1
|
Chronister BNC, Justo D, Wood RJ, Lopez-Paredes D, Gonzalez E, Suarez-Torres J, Gahagan S, Martinez D, Jacobs DR, Checkoway H, Jankowska MM, Suarez-Lopez JR. Sex and adrenal hormones in association with insecticide biomarkers among adolescents living in ecuadorian agricultural communities. Int J Hyg Environ Health 2024; 259:114386. [PMID: 38703462 PMCID: PMC11421858 DOI: 10.1016/j.ijheh.2024.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Organophosphate, pyrethroid, and neonicotinoid insecticides have resulted in adrenal and gonadal hormone disruption in animal and in vitro studies; limited epidemiologic evidence exists in humans. We assessed relationships of urinary insecticide metabolite concentrations with adrenal and gonadal hormones in adolescents living in Ecuadorean agricultural communities. METHODS In 2016, we examined 522 Ecuadorian adolescents (11-17y, 50.7% female, 22% Indigenous; ESPINA study). We measured urinary insecticide metabolites, blood acetylcholinesterase activity (AChE), and salivary testosterone, dehydroepiandrosterone (DHEA), 17β-estradiol, and cortisol. We used general linear models to assess linear (β = % hormone difference per 50% increase of metabolite concentration) and curvilinear relationships (β2 = hormone difference per unit increase in squared ln-metabolite) between ln-metabolite or AChE and ln-hormone concentrations, stratified by sex, adjusting for anthropometric, demographic, and awakening response variables. Bayesian Kernel Machine Regression was used to assess non-linear associations and interactions. RESULTS The organophosphate metabolite malathion dicarboxylic acid (MDA) had positive associations with testosterone (βboys = 5.88% [1.21%, 10.78%], βgirls = 4.10% [-0.02%, 8.39%]), and cortisol (βboys = 6.06 [-0.23%, 12.75%]. Para-nitrophenol (organophosphate) had negatively-trending curvilinear associations, with testosterone (β2boys = -0.17 (-0.33, -0.003), p = 0.04) and DHEA (β2boys = -0.49 (-0.80, -0.19), p = 0.001) in boys. The neonicotinoid summary score (βboys = 5.60% [0.14%, 11.36%]) and the neonicotinoid acetamiprid-N-desmethyl (βboys = 3.90% [1.28%, 6.58%]) were positively associated with 17β-estradiol, measured in boys only. No associations between the pyrethroid 3-phenoxybenzoic acid and hormones were observed. In girls, bivariate response associations identified interactions of MDA, Para-nitrophenol, and 3,5,6-trichloro-2-pyridinol (organophosphates) with testosterone and DHEA concentrations. In boys, we observed an interaction of MDA and Para-nitrophenol with DHEA. No associations were identified for AChE. CONCLUSIONS We observed evidence of endocrine disruption for specific organophosphate and neonicotinoid metabolite exposures in adolescents. Urinary organophosphate metabolites were associated with testosterone and DHEA concentrations, with stronger associations in boys than girls. Urinary neonicotinoids were positively associated with 17β-estradiol. Longitudinal repeat-measures analyses would be beneficial for causal inference.
Collapse
Affiliation(s)
- Briana N C Chronister
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA; School of Public Health, San Diego State University, San Diego, CA, 92182, USA
| | - Denise Justo
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert J Wood
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Eduardo Gonzalez
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Sheila Gahagan
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - David R Jacobs
- School of Public Health, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Harvey Checkoway
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Marta M Jankowska
- Department of Population Sciences, Beckman Research Institute of City of Hope, Los Angeles, CA, 91010, USA
| | - Jose R Suarez-Lopez
- The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Nguyen HD, Hoang TL, Vu GH. An in silico investigation of the toxicological effects and biological activities of 3-phenoxybenzoic acid and its metabolite products. Xenobiotica 2024; 54:322-341. [PMID: 38833509 DOI: 10.1080/00498254.2024.2361457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024]
Abstract
We aimed to elucidate the toxic effects and biological activities of 3-phenoxybenzoic acid (3PBA) and its metabolite products. Numerous in silico methods were used to identify the toxic effects and biological activities of 3PBA, including PASS online, molecular docking, ADMETlab 2.0, ADMESWISS, MetaTox, and molecular dynamic simulation. Ten metabolite products were identified via Phase II reactions (O-glucuronidation, O-sulfation, and methylation). All of the investigated compounds were followed by Lipinski's rule, indicating that they were stimulants or inducers of hazardous processes. Because of their high gastrointestinal absorption and ability to reach the blood-brain barrier, the studied compounds' physicochemical and pharmacokinetic properties matched existing evidence of harmful effects, including haematemesis, reproductive dysfunction, allergic dermatitis, toxic respiration, and neurotoxicity. The studied compounds have been linked to the apoptotic pathway, the reproductivity system, neuroendocrine disruptors, phospholipid-translocating ATPase inhibitors, and JAK2 expression. An O-glucuronidation metabolite product demonstrated higher binding affinity and interaction with CYP2C9, CYP3A4, caspase 3, and caspase 8 than 3PBA and other metabolite products, whereas metabolite products from methylation were predominant and more toxic. Our in silico findings partly meet the 3Rs principle by minimizing animal testing before more study is needed to identify the detrimental effects of 3PBA on other organs (liver, kidneys). Future research directions may involve experimental validation of in silico predictions, elucidation of molecular mechanisms, and exploration of therapeutic interventions. These findings contribute to our understanding of the toxicological profile of 3PBA and its metabolites, which has implications for risk assessment and regulatory decisions.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Division of Microbiology, Tulane National Private Research Center, Tulane University, Covington, LA, USA
| | - Thuy Linh Hoang
- College of Pharmacy, California Northstate University College of Pharmacy, CA, USA
| | - Giang Huong Vu
- Department of Public Heath, Hong Bang Health Center, Hai Phong, Vietnam
| |
Collapse
|
3
|
Si C, Yang H, Wang X, Wang Q, Feng M, Li H, Feng Y, Zhao J, Liao Y. Toxic effect and mechanism of β-cypermethrin and its chiral isomers on HTR-8/SVneo cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105849. [PMID: 38685233 DOI: 10.1016/j.pestbp.2024.105849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 05/02/2024]
Abstract
Beta-cypermethrin (β-CYP) consists of four chiral isomers, acting as an environmental estrogen and causing reproductive toxicity, neurotoxicity, and dysfunctions in multiple organ systems. This study investigated the toxic effects of β-CYP, its isomers, metabolite 3-phenoxybenzoic acid (3-PBA), and 17β-estradiol (E2) on HTR-8/SVneo cells. We focused on the toxic mechanisms of β-CYP and its specific isomers. Our results showed that β-CYP and its isomers inhibit HTR-8/SVneo cell proliferation similarly to E2, with 100 μM 1S-trans-αR displaying significant toxicity after 48 h. Notably, 1S-trans-αR, 1R-trans-αS, and β-CYP were more potent in inducing apoptosis and cell cycle arrest than 1R-cis-αS and 1S-cis-αR at 48 h. AO/EB staining and flow cytometry indicated dose-dependent apoptosis in HTR-8/SVneo cells, particularly at 100 μM 1R-trans-αS. Scratch assays revealed that β-CYP and its isomers variably reduced cell migration. Receptor inhibition assays demonstrated that post-ICI 182780 treatment, which inhibits estrogen receptor α (ERα) or estrogen receptor β (ERβ), β-CYP, its isomers, and E2 reduced HTR-8/SVneo cell viability, whereas milrinone, a phosphodiesterase 3 A (PDE3A) inhibitor, increased viability. Molecular docking studies indicated a higher affinity of β-CYP, its isomers, and E2 for PDE3A than for ERα or ERβ. Consequently, β-CYP, its isomers, and E2 consistently led to decreased cell viability. Transcriptomics and RT-qPCR analyses showed differential expression in treated cells: up-regulation of Il24 and Ptgs2, and down-regulation of Myo7a and Pdgfrb, suggesting the PI3K-AKT signaling pathway as a potential route for toxicity. This study aims to provide a comprehensive evaluation of the cytotoxicity of chiral pesticides and their mechanisms.
Collapse
Affiliation(s)
- Chaojin Si
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, 610101 Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101 Chengdu, Sichuan, PR China
| | - Hongjun Yang
- Department of Geriatric Medicine, Sichuan 2nd Hospital of Traditional Chinese Medicine, 610031 Chengdu, PR China
| | - Xiaoyan Wang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, 610101 Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101 Chengdu, Sichuan, PR China
| | - Qiaoxin Wang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, 610101 Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101 Chengdu, Sichuan, PR China
| | - Min Feng
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, 610101 Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101 Chengdu, Sichuan, PR China
| | - Huayue Li
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, 610101 Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101 Chengdu, Sichuan, PR China
| | - Yuqi Feng
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, 610101 Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101 Chengdu, Sichuan, PR China
| | - Jiayuan Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, 610101 Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101 Chengdu, Sichuan, PR China.
| | - Ying Liao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, 610101 Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101 Chengdu, Sichuan, PR China.
| |
Collapse
|
4
|
Peng FJ, Palazzi P, Mezzache S, Adelin E, Bourokba N, Bastien P, Appenzeller BMR. Association between Environmental Exposure to Multiclass Organic Pollutants and Sex Steroid Hormone Levels in Women of Reproductive Age. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19383-19394. [PMID: 37934613 DOI: 10.1021/acs.est.3c06095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Organic pollutant exposure may alter sex steroid hormone levels in both animals and humans, but studies on mixture effects have been lacking and mainly limited to persistent organic pollutants, with few hormones being investigated. Moreover, measurements from a single blood or urine sample may not be able to reflect long-term status. Using hair analysis, here, we evaluated the relationship between multiclass organic pollutants and sex steroid hormones in 196 healthy Chinese women aged 25-45 years. Associations with nine sex steroid hormones, including progesterone, androstenedione (AD), testosterone (T), estrone (E1), and 17β-estradiol (E2), and eight related hormone ratios were explored on 54 pollutants from polychlorinated biphenyl (PCB), pesticide, and bisphenol families using stability-based Lasso regression analysis. Our results showed that each hormone was associated with a mixture of at least 10 examined pollutants. In particular, hair E2 concentration was associated with 19 pollutants, including γ-hexachlorocyclohexane, propoxur, permethrin, fipronil, mecoprop, prochloraz, and carbendazim. There were also associations between pollutants and hormone ratios, with pentachlorophenol, dimethylthiophosphate, 3-phenoxybenzoic acid, and flusilazole being related to both E1/AD and E2/T ratios. Our results suggest that exposure to background levels of pesticides PCB180 and bisphenol S may affect sex steroid hormone homeostasis among women of reproductive age.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Sakina Mezzache
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93601 Aulnay sous Bois, France
| | - Emilie Adelin
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93601 Aulnay sous Bois, France
| | - Nasrine Bourokba
- L'Oréal Research and Innovation, Biopolis Drive, Synapse, Singapore 138623, Singapore
| | - Philippe Bastien
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93601 Aulnay sous Bois, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| |
Collapse
|
5
|
Alagöz M, Yazar S, Secilmis Canbay H, Acıkgöz A, Corba BS. Associations of semen quality with pyrethroids in semen and urine samples of men with oligozoospermia: A cross-sectional study in Samsun, Turkey. Toxicol Ind Health 2023; 39:754-761. [PMID: 37860951 DOI: 10.1177/07482337231209356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Pyrethroids (PYRs) may act as endocrine disrupters and lead to infertility. The aim of the study was to analyze the levels of anti-androgenic PYRs (cypermethrin, deltamethrin, and permethrin) and 3-phenoxy benzoic acid (3-PBA), a general metabolite of PYRs, in both semen and urine samples of men with oligozoospermia. The PYRs and 3-PBA metabolite levels in the semen and urine samples of the men were analyzed through GC-MS. The results indicated that the levels of PYRs in the semen samples of the infertile group were significantly higher than those of the fertile group. It was determined that cypermethrin exposure was associated with changes in sperm count and total sperm motility, while permethrin, deltamethrin, and 3-PBA levels were associated with changes in sperm morphology. It was determined that there was a significant negative correlation between semen deltamethrin levels and sperm morphology and sperm count. In addition, exposure of these patients to deltamethrin (range; 1.53-8.02 µg/l) and having farmer parents were determined to increase the risk of infertility. In conclusion, the findings of this study showed that exposure to environmental PYRs may adversely affect semen quality, especially in terms of sperm morphology, in men with oligozoospermia.
Collapse
Affiliation(s)
- Murat Alagöz
- In Vitro Fertilization Unit, Department of Obstetrics and Gynecology, Medical Park Hospital, Samsun, Turkey
| | - Selma Yazar
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Hale Secilmis Canbay
- Department of Analytical Chemistry, Faculty of Science and Literature, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Abdullah Acıkgöz
- Department of Urology, Istinye University School of Medicine, İstanbul, Turkey
| | - Burcin S Corba
- Department of Statistics, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
6
|
Liang Z, Sun X, Lan J, Guo R, Tian Y, Liu Y, Liu S. Association between pyrethroid exposure and osteoarthritis: a national population-based cross-sectional study in the US. BMC Public Health 2023; 23:1521. [PMID: 37612655 PMCID: PMC10464395 DOI: 10.1186/s12889-023-16225-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/30/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND With the restriction of organophosphorus and other insecticides, pyrethroids are currently the second most-used group of insecticides worldwide due to their advantages such as effectiveness and low toxicity for mammalian. Animal studies and clinical case reports have documented associations between adverse health outcomesand exposure to pyrethroids. At present, the association between chronic pyrethroid exposure and osteoarthritis (OA) remains elusive. METHODS Cross-sectional data from the National Health and Nutrition Examination Survey 1999-2002 and 2007-2014 were used to explore the associations of pyrethroid exposure and OA. Urinary level of 3-phenoxybenzoic acid (3-PBA) in urine samples was used to evaluate the exposure of pyrethroid, and OA was determined on the basis of self-reported physician diagnoses. Multivariable logistic regression models were used to investigate the association between pyrethroid exposure and OA. RESULTS Among the 6528 participants, 650 had OA. The weighted geometric mean of urinary volume-based 3-PBA concentration were 0.45 µg/L. With adjustments for major confounders, compared to participants in the lowest quartile of urinary volume-based 3-PBA, those in the highest quartilehad higher odds of OA (odds ratio, 1.39; 95% confidence interval: 1.01, 1.92). There was no nonlinear relationship between urinary volume-based 3-PBA and OA (P for non-linearity = 0.89). CONCLUSION High urinary 3-PBA concentration was associated with increased OA odds in the US adults. Pyrethroid exposure in the population should be monitored regularly.
