1
|
Bancel S, Cachot J, Bon C, Rochard É, Geffard O. A critical review of pollution active biomonitoring using sentinel fish: Challenges and opportunities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124661. [PMID: 39111525 DOI: 10.1016/j.envpol.2024.124661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Water pollution is a significant threat to aquatic ecosystems. Various methods of monitoring, such as in situ approaches, are currently available to assess its impact. In this paper we examine the use of fish in active biomonitoring to study contamination and toxicity of surface waters. We analysed 148 previous studies conducted between 2005 and 2022, including both marine and freshwater environments, focusing on the characteristics of the organisms used as well as the principal goals of these studies. The main conclusions we drew are that a wide range of protocols and organisms have been used but there is no standardised method for assessing the quality of aquatic ecosystems on a more global scale. Additionally, the most commonly used developmental stages have been juveniles and adults. At these stages, the most frequently used species were the fathead minnow (Pimephales promelas) and two salmonids: rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta). Few studies used earlier stages of development (embryos or larvae), mostly due to the difficulty of obtaining fish embryos and caging them in the field. Finally, we identified research gaps in active biomonitoring for water quality assessment which could indicate useful directions for future research and development.
Collapse
Affiliation(s)
| | - Jérôme Cachot
- Université de Bordeaux, CNRS and INP Bordeaux, UMR 5805 EPOC, Allée Geoffroy Saint-Hilaire, 33615, Pessac Cedex, Nouvelle-Aquitaine, France
| | - Corentin Bon
- INRAE, UR Riverly, F-69100, Villeurbanne, France
| | | | | |
Collapse
|
2
|
Gestin O, Geffard O, Delorme N, Garnero L, Lacoue-Labarthe T, Lopes C. Bioaccumulation, organotropism and fate of cadmium in Gammarus fossarum exposed through dietary pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135965. [PMID: 39353269 DOI: 10.1016/j.jhazmat.2024.135965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Despite a good knowledge of cadmium accumulation in Gammarus fossarum, studies to date have focused on Cd accumulated via the dissolved pathway, leaving aside the trophic pathway. The aim of this study was to assess cadmium organotropism and bioaccumulation processes following a trophic exposure of the species Gammarus fossarum. Adult male gammarids were fed with 109Cd contaminated alder leaves discs for 6 days and then with clean alder leaves for 12 days. During both phases, some gammarids were collected and dissected, and intestines, hepatopancreas, cephalons, gills and remaining tissues were separated to measure their Cd concentrations. Their relative proportions of Cd and their respective BMFs were estimated. The ingestion rate (IR) measured during the exposure phase was divided by 3 between days 2 and 6, indicating that gammarids reduced their feeding activity and therefore the exposure pressure. A multi-compartments TK model was developed, and an iterative inference process was run to select the most parsimonious model that best fits all organ datasets simultaneously. The results showed that: i) intestine and hepatopancreas bioconcentrate Cd the most; ii) no cadmium was quantified in gills, meaning that they do not appear to play a role in Cd storage or elimination with a trophic exposure; iii) Cd elimination occurs only through the intestine; and iv) the general pattern of Cd fate in gammarids, obtained here after dietary highlights once again the importance of the intestine and hepatopancreas, as for the dissolved pathway.
Collapse
Affiliation(s)
- Ophélia Gestin
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France; Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France; INRAE, RiverLy, Ecotoxicology Laboratory, 5 Avenue de la Doua, CS20244, 69625 Villeurbanne Cedex, France.
| | - Olivier Geffard
- INRAE, RiverLy, Ecotoxicology Laboratory, 5 Avenue de la Doua, CS20244, 69625 Villeurbanne Cedex, France.
| | - Nicolas Delorme
- INRAE, RiverLy, Ecotoxicology Laboratory, 5 Avenue de la Doua, CS20244, 69625 Villeurbanne Cedex, France.
| | - Laura Garnero
- INRAE, RiverLy, Ecotoxicology Laboratory, 5 Avenue de la Doua, CS20244, 69625 Villeurbanne Cedex, France.
| | - Thomas Lacoue-Labarthe
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France.
| | - Christelle Lopes
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France.
| |
Collapse
|
3
|
Naz H, Vaseem H. Alteration in oxidative stress markers, digestive physiology and gut microbiota of Heteropneustes fossilis and Clarias batrachus exposed to eriochrome black T. CHEMOSPHERE 2024; 364:143045. [PMID: 39121963 DOI: 10.1016/j.chemosphere.2024.143045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Synthetic dyes are the primary cause of water pollution in industrial regions. Azo dyes account for 60-70% of such dyes used in the textile sector due to their numerous beneficial characteristics. Nevertheless, there is a dearth of knowledge regarding the toxicity of Eriochrome Black T (EBT), a widely used azo dye in the textile industry. Therefore, the current study was designed to investigate the effect of EBT exposure on two catfish species, Heteropneustes fossilis and Clarias batrachus. Following 96 h exposure to 1, 10 and 20 mgL-1 of EBT, the MDA content and activities of SOD, CAT and GR exhibited a rising trend. However, as the concentration of EBT increased in both species, GPx showed decreased activity. EBT exposure also altered gut morphometry as well as the three main digestive enzymes activity (increase in lipase and trypsin activity, while decrease in amylase activity). In addition, the exposure of EBT had a significant impact on the gut microbiota of both species. C. batrachus demonstrated the suppression or absence of beneficial gut commensals (Bacillus and Cetobacterium), whereas H. fossilis revealed the proliferation and appearance of beneficial commensal microbes (Bacillus, Bacteroides, Prevotella, and Megashaera). Furthermore, the expansion or absence of these microbial communities indicated that the gut microbiota of both species was involved in dye digestion, immunity and detoxification. Overall, the percent change calculation of all the selected biomarkers, together with gut microbiota analysis, indicates that C. batrachus was more vulnerable to EBT exposure than H. fossilis. The present investigation effectively demonstrated the toxic impact of EBT on fish health by employing oxidative stress markers, digestive enzymes, and the fish gut microbiota as a promising tool for screening the impact of dye exposure on digestive physiology in toxicological research.
Collapse
Affiliation(s)
- Huma Naz
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh-202002, India.
| | - Huma Vaseem
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh-202002, India.
| |
Collapse
|
4
|
Zhang L, Liu X, Zhang C. Effect of PET microplastics on the growth, digestive enzymes, and intestinal flora of the sea cucumber Apostichopus japonicus. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106125. [PMID: 37552920 DOI: 10.1016/j.marenvres.2023.106125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/16/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Marine microplastic (MP) pollution is becoming a serious problem and their potentially toxic effects on marine organisms have attracted much attention. Sea cucumber is very important for the safety and health of marine ecosystems. However, there have been relatively few studies on the effects of microplastic pollution on sea cucumbers at environmentally-related concentrations and under controlled conditions. Therefore, this study evaluated the effects of polyethylene terephthalate (PET) microplastics (particle sizes: 0.5-45 μm, 2-200 μm, and 20-300 μm; and three concentration levels for each particle size, approximately 103, 104, and 105 particles/kg) on the basic biological indicators, intestinal digestive enzymes, and intestinal flora of Apostichopus japonicus after a 28-day feeding experiment. This study showed that environmentally-related and high concentrations of microplastics had little effect on A. japonicus. This study provides valuable reference information about the effects of marine microplastic pollution on sea cucumbers.
Collapse
Affiliation(s)
- Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China.
| | - Xiang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chenxi Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
5
|
Lee J, Jeon MJ, Won EJ, Yoo JW, Lee YM. Effect of heavy metals on the energy metabolism in the brackish water flea Diaphanosoma celebensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115189. [PMID: 37385021 DOI: 10.1016/j.ecoenv.2023.115189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/02/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
Heavy metals such as lead (Pb), cadmium (Cd), and arsenic (As) are of great concern in aquatic ecosystems because of their global distribution, persistence, and biomagnification via the food web. They can induce the expression of cellular protective systems (e.g., detoxification enzymes and antioxidant enzymes) to protect organisms from oxidative stress, which is a high-energy-consuming process. Thus, energy reserves (e.g., glycogen, lipids, and proteins) are utilized to maintain metabolic homeostasis. Although a few studies have suggested that heavy metal stress can modulate the metabolic cycle in crustaceans, information on changes in energy metabolism under metal pollution remains lacking in planktonic crustaceans. In the present study, the activity of digestive enzymes (amylase, trypsin, and lipase) and the contents of energy storage molecules (glycogen, lipid, and protein) were examined in the brackish water flea Diaphanosoma celebensis exposed to Cd, Pb, and As for 48 h. Transcriptional modulation of the three AMP-activated protein kinase (AMPK) and metabolic pathway-related genes was further investigated. Amylase activity was highly increased in all heavy metal-exposed groups, whereas trypsin activity was reduced in Cd- and As-exposed groups. While glycogen content was increased in all exposed groups in a concentration-dependent manner, lipid content was reduced at higher concentrations of heavy metals. The expression of AMPKs and metabolic pathway-related genes was distinct among heavy metals. In particular, Cd activated the transcription of AMPK-, glucose/lipid metabolism-, and protein synthesis-related genes. Our findings indicate that Cd can disrupt energy metabolism, and may be a potent metabolic toxicant in D. celebensis. This study provides insights into the molecular mode of action of heavy metal pollution on the energy metabolism in planktonic crustaceans.
Collapse
Affiliation(s)
- Jiyoon Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Min Jeong Jeon
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Eun-Ji Won
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Je-Won Yoo
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
6
|
Karray S, Marchand J, Geffard A, Rebai T, Denis F, Chénais B, Hamza-Chaffai A. Metal Contamination and Biomarkers in Cerastoderma glaucum: A Multi-level Approach. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:484-503. [PMID: 37119272 DOI: 10.1007/s00244-023-00999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 04/17/2023] [Indexed: 06/01/2023]
Abstract
In this study, we focused on evaluating the responses of the cockle, Cerastoderma glaucum to in situ exposures to metals at three sites in the Gulf of Gabes in the coastal zone of Tunisia differing in levels of metal contamination. Firstly, we examined the general physiological state of the organisms. Secondly, we evaluated the bioaccumulation of several metals (Cd, Cu, Zn, Ni) in the cockles. Thirdly, we focused on evaluating histologically changes in gametogenesis and sexual maturity of the organisms. Finally, we determined the expression of seven key genes encoding enzymes or proteins involved in responses to different types of environmental stressors. Results showed a decrease in the general physiological status of the cockles, including a reduced condition index, sex ratios skewed to females (70% and 80% females in the intermediate and the contaminated site, respectively) and greater mortalities in tests under anoxic conditions (i.e., stress on stress test) in cockles collected from the most contaminated site (LT50 = 2.88 days) compared to the cockles from the intermediate site (LT50 = 5 days) and the less contaminated site (LT50 = 6 days). Results for metal bioaccumulation showed that the levels of Cd, Cu, Zn and Ni in cockles were consistent with the contaminant gradient, with the highest levels in cockles from the most contaminated site (1.04; 4.92; 52.76 and 13.81 µg/g dw, respectively), followed by those from the intermediate site (0.34; 2.94; 36.94; 17.40 µg/g dw, respectively) and then the less contaminated site (0.065; 1.27; 21.62 and 5.40 µg/g dw, respectively). Results from the gametogenesis and maturity index showed few differences in the reproductive cycle of cockles collected from the three study sites. There were different patterns of gene expression that were divided into three groups in terms of responses: (1) expression of genes involved in metal detoxification, ATP Binding Cassette Subfamily B Member 1 (ABCB1) and metallothionein MT) and genes for superoxide dismutases (i.e., Mn SOD and CuZn SOD), which did not show any difference in their levels of expression; (2) heat shock protein 70 (HSP70) gene expression, which decreased in cockles according to the pollution gradient, and (3) expression of catalase (CAT) and cytochrome oxidase subunit 1 (COI) genes was threefold and 1000-fold higher in cockles from intermediate and most contaminated sites compared to the less contaminated site. Therefore, changes in overall physiological condition, sex ratios and expression of HSP70, CAT and COI genes may be appropriate biomarkers for in situ studies of the impacts of metals in cockles. However, these biomarkers should be coupled to proteomics studies.
