP, Brazil
| | - Deanne Taylor
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Christopher E. Mason
- COVID-19 International Research Team, Medford, MA 02155, USA
- Weill Cornell Medicine, New York, NY 10065, USA
- New York Genome Center, New York, NY 10013, USA
| | - Jonathan C. Schisler
- COVID-19 International Research Team, Medford, MA 02155, USA
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert E. Schwartz
- COVID-19 International Research Team, Medford, MA 02155, USA
- Weill Cornell Medicine, New York, NY 10065, USA
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA 02155, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
- Division of Human Genetics, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Aalikhani M, Alikhani M, Khajeniazi S, Khosravi A, Bazi Z, Kianmehr A. Positive effect of miR-2392 on fibroblast to cardiomyocyte-like cell fate transition: an in silico and in vitro study. Gene 2023; 879:147598. [PMID: 37393060 DOI: 10.1016/j.gene.2023.147598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
INTRODUCTION Somatic cell fate transition is now gained great importance in tissue regeneration. Currently, research is focused on heart tissue regeneration by reprogramming diverse cells into cardiomyocyte-like cells. Here, we examined the possible effect of miRNAs on the transdifferentiation of fibroblasts into cardiomyocyte-like cells. METHODS First heart-specific miRNAs were identified by comparing the gene expression profiles of heart tissue to other body tissues using bioinformatic techniques. After identifying heart-specific miRNAs, their cellular and molecular functions were studied using the miRWalk and miRBase databases. Then the candidate miRNA was cloned into a lentiviral vector. Following, human dermal fibroblasts were cultured and treated with compounds forskolin, valproic acid, and CHIR99021. After 24 h, the lentivector harboring miRNA gene was transfected into the cells to initiate the transdifferentiation process. Finally, after a two-week treatment period, the efficiency of transdifferentiation was examined by inspecting the appearance of the cells and measuring the expression levels of cardiac genes and proteins using RT-qPCR and immunocytochemistry techniques. RESULTS Nine miRNAs were identified with higher expression in the heart. The miR-2392 was nominated as the candidate miRNA due to its function and specific expression in the heart. This miRNA has a direct connection with genes involved in cell growth and differentiation; e.g., MAPK and Wnt signaling pathways. According to in vitro results cardiac genes and proteins demonstrated an increase in expression in the fibroblasts that simultaneously received the three chemicals and miR-2392. CONCLUSION Considering the ability of miR-2392 to induce the expression of cardiac genes and proteins in fibroblast cells, it can induce fibroblasts to differentiate into cardiomyocyte-like cells. Therefore, miR-2392 could be further optimized for cardiomyocyte regeneration, tissue repair, and drug design studies.
Collapse
Affiliation(s)
- Mahdi Aalikhani
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Alikhani
- Department of Cardiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safoura Khajeniazi
- Department of Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ayyoob Khosravi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Bazi
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran; Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Anvarsadat Kianmehr
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran; Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
32
|
de Gonzalo-Calvo D, Molinero M, Benítez ID, Perez-Pons M, García-Mateo N, Ortega A, Postigo T, García-Hidalgo MC, Belmonte T, Rodríguez-Muñoz C, González J, Torres G, Gort-Paniello C, Moncusí-Moix A, Estella Á, Tamayo Lomas L, Martínez de la Gándara A, Socias L, Peñasco Y, de la Torre MDC, Bustamante-Munguira E, Gallego Curto E, Martínez Varela I, Martin Delgado MC, Vidal-Cortés P, López Messa J, Pérez-García F, Caballero J, Añón JM, Loza-Vázquez A, Carbonell N, Marin-Corral J, Jorge García RN, Barberà C, Ceccato A, Fernández-Barat L, Ferrer R, Garcia-Gasulla D, Lorente-Balanza JÁ, Menéndez R, Motos A, Peñuelas O, Riera J, Bermejo-Martin JF, Torres A, Barbé F. A blood microRNA classifier for the prediction of ICU mortality in COVID-19 patients: a multicenter validation study. Respir Res 2023; 24:159. [PMID: 37328754 DOI: 10.1186/s12931-023-02462-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. METHODS This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. RESULTS Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. CONCLUSIONS A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.
Collapse
Affiliation(s)
- David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Marta Molinero
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Iván D Benítez
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Manel Perez-Pons
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Nadia García-Mateo
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, (IBSAL), Gerencia Regional de Salud de Castilla y León, Salamanca, Spain
| | - Alicia Ortega
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, (IBSAL), Gerencia Regional de Salud de Castilla y León, Salamanca, Spain
| | - Tamara Postigo
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, (IBSAL), Gerencia Regional de Salud de Castilla y León, Salamanca, Spain
| | - María C García-Hidalgo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Thalia Belmonte
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Carlos Rodríguez-Muñoz
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Gerard Torres
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Clara Gort-Paniello
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anna Moncusí-Moix
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Ángel Estella
- Department of Medicine, Intensive Care Unit University Hospital of Jerez, University of Cádiz, INIBiCA, Cádiz, Spain
| | - Luis Tamayo Lomas
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Critical Care Department, Hospital Universitario Río Hortega de Valladolid, Valladolid, Spain
| | | | - Lorenzo Socias
- Intensive Care Unit, Hospital Son Llàtzer, Palma de Mallorca, Illes Balears, Spain