Collapse
Affiliation(s)
- Zhuoshuai Liang
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China
| | - Xiaoyue Sun
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China
| | - Jia Lan
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China
| | - Ruifang Guo
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China
| | - Yuyang Tian
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China.
| | - Siyu Liu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China.
| |
Collapse
|
7
|
Rodriguez-Carrillo A, Remy S, D'Cruz SC, Salamanca-Fernandez E, Gil F, Olmedo P, Mustieles V, Vela-Soria F, Baken K, Olea N, Smagulova F, Fernandez MF, Freire C. Kisspeptin as potential biomarker of environmental chemical mixture effect on reproductive hormone profile: A pilot study in adolescent males. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161668. [PMID: 36657687 DOI: 10.1016/j.scitotenv.2023.161668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Kisspeptin has been proposed as an effect biomarker to understand the mechanisms by which some environmental chemicals adversely affect the human reproductive system. OBJECTIVE To ascertain whether kisspeptin serum protein and DNA methylation levels are associated with exposure to several environmental chemicals (individually and as a mixture) and serum reproductive hormone levels in adolescent males. METHODS Three phenols (bisphenol A [BPA], methyl-paraben [MPB], and benzophenone-3 [BP3]); two toxic metals (arsenic and cadmium); and four metabolites of non-persistent pesticides, including insecticides (2-isopropyl-6-methyl-4-pyrimidinol [IMPy], malathion diacid [MDA], and dimethylcyclopropane carboxylic acid [DCCA]) and fungicides (ethylene thiourea [ETU]) were measured in first-morning urine samples of 133 adolescent males aged 15-17 years from the INMA-Granada cohort. In blood samples collected on the same day, KISS1 gene DNA methylation was measured at four CpGs from the Exon IV, as well as serum levels of kiss54 protein, total testosterone (T), estradiol (E2), sex hormone binding-globulin, dehydroepiandrosterone sulfate, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). Multiple linear regression and mixture (quantile g-computation) models were fit. RESULTS Urinary MDA and DCCA concentrations were associated with higher kiss54 levels [% change (95%CI) for each log-unit increase in concentration = 2.90 (0.32;5.56), and 1.93 (0.45,3.43), respectively]; IMPy with lower DNA methylation percentage at CpG1 and total CpGs [% change (95%CI) = -1.15 (-1.96;-0.33): -0.89 (-1.73;-0.01), respectively]; and BP3 and DCCA with lower total CpGs methylation [-0.53 (-1.04;-0.01) and - 0.69 (-1.37;-0.01), respectively]. The pesticide mixture and the whole chemical mixture were associated with higher kiss54 [% change (95%CI) = 9.09 (3.29;15.21) and 11.61 (3.96;19.82), respectively] and lower methylation levels at several CpGs. Additionally, serum kiss54 in the third tertile was associated with higher LH levels [% change (95%CI) = 28.69 (3.75-59.63)], and third-tertile CpG1, CpG2, and total CpG methylation percentages were associated with lower FSH and E2. CONCLUSION The findings of the present study and the negative correlation between serum kiss54 levels and KISS1 DNA methylation percentages suggested that kisspeptin may be a promising effect biomarker.
Collapse
Affiliation(s)
- Andrea Rodriguez-Carrillo
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain.
| | - Sylvie Remy
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Elena Salamanca-Fernandez
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Fernando Gil
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Pablo Olmedo
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Vicente Mustieles
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Fernando Vela-Soria
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Kirsten Baken
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Nicolás Olea
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Fátima Smagulova
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Mariana F Fernandez
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain.
| | - Carmen Freire
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| |
Collapse
|
8
|
Guo X, Li N, Wang H, Su W, Song Q, Liang Q, Sun C, Liang M, Ding X, Lowe S, Sun Y. Exploratory analysis of the association between pyrethroid exposure and rheumatoid arthritis among US adults: 2007-2014 data analysis from the National Health and Nutrition Examination Survey (NHANES). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14413-14423. [PMID: 36151437 DOI: 10.1007/s11356-022-23145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Previous studies indicate that pesticide use may play an important role in the occurrence and development of rheumatoid arthritis (RA); however, little is known about the effect of specific pesticides on RA. The objective of this study was to evaluate whether pyrethroid exposure was linked to RA in adults. Data were originated from the 2007-2014 National Health and Nutrition Examination Survey (NHANES). The levels of pyrethroid exposure were assessed by 3-phenoxybenzoic acid (3-PBA) concentrations in urine samples. We built multivariate logistic regression models to assess associations between pyrethroid exposure and RA among US adults. A restricted cubic spline plot (three knots) was applied to test whether there was a nonlinear relationship between exposure to pyrethroid pesticides and the prevalence of RA. Finally, 4384 subjects were included in our analysis with 278 RA patients. In crude model, higher level of 3-PBA (creatinine-adjusted) was positively associated with RA (OR: 1.51, 95% CI: 1.07, 2.15). After adjustment for sex, race/ethnicity, education, body mass index, family poverty income, level of education, marital status, smoking status, alcohol usage, physical activity, hypertension, and urinary creatinine, the highest (vs lowest) quartile of 3-PBA was associated with an increased prevalence of RA (OR: 1.23, 95% CI: 0.86, 1.79). Significantly positive associations between 3-PBA concentration and RA were observed in the population aged between 40 and 59 years and with lower level of education. The restricted cubic spline plot presented an increase in trend and indicated that pyrethroid exposure was linearly associated with occurrence of RA (p for nonlinearity = 0.728). In conclusion, our study indicated that pyrethroid pesticide exposure was associated with an increased risk of RA. Higher levels of pyrethroid exposure were linearly associated with increased prevalence of RA in adults. Certainly, our findings are in great need of further corroboration by prospective studies with strict design.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Hao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Wanying Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Qiuxia Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Qiwei Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Xiuxiu Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
9
|
Sheikh IA, Beg MA, Hamoda TAAM, Mandourah HMS, Memili E. Androgen receptor signaling and pyrethroids: Potential male infertility consequences. Front Cell Dev Biol 2023; 11:1173575. [PMID: 37187621 PMCID: PMC10175798 DOI: 10.3389/fcell.2023.1173575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Infertility is a global health concern inflicting a considerable burden on the global economy and a severe socio-psychological impact. Approximately 15% of couples suffer from infertility globally, with a male factor contribution of approximately 50%. However, male infertility remains largely unexplored, as the burden of infertility is mostly assigned to female people. Endocrine-disrupting chemicals (EDCs) have been proposed as one of the factors causing male infertility. Pyrethroids represent an important class of EDCs, and numerous studies have associated pyrethroid exposure with impaired male reproductive function and development. Therefore, the present study investigated the potentially toxic effects of two common pyrethroids, cypermethrin and deltamethrin, on androgen receptor (AR) signaling. The structural binding characterization of cypermethrin and deltamethrin against the AR ligand-binding pocket was performed using Schrodinger's induced fit docking (IFD) approach. Various parameters were estimated, such as binding interactions, binding energy, docking score, and IFD score. Furthermore, the AR native ligand, testosterone, was subjected to similar experiments against the AR ligand-binding pocket. The results revealed commonality in the amino acid-binding interactions and overlap in other structural parameters between the AR native ligand, testosterone, and the ligands, cypermethrin and deltamethrin. The estimated binding energy values of cypermethrin and deltamethrin were very high and close to those calculated for AR native ligand, testosterone. Taken together, the results of this study suggested potential disruption of AR signaling by cypermethrin and deltamethrin, which may result in androgen dysfunction and subsequent male infertility.
Collapse
Affiliation(s)
- Ishfaq Ahmad Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Ishfaq Ahmad Sheikh,
| | - Mohd Amin Beg
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | - Erdogan Memili
- College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, United States
| |
Collapse
|
10
|
Castiello F, Suárez B, Beneito A, Lopez-Espinosa MJ, Santa-Marina L, Lertxundi A, Tardón A, Riaño-Galán I, Casas M, Vrijheid M, Olea N, Fernández MF, Freire C. Childhood exposure to non-persistent pesticides and pubertal development in Spanish girls and boys: Evidence from the INMA (Environment and Childhood) cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120571. [PMID: 36356884 DOI: 10.1016/j.envpol.2022.120571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
This study assessed cross-sectional associations between urinary metabolites of non-persistent pesticides and pubertal development in boys and girls from urban and rural areas in Spain and examined effect modification by body mass index (BMI). Four metabolites of insecticides (TCPy, metabolite of chlorpyrifos; IMPy, metabolite of diazinon; DETP, non-specific metabolite of organophosphates; 3-PBA, metabolite of pyrethroids) and the metabolite of ethylene-bis-dithiocarbamate fungicides (ETU) were quantified in urine collected in 2010-2016 from 7 to 11-year-old children (606 girls, 933 boys) participating in the INMA Project. Pubertal development was ascertained by Tanner stages and/or parent-reported Pubertal Development Scale (PDS). Associations between pesticide metabolites and odds of being in stage 2+ for breast development (girls), genital development (boys), pubic hair growth (girls and boys), and/or overall puberty onset, gonadarche, and adrenarche (PDS for girls and boys) were examined by mixed-effect logistic regression. Effect modification by BMI was explored by interaction terms and stratified analysis. In girls, DETP and ETU concentrations>75th percentile (P75) were associated with higher odds of overall puberty development (OR [95%CI] = 1.86 [1.07-3.24] and 1.71 [1.03-2.83], respectively, for > P75 vs. undetected concentrations), while ETU > P75 was also associated with higher odds of breast development (OR [95%CI] = 5.55 [2.83-12.91]), particularly in girls with underweight/normal weight (OR [95%CI] = 10.08 [2.62-38.76]). In boys, detection of TCPy (40%) and 3-PBA (34%) was associated with higher odds of genital development (OR [95%CI] = 1.97 [1.08-3.57] and 2.08 [1.15-3.81], respectively), and the association with 3-PBA was observed in boys with overweight/obesity alone. In addition, ETU > P75 was associated with higher odds of genital development in boys with underweight/normal weight (OR [95%CI] = 2.89 [1.08-7.74]) but higher DETP with lower odds of puberty in boys with overweight/obesity (OR [95%CI] = 0.94 [0.89-0.99] per log-unit increase in concentration). Results suggest an association of childhood exposure to ETU and certain insecticides with earlier puberty in girls and boys that may be modified by child BMI.
Collapse
Affiliation(s)
- Francesca Castiello
- Pediatrics Unit, San Cecilio University Hospital, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.granada), 18012, Granada, Spain
| | - Beatriz Suárez
- Instituto de Investigación Biosanitaria de Granada (ibs.granada), 18012, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Biomedical Research Centre (CIBM), University of Granada, 18016, Granada, Spain
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain; Department of Nursing, Faculty of Nursing and Chiropody, University of Valencia, 46010, Valencia, Spain
| | - Loreto Santa-Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; BIODONOSTIA Health Research Institute, 20014, San Sebastián, Spain; Health Department of Basque Government, Subdirectorate of Public Health of Gipuzkoa, 20013, San Sebastián, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain; BIODONOSTIA Health Research Institute, 20014, San Sebastián, Spain
| | - Adonina Tardón
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Department of Preventive Medicine and Public Health, School of Medicine, University of Oviedo, 33003, Oviedo, Spain
| | - Isolina Riaño-Galán
- Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Department of Preventive Medicine and Public Health, School of Medicine, University of Oviedo, 33003, Oviedo, Spain; Pediatrics Unit, Asturias Central University Hospital, 33011, Oviedo, Asturias, Spain
| | - Maribel Casas
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.granada), 18012, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Biomedical Research Centre (CIBM), University of Granada, 18016, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.granada), 18012, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Biomedical Research Centre (CIBM), University of Granada, 18016, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.granada), 18012, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Biomedical Research Centre (CIBM), University of Granada, 18016, Granada, Spain.
| |
Collapse
|
11
|
Lehmler HJ, Simonsen D, Garcia AQ, Irfan NM, Dean L, Wang H, von Elsterman M, Li X. A systematic review of human biomonitoring studies of 3-phenoxybenzoic acid, a urinary biomarker pyrethroid insecticide exposure, 1997 to 2019. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2022; 4:100018. [PMID: 36644572 PMCID: PMC9838198 DOI: 10.1016/j.heha.2022.100018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pyrethroid insecticides are used, for example, in agriculture, indoor environments, and mosquito control programs, resulting in human exposure. Urinary 3-phenoxybenzoic acid (3-PBA) is a nonspecific biomarker for exposure to many pyrethroids. This systematic review identified human biomonitoring studies with 3-PBA that characterize environmental pyrethroid exposures in children and adolescents, pregnant women, and adults or occupational pyrethroid exposures relative to the National Health and Nutrition Examination Survey (NHANES) populations in the United States (US). PubMed, Embase, and SciFinder were searched for "3-phenoxybenzoic acid ", CAS No. 3739-38-6, and urine or urinary or urine level. Duplicate studies and studies meeting the exclusion criteria were removed from the search results based on predetermined exclusion criteria. This screening process identified 57 papers. Twenty-one, thirteen, twenty-two, and eleven manuscripts reported urinary 3-PBA levels in children, pregnant women, environmentally exposed adults, and occupationally exposed adults, respectively. Median 3-PBA levels ranged from 0.2 to 4.7 μg/g creatinine in children (1999-2016), 0.23-1.55 μg/g creatinine in pregnant women (1997-2014), and 0.11-3.34 μg/g creatinine in environmentally exposed adults (1999-2017). 3-PBA levels in occupationally exposed adults were significantly higher than in environmentally exposed populations, ranging from 0.43 to 14 μg/g creatinine (2004-2017). 3-PBA levels in children and adults from the general North American population increased significantly with the sampling year. A decrease in 3-PBA levels was noted in the adult cohorts from PR China and Japan. 3-PBA levels in most studies appeared to be comparable to levels in the NHANES populations; however, some smaller studies had high pyrethroid exposures. Factors contributing to higher 3-PBA levels in the general population included primarily dietary exposures and residential and agricultural pyrethroid applications. These findings demonstrate that pyrethroid exposures are near-ubiquitous worldwide and, in some regions, appear to increase over time. Thus, exposures to pyrethroid insecticides represent a continuing public health concern.
