1
|
García-Pimentel MM, Mezzelani M, Valdés NJ, Giuliani ME, Gorbi S, Regoli F, León VM, Campillo JA. Integrative oxidative stress biomarkers in gills and digestive gland of the combined exposure to citalopram and bezafibrate with polyethylene microplastics on mussels Mytilus galloprovincialis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125508. [PMID: 39662579 DOI: 10.1016/j.envpol.2024.125508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/13/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Pharmaceutical active compounds (PhACs) and microplastics (MPs) have been detected in different marine compartments from coastal areas, raising concerns due to their simultaneous discharge through wastewater treatment plants (WWTPs) and the role of MPs as vectors of pollutants for marine organisms. This study investigates the biochemical effects of citalopram (CIT) and bezafibrate (BEZ) on the mussel Mytilus galloprovincialis, at environmentally relevant concentrations, and their co-exposure with high-density polyethylene (HDPE) MPs. MPs accumulated in gills and digestive glands during exposure, but they were rapidly eliminated after depuration, except for a small fraction of the smallest MPs in gills. This study evaluated the biological effects in gills and digestive gland, and confirmed CIT induced oxidative stress in both tissues, exacerbated by the presence of MPs. BEZ, despite not being detected at high concentrations in the mussel tissues, activated an antioxidant response in gills and increasing the transcription of the genes Se-gpx and gst-pi in digestive gland. Both PhACs impaired the cholinergic pathway long-term, even after the depuration period, as indicated by decreased AChE levels in the gills, suggesting potential neurotoxic effects after prolonged exposure. Consequently, adverse effects were provoked by both PhACs with (CIT) and without (BEZ) significant bioaccumulation capacity.
Collapse
Affiliation(s)
- M M García-Pimentel
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, (30740), San Pedro Del Pinatar, Murcia, Spain.
| | - M Mezzelani
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, (60131), Ancona, Italy
| | - N J Valdés
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, (30740), San Pedro Del Pinatar, Murcia, Spain
| | - M E Giuliani
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, (60131), Ancona, Italy
| | - S Gorbi
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, (60131), Ancona, Italy
| | - F Regoli
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, (60131), Ancona, Italy
| | - V M León
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, (30740), San Pedro Del Pinatar, Murcia, Spain
| | - J A Campillo
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, (30740), San Pedro Del Pinatar, Murcia, Spain.
| |
Collapse
|
2
|
Ke Y, Wang WX. Dynamics of copper regulation in a marine clam Sinonovacula constricta at the organ level: Insight from a physiologically based pharmacokinetic model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122421. [PMID: 37611794 DOI: 10.1016/j.envpol.2023.122421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Copper (Cu) is a common pollutant in estuaries and has received considerable attention worldwide. To gain an insight into the physiological mechanisms of waterborne Cu absorption, tissue distribution, storage, metabolism, and excretion in an estuarine razor clam Sinonovacula constricta, we developed a physiologically-based pharmacokinetic model based on prolonged Cu exposure with two exposure treatments. The tissues of S. constricta were divided into four parts: blood, digestive gland, gill, and other tissues. Our results showed that the waterborne Cu entered and exchanged with the gills and digestive gland, whereas digestive gland and other tissues were the main storage sites for Cu. Gills of S. constricta were able to maintain their Cu concentrations under both exposure treatments. Additionally, the gills exhibited a remarkable ability to remove Cu from water, with a transfer rate constant of 1.73 d-1 from the gills to water, while restricting its transfer from the blood with a transfer rate constant of 0.0131 d-1 from blood to gills. These results highlighted the crucial role of gills in regulating Cu levels in S. constricta as well as the detoxification and maintenance of metal homeostasis. Cu uptake rate constant in gill from waterborne was similar to that of digestive gland (0.294 vs. 0.364 L g-1 d-1), thus water entering the digestive tract was considered as another route of waterborne Cu absorption in bivalves. A significant amount of Cu in the blood was transferred to the digestive glands. These two factors explained the relatively higher Cu accumulation in the digestive glands than in other tissues in clams. The findings of this study enhanced our understanding of the homeostatic regulation and transportation mechanisms in marine bivalves.
Collapse
Affiliation(s)
- Yizhou Ke
- College of Fisheries, Jimei University, Yindou Road 43, Xiamen, 361021, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
3
|
Multisanti CR, Riolo K, Impellitteri F, Chebbi I, Faggio C, Giannetto A. Short-term in vitro exposure of Pinctada imbricata's haemocytes to Quaternium-15: exploring physiological and cellular responses. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 101:104198. [PMID: 37391050 DOI: 10.1016/j.etap.2023.104198] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Since the 2000s, the pearl oyster Pinctada imbricata (Röding, 1798) has become established along the transitional waterways of the "Capo Peloro Lagoon" natural reserve, where it is now abundant due to its adaptability to different hydrological, climatic, environmental, and pollution conditions. This study aims to evaluate haemocyte immune-mediated responses in vitro to quaternium-15, a common pollutant in aquatic ecosystems. Cell viability and phagocytosis activity decreased when exposed to 0.1 or 1mg/L of quaternium-15. Moreover, decreasing phagocytosis was confirmed by gene expression modulation of actin, involved in cytoskeleton rearrangement. Effects on oxidative stress-related genes were also assessed (Cat, MnSod, Zn/CuSod, GPx). The qPCR data revealed alterations in antioxidant responses through gene dose- and time-dependent modulation. This study presents insights into the physiological responses and cellular mechanisms of P. imbricata haemocytes to environmental stressors, indicating that this species is useful as a novel bioindicator for future toxicological studies.
Collapse
Affiliation(s)
- Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 - Messina, Italy.
| | - Kristian Riolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 - Messina, Italy.
| | - Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168, Messina, Italy.
| | - Imen Chebbi
- Laboratory of Biodiversity and Aquatic Ecosystems, Faculty of Science, University of Sfax, BP, 3038, Tunisia.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 - Messina, Italy.
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 - Messina, Italy.
| |
Collapse
|
4
|
Castaño-Ortiz JM, Courant F, Gomez E, García-Pimentel MM, León VM, Campillo JA, Santos LHMLM, Barceló D, Rodríguez-Mozaz S. Combined exposure of the bivalve Mytilus galloprovincialis to polyethylene microplastics and two pharmaceuticals (citalopram and bezafibrate): Bioaccumulation and metabolomic studies. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131904. [PMID: 37356174 DOI: 10.1016/j.jhazmat.2023.131904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Pharmaceuticals and microplastics constitute potential hazards in aquatic systems, but their combined effects and underlying toxicity mechanisms remain largely unknown. In this study, a simultaneous characterization of bioaccumulation, associated metabolomic alterations and potential recovery mechanisms was performed. Specifically, a bioassay on Mediterranean mussels (Mytilus galloprovincialis) was carried out with polyethylene microplastics (PE-MPLs, 1 mg/L) and citalopram or bezafibrate (500 ng/L). Single and co-exposure scenarios lasted 21 days, followed by a 7-day depuration period to assess their potential recovery. PE-MPLs delayed the bioaccumulation of citalopram (lower mean at 10 d: 447 compared to 770 ng/g dw under single exposure), although reaching similar tissue concentrations after 21 d. A more limited accumulation of bezafibrate was observed overall, regardless of PE-MPLs co-exposure (<MQL-3.2 ng/g dw). Metabolic profiles showed a strong effect of pharmaceuticals, generally independent of PE-MPLs co-exposure. Alterations of the citrate cycle (bezafibrate exposure) and steroid and prostaglandin metabolism (citalopram and bezafibrate exposures) were highlighted. PE-MPLs alone also impacted metabolic pathways, such as neurotransmitters or purine metabolism. After depuration, relevant latent or long-lasting effects were demonstrated as, for instance, the effect of citalopram on neurotransmitters metabolism. Altogether, the observed molecular-level responses to pharmaceuticals and/or PE-MPLs may lead to a dysregulation of mussels' reproduction, energy metabolism, and/or immunity.
Collapse
Affiliation(s)
- J M Castaño-Ortiz
- University of Girona, Girona, Spain; Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain.
| | - F Courant
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - E Gomez
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - M M García-Pimentel
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, C/Varadero 1, San Pedro del Pinatar, Murcia, Spain
| | - V M León
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, C/Varadero 1, San Pedro del Pinatar, Murcia, Spain
| | - J A Campillo
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, C/Varadero 1, San Pedro del Pinatar, Murcia, Spain
| | - L H M L M Santos
- University of Girona, Girona, Spain; Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain
| | - D Barceló
- University of Girona, Girona, Spain; Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - S Rodríguez-Mozaz
- University of Girona, Girona, Spain; Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain
| |
Collapse
|
5
|
Hu L, Ding R, Nie X. Comparison of toxic effects of atorvastatin and gemfibrozil on Daphnia magna. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109224. [PMID: 34756985 DOI: 10.1016/j.cbpc.2021.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022]
Abstract
Atorvastatin (ATV) and gemfibrozil (GEM) are two typical lipid-lowering pharmaceuticals with different action modes, which are frequently detected in various water bodies owning to their wide usage. However, there is limited information about their effects on Daphnia magna. The present study addressed and compared the toxic effects of ATV and GEM on D. magna through determining the responses of the stress related genes (including Nrf2, Keap1, HO-1, GCLC, p53 and PIG3) in D. magna for 24 h and 48 h acute exposure and the changes of life history traits and swimming behaviors in a 21 days chronic exposure under different concentrations of ATV and GEM exposure (5 μg L-1, 50 μg L-1, 500 μg L-1 and 5000 μg L-1). Results showed that the expression of Nrf2, Keap1, HO-1, GCLC, p53 and PIG3 were induced to various degrees under the ATV exposure. There were similar performances for GEM. ATV and GEM caused the delay of first brooding and hatching time and decrease of eggs production number, especially in GEM exposure, reproduction of Daphnia was significantly inhibited, decreasing 38.51% compared to the control. ATV and GEM increased the heart rate of D. magna, and changed swimming behaviors of D. magna. In summary, two lipid-lowering pharmaceuticals caused oxidative stress on D. magna, subsequently brought about alterations in physiological traits. Comparatively, ATV pose more higher risks to D. magna than GEM, but the detailed action mechanisms of ATV and GEM on D. magna needs more investigations in future.
Collapse
Affiliation(s)
- Limei Hu
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Rui Ding
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Mezzelani M, Fattorini D, Gorbi S, Nigro M, Regoli F. Human pharmaceuticals in marine mussels: Evidence of sneaky environmental hazard along Italian coasts. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105137. [PMID: 33010617 DOI: 10.1016/j.marenvres.2020.105137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Despite the increasing interest for pharmaceuticals in the marine environment, their accumulation in wild organisms and consequent environmental hazards are still poorly known. The Mediterranean Sea is highly challenged by the density of coastal populations, large consumption of pharmaceuticals and their often limited removal by Wastewater Treatment Plants (WWTPs). In this respect, the present study aims to provide the first large-scale survey on the distribution of such contaminants of emerging concern in native mussels, Mytilus galloprovincialis from Italian coasts. Organisms were collected from 14 sites representative of relatively unpolluted marine waters along the Adriatic and Tyrrhenian Sea and analysed for 9 common pharmaceuticals including Non-Steroidal Anti-Inflammatory Drugs (NSAIDs: Diclofenac DIC, Ibuprofen IBU, Ketoprofen KET and Nimesulide NIM), the analgesic Acetaminophen AMP, the antiepileptic Carbamazepine CBZ, the antihypertensive Valsartan VAL, the anxiolytic Lormetazepam LOR and the antidepressant Paroxetine PAR. Results indicated the widespread occurrence of the majority of pharmaceuticals in mussel tissues: CBZ was measured in >90% of analysed samples, followed by VAL (>50%), PAR (>40%), and DIC (>30%), while only AMP and KET were never detected. Heterogeneous tissue concentrations ranged from a few units up to hundreds of ng/g (d.w.), while seasonal and interannual variability, investigated over 4 years, did not highlight any clear temporal trend. Limited differences obtained between the Adriatic and Tyrrhenian Sea, as well as coastal versus off-shore sampling sites, suggest that analysed levels of pharmaceuticals in mussels tissues should be considered as baseline concentrations for organisms collected in unpolluted areas of the Mediterranean. This study provided the first unambiguous evidence of the widespread occurrence of pharmaceuticals in marine mussels from Italian coasts, giving novel insights on the potential ecotoxicological hazard from such compounds in marine species.