Collapse
Affiliation(s)
- Sahar Karray
- Université du Maine - Le Mans, EA 2460 Mer Molécules Santé, Institut Universitaire Mer et Littoral - FR3473 CNRS, 72085, Le Mans Cedex, France.
- Laboratoire d'Ecotoxicologie Marine et Environnementale, Université de Sfax, Sfax, Tunisia.
| | - Justine Marchand
- Université du Maine - Le Mans, EA 2460 Mer Molécules Santé, Institut Universitaire Mer et Littoral - FR3473 CNRS, 72085, Le Mans Cedex, France
| | - Alain Geffard
- Université de Reims-Champagne Ardenne, EA 4689 Interactions Animal Environnement, BP 1039, 51687, Reims Cedex 2, France
| | - Tarek Rebai
- Laboratoire d'histologie à la faculté de médecine de Sfax, Université de Sfax, Sfax, Tunisia
| | - Françoise Denis
- Université du Maine - Le Mans, EA 2460 Mer Molécules Santé, Institut Universitaire Mer et Littoral - FR3473 CNRS, 72085, Le Mans Cedex, France
- UMR 7208 CNRS-MNHN-IRD-UPMC Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA), Concarneau, France
| | - Benoît Chénais
- Université du Maine - Le Mans, EA 2460 Mer Molécules Santé, Institut Universitaire Mer et Littoral - FR3473 CNRS, 72085, Le Mans Cedex, France
| | - Amel Hamza-Chaffai
- Laboratoire d'Ecotoxicologie Marine et Environnementale, Université de Sfax, Sfax, Tunisia
| |
Collapse
|
7
|
Andreï J, Guérold F, Bouquerel J, Devin S, Mehennaoui K, Cambier S, Gutleb AC, Giambérini L, Pain-Devin S. Assessing the effects of silver nanoparticles on the ecophysiology of Gammarus roeseli. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106421. [PMID: 36805111 DOI: 10.1016/j.aquatox.2023.106421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/13/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Being part of the macrobenthic fauna, gammarids are efficient indicators of contamination of aquatic ecosystems by nanoparticles that are likely to sediment on the bottom. The present study investigates the effects of silver nanoparticles (nAg) on ecophysiological functions in Gammarus roeseli by using a realistic scenario of contamination. Indeed, an experiment was conducted during 72 h, assessing the effects of 5 silver nAg from 10 to 100 nm diluted at concentrations of maximum 5 µg L-1 in a natural water retrieved from a stream and supplemented with food. The measured endpoints in gammarids were survival, silver concentrations in tissues, consumption of oxygen and ventilation of gills. Additionally, a set of biomarkers of the energetic metabolism was measured. After a 72-h exposure, results showed a concentration-dependent increase of silver levels in G. roeseli that was significant for the smallest nAg size (10 nm). Ecophysiological responses in G. roeseli were affected and the most striking effect was a concentration-dependent increase in oxygen consumption especially for the smallest nAg (10 to 40 nm), whereas ventilation of gills by gammarids was not changed. The potential mechanisms underlying these findings are discussed. Thus, we demonstrated the very low exposure concentration of 0.5 µg L-1 for the small nAg size led to significant ecophysiological effects reinforcing the need to further investigate subtle effects on nanoparticles on aquatic organisms.
Collapse
Affiliation(s)
| | | | | | - Simon Devin
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Kahina Mehennaoui
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Sebastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Laure Giambérini
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix en Provence, France
| | | |
Collapse
|
8
|
Sarkis N, Geffard O, Souchon Y, Chandesris A, Ferréol M, Valette L, François A, Piffady J, Chaumot A, Villeneuve B. Identifying the impact of toxicity on stream macroinvertebrate communities in a multi-stressor context based on national ecological and ecotoxicological monitoring databases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160179. [PMID: 36395849 DOI: 10.1016/j.scitotenv.2022.160179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
In situ bioassays are used to measure the harmful effects induced by mixtures of toxic chemicals in watercourses. In France, national-scale biomonitoring data are available including invertebrate surveys and in-field chemical toxicity measures with caged gammarids to assess environmental toxicity of mixtures of chemicals. The main objective of our study is to present a proof-of-concept approach identifying possible links between in-field chemical toxicity, stressors and the ecological status. We used two active biomonitoring databases comprising lethal toxicity (222 in situ measures of gammarid mortality) and sublethal toxicity (101 in situ measures of feeding inhibition). We measured the ecological status of each active biomonitoring site using the I2M2 metric (macroinvertebrate-based multimetric index), accounted for known stressors of nutrients and organic matter, hydromorphology and chemical toxicity. We observed a negative relationship between stressors (hydromorphology, nutrients and organic matter, and chemical toxicity) and the good ecological status. This relationship was aggravated in watercourses where toxicity indicators were degraded. We validated this hypothesis for instance with nutrients and organic matter like nitrates or hydromorphological conditions like percentage of vegetation on banks. Future international assesments concerning the role of in-field toxic pollution on the ecological status in a multi-stressor context are now possible via the current methodology.
Collapse
Affiliation(s)
- Noëlle Sarkis
- INRAE, UR RiverLy, EcoFlowS, F-69625 Villeurbanne, France
| | - Olivier Geffard
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Yves Souchon
- INRAE, UR RiverLy, EcoFlowS, F-69625 Villeurbanne, France
| | | | | | | | - Adeline François
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Jérémy Piffady
- INRAE, UR RiverLy, EcoFlowS, F-69625 Villeurbanne, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | | |
Collapse
|
9
|
Gestin O, Lacoue-Labarthe T, Delorme N, Garnero L, Geffard O, Lopes C. Influence of the exposure concentration of dissolved cadmium on its organotropism, toxicokinetic and fate in Gammarus fossarum. ENVIRONMENT INTERNATIONAL 2023; 171:107673. [PMID: 36580734 DOI: 10.1016/j.envint.2022.107673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Information on the relationship between the exposure concentrations of metals and their biodistribution among organs remained scarce in invertebrates. The objective of this study was to investigate the effects of Cd concentration on the organotropism, toxico-kinetic and fate of this metal in different organs of gammarids exposed to dissolved radioisotope 109Cd. Gammarids male were exposed for 7 days to three environmental Cd concentrations (i.e. 4, 52 and 350 ng.L-1) before being placed in depuration conditions (i.e. uncontaminated water). At several sampling times, Cd concentrations were determined by 109Cd γ-counting in water, caeca, cephalon, gills, intestine and remaining tissues. Bioconcentration Factors (BCF) and Cd relative proportions in organs were calculated to assess the exposure concentration effect on the bioaccumulation capacities. The dependance of the organ-specific kinetic parameters to Cd water concentrations were estimated by fitting nested one-compartment toxico-kinetic (TK) models to both the accumulation and depuration data, by Bayesian inference. Then, for each Cd concentrations, the metal exchanges among organs over time were formalized by a multi-compartments TK model fitted to all organ data simultaneously. Our results highlighted that, at the end of the exposure phase, BCF and Cd relative proportions, in each organ, were not significantly modulated by water concentrations. Kinetically, Cd accumulation rates in all organs (except intestines) were depended on the exposure concentration, but not the elimination rates. The in vivo management of Cd (i.e. metal exchanges among organs) remained qualitatively unchanged according to exposure concentration. All these results also highlighted key role of that organs in the management of Cd: bioconcentration by caeca, storage by gills and main entry pathway by intestine. This study shows the interest of implementing TK approaches to test the effect of environmental factors on bioaccumulation, inter-organ exchanges and fate of contaminants in invertebrate body to enhance the understanding of the toxicity risk.
Collapse
Affiliation(s)
- Ophélia Gestin
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France; Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - Université de la Rochelle, 2, rue Olympe de Gouges, 17000 La Rochelle, France; INRAE, RiverLy, Ecotoxicology Laboratory, 5 Avenue de la Doua, CS20244, 69625 Villeurbanne Cedex, France.
| | - Thomas Lacoue-Labarthe
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - Université de la Rochelle, 2, rue Olympe de Gouges, 17000 La Rochelle, France.
| | - Nicolas Delorme
- INRAE, RiverLy, Ecotoxicology Laboratory, 5 Avenue de la Doua, CS20244, 69625 Villeurbanne Cedex, France.
| | - Laura Garnero
- INRAE, RiverLy, Ecotoxicology Laboratory, 5 Avenue de la Doua, CS20244, 69625 Villeurbanne Cedex, France.
| | - Olivier Geffard
- INRAE, RiverLy, Ecotoxicology Laboratory, 5 Avenue de la Doua, CS20244, 69625 Villeurbanne Cedex, France.
| | - Christelle Lopes
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France.
| |
Collapse
|
10
|
Melhado G, Pedrobom L JH, Menegário AA, Herrera Montalvo LG, Cruz-Neto AP. Lead exposure does not affect baseline and induced innate immunity in quails. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:527-536. [PMID: 35189040 DOI: 10.1002/jez.2586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Lead (Pb) is one of the most common metals found in ecosystems in elevated concentrations derived mainly from anthropogenic activities. Pb toxicity is of special concern in birds due to its capacity for bioaccumulation in the liver, bones, and kidneys causing physiological disruptions. Such disruptions can be lethal in a few days after Pb acute intoxication and they are associated with several million deaths of birds. Moreover, Pb may work as an immunosuppressant as it affects the cell-mediated and humoral immune responses, including components of the acute-phase response (APR). We (1) examined the effects of Pb contamination on the innate immune system, body mass, and food intake of Japanese quails (Coturnix coturnix japonica), and (2) evaluated the effects of Pb on its APR after exposing the animals to Pb acetate in drinkable water during 7 days. We found that Pb contamination increased the number of circulating white blood cells (WBCs), but no effect was found on body mass, food intake, the heterophil/lymphocyte (H/L) ratio, and haptoglobin (Hp) concentration. When Pb-exposed birds were injected with lipopolysaccharide from Escherichia coli to activate the APR, they had a negative body mass ratio, reduced food intake, and increased the number of WBCs, the H/L ratio, and the Hp concentration. We conclude that Pb exposure at this dose did not affect baseline values of the constitutive response and that it did not affect the APR of quails, but commend for further studies testing the effect of different Pb doses.