Collapse
Affiliation(s)
- Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA,Interdisciplinary Graduate Program in Human Toxicology, Graduate College, University of Iowa, Iowa City, IA 52242, USA,Corresponding author: The University of Iowa, Department of Occupational and Environmental Health, University of Iowa Research Park, #221 IREH, Iowa City, IA 52242-5000, USA, (H.-J. Lehmler)
| | - Derek Simonsen
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA,Interdisciplinary Graduate Program in Human Toxicology, Graduate College, University of Iowa, Iowa City, IA 52242, USA
| | - Alana Quintero Garcia
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Nafis Md Irfan
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, University of Iowa, Iowa City, IA 52242, USA,Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Laura Dean
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | | | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
12
|
He J, Zhang K, Wang L, Du Y, Yang Y, Yuan C. Highly efficient degradation of cypermethrin by a co-culture of Rhodococcus sp. JQ-L and Comamonas sp. A-3. Front Microbiol 2022; 13:1003820. [PMID: 36188009 PMCID: PMC9522905 DOI: 10.3389/fmicb.2022.1003820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Cypermethrin is an important synthetic pyrethroid pesticide that widely used to control pests in agriculture. However, extensive use has caused its residue and the metabolite 3-phenoxybenzoic acid (3-PBA) to seriously pollute the environments and agricultural products. In this study, a highly efficient cypermethrin-degrading bacterial consortium was acclimated from long-term pyrethroid-contaminated soil. Two strains, designated JQ-L and A-3, were screened from the consortium, and identified as Rhodococcus sp. and Comamonas sp., respectively. Strain JQ-L transformed 100 mg/L of cypermethrin to 3-PBA within 60 h of incubation; however, 3-PBA could not be further degraded by the strain. Strain A-3 utilized 3-PBA as sole carbon for growth, and completely degraded 100 mg/L of 3-PBA within 15 h of incubation. Co-culture of JQ-L and A-3 completely degraded 100 mg/L of cypermethrin within 24 h of incubation. Furthermore, a complete catabolic pathway of cypermethrin and the metabolite 3-PBA by the co-culture was proposed. This study provided a promising strategy for efficient elimination of cypermethrin residue-contaminated environments and agricultural products.
Collapse
Affiliation(s)
- Jian He
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kaiyun Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lin Wang
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| | - Yingchun Du
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| | - Ying Yang
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| | - Cansheng Yuan
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| |
Collapse
|
13
|
Wan F, Yu T, Hu J, Yin S, Li Y, Kou L, Chi X, Wu J, Sun Y, Zhou Q, Zou W, Zhang Z, Wang T. The pyrethroids metabolite 3-phenoxybenzoic acid induces dopaminergic degeneration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156027. [PMID: 35605864 DOI: 10.1016/j.scitotenv.2022.156027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Exposure to pyrethroids, a significant class of the most widely used agricultural chemicals, has been associated with an increased risk of Parkinson's disease (PD). However, although many different pyrethroids induce roughly the same symptoms of Parkinsonism, the underlying mechanisms remain unknown. To find the shared key features among these mechanisms, we focused on 3-phenoxybenzoic acid (3-PBA), a common and prominent metabolite of most pyrethroids produced via hydrolysis by CEs in mammals. To determine the contribution of 3-PBA to the initiation and progression of PD, we performed in vivo and in vitro experiments, respectively, and found that 3-PBA not only accumulates in murine brain tissues over time but also further induces PD-like pathologies (increased α-syn and phospho-S129, decreased TH) to the same or even greater extent than the precursor pyrethroid. A before-after study of PET-DAT in the same mice revealed that low concentrations of 3-PBA (0.5 mg/kg) could paradoxically cause DAT to increase (22.46% higher than pre-drug test). The intervention of DAT inhibitors and activators respectively alleviated and enhanced the dopaminergic toxicity of 3-PBA, indicating that 3-PBA interacts with DAT. In particular, low concentrations of 3-PBA increase the DAT, which in turn induces 3-PBA to enter the dopaminergic neurons to exert toxic effects. Finally, we described a mechanism underlying this potential role of 3-PBA in the pathological aggregation of α-syn. Specifically, 3-PBA was found to dysregulate C/EBP β levels and further anomalously activate AEP in vivo and in vitro, accompanied by increased accumulation of pathologically cleaved α-syn (N103 fragments) and accelerated α-syn aggregation. All these results suggest that 3-PBA exposure could mimic the pathological and pathogenetic features of PD, showing that this metabolite is a key pathogenic compound in pyrethroid-related pathological effects and a possible dopamine neurotoxin. Additionally, our findings provide a crucial reference for the primary prevention of PD.
Collapse
Affiliation(s)
- Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junjie Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunna Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiulu Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Liang H, Wu X, Yao H, Weng X, Liu S, Chen J, Li Y, Wu Y, Wen L, Chen Q, Jing C. Association of urinary metabolites of non-persistent pesticides with serum sex hormones among the US females: NHANES 2013-2014. CHEMOSPHERE 2022; 300:134577. [PMID: 35421444 DOI: 10.1016/j.chemosphere.2022.134577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Evidence indicated the possibility of non-persistent pesticides disrupting the homeostasis of sex hormones. However, few studies have focused on this relationship in females. We aimed to explore the relationship between non-persistent pesticide exposure and sex hormones among the US females from the National Health and Nutrition Examination Survey 2013-2014. METHODS A total of 790 females, including girls (6-11 years), female adolescents (12-19 years), and adult females (>19 years), were enrolled in this study. Age stratified associations of individual non-persistent pesticide metabolites and their mixtures with sex hormones were analyzed by weighted multiple linear regression and Bayesian kernel machine regression (BKMR) using spot urinary non-persistent pesticide measurement, including 2,4-dichlorophenoxyacetic acid (2,4-D), 3,5,6-trichloropyridinol (TCPY), para-nitrophenol (PNP) and 3-phenoxybenzoic acid (3-PBA), and three serum sex hormones [total testosterone (TT), estradiol (E2) and sex hormone binding globulin (SHBG)]. RESULTS In girls, weighted multivariate linear regression indicated that both 2,4-D and PNP were negatively associated with TT, and TCPY was inversely associated with SHBG. In female adolescents, TCPY was negatively associated with TT and E2, and 3-PBA was negatively associated with SHBG; positive associations were detected both in 2,4-D with SHBG, and in PNP with TT. In adult females, a higher concentration of 3-PBA was associated with higher levels of TT. The BKMR model showed that in female adolescents, the concentrations of pesticide metabolite mixtures at or above the 55th percentile were negatively related to the levels of E2 compared with their mixtures at 50th percentile, and an inverse U-shaped exposure-response function between PNP and E2 was found. CONCLUSIONS Associations between the four non-persistent pesticide metabolites and serum sex hormones were identified in the US females from NHANES 2013-2014 and these associations were age dependent, especially in adolescents. Large-scale cohort studies are needed to confirm these findings and elucidate the potential biological mechanisms.
Collapse
Affiliation(s)
- Huanzhu Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Xiaomei Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Huojie Yao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Xueqiong Weng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Shan Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Jingmin Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yexin Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yingying Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Lin Wen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Qian Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
15
|
Xu H, Bo Y. Associations between pyrethroid exposure and serum sex steroid hormones in adults: Findings from a nationally representative sample. CHEMOSPHERE 2022; 300:134591. [PMID: 35427660 DOI: 10.1016/j.chemosphere.2022.134591] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Pyrethroids have been considered as potential endocrine-disrupting chemicals and have been shown to be associated with endocrine-related health outcomes. However, limited studies directly explored the link between pyrethroid exposure and sex hormones in the general population. OBJECTIVES To explore the associations between exposure to pyrethroids and serum sex steroid hormones in adults. METHODS We evaluated the cross-sectional associations in 1235 adults aged ≥20 years who had been assigned to the National Health and Nutrition Examination Survey (NHANES) 2013-2014. The urinary concentration of 3-phenoxybenzoic acid (3-PBA) was applied as a biomarker of human pyrethroid exposure levels. Information on sex steroid hormones, including total testosterone (TT), estradiol (E2), and sex hormone-binding globulin (SHBG) in serum were measured. Free androgen index (FAI) and the ratio of TT to E2 (TT/E2) were also calculated. The percent changes with 95% confidence intervals (CIs) for a doubling of 3-PBA concentrations in the serum sex hormone levels were estimated using generalized linear regression models. RESULTS The overall median concentrations of creatinine-adjusted 3-PBA were 0.58 μg/g creatinine, and 90.0% of adults had a detectable level of 3-PBA. In females, every two-fold increase in 3-PBA was associated with 4.34% (95% CI: 1.58%, 7.18%) higher levels of TT and 4.05% (95% CI: 7.03%, 1.16%) higher levels of SHBG, respectively. In males, a doubling in 3-PBA was associated with 3.02% (95% CI: 1.21%, 4.86%) increase in SHBG but 1.85% (-3.59%, -0.07%) decrease in FAI, respectively. In addition, significant non-linear associations of 3-PBA with SHBG in both males and females and TT in females were observed. CONCLUSIONS Environmental pyrethroid exposure was associated with altered sex hormones in adults. This study provides important epidemiological evidence for the association of pyrethroids with endocrine disruption.
Collapse
Affiliation(s)
- Huadong Xu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China.
| | - Yacong Bo
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450000, China
| |
Collapse
|
16
|
Lee S, Lee KM, Han SM, Lee HJ, Sung C, Min H, Im H, Han SB, Cha S, Lee J. Comprehensive LC-MS/MS method combined with tandem hybrid hydrolysis for multiple exposure assessment of multiclass environmental pollutants. ENVIRONMENTAL RESEARCH 2022; 211:113053. [PMID: 35240112 DOI: 10.1016/j.envres.2022.113053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Environmental pollutants (EPOLs), such as phthalates, volatile organic compounds, phenols, parabens, polycyclic aromatic hydrocarbons, pyrethroids, and environmental tobacco smoke, are highly heterogeneous compounds. Recently, attention has been drawn to the assessment of the combinatory effects of multiple EPs. To correlate multiple exposures with potential health implications, advanced comprehensive analytical methods covering multiclass EPOLs are essential. However, because of several technical problems associated with enzyme hydrolysis, simultaneous extraction, and multiresidue liquid chromatography-tandem mass spectrometry analysis, it is difficult to establish a comprehensive method covering a number of EPOLs in a single sample preparation and analytical run. We developed tandem hybrid hydrolysis, modified direct injection, and a comprehensive mobile phase to overcome these technical problems and established a comprehensive analytical method for simultaneous biomonitoring of multiclass EPOLs. Tandem hybrid hydrolysis using β-glucuronidase and consecutive acid hydrolysis allowed selective hydrolysis of glucuronide- and sulfate-conjugated metabolites without phthalate degradation. The comprehensive mobile phase composed of 0.01% acetic acid and acetonitrile enabled us to simultaneously analyze 86 EPOLs, with good chromatographic behavior and ionization efficiency. Modified direct injection allowed a small amount of sample and simultaneous urinary extraction. The method was validated and applied to 39 urine samples from 19 mother-newborn pairs for multiple exposure assessment. Results showed that BP-3, a general component in sunblock products, and monoethyl phthalate, a metabolite of diethyl phthalate, exhibit a clear positive correlation between mothers and newborns. Therefore, the developed method has potential as a novel analytical tool for long-term, large-scale, and data-rich human biomonitoring of EPOLs.
