1
|
Ashagrie H, Baye K, Guibert B, Rochette I, Tisseyre P, Humblot C. The use of propionic and lactic acid bacteria to produce cobalamin and folate in injera, an Ethiopian cereal-based fermented food. Int J Food Microbiol 2025; 426:110909. [PMID: 39288569 DOI: 10.1016/j.ijfoodmicro.2024.110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Like in many developing countries, the traditional Ethiopian diet relies mainly on starchy staple foods and often lacks sufficient animal-sourced foods which are crucial for cobalamin intake. Furthermore, the concentration of folate in traditionally prepared injera, an Ethiopian cereal-based fermented staple food, is highly variable and injera contains biologically inactive corrinoids. This study aimed to improve the cobalamin and folate content of injera by using cobalamin-producing Propionibacterium freudenreichii and folate-producing Lactiplantibacillus plantarum strains, both individually and combined. Since injera is fermented using backslopping, we also assessed the ability of these strains to produce cobalamin and folate consistently across successive fermentation batches. Changes in the microbial ecosystem were monitored using real-time PCR. The theoretical contribution of the injera prepared using the selected strains to the cobalamin and folate intake of children and women of reproductive age was also calculated. Results showed that using the selected bacterial strains individually increased cobalamin (up to 19.2 μg/100 g of dry matter) and folate (up to 180.2 μg/100 g of dry matter) levels in the injera dough over several backslopping fermentation batches. Regular consumption of the injera with enhanced vitamin content produced using each strain alone would be capable of fulfilling the entire recommended nutrient intake for cobalamin and up to 29 % of the recommended intake for folate for children and women of reproductive age. However, when the strains were used together, the production of both vitamins was reduced. The presence of certain common endogenous bacterial species and genera exhibited significant variability, highlighting the complex response of the native microbiota to the different inoculation strategies employed. Future experiments should consider selecting a microbial consortium comprising non-competing microorganisms to ensure the simultaneous production of cobalamin and folate in fermented foods.
Collapse
Affiliation(s)
- Henok Ashagrie
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Kaleab Baye
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Benjamin Guibert
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Isabelle Rochette
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Pierre Tisseyre
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Christèle Humblot
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France.
| |
Collapse
|
2
|
Călinoiu LF, Odochean R, Martău GA, Mitrea L, Nemes SA, Ștefănescu BE, Vodnar DC. In situ fortification of cereal by-products with vitamin B12: An eco-sustainable approach for food fortification. Food Chem 2024; 460:140766. [PMID: 39126946 DOI: 10.1016/j.foodchem.2024.140766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Vitamin B12 deficiency poses significant health risks, especially among populations with limited access to animal-based foods. This study explores the utilisation of cereal bran by-products, wheat (WB) and oat bran (OB), as substrates for in situ vitamin B12 fortification through solid-state fermentation (SSF) using Propionibacterium freudenreichii. The impact of various precursors addition, including riboflavin, cobalt, nicotinamide and DMBI on vitamin B12 production, along with changes in microbial growth, chemical profiles, and vitamin B12 yields during fermentation was evaluated. Results showed that WB and OB possess favourable constituents for microbial growth and vitamin B12 synthesis. The substrates supplemented with riboflavin, cobalt, and DMBI demonstrated enhanced B12 production. In addition, pH levels are essential in microbial viability and cobalamin biosynthesis. Monosaccharides and organic acids play a crucial role, with maltose showing a strong positive association with B12 production in OB, while in WB, citric acid exhibits significant correlations with various factors.
Collapse
Affiliation(s)
- Lavinia Florina Călinoiu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania; Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Răzvan Odochean
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Gheorghe-Adrian Martău
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania; Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Laura Mitrea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania; Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Silvia Amalia Nemes
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Bianca-Eugenia Ștefănescu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania; Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania.
| |
Collapse
|
3
|
Vartak ASR, Verma S, Hazra AB. Synthesis of 5,6-substituted benzimidazoles and their evaluation as potential intermediates in the anaerobic vitamin B 12 biosynthesis pathway. Chem Commun (Camb) 2024; 60:13012-13015. [PMID: 39422903 DOI: 10.1039/d4cc04489d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Although benzimidazoles are well-recognized compounds in medicinal chemistry, they occur in the natural world primarily as lower ligands of Vitamin B12 and other cobamides. In this study, we present the synthesis of 5-methoxy-6-methylbenzimidazole and 5-hydroxy-6-methylbenzimidazole, and demonstrate their ability to produce functional cobamides and N-1'-α-glycosidic-benzimidazolyl-ribosylphosphate isomers which are putative B12 biosynthesis intermediates.
Collapse
Affiliation(s)
- Aniket S R Vartak
- Department of Biology, Indian Institute of Scientific Education and Research Pune, Pune 411 008, Maharashtra, India.
| | - Shashank Verma
- Department of Chemistry, Indian Institute of Scientific Education and Research Pune, Pune 411 008, Maharashtra, India
| | - Amrita B Hazra
- Department of Biology, Indian Institute of Scientific Education and Research Pune, Pune 411 008, Maharashtra, India.
- Department of Chemistry, Indian Institute of Scientific Education and Research Pune, Pune 411 008, Maharashtra, India
| |
Collapse
|
4
|
Moravcová M, Siatka T, Krčmová LK, Matoušová K, Mladěnka P. Biological properties of vitamin B 12. Nutr Res Rev 2024:1-33. [PMID: 39376196 DOI: 10.1017/s0954422424000210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Vitamin B12, cobalamin, is indispensable for humans owing to its participation in two biochemical reactions: the conversion of l-methylmalonyl coenzyme A to succinyl coenzyme A, and the formation of methionine by methylation of homocysteine. Eukaryotes, encompassing plants, fungi, animals and humans, do not synthesise vitamin B12, in contrast to prokaryotes. Humans must consume it in their diet. The most important sources include meat, milk and dairy products, fish, shellfish and eggs. Due to this, vegetarians are at risk to develop a vitamin B12 deficiency and it is recommended that they consume fortified food. Vitamin B12 behaves differently to most vitamins of the B complex in several aspects, e.g. it is more stable, has a very specific mechanism of absorption and is stored in large amounts in the organism. This review summarises all its biological aspects (including its structure and natural sources as well as its stability in food, pharmacokinetics and physiological function) as well as causes, symptoms, diagnosis (with a summary of analytical methods for its measurement), prevention and treatment of its deficiency, and its pharmacological use and potential toxicity.
Collapse
Affiliation(s)
- Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Tomáš Siatka
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
5
|
Ge Y, Zadeh M, Sharma C, Lin YD, Soshnev AA, Mohamadzadeh M. Controlling functional homeostasis of ileal resident macrophages by vitamin B12 during steady state and Salmonella infection in mice. Mucosal Immunol 2024:S1933-0219(24)00091-6. [PMID: 39255854 DOI: 10.1016/j.mucimm.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
Dietary micronutrients, particularly vitamin B12 (VB12), profoundly influence the physiological maintenance and function of intestinal cells. However, it is still unclear whether VB12 modulates the transcriptional and metabolic programming of ileal macrophages (iMacs), thereby contributing to intestinal homeostasis. Using multiomic approaches, we demonstrated that VB12 primarily supports the cell cycle activity and mitochondrial metabolism of iMacs, resulting in increased cell frequency compared to VB12 deficiency. VB12 also retained the ability to promote maintenance and metabolic regulation of iMacs during intestinal infection with Salmonella Typhimurium (STm). On the contrary, depletion of iMacs by inhibiting CSF1R signaling significantly increased host susceptibility to STm and prevented VB12-mediated pathogen reduction. These results thus suggest that regulation of VB12-dependent iMacs critically controls STm expansion, which may be of new relevance to advance our understanding of this vitamin and to strategically formulate sustainable therapeutic nutritional regimens that improve human gut health.
Collapse
Affiliation(s)
- Yong Ge
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA.
| | - Mojgan Zadeh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Cheshta Sharma
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Yang-Ding Lin
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Alexey A Soshnev
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, TX, USA
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA; South Texas Veterans Health Care System (STVHCS), San Antonio, TX, USA.
| |
Collapse
|
6
|
Wienhausen G, Moraru C, Bruns S, Tran DQ, Sultana S, Wilkes H, Dlugosch L, Azam F, Simon M. Ligand cross-feeding resolves bacterial vitamin B 12 auxotrophies. Nature 2024; 629:886-892. [PMID: 38720071 DOI: 10.1038/s41586-024-07396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 04/08/2024] [Indexed: 05/24/2024]
Abstract
Cobalamin (vitamin B12, herein referred to as B12) is an essential cofactor for most marine prokaryotes and eukaryotes1,2. Synthesized by a limited number of prokaryotes, its scarcity affects microbial interactions and community dynamics2-4. Here we show that two bacterial B12 auxotrophs can salvage different B12 building blocks and cooperate to synthesize B12. A Colwellia sp. synthesizes and releases the activated lower ligand α-ribazole, which is used by another B12 auxotroph, a Roseovarius sp., to produce the corrin ring and synthesize B12. Release of B12 by Roseovarius sp. happens only in co-culture with Colwellia sp. and only coincidently with the induction of a prophage encoded in Roseovarius sp. Subsequent growth of Colwellia sp. in these conditions may be due to the provision of B12 by lysed cells of Roseovarius sp. Further evidence is required to support a causative role for prophage induction in the release of B12. These complex microbial interactions of ligand cross-feeding and joint B12 biosynthesis seem to be widespread in marine pelagic ecosystems. In the western and northern tropical Atlantic Ocean, bacteria predicted to be capable of salvaging cobinamide and synthesizing only the activated lower ligand outnumber B12 producers. These findings add new players to our understanding of B12 supply to auxotrophic microorganisms in the ocean and possibly in other ecosystems.
Collapse
Affiliation(s)
- Gerrit Wienhausen
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California San Diego, La Jolla, CA, USA.
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Stefan Bruns
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Den Quoc Tran
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Sabiha Sultana
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Heinz Wilkes
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Leon Dlugosch
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Farooq Azam
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California San Diego, La Jolla, CA, USA
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany.
| |
Collapse
|
7
|
Kundra P, Greppi A, Duppenthaler M, Plüss S, Pugin B, Lacroix C, Geirnaert A. Vitamin B12 analogues from gut microbes and diet differentially impact commensal propionate producers of the human gut. Front Nutr 2024; 11:1360199. [PMID: 38389799 PMCID: PMC10881866 DOI: 10.3389/fnut.2024.1360199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
To produce the health-associated metabolite propionate, gut microbes require vitamin B12 as a cofactor to convert succinate to propionate. B12 is sourced in the human gut from the unabsorbed dietary fraction and in situ microbial production. However, experimental data for B12 production by gut microbes is scarce, especially on their produced B12-analogues. Further, the promotion of propionate production by microbially-produced and dietary B12 is not yet fully understood. Here, we demonstrated B12 production in 6 out of 8 in silico predicted B12-producing bacteria from the human gut. Next, we showed in vitro that B12 produced by Blautia hydrogenotrophica, Marvinbryantia formatexigens, and Blautia producta promoted succinate to propionate conversion of two prevalent B12-auxotrophic gut bacteria, Akkermansia muciniphila and Bacteroides thetaiotaomicron. Finally, we examined the propiogenic effect of commercially available B12-analogues present in the human diet (cyano-B12, adenosyl-B12 and hydroxy-B12) at two doses. The low dose resulted in partial conversion of succinate to propionate for A. muciniphila when grown with adenosyl-B12 (14.6 ± 2.4 mM succinate and 18.7 ± 0.6 mM propionate) and hydroxy-B12 (13.0 ± 1.1 mM and 21.9 ± 1.2 mM), in comparison to cyano-B12 (0.7 ± 0.1 mM and 34.1 ± 0.1 mM). Higher doses of adenosyl-B12 and hydroxy-B12 resulted in significantly more conversion of succinate to propionate in both propionate-producing species, compared to the low dose. B12 analogues have different potential to impact the propionate metabolism of prevalent propionate producers in the gut. These results could contribute to strategies for managing gut disorders associated with decreased propionate production.