Collapse
Affiliation(s)
- Gabriel Melhado
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, São Paulo, Brazil
| | | | - Amauri A Menegário
- Centro de Estudos Ambientais, Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
| | - Luis Gerardo Herrera Montalvo
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional, Autónoma de México, San Patricio, Jalisco, México
| | - Ariovaldo P Cruz-Neto
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, São Paulo, Brazil
| |
Collapse
|
11
|
Catteau A, Porcher JM, Bado-Nilles A, Bonnard I, Bonnard M, Chaumot A, David E, Dedourge-Geffard O, Delahaut L, Delorme N, François A, Garnero L, Lopes C, Nott K, Noury P, Palluel O, Palos-Ladeiro M, Quéau H, Ronkart S, Sossey-Alaoui K, Turiès C, Tychon B, Geffard O, Geffard A. Interest of a multispecies approach in active biomonitoring: Application in the Meuse watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152148. [PMID: 34864038 DOI: 10.1016/j.scitotenv.2021.152148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
A biomonitoring approach based on a single model species cannot be representative of the contaminations impacts on the ecosystem overall. As part of the Interreg DIADeM program ("Development of an integrated approach for the diagnosis of the water quality of the River Meuse"), a study was conducted to establish the proof of concept that the use of a multispecies active biomonitoring approach improves diagnostic of aquatic systems. The complementarity of the biomarker responses was tested in four model species belonging to various ecological compartments: the bryophyte Fontinalis antipyretica, the bivalve Dreissena polymorpha, the amphipod Gammarus fossarum and the fish Gasterosteus aculeatus. The species have been caged upstream and downstream from five wastewater treatment plants (WWTPs) in the Meuse watershed. After the exposure, a battery of biomarkers was measured and results were compiled in an Integrated Biomarker Response (IBR) for each species. A multispecies IBR value was then proposed to assess the quality of the receiving environment upstream the WWTPs. The effluent toxicity was variable according to the caged species and the WWTP. However, the calculated IBR were high for all species and upstream sites, suggesting that the water quality was already downgraded upstream the WWTP. This contamination of the receiving environment was confirmed by the multispecies IBR which has allowed to rank the rivers from the less to the most contaminated. This study has demonstrated the interest of the IBR in the assessment of biological impacts of a point-source contamination (WWTP effluent) but also of the receiving environment, thanks to the use of independent references. Moreover, this study has highlighted the complementarity between the different species and has emphasized the interest of this multispecies approach to consider the variability of the species exposition pathway and sensibility as well as the mechanism of contaminants toxicity in the final diagnosis.
Collapse
Affiliation(s)
- Audrey Catteau
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France.
| | - Jean-Marc Porcher
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France
| | - Anne Bado-Nilles
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France
| | - Marc Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Elise David
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France
| | - Odile Dedourge-Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France
| | - Nicolas Delorme
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Adeline François
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Laura Garnero
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Christelle Lopes
- Université de Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne 69622, France
| | - Katherine Nott
- La société wallonne des eaux, rue de la Concorde 41, 4800 Verviers, Belgium
| | - Patrice Noury
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Olivier Palluel
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France
| | - Mélissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France
| | - Hervé Quéau
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Sébastien Ronkart
- La société wallonne des eaux, rue de la Concorde 41, 4800 Verviers, Belgium
| | - Khadija Sossey-Alaoui
- Département des Sciences et Gestion de L'environnement (Arlon Campus Environnement), Eau, Environnement, Développement Sphères Bât. BE-009 Eau, Environnement, Développement, Avenue de Longwy 185, 6700 Arlon, Belgium
| | - Cyril Turiès
- Institut National de l'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), BP 2, 60550 Verneuil-en-Halatte, France
| | - Bernard Tychon
- Département des Sciences et Gestion de L'environnement (Arlon Campus Environnement), Eau, Environnement, Développement Sphères Bât. BE-009 Eau, Environnement, Développement, Avenue de Longwy 185, 6700 Arlon, Belgium
| | - Olivier Geffard
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687 Reims, France.
| |
Collapse
|
12
|
Zheng R, Wang P, Cao B, Wu M, Li X, Wang H, Chai L. Intestinal response characteristic and potential microbial dysbiosis in digestive tract of Bufo gargarizans after exposure to cadmium and lead, alone or combined. CHEMOSPHERE 2021; 271:129511. [PMID: 33445016 DOI: 10.1016/j.chemosphere.2020.129511] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The gastrointestinal tract is the largest immune organ in the body and meanwhile, accommodates a large number of microorganisms. Heavy metals could disturb the intestinal homeostasis and change the gut microbial composition. However, the information regarding the links between dysbiosis of gut microbiota and imbalance of host intestinal homeostasis induced by the mixture of heavy metals is insufficient. The present study investigates the effects of Cd/Pb, both single and combination exposure, on the growth performance, intestinal histology, digestive enzymes activity, oxidative stress and immune parameters, and intestinal microbiota in Bufo gargarizans tadpoles. Our results revealed that co-exposure of Cd-Pb induced more severe impacts not only on the host, but the intestinal microbiota. On the one hand, co-exposure of Cd-Pb significantly induced growth retardation, intestinal histological injury, decreased activities of digestive enzymes. On the other hand, Cd and Pb exposure, especially in mixed form, changed the diversity and richness, structure of microbiota. Also, the intestinal microbial composition was altered by Cd/Pb exposure (alone and combination) both at the different levels. Proteobacteria, act as front-line responder, was significantly increased in tadpoles under the exposure of metals. Finally, the functional prediction revealed that the disorders of metabolism and immune responses of intestinal microbiota was increased in tadpoles exposed to Cd/Pb (especially the mixture of Cd and Pb). Our research complements the understanding of links between changes in host fitness loss and intestinal microbiota and will add a new dimension of knowledge to the ecological risks of mixed heavy metals in amphibian.
Collapse
Affiliation(s)
- Rui Zheng
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Pengju Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Baoping Cao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| | - Lihong Chai
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710054, People's Republic of China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an, 710062, People's Republic of China.
| |
Collapse
|
13
|
Mehennaoui K, Cambier S, Minguez L, Serchi T, Guérold F, Gutleb AC, Giamberini L. Sub-chronic effects of AgNPs and AuNPs on Gammarus fossarum (Crustacea Amphipoda): From molecular to behavioural responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111775. [PMID: 33421722 DOI: 10.1016/j.ecoenv.2020.111775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
The aim of the present study was the assessment of the sub-chronic effects of silver (AgNPs) and gold nanoparticles (AuNPs) of 40 nm primary size either stabilised with citrate (CIT) or coated with polyethylene glycol (PEG) on the freshwater invertebrate Gammarus fossarum. Silver nitrate (AgNO3) was used as a positive control in order to study the contribution of silver ions potentially released from AgNPs on the observed effects. A multibiomarker approach was used to assess the long-term effects of AgNPs and AuNPs 40 nm on molecular, cellular, physiological and behavioural responses of G. fossarum. Specimen of G. fossarum were exposed for 15 days to 0.5 and 5 µgL-1 of CIT and PEG AgNPs and AuNPs 40 nm in the presence of food. A significant uptake of both Ag and Au was observed in exposed animals but was under the toxic threshold leading to mortality of G. fossarum. Silver nanoparticles (CIT-AgNPs and PEG-AgNPs 40 nm) led to an up-regulation of Na+K+ATPase gene expression. An up-regulation of Catalse and Chitinase gene expressions due to exposure to PEG-AgNPs 40 nm was also observed. Gold nanoparticles (CIT and PEG-AuNPs 40 nm) led to an increase of CuZnSOD gene expression. Furthermore, both AgNPs and AuNPs led to a more developed digestive lysosomal system indicating a general stress response in G. fossarum. Both AgNPs and AuNPs 40 nm significantly affected locomotor activity of G. fossarum while no effects were observed on haemolymphatic ions and ventilation.
Collapse
Affiliation(s)
- Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg; Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Campus Bridoux, Rue du Général Delestraint, F-57000, Metz, France
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - Laëtitia Minguez
- Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Campus Bridoux, Rue du Général Delestraint, F-57000, Metz, France
| | - Tommaso Serchi
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - François Guérold
- Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Campus Bridoux, Rue du Général Delestraint, F-57000, Metz, France
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - Laure Giamberini
- Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Campus Bridoux, Rue du Général Delestraint, F-57000, Metz, France.
| |
Collapse
|
14
|
Hani YMI, Prud'Homme SM, Nuzillard JM, Bonnard I, Robert C, Nott K, Ronkart S, Dedourge-Geffard O, Geffard A. 1H-NMR metabolomics profiling of zebra mussel (Dreissena polymorpha): A field-scale monitoring tool in ecotoxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116048. [PMID: 33190982 DOI: 10.1016/j.envpol.2020.116048] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Biomonitoring of aquatic environments requires new tools to characterize the effects of pollutants on living organisms. Zebra mussels (Dreissena polymorpha) from the same site in north-eastern France were caged for two months, upstream and downstream of three wastewater treatment plants (WWTPs) in the international watershed of the Meuse (Charleville-Mézières "CM" in France, Namur "Nam" and Charleroi "Cr" in Belgium). The aim was to test 1H-NMR metabolomics for the assessment of water bodies' quality. The metabolomic approach was combined with a more "classical" one, i.e., the measurement of a range of energy biomarkers: lactate dehydrogenase (LDH), lipase, acid phosphatase (ACP) and amylase activities, condition index (CI), total reserves, electron transport system (ETS) activity and cellular energy allocation (CEA). Five of the eight energy biomarkers were significantly impacted (LDH, ACP, lipase, total reserves and ETS), without a clear pattern between sites (Up and Down) and stations (CM, Nam and Cr). The metabolomic approach revealed variations among the three stations, and also between the upstream and downstream of Nam and CM WWTPs. A total of 28 known metabolites was detected, among which four (lactate, glycine, maltose and glutamate) explained the observed metabolome variations between sites and stations, in accordance with chemical exposure levels. Metabolome changes suggest that zebra mussel exposure to field contamination could alter their osmoregulation and anaerobic metabolism capacities. This study reveals that lactate is a potential biomarker of interest, and 1H-NMR metabolomics can be an efficient approach to assess the health status of zebra mussels in the biomonitoring of aquatic environments.
Collapse
Affiliation(s)
- Younes Mohamed Ismail Hani
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France; Université de Bordeaux, UMR EPOC 5805, équipe Ecotoxicologie Aquatique, Place du Dr Peyneau, 33120, Arcachon, France.
| | - Sophie Martine Prud'Homme
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France; Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Jean-Marc Nuzillard
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097, Reims, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France
| | | | - Katherine Nott
- La Société Wallonne des Eaux, Rue de la Concorde 41, 4800, Verviers, Belgium
| | - Sébastien Ronkart
- La Société Wallonne des Eaux, Rue de la Concorde 41, 4800, Verviers, Belgium
| | - Odile Dedourge-Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Moulin de la Housse, Reims, France
| |
Collapse
|
15
|
Fu T, Knittelfelder O, Geffard O, Clément Y, Testet E, Elie N, Touboul D, Abbaci K, Shevchenko A, Lemoine J, Chaumot A, Salvador A, Degli-Esposti D, Ayciriex S. Shotgun lipidomics and mass spectrometry imaging unveil diversity and dynamics in Gammarus fossarum lipid composition. iScience 2021; 24:102115. [PMID: 33615205 PMCID: PMC7881238 DOI: 10.1016/j.isci.2021.102115] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 01/14/2023] Open
Abstract
Sentinel species are playing an indispensable role in monitoring environmental pollution in aquatic ecosystems. Many pollutants found in water prove to be endocrine disrupting chemicals that could cause disruptions in lipid homeostasis in aquatic species. A comprehensive profiling of the lipidome of these species is thus an essential step toward understanding the mechanism of toxicity induced by pollutants. Both the composition and spatial distribution of lipids in freshwater crustacean Gammarus fossarum were extensively examined herein. The baseline lipidome of gammarids of different sex and reproductive stages was established by high throughput shotgun lipidomics. Spatial lipid mapping by high resolution mass spectrometry imaging led to the discovery of sulfate-based lipids in hepatopancreas and their accumulation in mature oocytes. A diverse and dynamic lipid composition in G. fossarum was uncovered, which deepens our understanding of the biochemical changes during development and which could serve as a reference for future ecotoxicological studies. Baseline lipidome profiling of G. fossarum of different sex and reproductive stages Spatial localization of lipids in gammarid tissue by mass spectrometry imaging SIMS imaging guided discovery of sulfate-based lipids in hepatopancreas epithelium Disclosure of a dynamic lipid composition in maturing female oocytes
Collapse
Affiliation(s)
- Tingting Fu
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Olivier Geffard
- INRAE, UR RiverLy, Ecotoxicology Team, F-69625 Villeurbanne, France
| | - Yohann Clément
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Eric Testet
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Nicolas Elie
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Khedidja Abbaci
- INRAE, UR RiverLy, Ecotoxicology Team, F-69625 Villeurbanne, France
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jerome Lemoine
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Ecotoxicology Team, F-69625 Villeurbanne, France
| | - Arnaud Salvador
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | | | - Sophie Ayciriex
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
- Corresponding author
| |
Collapse
|
16
|
Consolandi G, Ford AT, Bloor MC. Feeding Behavioural Studies with Freshwater Gammarus spp.: The Importance of a Standardised Methodology. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 253:1-41. [PMID: 31605212 DOI: 10.1007/398_2019_36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Freshwater Gammarids are common leaf-shredding detritivores, and they usually feed on naturally conditioned organic material, in other words leaf litter that is characterised by an increased palatability, due to the action and presence of microorganisms (Chaumot et al. 2015; Cummins 1974: Maltby et al. 2002). Gammarus spp. are biologically omnivorous organisms, so they are involved in shredding leaf litter and are also prone to cannibalism, predation behaviour (Kelly et al. 2002) and coprophagy when juveniles (McCahon and Pascoe 1988). Gammarus spp. is a keystone species (Woodward et al. 2008), and it plays an important role in the decomposition of organic matter (Alonso et al. 2009; Bundschuh et al. 2013) and is also a noteworthy prey for fish and birds (Andrén and Eriksson Wiklund 2013; Blarer and Burkhardt-Holm 2016). Gammarids are considered to be fairly sensitive to different contaminants (Ashauer et al. 2010; Bloor et al. 2005; Felten et al. 2008a; Lahive et al. 2015; Kunz et al. 2010); in fact Amphipods have been reported to be one of the most sensitive orders to metals and organic compounds (Wogram and Liess 2001), which makes them representative test organisms for ecotoxicological studies and valid sentinel species for assessing water quality status (Garcia-Galan et al. 2017).