Collapse
Affiliation(s)
- Seunghwa Lee
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, South Korea
| | - Kang Mi Lee
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, South Korea
| | - Sang Moon Han
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, South Korea
| | - Hyeon-Jeong Lee
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, South Korea
| | - Changmin Sung
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, South Korea
| | - Hophil Min
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, South Korea
| | - Hosub Im
- Institute for Life & Environmental Technology, Smartive Corporation, 155, Misagangbyeon-hangang-ro, Hanam-si, Gyeonggi-do, South Korea
| | - Sang Beom Han
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Sangwon Cha
- Department of Chemistry, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea
| | - Jaeick Lee
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, South Korea.
| |
Collapse
|
17
|
Zamora AN, Watkins DJ, Peterson KE, Téllez-Rojo MM, Hu H, Meeker JD, Cantoral A, Mercado-García A, Jansen EC. Prenatal maternal pesticide exposure in relation to sleep health of offspring during adolescence. ENVIRONMENTAL RESEARCH 2022; 204:111977. [PMID: 34469742 PMCID: PMC8639673 DOI: 10.1016/j.envres.2021.111977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 05/11/2023]
Abstract
STUDY OBJECTIVES The neurobiological processes involved in establishing sleep regulation are vulnerable to environmental exposures as early as seven weeks of gestation. Studies have linked in utero pesticide exposure to childhood sleep-disordered breathing. However, the impact of in utero pesticide exposure on the sleep health of adolescents remains unexplored. MATERIALS AND METHODS Data from 137 mother-adolescent pairs from a Mexico City cohort were analyzed. We used maternal urinary 3-phenoxybenzoic acid (3-PBA, pyrethroid metabolite) and 3, 5, 6-trichloro-2-pyridinol (TCPy, chlorpyrifos metabolite) from trimester three to estimate in utero pesticide exposure. Among adolescents, we obtained repeated measures of objectively assessed sleep duration, midpoint, and fragmentation using wrist-actigraphy devices for 7 consecutive days in 2015 and 2017. Unstratified and sex-stratified associations between maternal urinary 3-PBA and TCPy and adolescent sleep measures were examined using generalized linear mixed models (GLMMs). We also examined the interactive effects of maternal pesticide exposure and offspring sex on sleep outcomes. RESULTS 3-PBA and TCPy were detected in 44.4% and 93% of urine samples, respectively. Adjusted findings demonstrated that higher exposure to maternal TCPy was associated with longer sleep duration and later sleep timing. Findings from interaction tests between maternal pesticide exposure and offspring sex were not statistically significant, although adjusted sex-stratified findings showed that the association between TCPy with duration and midpoint was evident only among female offspring. To illustrate, those in the highest tertile of exposure had a 59 minute (95% CI: 12.2, 104.8) (p, trend = 0.004) longer sleep duration and a 0.6 hour (95% CI: 0.01, 1.3) (p, trend = 0.01) later sleep midpoint. We found no significant associations between 3-PBA and sleep outcomes. CONCLUSION Within a cohort of mother-adolescent pairs, we found associations between maternal prenatal pesticide exposure and longer sleep duration and later sleep timing among adolescent offspring. Further, this association may be female-specific.
Collapse
Affiliation(s)
- Astrid N Zamora
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Martha M Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Howard Hu
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | | - Adriana Mercado-García
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Erica C Jansen
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Neurology, Division of Sleep Medicine, Michigan Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Koelmel JP, Lin EZ, DeLay K, Williams AJ, Zhou Y, Bornman R, Obida M, Chevrier J, Godri Pollitt KJ. Assessing the External Exposome Using Wearable Passive Samplers and High-Resolution Mass Spectrometry among South African Children Participating in the VHEMBE Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2191-2203. [PMID: 35089017 DOI: 10.1021/acs.est.1c06481] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Children in low- and middle-income countries are often exposed to higher levels of chemicals and are more vulnerable to the health effects of air pollution. Little is known about the diversity, toxicity, and dynamics of airborne chemical exposures at the molecular level. We developed a workflow employing state-of-the-art wearable passive sampling technology coupled with high-resolution mass spectrometry to comprehensively measure 147 children's personal exposures to airborne chemicals in Limpopo, South Africa, as part of the Venda Health Examination of Mothers, Babies, and Their Environment (VHEMBE). 637 environmental exposures were detected, many of which have never been measured in this population; of these 50 airborne chemical exposures of concern were detected, including pesticides, plasticizers, organophosphates, dyes, combustion products, and perfumes. Biocides detected in wristbands included p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), p,p'-dichlorodiphenyldichloroethane (p,p'-DDD), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), propoxur, piperonyl butoxide, and triclosan. Exposures differed across the assessment period with 27% of detected chemicals observed to be either higher or lower in the wet or dry seasons.
Collapse
Affiliation(s)
- Jeremy P Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, United States
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, United States
| | - Kayley DeLay
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, United States
| | - Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Yakun Zhou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, United States
| | - Riana Bornman
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria 0028, South Africa
| | - Muvhulawa Obida
- University of Pretoria Institute for Sustainable Malaria Control and School of Health Systems and Public Health, University of Pretoria, Pretoria 0028, South Africa
| | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montréal, Québec H3A 1A2, Canada
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, United States
| |
Collapse
|
19
|
Zhang K, Shen Z, Yang W, Guo J, Yan Z, Li J, Lin J, Cao X, Tang J, Liu Z, Zhou Z, Lin S. Unraveling the metabolic effects of benzophenone-3 on the endosymbiotic dinoflagellate Cladocopium goreaui. Front Microbiol 2022; 13:1116975. [PMID: 36938131 PMCID: PMC10016356 DOI: 10.3389/fmicb.2022.1116975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 03/05/2023] Open
Abstract
As a well-known pseudo-persistent environmental pollutant, oxybenzone (BP-3) and its related organic ultraviolet (UV) filters have been verified to directly contribute to the increasing mortality rate of coral reefs. Previous studies have revealed the potential role of symbiotic Symbiodiniaceae in protecting corals from the toxic effects of UV filters. However, the detailed protection mechanism(s) have not been explained. Here, the impacts of BP-3 on the symbiotic Symbiodiniaceae Cladocopium goreaui were explored. C. goreaui cells exhibited distinct cell growth at different BP-3 doses, with increasing growth at the lower concentration (2 mg L-1) and rapid death at a higher concentration (20 mg L-1). Furthermore, C. goreaui cells showed a significant BP-3 uptake at the lower BP-3 concentration. BP-3 absorbing cells exhibited elevated photosynthetic efficiency, and decreased cellular carbon and nitrogen contents. Besides, the derivatives of BP-3 and aromatic amino acid metabolism highly responded to BP-3 absorption and biodegradation. Our physiological and metabolic results reveal that the symbiotic Symbiodiniaceae could resist the toxicity of a range of BP-3 through promoting cell division, photosynthesis, and reprogramming amino acid metabolism. This study provides novel insights into the influences of organic UV filters to coral reef ecosystems, which urgently needs increasing attention and management.
Collapse
Affiliation(s)
- Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan, Hainan University, Haikou, China
| | - Zhen Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan, Hainan University, Haikou, China
| | - Weilu Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan, Hainan University, Haikou, China
| | - Jianing Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan, Hainan University, Haikou, China
| | - Zhicong Yan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan, Hainan University, Haikou, China
| | - Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiamin Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan, Hainan University, Haikou, China
| | - Xiaocong Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan, Hainan University, Haikou, China
| | - Jia Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan, Hainan University, Haikou, China
| | - Zhaoqun Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan, Hainan University, Haikou, China
| | - Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan, Hainan University, Haikou, China
- *Correspondence: Zhi Zhou,
| | - Senjie Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan, Hainan University, Haikou, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| |
Collapse
|
20
|
Zamora AN, Watkins DJ, Peterson KE, Jansen EC. Association between pesticide exposure and sleep health among a representative sample of US adults: evidence from NHANES 2009-2014. BMC Public Health 2021; 21:2199. [PMID: 34852798 PMCID: PMC8638511 DOI: 10.1186/s12889-021-12014-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/12/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Data suggest that pesticides interact with the melatonin receptor, which may influence sleep. However, the link between pesticides and sleep remains unexplored among the general adult population. This study evaluated unstratified and sex-stratified associations between urinary pesticide exposure (N = 4,478) and self-reported acute household pesticide exposure (N = 14,956), with sleep health outcomes within a nationally representative sample of US adults. METHODS Data from the National Health and Nutrition Examination Surveys (NHANES) 2009-2014 were combined for analysis of aim 1 and aim 2. Urinary pesticide metabolite concentrations served as biomarkers of pesticide exposure. Acute household pesticide exposure (if any chemical products were used in the home in the past seven days to control pests) was self-reported (yes/no). Insufficient sleep duration (< 7 h/night) and trouble sleeping (yes/no) were self-reported. Log-binomial regression models that accounted for complex survey weights and adjusted for confounders were used to compute prevalence ratios and 95% CI. RESULTS Log urinary 3-phenoxybenzoic acid (3-PBA) was related to a higher probability of insufficient sleep [1.09 (95% CI: 1.00, 1.20), p = 0.04] and trouble sleeping [1.14 (95% CI: 1.02, 1.27), p = 0.02] among males. Self-reported acute household pesticide exposure was associated with a higher probability of insufficient sleep duration [1.16 (95% CI: 1.02, 1.32), p = 0.03] and trouble sleeping [1.20 (95% CI: 1.01, 1.44), p = 0.04] in the unstratified sample. Sex-stratified findings showed that associations between acute household pesticide exposure and trouble sleeping only persisted among males [1.69 (95% CI: 1.27, 2.24), p < .001]. CONCLUSIONS In summary, acute pesticide exposure may be detrimental to adult sleep health, particularly among US males.
Collapse
Affiliation(s)
- Astrid N Zamora
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Erica C Jansen
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
- Division of Sleep Medicine, Department of Neurology, Michigan Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Knapke ET, Magalhaes DDP, Dalvie MA, Mandrioli D, Perry MJ. Environmental and occupational pesticide exposure and human sperm parameters: A Navigation Guide review. Toxicology 2021; 465:153017. [PMID: 34756984 DOI: 10.1016/j.tox.2021.153017] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/01/2022]
Abstract
Global sperm counts have declined in recent decades, coinciding with the proliferation of endocrine-disrupting chemicals, of which pesticides are some of the most common. Previous systematic reviews of epidemiologic studies published between 1991 through 2013 have reported associations between environmental and occupational pesticide exposure and reduced sperm quality, particularly associations with reduced sperm concentration. This systematic review used the Navigation Guide to critically evaluate the current body of evidence examining sperm quality and pesticide exposure in epidemiological studies. PubMed, Scopus, and Web of Science databases were searched for all English-language articles published after September 2012 until August 2021. Original observational studies that assessed human sperm quality parameters, defined as concentration, motility, morphology, and DNA integrity, and individual-level pesticide exposure were included. The risk of bias for each included study and the strength of evidence were evaluated using the Navigation Guide protocol. Nineteen studies assessing environmental or occupational pesticide exposure and sperm parameters were included. Eighteen studies were cross-sectional studies and one prospective cohort; sample sizes ranged from 42 to 2122 men from 14 different countries. Fifteen (79 %) studies found at least one significant association between pesticide exposure and reduced sperm quality. The overall risk of bias across studies was classified as low to moderate. The quality of evidence was determined to be moderate based on systematic evaluation criteria. There were consistent adverse associations between pesticide exposure and sperm motility (63 % of studies) and DNA integrity (80 % of studies). For sperm concentration and morphology, 42 % and 36 % of studies found significant negative associations, respectively. The strength of the body of evidence overall was rated as having sufficient evidence of toxicity. Regarding specific sperm endpoints, there was sufficient evidence that pesticides are toxic for sperm motility and DNA integrity; limited evidence of toxicity for sperm concentration; and inadequate evidence of toxicity for sperm morphology. The studies reviewed here showed consistent associations between pesticide exposure and diminished sperm parameters, particularly sperm motility and sperm DNA integrity. These findings are largely consistent with results of previous reviews, which have found significant negative associations between pesticide exposure and sperm quality in 13 of 20 (65 %) studies published between 1991 and 2008, and in 14 of 17 (82 %) studies published between 2008 and 2012. After thirty years of mounting evidence, actions are needed to reduce pesticide risks to testicular function and male fertility.
Collapse
Affiliation(s)
- Eric T Knapke
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Danielly de P Magalhaes
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Mohamed Aqiel Dalvie
- Center for Environmental and Occupational Health Research, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy; Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Melissa J Perry
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, United States.
| |
Collapse
|
22
|
Zhao Y, Ruan X, Song Y, Smith JN, Vasylieva N, Hammock BD, Lin Y, Du D. Smartphone-Based Dual-Channel Immunochromatographic Test Strip with Polymer Quantum Dot Labels for Simultaneous Detection of Cypermethrin and 3-Phenoxybenzoic Acid. Anal Chem 2021; 93:13658-13666. [PMID: 34591463 DOI: 10.1021/acs.analchem.1c03085] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Currently, gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-MS (LC-MS) are the primary methods used to detect pesticides and their metabolites for biomonitoring of exposure. Although GC-MS and LC-MS can provide accurate and sensitive measurements, these techniques are not suitable for point-of-care or in-field biomonitoring applications. The objective of this work is to develop a smartphone-based dual-channel immunochromatographic test strip (ICTS) for on-site biomonitoring of exposure to cypermethrin by simultaneous detection of cypermethrin and its metabolite, 3-phenoxybenzoic acid (3-PBA). Polymer carbon dots (PCDs) with ultrahigh fluorescent brightness were synthesized and used as a signal amplifier in ICTS assay. Cypermethrin (a representative pyrethroid pesticide) and its major metabolite 3-PBA were simultaneously detected to provide more comprehensive analysis of cypermethrin exposure. After competitive immunoreactions between the target sample and the coating antigens preloaded on the test line, the tracer antibody (PCD-conjugated antibody) was quantitatively captured on the test lines. The captured PCDs were inversely proportional to the amount of the target compound in the sample. The red fluorescence on the test line was then recorded using a smartphone-based device capable of conducting image analysis and recording. Under optimal conditions, the sensor showed excellent linear responses for detecting cypermethrin and 3-PBA ranging from 1 to 100 ng/mL and from 0.1 to 100 ng/mL, respectively, and the limits of detection were calculated to be ∼0.35 ng/mL for cypermethrin and ∼0.04 ng/mL for 3-PBA. The results demonstrate that the ICTS device is promising for accurate point-of-care biomonitoring of pesticide exposure.