Collapse
Affiliation(s)
- Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy; Consorzio Interuniversitario per le Scienze del Mare, CoNISMa, ULR Ancona, Ancona, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy; Consorzio Interuniversitario per le Scienze del Mare, CoNISMa, ULR Ancona, Ancona, Italy
| | - Marco Nigro
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy; Consorzio Interuniversitario per le Scienze del Mare, CoNISMa, ULR Ancona, Ancona, Italy.
| |
Collapse
|
7
|
Freitas R, Silvestro S, Pagano M, Coppola F, Meucci V, Battaglia F, Intorre L, Soares AMVM, Pretti C, Faggio C. Impacts of salicylic acid in Mytilus galloprovincialis exposed to warming conditions. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103448. [PMID: 32593631 DOI: 10.1016/j.etap.2020.103448] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 05/17/2023]
Abstract
While many studies have been conducted on drug-inducing alterations in the aquatic environment, little is known about their interaction with climate change, such as rising temperatures. To increase knowledge on this topic, Mytilus galloprovincialis mussels were exposed to two different temperatures 17 ± 1 °C (control) and 21 ± 1 °C in the absence and presence of salicylic acid (SA) (4 mg/L) for 28 days. Salicylic acid in the water and tissues was measured and its impact reported through biomarker responses including: energy metabolism (electron transport system (ETS) activity, glycogen (GLY), protein (PROT) and lipids (LIP) contents), oxidative stress markers (activity of the enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)), glutathione balance between the reduced and the oxidized forms (GSH/GSSG), and damage to membrane lipids (lipid peroxidation - LPO). The mussels responded differently if the stresses imposed were single or combined, with greater impacts when both stressors were acting together. Contaminated mussels exposed to high temperatures were unable to increase their metabolic capacity to restore their defence mechanisms, reducing the expenditure of LIP. In the presence of SA and increased temperature antioxidant defences respond differently, with higher SOD levels and inhibition of CAT. The present study highlights not only the negative impact of warming and SA, but especially how temperature increase will promote the impact of SA in M. galloprovincialis, which under predicted climate change scenarios may greatly impair population maintenance and ecosystem biodiversity.
Collapse
Affiliation(s)
- Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, Portugal.
| | - Serena Silvestro
- Departamento de Biologia & CESAM, Universidade de Aveiro, Portugal; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Maria Pagano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | | | | | | | - Luigi Intorre
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | | | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy.
| |
Collapse
|
8
|
Rebelo D, Correia AT, Nunes B. Acute and chronic effects of environmental realistic concentrations of clofibric acid in Danio rerio: Behaviour, oxidative stress, biotransformation and lipid peroxidation endpoints. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103468. [PMID: 32805388 DOI: 10.1016/j.etap.2020.103468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Due to their widespread use, pharmaceuticals can be metabolized, excreted and ultimately discarded in the environment, thereby affecting aquatic organisms. Lipid-regulating drugs are among the most prescribed medications around the world, controlling human cholesterol levels, in more than 20 million patients. Despite this growing use of lipid-regulating drugs, particularly those whose active metabolite is clofibric acid, the potential toxicological effects of these pharmaceuticals in the environment is not fully characterized. This work intended to characterize the toxicity of an acute (120 hours post-fertilization) and chronic (60 days post-fertilization) exposures to clofibric acid in concentrations of 10.35, 20.7, 41.4, 82.8, and 165.6 μg L-1 in zebrafish (Danio rerio). The concentrations which were implemented in both exposures were based on predicted environmental concentrations for Portuguese surface waters. The acute effects were analysed focusing on behavioural endpoints (small and large distance travelled, swimming time and total distance travelled), biomarkers of oxidative stress (activity of the enzymes superoxide dismutase, Cu/Zn- and Mn SOD; catalase, CAT; glutathione peroxidase, Se- and total GPx), biotransformation (activity of glutathione S-transferases, GSTs) and lipid peroxidation (thiobarbituric acid reactive substances, TBARS). Chronically exposed individuals were also histologically analysed for sex determination and gonadal developmental stages. In terms of acute exposure, significant alterations were reported, in terms of behavioural alterations (hypoactivity), followed by an overall increase in all tested biomarkers. Chronically exposed organisms did not show alterations in terms of sex ratio and maturation stages, suggesting that clofibric acid did not act as an endocrine disruptor. Moreover, the metabolism of clofibric acid resulted in increased levels of both forms of SOD activity, especially for animals exposed to higher levels of this drug. An increase of CAT activity was observed in fish exposed to low levels, and a decrease in those exposed to higher amounts of clofibric acid. Both GPx forms had their activities increased. The enzyme of biotransformation GSTs were increased at low levels of clofibric acid but inhibited at higher amounts of this substance. Lipid peroxidation levels were also changed, with an induction of this parameter with increasing amounts of clofibric acid. Changes also occurred in behavioural endpoints and patterns for control organisms and for those exposed to clofibric acid were significantly distinct, for all types (light and darkness) of exposure, and for the two analysed endpoints (small and large distance). Results from this assay allow inferring that clofibric acid can have an ecologically relevant impact in living organisms exposed to this substance, with putative effects on the metabolism of individuals, affecting their behaviour and ultimately their survival.
Collapse
Affiliation(s)
- D Rebelo
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - A T Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos SN, 4550-208 Matosinhos, Portugal; Faculdade de Ciências da Saúde, Universidade Fernando Pessoa (UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal
| | - B Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
9
|
Impact of Neonicotinoids to Aquatic Invertebrates—In Vitro Studies on Mytilus galloprovincialis: A Review. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8100801] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of pesticides in agriculture has always had a strong impact on environmental contamination. Since the 1990s, neonicotinoids have grown increasingly more popular, targeting specific receptors for insects, especially bees, which is why the use of some neonicotinoids has been banned. Much is known about the effects they have on insects, but very little about the effect they can have on non-target organisms. Several studies have shown how these neonicotinoids interact negatively with the normal physiology of aquatic organisms. For the genus Mytilus, even though the neonicotinoids did not show an interaction with specific receptors, a chronic and acute exposure to them causes damage. In these animals, a reduced production of byssus, alteration of the normal antioxidant systems and tissue damage have been found. Therefore, an analysis of the entire ecosystem in which the pollutant enters is of great importance in evaluating any possible alterations.
Collapse
|
10
|
Shi W, Han Y, Sun S, Tang Y, Zhou W, Du X, Liu G. Immunotoxicities of microplastics and sertraline, alone and in combination, to a bivalve species: size-dependent interaction and potential toxication mechanism. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122603. [PMID: 32289642 DOI: 10.1016/j.jhazmat.2020.122603] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Although coexposure to pharmaceuticals and microplastics (MPs) may frequently occur, the synergistic impact of MPs and antidepressants on marine species still remains poorly understood. In this study, the immunotoxicities of polystyrene MPs (diameters 500 nm and 30 μm) and sertraline (Ser), alone and in combination, were investigated in a bivalve mollusk Tegillarca granosa. Results showed that both MPs and Ser significantly suppressed the immune responses of T. granosa. In addition, though the toxic effect of Ser was not affected by microscale MPs, an evident synergistic immuno-toxic effect was observed between Ser and nanoscale MPs, which indicates a size-dependent interaction between the two. To further ascertain the underlying toxication mechanisms, the intracellular content of reactive oxygen species, apoptosis status, ATP content, pyruvate kinase activity, plasma cortisol level, and in vivo concentrations of neurotransmitters and cytochrome P450 1A1 were analysed. A transcriptomic analysis was also performed to reveal global molecular alterations following Ser and/or MPs exposure. The obtained results indicated that the presence of nanoscale MPs may enhance the immunotoxicity of Ser by (i) inducing apoptosis of haemocytes and, hence, reducing the THC; (ii) constraining the energy availability for phagocytosis; and (iii) hampering the detoxification of Ser.
Collapse
Affiliation(s)
- Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
11
|
Khan B, Ho KT, Burgess RM. Application of Biomarker Tools Using Bivalve Models Toward the Development of Adverse Outcome Pathways for Contaminants of Emerging Concern. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1472-1484. [PMID: 32452040 PMCID: PMC7657996 DOI: 10.1002/etc.4757] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/10/2020] [Accepted: 05/18/2020] [Indexed: 05/24/2023]
Abstract
As contaminant exposures in aquatic ecosystems continue to increase, the need for streamlining research efforts in environmental toxicology using predictive frameworks also grows. One such framework is the adverse outcome pathway (AOP). An AOP framework organizes and utilizes toxicological information to connect measurable molecular endpoints to an adverse outcome of regulatory relevance via a series of events at different levels of biological organization. Molecular endpoints or biomarkers are essential to develop AOPs and are valuable early warning signs of the toxicity of pollutants, including contaminants of emerging concern. Ecological risk-assessment approaches using tools such as biomarkers and AOPs benefit from identification of molecular targets conserved across species. Bivalve models are useful in such approaches and integral to our understanding of ecological and human health risks associated with contaminant exposures. We discuss the value of using biomarker approaches in bivalve models to meet the demands of twenty-first-century toxicology. Environ Toxicol Chem 2020;39:1472-1484. © 2020 SETAC.
Collapse
Affiliation(s)
- Bushra Khan
- ORISE Research Participant at the US Environmental
Protection Agency, ORD-CEMM, Atlantic Coastal Environmental Sciences Division, 27
Tarzwell Drive, Narragansett, RI 02882, USA
| | - Kay T. Ho
- US Environmental Protection Agency, ORD-CEMM, Atlantic
Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882,
USA
| | - Robert M. Burgess
- US Environmental Protection Agency, ORD-CEMM, Atlantic
Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882,
USA
| |
Collapse
|
12
|
Park JC, Hagiwara A, Park HG, Lee JS. The glutathione S-transferase genes in marine rotifers and copepods: Identification of GSTs and applications for ecotoxicological studies. MARINE POLLUTION BULLETIN 2020; 156:111080. [PMID: 32510351 DOI: 10.1016/j.marpolbul.2020.111080] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Various xenobiotics are constantly being released and accumulated into the aquatic environments and consequently, the aquatic organisms are continuously being exposed to exogenous stressors. Among various xenobiotic detoxifying enzymes, Glutathione S-transferase (GST) is one of the major xenobiotic detoxifying enzyme which is widely distributed among living organisms and thus, understanding of the nature of GSTs is crucial. Previous studies have shown GST activity in response to various xenobiotics yet, full identification of GSTs in marine invertebrates is still limited. This review covers information on the importance of GSTs as a biomarker for emerging chemicals and their response to wide ranges of environmental pollutants as well as in-depth phylogenetic analysis of marine invertebrates, including recently identified GSTs belonging to rotifers (Brachionus spp.) and copepods (Tigriopus japonicus and Paracyclopina nana), with unique class-specific features of GSTs, as well as a new suggestion of GST evolutionary pathway.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU), Suwon 16419, South Korea.
| |
Collapse
|
13
|
Exposure to Decreased pH and Caffeine Affects Hemocyte Parameters in the Mussel Mytilus galloprovincialis. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8040238] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Combined effects of reduced pH, as predicted under climate change scenarios, and the most popular and widely used stimulant caffeine were assessed in hemocyte parameters of the mussel Mytilus galloprovincialis, being hemocytes involved in immune defense. Bivalves were exposed for one week to natural pH (8.1) and two reduced pH values (pH −0.4 units and pH −0.7 units). Exposure continued for additional two weeks, both in the absence and in the presence of environmentally relevant concentrations of caffeine (0.05 and 0.5 µg/L). Hemocyte parameters (total hemocyte count, hemocyte volume and diameter, neutral red uptake and hemocyte proliferation) were measured after 7 days of exposure to pH only, and after 14 (T1) and 21 (T2) days of exposure to the various pH*caffeine combinations. At all sampling times, pH significantly affected all the biological variables considered, whereas caffeine exhibited a significant influence at T2 only. Among the various hemocyte parameters, caffeine caused a significant increase in total hemocyte count at T2, and in hemocyte volume and diameter at both T1 and T2, when a significant interaction between pH and caffeine was also found. Overall, results demonstrated that hemocyte functionality was strongly influenced by the experimental conditions tested. Further studies are needed to assess combined effects of climate changes and emerging contaminants on bivalve immune system when challenged with environmental pathogens.
Collapse
|
14
|
Munari M, Matozzo V, Chemello G, Riedl V, Pastore P, Badocco D, Marin MG. Seawater acidification and emerging contaminants: A dangerous marriage for haemocytes of marine bivalves. ENVIRONMENTAL RESEARCH 2019; 175:11-21. [PMID: 31100511 DOI: 10.1016/j.envres.2019.04.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
The combined effects of seawater acidification and the non-steroidal anti-inflammatory drug diclofenac on haemocyte parameters of the mussel Mytilus galloprovincialis and the clam Ruditapes philippinarum were investigated for the first time. Animals were maintained for one week (T0) in natural pH condition (8.1) and two reduced pH values (pH -0.4 units and pH -0.7 units). Bivalves were then exposed for additional 14 days (T1 and T2) to the three experimental pH values in both the presence and absence of environmentally realistic concentrations of diclofenac (0.05 and 0.50 μg/L). To assess potential impairment in immunosurveillance, haemocyte parameters (total haemocyte count, haemocyte volume and diameter, Neutral Red uptake, haemocyte proliferation and lysozyme activity) were measured after 7, 14 and 21 days of exposure to differing pH value or pH/diclofenac combinations. In both species, pH affected the whole haemocyte data set at all sampling times, influencing most of the parameters measured at T0 and T1 in clams, and at T2 in mussels. Conversely, in both species diclofenac affected the overall haemocyte response at T2 only. However, in R. philippinarum a higher number of haemocyte parameters were significantly influenced even at T1. A significant interaction between pH and diclofenac was mainly evident in mussels, affecting haemocyte size and lysozyme activity at both T1 and T2. Overall, the results obtained demonstrated that the experimental conditions tested can alter markedly haemocyte parameters in marine bivalves.