| | - Yhivian Peñasco
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Maria Del Carmen de la Torre
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Servei de Medicina Intensiva, Hospital de Mataró (Consorci Sanitari del Maresme), Mataró, Spain
| | - Elena Bustamante-Munguira
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Department of Intensive Care Medicine, Hospital Clínico Universitario Valladolid, Valladolid, Spain
| | - Elena Gallego Curto
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Unidad de Cuidados Intensivos, Hospital Universitario San Pedro de Alcántara, Cáceres, Spain
| | | | | | - Pablo Vidal-Cortés
- Intensive Care Unit, Complexo Hospitalario Universitario de Ourense, Ourense, Spain
| | | | - Felipe Pérez-García
- Servicio de Microbiología Clínica, Facultad de Medicina, Departamento de Biomedicina y Biotecnología, Hospital Universitario Príncipe de Asturias - Universidad de Alcalá, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Caballero
- Grup de Recerca Medicina Intensiva, Intensive Care Department Hospital, Universitari Arnau de Vilanova, Lleida, Spain
| | - José M Añón
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Servicio de Medicina Intensiva. Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Ana Loza-Vázquez
- Unidad de Medicina Intensiva, Hospital Universitario Virgen de Valme, Seville, Spain
| | - Nieves Carbonell
- Intensive Care Unit, Hospital Clínico y Universitario de Valencia, Valencia, Spain
| | | | | | - Carmen Barberà
- Intensive Care Department, University Hospital Santa María, IRBLleida, Lleida, Spain
| | - Adrián Ceccato
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Laia Fernández-Barat
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Ricard Ferrer
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Intensive Care Department, SODIR Research Group, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | | | - Jose Ángel Lorente-Balanza
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Hospital Universitario de Getafe, Madrid, Spain
- Dep. of Medicine, Universidad Europea, Madrid, Spain
- Dep. of Bioengineering, Universidad Carlos III, Madrid, Spain
| | - Rosario Menéndez
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Pulmonology Service, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Ana Motos
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Oscar Peñuelas
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Hospital Universitario de Getafe, Madrid, Spain
| | - Jordi Riera
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Intensive Care Department, SODIR Research Group, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Jesús F Bermejo-Martin
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, (IBSAL), Gerencia Regional de Salud de Castilla y León, Salamanca, Spain
- Hospital Universitario Río Hortega de Valladolid, Valladolid, Spain
| | - Antoni Torres
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
33
|
Abyadeh M, Yadav VK, Kaya A. Common molecular signatures between coronavirus infection and Alzheimer's disease reveal targets for drug development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544970. [PMID: 37398415 PMCID: PMC10312734 DOI: 10.1101/2023.06.14.544970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cognitive decline has been reported as a common consequence of COVID-19, and studies have suggested a link between COVID-19 infection and Alzheimer's disease (AD). However, the molecular mechanisms underlying this association remain unclear. To shed light on this link, we conducted an integrated genomic analysis using a novel Robust Rank Aggregation method to identify common transcriptional signatures of the frontal cortex, a critical area for cognitive function, between individuals with AD and COVID-19. We then performed various analyses, including the KEGG pathway, GO ontology, protein-protein interaction, hub gene, gene-miRNA, and gene-transcription factor interaction analyses to identify molecular components of biological pathways that are associated with AD in the brain also show similar changes in severe COVID-19. Our findings revealed the molecular mechanisms underpinning the association between COVID-19 infection and AD development and identified several genes, miRNAs, and TFs that may be targeted for therapeutic purposes. However, further research is needed to investigate the diagnostic and therapeutic applications of these findings.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Vijay K. Yadav
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| |
Collapse
|
34
|
Gilyazova I, Timasheva Y, Karunas A, Kazantseva A, Sufianov A, Mashkin A, Korytina G, Wang Y, Gareev I, Khusnutdinova E. COVID-19: Mechanisms, risk factors, genetics, non-coding RNAs and neurologic impairments. Noncoding RNA Res 2023; 8:240-254. [PMID: 36852336 PMCID: PMC9946734 DOI: 10.1016/j.ncrna.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The novel coronavirus infection (COVID-19) causes a severe acute illness with the development of respiratory distress syndrome in some cases. COVID-19 is a global problem of mankind to this day. Among its most important aspects that require in-depth study are pathogenesis and molecular changes in severe forms of the disease. A lot of literature data is devoted to the pathogenetic mechanisms of COVID-19. Without dwelling in detail on some paths of pathogenesis discussed, we note that at present there are many factors of development and progression. Among them, this is the direct role of both viral non-coding RNAs (ncRNAs) and host ncRNAs. One such class of ncRNAs that has been extensively studied in COVID-19 is microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Moreover, Initially, it was believed that this COVID-19 was limited to damage to the respiratory system. It has now become clear that COVID-19 affects not only the liver and kidneys, but also the nervous system. In this review, we summarized the current knowledge of mechanisms, risk factors, genetics and neurologic impairments in COVID-19. In addition, we discuss and evaluate evidence demonstrating the involvement of miRNAs and lnRNAs in COVID-19 and use this information to propose hypotheses for future research directions.