Collapse
Affiliation(s)
- Yuting Zhao
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Xiaofan Ruan
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yang Song
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Jordan N Smith
- Exposure Science and Pathogen Biology, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, Davis, California 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, Davis, California 95616, United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
23
|
Jiang W, Yao G, Jing X, Liu X, Liu D, Zhou Z. Effects of Cd 2+ and Pb 2+ on enantioselective degradation behavior of α-cypermethrin in soils and their combined effect on activities of soil enzymes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47099-47106. [PMID: 33884551 DOI: 10.1007/s11356-021-13929-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Heavy metals may coexist with pesticides in farmland through wastewater irrigation, application of pesticides and chemical fertilizers, or unappropriated waste disposal. Heavy metals are toxic to soil microorganism, which may influence the environmental behavior of pesticides subsequently. In this study, the influence of Cd2+ and Pb2+ on the degradation of α-cypermethrin and its metabolites, 3-phenoxphenoxybenzoic acid (3-PBA) and 3-(2',2'-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (DCCA), were investigated through soil incubation experiment. It was found heavy metals like Cd2+ and Pb2+ will inhibit the degradation of α-cypermethrin, especially at high concentrations. Pb2+ has a stronger inhibitory effect on the degradation of α-cypermethrin than Cd2+ in the same concentration. With the presence of 10 mg/kg Pb2+, the half-life of α-cypermethrin increased from 41.1 to 99.9 days, even the half-life was 129.3 days with 50 mg/kg of Pb2+. Besides, heavy metals influenced the chiral selective degradation of α-cypermethrin. The enantiomer fraction was near 0.5 when 10 mg/kg of heavy metals existed. Furthermore, the adverse effects of heavy metals on soil urease, catalase, and sucrase activity were assayed. In tested concentrations (10 and 50 mg kg-1), the heavy metals result in strong inhibition of the activity of the enzymes present on soil, jeopardizing the biodegradation by the microbiome and which may inhibit the degradation of α-cypermethrin.
Collapse
Affiliation(s)
- Wenqi Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Guojun Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xu Jing
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xueke Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
24
|
Xue Q, Pan A, Wen Y, Huang Y, Chen D, Yang CX, Hy Wu J, Yang J, Pan J, Pan XF. Association between pyrethroid exposure and cardiovascular disease: A national population-based cross-sectional study in the US. ENVIRONMENT INTERNATIONAL 2021; 153:106545. [PMID: 33839550 DOI: 10.1016/j.envint.2021.106545] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Pyrethroids-containing products are widely used as commercial and household insecticides. While animal studies and clinical case reports have shown acute cardiovascular outcomes of pyrethroids exposure, little has been known on the effect of chronic pyrethroid exposure on cardiovascular disease (CVD). We aimed to examine the associations between chronic pyrethroid exposure and CVD in the US adults. METHODS Cross-sectional data from the National Health and Nutrition Examination Survey 1999-2002 and 2007-2012 were analyzed. The exposure to pyrethroids was determined as the urinary level of 3-phenoxybenzoic acid (3-PBA), and CVD was ascertained based on self-reported physician diagnoses. Multivariable logistic regression models were fitted to evaluate associations of pyrethroid exposure with CVD, coronary heart disease (CHD), and stroke. RESULTS Included were 6,471 participants with a mean age of 44.77 years (standard error, 0.39) for final analyses. The weighted prevalence of CVD, CHD, and stroke was 6.85%, 4.57% and 2.27%, respectively. With adjustments for major confounders, participants in the highest tertile of urinary 3-PBA had higher odds of CVD (odds ratio, 1.58; 95% confidence interval: 1.12, 2.23) and CHD (OR, 1.75; 95% CI: 1.17, 2.61) compared to those in the lowest tertile. There were linear associations for CVD (P for trend = 0.04) and CHD (P for trend = 0.02). However, no significant association was noted for stroke (1.29; 0.78, 2.16) in the main analyses. CONCLUSIONS 3-PBA was adversely associated with CVD and CHD in the US adults. Our findings highlight potential cardiovascular risk of chronic exposure to pyrethroids, and should be validated in large prospective studies in different populations in future.
Collapse
Affiliation(s)
- Qingping Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China; HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education & Ministry of Environmental Protection Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Wen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yichao Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Chun-Xia Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jason Hy Wu
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Jie Yang
- International Clinical Research Center & Department of Neurology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jay Pan
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Institue for Healthy Cities, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China.
| | - Xiong-Fei Pan
- Department of Epidemiology and Biostatistics, Ministry of Education & Ministry of Environmental Protection Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia; Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
25
|
Hong D, Min JY, Min KB. Association between pyrethroids and prostate endpoints; stratified according to renal function. ENVIRONMENT INTERNATIONAL 2021; 153:106489. [PMID: 33819721 DOI: 10.1016/j.envint.2021.106489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/28/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pyrethroids, one of the most commonly used pesticide classes, are considered to be selectively toxic toward insects rather than toward humans. However, there are accumulating data about pyrethroids toxicity in humans, especially sex organs. Thus, we investigated whether pyrethroids affected reproductive organs, especially the prostate gland. METHODS With 1305 subjects who participated in the National Health and Nutrition Examination Survey, several measurements were performed: 3-phenoxybenzoic acid (3-PBA), a common metabolite of pyrethroids; prostate-specific antigen (PSA); and other covariates. Both logistic and linear regression analyses were performed after stratifying according to kidney function, which was evaluated based on the estimated glomerular filtration rate (eGFR). RESULTS By logistic regression, the ORs (95% CIs) of the highest quantile to the reference group for higher total PSA were 2.039 (1.018 - 4.084) in the total study population and 2.219 (1.083-4.548) in the high eGFR group. The ORs (95% CIs) of the highest quantile to the reference group for a lower PSA ratio were 1.979 (1.057 - 3.707) in the total study population and 2.101 (1.086 - 4.064) in the high eGFR group. By linear regression, a marginally significant positive correlation between urinary 3-PBA and total PSA (β ± Standard Error = 0.049 ± 0.026, p = 0.0712) and a significant positive correlation between urinary 3-PBA and PSA ratio (β ± Standard Error = 0.018 ± 0.007, p = 0.0191) among the low eGFR group were observed. CONCLUSION This study showed that exposure to pyrethroids was associated with either increased levels of total PSA or alterations in the PSA ratio.
Collapse
Affiliation(s)
- Dongui Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Jin-Young Min
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Kyoung-Bok Min
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Health Policy and Management, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Rodzaj W, Wileńska M, Klimowska A, Dziewirska E, Jurewicz J, Walczak-Jędrzejowska R, Słowikowska-Hilczer J, Hanke W, Wielgomas B. Concentrations of urinary biomarkers and predictors of exposure to pyrethroid insecticides in young, Polish, urban-dwelling men. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145666. [PMID: 33596511 DOI: 10.1016/j.scitotenv.2021.145666] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/09/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Pyrethroid insecticides are a class of pesticides with multiple agricultural and residential applications. However, widespread use of these chemicals may pose a threat to human health. Biomarkers of pyrethroid exposure are frequently detected in populations around the world, but some groups may be underrepresented. Moreover, there is an ongoing debate on factors contributing to pyrethroid burden in humans. To address these problems, we measured urinary biomarkers of pyrethroid exposure in urine samples from 306 young men living in urban area of Łódź, Poland, and gathered questionnaire data to identify predictors of exposure. Limit of detection (LOD) of gas chromatography-mass spectrometry (GC-MS) method was 0.1 ng/mL for all quantified pyrethroid metabolites, namely cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-DCCA), trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (trans-DCCA), cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-DBCA), and 3-phenoxybenzoic acid (3-PBA). Detection rate ranged from 32% (cis-DBCA) to 76% (trans-DCCA). Concentrations of urinary biomarkers in studied sample were in lower range of these observed in similar studies, with unadjusted geometric means (GMs) of most prevalent biomarkers, trans-DCCA and 3-PBA, equal to 0.268 and 0.228 ng/mL, respectively. As for questionnaire data, the statistical analysis revealed that non-dietary factors, especially dog ownership and pesticide use on household pets, contribute significantly to urinary trans-DCCA and 3-PBA concentrations (p ≤ 0.009). Moreover, a few dietary sources of exposure were identified, such as seeds and nuts consumption for 3-PBA (p < 0.001) and vegetable juice intake for trans-DCCA (p = 0.015). Multivariate analyses further highlighted the importance of non-dietary factors in pyrethroid exposure. Compared to other works, our results confirm widespread exposure to pyrethroids observed in other studies and stress the role of residential pyrethroid use in pyrethroid burden in humans.
Collapse
Affiliation(s)
- Wojciech Rodzaj
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdańsk, 107 Hallera Street, 80-416 Gdańsk, Poland
| | - Malwina Wileńska
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdańsk, 107 Hallera Street, 80-416 Gdańsk, Poland
| | - Anna Klimowska
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdańsk, 107 Hallera Street, 80-416 Gdańsk, Poland
| | - Emila Dziewirska
- Departament of Chemical Safety, Nofer Institute of Occupational Medicine, 8 Teresy Street, 91-348 Łódź, Poland
| | - Joanna Jurewicz
- Departament of Chemical Safety, Nofer Institute of Occupational Medicine, 8 Teresy Street, 91-348 Łódź, Poland
| | - Renata Walczak-Jędrzejowska
- Department of Andrology and Reproductive Endocrinology, Medical University of Łódź, 251 Pomorska Street, 92-213 Łódź, Poland
| | - Jolanta Słowikowska-Hilczer
- Department of Andrology and Reproductive Endocrinology, Medical University of Łódź, 251 Pomorska Street, 92-213 Łódź, Poland
| | - Wojciech Hanke
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, 8 Teresy Street, 91-348 Łódź, Poland
| | - Bartosz Wielgomas
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdańsk, 107 Hallera Street, 80-416 Gdańsk, Poland.
| |
Collapse
|
27
|
Freire C, Suárez B, Vela-Soria F, Castiello F, Reina-Pérez I, Andersen HR, Olea N, Fernández MF. Urinary metabolites of non-persistent pesticides and serum hormones in Spanish adolescent males. ENVIRONMENTAL RESEARCH 2021; 197:111016. [PMID: 33771511 DOI: 10.1016/j.envres.2021.111016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To assess the relationship of urinary concentrations of ethylenethiourea (ETU), the main degradation product of ethylene bis-dithiocarbamate fungicides, 3-phenoxybenzoic acid (3-PBA), a common metabolite of many pyrethroids, and 1-naphthol (1N), a metabolite of the carbamate insecticide carbaryl, with hormone concentrations in adolescent males; and to examine interactions between pesticide metabolites and polymorphisms in xenobiotic metabolizing enzymes, including CYP2C19 and CYP2D6, in relation to hormone concentrations. METHODS A cross-sectional study was conducted in 134 males from the Spanish Environment and Childhood (INMA)-Granada cohort. Urine and serum samples were collected from participants during the same clinical visit at the age of 15-17 years. First morning urine void was analyzed for concentrations of ETU, 3-PBA, and 1N. Serum was analyzed for concentrations of reproductive hormones (testosterone, 17β-estradiol [E2], dehydroepiandrosterone sulfate [DHEAS], sex hormone binding globulin [SHBG], luteinizing hormone [LH], follicle stimulating hormone [FSH], anti-Müllerian hormone [AMH], and prolactin), thyroid hormones (free thyroxine [FT4], total triiodothyronine [TT3], and thyroid stimulating hormone [TSH]), insulin growth factor 1 (IGF-1), adrenocorticotropic hormone (ACTH), and cortisol. CYP2C19 G681A and CYP2D6 G1846A polymorphisms were determined in blood from 117 participants. Multiple linear regression, interaction terms, and stratified analyses were performed. RESULTS Urinary ETU was detected in 74.6% of participants, 1N in 38.1%, and 3-PBA in 19.4%. Positive associations between detectable 3-PBA and TT3 and between detectable 1N and DHEAS were found, and marginally-significant associations of 1N with reduced E2 and FSH were observed. Poor CYP2C19 and CYP2D6 metabolizers (GA and AA genotype carriers) showed a greater increase in DHEAS for detected versus undetected 1N compared with GG genotype carriers. Poor CYP2D6 metabolizers (1846 GA and AA genotypes) evidenced increased cortisol for detected versus undetected ETU. CONCLUSIONS The associations observed between urinary pesticide metabolites and altered thyroid and reproductive hormones are novel and should be verified in studies with larger sample size. Further research on gene-environment interactions is warranted to establish individual susceptibility to pesticides and the risk of adverse health effects.
Collapse
Affiliation(s)
- Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain.
| | - Beatriz Suárez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain.
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain.
| | - Francesca Castiello
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Unidad de Gestión Clínica (UGC) de Pediatría, Hospital Universitario San Cecilio, 18016, Granada, Spain.
| | - Iris Reina-Pérez
- Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18071, Granada, Spain.
| | - Helle R Andersen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18071, Granada, Spain.
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
28
|
de Paula Siqueira T, Barbosa WF, Rodrigues EM, Miranda FR, de Souza Freitas F, Martins GF, Tótola MR. Rhamnolipids on Aedes aegypti larvae: a potential weapon against resistance selection. 3 Biotech 2021; 11:172. [PMID: 33927963 DOI: 10.1007/s13205-021-02716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/03/2021] [Indexed: 11/28/2022] Open
Abstract
The resistance of Aedes aegypti to chemical insecticides has been reported and our work proposes the use of biosurfactants as an alternative larvicide. We evaluated the effect of rhamnolipids against larvae of pyrethroid-resistant and susceptible A. aegypti strains. Time-mortality and sublethal effects were evaluated via survival analysis and swimming behavior, respectively. Rhamnolipids showed larvicidal effect at all tested concentrations. Rhamnolipids at 300 mg L-1 killed 100% of both susceptible and resistant larvae within 24 h of exposure and 99% after 30-days stored (pyrethroid-susceptible larvae). Regarding the sublethal effects, the swimming rate was reduced in 50 and 100 mg L-1 of rhamnolipids in grouped (pyrethroid-susceptible) larvae. Rhamnolipids at 50 mg L-1 reduced the distance and speed and increased the number of stops and resting time of individualized pyrethroid-susceptible larvae. The larvicidal effect of the rhamnolipids evaluated demonstrates that these compounds represent an alternative to control A. aegypti.