Collapse
Affiliation(s)
| | | | | | | | | | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, Zurich, Switzerland
| | - Annelies Geirnaert
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, Zurich, Switzerland
| |
Collapse
|
8
|
Alvarez-Aponte ZI, Govindaraju AM, Hallberg ZF, Nicolas AM, Green MA, Mok KC, Fonseca-García C, Coleman-Derr D, Brodie EL, Carlson HK, Taga ME. Phylogenetic distribution and experimental characterization of corrinoid production and dependence in soil bacterial isolates. THE ISME JOURNAL 2024; 18:wrae068. [PMID: 38648288 PMCID: PMC11287214 DOI: 10.1093/ismejo/wrae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Soil microbial communities impact carbon sequestration and release, biogeochemical cycling, and agricultural yields. These global effects rely on metabolic interactions that modulate community composition and function. However, the physicochemical and taxonomic complexity of soil and the scarcity of available isolates for phenotypic testing are significant barriers to studying soil microbial interactions. Corrinoids-the vitamin B12 family of cofactors-are critical for microbial metabolism, yet they are synthesized by only a subset of microbiome members. Here, we evaluated corrinoid production and dependence in soil bacteria as a model to investigate the ecological roles of microorganisms involved in metabolic interactions. We isolated and characterized a taxonomically diverse collection of 161 soil bacteria from a single study site. Most corrinoid-dependent bacteria in the collection prefer B12 over other corrinoids, while all tested producers synthesize B12, indicating metabolic compatibility between producers and dependents in the collection. Furthermore, a subset of producers release B12 at levels sufficient to support dependent isolates in laboratory culture at estimated ratios of up to 1000 dependents per producer. Within our isolate collection, we did not find strong phylogenetic patterns in corrinoid production or dependence. Upon investigating trends in the phylogenetic dispersion of corrinoid metabolism categories across sequenced bacteria from various environments, we found that these traits are conserved in 47 out of 85 genera. Together, these phenotypic and genomic results provide evidence for corrinoid-based metabolic interactions among bacteria and provide a framework for the study of nutrient-sharing ecological interactions in microbial communities.
Collapse
Affiliation(s)
- Zoila I Alvarez-Aponte
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Alekhya M Govindaraju
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Zachary F Hallberg
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Alexa M Nicolas
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Myka A Green
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Kenny C Mok
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Citlali Fonseca-García
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, United States
| | - Devin Coleman-Derr
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, United States
| | - Eoin L Brodie
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Hans K Carlson
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
9
|
Dudko D, Milker S, Holtmann D, Buchhaupt M. Identification of vitamin B 12 producing bacteria based on the presence of bluB/cobT2 homologues. Biotechnol Lett 2023; 45:563-572. [PMID: 36913101 PMCID: PMC10038948 DOI: 10.1007/s10529-023-03362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/14/2023]
Abstract
OBJECTIVES The objective of the study was to develop a strategy for the identification of new vitamin B12-producing species and to characterize their production capability using a fast and sensitive LC-MS/MS method developed in this study. RESULTS Searching for homologues of the bluB/cobT2 fusion gene known to be responsible for the production of the active vitamin B12 form in P. freudenreichii was shown to be a successful strategy for the identification of new vitamin B12-producing strains. The analysis of the identified strains via LC-MS/MS showed the ability of Terrabacter sp. DSM102553, Yimella lutea DSM19828 and Calidifontibacter indicus DSM22967 to produce the active form of vitamin B12. Further analysis of vitamin B12 production capability of Terrabacter sp. DSM102553 in M9 minimal medium and peptone-based media revealed that the highest yield of 2.65 µg of vitamin B12 per g dry cell weight was obtained in M9 medium. CONCLUSIONS The proposed strategy enabled identification of Terrabacter sp. DSM102553, whose relatively high yields obtained in the minimal medium open new perspectives for the possible application of the strain for biotechnological vitamin B12 production.
Collapse
Affiliation(s)
- Darya Dudko
- Microbial Biotechnology, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
- Faculty Biology and Chemistry, Justus-Liebig-Universität Gießen, Ludwigstraße 23, 35390, Gießen, Germany
| | - Sofia Milker
- Microbial Biotechnology, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Dirk Holtmann
- Microbial Biotechnology, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390, Gießen, Germany
| | - Markus Buchhaupt
- Microbial Biotechnology, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Soto MA, Desai D, Bannon C, LaRoche J, Bertrand EM. Cobalamin producers and prokaryotic consumers in the Northwest Atlantic. Environ Microbiol 2023. [PMID: 36861357 DOI: 10.1111/1462-2920.16363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/26/2023] [Indexed: 03/03/2023]
Abstract
Cobalamin availability can influence primary productivity and ecological interactions in marine microbial communities. The characterization of cobalamin sources and sinks is a first step in investigating cobalamin dynamics and its impact on productivity. Here, we identify potential cobalamin sources and sinks on the Scotian Shelf and Slope in the Northwest Atlantic Ocean. Functional and taxonomic annotation of bulk metagenomic reads, combined with analysis of genome bins, were used to identify potential cobalamin sources and sinks. Cobalamin synthesis potential was mainly attributed to Rhodobacteraceae, Thaumarchaeota, and cyanobacteria (Synechococcus and Prochlorococcus). Cobalamin remodelling potential was mainly attributed to Alteromonadales, Pseudomonadales, Rhizobiales, Oceanospirilalles, Rhodobacteraceae, and Verrucomicrobia, while potential cobalamin consumers include Flavobacteriaceae, Actinobacteria, Porticoccaceae, Methylophiliaceae, and Thermoplasmatota. These complementary approaches identified taxa with the potential to be involved in cobalamin cycling on the Scotian Shelf and revealed genomic information required for further characterization. The Cob operon of Rhodobacterales bacterium HTCC2255, a strain with known importance in cobalamin cycling, was similar to a major cobalamin producer bin, suggesting that a related strain may represent a critical cobalamin source in this region. These results enable future inquiries that will enhance our understanding of how cobalamin shapes microbial interdependencies and productivity in this region.
Collapse
Affiliation(s)
- Maria A Soto
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dhwani Desai
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Catherine Bannon
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Julie LaRoche
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Erin M Bertrand
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
11
|
Dudko D, Holtmann D, Buchhaupt M. Methylotrophic bacteria with cobalamin-dependent mutases in primary metabolism as potential strains for vitamin B 12 production. Antonie Van Leeuwenhoek 2023; 116:207-220. [PMID: 36385348 PMCID: PMC9925536 DOI: 10.1007/s10482-022-01795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Several bacterial species are known for their ability to synthesize vitamin B12 but biotechnological vitamin B12 production today is restricted to Pseudomonas denitrificans and Propionibacterium freudenreichii. Nevertheless, the rising popularity of veganism leads to a growing demand for vitamin B12 and thereby interest in alternative strains which can be used as efficient vitamin B12 sources. In this work, we demonstrate that methylotrophic microorganisms which utilize the ethylmalonyl-CoA pathway containing B12-dependent enzymes are capable of active vitamin B12 production. Several bacteria with an essential function of the pathway were tested for vitamin B12 synthesis. Among the identified strains, Hyphomicrobium sp. DSM3646 demonstrated the highest vitamin B12 levels reaching up to 17.9 ± 5.05 µg per g dry cell weight. These relatively high vitamin B12 concentrations achieved in simple cultivation experiments were performed in a mineral methanol medium, which makes Hyphomicrobium sp. DSM3646 a new promising cobalamin-producing strain.
Collapse
Affiliation(s)
- Darya Dudko
- Microbial Biotechnology, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
- Faculty Biology and Chemistry, Justus-Liebig-Universität Gießen, Ludwigstraße 23, 35390, Gießen, Germany
| | - Dirk Holtmann
- Microbial Biotechnology, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr. 14, 35390, Gießen, Germany
| | - Markus Buchhaupt
- Microbial Biotechnology, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Abstract
The skin microbiome is a key player in human health, with diverse functions ranging from defense against pathogens to education of the immune system. While recent studies have begun to shed light on the valuable role that skin microorganisms have in maintaining the skin barrier, a detailed understanding of the complex interactions that shape healthy skin microbial communities is limited. Cobamides, the vitamin B12 class of cofactor, are essential for organisms across the tree of life. Because this vitamin is only produced by a limited fraction of prokaryotes, cobamide sharing is predicted to mediate community dynamics within microbial communities. Here, we provide the first large-scale metagenomic assessment of cobamide biosynthesis and utilization in the skin microbiome. We show that while numerous and diverse taxa across the major bacterial phyla on the skin encode cobamide-dependent enzymes, relatively few species encode de novo cobamide biosynthesis. We show that cobamide producers and users are integrated into the network structure of microbial communities across the different microenvironments of the skin and that changes in microbiome community structure and diversity are associated with the abundance of cobamide producers in the Corynebacterium genus, for both healthy and diseased skin states. Finally, we find that de novo cobamide biosynthesis is enriched only in Corynebacterium species associated with hosts, including those prevalent on human skin. We confirm that the cofactor is produced in excess through quantification of cobamide production by human skin-associated species isolated in the laboratory. Taken together, our results reveal the potential for cobamide sharing within skin microbial communities, which we hypothesize mediates microbiome community dynamics and host interactions. IMPORTANCE The skin microbiome is essential for maintaining skin health and function. However, the microbial interactions that dictate microbiome structure, stability, and function are not well understood. Here, we investigate the biosynthesis and use of cobamides, a cofactor needed by many organisms but only produced by select prokaryotes, within the human skin microbiome. We found that while a large proportion of skin taxa encode cobamide-dependent enzymes, only a select few encode de novo cobamide biosynthesis. Further, the abundance of cobamide-producing Corynebacterium species is associated with skin microbiome diversity and structure, and within this genus, de novo biosynthesis is enriched in host-associated species compared to environment-associated species. These findings identify cobamides as a potential mediator of skin microbiome dynamics and skin health.
Collapse
|
13
|
Cobalamin Riboswitches Are Broadly Sensitive to Corrinoid Cofactors to Enable an Efficient Gene Regulatory Strategy. mBio 2022; 13:e0112122. [PMID: 35993747 PMCID: PMC9600662 DOI: 10.1128/mbio.01121-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In bacteria, many essential metabolic processes are controlled by riboswitches, gene regulatory RNAs that directly bind and detect metabolites. Highly specific effector binding enables riboswitches to respond to a single biologically relevant metabolite. Cobalamin riboswitches are a potential exception because over a dozen chemically similar but functionally distinct cobalamin variants (corrinoid cofactors) exist in nature. Here, we measured cobalamin riboswitch activity in vivo using a Bacillus subtilis fluorescent reporter system and found, among 38 tested riboswitches, a subset responded to corrinoids promiscuously, while others were semiselective. Analyses of chimeric riboswitches and structural models indicate, unlike other riboswitch classes, cobalamin riboswitches indirectly differentiate among corrinoids by sensing differences in their structural conformation. This regulatory strategy aligns riboswitch-corrinoid specificity with cellular corrinoid requirements in a B. subtilis model. Thus, bacteria can employ broadly sensitive riboswitches to cope with the chemical diversity of essential metabolites. IMPORTANCE Some bacterial mRNAs contain a region called a riboswitch which controls gene expression by binding to a metabolite in the cell. Typically, riboswitches sense and respond to a limited range of cellular metabolites, often just one type. In this work, we found the cobalamin (vitamin B12) riboswitch class is an exception, capable of sensing and responding to multiple variants of B12-collectively called corrinoids. We found cobalamin riboswitches vary in corrinoid specificity with some riboswitches responding to each of the corrinoids we tested, while others responding only to a subset of corrinoids. Our results suggest the latter class of riboswitches sense intrinsic conformational differences among corrinoids in order to support the corrinoid-specific needs of the cell. These findings provide insight into how bacteria sense and respond to an exceptionally diverse, often essential set of enzyme cofactors.