Collapse
Affiliation(s)
- Marco Munari
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121, Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121, Padova, Italy
| | - Giulia Chemello
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121, Padova, Italy
| | - Verena Riedl
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121, Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Maria Gabriella Marin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121, Padova, Italy.
| |
Collapse
|
15
|
Fonseca TG, Carriço T, Fernandes E, Abessa DMS, Tavares A, Bebianno MJ. Impacts of in vivo and in vitro exposures to tamoxifen: Comparative effects on human cells and marine organisms. ENVIRONMENT INTERNATIONAL 2019; 129:256-272. [PMID: 31146160 DOI: 10.1016/j.envint.2019.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Tamoxifen (TAM) is a first generation-SERM administered for hormone receptor-positive (HER+) breast cancer in both pre- and post-menopausal patients and may undergo metabolic activation in organisms that share similar receptors and thus face comparable mechanisms of response. The present study aimed to assess whether environmental trace concentrations of TAM are bioavailable to the filter feeder M. galloprovincialis (100 ng L-1) and to the deposit feeder N. diversicolor (0.5, 10, 25 and 100 ng L-1) after 14 days of exposure. Behavioural impairment (burrowing kinetic), neurotoxicity (AChE activity), endocrine disruption by alkali-labile phosphate (ALP) content, oxidative stress (SOD, CAT, GPXs activities), biotransformation (GST activity), oxidative damage (LPO) and genotoxicity (DNA damage) were assessed. Moreover, this study also pertained to compare TAM cytotoxicity effects to mussels and targeted human (i.e. immortalized retinal pigment epithelium - RPE; and human transformed endothelial cells - HeLa) cell lines, in a range of concentrations from 0.5 ng L-1 to 50 μg L-1. In polychaetes N. diversicolor, TAM exerted remarkable oxidative stress and damage at the lowest concentration (0.5 ng L-1), whereas significant genotoxicity was reported at the highest exposure level (100 ng L-1). In mussels M. galloprovincialis, 100 ng L-1 TAM caused endocrine disruption in males, neurotoxicity, and an induction in GST activity and LPO byproducts in gills, corroborating in genotoxicity over the exposure days. Although cytotoxicity assays conducted with mussel haemocytes following in vivo exposure was not effective, in vitro exposure showed to be a feasible alternative, with comparable sensitivity to human cell line (HeLa).
Collapse
Affiliation(s)
- T G Fonseca
- CIMA, Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal; NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia, Aquática, Universidade Estadual Paulista (UNESP), Campus do Litoral Paulista, São Vicente, SP 11330-900, Brazil
| | - T Carriço
- CIMA, Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - E Fernandes
- CIMA, Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - D M S Abessa
- NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia, Aquática, Universidade Estadual Paulista (UNESP), Campus do Litoral Paulista, São Vicente, SP 11330-900, Brazil
| | - A Tavares
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - M J Bebianno
- CIMA, Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal.
| |
Collapse
|
16
|
Faggio C, Tsarpali V, Dailianis S. Mussel digestive gland as a model tissue for assessing xenobiotics: An overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:220-229. [PMID: 29704717 DOI: 10.1016/j.scitotenv.2018.04.264] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 05/19/2023]
Abstract
Control strategies and routine biomonitoring programs are commonly performed worldwide using sentinel marine invertebrates, such as mussels of the genus Mytilus, for assessing the "health status" of the aquatic environment. Those species can accumulate and tolerate xenobiotics at levels higher than those being present into the aquatic environment, thus providing accurate and reliable biological endpoints (e.g. physiological, behavioral, cellular, biochemical and molecular indices) that can be measured in their tissues. Taking under consideration the significance of bivalves for assessing the environmental hazard of xenobiotics being present into the water medium, as well as the key role of digestive gland as a target-tissue for the compounds ingested in the organism, the present study aimed to summarize available data on the effects of different categories of xenobiotic compounds, previously characterized as a potential threat for the marine ecosystems. In this context, different types of pharmaceuticals and personal care products (PPCPs), biocides, microplastics (MPs) and nanoparticles (NPs), currently investigated in mussels' digestive gland, using a battery of experimental approaches and analytical methods, as well as stress indices evaluation, are briefly described and further discussed in order to elucidate not only the presence and the toxic mode of action of xenobiotics, but also the important role of the digestive gland as a reliable target-tissue for investigating the effects of xenobiotics at cellular, biochemical, and molecular levels.
Collapse
Affiliation(s)
- Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Viale Ferdinando Stagno d'Alcontres, 31 98166 S. Agata-Messina, Italy.
| | - Vasiliki Tsarpali
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Patras 26 500, Greece
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Patras 26 500, Greece
| |
Collapse
|
17
|
Politakis N, Belavgeni A, Efthimiou I, Charalampous N, Kourkouta C, Dailianis S. The impact of expired commercial drugs on non-target marine species: A case study with the use of a battery of biomarkers in hemocytes of mussels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:160-168. [PMID: 29045922 DOI: 10.1016/j.ecoenv.2017.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/18/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
The present study investigated the effects of two expired commercial medicines, like Buscopan Plus and Mesulid, commonly classified as household medical wastes, on hemocytes of mussel Mytilus galloprovincialis. Mussel hemocytes' lysosomal membrane stability (in terms of neutral red retention assay), superoxide anions (O2·-) and nitric oxides (NO, in terms of nitrites) production, lipid peroxidation (in terms of malondialdehyde/MDA content) and the formation of nuclear abnormalities (using the micronucleus/MN assay) were assessed in hemocytes of mussels treated for 7 days with appropriate amounts of each drug (the concentrations of active substances were considered in each case, due to the absence of data related with the excipients) as well as in hemocytes of post-treated/recovered mussels (7 days post-treatment/recovery period). According to the results, treated mussels showed significantly decreased NRRT values, enhanced O2·-, NO and MDA levels, as well as high frequencies of nuclear abnormalities in both cases. Thοse effects showed a drastic reduction in almost all cases, after the post-treatment/recovery period. Moreover, the "stress on stress" method, commonly performed for estimating mussels' ability to survive in air, showed significantly reduced LT50 values in challenged mussels, compared to values observed in control mussels. The current findings revealed for the first time that both expired commercial drugs could affect mussels, probably via the formation of active substances bioactivated metabolites, as well as excipients, such as TiO2 and SiO2, at least in case of Buscopan plus. Although further research is needed, the current findings indicate the environmental impact of expired commercial drugs, thus revealing the need for the proper disposal of household medical wastes.
Collapse
Affiliation(s)
- Nektarios Politakis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Rio, GR-26500 Patra, Greece
| | - Alexia Belavgeni
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Rio, GR-26500 Patra, Greece
| | - Ioanna Efthimiou
- Department of Environmental and Natural Resources Management, University of Patras, GR-30100 Agrinio, Greece
| | - Nikolina Charalampous
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Rio, GR-26500 Patra, Greece
| | - Chara Kourkouta
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Rio, GR-26500 Patra, Greece
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Rio, GR-26500 Patra, Greece.
| |
Collapse
|
18
|
Burgos-Aceves MA, Faggio C. An approach to the study of the immunity functions of bivalve haemocytes: Physiology and molecular aspects. FISH & SHELLFISH IMMUNOLOGY 2017; 67:513-517. [PMID: 28625873 DOI: 10.1016/j.fsi.2017.06.042] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 05/19/2023]
Abstract
The Mediterranean mussel Mytilus galloprovincialis is an ecologically and economically important species. It has been used in programs of monitoring of pollution, since it is sessile organism that is capable of accumulating pollutants in tissues through filter feeding. Due to an increase of pollutants in the environment, marine mussels present physiological alterations that compromise their innate immune system, which can latter lead to opportunistic diseases. The haemocytes are the cells in charge of the immune response in the Mediterranean mussel and in other mollusks. In this review, we summarize the physiological and genetic response capacity of these immune cells to the presence of xenobiotics, pathogens and the interplay. The identification of the basic mechanisms of immunity and their modulation in mussels can give important information for the possible utilization of this species as an invertebrate model for studies on innate immunity, future immunotoxicological studies, and predict changes in the community for the future.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta. Rita, La Paz, BCS 23090, Mexico
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
19
|
Ragusa MA, Costa S, Cuttitta A, Gianguzza F, Nicosia A. Coexposure to sulfamethoxazole and cadmium impairs development and attenuates transcriptional response in sea urchin embryo. CHEMOSPHERE 2017; 180:275-284. [PMID: 28411544 DOI: 10.1016/j.chemosphere.2017.04.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Among sulfonamides, sulfamethoxazole represents one of the most widely employed. A considerable amount of sulfamethoxazole is introduced into the marine environment after utilization in aquaculture. The cytotoxicity of sulfamethoxazole relies mainly on arylhydroxylamine metabolites and it is associated with the production of reactive oxygen species. Cadmium represents a metal largely employed in several anthropic activities and it is toxic for all living organisms even at low concentrations. Since it is not degraded, cadmium irreversibly accumulates into cells. In order to understand the mechanisms of response to changes in the chemical environment, we investigated by light microscopy observations and RT-qPCR assays the impact of sulfamethoxazole and cadmium in P. lividus sea urchin embryos. During development, embryos were exposed to sulfamethoxazole amount comparable to that usually used in aquaculture procedures and/or sublethal levels of cadmium chloride. Impairment of development and biomarkers for inflammation, detoxification, metal scavenging and cell death were inspected. Even though treatment with sulfamethoxazole apparently did not affect development, it stimulated a remarkable molecular response to oxidative stress. Moreover, combined exposure seriously compromised development and the defense mechanisms to cadmium were blocked. This study leads to the conclusion that coexposure to sulfamethoxazole and cadmium induces neutralizing effects on sea urchin embryos. Thus, in marine areas nearby aquaculture farms, where sulfamethoxazole discharge represents an important environmental contaminant, cadmium occurrence may alter population dynamics of P. lividus.
Collapse
Affiliation(s)
- Maria Antonietta Ragusa
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy.
| | - Salvatore Costa
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy.
| | - Angela Cuttitta
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Torretta Granitola, Trapani, Sicily, Italy.
| | - Fabrizio Gianguzza
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy.
| | - Aldo Nicosia
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Torretta Granitola, Trapani, Sicily, Italy.
| |
Collapse
|
20
|
Kleinert C, Lacaze E, Mounier M, De Guise S, Fournier M. Immunotoxic effects of single and combined pharmaceuticals exposure on a harbor seal (Phoca vitulina) B lymphoma cell line. MARINE POLLUTION BULLETIN 2017; 118:237-247. [PMID: 28262249 DOI: 10.1016/j.marpolbul.2017.02.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
The potential risk of pharmaceuticals in the environment to top-predators is still largely unknown. In this study, we assessed the immunotoxic effects of ten pharmaceuticals individually and as mixtures on a harbor seal (Phoca vitulina) B lymphoma cell line. A significant reduction in lymphocyte transformation was observed following an exposure to 12,500μg/L 17α-ethinyl estradiol and 25,000μg/L naproxen. Exposure to 12,500μg/L 17α-ethinyl estradiol decreased the percentage of cell in the G0/G1 phase of the cell cycle while increasing the percentage of cells in the S phase. Carbamazepine exposure increased the amount of cells in the G2/M phase. Binary mixtures showed synergistic effects in lymphocyte transformation, cell cycle and apoptosis assays. Concentrations inducing toxic effects in the cell line were similar to those affecting fish in previous studies. A reduction of functional activities of the immune system may lead to altered host resistance to pathogens in free-ranging pinnipeds.