Collapse
Affiliation(s)
- Tatiane de Paula Siqueira
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs s/n, Centro, Viçosa, Minas Gerais Brazil
| | - Wagner Faria Barbosa
- Programa de Pós-Graduação em Entomologia, Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Edmo Montes Rodrigues
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs s/n, Centro, Viçosa, Minas Gerais Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará-IFCE-Campus Camocim, Camocim, Ceará Brazil
| | - Franciane Rosa Miranda
- Programa de Pós-Graduação em Entomologia, Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
- Laboratório de Biologia Molecular de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Fernanda de Souza Freitas
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs s/n, Centro, Viçosa, Minas Gerais Brazil
| | - Gustavo Ferreira Martins
- Laboratório de Biologia Molecular de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Marcos Rogério Tótola
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Av. P.H. Rolfs s/n, Centro, Viçosa, Minas Gerais Brazil
| |
Collapse
|
29
|
Green MP, Harvey AJ, Finger BJ, Tarulli GA. Endocrine disrupting chemicals: Impacts on human fertility and fecundity during the peri-conception period. ENVIRONMENTAL RESEARCH 2021; 194:110694. [PMID: 33385395 DOI: 10.1016/j.envres.2020.110694] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 05/08/2023]
Abstract
It is becoming increasingly difficult to avoid exposure to man-made endocrine disrupting chemicals (EDCs) and environmental toxicants. This escalating yet constant exposure is postulated to partially explain the concurrent decline in human fertility that has occurred over the last 50 years. Controversy however remains as to whether associations exist, with conflicting findings commonly reported for all major EDC classes. The primary aim of this extensive work was to identify and review strong peer-reviewed evidence regarding the effects of environmentally-relevant EDC concentrations on adult male and female fertility during the critical periconception period on reproductive hormone concentrations, gamete and embryo characteristics, as well as the time to pregnancy in the general population. Secondly, to ascertain whether individuals or couples diagnosed as sub-fertile exhibit higher EDC or toxicant concentrations. Lastly, to highlight where little or no data exists that prevents strong associations being identified. From the greater than 1480 known EDCs, substantial evidence supports a negative association between exposure to phthalates, PCBs, PBDEs, pyrethroids, organochloride pesticides and male fertility and fecundity. Only moderate evidence exists for a negative association between BPA, PCBs, organochloride pesticides and female fertility and fecundity. Overall fewer studies were reported in women than men, with knowledge gaps generally evident for both sexes for all the major EDC classes, as well as a paucity of female fertility studies following exposure to parabens, triclosans, dioxins, PFAS, organophosphates and pyrethroids. Generally, sub-fertile individuals or couples exhibit higher EDC concentrations, endorsing a positive association between EDC exposure and sub-fertility. This review also discusses confounding and limiting factors that hamper our understanding of EDC exposures on fertility and fecundity. Finally, it highlights future research areas, as well as government, industry and social awareness strategies required to mitigate the negative effects of EDC and environmental toxicant exposure on human fertility and fecundity.
Collapse
Affiliation(s)
- Mark P Green
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Bethany J Finger
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard A Tarulli
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Structural Aspects of Potential Endocrine-Disrupting Activity of Stereoisomers for a Common Pesticide Permethrin against Androgen Receptor. BIOLOGY 2021; 10:biology10020143. [PMID: 33670303 PMCID: PMC7918290 DOI: 10.3390/biology10020143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary Human exposure to synthetic or naturally occurring endocrine-disrupting compounds (EDCs) contaminating the environment is associated with disruption in endocrine signaling and homeostatic imbalance of hormones. Pyrethroids constitute an important class of extensively used insecticides reported to have endocrine-disrupting activity. Permethrin is one of the most commonly used pyrethroids and exists in isomeric forms. The aim of this study was to investigate and compare the potential endocrine-disrupting activity of permethrin isomers against the androgen receptor (AR). Structural binding studies showed that all permethrin isomer compounds have the potential to compete with native ligand binding in the AR ligand binding pocket. In conclusion, the results of this study suggest that human exposure to commercially produced isomeric forms of permethrin could potentially interfere with the AR function, which may lead to male reproductive dysfunction. Abstract Endocrine-disrupting chemicals (EDCs) are a serious global public health and environmental concern. Pyrethroids are insecticide chemicals that are extensively used for crop protection and household purposes but have been identified as EDCs. On account of their ubiquitous environmental presence, human exposure occurs via food, dermal, or inhalation routes and is associated with health problems, including reproductive dysfunction. Permethrin is the most commonly used pyrethroid, and with two chiral centers in its structure, it has four stereoisomeric forms (two enantiomer pairs), i.e., permethrin (1R,3R)-cis, permethrin (1R,3S)-trans, permethrin (1S,3S)-cis, and permethrin (1S,3R)-trans. The current study was performed for predicting the potential endocrine-disrupting activity of the aforementioned four stereoisomers of permethrin against the androgen receptor (AR). The structural binding characterization and binding energy estimations in the AR binding pocket were done using induced fit docking. The structural binding data indicated that all stereoisomers were placed stably in the AR binding pocket and that the estimated binding energy values were comparable to the AR native ligand, except for permethrin (1S,3S)-cis. Furthermore, the commonality in the amino acid interactions to that of the AR native ligand and the binding energy values suggested the potential AR-disrupting activity of all the stereoisomers; however, stereoselective differences were not observed. Taken together, the results suggest that human exposure to permethrin, either as a racemate mixture or in individual stereoisomer form, could potentially interfere with AR function, which may lead to male reproductive dysfunction.
Collapse
|
31
|
Rodprasert W, Toppari J, Virtanen HE. Endocrine Disrupting Chemicals and Reproductive Health in Boys and Men. Front Endocrinol (Lausanne) 2021; 12:706532. [PMID: 34690925 PMCID: PMC8530230 DOI: 10.3389/fendo.2021.706532] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Male reproductive health has declined as indicated by increasing rates of cryptorchidism, i.e., undescended testis, poor semen quality, low serum testosterone level, and testicular cancer. Exposure to endocrine disrupting chemicals (EDCs) has been proposed to have a role in this finding. In utero exposure to antiandrogenic EDCs, particularly at a sensitive period of fetal testicular development, the so-called 'masculinization programming window (MPW)', can disturb testicular development and function. Low androgen effect during the MPW can cause both short- and long-term reproductive disorders. A concurrent exposure to EDCs may also affect testicular function or damage testicular cells. Evidence from animal studies supports the role of endocrine disrupting chemicals in development of male reproductive disorders. However, evidence from epidemiological studies is relatively mixed. In this article, we review the current literature that evaluated relationship between prenatal EDC exposures and anogenital distance, cryptorchidism, and congenital penile abnormality called hypospadias. We review also studies on the association between early life and postnatal EDC exposure and semen quality, hypothalamic-pituitary-gonadal axis hormone levels and testicular cancer.
Collapse
Affiliation(s)
- Wiwat Rodprasert
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Helena E. Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- *Correspondence: Helena E. Virtanen,
| |
Collapse
|
32
|
Chang J, Pan Y, Yang L, Xie Y, Xu P, Wang H. Environmental relevant concentration of λ-cyhalothrin and 3-phenoxybenzoic acid caused endocrine-disrupting effects on male lizards (Eremias argus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115077. [PMID: 32806430 DOI: 10.1016/j.envpol.2020.115077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/07/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
In the present study, the endocrine toxicity of LCT and PBA was investigated through exposure to Eremias argus for two weeks under environmental relevant concentration. RNA-sequencing identified 4442 and 4653 differentially expressed genes in lizard liver after LCT and PBA exposure. Four differentially expressed genes (hsd17β, ar, sult, ugt) related with hypothalamic-pituitary-gonadal axis were quantified by qPCR. The expression of genes associated with HPG axis in different tissues differed significantly. In LCT treatment group, ar, cyp17 and hsd3β genes involved in testosterone synthesis and transportation were significantly decreased in lizard testes, and the spermatogensis was inhibited in the testes, which indicated the anti-androgenic activity of LCT. After PBA exposure, the genes related with estradiol synthesis, transportation and metabolism, such as hsd17β, erα, ugt in lizard liver were important biomarkers and the significant decrease of estradiol level was highly correlated with hsd17β, erα, ugt gene expressions. The relative high binding affinity of PBA with ERα further demonstrated the anti-estrogenic activity of PBA. Our results elucidate the different toxic mechanism of LCT and PBA on lizard endocrine system at environmental relevant concentration. Pyrethroids metabolism may cause more seriously toxicity rather than detoxification.
Collapse
Affiliation(s)
- Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Yifan Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Lu Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Yun Xie
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Huili Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China.
| |
Collapse
|
33
|
Wang Q, Shen JY, Zhang R, Hong JW, Li Z, Ding Z, Wang HX, Zhang JP, Zhang MR, Xu LC. Effects and mechanisms of pyrethroids on male reproductive system. Toxicology 2020; 438:152460. [PMID: 32278050 DOI: 10.1016/j.tox.2020.152460] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
Synthetic pyrethroids are used as insecticides in agriculture and a variety of household applications worldwide. Pyrethroids are widely distributed in all environmental compartments and the general populations are exposed to pyrethroids through various routes. Pyrethroids have been identified as endocrine-disrupting chemicals (EDCs) which are responsible for the male reproductive impairments. The data confirm pyrethroids cause male reproductive damages. The insecticides exert the toxic effects on male reproductive system through various complex mechanisms including antagonizing androgen receptor (AR), inhibiting steroid synthesis, affecting the hypothalamic-pituitary-gonadal (HPG) axis, acting as estrogen receptor (ER) modulators and inducing oxidative stress. The mechanisms of male reproductive toxicity of pyrethroids involve multiple targets and pathways. The review will provide further insight into pyrethroid-induced male reproductive toxicity and mechanisms, which is crucial to preserve male reproductive health.
Collapse
Affiliation(s)
- Qi Wang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Jun-Yu Shen
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Rui Zhang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Jia-Wei Hong
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Zheng Li
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Zhen Ding
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Heng-Xue Wang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Jin-Peng Zhang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Mei-Rong Zhang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Li-Chun Xu
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
34
|
Zhan H, Huang Y, Lin Z, Bhatt P, Chen S. New insights into the microbial degradation and catalytic mechanism of synthetic pyrethroids. ENVIRONMENTAL RESEARCH 2020; 182:109138. [PMID: 32069744 DOI: 10.1016/j.envres.2020.109138] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The significant applications of pyrethroid insecticides in agro-ecosystem and household environments have raised serious environmental concerns. Environmental bioremediation has emerged as an effective and eco-friendly approach to remove or neutralize hazardous compounds. Bioaugmentation accelerates pyrethroid degradation in liquid cultures and soil. Pyrethroid-degrading microorganisms have been extensively studied to cope with pyrethroid residues. Microorganisms primarily hydrolyze the ester bonds of pyrethroids, and their degradation pathways have been elaborated. The functional genes and enzymes involved in microbial degradation have also been screened and studied. Carboxylesterase plays a key role in pyrethroid degradation by cleaving its carboxylester linkage. The catalytic mechanism is dependent on a specific catalytic triad, consisting of three amino acid residues (glutamine, histidine, and serine) within the active site of the carboxylesterase enzyme. Pyrethroid-degrading strains and enzymes have proven to be effective for the bioremediation of pyrethroid-contaminated environments. In this review, we have summarized newly isolated pyrethroid-degrading strains and proposed the degradation pathways along with key functional genes/enzymes. To develop an efficient bioremediation strategy, pyrethroid-degrading microorganisms should be comprehensively explored.
Collapse
Affiliation(s)
- Hui Zhan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, PR China.
| |
Collapse
|
35
|
Zhao J, Jia D, Chi Y, Yao K. Co-metabolic enzymes and pathways of 3-phenoxybenzoic acid degradation by Aspergillus oryzae M-4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109953. [PMID: 31759741 DOI: 10.1016/j.ecoenv.2019.109953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
As an intermediate metabolite of pyrethroids, 3-phenoxybenzoic acid (3-PBA) is more toxic than its parent compounds and has been detected in milk, soil, and human urine. 3-PBA can be metabolized through microbial degradation, but the microbial co-metabolic enzymes and pathways involved in 3-PBA degradation are unclear. This study investigated the enzymes types and possible pathways in the co-metabolic degradation of 3-PBA by Aspergillus oryzae M-4. The enzymes involved in co-metabolic degradation of 3-PBA and its intermediate metabolites were induced, and existed extracellularly and intracellularly except the catechol-degrading enzyme. Inhibitors and inducers of these oxidases were used to examine the enzymes required for co-metabolic degradation of 3-PBA and its intermediate metabolites. 3-PBA is hydroxylated to produce 3-hydroxy-5-phenoxy benzoic acid through the catalytic actions of lignin peroxidase (LiP). Phenol and gallic acid, the metabolites of 3-PBA, are produced via cleavage of an ether bond under the catalytic actions of cytochrome P450 (CYP450) and LiP. Phenol can be converted to catechol by LiP; catechol and gallic acid are cleaved to form long-chain olefin acid or olefin aldehyde by dioxygenase and LiP. In corn flour, some of these enzyme activators such as FeCl3, 4-cumaric acid, veratryl alcohol and sodium periodate appeared to improve 3-PBA degradation. The results provide a reliable pathway and characteristics for co-metabolic microbial degradation of 3-PBA in food and the environment.