Collapse
Affiliation(s)
- Irina Gilyazova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
- Bashkir State Medical University, 450008, Ufa, Russia
| | - Yanina Timasheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Alexandra Karunas
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
- Federal State Educational Institution of Higher Education, Ufa University of Science and Technology, 450076, Ufa, Russia
| | - Anastasiya Kazantseva
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
- Federal State Educational Institution of Higher Education, Ufa University of Science and Technology, 450076, Ufa, Russia
| | - Albert Sufianov
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Andrey Mashkin
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia
| | - Gulnaz Korytina
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Yaolou Wang
- Harbin Medical University, 157 Baojian Rd, Nangang, Harbin, Heilongjiang, 150088, China
| | - Ilgiz Gareev
- Bashkir State Medical University, 450008, Ufa, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
- Federal State Educational Institution of Higher Education, Ufa University of Science and Technology, 450076, Ufa, Russia
| |
Collapse
|
35
|
Ahmad W, Gull B, Baby J, Panicker NG, Khader TA, Akhlaq S, Rizvi TA, Mustafa F. Differentially-regulated miRNAs in COVID-19: A systematic review. Rev Med Virol 2023:e2449. [PMID: 37145095 DOI: 10.1002/rmv.2449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for coronavirus disease of 2019 (COVID-19) that infected more than 760 million people worldwide with over 6.8 million deaths to date. COVID-19 is one of the most challenging diseases of our times due to the nature of its spread, its effect on multiple organs, and an inability to predict disease prognosis, ranging from being completely asymptomatic to death. Upon infection, SARS-CoV-2 alters the host immune response by changing host-transcriptional machinery. MicroRNAs (miRNAs) are regarded as post-transcriptional regulators of gene expression that can be perturbed by invading viruses. Several in vitro and in vivo studies have reported such dysregulation of host miRNA expression upon SARS-CoV-2 infection. Some of this could occur as an anti-viral response of the host to the viral infection. Viruses themselves can counteract that response by mounting their own pro-viral response that facilitates virus infection, an aspect which may cause pathogenesis. Thus, miRNAs could serve as possible disease biomarkers in infected people. In the current review, we have summarised and analysed the existing data about miRNA dysregulation in patients infected with SARS-CoV-2 to determine their concordance between studies, and identified those that could serve as potential biomarkers during infection, disease progression, and death, even in people with other co-morbidities. Having such biomarkers can be vital in not only predicting COVID-19 prognosis, but also the development of novel miRNA-based anti-virals and therapeutics which can become invaluable in case of the emergence of new viral variants with pandemic potential in the future.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bushra Gull
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jasmin Baby
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Neena G Panicker
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Thanumol A Khader
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shaima Akhlaq
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
36
|
Xu Y, Ma Q, Ren J, Chen L, Guo W, Feng K, Zeng Z, Huang T, Cai Y. Using Machine Learning Methods in Identifying Genes Associated with COVID-19 in Cardiomyocytes and Cardiac Vascular Endothelial Cells. Life (Basel) 2023; 13:life13041011. [PMID: 37109540 PMCID: PMC10146712 DOI: 10.3390/life13041011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Corona Virus Disease 2019 (COVID-19) not only causes respiratory system damage, but also imposes strain on the cardiovascular system. Vascular endothelial cells and cardiomyocytes play an important role in cardiac function. The aberrant expression of genes in vascular endothelial cells and cardiomyocytes can lead to cardiovascular diseases. In this study, we sought to explain the influence of respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the gene expression levels of vascular endothelial cells and cardiomyocytes. We designed an advanced machine learning-based workflow to analyze the gene expression profile data of vascular endothelial cells and cardiomyocytes from patients with COVID-19 and healthy controls. An incremental feature selection method with a decision tree was used in building efficient classifiers and summarizing quantitative classification genes and rules. Some key genes, such as MALAT1, MT-CO1, and CD36, were extracted, which exert important effects on cardiac function, from the gene expression matrix of 104,182 cardiomyocytes, including 12,007 cells from patients with COVID-19 and 92,175 cells from healthy controls, and 22,438 vascular endothelial cells, including 10,812 cells from patients with COVID-19 and 11,626 cells from healthy controls. The findings reported in this study may provide insights into the effect of COVID-19 on cardiac cells and further explain the pathogenesis of COVID-19, and they may facilitate the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Yaochen Xu
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai 200444, China
| | - Qinglan Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jingxin Ren
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Zhenbing Zeng
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai 200444, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yudong Cai
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
37
|
Redenšek Trampuž S, Vogrinc D, Goričar K, Dolžan V. Shared miRNA landscapes of COVID-19 and neurodegeneration confirm neuroinflammation as an important overlapping feature. Front Mol Neurosci 2023; 16:1123955. [PMID: 37008787 PMCID: PMC10064073 DOI: 10.3389/fnmol.2023.1123955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction Development and worsening of most common neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, have been associated with COVID-19 However, the mechanisms associated with neurological symptoms in COVID-19 patients and neurodegenerative sequelae are not clear. The interplay between gene expression and metabolite production in CNS is driven by miRNAs. These small non-coding molecules are dysregulated in most common neurodegenerative diseases and COVID-19. Methods We have performed a thorough literature screening and database mining to search for shared miRNA landscapes of SARS-CoV-2 infection and neurodegeneration. Differentially expressed miRNAs in COVID-19 patients were searched using PubMed, while differentially expressed miRNAs in patients with five most common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis) were searched using the Human microRNA Disease Database. Target genes of the overlapping miRNAs, identified with the miRTarBase, were used for the pathway enrichment analysis performed with Kyoto Encyclopedia of Genes and Genomes and Reactome. Results In total, 98 common miRNAs were found. Additionally, two of them (hsa-miR-34a and hsa-miR-132) were highlighted as promising biomarkers of neurodegeneration, as they are dysregulated in all five most common neurodegenerative diseases and COVID-19. Additionally, hsa-miR-155 was upregulated in four COVID-19 studies and found to be dysregulated in neurodegeneration processes as well. Screening for miRNA targets identified 746 unique genes with strong evidence for interaction. Target enrichment analysis highlighted most significant KEGG and Reactome pathways being involved in signaling, cancer, transcription and infection. However, the more specific identified pathways confirmed neuroinflammation as being the most important shared feature. Discussion Our pathway based approach has identified overlapping miRNAs in COVID-19 and neurodegenerative diseases that may have a valuable potential for neurodegeneration prediction in COVID-19 patients. Additionally, identified miRNAs can be further explored as potential drug targets or agents to modify signaling in shared pathways. Graphical AbstractShared miRNA molecules among the five investigated neurodegenerative diseases and COVID-19 were identified. The two overlapping miRNAs, hsa-miR-34a and has-miR-132, present potential biomarkers of neurodegenerative sequelae after COVID-19. Furthermore, 98 common miRNAs between all five neurodegenerative diseases together and COVID-19 were identified. A KEGG and Reactome pathway enrichment analyses was performed on the list of shared miRNA target genes and finally top 20 pathways were evaluated for their potential for identification of new drug targets. A common feature of identified overlapping miRNAs and pathways is neuroinflammation. AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; COVID-19, coronavirus disease 2019; HD, Huntington's disease; KEGG, Kyoto Encyclopedia of Genes and Genomes; MS, multiple sclerosis; PD, Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
38
|
Jankovic M, Nikolic D, Novakovic I, Petrovic B, Lackovic M, Santric-Milicevic M. miRNAs as a Potential Biomarker in the COVID-19 Infection and Complications Course, Severity, and Outcome. Diagnostics (Basel) 2023; 13:1091. [PMID: 36980399 PMCID: PMC10047241 DOI: 10.3390/diagnostics13061091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
During the last three years, since the emergence of the COVID-19 pandemic, a significant number of scientific publications have focused on resolving susceptibility to the infection, as well as the course of the disease and potential long-term complications. COVID-19 is widely considered as a multisystem disease and a variety of socioeconomic, medical, and genetic/epigenetic factors may contribute to the disease severity and outcome. Furthermore, the SARS-COV-2 infection may trigger pathological processes and accelerate underlying conditions to clinical entities. The development of specific and sensitive biomarkers that are easy to obtain will allow for patient stratification, prevention, prognosis, and more individualized treatments for COVID-19. miRNAs are proposed as promising biomarkers for different aspects of COVID-19 disease (susceptibility, severity, complication course, outcome, and therapeutic possibilities). This review summarizes the most relevant findings concerning miRNA involvement in COVID-19 pathology. Additionally, the role of miRNAs in wide range of complications due to accompanied and/or underlying health conditions is discussed. The importance of understanding the functional relationships between different conditions, such as pregnancy, obesity, or neurological diseases, with COVID-19 is also highlighted.