Collapse
Affiliation(s)
- Giulia Consolandi
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, Hampshire, UK.
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, UK
| | - Michelle C Bloor
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, Hampshire, UK
| |
Collapse
|
17
|
Dong DT, Miranda AF, Carve M, Shen H, Trestrail C, Dinh KV, Nugegoda D. Population- and sex-specific sensitivity of the marine amphipod Allorchestes compressa to metal exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111130. [PMID: 32866889 DOI: 10.1016/j.ecoenv.2020.111130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
The sensitivity to contaminants of natural populations varies greatly depending on their historical exposure and on the sex of the individual. These factors result in great uncertainty in ecotoxicological risk assessments and challenge the protection of marine biodiversity. This study investigated the role of background pollution in the environment in shaping the sensitivity of males and females of the common marine amphipod Allorchestes compressa to the common trace marine pollutant, copper (Cu). Female and male amphipods were collected from two sites: Geelong (the polluted site) and Clifton Springs (the clean site). Amphipods were exposed to Cu treatments of 0, 50, 100, and 250 μg/L for 10 days, followed by a 10-day recovery period. Cu-exposed males from Geelong showed a reduction in feeding rate at a higher Cu concentration than males from Clifton Springs, suggesting that they have a higher tolerance to Cu than males from Clifton Springs. This can be explained by their higher base level of metallothioneins (MTs) and glutathione-S-transferase (GST), the key physiological responses for detoxification and defence against damages from Cu toxicity. Males showed a higher tolerance to Cu than females. This pattern was similar in both populations, which may be associated with a higher level of GST. During the recovery period, only males from Geelong fully recovered to the control level. Our results emphasize the importance of considering population- and sex-specific sensitivity of invertebrates to contaminants in ecotoxicological risk assessments.
Collapse
Affiliation(s)
- Dung Thi Dong
- Ecotoxicology Research Group, School of Applied Science, RMIT University, Melbourne, Australia; Department of Marine Conservation, Research Institute for Marine Fisheries, Hai Phong, Viet Nam.
| | - Ana F Miranda
- Ecotoxicology Research Group, School of Applied Science, RMIT University, Melbourne, Australia
| | - Megan Carve
- Ecotoxicology Research Group, School of Applied Science, RMIT University, Melbourne, Australia
| | - Hao Shen
- Ecotoxicology Research Group, School of Applied Science, RMIT University, Melbourne, Australia
| | - Charlene Trestrail
- Ecotoxicology Research Group, School of Applied Science, RMIT University, Melbourne, Australia
| | - Khuong V Dinh
- School of Biological Science, Washington State University, USA; Department of Fisheries Biology, Nha Trang University, Viet Nam
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Applied Science, RMIT University, Melbourne, Australia
| |
Collapse
|
18
|
Lebrun JD, Gismondi E. Behavioural and biochemical alterations in gammarids as induced by chronic metallic exposures (Cd, Cu and Pb): Implications for freshwater biomonitoring. CHEMOSPHERE 2020; 257:127253. [PMID: 32531488 DOI: 10.1016/j.chemosphere.2020.127253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
In freshwater species, metal toxicity is usually assessed through short-term exposures, hence limiting the practical usefulness of biomarkers for monitoring long-term impacts on wildlife populations. This study investigates the biological alterations elicited by chronic metallic exposures in Gammarus fossarum using multi-level biomarkers. In aquaria, gammarids were exposed for 10 weeks to field-realistic concentrations of Cd, Cu or Pb (0.25, 1.5 or 5.0 μg/L). At the individual level, behavioural traits (respiration, locomotion and feeding) were compared between naive and chronically-exposed gammarids. At the cellular level, enzymatic activities involved in digestion, moult and cell stress were monitored after 2, 6 and 10 weeks of exposure in males and females to consider the temporal feature of their responses. Results showed that the inhibitory effects of Cd and Pb on respiration and locomotion disappeared in chronically-exposed gammarids, reflecting acclimation to maintain these processes, unlike Cu. Chronic Cu- and Pb-elicited feeding inhibition was associated with the inhibitions of digestion enzymes. Chitobiase was inhibited by Cu in males and, by Cd and Pb in females, suggesting gender-dependent disturbances in moulting. In both genders, Cd generated cellular stress by stimulating acidic phosphatase and peroxidase activities. To conclude, such cellular impairments and alterations in individual performances are likely to disturb individual growth, population dynamics and litter decomposition in the long-term. Besides, obtaining biological responses, common to metals or specific to a metal or a gender, supports the development of biomarkers highlighting long-term impacts of metals on the health of organisms and their associated ecological functions in natural environments.
Collapse
Affiliation(s)
- J D Lebrun
- University of Paris-Saclay, INRAE, UR HYCAR - Artemhys, 92761, Antony, France; Federation Ile-de-France for Research on the Environment, FIRE, FR-3020, 75005, Paris, France.
| | - E Gismondi
- Freshwater and Oceanic Sciences Unit of ReSearch (FOCUS), Laboratory of Animal Ecology and Ecotoxicology (LEAE), University of Liège B6c, 11 allée du 6 Août, 4000, Liège, Belgium
| |
Collapse
|
19
|
Kumar N, Chandan NK, Wakchaure GC, Singh NP. Synergistic effect of zinc nanoparticles and temperature on acute toxicity with response to biochemical markers and histopathological attributes in fish. Comp Biochem Physiol C Toxicol Pharmacol 2020; 229:108678. [PMID: 31783177 DOI: 10.1016/j.cbpc.2019.108678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022]
Abstract
In the present study, an experiment was carried out to delineate the lethal concentration of (LC50) zinc nanoparticles (Zn-NPs) alone and with concurrent to high temperature (34 °C) in Pangasianodon hypophthalmus. The lethal concentration of Zn-NPs alone and with high temperature was estimated as 21.89 and 19.74 mg/L respectivey in P. hypophthalmus. The lethal concentration was decided with the help of definite concentration via 16, 18, 20, 22, 24, 26, 28 and 30 mg/L. The Zn-NPs were significantly alter the biochemical and histopathology of different fish tissues. The stress biomarkers such as oxidative stress (catalase superoxide dismutase and glutathione-s-transferase, lipid peroxidation) was studied in the liver, gill and kidney tissue, which was noticeable (p < 0.01) enhanced with higher concentration in both condition (Zn-NPs alone and Zn-NPs-T) in dose dependent manners. The carbohydrate (lactate dehydrogenase and malate dehydrogenase) and protein metabolic enzymes (alanine amino transferase and aspartate amino transferase) were also remarkable enhanced (p < 0.01) with higher concentration of Zn-NPs and Zn-NPs-T. The neurotransmitter (acetylcholine esterase) activities were significant inhibited (p < 0.01) with exposure to Zn-NPs and Zn-NPs-T and digestive enzymes such as protease and amylase were non-significant (p > 0.01) with the exposure of Zn-NPs and Zn-NPs-T, further, lipase were significantly reduced (p < 0.01) with exposure to Zn-NPs and temperature exposure group. The histopathological alteration were also observed in the liver and gill tissue. The present investigation suggested that, essential trace elements at higher concentration in acute exposure led to pronounced deleterious alteration on histopathology and cellular and metabolic activities in fish.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India.
| | - Nitish Kumar Chandan
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Odisha, India
| | - G C Wakchaure
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | | |
Collapse
|
20
|
Bonnard M, Barjhoux I, Dedourge-Geffard O, Goutte A, Oziol L, Palos-Ladeiro M, Geffard A. Experience Gained from Ecotoxicological Studies in the Seine River and Its Drainage Basin Over the Last Decade: Applicative Examples and Research Perspectives. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2019_384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractThe Seine River and its drainage basin are recognised as one of the most urbanised water systems in France. This chapter gathers typical applications of complementary ecotoxicological tools that were used in PIREN-Seine programmes for a decade to reflect the Seine River contamination as well as its biological repercussions on organisms. Ecotoxicological studies focused on both (1) specific bioassays and (2) (sub)-individual biological responses (i.e. biomarkers) measured in diverse taxa (i.e. crustaceans, mussels and fishes) representative of the trophic network. Experience gained from these studies made it possible to establish reference and threshold values for numerous biological endpoints. They now can be combined with chemical measurements within integrated models (i.e. the Weight of Evidence [WOE] approach) generating a global index of waterbody pollution. These biological endpoints today appear sufficiently relevant and mature to be proposed to water stakeholders as efficient tools to support environmental management strategies.
Collapse
|
21
|
Jones JI, Murphy JF, Collins AL, Spencer KL, Rainbow PS, Arnold A, Pretty JL, Moorhouse AML, Aguilera V, Edwards P, Parsonage F, Potter H, Whitehouse P. The Impact of Metal-Rich Sediments Derived from Mining on Freshwater Stream Life. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 248:111-189. [PMID: 30671689 DOI: 10.1007/398_2018_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal-rich sediments have the potential to impair life in freshwater streams and rivers and, thereby, to inhibit recovery of ecological conditions after any remediation of mine water discharges. Sediments remain metal-rich over long time periods and have long-term potential ecotoxicological interactions with local biota, unless the sediments themselves are physically removed or replaced by less metal-rich sediment. Laboratory-derived environmental quality standards are difficult to apply to the field situation, as many complicating factors exist in the real world. Therefore, there is a strong case to consider other, field-relevant, measures of toxic effects as alternatives to laboratory-derived standards and to seek better biological tools to detect, diagnose and ideally predict community-level ecotoxicological impairment. Hence, this review concentrated on field measures of toxic effects of metal-rich sediment in freshwater streams, with less emphasis on laboratory-based toxicity testing approaches. To this end, this review provides an overview of the impact of metal-rich sediments on freshwater stream life, focusing on biological impacts linked to metal contamination.