Collapse
Affiliation(s)
- Jiayuan Zhao
- College of Biomass Science and Engineering, Sichuan University, 610065, Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Dongying Jia
- College of Biomass Science and Engineering, Sichuan University, 610065, Chengdu, Sichuan, PR China
| | - Yuanlong Chi
- College of Biomass Science and Engineering, Sichuan University, 610065, Chengdu, Sichuan, PR China
| | - Kai Yao
- College of Biomass Science and Engineering, Sichuan University, 610065, Chengdu, Sichuan, PR China.
| |
Collapse
|
36
|
Hwang M, Lee Y, Choi K, Park C. Urinary 3-phenoxybenzoic acid levels and the association with thyroid hormones in adults: Korean National Environmental Health Survey 2012-2014. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133920. [PMID: 31446285 DOI: 10.1016/j.scitotenv.2019.133920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Owing to insecticidal activity at low doses with relatively low toxicity in humans, synthetic pyrethroids have been used widely for pest control in agricultural and domestic settings. Pyrethroids are suspected for potential endocrine disruption. However, the thyroid disrupting effects of pyrethroids, particularly in humans, is relatively underexplored. OBJECTIVES This study aimed to report 3-phenoxybenzoic acid (3-PBA) concentrations in urine, and assess its association with serum thyroid hormone (TH) levels in a representative adult population of Korea. METHODS Data obtained from representative Korean adults recruited in the Korean National Environmental Health Survey (2nd round, 2012-2014) were analyzed. Urinary 3-PBA levels were associated with serum thyroxine (T4), total triiodothyronine (T3), and thyroid-stimulating hormone (TSH) levels among the Korean adult population. RESULTS Urinary 3-PBA levels among Korean adults were >3 times higher than those reported in Canada and the United States. Urinary 3-PBA levels showed negative association with serum T4, and this pattern was not changed after stratification by sex. For T3, the association varied by sex and exposure levels. Male demonstrated the same inverse association between urinary 3-PBA and T3, but female did not show such association. Among adults in the lower half of urinary 3-PBA levels, the association with T3 was significant, while that among the remainder was marginal. The association with T4 remained significant on sensitivity analysis, after controlling for other urinary chemicals. CONCLUSION Urinary 3-PBA levels in the general Korean adult population were found to be generally higher than those of other countries, and were associated with decreased TH levels. Considering the importance of THs, the public health implications of pyrethroid insecticide exposure warrant further studies.
Collapse
Affiliation(s)
- Moonyoung Hwang
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, South Korea
| | - Youngmee Lee
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, South Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea.
| | - Choonghee Park
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, South Korea.
| |
Collapse
|
37
|
Santos R, Piccoli C, Cremonese C, Freire C. Thyroid and reproductive hormones in relation to pesticide use in an agricultural population in Southern Brazil. ENVIRONMENTAL RESEARCH 2019; 173:221-231. [PMID: 30928852 DOI: 10.1016/j.envres.2019.03.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/09/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to assess the association of short- and long-term exposure to pesticides with circulating levels of thyroid and reproductive hormones in an agricultural population in the South of Brazil. Serum specimens from 122 male and female adults residing in small agricultural properties were sampled both in the low and high pesticide use season. A comprehensive questionnaire was used to collect detailed information on recent and cumulative lifetime use of pesticides and other agricultural-related exposures. The difference in serum hormone levels between seasons was assessed by the T-test and Wilcoxon test for paired samples, and associations between pesticide exposure-related variables and hormone values were explored by multivariate linear regression analysis. Levels of total thyroxine (T4) and male testosterone were significantly reduced from the low to high pesticide use season. In the high exposure season, recent use of dithiocarbamate fungicides, not using full personal protection equipment, and use of manual equipment was associated with reduced levels of thyroid-stimulating hormone (TSH). Moreover, recent use of lambda-cyhalothrin (pyrethroid) was associated with reduced total T4 and increased male luteinizing hormone (LH), use of paraquat (herbicide) with reduced free triiodothyronine (T3), and use of phthalamide (fungicide) with increased male LH. We also found associations of lifetime years of agricultural work with reduced total T4 and increased male testosterone; and of lifetime agricultural work and use of various pesticide classes (i.e. insecticides, herbicides, organophosphate insecticides, dithiocarbamate fungicides, and pyrethroids), mancozeb (fungicide), and paraquat with slight changes in free or total levels of T4 and/or T3. Findings suggest that both short- and long-term exposure to agricultural pesticides may alter thyroid hormones and male testosterone levels among farm residents.
Collapse
Affiliation(s)
- Ramison Santos
- Centro Universitario da Serra Gaúcha (FSG), Caxias do Sul, Rio Grande do Sul, CEP: 95020-472, Brazil.
| | - Camila Piccoli
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, CEP: 90619-900, Brazil.
| | - Cleber Cremonese
- Centro Universitario da Serra Gaúcha (FSG), Caxias do Sul, Rio Grande do Sul, CEP: 95020-472, Brazil.
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18016, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; National School of Public Health, Oswaldo Cruz Foundation (ENSP-FIOCRUZ), Rio de Janeiro, CEP: 21041-210, Brazil.
| |
Collapse
|
38
|
Ye X, Liu J. Effects of pyrethroid insecticides on hypothalamic-pituitary-gonadal axis: A reproductive health perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:590-599. [PMID: 30476888 DOI: 10.1016/j.envpol.2018.11.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Pyrethroids, a class of ubiquitous insecticides, have been recognized as endocrine-disrupting chemicals (EDCs). A lot of studies have implied the endocrine-disrupting effects of pyrethroids on the hypothalamic-pituitary-gonadal (HPG) axis. However, there are few review articles regarding the effects of pyrethroids on the HPG axis of mammal and human, especially new research progress made in this area. The present review sums up the effects of pyrethroids on the HPG axis-related reproductive outcomes, including epidemiological investigations based on human biomonitoring, animal studies and in vitro tests. Mechanisms have described that the endocrine-disrupting effects of pyrethroids on mammal can be mediated via the interaction with steroid receptors, the direct action on ion channels and signaling molecules. Finally, we summarize the current research gaps and suggest future directions in this topic.
Collapse
Affiliation(s)
- Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
39
|
Huang Y, Xiao L, Li F, Xiao M, Lin D, Long X, Wu Z. Microbial Degradation of Pesticide Residues and an Emphasis on the Degradation of Cypermethrin and 3-phenoxy Benzoic Acid: A Review. Molecules 2018; 23:E2313. [PMID: 30208572 PMCID: PMC6225238 DOI: 10.3390/molecules23092313] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 01/09/2023] Open
Abstract
Nowadays, pesticides are widely used in preventing and controlling the diseases and pests of crop, but at the same time pesticide residues have brought serious harm to human's health and the environment. It is an important subject to study microbial degradation of pesticides in soil environment in the field of internationally environmental restoration science and technology. This paper summarized the microbial species in the environment, the study of herbicide and pesticides degrading bacteria and the mechanism and application of pesticide microbial degrading bacteria. Cypermethrin and other pyrethroid pesticides were used widely currently, while they were difficult to be degraded in the natural conditions, and an intermediate metabolite, 3-phenoxy benzoic acid would be produced in the degradation process, causing the secondary pollution of agricultural products and a series of problems. Taking it above as an example, the paper paid attention to the degradation process of microorganism under natural conditions and factors affecting the microbial degradation of pesticide. In addition, the developed trend of the research on microbial degradation of pesticide and some obvious problems that need further solution were put forward.
Collapse
Affiliation(s)
- Yichen Huang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Lijuan Xiao
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Feiyu Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Mengshi Xiao
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Derong Lin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Xiaomei Long
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Zhijun Wu
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
40
|
Panuwet P, Ladva C, Barr DB, Prapamontol T, Meeker JD, D’Souza PE, Maldonado H, Ryan PB, Robson MG. Investigation of associations between exposures to pesticides and testosterone levels in Thai farmers. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2018; 73:205-218. [PMID: 28901838 PMCID: PMC6422528 DOI: 10.1080/19338244.2017.1378606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We conducted a cross-sectional study to assess the relationship between pesticide exposures and testosterone levels in 133 male Thai farmers. Urine and serum samples were collected concurrently from participants. Urine was analyzed for levels of specific and nonspecific metabolites of organophosphates (OPs), pyrethroids, select herbicides, and fungicides. Serum was analyzed for total and free testosterone. Linear regression analyses revealed significant negative relationships between total testosterone and the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) after controlling for covariates (eg, age, BMI, smoking status). Positive significant associations were found between some OP pesticides and total testosterone. Due to the small sample size and the observational nature of the study, future investigation is needed to confirm our results and to elucidate the biological mechanisms.
Collapse
Affiliation(s)
- Parinya Panuwet
- Department of Environmental Health, Rollins School of
Public Health, Emory University, Atlanta, GA
- Corresponding Author Parinya Panuwet,
MS, PhD, , Department of Environmental Health,
Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta,
Georgia, 30322
| | - Chandresh Ladva
- Department of Environmental Health, Rollins School of
Public Health, Emory University, Atlanta, GA
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of
Public Health, Emory University, Atlanta, GA
| | - Tippawan Prapamontol
- Pollution and Environmental Health Research, Research
Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - John D. Meeker
- Environmental Health Sciences, School of Public Health,
University of Michigan, Ann Arbor, MI
| | - Priya Esilda D’Souza
- Department of Environmental Health, Rollins School of
Public Health, Emory University, Atlanta, GA
| | - Héctor Maldonado
- Plant Biology and Pathology, School of Environmental and
Biological Sciences, Rutgers University, New Brunswick, NJ
| | - P. Barry Ryan
- Department of Environmental Health, Rollins School of
Public Health, Emory University, Atlanta, GA
| | - Mark G. Robson
- Plant Biology and Pathology, School of Environmental and
Biological Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
41
|
Li C, Cao M, Ma L, Ye X, Song Y, Pan W, Xu Z, Ma X, Lan Y, Chen P, Liu W, Liu J, Zhou J. Pyrethroid Pesticide Exposure and Risk of Primary Ovarian Insufficiency in Chinese Women. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3240-3248. [PMID: 29444570 DOI: 10.1021/acs.est.7b06689] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pyrethroids are a class of widely used insecticides. Female animal studies suggested that pyrethroid exposure impaired ovarian function, which resulted in similar symptoms of primary ovarian insufficiency (POI). However, it is still unknown whether this association applies to women. In this case-control study, a total of 172 POI patients and 247 control women were recruited in Zhejiang, China. The urinary concentrations of metabolites of pyrethroids, 3-phenoxybenzoic acid (3-PBA) and 4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA), as well as the serum concentrations of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and anti-Mullerian hormone (AMH) were determined. The associations of pyrethroid metabolites with POI and POI-related hormones were accessed using unconditional logistic regression. Higher urinary levels of 3-PBA were significantly associated with increased risk of POI [adjusted odds ratio (OR) = 2.344, 95% CI: 1.193-4.607 for the highest vs lowest quartile of 3-PBA, p = 0.013]. Stratified analyses showed that each log increase in urinary 3-PBA concentration was significantly associated with an induction in odds of 51.0% being in the highest quartile of FSH and 28.6% being in the highest quartile of LH levels, whereas a 25.9% reduction in odds of being in the highest quartile of AMH levels (All p for trend <0.05). To our knowledge, this is the first case-control study to report an association of pyrethroid exposure with increased risk of POI in women.
Collapse
Affiliation(s)
- Chunming Li
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine , Zhejiang University , Hangzhou 310006 , China
| | - Miaofeng Cao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Linjuan Ma
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine , Zhejiang University , Hangzhou 310006 , China
| | - Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Yang Song
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine , Zhejiang University , Hangzhou 310006 , China
| | - Wuye Pan
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Zhengfen Xu
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine , Zhejiang University , Hangzhou 310006 , China
| | - Xiaochen Ma
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Yibing Lan
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine , Zhejiang University , Hangzhou 310006 , China
| | - Peiqiong Chen
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine , Zhejiang University , Hangzhou 310006 , China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
- Research Center for Air Pollution and Health , Zhejiang University , Hangzhou 310058 , China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
- Research Center for Air Pollution and Health , Zhejiang University , Hangzhou 310058 , China
| | - Jianhong Zhou
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine , Zhejiang University , Hangzhou 310006 , China
| |
Collapse
|
42
|
Abstract
Pyrethroids are commonly used around the home and in agricultural production to control insects. Human contact to one or more pyrethroid insecticides is likely. Numerous epidemiology studies have evaluated the association between health outcomes in humans and pyrethroid exposure. The purpose of this review was to identify and evaluate the quality of pyrethroid-related epidemiology studies that addressed chronic health effects, and compare findings with animal toxicology studies. We evaluated the quality of 61 studies published between 2000 and 2016 by using elements of outcome, exposure metric, exposure level, and study design. None of the 61 publications demonstrated strong quality for all elements. A few of the outcome measures were strong, particularly those relying upon medical diagnoses. Most of the pyrethroid epidemiology studies used a poor exposure metric, relying upon a single sample of pyrethroid urinary metabolites, which is subject to misclassification of past exposures. In addition, many studies were a cross-sectional design, preventing an evaluation of the temporality of the exposure-disease association. Furthermore, none of the effects observed in the epidemiological literature was concordant with toxicological effects noted in extensive testing of pyrethroids in animals. In order to provide more robust data on potential health outcomes from low dose exposure to pyrethroid insecticides, future epidemiological studies should fully characterize an adverse outcome, include exposure validation components, and quantify exposure over time.