Collapse
Affiliation(s)
- Christine Kleinert
- INRS-Institut Armand-Frappier, Edifice 18, 531 blvd. des Prairies, Laval (QC) H7V 1B7, Canada.
| | - Emilie Lacaze
- INRS-Institut Armand-Frappier, Edifice 18, 531 blvd. des Prairies, Laval (QC) H7V 1B7, Canada
| | - Méryl Mounier
- INRS-Institut Armand-Frappier, Edifice 18, 531 blvd. des Prairies, Laval (QC) H7V 1B7, Canada
| | - Sylvain De Guise
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, U-3089, Storrs, CT 06269, USA
| | - Michel Fournier
- INRS-Institut Armand-Frappier, Edifice 18, 531 blvd. des Prairies, Laval (QC) H7V 1B7, Canada.
| |
Collapse
|
21
|
Teles M, Fierro-Castro C, Na-Phatthalung P, Tvarijonaviciute A, Soares AMVM, Tort L, Oliveira M. Evaluation of gemfibrozil effects on a marine fish (Sparus aurata) combining gene expression with conventional endocrine and biochemical endpoints. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:600-607. [PMID: 27474849 DOI: 10.1016/j.jhazmat.2016.07.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
The information on the potential hazardous effects of gemfibrozil (GEM) on marine fish is extremely scarce. In the current study, molecular, endocrine and biochemical parameters were assessed in Sparus aurata after 96h waterborne exposure to a GEM concentration range. Hepatic mRNA levels of target genes known to be regulated via peroxisome proliferator-activated receptor α (pparα) in mammals, such as apolipoprotein AI (apoa1) and lipoprotein (lpl) were significantly increased, without a concomitant activation of the ppar pathways. GEM (15μgL(-1)) induced an upregulation in mRNA levels of interleukin 1β (il1β), tumour necrosis factor-α (tnfα) and caspase 3 (casp3), suggesting an activation of proinflammatory processes in S. aurata liver. However, mRNA levels of genes related with the antioxidant defence system and cell-tissue repair were unaltered under the tested experimental conditions. Higher levels of GEM induced a cortisol rise, an indication that it is recognized as a stressor by S. aurata. Cortisol levels and the mRNA levels of il1β, tnfα and casp3 may be suggested as potential biomarkers of GEM effects in marine fish.
Collapse
Affiliation(s)
- M Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.
| | - C Fierro-Castro
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - P Na-Phatthalung
- Department of Microbiology and Excellent Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - A Tvarijonaviciute
- Department of Medicine and Animal Surgery, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - L Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - M Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
22
|
Faggio C, Pagano M, Alampi R, Vazzana I, Felice MR. Cytotoxicity, haemolymphatic parameters, and oxidative stress following exposure to sub-lethal concentrations of quaternium-15 in Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:258-265. [PMID: 27750119 DOI: 10.1016/j.aquatox.2016.10.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/05/2016] [Accepted: 10/08/2016] [Indexed: 06/06/2023]
Abstract
The presence of a xenobiotic in the environment can often represent a risk for living organisms. Quaternium-15, a preservative, is one of the most used substances and is added to several cosmetics and other industrial products. For this reason,kwowing the bio-indicator of the marine environment, the toxicological effects potentially elicited by this preservative on the marine invertebrate Mytilus galloprovincialis were studied. The results of this work confirm that quaternium-15, used at 0.1 and 1mg/l concentrations, while metabolized in M. galloprovincialis, causes a decrease in cellular viability, and remarkable changes to the defense and antioxidant system. In fact, haemocyte viability is dramatically reduced, and haemolymphatic parameter measurements indicate a stress on the animal. Moreover, an increase in radical species production, in Thiobarbituric Acid Reactive Species (TBARS) concentration, and in the Heat Shock Protein 70 amount, were observed in hepatopancreas. These changes suggest that the antioxidant systems are activated to overwhelm the oxidative damage induced by quaternium-15. Quaternium-15 jeopardizes both the defense and antioxidant systems. These results provide essential information with the biological fate of quaternium-15 in aquatic organisms, and confirm that biomarkers represent an important tool for modern environmental assessments as they can help with the prediction of pollutants involved in the monitoring program.
Collapse
Affiliation(s)
- Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Viale Ferdinando Stagno d'Alcontres, 31 98166, S. Agata-Messina, Italy.
| | - Maria Pagano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Viale Ferdinando Stagno d'Alcontres, 31 98166, S. Agata-Messina, Italy
| | - Roberto Alampi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Viale Ferdinando Stagno d'Alcontres, 31 98166, S. Agata-Messina, Italy
| | - Irene Vazzana
- Experimental Zooprofilatic Institute of Sicily "A. Mirri", Italy
| | - Maria Rosa Felice
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Viale Ferdinando Stagno d'Alcontres, 31 98166, S. Agata-Messina, Italy
| |
Collapse
|
23
|
Bradley PM, Barber LB, Clark JM, Duris JW, Foreman WT, Furlong ET, Givens CE, Hubbard LE, Hutchinson KJ, Journey CA, Keefe SH, Kolpin DW. Pre/post-closure assessment of groundwater pharmaceutical fate in a wastewater-facility-impacted stream reach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:916-925. [PMID: 27350092 DOI: 10.1016/j.scitotenv.2016.06.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/07/2016] [Accepted: 06/14/2016] [Indexed: 05/22/2023]
Abstract
Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.
Collapse
|
24
|
Di Y, Aminot Y, Schroeder DC, Readman JW, Jha AN. Integrated biological responses and tissue-specific expression of p53 and ras genes in marine mussels following exposure to benzo(α)pyrene and C60 fullerenes, either alone or in combination. Mutagenesis 2016; 32:77-90. [PMID: 28011749 DOI: 10.1093/mutage/gew049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We used the marine bivalve (Mytilus galloprovincialis) to assess a range of biological or biomarker responses following exposure to a model-engineered nanoparticle, C60 fullerene, either alone or in combination with a model polycyclic aromatic hydrocarbon, benzo(α)pyrene [B(α)P]. An integrated biomarker approach was used that included: (i) determination of 'clearance rates' (a physiological indicator at individual level), (ii) histopathological alterations (at tissue level), (iii) DNA strand breaks using the comet assay (at cellular level) and (iv) transcriptional alterations of p53 (anti-oncogene) and ras (oncogene) determined by real-time quantitative polymerase chain reaction (at the molecular/genetic level). In addition, total glutathione in the digestive gland was measured as a proxy for oxidative stress. Here, we report that mussels showed no significant changes in 'clearance rates' after 1 day exposure, however significant increases in 'clearance rates' were found following exposure for 3 days. Histopathology on selected organs (i.e. gills, digestive glands, adductor muscles and mantles) showed increased occurrence of abnormalities in all tissues types, although not all the exposed organisms showed these abnormalities. Significantly, increased levels of DNA strand breaks were found after exposure for 3-days in most individuals tested. In addition, a significant induction for p53 and ras expression was observed in a tissue and chemical-specific pattern, although large amounts of inter-individual variability, compared with other biomarkers, were clearly apparent. Overall, biological responses at different levels showed variable sensitivity, with DNA strand breaks and gene expression alterations exhibiting higher sensitivities. Furthermore, the observed genotoxic responses were reversible after a recovery period, suggesting the ability of mussels to cope with the toxicants C60 and/or B(α)P under our experimental conditions. Overall, in this comprehensive study, we have demonstrated mussels as a suitable model marine invertebrate species to study the potential detrimental effects induced by possible genotoxicants and toxicants, either alone or in combinations at different levels of biological organisation (i.e. molecular to individual levels).
Collapse
Affiliation(s)
- Yanan Di
- School of Biological Sciences and.,Present address: Institute of Marine Biology, Ocean College, Zhejiang University, People's Republic of China
| | - Yann Aminot
- School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, PL4 8AA, UK
| | - Declan C Schroeder
- Marine Biological Association of the United Kingdom (MBA), Citadel Hill, Plymouth, PL1 2PB, UK and
| | - James W Readman
- School of Biological Sciences and.,School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, PL4 8AA, UK.,Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | | |
Collapse
|
25
|
Bradley PM, Journey CA, Clark J. Effect of Wastewater Treatment Facility Closure on Endocrine Disrupting Chemicals in a Coastal Plain Stream. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/rem.21455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Paul M. Bradley
- U.S. Geological Survey, South Atlantic Water Science Center in Columbia, South Carolina
| | | | - Jimmy Clark
- U.S. Geological Survey, South Atlantic Water Science Center in Columbia, South Carolina
| |
Collapse
|
26
|
Di Poi C, Evariste L, Séguin A, Mottier A, Pedelucq J, Lebel JM, Serpentini A, Budzinski H, Costil K. Sub-chronic exposure to fluoxetine in juvenile oysters (Crassostrea gigas): uptake and biological effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5002-5018. [PMID: 25315935 DOI: 10.1007/s11356-014-3702-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/06/2014] [Indexed: 06/04/2023]
Abstract
The bioconcentration potential of fluoxetine (FLX) and its biological effects were investigated in juvenile Pacific oyster exposed for 28 days to environmentally relevant concentrations of FLX (1 ng L(-1), 100 ng L(-1) and up to 10 μg L(-1)). FLX bioaccumulated in oyster flesh resulting in 28-day bioconcentration factors greater than 2,000 and 10,000 by referring to wet and dry weights, respectively. Nevertheless, FLX did not induce oyster mortality, delayed gametogenesis, or lead to adverse histopathological alterations. At the two highest concentrations, despite non-optimal trophic conditions, FLX stimulated shell growth but only in a transient manner, suggesting a role of serotonin in the regulation of feeding and metabolism in bivalves. Those high concentrations seemed to drive bell-shaped responses of catalase and glutathione S-transferase activities throughout the exposure period, which may indicate the activation of antioxidant enzyme synthesis and then an enhanced catabolic rate or direct inhibition of those enzymes. However, no clear oxidative stress was detected because no strong differences in thiobarbituric acid-reactive substance (TBARS) content (i.e. lipid peroxidation) were observed between oyster groups, suggesting that cellular defence mechanisms were effective. These results demonstrate the importance of considering additional biomarkers of oxidative stress to obtain a comprehensive overview of the FLX-induced changes in marine bivalves exposed under realistic conditions. Considering the battery of biomarkers used, FLX appears to induce little or no effects on oyster physiology even at a concentration of 10 μg L(-1). These results do not confirm the lowest observed effect concentration (LOEC) values reported by some authors in other mollusc species.
Collapse
Affiliation(s)
- Carole Di Poi
- Normandie Université, 14032, Caen, France
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA); MNHN, UPMC, UCBN, CNRS-7208, IRD-207; IBFA, Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, 14032, Caen Cedex 5, France
| | - Lauris Evariste
- Normandie Université, 14032, Caen, France
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA); MNHN, UPMC, UCBN, CNRS-7208, IRD-207; IBFA, Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, 14032, Caen Cedex 5, France
| | - Alexis Séguin
- Normandie Université, 14032, Caen, France
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA); MNHN, UPMC, UCBN, CNRS-7208, IRD-207; IBFA, Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, 14032, Caen Cedex 5, France
| | - Antoine Mottier
- Normandie Université, 14032, Caen, France
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA); MNHN, UPMC, UCBN, CNRS-7208, IRD-207; IBFA, Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, 14032, Caen Cedex 5, France
| | - Julie Pedelucq
- UMR 5805 CNRS Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), Laboratoire de Physico- et Toxico-Chimie de l'Environnement (LPTC), Université Bordeaux 1, Bâtiment A12, 351 crs de la Libération, 33405, Talence, France
| | - Jean-Marc Lebel
- Normandie Université, 14032, Caen, France
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA); MNHN, UPMC, UCBN, CNRS-7208, IRD-207; IBFA, Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, 14032, Caen Cedex 5, France
| | - Antoine Serpentini
- Normandie Université, 14032, Caen, France
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA); MNHN, UPMC, UCBN, CNRS-7208, IRD-207; IBFA, Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, 14032, Caen Cedex 5, France
| | - Hélène Budzinski
- UMR 5805 CNRS Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), Laboratoire de Physico- et Toxico-Chimie de l'Environnement (LPTC), Université Bordeaux 1, Bâtiment A12, 351 crs de la Libération, 33405, Talence, France
| | - Katherine Costil
- Normandie Université, 14032, Caen, France.
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA); MNHN, UPMC, UCBN, CNRS-7208, IRD-207; IBFA, Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, 14032, Caen Cedex 5, France.
| |
Collapse
|
27
|
Renault T. Immunotoxicological effects of environmental contaminants on marine bivalves. FISH & SHELLFISH IMMUNOLOGY 2015; 46:88-93. [PMID: 25907642 DOI: 10.1016/j.fsi.2015.04.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 04/06/2015] [Accepted: 04/12/2015] [Indexed: 06/04/2023]
Abstract
Coastal areas are complex environments frequently contaminated by numerous pollutants that represent a potential threat to marine organisms, especially bivalves. These pollutants may have major ecological consequences. Although effects of different environmental contaminants on the immune system in marine bivalves have been already reported, a few of reviews summarizes these effects. The main purpose of this chapter relies on summarizing recent body of data on immunotoxicity in bivalves subjected to contaminants. Immune effects of heavy metals, pesticides, HAP, PCB and pharmaceuticals are presented and discussed and a particular section is devoted to nanoparticle effects. A large body of literature is now available on this topic. Finally, the urgent need of a better understanding of complex interactions between contaminants, marine bivalves and infectious diseases is noticed.