Collapse
|
22
|
Mateos-Cárdenas A, Scott DT, Seitmaganbetova G, Frank N A M VP, John O, Marcel A K J. Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:413-421. [PMID: 31279188 DOI: 10.1016/j.scitotenv.2019.06.359] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 05/20/2023]
Abstract
Microplastics (1-1000 μm) are ubiquitous in the marine, freshwater and terrestrial environments. These microsized plastics are considered freshwater pollutants of emerging concern, although the impacts on organisms and ecosystems are not yet clear. In particular, effects of microplastics on freshwater aquatic plants and the fate of microplastics in the freshwater trophic chain remain largely unexplored. Here we demonstrate that 10-45 μm polyethylene (PE) microplastics can strongly adsorb to all surfaces of the duckweed species Lemna minor. Despite adsorbance of up to 7 PE microplastics per mm2, seven day exposure experiments showed that photosynthetic efficiency and plant growth are not affected by microplastics. Rather, dense surface coverage suggests L. minor as a potential vector for the trophic transfer of microplastics. Here we show that the freshwater amphipod Gammarus duebeni can ingest 10-45 μm PE microplastics by feeding on contaminated L. minor. In this study, ingestion of microplastics had no apparent impact on amphipod mortality or mobility after 24 or 48 h exposure. Yet, the feeding study showed that the fate of microplastics in the environment may be complex, involving both plant adsorbance and trophic transfer.
Collapse
Affiliation(s)
- Alicia Mateos-Cárdenas
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork City, Ireland; Environmental Research Institute, Lee Road, Cork City, Ireland.
| | - David T Scott
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork City, Ireland; Environmental Research Institute, Lee Road, Cork City, Ireland
| | - Gulzara Seitmaganbetova
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork City, Ireland; Environmental Research Institute, Lee Road, Cork City, Ireland
| | - van Pelt Frank N A M
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Western Road, Cork City, Ireland; Environmental Research Institute, Lee Road, Cork City, Ireland
| | - O'Halloran John
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork City, Ireland; Environmental Research Institute, Lee Road, Cork City, Ireland
| | - Jansen Marcel A K
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork City, Ireland; Environmental Research Institute, Lee Road, Cork City, Ireland
| |
Collapse
|
23
|
Transcriptomic Responses in the Livers and Jejunal Mucosa of Pigs under Different Feeding Frequencies. Animals (Basel) 2019; 9:ani9090675. [PMID: 31547261 PMCID: PMC6769473 DOI: 10.3390/ani9090675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Nutrition management strategies are closely related to body development and health, and feeding frequency affects pig feed intake, feed efficiency, body composition, and growth performance. However, the effect of feeding one time daily and two times daily on the intestine has been given less attention. In this study, we investigated the transcriptomic responses induced in the livers and jejunal mucosa of growing pigs by daily feeding schedules. We found that when compared with feeding once daily, two times feeding had no significant effect on the growth performance of growing pigs with the same average daily feed intake. A two meals regimen reduced the concentration of triglycerides in serum and liver, affected the body metabolism by promoting lipid transport, lipogenesis, fatty acid oxidation, chylomicron formation and transport, gluconeogenesis, and inhibiting adipocyte differentiation. These findings support the idea that different feeding regimens could affect lipid metabolism and can be effective in nutritional strategies against metabolic dysfunction. Abstract Feeding frequency in one day is thought to be associated with nutrient metabolism and the physical development of the body in both experimental animals and humans. The present study was conducted to investigate transcriptomic responses in the liver and jejunal mucosa of pigs to evaluate the effects of different feeding frequencies on the body’s metabolism. Twelve Duroc × Landrance × Yorkshire growing pigs with an average initial weight (IW) of 14.86 ± 0.20 kg were randomly assigned to two groups: feeding one time per day (M1) and feeding two times per day (M2); each group consisted of six replicates (pens), with one pig per pen. During the one-month experimental period, pigs in the M1 group were fed on an ad libitum basis at 8:00 am; and the M2 group was fed half of the standard feeding requirement at 8:00 am and adequate feed at 16:00 pm. The results showed that average daily feed intake, average daily gain, feed:gain, and the organ indices were not significantly different between the two groups (p > 0.05). The total cholesterol (T-CHO), triglyceride (TG), high-density lipoprotein-cholesterol (HDL-C), and low-density lipoprotein-cholesterol (LDL-C) concentrations in the serum, and the TG concentration in the liver in the M2 groups were significant lower than those in the M1 group, while the T-CHO concentration in the liver were significant higher in the M2 group (p < 0.05). Jejunal mucosa transcriptomic analysis showed the gene of Niemann-Pick C1-Like 1 (NPC1L1), Solute carrier family 27 member 4 (SLC27A4), Retinol binding protein 2 (RBP2), Lecithin retinol acyltransferase (LRAT), Apolipoprotein A (APOA 1, APOA 4, APOB, and APOC 3) were upregulated in the M2 group, indicating that fat digestion was enhanced in the small intestine, whereas Perilipin (PLIN1 and PLIN2) were downregulated, indicating that body fat was not deposited. Fatty acid binding proteins (FABPs) and Acetyl-CoA acyltransferase 1 (ACAA1) were upregulated in the M2 group, indicating that two times feeding daily could promote the oxidative decomposition of fatty acids. In conclusion, under the conditions in this study, the feeding frequency had no significant effect on the growth performance of pigs, but affected the body’s lipid metabolism, and the increase of feeding frequency promoted the fat digestion in the small intestine and the oxidative decomposition of fatty acids in the liver.
Collapse
|
24
|
Xie D, Li Y, Liu Z, Chen Q. Inhibitory effect of cadmium exposure on digestive activity, antioxidant capacity and immune defense in the intestine of yellow catfish (Pelteobagrus fulvidraco). Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:65-73. [PMID: 31028931 DOI: 10.1016/j.cbpc.2019.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/08/2019] [Accepted: 04/19/2019] [Indexed: 11/22/2022]
Abstract
Cadmium (Cd) is a toxic heavy metal that can pose a serious threat to aquatic organisms. To evaluate the physiological response and defense mechanism of fish intestine to Cd toxicity, yellow catfish (Pelteobagrus fulvidraco) were exposed to 0 (control), 50 μg/L and 200 μg/L Cd2+ for a period of 8 weeks, and then histological changes, digestive activity, antioxidant status and immune responses in the anterior intestine were assessed. After exposure, significant growth retardation and Cd accumulation were observed, and obvious histopathological lesions in the intestine such as increased goblet cells, excessive mucus, vacuolization and thickened lamina propria were detected. Intestinal digestive enzymes activities and related gene expression were inhibited markedly in Cd2+ treatments. Furthermore, Cd exposure induced oxidative stress inhibiting antioxidant activity, characterized by an increase in malondialdehyde level as well as the decrease in the activity and transcription level of antioxidant enzymes. In addition, exposure to Cd2+ down-regulated the expression of key genes involved in the immune response (lys, c3, tor, tgf-β, il-10, tnf-α and il-8), suggesting immune defense was inhibited. Taken together, the decreased digestive enzyme activity and Cd-induced toxicity stress for antioxidant and immune systems in the intestine might be account for individual growth retardation.
Collapse
Affiliation(s)
- Dongmei Xie
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yingwen Li
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhihao Liu
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qiliang Chen
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
25
|
Yan Z, Yang Q, Wang X, Torres OL, Tang S, Zhang S, Guo R, Chen J. Correlation between antibiotic-induced feeding depression and body size reduction in zooplankton (rotifer, Brachionus calyciflorus): Neural response and digestive enzyme inhibition. CHEMOSPHERE 2019; 218:376-383. [PMID: 30476769 DOI: 10.1016/j.chemosphere.2018.11.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/05/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
The study analyzed the correlation between the antibiotic-induced feeding depression and body size reduction in rotifer, Brachionus calyciflorus, involving exposure, post-exposure and re-exposure periods. The filtration and ingestion rates of the rotifers were inhibited in these three exposure periods at any given concentration of the antibiotic sulfamethazine (SMZ). As food for rotifer, the cell size of the green algae was unchanged, which indicated that it could not drive feeding depression. Secondly, several corresponding physiological responses were considered. Reactive oxygen species (ROS) levels increased in the post-exposure and the re-exposure; acetylcholinesterase (AChE) activity was significantly decreased in the exposure and the re-exposure, whereas it was induced in the post-exposure. The activities of amylase and lipase were always inhibited in these three exposure periods. Additionally, significant decreases in lorica length, width and biovolume of rotifers occurred after the feeding depression. Statistical analysis indicated a positive correlation between the activity of the digestive enzyme and the body size. Our results demonstrated that SMZ could influence the neurotransmission, inhibit the activity of the digestive enzyme, and finally result in body size reduction. These results provided an integrated perspective on assessing the toxicity effects of antibiotic in non-lethal dosage on the feeding behavior of non-target aquatic organisms.
Collapse
Affiliation(s)
- Zhengyu Yan
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiulian Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Oscar Lopez Torres
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Shengkai Tang
- Key Laboratory of Fisheries Resources in Inland Water of Jiangsu Province, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, 210042, China
| | - Ruixin Guo
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianqiu Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
26
|
Sadeq SA, Beckerman AP. The Chronic Effects of Copper and Cadmium on Life History Traits Across Cladocera Species: A Meta-analysis. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 76:1-16. [PMID: 30178132 PMCID: PMC6326991 DOI: 10.1007/s00244-018-0555-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
The effect of sublethal concentrations of heavy metals on cladoceran growth and reproduction is a cornerstone of modern ecotoxicology. However, the literature contains assays across numerous concentrations, on numerous species and genotypes, and conditions are far from consistent. We undertook a systematic review of the sublethal effects of copper and cadmium concentrations on Cladocera spp. life history (reproduction, maturation age, and somatic growth rate). Using meta-analysis, we tested the hypothesis that the effects of increasing Cu and Cd concentrations on traits may vary by species. We also evaluated where possible whether the effect of metal concentrations on traits vary by water hardness, exposure duration, or whether the metals were delivered in aqueous solution or via food. We surveyed > 200 papers, resulting in a set of 32 experimental studies representing 446 trials where the results were presented compared with Daphnia magna-the most commonly assayed species. We found qualitatively similar effects of Cu and Cd on life history traits that included reduction in reproduction and somatic growth rate and delay of maturation. Cladocera species showed marked variations in their susceptibility to metals, and D. magna was found to be the least sensitive species to sublethal changes in reproduction. The effects were largely consistent for aqueous vs. dietary food. Water hardness, where data were available, had no detectable effect. Available data indicate that exposure duration had no effect on the toxicity of Cu but did for D. magna reproductive response to Cd. Our study highlights the importance of including species identity when considering toxicological testing and regulation development.