Collapse
Affiliation(s)
- Milena Jankovic
- Neurology Clinic, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dejan Nikolic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Department of Physical Medicine and Rehabilitation, University Children's Hospital, 11000 Belgrade, Serbia
| | - Ivana Novakovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Bojana Petrovic
- Clinic of Gynecology and Obstetrics, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Milan Lackovic
- Department of Obstetrics and Gynecology, University Hospital "Dragisa Misovic", 11000 Belgrade, Serbia
| | - Milena Santric-Milicevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Institute of Social Medicine, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Medicine, School of Public Health and Health Management, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
39
|
McCollum C, Courtney CM, O’Connor NJ, Aunins TR, Jordan TX, Rogers KL, Brindley S, Brown JM, Nagpal P, Chatterjee A. Safety and Biodistribution of Nanoligomers Targeting the SARS-CoV-2 Genome for the Treatment of COVID-19. ACS Biomater Sci Eng 2023; 9:1656-1671. [PMID: 36853144 PMCID: PMC10000012 DOI: 10.1021/acsbiomaterials.2c00669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
As the world braces to enter its fourth year of the coronavirus disease 2019 (COVID-19) pandemic, the need for accessible and effective antiviral therapeutics continues to be felt globally. The recent surge of Omicron variant cases has demonstrated that vaccination and prevention alone cannot quell the spread of highly transmissible variants. A safe and nontoxic therapeutic with an adaptable design to respond to the emergence of new variants is critical for transitioning to the treatment of COVID-19 as an endemic disease. Here, we present a novel compound, called SBCoV202, that specifically and tightly binds the translation initiation site of RNA-dependent RNA polymerase within the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome, inhibiting viral replication. SBCoV202 is a Nanoligomer, a molecule that includes peptide nucleic acid sequences capable of binding viral RNA with single-base-pair specificity to accurately target the viral genome. The compound has been shown to be safe and nontoxic in mice, with favorable biodistribution, and has shown efficacy against SARS-CoV-2 in vitro. Safety and biodistribution were assessed using three separate administration methods, namely, intranasal, intravenous, and intraperitoneal. Safety studies showed the Nanoligomer caused no outward distress, immunogenicity, or organ tissue damage, measured through observation of behavior and body weight, serum levels of cytokines, and histopathology of fixed tissue, respectively. SBCoV202 was evenly biodistributed throughout the body, with most tissues measuring Nanoligomer concentrations well above the compound KD of 3.37 nM. In addition to favorable availability to organs such as the lungs, lymph nodes, liver, and spleen, the compound circulated through the blood and was rapidly cleared through the renal and urinary systems. The favorable biodistribution and lack of immunogenicity and toxicity set Nanoligomers apart from other antisense therapies, while the adaptability of the nucleic acid sequence of Nanoligomers provides a defense against future emergence of drug resistance, making these molecules an attractive potential treatment for COVID-19.
Collapse
Affiliation(s)
- Colleen
R. McCollum
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Colleen M. Courtney
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Sachi Bio, Colorado Technology Center, Louisville, Colorado 80027, United States
| | - Nolan J. O’Connor
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Thomas R. Aunins
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Tristan X. Jordan
- Department
of Microbiology, New York University Langone, New York, New York 10016, United States
| | - Keegan L. Rogers
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Stephen Brindley
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Jared M. Brown
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Prashant Nagpal
- Sachi Bio, Colorado Technology Center, Louisville, Colorado 80027, United States
- Antimicrobial
Regeneration Consortium Labs, Louisville, Colorado 80027, United States
| | - Anushree Chatterjee
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Sachi Bio, Colorado Technology Center, Louisville, Colorado 80027, United States
- Antimicrobial
Regeneration Consortium Labs, Louisville, Colorado 80027, United States
| |
Collapse
|
40
|
Reyes-Long S, Cortés-Altamirano JL, Bandala C, Avendaño-Ortiz K, Bonilla-Jaime H, Bueno-Nava A, Ávila-Luna A, Sánchez-Aparicio P, Clavijo-Cornejo D, Dotor-LLerena AL, Cabrera-Ruiz E, Alfaro-Rodríguez A. Role of the MicroRNAs in the Pathogenic Mechanism of Painful Symptoms in Long COVID: Systematic Review. Int J Mol Sci 2023; 24:3574. [PMID: 36834984 PMCID: PMC9963913 DOI: 10.3390/ijms24043574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The ongoing pandemic of COVID-19 has caused more than 6.7 million tragic deaths, plus, a large percentage of people who survived it present a myriad of chronic symptoms that last for at least 6 months; this has been named as long COVID. Some of the most prevalent are painful symptoms like headache, joint pain, migraine, neuropathic-like pain, fatigue and myalgia. MicroRNAs are small non-coding RNAs that regulate genes, and their involvement in several pathologies has been extensively shown. A deregulation of miRNAs has been observed in patients with COVID-19. The objective of the present systematic review was to show the prevalence of chronic pain-like symptoms of patients with long COVID and based on the expression of miRNAs in patients with COVID-19, and to present a proposal on how they may be involved in the pathogenic mechanisms of chronic pain-like symptoms. A systematic review was carried out in online databases for original articles published between March 2020 to April 2022; the systematic review followed the PRISMA guidelines, and it was registered in PROSPERO with registration number CRD42022318992. A total of 22 articles were included for the evaluation of miRNAs and 20 regarding long COVID; the overall prevalence of pain-like symptoms was around 10 to 87%, plus, the miRNAs that were commonly up and downregulated were miR-21-5p, miR-29a,b,c-3p miR-92a,b-3p, miR-92b-5p, miR-126-3p, miR-150-5p, miR-155-5p, miR-200a, c-3p, miR-320a,b,c,d,e-3p, and miR-451a. The molecular pathways that we hypothesized to be modulated by these miRNAs are the IL-6/STAT3 proinflammatory axis and the compromise of the blood-nerve barrier; these two mechanisms could be associated with the prevalence of fatigue and chronic pain in the long COVID population, plus they could be novel pharmacological targets in order to reduce and prevent these symptoms.