Collapse
Affiliation(s)
- T Renault
- Ifremer, Département Ressources Biologique et Envrionnement, Rue de l'Île d'Yeu, 44300 Nantes, France.
| |
Collapse
|
28
|
Turja R, Lehtonen KK, Meierjohann A, Brozinski JM, Vahtera E, Soirinsuo A, Sokolov A, Snoeijs P, Budzinski H, Devier MH, Peluhet L, Pääkkönen JP, Viitasalo M, Kronberg L. The mussel caging approach in assessing biological effects of wastewater treatment plant discharges in the Gulf of Finland (Baltic Sea). MARINE POLLUTION BULLETIN 2015; 97:135-149. [PMID: 26117817 DOI: 10.1016/j.marpolbul.2015.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/06/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
Biological effects of wastewater treatment plant (WWTP) effluents were investigated in Baltic mussels (Mytilus trossulus) caged for one month 800m and 1100m from the WWTP discharge site and at a reference site 4km away. Significant antioxidant, genotoxic and lysosomal responses were observed close to the point of the WWTP discharge. Passive samplers (POCIS) attached to the cages indicated markedly higher water concentrations of various pharmaceuticals at the two most impacted sites. Modeling the dispersal of a hypothetical passive tracer compound from the WWTP discharge site revealed differing frequencies and timing of the exposure periods at different caging sites. The study demonstrated for the first time the effectiveness of the mussel caging approach in combination with passive samplers and the application of passive tracer modeling to examine the true exposure patterns at point source sites such as WWTP pipe discharges in the Baltic Sea.
Collapse
Affiliation(s)
- Raisa Turja
- Finnish Environment Institute SYKE, Marine Research Centre, Hakuninmaantie 6, FI-00430 Helsinki, Finland.
| | - Kari K Lehtonen
- Finnish Environment Institute SYKE, Marine Research Centre, Hakuninmaantie 6, FI-00430 Helsinki, Finland
| | - Axel Meierjohann
- Åbo Akademi University, Laboratory of Organic Chemistry, Piispankatu 8, FI-20500 Turku, Finland
| | - Jenny-Maria Brozinski
- Åbo Akademi University, Laboratory of Organic Chemistry, Piispankatu 8, FI-20500 Turku, Finland
| | - Emil Vahtera
- City of Helsinki Environment Centre, P.O. Box 500, FI-00099 Helsinki, Finland
| | - Anna Soirinsuo
- Finnish Environment Institute SYKE, Marine Research Centre, Hakuninmaantie 6, FI-00430 Helsinki, Finland
| | - Alexander Sokolov
- Baltic Nest Institute, Stockholm University Baltic Sea Centre, SE-10691 Stockholm, Sweden
| | - Pauline Snoeijs
- Stockholm University, Department of Ecology, Environment and Plant Sciences, Svante Arrhenius väg 21A, SE-10691 Stockholm, Sweden
| | - Hélène Budzinski
- University Bordeaux 1, Oceanic and Continental Environments and Paleoenvironments (EPOC, UMR 5805 CNRS), Laboratory of Physico- and Toxico-Chemistry of the Environment (LPTC), 351 cours de la Libération, F-33405 Talence, France
| | - Marie-Hélène Devier
- University Bordeaux 1, Oceanic and Continental Environments and Paleoenvironments (EPOC, UMR 5805 CNRS), Laboratory of Physico- and Toxico-Chemistry of the Environment (LPTC), 351 cours de la Libération, F-33405 Talence, France
| | - Laurent Peluhet
- University Bordeaux 1, Oceanic and Continental Environments and Paleoenvironments (EPOC, UMR 5805 CNRS), Laboratory of Physico- and Toxico-Chemistry of the Environment (LPTC), 351 cours de la Libération, F-33405 Talence, France
| | | | - Markku Viitasalo
- Finnish Environment Institute SYKE, Marine Research Centre, Hakuninmaantie 6, FI-00430 Helsinki, Finland
| | - Leif Kronberg
- Åbo Akademi University, Laboratory of Organic Chemistry, Piispankatu 8, FI-20500 Turku, Finland
| |
Collapse
|
29
|
Lacaze E, Pédelucq J, Fortier M, Brousseau P, Auffret M, Budzinski H, Fournier M. Genotoxic and immunotoxic potential effects of selected psychotropic drugs and antibiotics on blue mussel (Mytilus edulis) hemocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 202:177-186. [PMID: 25829077 DOI: 10.1016/j.envpol.2015.03.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
The potential toxicity of pharmaceuticals towards aquatic invertebrates is still poorly understood and sometimes controversial. This study aims to document the in vitro genotoxicity and immunotoxicity of psychotropic drugs and antibiotics on Mytilus edulis. Mussel hemocytes were exposed to fluoxetine, paroxetine, venlafaxine, carbamazepine, sulfamethoxazole, trimethoprim and erythromycin, at concentrations ranging from μg/L to mg/L. Paroxetine at 1.5 μg/L led to DNA damage while the same concentration of venlafaxine caused immunomodulation. Fluoxetine exposure resulted in genotoxicity, immunotoxicity and cytotoxicity. In the case of antibiotics, trimethoprim was genotoxic at 200 μg/L and immunotoxic at 20 mg/L whereas erythromycin elicited same detrimental effects at higher concentrations. DNA metabolism seems to be a highly sensitive target for psychotropic drugs and antibiotics. Furthermore, these compounds affect the immune system of bivalves, with varying intensity. This attests the relevance of these endpoints to assess the toxic mode of action of pharmaceuticals in the aquatic environment.
Collapse
Affiliation(s)
- Emilie Lacaze
- INRS, Institut Armand-Frappier, 531 des Prairies Blvd., Laval, H7V 1B7 QC, Canada.
| | - Julie Pédelucq
- INRS, Institut Armand-Frappier, 531 des Prairies Blvd., Laval, H7V 1B7 QC, Canada; EPOC-LPTC, UMR 5805, Université Bordeaux 1, 351 Cours de la Libération, 33405 Talence, France.
| | - Marlène Fortier
- INRS, Institut Armand-Frappier, 531 des Prairies Blvd., Laval, H7V 1B7 QC, Canada
| | - Pauline Brousseau
- INRS, Institut Armand-Frappier, 531 des Prairies Blvd., Laval, H7V 1B7 QC, Canada
| | - Michel Auffret
- LEMAR UMR CNRS 6539, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29 280 Plouzane, France
| | - Hélène Budzinski
- EPOC-LPTC, UMR 5805, Université Bordeaux 1, 351 Cours de la Libération, 33405 Talence, France.
| | - Michel Fournier
- INRS, Institut Armand-Frappier, 531 des Prairies Blvd., Laval, H7V 1B7 QC, Canada.
| |
Collapse
|
30
|
Almeida Â, Freitas R, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Figueira E. Chronic toxicity of the antiepileptic carbamazepine on the clam Ruditapes philippinarum. Comp Biochem Physiol C Toxicol Pharmacol 2015; 172-173:26-35. [PMID: 25943297 DOI: 10.1016/j.cbpc.2015.04.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 11/22/2022]
Abstract
The impacts of carbamazepine (CBZ) on aquatic organisms are yet not well investigated. The present study aimed to better understand the chronic effects of environmentally relevant concentrations of CBZ. The experiment was performed by exposing the filter feeding clam Ruditapes philippinarum to 0.00, 0.03, 0.30, 3.00 and 9.00μg/L, during 28days. To assess the chronic toxicity of the drug a battery of biomarkers related with health status and oxidative stress was applied. In order to quantify CBZ in the clam's tissues and in water samples ELISA was used. The present study showed three types of responses on the clams after a chronic exposure to CBZ. For control condition and the lower concentrations (0.03 and 0.30μg/L) a "similar" metabolic state was observed and the most efficient antioxidant status leading to the elimination of reactive oxygen species formed during the metabolism of CBZ. The concentration of 3.00μg/L seemed to be a "threshold" concentration, beyond which the concentration levels of CBZ began to exert a toxic effect, compromising the activity of biotransformation and antioxidant enzymes, with notorious effects at the highest CBZ concentration (9.00μg/L). CBZ also seemed to alter the energy-related responses, especially the glycogen and electron system responses, revealing a slowdown in metabolism at the higher exposure concentrations (3.00 and 9.00μg/L). Overall, the present study demonstrated that the higher CBZ concentrations can lead to the impairment of antioxidant enzymes compromising the neutralization of reactive oxygen species, and thus the ability to cope with oxidative stress.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal; CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Vânia Calisto
- CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Str. 11, D-12489 Berlin, Germany
| | - Amadeu M V M Soares
- Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal; CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal; CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
31
|
Jaafar SNT, Coelho AV, Sheehan D. Redox proteomic analysis ofmytilus edulisgills: effects of the pharmaceutical diclofenac on a non-target organism. Drug Test Anal 2015; 7:957-66. [DOI: 10.1002/dta.1786] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Siti Nur Tahirah Jaafar
- Proteomics Research Group, School of Biochemistry and Cell Biology and Environmental Research Institute; University College Cork; Ireland
- Marine Biology Program, School of Marine Science and Environment; Universiti Malaysia Terengganu; Terengganu Malaysia
| | - Ana Varela Coelho
- Mass Spectrometry Laboratory, Analytical Services Unit, Institute of Chemical and Biological Technology (ITQB); New University of Lisbon; Avenida República - Quinta do Marquês 2784-505 Oeiras Portugal
| | - David Sheehan
- Proteomics Research Group, School of Biochemistry and Cell Biology and Environmental Research Institute; University College Cork; Ireland
| |
Collapse
|
32
|
Fabbri E. Pharmaceuticals in the environment: expected and unexpected effects on aquatic fauna. Ann N Y Acad Sci 2014; 1340:20-8. [DOI: 10.1111/nyas.12605] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Elena Fabbri
- Department of Biological, Geological and Environmental Sciences; University of Bologna, Campus of Ravenna; Ravenna Italy
| |
Collapse
|
33
|
Nicosia A, Celi M, Vazzana M, Damiano MA, Parrinello N, D'Agostino F, Avellone G, Indelicato S, Mazzola S, Cuttitta A. Profiling the physiological and molecular response to sulfonamidic drug in Procambarus clarkii. Comp Biochem Physiol C Toxicol Pharmacol 2014; 166:14-23. [PMID: 24999064 DOI: 10.1016/j.cbpc.2014.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/16/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
Abstract
Sulfamethoxazole (SMZ) is one of the most widely employed sulfonamides. Because of the widespread use of SMZ, a considerable amount is indeed expected to be introduced into the environment. The cytotoxicity of SMZ relies mainly on arylhydroxylamine metabolites (S-NOH) of SMZ and it is associated with the production of reactive oxygen species (ROS). There is limited information about the toxic potential of SMZ at the cellular and molecular levels, especially in aquatic and/or non-target organisms. In the present study, the red swamp crayfish (Procambarus clarkii), being tolerant to extreme environmental conditions and resistant to disease, was used as a model organism to profile the molecular and physiological response to SMZ. Haemolymphatic-immunological parameters such as glucose serum levels and total haemocyte counts were altered; moreover, a significant increase in Hsp70 plasma levels was detected for the first time. Variations at the transcriptional level of proinflammatory genes (cyclooxygenase-1, COX 1, and cyclooxygenase-2, COX 2), antioxidant enzymes (glutathione-S-transferase, GST and manganese superoxide dismutase MnSOD), stress response and Fenton reaction inhibitor genes (heat-shock protein 70 HSP70, metallothionein, MT and ferritin, FT) were evaluated, and alterations in the canonical gene expression patterns emerged. Considering these results, specific mechanisms involved in maintaining physiological homeostasis and adaptation in response to perturbations are suggested.