Collapse
|
14
|
Abstract
All organisms rely on complex metabolites such as amino acids, nucleotides, and cofactors for essential metabolic processes. Some microbes synthesize these fundamental ingredients of life de novo, while others rely on uptake to fulfill their metabolic needs. Although certain metabolic processes are inherently "leaky," the mechanisms enabling stable metabolite provisioning among microbes in the absence of a host remain largely unclear. In particular, how can metabolite provisioning among free-living bacteria be maintained under the evolutionary pressure to economize resources? Salvaging, the process of "recycling and reusing," can be a metabolically efficient route to obtain access to required resources. Here, we show experimentally how precursor salvaging in engineered Escherichia coli populations can lead to stable, long-term metabolite provisioning. We find that salvaged cobamides (vitamin B12 and related enzyme cofactors) are readily made available to nonproducing population members, yet salvagers are strongly protected from overexploitation. We also describe a previously unnoted benefit of precursor salvaging, namely, the removal of the nonfunctional, proliferation-inhibiting precursor. As long as compatible precursors are present, any microbe possessing the terminal steps of a biosynthetic process can, in principle, forgo de novo biosynthesis in favor of salvaging. Consequently, precursor salvaging likely represents a potent, yet overlooked, alternative to de novo biosynthesis for the acquisition and provisioning of metabolites in free-living bacterial populations. IMPORTANCE Recycling gives new life to old things. Bacteria have the ability to recycle and reuse complex molecules they encounter in their environment to fulfill their basic metabolic needs in a resource-efficient way. By studying the salvaging (recycling and reusing) of vitamin B12 precursors, we found that metabolite salvaging can benefit others and provide stability to a bacterial community at the same time. Salvagers of vitamin B12 precursors freely share the result of their labor yet cannot be outcompeted by freeloaders, likely because salvagers retain preferential access to the salvaging products. Thus, salvaging may represent an effective, yet overlooked, mechanism of acquiring and provisioning nutrients in microbial populations.
Collapse
|
15
|
Mathur Y, Vartak AR, Hazra AB. Guardian of cobamide diversity: Probing the role of CobT in lower ligand activation in the biosynthesis of vitamin B 12 and other cobamide cofactors. Methods Enzymol 2022; 668:25-59. [PMID: 35589196 DOI: 10.1016/bs.mie.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Enzymes catalyze a wide variety of reactions with exquisite precision under crowded conditions within cellular environments. When encountered with a choice of small molecules in their vicinity, even though most enzymes continue to be specific about the substrate they pick, some others are able to accept a range of substrates and subsequently produce a variety of products. The biosynthesis of Vitamin B12, an essential nutrient required by humans involves a multi-substrate α-phosphoribosyltransferase enzyme CobT that activates the lower ligand of B12. Vitamin B12 is a member of the cobamide family of cofactors which share a common tetrapyrrolic corrin scaffold with a centrally coordinated cobalt ion, and an upper and a lower ligand. The structural difference between B12 and other cobamides mainly arises from variations in the lower ligand, which is attached to the activated corrin ring by CobT and other downstream enzymes. In this chapter, we describe the steps involved in identifying and reconstituting the activity of new CobT homologs by deriving lessons from those previously characterized. We then highlight biochemical techniques to study the unique properties of these homologs. Finally, we describe a pairwise substrate competition assay to rank CobT substrate preference, a general method that can be applied for the study of other multi-substrate enzymes. Overall, the analysis with CobT provides insights into the range of cobamides that can be synthesized by an organism or a community, complementing efforts to predict cobamide diversity from complex metagenomic data.
Collapse
Affiliation(s)
- Yamini Mathur
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, India
| | - Aniket R Vartak
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, India
| | - Amrita B Hazra
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, India; Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, India.
| |
Collapse
|
16
|
Availability of vitamin B 12 and its lower ligand intermediate α-ribazole impact prokaryotic and protist communities in oceanic systems. THE ISME JOURNAL 2022; 16:2002-2014. [PMID: 35585186 PMCID: PMC9296465 DOI: 10.1038/s41396-022-01250-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 01/22/2023]
Abstract
Genome analyses predict that the cofactor cobalamin (vitamin B12, called B12 herein) is produced by only one-third of all prokaryotes but almost all encode at least one B12-dependent enzyme, in most cases methionine synthase. This implies that the majority of prokaryotes relies on exogenous B12 supply and interacts with producers. B12 consists of a corrin ring centred around a cobalt ion and the lower ligand 5’6-dimethylbenzimidazole (DMB). It has never been tested whether availability of this pivotal cofactor, DMB or its intermediate α-ribazole affect growth and composition of prokaryotic microbial communities. Here we show that in the subtropical, equatorial and polar frontal Pacific Ocean supply of B12 and α-ribazole enhances heterotrophic prokaryotic production and alters the composition of prokaryotic and heterotrophic protist communities. In the polar frontal Pacific, the SAR11 clade and Oceanospirillales increased their relative abundances upon B12 supply. In the subtropical Pacific, Oceanospirillales increased their relative abundance upon B12 supply as well but also downregulated the transcription of the btuB gene, encoding the outer membrane permease for B12. Surprisingly, Prochlorococcus, known to produce pseudo-B12 and not B12, exhibited significant upregulation of genes encoding key proteins of photosystem I + II, carbon fixation and nitrate reduction upon B12 supply in the subtropical Pacific. These findings show that availability of B12 and α-ribazole affect growth and composition of prokaryotic and protist communities in oceanic systems thus revealing far-reaching consequences of methionine biosynthesis and other B12-dependent enzymatic reactions on a community level.
Collapse
|
17
|
Ma AT, Kantner DS, Beld J. Cobamide remodeling. VITAMINS AND HORMONES 2022; 119:43-63. [PMID: 35337629 DOI: 10.1016/bs.vh.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cobamides are a family of structurally-diverse cofactors which includes vitamin B12 and over a dozen natural analogs. Within the nucleotide loop structure, cobamide analogs have variable lower ligands that fall into three categories: benzimidazoles, purines, and phenols. The range of cobamide analogs that can be utilized by an organism is dependent on the specificity of its cobamide-dependent enzymes, and most bacteria are able to utilize multiple analogs but not all. Some bacteria have pathways for cobamide remodeling, a process in which imported cobamides are converted into compatible analogs. Here we discuss cobamide analog diversity and three pathways for cobamide remodeling, mediated by amidohydrolase CbiZ, phosphodiesterase CbiR, and some homologs of cobamide synthase CobS. Remodeling proteins exhibit varying degrees of specificity for cobamide substrates, reflecting different strategies to ensure that imported cobamides can be utilized.
Collapse
Affiliation(s)
- Amy T Ma
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.
| | - Daniel S Kantner
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Joris Beld
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
18
|
Abstract
Cobamides are a family of enzyme cofactors that are required by organisms in all domains of life. Over a dozen cobamides exist in nature although only cobalamin (vitamin B12), the cobamide required by humans, has been studied extensively. Cobamides are exclusively produced by a subset of prokaryotes. Importantly, the bacteria and archaea that synthesize cobamides de novo typically produce a single type of cobamide, and furthermore, organisms that use cobamides are selective for certain cobamides. Therefore, a detailed understanding of the cobamide-dependent metabolism of an organism or microbial community of interest requires experiments performed with a variety of cobamides. A notable challenge is that cobalamin is the only cobamide that is commercially available at present. In this chapter, we describe methods to extract, purify, and quantify various cobamides from bacteria for use in laboratory experiments.
Collapse
Affiliation(s)
- Kenny C Mok
- Department of Plant & Microbial Biology, University of California, Berkeley, CA, United States
| | - Zachary F Hallberg
- Department of Plant & Microbial Biology, University of California, Berkeley, CA, United States
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California, Berkeley, CA, United States.
| |
Collapse
|
19
|
Roth W, Mohamadzadeh M. Vitamin B12 and gut-brain homeostasis in the pathophysiology of ischemic stroke. EBioMedicine 2021; 73:103676. [PMID: 34749301 PMCID: PMC8586745 DOI: 10.1016/j.ebiom.2021.103676] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 12/31/2022] Open
Abstract
Stroke is a leading cause of morbidity and mortality worldwide. It inflicts immeasurable suffering on patients and their loved ones and carries an immense social cost. Efforts to mitigate the impact of stroke have focused on identifying therapeutic targets for the prevention and treatment. The gut microbiome represents one such potential target given its multifaceted effects on conditions known to cause and worsen the severity of stroke. Vitamin B12 (VB12) serves as a cofactor for two enzymes, methylmalonyl-CoA synthase and methionine synthase, vital for methionine and nucleotide biosynthesis. VB12 deficiency results in a buildup of metabolic substrates, such as homocysteine, that alter immune homeostasis and contribute to atherosclerotic disorders, including ischemic stroke. In addition to its support of cellular function, VB12 serves as a metabolic cofactor for gut microbes. By shaping microbial communities, VB12 further impacts local and peripheral immunity. Growing evidence suggests that gut dysbiosis-related immune dysfunction induced by VB12 deficiency may potentially contributes to stroke pathogenesis, its severity, and patient outcomes. In this review, we discuss the complex interactions of VB12, gut microbes and the associated metabolites, and immune homeostasis throughout the natural history of ischemic stroke.
Collapse
Affiliation(s)
- William Roth
- Department of Neurology, University of Florida, Gainesville, FL 32608, USA.
| | - Mansour Mohamadzadeh
- Division of Gastroenterology & Nutrition, Department of Medicine, College of Medicine, University of Texas Health, San Antonio, TX, USA.
| |
Collapse
|
20
|
Wang M, Asam S, Chen J, Ehrmann M, Rychlik M. Production of Four 15N-Labelled Cobalamins via Biosynthesis Using Propionibacterium freudenreichii. Front Microbiol 2021; 12:713321. [PMID: 34484151 PMCID: PMC8414983 DOI: 10.3389/fmicb.2021.713321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022] Open
Abstract
Cobalamins (vitamin B12) are required by humans for their essential roles as enzyme cofactors in diverse metabolic processes. The four most common cobalamin vitamers are hydroxocobalamin (OHCbl), adenosylcobalamin (AdoCbl), methylcobalamin (MeCbl), and cyanocobalamin (CNCbl). Humans are not able to synthesise cobalamins de novo and thus must acquire them from external sources. Therefore, a reliable and robust analytical method to determine the cobalamins in dietary sources is highly required. For such a purpose, stable isotope dilution assays (SIDAs) with LC-MS/MS are most suited due to their superior sensitivity, specificity, and ability to compensate for matrix effects and analyte loss during sample work-up. However, a critical bottleneck for developing a SIDA method for cobalamins is the availability of stable isotope-labelled internal standards. In the present study, we harnessed the potential of Propionibacterium (P.) freudenreichii for the biosynthesis of 15N-labelled cobalamins. First, we developed a chemically defined medium (CDM) containing ammonium sulphate as a single nitrogen source except three essential vitamins that supported long-term stable growth of P. freudenreichii throughout continuous transfers. The CDM was further optimised for cobalamin production under different incubation schemes. With the optimised CDM and incubation scheme, fully 15N-labelled cobalamins were obtained in P. freudenreichii with a final yield of 312 ± 29 μg/L and 635 ± 102 μg/L, respectively, for [15N]-OHCbl and [15N]-AdoCbl. Additionally, an optimised incubation process under anaerobic conditions was successfully employed to produce specifically labelled [15N, 14N2]-cobalamins, with a yield of 96 ± 18 μg/L and 990 ± 210 μg/L, respectively, for [15N, 14N2]-OHCbl and [15N, 14N2]-AdoCbl. The labelled substances were isolated and purified by solid phase extraction and semi-preparative HPLC. Chemical modifications were carried out to produce [15N]-CNCbl and [15N]-MeCbl. Eventually, 15N-labelled compounds were obtained for the four cobalamin vitamers in high chromatographic and isotopic purity with desired 15N-enrichment and labelling patterns, which are perfectly suited for future use in SIDAs or other applications that require isotopologues.