Collapse
Affiliation(s)
- Samuel Reyes-Long
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Jose Luis Cortés-Altamirano
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
- Research Department, Universidad Estatal del Valle de Ecatepec, Ecatepec de Morelos 55210, Mexico
| | - Cindy Bandala
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Karina Avendaño-Ortiz
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Herlinda Bonilla-Jaime
- Reproductive Biology Department, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico
| | - Antonio Bueno-Nava
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Alberto Ávila-Luna
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Pedro Sánchez-Aparicio
- Pharmacology Department, Facultad de Medicina Veterinaria, Universidad Autónoma del Estado de México, Toluca 56900, Mexico
| | - Denise Clavijo-Cornejo
- División de Reumatología, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Ana Lilia Dotor-LLerena
- Neurociencias Clínicas, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Elizabeth Cabrera-Ruiz
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | | |
Collapse
|
41
|
Srivastava S, Garg I, Singh Y, Meena R, Ghosh N, Kumari B, Kumar V, Eslavath MR, Singh S, Dogra V, Bargotya M, Bhattar S, Gupta U, Jain S, Hussain J, Varshney R, Ganju L. Evaluation of altered miRNA expression pattern to predict COVID-19 severity. Heliyon 2023; 9:e13388. [PMID: 36743852 PMCID: PMC9889280 DOI: 10.1016/j.heliyon.2023.e13388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Outbreak of COVID-19 pandemic in December 2019 affected millions of people globally. After substantial research, several biomarkers for COVID-19 have been validated however no specific and reliable biomarker for the prognosis of patients with COVID-19 infection exists. Present study was designed to identify specific biomarkers to predict COVID-19 severity and tool for formulating treatment. A small cohort of subjects (n = 43) were enrolled and categorized in four study groups; Dead (n = 16), Severe (n = 10) and Moderate (n = 7) patients and healthy controls (n = 10). Small RNA sequencing was done on Illumina platform after isolation of microRNA from peripheral blood. Differential expression (DE) of miRNA (patients groups compared to control) revealed 118 down-regulated and 103 up-regulated known miRNAs with fold change (FC) expression ≥2 folds and p ≤ 0.05. DE miRNAs were then subjected to functional enrichment and network analysis. Bioinformatic analysis resulted in 31 miRNAs (24 Down-regulated; 7 up-regulated) significantly associated with COVID-19 having AUC>0.8 obtained from ROC curve. Seventeen out of 31 DE miRNAs have been linked to COVID-19 in previous studies. Three miRNAs, hsa-miR-147b-5p and hsa-miR-107 (down-regulated) and hsa-miR-1299 (up-regulated) showed significant unique DE in Dead patients. Another set of 4 miRNAs, hsa-miR-224-5p (down-regulated) and hsa-miR-4659b-3p, hsa-miR-495-3p and hsa-miR-335-3p were differentially up-regulated uniquely in Severe patients. Members of three miRNA families, hsa-miR-20, hsa-miR-32 and hsa-miR-548 were significantly down-regulated in all patients group in comparison to healthy controls. Thus a distinct miRNA expression profile was observed in Dead, Severe and Moderate COVID-19 patients. Present study suggests a panel of miRNAs which identified in COVID-19 patients and could be utilized as potential diagnostic biomarkers for predicting COVID-19 severity.