Collapse
Affiliation(s)
- Aldo Nicosia
- Laboratory of Molecular Ecology and Biotechnology, National Research Council-Istituto per l'Ambiente Marino Costiero UOS Capo Granitola, Via del Faro n.3, 91021 Torretta Granitola, Trapani, Italy
| | - Monica Celi
- Department of Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, v.le delle Scienze 90128 Palermo Italy
| | - Mirella Vazzana
- Department of Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, v.le delle Scienze 90128 Palermo Italy.
| | - Maria Alessandra Damiano
- Department of Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, v.le delle Scienze 90128 Palermo Italy
| | - Nicolò Parrinello
- Department of Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, v.le delle Scienze 90128 Palermo Italy
| | - Fabio D'Agostino
- Laboratory of Molecular Ecology and Biotechnology, National Research Council-Istituto per l'Ambiente Marino Costiero UOS Capo Granitola, Via del Faro n.3, 91021 Torretta Granitola, Trapani, Italy
| | - Giuseppe Avellone
- Department of Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, v.le delle Scienze 90128 Palermo Italy
| | - Serena Indelicato
- Department of Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, v.le delle Scienze 90128 Palermo Italy; Centro Grandi Apparecchiature, University of Palermo, Italy
| | - Salvatore Mazzola
- Laboratory of Molecular Ecology and Biotechnology, National Research Council-Istituto per l'Ambiente Marino Costiero UOS Capo Granitola, Via del Faro n.3, 91021 Torretta Granitola, Trapani, Italy
| | - Angela Cuttitta
- Laboratory of Molecular Ecology and Biotechnology, National Research Council-Istituto per l'Ambiente Marino Costiero UOS Capo Granitola, Via del Faro n.3, 91021 Torretta Granitola, Trapani, Italy
| |
Collapse
|
34
|
Bradley PM, Barber LB, Duris JW, Foreman WT, Furlong ET, Hubbard LE, Hutchinson KJ, Keefe SH, Kolpin DW. Riverbank filtration potential of pharmaceuticals in a wastewater-impacted stream. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 193:173-180. [PMID: 25038376 DOI: 10.1016/j.envpol.2014.06.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 05/14/2023]
Abstract
Pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to high aqueous mobility, designed bioactivity, and effluent-driven hydraulic gradients. In October and December 2012, effluent contributed approximately 99% and 71%, respectively, to downstream flow in Fourmile Creek, Iowa, USA. Strong hydrologic connectivity was observed between surface-water and shallow-groundwater. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater at greater than 0.02 μg L(-1) at distances up to 6 m from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed 43% and 55% of 110 total pharmaceutical analytes in surface-water samples in October and December, respectively, with 16% and 6%, respectively, detected in groundwater approximately 20 m from the stream bank. The results demonstrate the importance of effluent discharge as a driver of local hydrologic conditions in an effluent-impacted stream and thus as a fundamental control on surface-water to groundwater transport of effluent-derived pharmaceutical contaminants.
Collapse
|
35
|
Fabbri R, Montagna M, Balbi T, Raffo E, Palumbo F, Canesi L. Adaptation of the bivalve embryotoxicity assay for the high throughput screening of emerging contaminants in Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2014; 99:1-8. [PMID: 25081847 DOI: 10.1016/j.marenvres.2014.05.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
Emerging contaminants (such as Endocrine disrupting chemicals-EDCs, brominated and perfluorinated compounds-BFRs and PFCs, pharmaceuticals) are chemicals currently not included in regulatory monitoring programs, and whose fate and biological impacts are poorly understood. Assessment of ecosystem health with respect to these chemicals is of particular concern also in the marine environment: in this respect, data on the effects on early life stages are important to establish the sensitivity of marine species. In this work, the acute (48 h) bivalve embryo toxicity test was applied for screening the developmental effects of different emerging contaminants in the Mediterranean mussel Mytilus galloprovincialis. The assay was adapted to 96-microwell plates, and standardized in order to obtain to normal D-shaped larvae with acceptability of test results based on negative control and positive control (copper) comparable with those reported in literature for Mytilus spp. The effects of different model compounds representative of EDCs (Nonylphenol-NP and Bisphenol A-BPA), BFRs (Tetrabromobisphenol A-TBBPA), PFCs (perfluorooctanoid acid-PFOA and perfluorooctane sulphonate-PFOAS) and pharmaceuticals (Ibuprofen-IBU, Diclofenac-DCF, Bezafibrate-BEZA) in a wide concentration range (0.01-0.1-1-10-100-1000 μg/L) were evaluated. The assay proved as a sensitive tool for high throughput screening of emerging contaminants in a marine species, leading to production of significant amounts of data that may be useful for regulatory purposes.
Collapse
Affiliation(s)
- Rita Fabbri
- DISTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| | - Michele Montagna
- DISTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| | - Teresa Balbi
- DISTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| | | | | | - Laura Canesi
- DISTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Corso Europa 26, 16132 Genova, Italy.
| |
Collapse
|
36
|
Gonzalez-Rey M, Mattos JJ, Piazza CE, Bainy ACD, Bebianno MJ. Effects of active pharmaceutical ingredients mixtures in mussel Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 153:12-26. [PMID: 24630142 DOI: 10.1016/j.aquatox.2014.02.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 01/28/2014] [Accepted: 02/11/2014] [Indexed: 06/03/2023]
Abstract
Active pharmaceutical ingredients (APIs) are emergent environmental contaminants widely detected in surface waters as result of incomplete waste water treatment plant (WWTP) removal processes and improper disposal. The assessment of potential effects of APIs on non-target organisms is still scarce since besides presenting multiple chemical structures, properties and modes of action, these compounds occur as complex mixtures. This study comprises a 15-day exposure of mussels Mytilus galloprovincialis to mixtures (at environmentally relevant nominal concentrations) of non-steroidal inflammatory drugs ibuprofen (IBU) and diclofenac (DCF) (250 ng L(-1) each) and selective serotonin reuptake inhibitor (SSRI) fluoxetine (FLX) (75 ng L(-1)) (MIX 1) along with the addition of classical pro-oxidant copper (Cu) (5 μg L(-1)) (MIX 2). The goals included the assessment of oxidative stress, neurotoxic and endocrine effects on this sentinel species applying both a multibiomarker and gene expression (here and later gene expression is taken as synonym to gene transcription, although it is acknowledged that it is also affected by, e.g. translation, and mRNA and protein stability) analysis approaches. The results revealed a swifter antioxidant response in digestive glands than in gills induced by MIX 1, nevertheless the presence of Cu in MIX 2 promoted a higher lipid peroxidation (LPO) induction. Neither mixture altered acetylcholinesterase (AChE) activity, while both triggered the formation of vitellogenin-like proteins in females confirming the xenoestrogenic effect of mixtures. All these results varied with respect to those obtained in previous single exposure essays. Moreover, RT-PCR analysis revealed a catalase (CAT) and CYP4Y1 gene expression down- and upregulation, respectively, with no significant changes in mRNA levels of genes encoding superoxide dismutase (SOD) and glutathione-S-transferase (GST). Finally, this study highlights variable tissue and time-specific biomarker responses and gene expression alterations, which along with several interactions between each mixture component on each biomarker confirm the susceptibility of mussels to API mixtures.
Collapse
Affiliation(s)
- M Gonzalez-Rey
- CIMA, Marine and Environmental Research Center, University of Algarve, Campus de Gambelas, 8000135 Faro, Portugal
| | - J J Mattos
- Laboratório de Biomarcadores de Contaminacão Aquática, Laboratory of Aquatic Contamination Biomarkers, Department of Biochemistry, Federal University of Santa Catarina, 88040900 Florianopolis, SC, Brazil
| | - C E Piazza
- Laboratório de Biomarcadores de Contaminacão Aquática, Laboratory of Aquatic Contamination Biomarkers, Department of Biochemistry, Federal University of Santa Catarina, 88040900 Florianopolis, SC, Brazil
| | - A C D Bainy
- Laboratório de Biomarcadores de Contaminacão Aquática, Laboratory of Aquatic Contamination Biomarkers, Department of Biochemistry, Federal University of Santa Catarina, 88040900 Florianopolis, SC, Brazil
| | - M J Bebianno
- CIMA, Marine and Environmental Research Center, University of Algarve, Campus de Gambelas, 8000135 Faro, Portugal.
| |
Collapse
|
37
|
Benchalgo N, Gagné F, Fournier M. Immunotoxic effects of an industrial waste incineration site on groundwater in rainbow trout (Oncorhynchus mykiss). J Environ Sci (China) 2014; 26:981-990. [PMID: 25079628 DOI: 10.1016/s1001-0742(13)60539-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/29/2013] [Accepted: 10/29/2013] [Indexed: 06/03/2023]
Abstract
The discharge of organic waste from the petrochemical industry into the Mercier lagoons caused major groundwater contamination. The objective of this study was to determine the immunotoxic potential of three groundwater wells at increasing distance from the incinerator dumping site (1.17, 2.74 and 5.40 km). Rainbow Trout were exposed to increasing concentrations of water from three groundwater wells for 14 days. Immunocompetence was characterized by phagocytosis, mitogen-stimulated proliferation of lymphocytes, cell cycle analysis and apoptosis. A significant increase in innate (phagocytosis) and specific immune response (B lymphocyte proliferation) was observed in trout exposed to water collected from the well at 2.74 km. However, phagocytosis activity was suppressed in groups at 1.17 and 5.40 km. The proportion of lymphocytes in S phase was significantly increased in groups at 2.74 and 5.40 km, while lymphocytes in G0/G1 phase were decreased in all three exposure groups. Additionally, dexamethasone (DEX)-induced apoptosis of lymphocytes was significantly reduced in the group at 2.74 km, which suggests decreased lymphocyte turnover. Furthermore, the ratio of DEX-induced apoptosis/apoptosis was lower in the groups at 2.74 and 5.40 km. In summary, our experiments have shown that exposure to the mixture of organic compounds present in Mercier groundwater modulates phagocytosis and cell proliferation, disrupts the cell cycle and reduces the ratio of DEX-induced apoptosis/apoptosis. It is concluded that groundwater collected in the vicinity of an incinerator containment field could impact immunocompetence in fish.
Collapse
Affiliation(s)
- Nadjet Benchalgo
- INRS-Institut Armand-Frappier, 531 des Prairies, Laval, Quebec H7V 1B7, Canada.
| | - François Gagné
- Emerging Methods, Aquatic Contaminant Research Division, Environment Canada, 105 Mc Gill St., Montréal, Quebec H2Y 2E7, Canada
| | - Michel Fournier
- INRS-Institut Armand-Frappier, 531 des Prairies, Laval, Quebec H7V 1B7, Canada
| |
Collapse
|
38
|
Bianchi VA, Castro JM, Rocchetta I, Bieczynski F, Luquet CM. Health status and bioremediation capacity of wild freshwater mussels (Diplodon chilensis) exposed to sewage water pollution in a glacial Patagonian lake. FISH & SHELLFISH IMMUNOLOGY 2014; 37:268-277. [PMID: 24589503 DOI: 10.1016/j.fsi.2014.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
Deleterious effects on health and fitness are expected in mussels chronically exposed to sewage water pollution. Diplodon chilensis inhabiting SMA, an area affected by untreated and treated sewage water, shows increased hemocyte number and phagocytic activity, while bacteriolytic and phenoloxidase activities in plasma and reactive oxygen species production in hemocytes are lower compared to mussels from an unpolluted area (Yuco). There are not differences in cell viability, lysosomal membrane stability, lipid peroxidation and total oxygen scavenging capacity between SMA and Yuco mussels' hemocytes. Energetic reserves and digestive gland mass do not show differences between groups; although the condition factor is higher in SMA than in Yuco mussels. Gills of SMA mussels show an increase in mass and micronuclei frequency compared to those of Yuco. Mussels from both sites reduce bacterial loads in polluted water and sediments, improving their quality with similar feeding performance. These findings suggest that mussels exposed to sewage pollution modulate physiological responses by long-term exposure; although, gills are sensitive to these conditions and suffer chronic damage. Bioremediation potential found in D. chilensis widens the field of work for remediation of sewage bacterial pollution in water and sediments by filtering bivalves.
Collapse
Affiliation(s)
- Virginia A Bianchi
- Laboratorio de Ecotoxicología Acuática, INIBIOMA (CONICET-UNCo) - CEAN, ruta provincial 61, km 3, 8371 Junín de los Andes, Neuquén, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia, 1917 Buenos Aires, Argentina.
| | - Juan M Castro
- Laboratorio de Ecotoxicología Acuática, INIBIOMA (CONICET-UNCo) - CEAN, ruta provincial 61, km 3, 8371 Junín de los Andes, Neuquén, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia, 1917 Buenos Aires, Argentina
| | - Iara Rocchetta
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia, 1917 Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, Ciudad Universitaria, 1428 Buenos Aires, Argentina; Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Flavia Bieczynski
- Laboratorio de Ecotoxicología Acuática, INIBIOMA (CONICET-UNCo) - CEAN, ruta provincial 61, km 3, 8371 Junín de los Andes, Neuquén, Argentina
| | - Carlos M Luquet
- Laboratorio de Ecotoxicología Acuática, INIBIOMA (CONICET-UNCo) - CEAN, ruta provincial 61, km 3, 8371 Junín de los Andes, Neuquén, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia, 1917 Buenos Aires, Argentina
| |
Collapse
|
39
|
Gonzalez-Rey M, Bebianno MJ. Effects of non-steroidal anti-inflammatory drug (NSAID) diclofenac exposure in mussel Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 148:221-230. [PMID: 24525329 DOI: 10.1016/j.aquatox.2014.01.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 06/03/2023]
Abstract
In recent years, research studies have increasingly focused on assessing the occurrence of active pharmaceutical ingredients (APIs) in ecosystems. However, much remains unknown concerning the potential effects on APIs on non-target organisms due to the complexity of the mode of action, reactivity and bioconcentration potential for each specific drug. The non-steroidal anti-inflammatory drug (NSAID) diclofenac (DCF) is one of the most frequently detected APIs in surface waters worldwide and has recently been included in the list of priority substances under the European Commission. In this study, mussels (Mytilus galloprovincialis) were exposed to an environmentally relevant nominal concentration of DCF (250 ng L(-1)) over 15 days. The responses of several biomarkers were assessed in the mussel tissues: condition index (CI); superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and phase II glutathione-S-transferase (GST) activities, lipid peroxidation levels (LPO) associated with oxidative stress, acetylcholinesterase (AChE) activity related to neurotoxic effects and vitellogenin-like proteins linked to endocrine disruption. This study demonstrated significant induction of SOD and GR activities in the gills in addition to high CAT activity and LPO levels in the digestive gland. Phase II GST remained unaltered in both tissues, while the up-regulation of the AChE activity was directly related to the vitellogenin-like protein levels in exposed females, indicating an alteration in the estrogenic activity, rather than a breakdown in cholinergic neurotransmission function. This study confirmed that DCF at a concentration often observed in surface water induces tissue-specific biomarker responses. Finally, this study also revealed the importance of a multi-biomarker approach when assessing the potentially deleterious effects in a species that may be vulnerable to the continuously discharge of APIs into the ecosystems; this approach provides crucial new information regarding the unknown effects of DCF.