Collapse
Affiliation(s)
- Mengle Wang
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Stefan Asam
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Jianqi Chen
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Matthias Ehrmann
- Chair of Technical Microbiology, Technical University of Munich, Freising, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| |
Collapse
|
21
|
Direct Cobamide Remodeling via Additional Function of Cobamide Biosynthesis Protein CobS from Vibrio cholerae. J Bacteriol 2021; 203:e0017221. [PMID: 34031037 DOI: 10.1128/jb.00172-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vitamin B12 belongs to a family of structurally diverse cofactors with over a dozen natural analogs, collectively referred to as cobamides. Most bacteria encode cobamide-dependent enzymes, many of which can only utilize a subset of cobamide analogs. Some bacteria employ a mechanism called cobamide remodeling, a process in which cobamides are converted into other analogs to ensure that compatible cobamides are available in the cell. Here, we characterize an additional pathway for cobamide remodeling that is distinct from the previously characterized ones. Cobamide synthase (CobS) is an enzyme required for cobamide biosynthesis that attaches the lower ligand moiety in which the base varies between analogs. In a heterologous model system, we previously showed that Vibrio cholerae CobS (VcCobS) unexpectedly conferred remodeling activity in addition to performing the known cobamide biosynthesis reaction. Here, we show that additional Vibrio species perform the same remodeling reaction, and we further characterize VcCobS-mediated remodeling using bacterial genetics and in vitro assays. We demonstrate that VcCobS acts upon the cobamide pseudocobalamin directly to remodel it, a mechanism which differs from the known remodeling pathways in which cobamides are first cleaved into biosynthetic intermediates. This suggests that some CobS homologs have the additional function of cobamide remodeling, and we propose the term "direct remodeling" for this process. This characterization of yet another pathway for remodeling suggests that cobamide profiles are highly dynamic in polymicrobial environments, with remodeling pathways conferring a competitive advantage. IMPORTANCE Cobamides are widespread cofactors that mediate metabolic interactions in complex microbial communities. Few studies directly examine cobamide profiles, but several have shown that mammalian gastrointestinal tracts are rich in cobamide analogs. Studies of intestinal bacteria, including beneficial commensals and pathogens, show variation in the ability to produce and utilize different cobamides. Some bacteria can convert imported cobamides into compatible analogs in a process called remodeling. Recent discoveries of additional cobamide remodeling pathways, including this work, suggest that remodeling is an important factor in cobamide dynamics. Characterization of such pathways is critical in understanding cobamide flux and nutrient cross-feeding in polymicrobial communities, and it facilitates the establishment of microbiome manipulation strategies via modulation of cobamide profiles.
Collapse
|
22
|
Law KP, He W, Tao J, Zhang C. Characterization of the Exometabolome of Nitrosopumilus maritimus SCM1 by Liquid Chromatography-Ion Mobility Mass Spectrometry. Front Microbiol 2021; 12:658781. [PMID: 34276593 PMCID: PMC8281238 DOI: 10.3389/fmicb.2021.658781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Marine Thaumarchaeota (formerly known as the marine group I archaea) have received much research interest in recent years since these chemolithoautotrophic organisms are abundant in the subsurface ocean and oxidize ammonium to nitrite, which makes them a major contributor to the marine carbon and nitrogen cycles. However, few studies have investigated the chemical composition of their exometabolome and their contributions to the pool of dissolved organic matter (DOM) in seawater. This study exploits the recent advances in ion mobility mass spectrometry (IM-MS) and integrates this instrumental capability with bioinformatics to reassess the exometabolome of a model ammonia-oxidizing archaeon, Nitrosopumilus maritimus strain SCM1. Our method has several advantages over the conventional approach using an Orbitrap or ion cyclotron resonance mass analyzer and allows assignments or annotations of spectral features to known metabolites confidently and indiscriminately, as well as distinction of biological molecules from background organics. Consistent with the results of a previous report, the SPE-extracted exometabolome of N. maritimus is dominated by biologically active nitrogen-containing metabolites, in addition to peptides secreted extracellularly. Cobalamin and associated intermediates, including α-ribazole and α-ribazole 5'-phosphate, are major components of the SPE-extracted exometabolome of N. maritimus. This supports the proposition that Thaumarchaeota have the capacity of de novo biosynthesizing cobalamin. Other biologically significant metabolites, such as agmatidine and medicagenate, predicted by genome screening are also detected, which indicates that Thaumarchaeota have remarkable metabolic potentials, underlining their importance in driving elemental cycles critical to biological processes in the ocean.
Collapse
Affiliation(s)
- Kai P. Law
- SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Marine Geo-Omics Research, Southern University of Science and Technology, Shenzhen, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Wei He
- Shenzhen Key Laboratory of Marine Geo-Omics Research, Southern University of Science and Technology, Shenzhen, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jianchang Tao
- Shenzhen Key Laboratory of Marine Geo-Omics Research, Southern University of Science and Technology, Shenzhen, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Geo-Omics Research, Southern University of Science and Technology, Shenzhen, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
| |
Collapse
|
23
|
Balabanova L, Averianova L, Marchenok M, Son O, Tekutyeva L. Microbial and Genetic Resources for Cobalamin (Vitamin B12) Biosynthesis: From Ecosystems to Industrial Biotechnology. Int J Mol Sci 2021; 22:ijms22094522. [PMID: 33926061 PMCID: PMC8123684 DOI: 10.3390/ijms22094522] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Many microbial producers of coenzyme B12 family cofactors together with their metabolically interdependent pathways are comprehensively studied and successfully used both in natural ecosystems dominated by auxotrophs, including bacteria and mammals, and in the safe industrial production of vitamin B12. Metabolic reconstruction for genomic and metagenomic data and functional genomics continue to mine the microbial and genetic resources for biosynthesis of the vital vitamin B12. Availability of metabolic engineering techniques and usage of affordable and renewable sources allowed improving bioprocess of vitamins, providing a positive impact on both economics and environment. The commercial production of vitamin B12 is mainly achieved through the use of the two major industrial strains, Propionobacterium shermanii and Pseudomonas denitrificans, that involves about 30 enzymatic steps in the biosynthesis of cobalamin and completely replaces chemical synthesis. However, there are still unresolved issues in cobalamin biosynthesis that need to be elucidated for future bioprocess improvements. In the present work, we review the current state of development and challenges for cobalamin (vitamin B12) biosynthesis, describing the major and novel prospective strains, and the studies of environmental factors and genetic tools effecting on the fermentation process are reported.
Collapse
Affiliation(s)
- Larissa Balabanova
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690922 Vladivostok, Russia; (L.A.); (M.M.); (O.S.); (L.T.)
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
- ARNIKA, Territory of PDA Nadezhdinskaya, 692481 Primorskiy Region, Russia
- Correspondence:
| | - Liudmila Averianova
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690922 Vladivostok, Russia; (L.A.); (M.M.); (O.S.); (L.T.)
- ARNIKA, Territory of PDA Nadezhdinskaya, 692481 Primorskiy Region, Russia
| | - Maksim Marchenok
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690922 Vladivostok, Russia; (L.A.); (M.M.); (O.S.); (L.T.)
- ARNIKA, Territory of PDA Nadezhdinskaya, 692481 Primorskiy Region, Russia
| | - Oksana Son
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690922 Vladivostok, Russia; (L.A.); (M.M.); (O.S.); (L.T.)
- ARNIKA, Territory of PDA Nadezhdinskaya, 692481 Primorskiy Region, Russia
| | - Liudmila Tekutyeva
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690922 Vladivostok, Russia; (L.A.); (M.M.); (O.S.); (L.T.)
- ARNIKA, Territory of PDA Nadezhdinskaya, 692481 Primorskiy Region, Russia
| |
Collapse
|
24
|
De Novo Cobalamin Biosynthesis, Transport, and Assimilation and Cobalamin-Mediated Regulation of Methionine Biosynthesis in Mycobacterium smegmatis. J Bacteriol 2021; 203:JB.00620-20. [PMID: 33468593 PMCID: PMC8088520 DOI: 10.1128/jb.00620-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Alterations in cobalamin-dependent metabolism have marked the evolution of Mycobacterium tuberculosis into a human pathogen. However, the role(s) of cobalamin in mycobacterial physiology remain poorly understood. Cobalamin is an essential cofactor in all domains of life, yet its biosynthesis is restricted to some bacteria and archaea. Mycobacterium smegmatis, an environmental saprophyte frequently used as surrogate for the obligate human pathogen M. tuberculosis, carries approximately 30 genes predicted to be involved in de novo cobalamin biosynthesis. M. smegmatis also encodes multiple cobalamin-dependent enzymes, including MetH, a methionine synthase that catalyzes the final reaction in methionine biosynthesis. In addition to metH, M. smegmatis possesses a cobalamin-independent methionine synthase, metE, suggesting that enzyme use—MetH versus MetE—is regulated by cobalamin availability. Consistent with this notion, we previously described a cobalamin-sensing riboswitch controlling metE expression in M. tuberculosis. Here, we apply a targeted mass spectrometry-based approach to confirm de novo cobalamin biosynthesis in M. smegmatis during aerobic growth in vitro. We also demonstrate that M. smegmatis can transport and assimilate exogenous cyanocobalamin (CNCbl; also known as vitamin B12) and its precursor, dicyanocobinamide ([CN]2Cbi). However, the uptake of CNCbl and (CN)2Cbi in this organism is restricted and seems dependent on the conditional essentiality of the cobalamin-dependent methionine synthase. Using gene and protein expression analyses combined with single-cell growth kinetics and live-cell time-lapse microscopy, we show that transcription and translation of metE are strongly attenuated by endogenous cobalamin. These results support the inference that metH essentiality in M. smegmatis results from riboswitch-mediated repression of MetE expression. Moreover, differences observed in cobalamin-dependent metabolism between M. smegmatis and M. tuberculosis provide some insight into the selective pressures which might have shaped mycobacterial metabolism for pathogenicity. IMPORTANCE Alterations in cobalamin-dependent metabolism have marked the evolution of Mycobacterium tuberculosis into a human pathogen. However, the role(s) of cobalamin in mycobacterial physiology remains poorly understood. Using the nonpathogenic saprophyte M. smegmatis, we investigated the production of cobalamin, transport and assimilation of cobalamin precursors, and the role of cobalamin in regulating methionine biosynthesis. We confirm constitutive de novo cobalamin biosynthesis in M. smegmatis, in contrast with M. tuberculosis, which appears to lack de novo cobalamin biosynthetic capacity. We also show that uptake of cyanocobalamin (vitamin B12) and its precursors is restricted in M. smegmatis, apparently depending on the cofactor requirements of the cobalamin-dependent methionine synthase. These observations establish M. smegmatis as an informative foil to elucidate key metabolic adaptations enabling mycobacterial pathogenicity.