Collapse
Affiliation(s)
- Swati Srivastava
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India,Corresponding author
| | - Iti Garg
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India,Corresponding author
| | - Yamini Singh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ramesh Meena
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Nilanjana Ghosh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Babita Kumari
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Vinay Kumar
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Malleswara Rao Eslavath
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Sayar Singh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Vikas Dogra
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Mona Bargotya
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Sonali Bhattar
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Utkarsh Gupta
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Shruti Jain
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Javid Hussain
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Rajeev Varshney
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Lilly Ganju
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| |
Collapse
|
42
|
Ayaz H, Aslam N, Awan FM, Basri R, Rauff B, Alzahrani B, Arif M, Ikram A, Obaid A, Naz A, Khan SN, Yang BB, Nazir A. Mapping CircRNA-miRNA-mRNA regulatory axis identifies hsa_circ_0080942 and hsa_circ_0080135 as a potential theranostic agents for SARS-CoV-2 infection. PLoS One 2023; 18:e0283589. [PMID: 37053191 PMCID: PMC10101458 DOI: 10.1371/journal.pone.0283589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/11/2023] [Indexed: 04/14/2023] Open
Abstract
Non-coding RNAs (ncRNAs) can control the flux of genetic information; affect RNA stability and play crucial roles in mediating epigenetic modifications. A number of studies have highlighted the potential roles of both virus-encoded and host-encoded ncRNAs in viral infections, transmission and therapeutics. However, the role of an emerging type of non-coding transcript, circular RNA (circRNA) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has not been fully elucidated so far. Moreover, the potential pathogenic role of circRNA-miRNA-mRNA regulatory axis has not been fully explored as yet. The current study aimed to holistically map the regulatory networks driven by SARS-CoV-2 related circRNAs, miRNAs and mRNAs to uncover plausible interactions and interplay amongst them in order to explore possible therapeutic options in SARS-CoV-2 infection. Patient datasets were analyzed systematically in a unified approach to explore circRNA, miRNA, and mRNA expression profiles. CircRNA-miRNA-mRNA network was constructed based on cytokine storm related circRNAs forming a total of 165 circRNA-miRNA-mRNA pairs. This study implies the potential regulatory role of the obtained circRNA-miRNA-mRNA network and proposes that two differentially expressed circRNAs hsa_circ_0080942 and hsa_circ_0080135 might serve as a potential theranostic agents for SARS-CoV-2 infection. Collectively, the results shed light on the functional role of circRNAs as ceRNAs to sponge miRNA and regulate mRNA expression during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hassan Ayaz
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Nouman Aslam
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Rabea Basri
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Bisma Rauff
- Department of Biomedical Engineering, University of Engineering and Technology (UET), Lahore, Narowal, Pakistan
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Muhammad Arif
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Ayesha Obaid
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Sadiq Noor Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Azhar Nazir
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
43
|
Liang Y, Fang D, Gao X, Deng X, Chen N, Wu J, Zeng M, Luo M. Circulating microRNAs as emerging regulators of COVID-19. Theranostics 2023; 13:125-147. [PMID: 36593971 PMCID: PMC9800721 DOI: 10.7150/thno.78164] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/06/2022] [Indexed: 12/03/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), an infectious disease caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic that has high incidence rates, spreads rapidly, and has caused more than 6.5 million deaths globally to date. Currently, several drugs have been used in the clinical treatment of COVID-19, including antivirals (e.g., molnupiravir, baricitinib, and remdesivir), monoclonal antibodies (e.g., etesevimab and tocilizumab), protease inhibitors (e.g., paxlovid), and glucocorticoids (e.g., dexamethasone). Increasing evidence suggests that circulating microRNAs (miRNAs) are important regulators of viral infection and antiviral immune responses, including the biological processes involved in regulating COVID-19 infection and subsequent complications. During viral infection, both viral genes and host cytokines regulate transcriptional and posttranscriptional steps affecting viral replication. Virus-encoded miRNAs are a component of the immune evasion repertoire and function by directly targeting immune functions. Moreover, several host circulating miRNAs can contribute to viral immune escape and play an antiviral role by not only promoting nonstructural protein (nsp) 10 expression in SARS coronavirus, but among others inhibiting NOD-like receptor pyrin domain-containing (NLRP) 3 and IL-1β transcription. Consequently, understanding the expression and mechanism of action of circulating miRNAs during SARS-CoV-2 infection will provide unexpected insights into circulating miRNA-based studies. In this review, we examined the recent progress of circulating miRNAs in the regulation of severe inflammatory response, immune dysfunction, and thrombosis caused by SARS-CoV-2 infection, discussed the mechanisms of action, and highlighted the therapeutic challenges involving miRNA and future research directions in the treatment of COVID-19.
Collapse
Affiliation(s)
- Yu Liang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- College of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaojun Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Deng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ni Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- College of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
44
|
Yang J, Song Y, Deng X, Vanegas JA, You Z, Zhang Y, Weng Z, Avery L, Dieckhaus KD, Peddi A, Gao Y, Zhang Y, Gao X. Engineered LwaCas13a with enhanced collateral activity for nucleic acid detection. Nat Chem Biol 2023; 19:45-54. [PMID: 36138140 DOI: 10.1038/s41589-022-01135-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 08/08/2022] [Indexed: 12/31/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 13 (Cas13) has been rapidly developed for nucleic-acid-based diagnostics by using its characteristic collateral activity. Despite the recent progress in optimizing the Cas13 system for the detection of nucleic acids, engineering Cas13 protein with enhanced collateral activity has been challenging, mostly because of its complex structural dynamics. Here we successfully employed a novel strategy to engineer the Leptotrichia wadei (Lwa)Cas13a by inserting different RNA-binding domains into a unique active-site-proximal loop within its higher eukaryotes and prokaryotes nucleotide-binding domain. Two LwaCas13a variants showed enhanced collateral activity and improved sensitivity over the wild type in various buffer conditions. By combining with an electrochemical method, our variants detected the SARS-CoV-2 genome at attomolar concentrations from both inactive viral and unextracted clinical samples, without target preamplification. Our engineered LwaCas13a enzymes with enhanced collateral activity are ready to be integrated into other Cas13a-based platforms for ultrasensitive detection of nucleic acids.
Collapse
Affiliation(s)
- Jie Yang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Yang Song
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.,Institute of Materials Science, University of Connecticut, Storrs, CT, USA
| | - Xiangyu Deng
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Jeffrey A Vanegas
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Zheng You
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Yuxuan Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.,Institute of Materials Science, University of Connecticut, Storrs, CT, USA
| | - Zhengyan Weng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.,Institute of Materials Science, University of Connecticut, Storrs, CT, USA
| | - Lori Avery
- Department of Pathology and Laboratory Medicine, UConn Health, Farmington, CT, USA
| | - Kevin D Dieckhaus
- Division of Infectious Diseases, Department of Medicine, UConn Health, Farmington, CT, USA
| | - Advaith Peddi
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Yang Gao
- Department of Biosciences, Rice University, Houston, TX, USA.
| | - Yi Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA. .,Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT, USA.