Collapse
Affiliation(s)
- Shlair A Sadeq
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK.
| | - Andrew P Beckerman
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
27
|
Mehennaoui K, Cambier S, Serchi T, Ziebel J, Lentzen E, Valle N, Guérold F, Thomann JS, Giamberini L, Gutleb AC. Do the pristine physico-chemical properties of silver and gold nanoparticles influence uptake and molecular effects on Gammarus fossarum (Crustacea Amphipoda)? THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1200-1215. [PMID: 30189536 DOI: 10.1016/j.scitotenv.2018.06.208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/16/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
The specific and unique properties of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), make them of high interest for different scientific and industrial applications. Their increasing use will inevitably lead to their release in the environment and aquatic ecosystems where they may represent a threat to aquatic organisms. Being a widespread and important component of the aquatic macroinvertebrate assemblage, amphipods and more specifically Gammarus fossarum will certainly be exposed to AgNPs and AuNPs. For these reasons, G. fossarum was selected as model organism for this study. The aim of the present work was the evaluation of the influence of both size (20, 40 and 80 nm) and surface coating (citrate CIT, polyethylene glycol PEG) on the acute toxicity of AgNPs and AuNPs on G. fossarum. We investigated the effects of AgNPs and AuNPs on the uptake by G. fossarum, NP tissue distribution and the expression of stress related genes by the use of ICP-MS, NanoSIMS50, Cytoviva®, and Rt-qPCR, respectively. Ag and Au bioaccumulation revealed a significant surface-coating dependence, with CIT-AgNPs and CIT-AuNPs showing the higher bio-accumulation potential in G. fossarum as compared to PEG-NPs. Opposite to that, no size-dependent effects on the bioaccumulation potential was observed. SIMS imaging and CytoViva® revealed an influence of the type of metal on the tissue distribution after uptake, with AgNPs detected in the cuticle and the gills of G. fossarum, while AuNPs were detected in the gut area. Furthermore, AgNPs were found to up-regulate CuZnSOD gene expression while AuNPs led to its down-regulation. Modulation of SOD may indicate generation of reactive species of oxygen and a possible activation of antioxidant defence in order to prevent and defend the organism from oxidative stress. However, further investigations are still needed to better define the mechanisms underlying the observed AgNPs and AuNPs effects.
Collapse
Affiliation(s)
- Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg; Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine, Metz, France
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - Tommaso Serchi
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - Johanna Ziebel
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - Esther Lentzen
- Material Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - Nathalie Valle
- Material Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - François Guérold
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine, Metz, France
| | - Jean-Sébastien Thomann
- Material Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg
| | - Laure Giamberini
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine, Metz, France.
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, Belvaux, Luxembourg.
| |
Collapse
|
28
|
von Fumetti S, Blaurock K. Effects of the herbicide Roundup® on the metabolic activity of Gammarus fossarum Koch, 1836 (Crustacea; Amphipoda). ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1249-1260. [PMID: 30191520 DOI: 10.1007/s10646-018-1978-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Pesticides can easily reach surface waters via runoff and their potential to have detrimental impacts on freshwater organisms is high. Not much is known about how macroinvertebrates react to glyphosate contamination. In this study we investigated lethal and sublethal effects of the exposure of Gammarus fossarum to Roundup®, a glyphosate-based herbicide. The LC10 and LC50 values after 96 h were determined to be 0.65 ml/L Roundup® (230 mg/L glyphosate) and 0.96 ml/L Roundup® (340 mg/L glyphosate), respectively. As a sublethal measure of toxicity we conducted eight experiments with the feeding activity and the respiratory electron transport system (ETS) activity as endpoints. All experiments lasted seven days. Although the LC10 concentration of Roundup® was used for the feeding activity tests, 49% of the gammarids died before the end of the experiments, which is inconsistent with the calculated LC10-values. The feeding activity was significantly higher in Roundup®-enriched water (mean = 0.18 mg/mg x d) in comparison to pure spring water (mean = 0.079 mg/mg x d). No significant difference was observed between the ETS activity, which was determined after 24, 48 or 96 h after the start of the experiment, of the gammarids in Roundup® solution and in the control. The LC-values determined here are rather high, and exceed background glyphosate concentrations in most anthropogenically influenced surface waters. The increased feeding activity when exposed to Roundup® in combination with an unchanged ETS activity suggests effects on the metabolic efficiency of G. fossarum. We argue that Roundup® enhances the anabolic activity (feeding activity) in order to maintain the catabolic activity (ETS activity).
Collapse
Affiliation(s)
- Stefanie von Fumetti
- Department of Environmental Sciences, Biogeography Research Group, University of Basel, Basel, Switzerland.
| | - Katharina Blaurock
- Department of Hydrology, Faculty for Biology, Chemistry, and Earth Sciences, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
29
|
Identification of reference genes for RT-qPCR data normalization in Gammarus fossarum (Crustacea Amphipoda). Sci Rep 2018; 8:15225. [PMID: 30323236 PMCID: PMC6189083 DOI: 10.1038/s41598-018-33561-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 09/07/2018] [Indexed: 11/08/2022] Open
Abstract
Gene expression profiling via RT-qPCR is a robust technique increasingly used in ecotoxicology. Determination and validation of optimal reference genes is a requirement for initiating RT-qPCR experiments. To our best knowledge, this study is the first attempt of identifying a set of reference genes for the freshwater crustacean Gammarus fossarum. Six candidate genes (Actin, TUB, UB, SDH, Clathrin and GAPDH) were tested in order to determine the most stable ones in different stress conditions and to increase the robustness of RT-qPCR data. SDH and Clathrin appeared as the most stable ones. A validation was performed using G. fossarum samples exposed for 15 days to AgNO3, silver nanoparticles (AgNPs) 40 nm and gold nanoparticles (AuNPs) 40 nm. Effects on HSP90 were evaluated and data normalized using Clathrin and SDH. A down-regulation of HSP90 was observed when G. fossarum were exposed to AuNPs 40 nm whereas no effects were observed when G. fossarum were exposed to AgNPs 40 nm. This study highlights the importance of the preliminary determination of suitable reference genes for RT-qPCR experiments. Additionally, this study allowed, for the first time, the determination of a set of valuable genes that can be used in other RT-qPCR studies using G. fossarum as model organism.
Collapse
|
30
|
Hani YMI, Turies C, Palluel O, Delahaut L, Gaillet V, Bado-Nilles A, Porcher JM, Geffard A, Dedourge-Geffard O. Effects of chronic exposure to cadmium and temperature, alone or combined, on the threespine stickleback (Gasterosteus aculeatus): Interest of digestive enzymes as biomarkers. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:252-262. [PMID: 29677587 DOI: 10.1016/j.aquatox.2018.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/01/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
The development of predictive, sensitive and reliable biomarkers is of crucial importance for aquatic biomonitoring to assess the effects of chemical substances on aquatic organisms, especially when it comes to combined effects with other stressors (e.g. temperature). The first purpose of the present study was to evaluate the single and combined effects of 90 days of exposure to an environmental cadmium concentration (0.5 μg L-1) and two water temperatures (16 and 21 °C) on different parameters. These parameters are involved in (i) the antioxidant system (superoxide dismutase activity -SOD- and total glutathione levels -GSH-), (ii) the energy metabolism, i.e. energy reserves (glycogen, lipids, proteins) and digestive enzymes (trypsin, amylase, intestinal alkaline phosphatase -IAP-), and (iii) biometric parameters (weight, length, Fulton's condition factor, and the gonadosomatic index -GSI-) of threespine stickleback (Gasterosteus aculeatus). The second purpose was to determine the interest of the three digestive enzymes as biomarkers in comparison with the other parameters. The higher temperature (21 °C) impacted the anti-oxidant and energy reserve parameters. In liver, GSH levels increased on day 60, while SOD decreased on days 15 and 90, with a significant decrease of protein and lipid energy reserves on day 90. In muscle, the higher temperature decreased SOD activity only on day 90. G. aculeatus biometric parameters were also impacted by the higher temperature, which limited stickleback growth after 90 days of exposure. In female sticklebacks, the GSI peaked on day 60 and decreased sharply on day 90, while the highest values were reached at day 90 in the control groups, suggesting impaired reproduction in sticklebacks raised at 21 °C. These results suggest that 21 °C is an upper-limit temperature for long-term physiological processes in sticklebacks. In contrast, very low-concentration cadmium exposure had no effect on classical biomarkers (energy reserves, antioxidant parameters, biometric parameters). However, digestive enzymes showed an interesting sensitivity to cadmium, which was emphasized by high temperature. The activity of the three digestive enzymes decreased significantly on day 90 when sticklebacks were exposed to cadmium alone, while the decrease was stronger and was recorded earlier (from day 15) when they were exposed to the cadmium-temperature combination. Compared to conventional measurements, digestive enzymes responded rapidly. This could be an important advantage for them to be used as early warning tools to reflect the health status of organisms, particularly for trypsin and IAP activities.
Collapse
Affiliation(s)
- Younes Mohamed Ismail Hani
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Verneuil-en-Halatte, France, France; Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, Reims, France
| | - Cyril Turies
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Verneuil-en-Halatte, France, France
| | - Olivier Palluel
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Verneuil-en-Halatte, France, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, Reims, France
| | - Véronique Gaillet
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, Reims, France
| | - Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Verneuil-en-Halatte, France, France
| | - Jean-Marc Porcher
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Verneuil-en-Halatte, France, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, Reims, France
| | - Odile Dedourge-Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des milieux aquatiques), Moulin de la Housse, Reims, France.
| |
Collapse
|
31
|
Hani YMI, Marchand A, Turies C, Kerambrun E, Palluel O, Bado-Nilles A, Beaudouin R, Porcher JM, Geffard A, Dedourge-Geffard O. Digestive enzymes and gut morphometric parameters of threespine stickleback (Gasterosteus aculeatus): Influence of body size and temperature. PLoS One 2018; 13:e0194932. [PMID: 29614133 PMCID: PMC5882091 DOI: 10.1371/journal.pone.0194932] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/13/2018] [Indexed: 11/18/2022] Open
Abstract
Determining digestive enzyme activity is of potential interest to obtain and understand valuable information about fish digestive physiology, since digestion is an elementary process of fish metabolism. We described for the first time (i) three digestive enzymes: amylase, trypsin and intestinal alkaline phosphatase (IAP), and (ii) three gut morphometric parameters: relative gut length (RGL), relative gut mass (RGM) and Zihler’s index (ZI) in threespine stickleback (Gasterosteus aculeatus), and we studied the effect of temperature and body size on these parameters. When mimicking seasonal variation in temperature, body size had no effect on digestive enzyme activity. The highest levels of amylase and trypsin activity were observed at 18°C, while the highest IAP activity was recorded at 20°C. When sticklebacks were exposed to three constant temperatures (16, 18 and 21°C), a temporal effect correlated to fish growth was observed with inverse evolution patterns between amylase activity and the activities of trypsin and IAP. Temperature (in both experiments) had no effect on morphometric parameters. However, a temporal variation was recorded for both RGM (in the second experiment) and ZI (in both experiments), and the later was correlated to fish body mass.