Collapse
|
25
|
Xie C, Coda R, Chamlagain B, Edelmann M, Varmanen P, Piironen V, Katina K. Fermentation of cereal, pseudo-cereal and legume materials with Propionibacterium freudenreichii and Levilactobacillus brevis for vitamin B12 fortification. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Mathur Y, Sreyas S, Datar PM, Sathian MB, Hazra AB. CobT and BzaC catalyze the regiospecific activation and methylation of the 5-hydroxybenzimidazole lower ligand in anaerobic cobamide biosynthesis. J Biol Chem 2020; 295:10522-10534. [PMID: 32503839 PMCID: PMC7397103 DOI: 10.1074/jbc.ra120.014197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/01/2020] [Indexed: 11/06/2022] Open
Abstract
Vitamin B12 and other cobamides are essential cofactors required by many organisms and are synthesized by a subset of prokaryotes via distinct aerobic and anaerobic routes. The anaerobic biosynthesis of 5,6-dimethylbenzimidazole (DMB), the lower ligand of vitamin B12, involves five reactions catalyzed by the bza operon gene products, namely the hydroxybenzimidazole synthase BzaAB/BzaF, phosphoribosyltransferase CobT, and three methyltransferases, BzaC, BzaD, and BzaE, that conduct three distinct methylation steps. Of these, the methyltransferases that contribute to benzimidazole lower ligand diversity in cobamides remain to be characterized, and the precise role of the bza operon protein CobT is unclear. In this study, we used the bza operon from the anaerobic bacterium Moorella thermoacetica (comprising bzaA-bzaB-cobT-bzaC) to examine the role of CobT and investigate the activity of the first methyltransferase, BzaC. We studied the phosphoribosylation catalyzed by MtCobT and found that it regiospecifically activates 5-hydroxybenzimidazole (5-OHBza) to form the 5-OHBza-ribotide (5-OHBza-RP) isomer as the sole product. Next, we characterized the domains of MtBzaC and reconstituted its methyltransferase activity with the predicted substrate 5-OHBza and with two alternative substrates, the MtCobT product 5-OHBza-RP and its riboside derivative 5-OHBza-R. Unexpectedly, we found that 5-OHBza-R is the most favored MtBzaC substrate. Our results collectively explain the long-standing observation that the attachment of the lower ligand in anaerobic cobamide biosynthesis is regiospecific. In conclusion, we validate MtBzaC as a SAM:hydroxybenzimidazole-riboside methyltransferase (HBIR-OMT). Finally, we propose a new pathway for the synthesis and activation of the benzimidazolyl lower ligand in anaerobic cobamide biosynthesis.
Collapse
Affiliation(s)
- Yamini Mathur
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Sheryl Sreyas
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, India
| | - Prathamesh M Datar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, India
| | - Manjima B Sathian
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, India
| | - Amrita B Hazra
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
27
|
Sokolovskaya OM, Shelton AN, Taga ME. Sharing vitamins: Cobamides unveil microbial interactions. Science 2020; 369:369/6499/eaba0165. [PMID: 32631870 DOI: 10.1126/science.aba0165] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microbial communities are essential to fundamental processes on Earth. Underlying the compositions and functions of these communities are nutritional interdependencies among individual species. One class of nutrients, cobamides (the family of enzyme cofactors that includes vitamin B12), is widely used for a variety of microbial metabolic functions, but these structurally diverse cofactors are synthesized by only a subset of bacteria and archaea. Advances at different scales of study-from individual isolates, to synthetic consortia, to complex communities-have led to an improved understanding of cobamide sharing. Here, we discuss how cobamides affect microbes at each of these three scales and how integrating different approaches leads to a more complete understanding of microbial interactions.
Collapse
Affiliation(s)
- Olga M Sokolovskaya
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Amanda N Shelton
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
28
|
Flexible Cobamide Metabolism in Clostridioides ( Clostridium) difficile 630 Δ erm. J Bacteriol 2020; 202:JB.00584-19. [PMID: 31685533 DOI: 10.1128/jb.00584-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/26/2019] [Indexed: 01/05/2023] Open
Abstract
Clostridioides (Clostridium) difficile is an opportunistic pathogen known for its ability to colonize the human gut under conditions of dysbiosis. Several aspects of its carbon and amino acid metabolism have been investigated, but its cobamide (vitamin B12 and related cofactors) metabolism remains largely unexplored. C. difficile has seven predicted cobamide-dependent pathways encoded in its genome in addition to a nearly complete cobamide biosynthesis pathway and a cobamide uptake system. To address the importance of cobamides to C. difficile, we studied C. difficile 630 Δerm and mutant derivatives under cobamide-dependent conditions in vitro Our results show that C. difficile can use a surprisingly diverse array of cobamides for methionine and deoxyribonucleotide synthesis and can use alternative metabolites or enzymes, respectively, to bypass these cobamide-dependent processes. C. difficile 630 Δerm produces the cobamide pseudocobalamin when provided the early precursor 5-aminolevulinic acid or the late intermediate cobinamide (Cbi) and produces other cobamides if provided an alternative lower ligand. The ability of C. difficile 630 Δerm to take up cobamides and Cbi at micromolar or lower concentrations requires the transporter BtuFCD. Genomic analysis revealed genetic variations in the btuFCD loci of different C. difficile strains, which may result in differences in the ability to take up cobamides and Cbi. These results together demonstrate that, like other aspects of its physiology, cobamide metabolism in C. difficile is versatile.IMPORTANCE The ability of the opportunistic pathogen Clostridioides difficile to cause disease is closely linked to its propensity to adapt to conditions created by dysbiosis of the human gut microbiota. The cobamide (vitamin B12) metabolism of C. difficile has been underexplored, although it has seven metabolic pathways that are predicted to require cobamide-dependent enzymes. Here, we show that C. difficile cobamide metabolism is versatile, as it can use a surprisingly wide variety of cobamides and has alternative functions that can bypass some of its cobamide requirements. Furthermore, C. difficile does not synthesize cobamides de novo but produces them when given cobamide precursors. A better understanding of C. difficile cobamide metabolism may lead to new strategies to treat and prevent C. difficile-associated disease.
Collapse
|
29
|
Torres AC, Elean M, Hebert EM, Saavedra L, Taranto MP. Metabolic shift in the production of corrinoid compounds by Lactobacillus coryniformis in the absence of purines. Biochimie 2020; 168:185-189. [DOI: 10.1016/j.biochi.2019.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/05/2019] [Indexed: 11/25/2022]
|
30
|
Regulating vitamin B12 biosynthesis via the cbiMCbl riboswitch in Propionibacterium strain UF1. Proc Natl Acad Sci U S A 2019; 117:602-609. [PMID: 31836694 DOI: 10.1073/pnas.1916576116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Vitamin B12 (VB12) is a critical micronutrient that controls DNA metabolic pathways to maintain the host genomic stability and tissue homeostasis. We recently reported that the newly discovered commensal Propionibacterium, P. UF1, regulates the intestinal immunity to resist pathogen infection, which may be attributed in part to VB12 produced by this bacterium. Here we demonstrate that VB12 synthesized by P. UF1 is highly dependent on cobA gene-encoding uroporphyrinogen III methyltransferase, and that this vitamin distinctively regulates the cobA operon through its 5' untranslated region (5' UTR). Furthermore, conserved secondary structure and mutagenesis analyses revealed a VB12-riboswitch, cbiMCbl (140 bp), within the 5' UTR that controls the expression of downstream genes. Intriguingly, ablation of the cbiMCbl significantly dysregulates the biosynthesis of VB12, illuminating the significance of this riboswitch for bacterial VB12 biosynthesis. Collectively, our finding is an in-depth report underscoring the regulation of VB12 within the beneficial P. UF1 bacterium, through which the commensal metabolic network may improve gut bacterial cross-feeding and human health.
Collapse
|
31
|
Ma AT, Tyrell B, Beld J. Specificity of cobamide remodeling, uptake and utilization in Vibrio cholerae. Mol Microbiol 2019; 113:89-102. [PMID: 31609521 DOI: 10.1111/mmi.14402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
Abstract
Cobamides are a group of compounds including vitamin B12 that can vary at the lower base position of the nucleotide loop. They are synthesized de novo by only a subset of prokaryotes, but some organisms encode partial biosynthesis pathways for converting one variant to another (remodeling) or completing biosynthesis from an intermediate (corrinoid salvaging). Here, we explore the cobamide specificity in Vibrio cholerae through examination of three natural variants representing major cobamide groups: commercially available cobalamin, and isolated pseudocobalamin and p-cresolylcobamide. We show that BtuB, the outer membrane corrinoid transporter, mediates the uptake of all three variants and the intermediate cobinamide. Our previous work suggested that V. cholerae could convert pseudocobalamin produced by cyanobacteria into cobalamin. In this work, cobamide specificity in V. cholerae is demonstrated by remodeling of pseudocobalamin and salvaging of cobinamide to produce cobalamin. Cobamide remodeling in V. cholerae is distinct from the canonical pathway requiring amidohydrolase CbiZ, and heterologous expression of V. cholerae CobS was sufficient for remodeling. Furthermore, function of V. cholerae cobamide-dependent methionine synthase MetH was robustly supported by cobalamin and p-cresolylcobamide, but not pseudocobalamin. Notably, the inability of V. cholerae to produce and utilize pseudocobalamin contrasts with enteric bacteria like Salmonella.
Collapse
Affiliation(s)
- Amy T Ma
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Breanna Tyrell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| |
Collapse
|
32
|
Gude S, Taga ME. Multi-faceted approaches to discovering and predicting microbial nutritional interactions. Curr Opin Biotechnol 2019; 62:58-64. [PMID: 31597114 DOI: 10.1016/j.copbio.2019.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 01/07/2023]
Abstract
Nearly all microbes rely on other species in their environment to provide nutrients they are unable to produce. Nutritional interactions include not only the exchange of carbon and nitrogen compounds, but also amino acids and cofactors. Interactions involving cross-feeding of cobamides, the vitamin B12 family of cofactors, have been developed as a model for nutritional interactions across species and environments. In addition to experimental studies, new developments in culture-independent methodologies such as genomics and modeling now enable the prediction of nutritional interactions in a broad range of organisms including those that cannot be cultured in the laboratory. New insights into the mechanisms and evolution of microbial nutritional interactions are beginning to emerge by combining experimental, genomic, and modeling approaches.