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA. .,Department of Bioengineering, Rice University, Houston, TX, USA. .,Department of Chemistry, Rice University, Houston, TX, USA.
| |
Collapse
|
45
|
Izzo C, Visco V, Gambardella J, Ferruzzi GJ, Rispoli A, Rusciano MR, Toni AL, Virtuoso N, Carrizzo A, Di Pietro P, Iaccarino G, Vecchione C, Ciccarelli M. Cardiovascular Implications of microRNAs in Coronavirus Disease 2019. J Pharmacol Exp Ther 2023; 384:102-108. [PMID: 35779946 DOI: 10.1124/jpet.122.001210] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/13/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to be a global challenge due to resulting morbidity and mortality. Cardiovascular (CV) involvement is a crucial complication in coronavirus disease 2019 (COVID-19), and no strategies are available to prevent or specifically address CV events in COVID-19 patients. The identification of molecular partners contributing to CV manifestations in COVID-19 patients is crucial for providing early biomarkers, prognostic predictors, and new therapeutic targets. The current report will focus on the role of microRNAs (miRNAs) in CV complications associated with COVID-19. Indeed, miRNAs have been proposed as valuable biomarkers and predictors of both cardiac and vascular damage occurring in SARS-CoV-2 infection. SIGNIFICANCE STATEMENT: It is essential to identify the molecular mediators of coronavirus disease 2019 (COVID-19) cardiovascular (CV) complications. This report focused on the role of microRNAs in CV complications associated with COVID-19, discussing their potential use as biomarkers, prognostic predictors, and therapeutic targets.
Collapse
Affiliation(s)
- Carmine Izzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Valeria Visco
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Jessica Gambardella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Germano Junior Ferruzzi
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Antonella Rispoli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Maria Rosaria Rusciano
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Anna Laura Toni
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Nicola Virtuoso
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Guido Iaccarino
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy (C.I., V.V., G.J.F., A.R., M.R.R., A.L.T., A.C., P.D.P., C.V., M.C.); Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (J.G., G.I.); Department of Medicine, Einstein-Sinai Diabetes Research Center, The Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York (J.G.); Cardiology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy (N.V.); and Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy (A.C., C.V.)
| |
Collapse
|
46
|
Abyadeh M, Yadav VK, Kaya A. Common Molecular Signatures Between Coronavirus Infection and Alzheimer's Disease Reveal Targets for Drug Development. J Alzheimers Dis 2023; 95:995-1011. [PMID: 37638446 DOI: 10.3233/jad-230684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
BACKGROUND Cognitive decline is a common consequence of COVID-19, and studies suggest a link between COVID-19 and Alzheimer's disease (AD). However, the molecular mechanisms underlying this association remain unclear. OBJECTIVE To understand the potential molecular mechanisms underlying the association between COVID-19 and AD development, and identify the potential genetic targets for pharmaceutical approaches to reduce the risk or delay the development of COVID-19-related neurological pathologies. METHODS We analyzed transcriptome datasets of 638 brain samples using a novel Robust Rank Aggregation method, followed by functional enrichment, protein-protein, hub genes, gene-miRNA, and gene-transcription factor (TF) interaction analyses to identify molecular markers altered in AD and COVID-19 infected brains. RESULTS Our analyses of frontal cortex from COVID-19 and AD patients identified commonly altered genes, miRNAs and TFs. Functional enrichment and hub gene analysis of these molecular changes revealed commonly altered pathways, including downregulation of the cyclic adenosine monophosphate (cAMP) signaling and taurine and hypotaurine metabolism, alongside upregulation of neuroinflammatory pathways. Furthermore, gene-miRNA and gene-TF network analyses provided potential up- and downstream regulators of identified pathways. CONCLUSION We found that downregulation of cAMP signaling pathway, taurine metabolisms, and upregulation of neuroinflammatory related pathways are commonly altered in AD and COVID-19 pathogenesis, and may make COVID-19 patients more susceptible to cognitive decline and AD. We also identified genetic targets, regulating these pathways that can be targeted pharmaceutically to reduce the risk or delay the development of COVID-19-related neurological pathologies and AD.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Biology, Virginia Common wealth University, Richmond, VA, USA
| | - Vijay K Yadav
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Common wealth University, Richmond, VA, USA
| |
Collapse
|
47
|
Ceramella J, Iacopetta D, Sinicropi MS, Andreu I, Mariconda A, Saturnino C, Giuzio F, Longo P, Aquaro S, Catalano A. Drugs for COVID-19: An Update. Molecules 2022; 27:8562. [PMID: 36500655 PMCID: PMC9740261 DOI: 10.3390/molecules27238562] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the seventh known human coronavirus, and it was identified in Wuhan, Hubei province, China, in 2020. It caused the highly contagious disease called coronavirus disease 2019 (COVID-19), declared a global pandemic by the World Health Organization (WHO) on 11 March 2020. A great number of studies in the search of new therapies and vaccines have been carried out in these three long years, producing a series of successes; however, the need for more effective vaccines, therapies and other solutions is still being pursued. This review represents a tracking shot of the current pharmacological therapies used for the treatment of COVID-19.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Rende, Italy
| | - Inmaculada Andreu
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Unidad Mixta de Investigación UPV-IIS La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| | | | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Federica Giuzio
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| |
Collapse
|
48
|
Bokhari RS, Beheshti A, Blutt SE, Bowles DE, Brenner D, Britton R, Bronk L, Cao X, Chatterjee A, Clay DE, Courtney C, Fox DT, Gaber MW, Gerecht S, Grabham P, Grosshans D, Guan F, Jezuit EA, Kirsch DG, Liu Z, Maletic-Savatic M, Miller KM, Montague RA, Nagpal P, Osenberg S, Parkitny L, Pierce NA, Porada C, Rosenberg SM, Sargunas P, Sharma S, Spangler J, Tavakol DN, Thomas D, Vunjak-Novakovic G, Wang C, Whitcomb L, Young DW, Donoviel D. Looking on the horizon; potential and unique approaches to developing radiation countermeasures for deep space travel. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:105-112. [PMID: 36336356 DOI: 10.1016/j.lssr.2022.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
Future lunar missions and beyond will require new and innovative approaches to radiation countermeasures. The Translational Research Institute for Space Health (TRISH) is focused on identifying and supporting unique approaches to reduce risks to human health and performance on future missions beyond low Earth orbit. This paper will describe three funded and complementary avenues for reducing the risk to humans from radiation exposure experienced in deep space. The first focus is on identifying new therapeutic targets to reduce the damaging effects of radiation by focusing on high throughput genetic screens in accessible, sometimes called lower, organism models. The second focus is to design innovative approaches for countermeasure development with special attention to nucleotide-based methodologies that may constitute a more agile way to design therapeutics. The final focus is to develop new and innovative ways to test radiation countermeasures in a human model system. While animal studies continue to be beneficial in the study of space radiation, they can have imperfect translation to humans. The use of three-dimensional (3D) complex in vitro models is a promising approach to aid the development of new countermeasures and personalized assessments of radiation risks. These three distinct and unique approaches complement traditional space radiation efforts and should provide future space explorers with more options to safeguard their short and long-term health.