Collapse
Affiliation(s)
- Maria Gonzalez-Rey
- CIMA, Marine and Environmental Research Centre, University of Algarve, Faro, Campus de Gambelas, 8000-135 Faro, Portugal
| | - Maria João Bebianno
- CIMA, Marine and Environmental Research Centre, University of Algarve, Faro, Campus de Gambelas, 8000-135 Faro, Portugal.
| |
Collapse
|
40
|
Tsiaka P, Tsarpali V, Ntaikou I, Kostopoulou MN, Lyberatos G, Dailianis S. Carbamazepine-mediated pro-oxidant effects on the unicellular marine algal species Dunaliella tertiolecta and the hemocytes of mussel Mytilus galloprovincialis. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:1208-1220. [PMID: 23912321 DOI: 10.1007/s10646-013-1108-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/23/2013] [Indexed: 06/02/2023]
Abstract
This study investigates the pro-oxidant behavior of the antiepileptic drug carbamazepine (CBZ) on the marine algal species Dunaliella tertiolecta and the immune defense-related hemocytes of mussel Mytilus galloprovincialis. A phytotoxicity test, performed in a first step, showed a significant inhibition of the growth rate and the chlorophyll alpha (Chl-α) content in algae after exposure for 24 h to different concentrations of CBZ (1-200 mg L(-1)). On the other hand, the increased levels of lipid peroxidation products, such as MDA, measured in 24 h CBZ-treated cells were attenuated with time (48-96 h), followed by a significant recovery of both the algal growth rate and the Chl-α content in all cases. The latter could be related to the concomitant enhancement of total carotenoids in CBZ-treated algae with time, which in turn could protect algal growth and survival against CBZ-induced oxidative stress. On the other hand, the increased levels of cell death, superoxide anions ((·)O2 (-)), nitric oxides (NO, in terms of nitrites, NO2 (-)) and MDA content observed in mussel hemocytes exposed to environmentally relevant (0.01-1 μg L(-1)) and/or higher (10 and 100 μg L(-1)) concentrations of the drug, clearly indicate the ability of CBZ to induce oxidative effects on cells of non-target species, such as mussels, affecting thus their overall health status. The significant relationships occurred among the tested biological parameters in both bioassays, further reinforce CBZ-mediated pro-oxidant effects on species, widely used in ecotoxicological and toxicological studies and provide a more comprehensive view on its environmental fate and ecotoxicological risk evaluation.
Collapse
Affiliation(s)
- Pinelopi Tsiaka
- Section of Animal Biology, Department of Biology, School of Natural Sciences, University of Patras, 26500, Patras, Greece
| | | | | | | | | | | |
Collapse
|
41
|
Gust M, Fortier M, Garric J, Fournier M, Gagné F. Effects of short-term exposure to environmentally relevant concentrations of different pharmaceutical mixtures on the immune response of the pond snail Lymnaea stagnalis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 445-446:210-218. [PMID: 23333517 DOI: 10.1016/j.scitotenv.2012.12.057] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/13/2012] [Accepted: 12/13/2012] [Indexed: 05/28/2023]
Abstract
Pharmaceuticals are pollutants of potential concern in the aquatic environment where they are commonly introduced as complex mixtures via municipal effluents. Many reports underline the effects of pharmaceuticals on immune system of non target species. Four drug mixtures were tested, and regrouped pharmaceuticals by main therapeutic use: psychiatric (venlafaxine, carbamazepine, diazepam), antibiotic (ciprofloxacine, erythromycin, novobiocin, oxytetracycline, sulfamethoxazole, trimethoprim), hypolipemic (atorvastatin, gemfibrozil, benzafibrate) and antihypertensive (atenolol, furosemide, hydrochlorothiazide, lisinopril). Their effects were then compared with a treated municipal effluent known for its contamination, and its effects on the immune response of Lymnaea stagnalis. Adult L. stagnalis were exposed for 3 days to an environmentally relevant concentration of the four mixtures individually and as a global mixture. Effects on immunocompetence (hemocyte viability and count, ROS and thiol levels, phagocytosis) and gene expression were related to the immune response and oxidative stress: catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), Selenium-dependent glutathione peroxidase (SeGPx), two isoforms of the nitric oxide synthetase gene (NOS1 and NOS2), molluscan defensive molecule (MDM), Toll-like receptor 4 (TLR4), allograft inflammatory factor-1 (AIF) and heat-shock protein 70 (HSP70). Immunocompetence was differently affected by the therapeutic class mixtures compared to the global mixture, which increased hemocyte count, ROS levels and phagocytosis, and decreased intracellular thiol levels. TLR4 gene expression was the most strongly increased, especially by psychiatric mixture (19-fold), while AIF-1, GR and CAT genes were downregulated. A decision tree analysis revealed that the immunotoxic responses caused by the municipal effluent were comparable to those obtained with the global pharmaceutical mixture, and the latter shared similarity with the antibiotic mixture. This suggests that pharmaceutical mixtures in municipal effluents represent a risk for gastropods at the immunocompetence levels and the antibiotic group could represent a model therapeutic class for municipal effluent toxicity studies in L. stagnalis.
Collapse
Affiliation(s)
- M Gust
- IRSTEA, UR MAEP, Laboratoire d'écotoxicologie, 3 bis quai Chauveau, 69009 Lyon, France.
| | | | | | | | | |
Collapse
|
42
|
Bouétard A, Besnard AL, Vassaux D, Lagadic L, Coutellec MA. Impact of the redox-cycling herbicide diquat on transcript expression and antioxidant enzymatic activities of the freshwater snail Lymnaea stagnalis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:256-265. [PMID: 23237706 DOI: 10.1016/j.aquatox.2012.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/06/2012] [Accepted: 11/17/2012] [Indexed: 06/01/2023]
Abstract
The presence of pesticides in the environment results in potential unwanted effects on non-target species. Freshwater organisms inhabiting water bodies adjacent to agricultural areas, such as ditches, ponds and marshes, are good models to test such effects as various pesticides may reach these habitats through several ways, including aerial drift, run-off, and drainage. Diquat is a non-selective herbicide used for crop protection or for weed control in such water bodies. In this study, we investigated the effects of diquat on a widely spread aquatic invertebrate, the holarctic freshwater snail Lymnaea stagnalis. Due to the known redox-cycling properties of diquat, we studied transcript expression and enzymatic activities relative to oxidative and general stress in the haemolymph and gonado-digestive complex (GDC). As diquat is not persistent, snails were exposed for short times (5, 24, and 48 h) to ecologically relevant concentrations (22.2, 44.4, and 222.2 μg l(-1)) of diquat dibromide. RT-qPCR was used to quantify the transcription of genes encoding catalase (cat), a cytosolic superoxide dismutase (Cu/Zn-sod), a selenium-dependent glutathione peroxidase (gpx), a glutathione reductase (gred), the retinoid X receptor (rxr), two heat shock proteins (hsp40 and hsp70), cortactin (cor) and the two ribosomal genes r18S and r28s. Enzymatic activities of SOD, Gpx, Gred and glutathione S-transferase (GST) were investigated in the GDC using spectrophoto/fluorometric methods. Opposite trends were obtained in the haemolymph depending on the herbicide concentration. At the lowest concentration, effects were mainly observed after 24 h of exposure, with over-transcription of cor, hsp40, rxr, and sod, whereas higher concentrations down-regulated the expression of most of the studied transcripts, especially after 48 h of exposure. In the GDC, earlier responses were observed and the fold-change magnitude was generally much higher: transcription of all target genes increased significantly (or non-significantly for cat) after 5 h of exposure, and went back to control levels afterwards, suggesting the onset of an early response to oxidative stress associated to the unbalance of reactive oxygen species (ROS) in hepatocytes. Although increases obtained for Gred and SOD activities were globally consistent with their respective transcript expressions, up-regulation of transcription was not always correlated with increase of enzymatic activity, indicating that diquat might affect steps downstream of transcription. However, constitutive levels of enzymatic activities were at least maintained. In conclusion, diquat was shown to affect expression of the whole set of studied transcripts, reflecting their suitability as markers of early response to oxidative stress in L. stagnalis.
Collapse
Affiliation(s)
- Anthony Bouétard
- INRA, UMR INRA-Agrocampus Ouest ESE, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, Rennes, France.
| | | | | | | | | |
Collapse
|
43
|
Lazzara R, Fernandes D, Faria M, López JF, Tauler R, Porte C. Changes in lipid content and fatty acid composition along the reproductive cycle of the freshwater mussel Dreissena polymorpha: its modulation by clofibrate exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 432:195-201. [PMID: 22728965 DOI: 10.1016/j.scitotenv.2012.05.094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 06/01/2023]
Abstract
Total lipids and fatty acid profiles were determined along the reproductive cycle of the zebra mussel (Dreissena polymorpha). A total of 33 fatty acids with carbon atoms from 14 to 22 were identified: palmitic acid (16:0) was the most abundant fatty acid (13-24%) followed by docosahexaenoic acid (DHA; 22:6n-3), eicosapentaenoic acid (EPA; 20:5n-3) and palmitoleic acid (16:1n-7). Some individual fatty acids (16:0, 16:2n-4, 18:1n-7, 18:2n-6, 18:3n-4, 18:4n-3, 20:4n-3, 20:5n-3) were strongly related to reproductive events, while others having structural-type functions (18:0 and 22:6n-3) were rather stable during the study period. Multivariate analysis of the whole data set using the multivariate curve resolution alternating least squares method confirmed the strong relationship of fatty acid profiles with the reproductive cycle of zebra mussel. Additionally, the effects of the pharmaceutical clofibrate on lipid composition and fatty acid profiles were assessed following 7-day exposure of zebra mussels to a wide range of concentrations (20 ng/L to 2 mg/L). A significant reduction in total triglycerides (38%-48%) together with an increase in the amount of fatty acids per gram wet weight (1.5- to 2.2-fold) was observed in the exposed mussels. This work highlights the ability of clofibrate to induce changes on the lipidome of zebra mussels at concentrations as low as 200 ng/L.
Collapse
Affiliation(s)
- Raimondo Lazzara
- Environmental Chemistry Department, IDAEA‐CSIC, C/Jordi Girona 18, 08034 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Canesi L, Ciacci C, Fabbri R, Marcomini A, Pojana G, Gallo G. Bivalve molluscs as a unique target group for nanoparticle toxicity. MARINE ENVIRONMENTAL RESEARCH 2012; 76:16-21. [PMID: 21767873 DOI: 10.1016/j.marenvres.2011.06.005] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/21/2011] [Indexed: 05/31/2023]
Abstract
Due to the continuous development and production of manufactured nanomaterials or nanoparticles (NPs), their uptake and effects in the aquatic biota represent a major concern. Estuarine and coastal environments are expected to represent the ultimate sink for NPs, where their chemical behavior (aggregation/agglomeration) and consequent fate may be critical in determining the biological impact. Bivalve mollusks are abundant from freshwater to marine ecosystems, where they are widely utilized in biomonitoring of environmental perturbations. As suspension-feeders, they have highly developed processes for cellular internalization of nano- and micro-scale particles (endo- and phagocytosis), integral to key physiological functions such as intra-cellular digestion and cellular immunity. Here we will summarise available information on the effects of different types of NPs in different bivalve species, in particular Mytilus spp. Data on the effects and modes of action of different NPs on mussel hemocytes in vitro demonstrate that cell-mediated immunity represents a significant target for NPs. Moreover, in vivo exposure to NPs indicates that, due to the physiological mechanisms involved in the feeding process, NP agglomerates/aggregates taken up by the gills are directed to the digestive gland, where intra-cellular uptake of nanosized materials induces lysosomal perturbations and oxidative stress. Overall, bivalves represent a particularly suitable model for investigating the effects and mechanisms of action underlying the potential toxicity of NPs in marine invertebrates.