Collapse
Affiliation(s)
- Sebastian Gude
- Department of Plant & Microbial Biology, University of California, Berkeley, CA USA
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California, Berkeley, CA USA.
| |
Collapse
|
33
|
Puentes Jácome LA, Wang PH, Molenda O, Li YXJJ, Islam MA, Edwards EA. Sustained Dechlorination of Vinyl Chloride to Ethene in Dehalococcoides-Enriched Cultures Grown without Addition of Exogenous Vitamins and at Low pH. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11364-11374. [PMID: 31441646 DOI: 10.1021/acs.est.9b02339] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trichloroethene (TCE) bioremediation has been demonstrated at field sites using microbial cultures harboring TCE-respiring Dehalococcoides whose growth is cobalamin (vitamin B12)-dependent. Bioaugmentation cultures grown ex situ with ample exogenous vitamins and at neutral pH may become vitamin-limited or inhibited by acidic pH once injected into field sites, resulting in incomplete TCE dechlorination and accumulation of vinyl chloride (VC). Here, we report growth of the Dehalococcoides-containing bioaugmentation culture KB-1 in a TCE-amended mineral medium devoid of vitamins and in a VC-amended mineral medium at low pH (6.0 and 5.5). In these cultures, Acetobacterium, which can synthesize 5,6-dimethylbenzimidazole (DMB), the lower ligand of cobalamin, and Sporomusa are dominant acetogens. At neutral pH, Acetobacterium supports complete TCE dechlorination by Dehalococcoides at millimolar levels with a substantial increase in cobalamin (∼20-fold). Sustained dechlorination of VC to ethene was achieved at pH as low as 5.5. Below pH 5.0, dechlorination was not stimulated by DMB supplementation but was restored by raising pH to neutral. Cell-extract assays revealed that vinyl chloride reductase activity declines significantly below pH 6.0 and is undetectable below pH 5.0. This study highlights the importance of cobamide-producing populations and pH in microbial dechlorinating communities for successful bioremediation at field sites.
Collapse
Affiliation(s)
- Luz A Puentes Jácome
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Po-Hsiang Wang
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Olivia Molenda
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Yi Xuan Jine-Jine Li
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - M Ahsanul Islam
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
- Department of Cell and Systems Biology , University of Toronto , Toronto , Ontario M5S 3G5 , Canada
| |
Collapse
|
34
|
Sokolovskaya OM, Mok KC, Park JD, Tran JLA, Quanstrom KA, Taga ME. Cofactor Selectivity in Methylmalonyl Coenzyme A Mutase, a Model Cobamide-Dependent Enzyme. mBio 2019; 10:e01303-19. [PMID: 31551329 PMCID: PMC6759758 DOI: 10.1128/mbio.01303-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/23/2019] [Indexed: 12/25/2022] Open
Abstract
Cobamides, a uniquely diverse family of enzyme cofactors related to vitamin B12, are produced exclusively by bacteria and archaea but used in all domains of life. While it is widely accepted that cobamide-dependent organisms require specific cobamides for their metabolism, the biochemical mechanisms that make cobamides functionally distinct are largely unknown. Here, we examine the effects of cobamide structural variation on a model cobamide-dependent enzyme, methylmalonyl coenzyme A (CoA) mutase (MCM). The in vitro binding affinity of MCM for cobamides can be dramatically influenced by small changes in the structure of the lower ligand of the cobamide, and binding selectivity differs between bacterial orthologs of MCM. In contrast, variations in the lower ligand have minor effects on MCM catalysis. Bacterial growth assays demonstrate that cobamide requirements of MCM in vitro largely correlate with in vivo cobamide dependence. This result underscores the importance of enzyme selectivity in the cobamide-dependent physiology of bacteria.IMPORTANCE Cobamides, including vitamin B12, are enzyme cofactors used by organisms in all domains of life. Cobamides are structurally diverse, and microbial growth and metabolism vary based on cobamide structure. Understanding cobamide preference in microorganisms is important given that cobamides are widely used and appear to mediate microbial interactions in host-associated and aquatic environments. Until now, the biochemical basis for cobamide preferences was largely unknown. In this study, we analyzed the effects of the structural diversity of cobamides on a model cobamide-dependent enzyme, methylmalonyl-CoA mutase (MCM). We found that very small changes in cobamide structure could dramatically affect the binding affinity of cobamides to MCM. Strikingly, cobamide-dependent growth of a model bacterium, Sinorhizobium meliloti, largely correlated with the cofactor binding selectivity of S. meliloti MCM, emphasizing the importance of cobamide-dependent enzyme selectivity in bacterial growth and cobamide-mediated microbial interactions.
Collapse
Affiliation(s)
- Olga M Sokolovskaya
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
- Department of Chemistry, University of California Berkeley, Berkeley, California, USA
| | - Kenny C Mok
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Jong Duk Park
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Jennifer L A Tran
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Kathryn A Quanstrom
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
35
|
Bernhardt C, Zhu X, Schütz D, Fischer M, Bisping B. Cobalamin is produced by Acetobacter pasteurianus DSM 3509. Appl Microbiol Biotechnol 2019; 103:3875-3885. [PMID: 30911787 DOI: 10.1007/s00253-019-09704-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/31/2019] [Accepted: 02/15/2019] [Indexed: 12/23/2022]
Abstract
Only a few cobalamin-producing bacterial species are known which are suitable for food fermentations. The strain of Acetobacter pasteurianus DSM 3509 was found to have the capability to synthesize cobalamin. A survival test and a preliminary genetic study of the gene of uroporphyrinogen-III synthase indicated the ability to synthesize cobalamin. By a modified microbiological assay based on Lactobacillus delbrueckii ssp. lactis DSM 20355, 4.57 ng/mL of cyanocorrinoids and 0.75 ng/mL of noncorrinoid growth factors were detected. The product extracted and isolated by immunoaffinity chromatography in its cyanide form had the similar UV spectrum as standard cyanocobalamin and Coα-[α-(7-adenyl)]-(Coβ-cyano) cobamide also known as pseudovitamin B12 produced by Lactobacillus reuteri DSM 20016. The chromatographically separated product of A. pasteurianus was subjected to mass spectrometrical analysis. There, its fragmentation pattern turned out to be equivalent to that of cyanocobalamin also produced by Propionibacterium freudenreichii ssp. freudenreichii DSM 20271 and clearly differs from pseudovitamin B12. Due to the presence of this species in several food applications, there might be cobalamin residues in food fermented with these bacteria.
Collapse
Affiliation(s)
- Clemens Bernhardt
- Hamburg School of Food Science, Biocenter Klein Flottbek, Division of Food Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609, Hamburg, Federal Republic of Germany
| | - Xuan Zhu
- Hamburg School of Food Science, Biocenter Klein Flottbek, Division of Food Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609, Hamburg, Federal Republic of Germany.,School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou, China
| | - David Schütz
- Hamburg School of Food Science, Division of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Federal Republic of Germany
| | - Markus Fischer
- Hamburg School of Food Science, Division of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Federal Republic of Germany
| | - Bernward Bisping
- Hamburg School of Food Science, Biocenter Klein Flottbek, Division of Food Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609, Hamburg, Federal Republic of Germany.
| |
Collapse
|
36
|
Schubert T, von Reuß SH, Kunze C, Paetz C, Kruse S, Brand‐Schön P, Nelly AM, Nüske J, Diekert G. Guided cobamide biosynthesis for heterologous production of reductive dehalogenases. Microb Biotechnol 2019; 12:346-359. [PMID: 30549216 PMCID: PMC6389850 DOI: 10.1111/1751-7915.13339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/23/2018] [Accepted: 10/30/2018] [Indexed: 12/01/2022] Open
Abstract
Cobamides (Cbas) are essential cofactors of reductive dehalogenases (RDases) in organohalide-respiring bacteria (OHRB). Changes in the Cba structure can influence RDase function. Here, we report on the cofactor versatility or selectivity of Desulfitobacterium RDases produced either in the native organism or heterologously. The susceptibility of Desulfitobacterium hafniense strain DCB-2 to guided Cba biosynthesis (i.e. incorporation of exogenous Cba lower ligand base precursors) was analysed. Exogenous benzimidazoles, azabenzimidazoles and 4,5-dimethylimidazole were incorporated by the organism into Cbas. When the type of Cba changed, no effect on the turnover rate of the 3-chloro-4-hydroxy-phenylacetate-converting enzyme RdhA6 and the 3,5-dichlorophenol-dehalogenating enzyme RdhA3 was observed. The impact of the amendment of Cba lower ligand precursors on RDase function was also investigated in Shimwellia blattae, the Cba producer used for the heterologous production of Desulfitobacterium RDases. The recombinant tetrachloroethene RDase (PceAY51 ) appeared to be non-selective towards different Cbas. However, the functional production of the 1,2-dichloroethane-dihaloeliminating enzyme (DcaA) of Desulfitobacterium dichloroeliminans was completely prevented in cells producing 5,6-dimethylbenzimidazolyl-Cba, but substantially enhanced in cells that incorporated 5-methoxybenzimidazole into the Cba cofactor. The results of the study indicate the utilization of a range of different Cbas by Desulfitobacterium RDases with selected representatives apparently preferring distinct Cbas.
Collapse
Affiliation(s)
- Torsten Schubert
- Department of Applied and Ecological MicrobiologyInstitute of MicrobiologyFriedrich Schiller UniversityPhilosophenweg 12D‐07743JenaGermany
| | - Stephan H. von Reuß
- Department of Bioorganic ChemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Straße 8D‐07745JenaGermany
- Present address:
Laboratory for Bioanalytical ChemistryInstitute of ChemistryUniversity of NeuchâtelAvenue de Bellevaux 512000NeuchâtelSwitzerland
| | - Cindy Kunze
- Department of Applied and Ecological MicrobiologyInstitute of MicrobiologyFriedrich Schiller UniversityPhilosophenweg 12D‐07743JenaGermany
- Present address:
DECHEMA‐ForschungsinstitutTheodor‐Heuss‐Allee 25D‐60486Frankfurt am MainGermany
| | - Christian Paetz
- Research Group Biosynthesis/NMRMax Planck Institute for Chemical EcologyHans‐Knöll‐Straße 8D‐07745JenaGermany
| | - Stefan Kruse
- Department of Applied and Ecological MicrobiologyInstitute of MicrobiologyFriedrich Schiller UniversityPhilosophenweg 12D‐07743JenaGermany
| | - Peggy Brand‐Schön
- Department of Applied and Ecological MicrobiologyInstitute of MicrobiologyFriedrich Schiller UniversityPhilosophenweg 12D‐07743JenaGermany
| | - Anita Mac Nelly
- Department of Applied and Ecological MicrobiologyInstitute of MicrobiologyFriedrich Schiller UniversityPhilosophenweg 12D‐07743JenaGermany
| | - Jörg Nüske
- Department of Applied and Ecological MicrobiologyInstitute of MicrobiologyFriedrich Schiller UniversityPhilosophenweg 12D‐07743JenaGermany
| | - Gabriele Diekert
- Department of Applied and Ecological MicrobiologyInstitute of MicrobiologyFriedrich Schiller UniversityPhilosophenweg 12D‐07743JenaGermany
| |
Collapse
|
37
|
Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME JOURNAL 2018; 13:789-804. [PMID: 30429574 PMCID: PMC6461909 DOI: 10.1038/s41396-018-0304-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/14/2018] [Accepted: 10/04/2018] [Indexed: 11/08/2022]
Abstract
The vitamin B12 family of cofactors known as cobamides are essential for a variety of microbial metabolisms. We used comparative genomics of 11,000 bacterial species to analyze the extent and distribution of cobamide production and use across bacteria. We find that 86% of bacteria in this data set have at least one of 15 cobamide-dependent enzyme families, but only 37% are predicted to synthesize cobamides de novo. The distribution of cobamide biosynthesis and use vary at the phylum level. While 57% of Actinobacteria are predicted to biosynthesize cobamides, only 0.6% of Bacteroidetes have the complete pathway, yet 96% of species in this phylum have cobamide-dependent enzymes. The form of cobamide produced by the bacteria could be predicted for 58% of cobamide-producing species, based on the presence of signature lower ligand biosynthesis and attachment genes. Our predictions also revealed that 17% of bacteria have partial biosynthetic pathways, yet have the potential to salvage cobamide precursors. Bacteria with a partial cobamide biosynthesis pathway include those in a newly defined, experimentally verified category of bacteria lacking the first step in the biosynthesis pathway. These predictions highlight the importance of cobamide and cobamide precursor salvaging as examples of nutritional dependencies in bacteria.