Collapse
Affiliation(s)
- Carol J Burns
- a Burns Epidemiology Consulting, LLC , Sanford , MI , USA
| | | |
Collapse
|
43
|
Li F, Ma H, Liu J. Pyrethroid Insecticide Cypermethrin Modulates Gonadotropin Synthesis via Calcium Homeostasis and ERK1/2 Signaling in LβT2 Mouse Pituitary Cells. Toxicol Sci 2017; 162:43-52. [DOI: 10.1093/toxsci/kfx248] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Huihui Ma
- MOE Key Lab of Environmental Remediation and Ecosystem Health
| | - Jing Liu
- MOE Key Lab of Environmental Remediation and Ecosystem Health
- Research Center for Air Pollution and Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
44
|
Ye X, Li F, Zhang J, Ma H, Ji D, Huang X, Curry TE, Liu W, Liu J. Pyrethroid Insecticide Cypermethrin Accelerates Pubertal Onset in Male Mice via Disrupting Hypothalamic-Pituitary-Gonadal Axis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10212-10221. [PMID: 28731686 DOI: 10.1021/acs.est.7b02739] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pyrethroids, a class of insecticides that are widely used worldwide, have been identified as endocrine-disrupting chemicals (EDCs). Our recent epidemiological study reported on an association of increased pyrethroids exposure with elevated gonadotropins levels and earlier pubertal development in Chinese boys. In this study, we further investigated the effects of cypermethrin (CP), one of the most ubiquitous pyrethroid insecticides, on hypothalamic-pituitary-gonadal (HPG) axis and pubertal onset in male animal models. Early postnatal exposure to CP at environmentally relevant doses (0.5, 5, and 50 μg/kg CP) significantly accelerated the age of puberty onset in male mice. Administration of CP induced a dose-dependent increase in serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone in male mice. CP did not affect gonadotropin-releasing hormone (GnRH) gene expression in the hypothalamus, but CP at higher concentrations stimulated GnRH pulse frequency. CP could induce the secretion of LH and FSH, as well as the expression of gonadotropin subunit genes [chorionic gonadotropin α (CGα), LHβ, and FSHβ] in pituitary gonadotropes. CP stimulated testosterone production and the expression of steroidogenesis-related genes [steroidogenic acute regulatory (StAR) and Cytochrome p 450, family 11, subfamily A, polypeptide 1 (CYP11A1)] in testicular Leydig cells. The interference with hypothalamic sodium channels as well as calcium channels in pituitary gonadotropes and testicular Leydig cells was responsible for CP-induced HPG axis maturation. Our findings established in animal models provide further evidence for the biological plausibility of pyrethroid exposure as a potentially environmental contributor to earlier puberty in males.
Collapse
Affiliation(s)
- Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| | - Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University , Hangzhou 310036, China
| | - Jianyun Zhang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| | - Huihui Ma
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| | - Dapeng Ji
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
- Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| | - Xin Huang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky , Lexington, Kentucky 40536, United States
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
- Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
- Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| |
Collapse
|
45
|
Klimowska A, Wielgomas B. Off-line microextraction by packed sorbent combined with on solid support derivatization and GC-MS: Application for the analysis of five pyrethroid metabolites in urine samples. Talanta 2017; 176:165-171. [PMID: 28917736 DOI: 10.1016/j.talanta.2017.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
Abstract
A novel, fast and eco-friendly analytical method using microextraction by packed sorbent coupled to large volume injection-gas chromatography-mass spectrometry (MEPS-LVI-GC-MS) was developed for the determination of five pyrethroid metabolites (cis-2,2-dimethyl-3-(2-chloro-3,3,3-trifluoro-1-propenyl)-cyclopropanecarboxylic acid, cis/trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acids, cis-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid and 3-phenoxybenzoic acid) in human urine. MEPS was performed off-line using a manually-operated semiautomatic syringe (eVol), and several parameters including the sample pH, extraction sorbent, washing solvent, volume and type of elution solvent and number of draw-eject cycles were optimized. Analytes were extracted from enzymatically hydrolyzed urine using a C18 solid phase with subsequent simultaneous derivatization and elution with a mixture of 1,1,1,3,3,3-hexafluoroisopropanol and diisopropylcarbodiimide in n-hexane (on-line derivatization). The optimized method was validated, with linearity established from 0.05 to 25ngmL-1 and R values > 0.99. Obtained quantification limits were in the range of 0.06-0.08ngmL-1, and the precision expressed as relative standard deviation (RSD) was below 14% for all of the analytes. The method was cross-validated with a reference approach based on liquid-liquid extraction-gas chromatography-mass spectrometry (LLE-GC-MS) by analyzing 21 urine samples.
Collapse
Affiliation(s)
- Anna Klimowska
- Department of Toxicology, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland.
| | - Bartosz Wielgomas
- Department of Toxicology, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
46
|
Yao G, Jing X, Liu C, Wang P, Liu X, Hou Y, Zhou Z, Liu D. Enantioselective degradation of alpha-cypermethrin and detection of its metabolites in bullfrog (rana catesbeiana). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:93-97. [PMID: 28319864 DOI: 10.1016/j.ecoenv.2017.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/04/2017] [Accepted: 03/13/2017] [Indexed: 06/06/2023]
Abstract
Bullfrog, as a kind of amphibians, can be easily exposed to varied pollutants in the environment for the reason of its habitats and highly permeable skin. We investigated the degradation kinetics and residues of α-cypermethrin in bullfrog by two different methods of administration for the environmental monitoring the behavior of one of the most used pesticides in the amphibians. The oral administration and water exposure of α-cypermethrin on bullfrog was studied in this work. α-Cypermethrin and its main metabolites of cis-3-(2',2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-DCCA) and 3-phenoxybenzoic acid (3-PBA), which have been determined that having correlation with a number of epidemic diseases, were detected simultaneously. The method for residue analysis in the bullfrog's organs was validated. The average recoveries for α-cypermethrin were ranged from 71.7% to 100.3% and the limit of quantification was 0.005mg/kg. The average recoveries of its metabolites at levels between 0.002 and 0.5mg/kg ranged between 77.9% and 102.4% with a limit of quantification of 0.002mg/kg. Furthermore, the enantiomers of α-cypermethrin were separated on gas chromatograph (GC) equipped with a chiral column of BGB-172 and the metabolites were detected by gas chromatography (GC) after derivatization. After exposure of α-cypermethrin on bullfrog, the enantioselective degradation behavior was observed and its metabolites were detected in bullfrog tissues. The dynamic trends of α-cypermethrin and its metabolites were fitted to a two-compartment model except 3-PBA fitting to one-compartment model in skin. Concentration of α-cypermethrin and its metabolites in bullfrog's organs increased and reached an equilibrium state during water exposure of α-cypermethrin. Liver and kidney were the major organs for α-cypermethrin and its metabolites retention in both experiments.
Collapse
Affiliation(s)
- Guojun Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Xu Jing
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Chang Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Xueke Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Yinzhu Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - ZhiQiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
47
|
Ye X, Pan W, Zhao S, Zhao Y, Zhu Y, Liu J, Liu W. Relationships of Pyrethroid Exposure with Gonadotropin Levels and Pubertal Development in Chinese Boys. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6379-6386. [PMID: 28478668 DOI: 10.1021/acs.est.6b05984] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although an acceleration of male pubertal development has been observed, precisely which endocrine-disrupting chemicals (EDCs) might contribute to the advancing onset of puberty in boys remains unclear. Here, pyrethroids, a class of widely used insecticides that have been considered as EDCs, are proposed as new environmental risk factors. In this study, 463 boys at the age of 9-16 years old were recruited in Hangzhou, Zhejiang, China. The common metabolites of pyrethroids, 3-phenoxybenzoic acid (3-PBA), and 4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA), as well as gonadotropins, including luteinizing hormone (LH) and follicle-stimulating hormone (FSH), were analyzed in urine samples. Pubertal development was assessed based on Tanner stages and testicular volume (TV). A positive association between 3-PBA and gonadotropins was found (p < 0.001), in which a 10% increase in 3-PBA was associated with a 2.4% and 2.9% increase in LH and FSH, respectively. Higher urinary levels of 3-PBA in boys were associated with 275% and 280% increase in the risk of being genitalia stage 3 (G3) and G4, respectively (p < 0.05). There was a significant (132%) induction in odd of being TV 12-19 mL with increasing 3-PBA concentration compared to being in TV < 4 mL (p < 0.05). For the first time to our knowledge, this work reports on an association of increased pyrethroid exposure with elevated gonadotropins levels and earlier pubertal development in boys.
Collapse
Affiliation(s)
- Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, ‡Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, and §School of Public Health, Zhejiang University , Hangzhou 310058, China
| | - Wuye Pan
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, ‡Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, and §School of Public Health, Zhejiang University , Hangzhou 310058, China
| | - Shilin Zhao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, ‡Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, and §School of Public Health, Zhejiang University , Hangzhou 310058, China
| | - Yuehao Zhao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, ‡Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, and §School of Public Health, Zhejiang University , Hangzhou 310058, China
| | - Yimin Zhu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, ‡Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, and §School of Public Health, Zhejiang University , Hangzhou 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, ‡Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, and §School of Public Health, Zhejiang University , Hangzhou 310058, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, ‡Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, and §School of Public Health, Zhejiang University , Hangzhou 310058, China
| |
Collapse
|
48
|
Han J, Zhou L, Luo M, Liang Y, Zhao W, Wang P, Zhou Z, Liu D. Nonoccupational Exposure to Pyrethroids and Risk of Coronary Heart Disease in the Chinese Population. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:664-670. [PMID: 27966923 DOI: 10.1021/acs.est.6b05639] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Pyrethroids and the metabolites have been frequently observed in the environment. Animal data suggests that pyrethroids can induce adverse effect on the cardiovascular system but there are no human studies examining pyrethoids exposure as a risk for coronary heart disease (CHD). We analyzed three nonspecific pyrethroids metabolites in urine and studied the association with CHD risk. A total of 72 CHD patients and 136 healthy subjects were recruited in Shanxi province in China from 2013 to 2014 by matching age and gender. The median concentrations of urinary cis-CDDA (cis-3-(2,2-dichlorovinyl)-2,2-dimethyl cyclopropane carboxylic acid), trans-CDDA (trans-3-(2,2-dichlorovinyl)-2,2-dimethyl cyclopropane carboxylic acid) and 3-PBA (3-phenoxybenzoic acid) among healthy subjects were 1.03, 0.42, 0.74 μg/L respectively, while the median concentrations of the three metabolites among CHD patients were 1.93, 1.07, 1.09 μg/L respectively, significantly higher than healthy subjects. Upper tertile of urinary pyrethroid metabolites were associated with an increased risk of CHD compared with the lowest tertile (cis-CDDA: ORT3vsT1 = 6.86, 95% CI: 2.76-17.06, p-trend = 0.000; trans-CDDA: ORT3vsT1 = 6.94; 95% CI: 2.80-17.19; p-trend =0.000; 3-PBA: ORT3vsT1 = 3.62; 95% CI: 1.48-8.88; p-trend = 0.009; total pyrethroid metabolites: ORT3vsT1 = 4.55; 95% CI: 1.80-11.54; p-trend = 0.002). This study provides information on pyrethroids exposure in China and reveals a possible positive association between pyrethroids exposure and the risk of coronary heart disease.
Collapse
Affiliation(s)
- Jiajun Han
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University , Beijing, 100193, People's Republic of China
| | - Liqin Zhou
- Xinzhou City People's Hospital, Xinzhou, Shanxi 034000, People's Republic of China
| | - Mai Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University , Beijing, 100193, People's Republic of China
| | - Yiran Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University , Beijing, 100193, People's Republic of China
| | - Wenting Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University , Beijing, 100193, People's Republic of China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University , Beijing, 100193, People's Republic of China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University , Beijing, 100193, People's Republic of China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University , Beijing, 100193, People's Republic of China
| |
Collapse
|
49
|
Co-Metabolic Degradation of β-Cypermethrin and 3-Phenoxybenzoic Acid by Co-Culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4. PLoS One 2016; 11:e0166796. [PMID: 27898684 PMCID: PMC5127528 DOI: 10.1371/journal.pone.0166796] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/03/2016] [Indexed: 01/29/2023] Open
Abstract
The degradation efficiency of organic contaminants and their associated metabolites by co-culture of microbes is mainly limited by toxic intermediates from co-metabolic degradation. In this study, we investigated the degradation of β-cypermethrin (β-CY) and 3-phenoxybenzoic acid (3-PBA) by co-culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4, as well as the influences of β-CY and 3-PBA metabolites on their degradation and the growth of strains B-1 and M-4. Our results indicated that 100 mg/L β-CY was degraded by 78.85%, and 3-PBA concentration was 0.05 mg/L after 72 h. Compared with using only strain B-1, the half-life (t1/2) of β-CY by using the two strains together was shortened from 84.53 h to 38.54 h, and the yield coefficient of 3-PBA was decreased from 0.846 to 0.001. At 100 mg/L of 3-PBA and gallic acid, β-CY and 3-PBA degradation were only 17.68% and 40.45%, respectively. As the toxic intermediate derived from co-metabolic degradation of β-CY by strain B-1, 3-PBA was efficiently degraded by strain M-4, and gallic acid, as the toxic intermediate from co-metabolic degradation of 3-PBA by strain M-4, was efficiently degraded by strain B-1. These results provided a promising approach for efficient biodegradation of β-CY and 3-PBA.
Collapse
|
50
|
Saillenfait AM, Ndiaye D, Sabaté JP. The estrogenic and androgenic potential of pyrethroids in vitro. Review. Toxicol In Vitro 2016; 34:321-332. [DOI: 10.1016/j.tiv.2016.02.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/09/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
|