Collapse
Affiliation(s)
- Laura Canesi
- Dip.Te.Ris., Dipartimento per lo studio del Territorio e delle sue Risorse, Università di Genova, Corso Europa 26, 16132 Genova, Italy.
| | | | | | | | | | | |
Collapse
|
45
|
Gonzalez-Rey M, Bebianno MJ. Does non-steroidal anti-inflammatory (NSAID) ibuprofen induce antioxidant stress and endocrine disruption in mussel Mytilus galloprovincialis? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 33:361-71. [PMID: 22301165 DOI: 10.1016/j.etap.2011.12.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 09/14/2011] [Accepted: 12/17/2011] [Indexed: 05/16/2023]
Abstract
Ibuprofen (IBU) is one of the most sold over-the-counter non-steroidal anti-inflammatory drugs (NSAID) and widely detected in the aquatic ecosystems. Nevertheless, the information regarding IBU effects in biota is still sparse. The goal of this study was to assess IBU potential effect as oxidative stress and endocrine disruption inducer in mussel Mytilus galloprovincialis applying a battery of biomarkers. Over two weeks of exposure to IBU (250 ngL(-1)), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), phase II glutathione S-transferase (GST) activities and lipid peroxidation (LPO) levels were determined in the digestive gland and alkali-labile phosphates (ALP) were carried out in sex-differentiated mussels' gonads. The results confirm a transitory induction of antioxidant activities responses concomitant to lipid peroxide formation outline and an increase of ALP levels over time, particularly in exposed males which may lead to mussels' reproductive fitness impairment highlighting a higher impact of IBU as an endocrine disruptor than as a short-term reactive oxygen species (ROS)-generator.
Collapse
Affiliation(s)
- Maria Gonzalez-Rey
- CIMA, Marine and Environmental Research Center, University of Algarve, Campus de Gambelas, 8000-135 Faro, Portugal
| | | |
Collapse
|
46
|
Gagné F, André C, Fortier M, Fournier M. Immunotoxic potential of aeration lagoon effluents for the treatment of domestic and hospital wastewaters in the freshwater mussel Elliptio complanata. J Environ Sci (China) 2012; 24:781-789. [PMID: 22893952 DOI: 10.1016/s1001-0742(11)60862-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Municipal wastewaters are major sources of pollution for the aquatic biota. The purpose of this study was to determine the levels of some pharmaceutical products and the immunotoxic potential of a municipal wastewater aeration lagoon for the treatment of the domestic wastewaters of a small town with wastewater inputs from a 400-bed hospital complex. Endemic mussels were collected, caged and placed in the final aeration lagoon and at sites 1 km upstream and 1 km downstream of the effluent outfall in the receiving river for a period of 14 days. The results showed that the final aeration lagoon contained high levels of total coliforms, conductivity and low dissolved oxygen (2.9 mg/L) as well as detectable amounts of trimethoprim, carbamazepine, gemfibrozil, and norfloxacin at concentrations exceeding 50 ng/L. The lagoon effluent was indeed toxic to the mussel specimens, as evidenced by the appearance of mortality after 14 days (10% mortality), decreased mussel weight-to-shell-length ratio and loss of hemocyte viability. The number of adhering hemocytes, phagocytic activity, total nitrite levels and arachidonic cyclooxygenase activity were significantly higher in mussels placed in the final aeration lagoon. A multivariate analysis also revealed that water pH, conductivity, total coliforms and dissolved oxygen were the endpoints most closely linked with phagocytic activity, the amount of adhering hemocytes and loss of hemocyte viability. In conclusion, exposure of mussels to treated aerated lagoon wastewater is deleterious to freshwater mussels where the immune system is compromised.
Collapse
Affiliation(s)
- Francois Gagné
- Fluvial Ecosystem Research, Environment Canada, Montréal, Quebec H2Y 2E7, Canada.
| | | | | | | |
Collapse
|
47
|
Farcy E, Gagné F, Martel L, Fortier M, Trépanier S, Brousseau P, Fournier M. Short-term physiological effects of a xenobiotic mixture on the freshwater mussel Elliptio complanata exposed to municipal effluents. ENVIRONMENTAL RESEARCH 2011; 111:1096-1106. [PMID: 21831370 DOI: 10.1016/j.envres.2011.07.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 05/31/2023]
Abstract
The aim of this study was to investigate the short-term effects of tertiary-treated municipal effluents on the freshwater mussel Elliptio complanata. Caged mussels were immersed during 2 weeks in a river located North of Montreal Island, upstream/downstream the outfall and in one reference site located at the beginning of the Rivière des Prairies. A selection of biomarkers was analyzed to depict changes on various physiological systems: general physiology (mussel viability, condition index and gonado-somatic index), immune status (hemocyte viability, cellularity, phagocytosis efficiency, NK-like cytotoxic activity and lysozyme activity), inflammation (cyclo-oxygenase activity), detoxification (glutathione-S-transferases activity) and vitellogenesis (alkali-labile phosphate level). The analysis of total and fecal coliform counts in water and of heterotrophic bacteria levels in mussel tissues showed that the bacteriological quality of the water strongly decreased from the reference site to the downstream site. This was correlated with a significant loss of weight and an increase of mussel mortality. Cellularity and phagocytosis efficiency were significantly increased in the downstream site compared to the reference site. Though not statistically significant, lysozyme activity was also increased. NK-like cytotoxicity, activity of the pro-inflammatory enzyme COX and the levels of ALP and MT were not significantly changed. Conversely, the municipal effluents induced a significant increase of GST activity in downstream site, indicating a stimulation of detoxification metabolism. Altogether, these results confirm that a short-term exposure to a mixture of bacterial and chemical compounds released by the wastewater treatment plant La Pinière induces adverse physiological effects in E. complanata, as observed with the modulation of immune response and induction of detoxification metabolism.
Collapse
Affiliation(s)
- E Farcy
- Environment Canada, Fluvial Ecosystem Research, 105 McGill Avenue, Montreal, Quebec, Canada H2Y 2E7.
| | | | | | | | | | | | | |
Collapse
|
48
|
Contardo-Jara V, Lorenz C, Pflugmacher S, Nützmann G, Kloas W, Wiegand C. Exposure to human pharmaceuticals Carbamazepine, Ibuprofen and Bezafibrate causes molecular effects in Dreissena polymorpha. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:428-437. [PMID: 21872554 DOI: 10.1016/j.aquatox.2011.07.017] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 05/31/2023]
Abstract
Carbamazepine (CBZ), Ibuprofen (IBU) and Bezafibrate (BEZ) were tested for their potential to bioaccumulate and provoke molecular changes in the non-target organism Dreissena polymorpha. mRNA changes of enzymes and other proteins involved in the prevention from protein damage (heat shock protein 70, hsp70) and oxidative stress (superoxide dismutase, SOD; catalase, CAT; metallothionein, MT), biotransformation (pi-class glutathione S-transferase, piGST; aryl hydrocarbon receptor, AH-R), elimination (P-glycoprotein, P-gp) and reversible protein posttranslational modification (protein phosphatase 2A, PP2A) served as molecular biomarkers. Mussels were exposed in a flow-through system to increasing concentrations of the three substances (1, 10, 100 and 1000 nM). The two lower concentrations correspond to environmentally relevant concentrations detected in surface and effluent waters, respectively. Measuring tissue concentration after one, four and seven days the uptake of CBZ and IBU by the mussels could be evidenced, whereas no accumulation data could be achieved for BEZ. The bioconcentration factor was highest for mussels exposed to the lowest CBZ and IBU concentrations, with 90 and 460-fold higher tissue concentration, respectively, after seven days. CBZ was the only substance tested which caused a significant increase in gill mRNA level of hsp70 after only one day exposure, evidencing the potential of CBZ to immediately provoke a stress condition and assumingly protein damage in gills. After longer exposure, mussels displayed down-regulated mRNA levels of hsp70 and SOD in gills, as well as of MT and P-gp in the digestive gland, hinting on an inhibitory character of CBZ. In IBU exposed mussels increased oxidant stress conditions were evidenced by induced mRNA levels in the digestive gland of CAT and MT, as well as SOD after one and four days, respectively. A concentration as found at sewage treatment plant effluents provoked an increase in transcript levels of piGST, suggesting enhanced need for biotransformation of IBU or by-products derived from oxidative stress. Also exposure to an environmentally relevant BEZ concentration provoked an immediate increase in piGST transcript level in the digestive gland followed by up-regulated hsp70 after four and seven days evidencing a chronic stress condition for the mussels.
Collapse
Affiliation(s)
- Valeska Contardo-Jara
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Ecophysiology and Aquaculture, Müggelseedamm 301, 12587 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Schmidt W, O'Rourke K, Hernan R, Quinn B. Effects of the pharmaceuticals gemfibrozil and diclofenac on the marine mussel (Mytilus spp.) and their comparison with standardized toxicity tests. MARINE POLLUTION BULLETIN 2011; 62:1389-1395. [PMID: 21652050 DOI: 10.1016/j.marpolbul.2011.04.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/19/2011] [Accepted: 04/26/2011] [Indexed: 05/30/2023]
Abstract
Human pharmaceuticals, like the lipid lowering agent gemfibrozil and the non-steroidal anti-inflammatory drug diclofenac are causing environmental concern. In this study, the marine mussel (Mytilus spp.) was exposed by injection to environmentally relevant and elevated (1 μg/L and 1000 μg/L) concentrations of both compounds and biomarker expression was observed. Gemfibrozil exposure induced biomarkers of stress (glutathione S-transferase and metallothionein) at both concentrations 24h and 96 h after exposure, respectively. Biomarkers of damage (lipid peroxidation (LPO) and DNA damage) were significantly affected, as well as the biomarker for reproduction, alkali-labile phosphate assay, indicating the potential oxidative stress and endocrine disrupting effect of gemfibrozil. Diclofenac significantly induced LPO after 96 h indicating tissue damage. Additionally standard toxicity tests using the marine species Vibrio fischeri, Skeletonema costatum and Tisbe battagliai showed differences in sensitivity to both drugs in the mg/L range. Results indicate a suite of tests should be used to give accurate information for regulation.
Collapse
Affiliation(s)
- Wiebke Schmidt
- Irish Centre for Environmental Toxicology, Galway-Mayo Institute of Technology, Dublin Road, Galway, Ireland.
| | | | | | | |
Collapse
|
50
|
Quinn B, Schmidt W, O'Rourke K, Hernan R. Effects of the pharmaceuticals gemfibrozil and diclofenac on biomarker expression in the zebra mussel (Dreissena polymorpha) and their comparison with standardised toxicity tests. CHEMOSPHERE 2011; 84:657-63. [PMID: 21489596 DOI: 10.1016/j.chemosphere.2011.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/07/2011] [Accepted: 03/19/2011] [Indexed: 05/03/2023]
Abstract
Pharmaceuticals, including the lipid regulator gemfibrozil and the non-steroidal anti-inflammatory drug diclofenac have been identified in waste water treatment plant effluents and receiving waters throughout the western world. The acute and chronic toxicity of these compounds was assessed for three freshwater species (Daphnia magna, Pseudokirchneriella subcapitata, Lemna minor) using standardised toxicity tests with toxicity found in the non-environmentally relevant mid mg L(-1) concentration range. For the acute endpoints (IC(50) and EC(50)) gemfibrozil showed higher toxicity ranging from 29 to 59 mg L(-1) (diclofenac 47-67 mg L(-1)), while diclofenac was more toxic for the chronic D. magna 21 d endpoints ranging from 10 to 56 mg L(-1) (gemfibrozil 32-100 mg L(-1)). These results were compared with the expression of several biomarkers in the zebra mussel (Dreissena polymorpha) 24 and 96 h after exposure by injection to concentrations of 21 and 21,000 μg L(-1) corresponding to nominal concentrations of 1 and 1000 μg L(-1). Exposure to gemfibrozil and diclofenac at both concentrations significantly increased the level of lipid peroxidation, a biomarker of damage. At the elevated nominal concentration of 1000 μg L(-1) the biomarkers of defence glutathione transferase and metallothionein were significantly elevated for gemfibrozil and diclofenac respectively, as was DNA damage after 96 h exposure to gemfibrozil. No evidence of endocrine disruption was observed using the alkali-labile phosphate technique. Results from this suite of biomarkers indicate these compounds can cause significant stress at environmentally relevant concentrations acting primarily through oxidation pathways with significant destabilization of the lysosomal membrane and that biomarker expression is a more sensitive endpoint than standardised toxicity tests.
Collapse
Affiliation(s)
- Brian Quinn
- Irish Centre for Environmental Toxicology, Galway-Mayo Institute of Technology, Galway, Ireland.
| | | | | | | |
Collapse
|