Collapse
|
38
|
Lawrence AD, Nemoto-Smith E, Deery E, Baker JA, Schroeder S, Brown DG, Tullet JMA, Howard MJ, Brown IR, Smith AG, Boshoff HI, Barry CE, Warren MJ. Construction of Fluorescent Analogs to Follow the Uptake and Distribution of Cobalamin (Vitamin B 12) in Bacteria, Worms, and Plants. Cell Chem Biol 2018; 25:941-951.e6. [PMID: 29779954 DOI: 10.1016/j.chembiol.2018.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/18/2018] [Accepted: 04/11/2018] [Indexed: 12/25/2022]
Abstract
Vitamin B12 is made by only certain prokaryotes yet is required by a number of eukaryotes such as mammals, fish, birds, worms, and Protista, including algae. There is still much to learn about how this nutrient is trafficked across the domains of life. Herein, we describe ways to make a number of different corrin analogs with fluorescent groups attached to the main tetrapyrrole-derived ring. A further range of analogs were also constructed by attaching similar fluorescent groups to the ribose ring of cobalamin, thereby generating a range of complete and incomplete corrinoids to follow uptake in bacteria, worms, and plants. By using these fluorescent derivatives we were able to demonstrate that Mycobacterium tuberculosis is able to acquire both cobyric acid and cobalamin analogs, that Caenorhabditis elegans takes up only the complete corrinoid, and that seedlings of higher plants such as Lepidium sativum are also able to transport B12.
Collapse
Affiliation(s)
- Andrew D Lawrence
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Emi Nemoto-Smith
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20850, USA
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Joseph A Baker
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Susanne Schroeder
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - David G Brown
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | | | - Mark J Howard
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Ian R Brown
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Helena I Boshoff
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20850, USA
| | - Clifton E Barry
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20850, USA
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| |
Collapse
|
39
|
Xie C, Coda R, Chamlagain B, Edelmann M, Deptula P, Varmanen P, Piironen V, Katina K. In situ fortification of vitamin B12 in wheat flour and wheat bran by fermentation with Propionibacterium freudenreichii. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Chittim CL, Irwin SM, Balskus EP. Deciphering Human Gut Microbiota-Nutrient Interactions: A Role for Biochemistry. Biochemistry 2018; 57:2567-2577. [PMID: 29669199 DOI: 10.1021/acs.biochem.7b01277] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human gut contains trillions of microorganisms that play a central role in many aspects of host biology, including the provision of key nutrients from the diet. However, our appreciation of how gut microbes and their extensive metabolic capabilities affect the nutritional status of the human host is in its infancy. In this Perspective, we highlight how recent efforts to elucidate the biochemical basis for gut microbial metabolism of dietary components are reshaping our view of these organisms' roles in host nutrition. Gaining a molecular understanding of gut microbe-nutrient interactions will enhance our knowledge of how diet affects host health and disease, ultimately enabling personalized nutrition and therapeutics.
Collapse
Affiliation(s)
- Carina L Chittim
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Stephania M Irwin
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
41
|
Selective Utilization of Benzimidazolyl-Norcobamides as Cofactors by the Tetrachloroethene Reductive Dehalogenase of Sulfurospirillum multivorans. J Bacteriol 2018; 200:JB.00584-17. [PMID: 29378885 DOI: 10.1128/jb.00584-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/19/2018] [Indexed: 12/18/2022] Open
Abstract
The organohalide-respiring bacterium Sulfurospirillum multivorans produces a unique cobamide, namely, norpseudo-B12, which serves as cofactor of the tetrachloroethene (PCE) reductive dehalogenase (PceA). As previously reported, a replacement of the adeninyl moiety, the lower base of the cofactor, by exogenously applied 5,6-dimethylbenzimidazole led to inactive PceA. To explore the general effect of benzimidazoles on the PCE metabolism, the susceptibility of the organism for guided biosynthesis of various singly substituted benzimidazolyl-norcobamides was investigated, and their use as cofactor by PceA was analyzed. Exogenously applied 5-methylbenzimidazole (5-MeBza), 5-hydroxybenzimidazole (5-OHBza), and 5-methoxybenzimidazole (5-OMeBza) were found to be efficiently incorporated as lower bases into norcobamides (NCbas). Structural analysis of the NCbas by nuclear magnetic resonance spectroscopy uncovered a regioselectivity in the utilization of these precursors for NCba biosynthesis. When 5-MeBza was added, a mixture of 5-MeBza-norcobamide and 6-MeBza-norcobamide was formed, and the PceA enzyme activity was affected. In the presence of 5-OHBza, almost exclusively 6-OHBza-norcobamide was produced, while in the presence of 5-OMeBza, predominantly 5-OMeBza-norcobamide was detected. Both NCbas were incorporated into PceA, and no negative effect on the PceA activity was observed. In crystal structures of PceA, both NCbas were bound in the base-off mode with the 6-OHBza and 5-OMeBza lower bases accommodated by the same solvent-exposed hydrophilic pocket that harbors the adenine as the lower base of authentic norpseudo-B12 In this study, a selective production of different norcobamide isomers containing singly substituted benzimidazoles as lower bases is shown, and unique structural insights into their utilization as cofactors by a cobamide-containing enzyme are provided.IMPORTANCE Guided biosynthesis of norcobamides containing singly substituted benzimidazoles as lower bases by the organohalide-respiring epsilonproteobacterium Sulfurospirillum multivorans is reported. An unprecedented specificity in the formation of norcobamide isomers containing hydroxylated or methoxylated benzimidazoles was observed that implicated a strict regioselectivity of the norcobamide biosynthesis in the organism. In contrast to 5,6-dimethylbenzimidazolyl-norcobamide, the incorporation of singly substituted benzimidazolyl-norcobamides as a cofactor into the tetrachloroethene reductive dehalogenase was not impaired. The enzyme was found to be functional with different isomers and not limited to the use of adeninyl-norcobamide. Structural analysis of the enzyme equipped with either adeninyl- or benzimidazolyl-norcobamide cofactors visualized for the first time structurally different cobamides bound in base-off conformation to the cofactor-binding site of a cobamide-containing enzyme.
Collapse
|
42
|
Piwowarek K, Lipińska E, Hać-Szymańczuk E, Kieliszek M, Ścibisz I. Propionibacterium spp.-source of propionic acid, vitamin B12, and other metabolites important for the industry. Appl Microbiol Biotechnol 2018; 102:515-538. [PMID: 29167919 PMCID: PMC5756557 DOI: 10.1007/s00253-017-8616-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 01/09/2023]
Abstract
Bacteria from the Propionibacterium genus consists of two principal groups: cutaneous and classical. Cutaneous Propionibacterium are considered primary pathogens to humans, whereas classical Propionibacterium are widely used in the food and pharmaceutical industries. Bacteria from the Propionibacterium genus are capable of synthesizing numerous valuable compounds with a wide industrial usage. Biomass of the bacteria from the Propionibacterium genus constitutes sources of vitamins from the B group, including B12, trehalose, and numerous bacteriocins. These bacteria are also capable of synthesizing organic acids such as propionic acid and acetic acid. Because of GRAS status and their health-promoting characteristics, bacteria from the Propionibacterium genus and their metabolites (propionic acid, vitamin B12, and trehalose) are commonly used in the cosmetic, pharmaceutical, food, and other industries. They are also used as additives in fodders for livestock. In this review, we present the major species of Propionibacterium and their properties and provide an overview of their functions and applications. This review also presents current literature concerned with the possibilities of using Propionibacterium spp. to obtain valuable metabolites. It also presents the biosynthetic pathways as well as the impact of the genetic and environmental factors on the efficiency of their production.
Collapse
Affiliation(s)
- Kamil Piwowarek
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland.
| | - Edyta Lipińska
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Elżbieta Hać-Szymańczuk
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Division of Food Biotechnology and Microbiology, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| | - Iwona Ścibisz
- Department of Food Technology, Division of Fruit and Vegetable Technology, Faculty of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c Street, 02-776, Warsaw, Poland
| |
Collapse
|
43
|
Ghazi Z, Jahanshahi S, Li Y. RiboFACSeq: A new method for investigating metabolic and transport pathways in bacterial cells by combining a riboswitch-based sensor, fluorescence-activated cell sorting and next-generation sequencing. PLoS One 2017; 12:e0188399. [PMID: 29211762 PMCID: PMC5718407 DOI: 10.1371/journal.pone.0188399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/06/2017] [Indexed: 12/02/2022] Open
Abstract
The elucidation of the cellular processes involved in vitamin and cofactor biosynthesis is a challenging task. The conventional approaches to these investigations rely on the discovery and purification of the products (i.e proteins and metabolites) of a particular transport or biosynthetic pathway, prior to their subsequent analysis. However, the purification of low-abundance proteins or metabolites is a formidable undertaking that presents considerable technical challenges. As a solution, we present an alternative approach to such studies that circumvents the purification step. The proposed approach takes advantage of: (1) the molecular detection capabilities of a riboswitch-based sensor to detect the cellular levels of its cognate molecule, as a means to probe the integrity of the transport and biosynthetic pathways of the target molecule in cells, (2) the high-throughput screening ability of fluorescence-activated cell sorters to isolate cells in which only these specific pathways are disrupted, and (3) the ability of next-generation sequencing to quickly identify the genes of the FACS-sorted populations. This approach was named “RiboFACSeq”. Following their identification by RiboFACSeq, the role of these genes in the presumed pathway needs to be verified through appropriate functional assays. To demonstrate the utility of our approach, an adenosylcobalamin (AdoCbl)-responsive riboswitch-based sensor was used in this study to demonstrate that RiboFACSeq can be used to track and sort cells carrying genetic mutations in known AdoCbl transport and biosynthesis genes with desirable sensitivity and specificity. This method could potentially be used to elucidate any pathway of interest, as long as a suitable riboswitch-based sensor can be created. We believe that RiboFACSeq would be especially useful for the elucidation of biological pathways in which the proteins and/or their metabolites are present at very low physiological concentrations in cells, as is the case with vitamin and cofactor biosynthesis.
Collapse
Affiliation(s)
- Zohaib Ghazi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Shahrzad Jahanshahi
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
44
|
Chamlagain B, Sugito TA, Deptula P, Edelmann M, Kariluoto S, Varmanen P, Piironen V. In situ production of active vitamin B12 in cereal matrices using Propionibacterium freudenreichii. Food Sci Nutr 2017; 6:67-76. [PMID: 29387363 PMCID: PMC5778212 DOI: 10.1002/fsn3.528] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022] Open
Abstract
The in situ production of active vitamin B12 was investigated in aqueous cereal‐based matrices with three strains of food‐grade Propionibacterium freudenreichii. Matrices prepared from malted barley flour (33% w/v; BM), barley flour (6%; BF), and wheat aleurone (15%; AM) were fermented. The effect of cobalt and the lower ligand 5,6‐dimethylbenzimidazole (DMBI) or its natural precursors (riboflavin and nicotinamide) on active B12 production was evaluated. Active B12 production was confirmed by UHPLC–UV–MS analysis. A B12 content of 12–37 μg·kg−1 was produced in BM; this content increased 10‐fold with cobalt and reached 940–1,480 μg·kg−1 with both cobalt and DMBI. With riboflavin and nicotinamide, B12 production in cobalt‐supplemented BM increased to 712 μg·kg−1. Approximately, 10 μg·kg−1 was achieved in BF and AM and was increased to 80 μg·kg−1 in BF and 260 μg·kg−1 in AM with cobalt and DMBI. The UHPLC and microbiological assay (MBA) results agreed when both cobalt and DMBI or riboflavin and nicotinamide were supplemented. However, MBA gave ca. 20%–40% higher results in BM and AM supplemented with cobalt, indicating the presence of human inactive analogues, such as pseudovitamin B12. This study demonstrates that cereal products can be naturally fortified with active B12 to a nutritionally relevant level by fermenting with P. freudenreichii.