Collapse
Affiliation(s)
- Younes Mohamed Ismail Hani
- Unité mixte de recherche Stress Environnementaux et Biosurveillance des milieux aquatiques (UMR-I 02 SEBIO), Reims, France
- Institut National de l’Environnement Industriel et des Risques (INERIS), Unité d’Ecotoxicologie in vitro et in vivo (ECOT), Verneuil-en-Halatte, France
- Université de Reims Champagne Ardenne (URCA), Moulin de la Housse, Reims, France
| | - Adrien Marchand
- Unité mixte de recherche Stress Environnementaux et Biosurveillance des milieux aquatiques (UMR-I 02 SEBIO), Reims, France
- Institut National de l’Environnement Industriel et des Risques (INERIS), Unité d’Ecotoxicologie in vitro et in vivo (ECOT), Verneuil-en-Halatte, France
| | - Cyril Turies
- Unité mixte de recherche Stress Environnementaux et Biosurveillance des milieux aquatiques (UMR-I 02 SEBIO), Reims, France
- Institut National de l’Environnement Industriel et des Risques (INERIS), Unité d’Ecotoxicologie in vitro et in vivo (ECOT), Verneuil-en-Halatte, France
| | - Elodie Kerambrun
- Unité mixte de recherche Stress Environnementaux et Biosurveillance des milieux aquatiques (UMR-I 02 SEBIO), Reims, France
- Université de Reims Champagne Ardenne (URCA), Moulin de la Housse, Reims, France
| | - Olivier Palluel
- Unité mixte de recherche Stress Environnementaux et Biosurveillance des milieux aquatiques (UMR-I 02 SEBIO), Reims, France
- Institut National de l’Environnement Industriel et des Risques (INERIS), Unité d’Ecotoxicologie in vitro et in vivo (ECOT), Verneuil-en-Halatte, France
| | - Anne Bado-Nilles
- Unité mixte de recherche Stress Environnementaux et Biosurveillance des milieux aquatiques (UMR-I 02 SEBIO), Reims, France
- Institut National de l’Environnement Industriel et des Risques (INERIS), Unité d’Ecotoxicologie in vitro et in vivo (ECOT), Verneuil-en-Halatte, France
| | - Rémy Beaudouin
- Institut National de l’Environnement Industriel et des Risques (INERIS), Unité Modèles pour l’Ecotoxicologie et la Toxicologie (METO), Verneuil-en-Halatte, France
| | - Jean-Marc Porcher
- Unité mixte de recherche Stress Environnementaux et Biosurveillance des milieux aquatiques (UMR-I 02 SEBIO), Reims, France
- Institut National de l’Environnement Industriel et des Risques (INERIS), Unité d’Ecotoxicologie in vitro et in vivo (ECOT), Verneuil-en-Halatte, France
| | - Alain Geffard
- Unité mixte de recherche Stress Environnementaux et Biosurveillance des milieux aquatiques (UMR-I 02 SEBIO), Reims, France
- Université de Reims Champagne Ardenne (URCA), Moulin de la Housse, Reims, France
| | - Odile Dedourge-Geffard
- Unité mixte de recherche Stress Environnementaux et Biosurveillance des milieux aquatiques (UMR-I 02 SEBIO), Reims, France
- Université de Reims Champagne Ardenne (URCA), Moulin de la Housse, Reims, France
- * E-mail:
| |
Collapse
|
32
|
Baudrimont M, Andrei J, Mornet S, Gonzalez P, Mesmer-Dudons N, Gourves PY, Jaffal A, Dedourge-Geffard O, Geffard A, Geffard O, Garric J, Feurtet-Mazel A. Trophic transfer and effects of gold nanoparticles (AuNPs) in Gammarus fossarum from contaminated periphytic biofilm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11181-11191. [PMID: 28091991 DOI: 10.1007/s11356-017-8400-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
This work addressed the trophic transfer and effects of functionalized gold nanoparticles (AuNPs) from periphytic biofilms to the crustacean Gammarus fossarum. Biofilms were exposed for 48 h to 10 nm positively charged functionalized AuNPs at two concentrations, 4.6 and 46 mg/L, and crustaceans G. fossarum grazed on these for 7 days, with daily biofilm renewal. Gold bioaccumulation in biofilm and crustacean were measured to estimate the trophic transfer ratio of these AuNP, and, for the first time, a transcriptomic approach and transmission electron microscopy observations in the crustacean were made. These two approaches showed cellular damage caused by oxidative stress and, in particular, an impact of these AuNPs on mitochondrial respiration. Modulation of digestive enzyme activity was also observed, suggesting modifications of digestive functions. The damage due to these nanoparticles could then have vital consequences for the organisms during chronic exposure.
Collapse
Affiliation(s)
- Magalie Baudrimont
- University of Bordeaux, CNRS, UMR EPOC 5805, Aquatic Ecotoxicology, Place du Dr Peyneau, 33120, Arcachon, France.
| | - Jennifer Andrei
- University of Bordeaux, CNRS, UMR EPOC 5805, Aquatic Ecotoxicology, Place du Dr Peyneau, 33120, Arcachon, France
| | - Stéphane Mornet
- ICMCB, 87 Avenue du Dr Albert Schweitzer, 33600, Pessac, France
| | - Patrice Gonzalez
- University of Bordeaux, CNRS, UMR EPOC 5805, Aquatic Ecotoxicology, Place du Dr Peyneau, 33120, Arcachon, France
| | - Nathalie Mesmer-Dudons
- University of Bordeaux, CNRS, UMR EPOC 5805, Aquatic Ecotoxicology, Place du Dr Peyneau, 33120, Arcachon, France
| | - Pierre-Yves Gourves
- University of Bordeaux, CNRS, UMR EPOC 5805, Aquatic Ecotoxicology, Place du Dr Peyneau, 33120, Arcachon, France
| | - Ali Jaffal
- Université de Reims Champagne Ardenne, UMR-I 02 SEBIO, Campus du Moulin de la Housse, BP 1039, 51687, Reims cedex 2, France
| | - Odile Dedourge-Geffard
- Université de Reims Champagne Ardenne, UMR-I 02 SEBIO, Campus du Moulin de la Housse, BP 1039, 51687, Reims cedex 2, France
| | - Alain Geffard
- Université de Reims Champagne Ardenne, UMR-I 02 SEBIO, Campus du Moulin de la Housse, BP 1039, 51687, Reims cedex 2, France
| | - Olivier Geffard
- IRSTEA, 5 rue de la Doua, CS70077, 69626, Villeurbanne Cedex, France
| | - Jeanne Garric
- IRSTEA, 5 rue de la Doua, CS70077, 69626, Villeurbanne Cedex, France
| | - Agnès Feurtet-Mazel
- University of Bordeaux, CNRS, UMR EPOC 5805, Aquatic Ecotoxicology, Place du Dr Peyneau, 33120, Arcachon, France
| |
Collapse
|
33
|
Marmonier P, Maazouzi C, Baran N, Blanchet S, Ritter A, Saplairoles M, Dole-Olivier MJ, Galassi DMP, Eme D, Dolédec S, Piscart C. Ecology-based evaluation of groundwater ecosystems under intensive agriculture: A combination of community analysis and sentinel exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:1353-1366. [PMID: 28973847 DOI: 10.1016/j.scitotenv.2017.09.191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/06/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Ecological criteria are needed for a comprehensive evaluation of groundwater ecosystem health by including biological components with the physical and chemical properties that are already required by European directives. Two methodological approaches to assess the ecological status of groundwater ecosystems were combined in two alluvial plains (the Ariège and Hers Rivers, southwestern France) varying in agriculture intensity (from grassland to crop rotation including maize and sunflower, and to maize monoculture). In the first approach, the composition of invertebrate assemblages (only obligate-groundwater crustaceans, i.e. stygobionts) sampled in 28 wells differing in their land use contexts was analysed. Abundance, species richness, and assemblage composition significantly changed with agricultural land use or urbanization around the wells. In the second approach, we tested an in situ exposure of sentinel organisms to quantify their response to the environmental pressures. The epigean and native amphipod species Gammarus cf. orinos was used as the sentinel species. Amphipods (30 individuals in each of 10 wells) were exposed for one week to the in situ conditions at two seasons with contrasted concentrations of pollutants. The Ecophysiological Index (EPI) synthetizing the survival rates and energetic storage decreased in wells with low oxygen and high nitrate concentrations, but only during the highest contamination period. Atrazine-related compounds negatively impacted sentinel health whatever the season. The combination of these two approaches may have major applications for orientating groundwater ecosystem management.
Collapse
Affiliation(s)
- Pierre Marmonier
- UMR-CNRS 5023 LEHNA, Université de Lyon, Université Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France.
| | - Chafik Maazouzi
- UMR-CNRS 5023 LEHNA, Université de Lyon, Université Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Nicole Baran
- BRGM (French Geological Survey), 3 Avenue Claude Guillemin, BP 6009, 45060 Orléans Cedex 2, France
| | - Simon Blanchet
- Centre National de la Recherche Scientifique (CNRS), Station d'Ecologie Expérimentale UMR 5321, F-09200 Moulis, France; Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, École Nationale de Formation Agronomique (ENFA), UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse Cedex 4, France
| | - Amy Ritter
- Centre National de la Recherche Scientifique (CNRS), Station d'Ecologie Expérimentale UMR 5321, F-09200 Moulis, France
| | - Maritxu Saplairoles
- BRGM (French Geological Survey), 3 rue Marie Curie, B.P. 49, 31527 Ramonville-Saint-Agne, France
| | - Marie-José Dole-Olivier
- UMR-CNRS 5023 LEHNA, Université de Lyon, Université Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Diana M P Galassi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - David Eme
- UMR-CNRS 5023 LEHNA, Université de Lyon, Université Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Sylvain Dolédec
- UMR-CNRS 5023 LEHNA, Université de Lyon, Université Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Christophe Piscart
- UMR-CNRS 5023 LEHNA, Université de Lyon, Université Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| |
Collapse
|
34
|
Lebrun JD, Uher E, Fechner LC. Behavioural and biochemical responses to metals tested alone or in mixture (Cd-Cu-Ni-Pb-Zn) in Gammarus fossarum: From a multi-biomarker approach to modelling metal mixture toxicity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:160-167. [PMID: 29096089 DOI: 10.1016/j.aquatox.2017.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Metals are usually present as mixtures at low concentrations in aquatic ecosystems. However, the toxicity and sub-lethal effects of metal mixtures on organisms are still poorly addressed in environmental risk assessment. Here we investigated the biochemical and behavioural responses of Gammarus fossarum to Cu, Cd, Ni, Pb and Zn tested individually or in mixture (M2X) at concentrations twice the levels of environmental quality standards (EQSs) from the European Water Framework Directive. The same metal mixture was also tested with concentrations equivalent to EQSs (M1X), thus in a regulatory context, as EQSs are proposed to protect aquatic biota. For each exposure condition, mortality, locomotion, respiration and enzymatic activities involved in digestive metabolism and moult were monitored over a 120h exposure period. Multi-metric variations were summarized by the integrated biomarker response index (IBR). Mono-metallic exposures shed light on biological alterations occurring at environmental exposure levels in gammarids and depending on the considered metal and gender. As regards mixtures, biomarkers were altered for both M2X and M1X. However, no additive or synergistic effect of metals was observed comparing to mono-metallic exposures. Indeed, bioaccumulation data highlighted competitive interactions between metals in M2X, decreasing subsequently their internalisation and toxicity. IBR values indicated that the health of gammarids was more impacted by M1X than M2X, because of reduced competitions and enhanced uptakes of metals for the mixture at lower, EQS-like concentrations. Models using bioconcentration data obtained from mono-metallic exposures generated successful predictions of global toxicity both for M1X and M2X. We conclude that sub-lethal effects of mixtures identified by the multi-biomarker approach can lead to disturbances in population dynamics of gammarids. Although IBR-based models offer promising lines of enquiry to predict metal mixture toxicity, further studies are needed to confirm their predictive quality on larger ranges of metallic combinations before their use in field conditions.