Collapse
Affiliation(s)
- Rihana S Bokhari
- Agile Decision Sciences, NRESS, Arlington, VA 22202, United States of America.
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, United States of America; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States of America
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, United States of America; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States of America
| | - Dawn E Bowles
- Division of Surgical Sciences, Department of Surgery, Duke University, Durham NC, United States of America
| | - David Brenner
- Columbia University, New York, NY, 10027, United States of America
| | - Robert Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, United States of America
| | - Lawrence Bronk
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Xu Cao
- Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Anushree Chatterjee
- Sachi Bioworks, Louisville, CO 80027, United States of America; University of Colorado Boulder, Boulder, CO 80303, United States of America
| | - Delisa E Clay
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, United States of America
| | | | - Donald T Fox
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - M Waleed Gaber
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America
| | - Sharon Gerecht
- Chemical and Biomolecular Engineering and Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 United States of America; Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Peter Grabham
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY 10027 United States of America
| | - David Grosshans
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Fada Guan
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Erin A Jezuit
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - David G Kirsch
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - Zhandong Liu
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas, Austin, TX 78712, United States of America
| | - Ruth A Montague
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - Prashant Nagpal
- Sachi Bioworks, Louisville, CO 80027, United States of America
| | - Sivan Osenberg
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - Luke Parkitny
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - Niles A Pierce
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States of America; Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA 91125, United States of America; Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Christopher Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77303, United States of America; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77303, United States of America; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77303, United States of America; Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77303, United States of America
| | - Paul Sargunas
- Chemical and Biomolecular Engineering and Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 United States of America
| | - Sadhana Sharma
- Sachi Bioworks, Louisville, CO 80027, United States of America
| | - Jamie Spangler
- Chemical and Biomolecular Engineering and Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 United States of America
| | | | - Dilip Thomas
- Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | | | - Chunbo Wang
- Division of Surgical Sciences, Department of Surgery, Duke University, Durham NC, United States of America
| | - Luke Whitcomb
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Damian W Young
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, United States of America
| | - Dorit Donoviel
- Translational Research Institute for Space Health, Houston, TX 77030, United States of America; Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, United States of America.
| |
Collapse
|
49
|
Yuan J, Feng Z, Wang Q, Han L, Guan S, Liu L, Ye H, Xu L, Han X. 3’UTR of SARS-CoV-2 spike gene hijack host miR-296 or miR-520h to disturb cell proliferation and cytokine signaling. Front Immunol 2022; 13:924667. [PMID: 36238276 PMCID: PMC9552351 DOI: 10.3389/fimmu.2022.924667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has becoming globally public health threat. Recently studies were focus on SARS-CoV-2 RNA to design vaccine and drugs. It was demonstrated that virus RNA could play as sponge to host noncoding RNAs to regulate cellular processes. Bioinformatic research predicted a series of motif on SARS-CoV-2 genome where are targets of human miRNAs. In this study, we used dual-luciferase reporter assays to validate the interaction between 3’UTR of SARS-CoV-2 S (S-3’UTR) gene and bioinformatic predicted targeting miRNAs. The growth of 293T cells and HUVECs with overexpressed S-3’UTR was determined, while miRNAs and IL6, TNF-α levels were checked in this condition. Then, miR-296 and miR-602 mimic were introduced into 293T cells and HUVECs with overexpressed S-3’UTR, respectively, to reveal the underlying regulation mechanism. In results, we screened 19 miRNAs targeting the S-3’UTR, including miR-296 and miR-602. In 293T cell, S-3’UTR could inhibit 293T cell growth through down-regulation of miR-296. By reducing miR-602, S-3’UTR could induce HUVECs cell proliferation, alter the cell cycle, reduce apoptosis, and enhanced IL6 and TNF-αlevel. In conclusion, SARS-CoV-2 RNA could play as sponge of host miRNA to disturb cell growth and cytokine signaling. It suggests an important clue for designing COVID-19 drug and vaccine.
Collapse
Affiliation(s)
- Jinjin Yuan
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Ziheng Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Qiaowen Wang
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Lifen Han
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Shenchan Guan
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Lijuan Liu
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Hanhui Ye
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- *Correspondence: Xiao Han, ; Lili Xu, ; Hanhui Ye,
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- *Correspondence: Xiao Han, ; Lili Xu, ; Hanhui Ye,
| | - Xiao Han
- Department of Infectious Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- *Correspondence: Xiao Han, ; Lili Xu, ; Hanhui Ye,
| |
Collapse
|
50
|
Non-coding RNA in SARS-CoV-2: Progress toward therapeutic significance. Int J Biol Macromol 2022; 222:1538-1550. [PMID: 36152703 PMCID: PMC9492401 DOI: 10.1016/j.ijbiomac.2022.09.105] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 12/18/2022]
Abstract
The recently developed pathogenic virus, SARS-CoV-2, was found in the Hubei Province, China. Giving rise to a broad spectrum of symptoms, SARS-CoV-2 rapidly spread across the globe, causing multi-systemic and dangerous complications, with death in extreme cases. Thereby, the number of research cases increases every day on preventing infection and treating its resulting damage. Accumulating evidence suggests noncoding RNAs (ncRNAs) are necessary for modifying virus infection and antiviral immune reaction, along with biological processes regulating SARS-CoV-2 and subsequent disease states. Therefore, understanding these mechanisms might provide a further understanding of the pathogenesis and feasible therapy alternatives against SARS-CoV2. Consequently, the molecular biology of SARS-CoV-2, ncRNA's role in its infection, and various RNA therapy tactics against the virus have been presented in this review section.
Collapse
|