Collapse
Affiliation(s)
- Bhawani Chamlagain
- Department of Food and Environmental Sciences University of Helsinki Helsinki Finland
| | - Tessa A Sugito
- Department of Food and Environmental Sciences University of Helsinki Helsinki Finland
| | - Paulina Deptula
- Department of Food and Environmental Sciences University of Helsinki Helsinki Finland
| | - Minnamari Edelmann
- Department of Food and Environmental Sciences University of Helsinki Helsinki Finland
| | - Susanna Kariluoto
- Department of Food and Environmental Sciences University of Helsinki Helsinki Finland
| | - Pekka Varmanen
- Department of Food and Environmental Sciences University of Helsinki Helsinki Finland
| | - Vieno Piironen
- Department of Food and Environmental Sciences University of Helsinki Helsinki Finland
| |
Collapse
|
45
|
Yan J, Bi M, Bourdon AK, Farmer AT, Wang PH, Molenda O, Quaile AT, Jiang N, Yang Y, Yin Y, Şimşir B, Campagna SR, Edwards EA, Löffler FE. Purinyl-cobamide is a native prosthetic group of reductive dehalogenases. Nat Chem Biol 2017; 14:8-14. [PMID: 29106396 PMCID: PMC6081238 DOI: 10.1038/nchembio.2512] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 10/02/2017] [Indexed: 01/21/2023]
Abstract
Cobamides such as vitamin B12 are structurally conserved, cobalt-containing tetrapyrrole biomolecules that have essential biochemical functions in all domains of life. In organohalide respiration, a vital biological process for the global cycling of natural and anthropogenic organohalogens, cobamides are the requisite prosthetic groups for carbon-halogen bond-cleaving reductive dehalogenases. This study reports the biosynthesis of a new cobamide with unsubstituted purine as the lower base and assigns unsubstituted purine a biological function by demonstrating that Coα-purinyl-cobamide (purinyl-Cba) is the native prosthetic group in catalytically active tetrachloroethene reductive dehalogenases of Desulfitobacterium hafniense. Cobamides featuring different lower bases are not functionally equivalent, and purinyl-Cba elicits different physiological responses in corrinoid-auxotrophic, organohalide-respiring bacteria. Given that cobamide-dependent enzymes catalyze key steps in essential metabolic pathways, the discovery of a novel cobamide structure and the realization that lower bases can effectively modulate enzyme activities generate opportunities to manipulate functionalities of microbiomes.
Collapse
Affiliation(s)
- Jun Yan
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA.,Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, P.R. China.,Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.,Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Meng Bi
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Allen K Bourdon
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | - Abigail T Farmer
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | - Po-Hsiang Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Olivia Molenda
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew T Quaile
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Nannan Jiang
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.,Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.,Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee, USA
| | - Yi Yang
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA.,Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Yongchao Yin
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Burcu Şimşir
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA.,Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Frank E Löffler
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA.,Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.,Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.,Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee, USA.,Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA.,Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
46
|
Helliwell KE. The roles of B vitamins in phytoplankton nutrition: new perspectives and prospects. THE NEW PHYTOLOGIST 2017; 216:62-68. [PMID: 28656633 DOI: 10.1111/nph.14669] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
Contents 62 I. 62 II. 63 III. 63 IV. 66 V. 66 VI. 67 67 References 67 SUMMARY: B vitamins play essential roles in central metabolism. These organic water-soluble molecules act as, or as part of, coenzymes within the cell. Unlike land plants, many eukaryotic algae are auxotrophic for certain B vitamins. Recent progress in algal genetic resources and environmental chemistry have promoted a renewal of interest in the role of vitamins in governing phytoplankton dynamics, and illuminated amazing versatility in phytoplankton vitamin metabolism. Accumulating evidence demonstrates metabolic complexity in the production and bioavailability of different vitamin forms, coupled with specialized acquisition strategies to salvage and remodel vitamin precursors. Here, I describe recent advances and discuss how they redefine our view of the way in which vitamins are cycled in aquatic ecosystems and their importance in structuring phytoplankton communities.
Collapse
Affiliation(s)
- Katherine E Helliwell
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| |
Collapse
|
47
|
An Amoebal Grazer of Cyanobacteria Requires Cobalamin Produced by Heterotrophic Bacteria. Appl Environ Microbiol 2017; 83:AEM.00035-17. [PMID: 28283521 DOI: 10.1128/aem.00035-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/03/2017] [Indexed: 01/22/2023] Open
Abstract
Amoebae are unicellular eukaryotes that consume microbial prey through phagocytosis, playing a role in shaping microbial food webs. Many amoebal species can be cultivated axenically in rich media or monoxenically with a single bacterial prey species. Here, we characterize heterolobosean amoeba LPG3, a recent natural isolate, which is unable to grow on unicellular cyanobacteria, its primary food source, in the absence of a heterotrophic bacterium, a Pseudomonas species coisolate. To investigate the molecular basis of this requirement for heterotrophic bacteria, we performed a screen using the defined nonredundant transposon library of Vibrio cholerae, which implicated genes in corrinoid uptake and biosynthesis. Furthermore, cobalamin synthase deletion mutations in V. cholerae and the Pseudomonas species coisolate do not support the growth of amoeba LPG3 on cyanobacteria. While cyanobacteria are robust producers of a corrinoid variant called pseudocobalamin, this variant does not support the growth of amoeba LPG3. Instead, we show that it requires cobalamin that is produced by the Pseudomonas species coisolate. The diversity of eukaryotes utilizing corrinoids is poorly understood, and this amoebal corrinoid auxotroph serves as a model for examining predator-prey interactions and micronutrient transfer in bacterivores underpinning microbial food webs.IMPORTANCE Cyanobacteria are important primary producers in aquatic environments, where they are grazed upon by a variety of phagotrophic protists and, hence, have an impact on nutrient flux at the base of microbial food webs. Here, we characterize amoebal isolate LPG3, which consumes cyanobacteria as its primary food source but also requires heterotrophic bacteria as a source of corrinoid vitamins. Amoeba LPG3 specifically requires the corrinoid variant produced by heterotrophic bacteria and cannot grow on cyanobacteria alone, as they produce a different corrinoid variant. This same corrinoid specificity is also exhibited by other eukaryotes, including humans and algae. This amoebal model system allows us to dissect predator-prey interactions to uncover factors that may shape microbial food webs while also providing insight into corrinoid specificity in eukaryotes.
Collapse
|
48
|
Schubert T. The organohalide-respiring bacterium Sulfurospirillum multivorans: a natural source for unusual cobamides. World J Microbiol Biotechnol 2017; 33:93. [DOI: 10.1007/s11274-017-2258-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/01/2017] [Indexed: 01/27/2023]
|
49
|
Deptula P, Chamlagain B, Edelmann M, Sangsuwan P, Nyman TA, Savijoki K, Piironen V, Varmanen P. Food-Like Growth Conditions Support Production of Active Vitamin B12 by Propionibacterium freudenreichii 2067 without DMBI, the Lower Ligand Base, or Cobalt Supplementation. Front Microbiol 2017; 8:368. [PMID: 28337185 PMCID: PMC5340759 DOI: 10.3389/fmicb.2017.00368] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/22/2017] [Indexed: 01/01/2023] Open
Abstract
Propionibacterium freudenreichii is a traditional dairy bacterium and a producer of short chain fatty acids (propionic and acetic acids) as well as vitamin B12. In food applications, it is a promising organism for in situ fortification with B12 vitamin since it is generally recognized as safe (GRAS) and it is able to synthesize biologically active form of the vitamin. In the present study, vitamin B12 and pseudovitamin biosynthesis by P. freudenreichii was monitored by UHPLC as a function of growth in food-like conditions using a medium mimicking cheese environment, without cobalt or 5,6-dimethylbenzimidazole (DMBI) supplementation. Parallel growth experiments were performed in industrial-type medium known to support the biosynthesis of vitamin B12. The production of other key metabolites in the two media were determined by HPLC, while the global protein production was compared by gel-based proteomics to assess the effect of growth conditions on the physiological status of the strain and on the synthesis of different forms of vitamin. The results revealed distinct protein and metabolite production, which reflected the growth conditions and the potential of P. freudenreichii for synthesizing nutritionally relevant amounts of active vitamin B12 regardless of the metabolic state of the cells.
Collapse
Affiliation(s)
- Paulina Deptula
- Department of Food and Environmental Sciences, University of Helsinki Helsinki, Finland
| | - Bhawani Chamlagain
- Department of Food and Environmental Sciences, University of Helsinki Helsinki, Finland
| | - Minnamari Edelmann
- Department of Food and Environmental Sciences, University of Helsinki Helsinki, Finland
| | - Panchanit Sangsuwan
- Department of Food and Environmental Sciences, University of Helsinki Helsinki, Finland
| | - Tuula A Nyman
- Proteomics Unit, Institute of Biotechnology, University of Helsinki Helsinki, Finland
| | - Kirsi Savijoki
- Department of Food and Environmental Sciences, University of Helsinki Helsinki, Finland
| | - Vieno Piironen
- Department of Food and Environmental Sciences, University of Helsinki Helsinki, Finland
| | - Pekka Varmanen
- Department of Food and Environmental Sciences, University of Helsinki Helsinki, Finland
| |
Collapse
|
50
|
Two distinct pools of B12 analogs reveal community interdependencies in the ocean. Proc Natl Acad Sci U S A 2016; 114:364-369. [PMID: 28028206 DOI: 10.1073/pnas.1608462114] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Organisms within all domains of life require the cofactor cobalamin (vitamin B12), which is produced only by a subset of bacteria and archaea. On the basis of genomic analyses, cobalamin biosynthesis in marine systems has been inferred in three main groups: select heterotrophic Proteobacteria, chemoautotrophic Thaumarchaeota, and photoautotrophic Cyanobacteria. Culture work demonstrates that many Cyanobacteria do not synthesize cobalamin but rather produce pseudocobalamin, challenging the connection between the occurrence of cobalamin biosynthesis genes and production of the compound in marine ecosystems. Here we show that cobalamin and pseudocobalamin coexist in the surface ocean, have distinct microbial sources, and support different enzymatic demands. Even in the presence of cobalamin, Cyanobacteria synthesize pseudocobalamin-likely reflecting their retention of an oxygen-independent pathway to produce pseudocobalamin, which is used as a cofactor in their specialized methionine synthase (MetH). This contrasts a model diatom, Thalassiosira pseudonana, which transported pseudocobalamin into the cell but was unable to use pseudocobalamin in its homolog of MetH. Our genomic and culture analyses showed that marine Thaumarchaeota and select heterotrophic bacteria produce cobalamin. This indicates that cobalamin in the surface ocean is a result of de novo synthesis by heterotrophic bacteria or via modification of closely related compounds like cyanobacterially produced pseudocobalamin. Deeper in the water column, our study implicates Thaumarchaeota as major producers of cobalamin based on genomic potential, cobalamin cell quotas, and abundance. Together, these findings establish the distinctive roles played by abundant prokaryotes in cobalamin-based microbial interdependencies that sustain community structure and function in the ocean.
Collapse
|