Collapse
Affiliation(s)
- Jérémie D Lebrun
- Irstea, UR HBAN - Artemhys, CS 10030, 92761 Antony cedex, France; Federation of Research FIRE, FR-3020, 75005 Paris, France.
| | - Emmanuelle Uher
- Irstea, UR HBAN - Artemhys, CS 10030, 92761 Antony cedex, France; Federation of Research FIRE, FR-3020, 75005 Paris, France
| | | |
Collapse
|
35
|
Urien N, Farfarana A, Uher E, Fechner LC, Chaumot A, Geffard O, Lebrun JD. Comparison in waterborne Cu, Ni and Pb bioaccumulation kinetics between different gammarid species and populations: Natural variability and influence of metal exposure history. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:245-255. [PMID: 29107926 DOI: 10.1016/j.aquatox.2017.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/17/2017] [Accepted: 10/22/2017] [Indexed: 06/07/2023]
Abstract
Kinetic parameters (uptake from solution and elimination rate constants) of Cu, Ni and Pb bioaccumulation were determined from two Gammarus pulex and three Gammarus fossrum wild populations collected from reference sites throughout France in order to assess the inter-species and the natural inter-population variability of metal bioaccumulation kinetics in that sentinel organism. For that, each population was independently exposed for seven days to either 2.5μgL-1 Cu (39.3nM), 40μgL-1 Ni (681nM) or 10μgL-1 Pb (48.3nM) in laboratory controlled conditions, and then placed in unexposed microcosms for a 7-day depuration period. In the same way, the possible influence of metal exposure history on subsequent metal bioaccumulation kinetics was addressed by collecting wild gammarids from three populations inhabiting stations contaminated either by Cd, Pb or both Pb and Ni (named pre-exposed thereafter). In these pre-exposed organisms, assessment of any changes in metal bioaccumulation kinetics was achieved by comparison with the natural variability of kinetic parameters defined from reference populations. Results showed that in all studied populations (reference and pre-exposed) no significant Cu bioaccumulation was observed at the exposure concentration of 2.5μgL-1. Concerning the reference populations, no significant differences in Ni and Pb bioaccumulation kinetics between the two species (G. pulex and G. fossarum) was observed allowing us to consider all the five reference populations to determine the inter-population natural variability, which was found to be relatively low (kinetic parameters determined for each population remained within a factor of 2 of the minimum and maximum values). Organisms from the population exhibiting a Pb exposure history presented reduced Ni uptake and elimination rate constants, whereas no influence on Ni kinetic parameters was observed in organisms from the population exhibiting an exposure history to both Ni and Pb. Furthermore Pb bioaccumulation kinetics were unaffected whatever the condition of pre-exposure in natural environment. Finally, these results highlight the complexity of confounding factors, such as metal exposure history, that influence metal bioaccumulation processes and showed that pre-exposure to one metal can cause changes in the bioaccumulation kinetics of other metals. These results also address the question of the underlying mechanisms developed by organisms to cope with metal contamination.
Collapse
Affiliation(s)
- N Urien
- Irstea, UR HBAN - Artemhys, 1 Rue Pierre-Gilles de Gennes, CS 10030, F-92761 Antony Cedex, France.
| | - A Farfarana
- Irstea, UR HBAN - Artemhys, 1 Rue Pierre-Gilles de Gennes, CS 10030, F-92761 Antony Cedex, France
| | - E Uher
- Irstea, UR HBAN - Artemhys, 1 Rue Pierre-Gilles de Gennes, CS 10030, F-92761 Antony Cedex, France
| | - L C Fechner
- Irstea, UR HBAN - Artemhys, 1 Rue Pierre-Gilles de Gennes, CS 10030, F-92761 Antony Cedex, France
| | - A Chaumot
- Irstea, UR MALY, Laboratoire d'écotoxicologie, Centre de Lyon-Villeurbanne, F-69625 Villeurbanne, France
| | - O Geffard
- Irstea, UR MALY, Laboratoire d'écotoxicologie, Centre de Lyon-Villeurbanne, F-69625 Villeurbanne, France
| | - J D Lebrun
- Irstea, UR HBAN - Artemhys, 1 Rue Pierre-Gilles de Gennes, CS 10030, F-92761 Antony Cedex, France; FIRE FR-3020,4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
36
|
Lv X, Huang B, Zhu X, Jiang Y, Chen B, Tao Y, Zhou J, Cai Z. Mechanisms underlying the acute toxicity of fullerene to Daphnia magna: Energy acquisition restriction and oxidative stress. WATER RESEARCH 2017; 123:696-703. [PMID: 28715779 DOI: 10.1016/j.watres.2017.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
The toxicity of fullerene (C60) to Daphnia magna has been a subject with increasing concerns. Nevertheless, the underlying mechanisms are still poorly understood. In the present study, we evaluated various aspects of the toxicological impacts of C60 on daphnia. After a 72-h exposure, the 50% effective concentration of C60 was 14.9 mg/L for immobilization, and 16.3 mg/L for mortality. Daphnia exhibited a quick uptake of C60 with a body burden value of 413 μg/g in wet weight in the 1 mg/L C60 treatment group. Transmission electron microscopy observations revealed that C60 had mainly accumulated in the guts of organisms. The feeding rate, gut ultra-structural alterations, and digestive enzyme activities of daphnia in response to C60 treatment were evaluated. The results revealed a significant reduction in the digestion and filtration rates, as well as gut impairment and inhibition of digestive enzymes (cellulose, amylase, trypsin, and β-galactosidase) activity of C60 exposed daphnia. In addition, the changes in superoxide dismutase (SOD) and malondialdehyde (MDA) levels in daphnia under C60 exposures were also discovered. These results, for the first time, provide systematic evidence that C60 caused a restriction in energy acquisition and increased oxidative damage in daphnia, which might be related to the bioaccumulation of C60 and finally led to the immobility and mortality.
Collapse
Affiliation(s)
- Xiaohui Lv
- Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, PR China; Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| | - Boming Huang
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| | - Xiaoshan Zhu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China.
| | - Yuelu Jiang
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| | - Baiyang Chen
- Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, PR China
| | - Yi Tao
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| | - Jin Zhou
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| | - Zhonghua Cai
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| |
Collapse
|
37
|
Biodegradable and Petroleum-Based Microplastics Do Not Differ in Their Ingestion and Excretion but in Their Biological Effects in a Freshwater Invertebrate Gammarus fossarum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14070774. [PMID: 28703776 PMCID: PMC5551212 DOI: 10.3390/ijerph14070774] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022]
Abstract
Research on the uptake and effects of bioplastics by aquatic organisms is still in its infancy. Here, we aim to advance the field by comparing uptake and effects of microplastic particles (MPP) of a biodegradable bioMPP (polyhydroxybutyrate (PHB)) and petroleum-based MPP (polymethylmethacrylate (PMMA)) in the freshwater amphipod Gammarus fossarum. Ingestion of both MPP in different particle sizes (32–250 µm) occurred after 24 h, with highest ingestion of particles in the range 32–63 µm and almost complete egestion after 64 h. A four-week effect-experiment showed a significant decrease of the assimilation efficiency in amphipods exposed to the petroleum-based MPP from week two onwards. The petroleum-based PMMA affected assimilation efficiency significantly in contrast to the biodegradable PHB, but overall differences in direct comparison of MPP types were small. Both MPP types led to a significantly lower wet weight gain relative to the control treatments. After four weeks, differences between both MPP types and silica, used as a natural particle control, were detected. In summary, these results suggest that both MPP types provoke digestive constraints on the amphipods, which go beyond those of natural non-palatable particles. This highlights the need for more detailed research comparing environmental effects of biodegradable and petroleum-based MPP and testing those against naturally occurring particle loads.
Collapse
|
38
|
Labaude S, Rigaud T, Cézilly F. Additive effects of temperature and infection with an acanthocephalan parasite on the shredding activity of Gammarus fossarum (Crustacea: Amphipoda): the importance of aggregative behavior. GLOBAL CHANGE BIOLOGY 2017; 23:1415-1424. [PMID: 27591398 DOI: 10.1111/gcb.13490] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
Climate change can have critical impacts on the ecological role of keystone species, leading to subsequent alterations within ecosystems. The consequences of climate change may be best predicted by understanding its interaction with the cumulative effects of other stressors, although this approach is rarely adopted. However, whether this interaction is additive or interactive can hardly be predicted from studies examining a single factor at a time. In particular, biotic interactions are known to induce modifications in the functional role of many species. Here, we explored the effect of temperature on leaf consumption by a keystone freshwater shredder, the amphipod Gammarus fossarum. This species is found at high densities in the wild and relies on aggregation as an antipredator behavior. In addition, gammarids regularly harbor acanthocephalan parasites that are known to induce multiple effects on their hosts, including modifications on their functional role. We thus assessed the cumulative effect of both intraspecific interactions and parasitism. Consumption tests were conducted on gammarids, either naturally infected with Pomphorhynchus tereticollis or uninfected, feeding alone or in groups. Our results show that increased temperatures induced a significant increase in consumption, but only to a certain extent. Interestingly, consumption at the highest temperature depended on amphipod density: Whereas a decrease was observed for single individuals, no such effect on feeding was observed for individuals in groups. In addition, infection by acanthocephalan parasites per se significantly negatively impacted the shredding role of gammarids. Overall, the combined effects of parasitism and temperature appeared to be additive. Thus, future studies focusing on the impact of climate change on the functional role of keystone species may benefit from a multimodal approach under realistic conditions to derive accurate predictions.
Collapse
Affiliation(s)
- Sophie Labaude
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, Dijon, France
| | - Thierry Rigaud
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, Dijon, France
| | - Frank Cézilly
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, Dijon, France
| |
Collapse
|
39
|
Glavan G, Milivojević T, Božič J, Sepčić K, Drobne D. Feeding Preference and Sub-chronic Effects of ZnO Nanomaterials in Honey Bees (Apis mellifera carnica). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 72:471-480. [PMID: 28271210 DOI: 10.1007/s00244-017-0385-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/18/2017] [Indexed: 06/06/2023]
Abstract
The extensive production of zinc oxide (ZnO) nanomaterials (NMs) may result in high environmental zinc burdens. Honeybees need to have special concern due to their crucial role in pollination. Our previous study indicated that low concentrations of ZnO NMs, corresponding to 0.8 mg Zn/mL, have a neurotoxic potential for honeybees after a 10-day oral exposure. Present study was designed to investigate the effect of a short, dietary exposure of honeybees to ZnO NMs at concentrations 0.8-8 mg Zn/mL on consumption rate, food preference, and two enzymatic biomarkers-a stress-related glutathione S-transferase (GST) and the neurotoxicity biomarker acetylcholinesterase (AChE). Consumption rate showed a tendency toward a decrease feeding with the increasing concentrations of ZnO NMs. None of Zn NMs concentrations caused alterations in mortality rate and in the activities of brain GST and AChE. To investigate if there is an avoidance response against Zn presence in food, 24-h two-choice tests were performed with control sucrose diet versus sucrose suspensions with different concentrations of ZnO NMs added. We demonstrated that honeybees prefer ZnO NMs ZnO NMs containing suspensions, even at highest Zn concentrations tested, compared with the control diet. This indicates that they might be able to perceive the presence of ZnO NMs in sucrose solution. Because honeybees feed frequently the preference towards ZnO NMs might have a high impact on their survival when exposed to these NMs.
Collapse
Affiliation(s)
- Gordana Glavan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1000, Slovenia.
| | - Tamara Milivojević
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1000, Slovenia
| | - Janko Božič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1000, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1000, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1000, Slovenia
| |
Collapse
|
40
|
Prygiel E, Billon G, François A, Dumoulin D, Chaumot A, Geffard O, Criquet J, Prygiel J. Active biomonitoring for assessing effects of metal polluted sediment resuspension on gammarid amphipods during fluvial traffic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:129-139. [PMID: 27552046 DOI: 10.1016/j.envpol.2016.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/28/2016] [Accepted: 08/03/2016] [Indexed: 06/06/2023]
Abstract
The resuspension of polluted sediments by boat traffic could release substantial amounts of metals to the water column, affecting at the same time their bioavailability. In order to characterize the impact of sediment resuspensions on biota, caged amphipods have been deployed on three different channelized watercourses in Northern France. Firstly, the biological responses of transplanted freshwater gammarid amphipods, Gammarus fossarum, described by trace metal accumulation, feeding and reproduction activities were quite similar for the three water courses despite the differences of metal contamination and navigability. Secondly, the concentrations of metals accumulated in gammarids never exceeded the contamination thresholds previously defined for Co, Cu, Cr and Zn. Values were in the same order of magnitude whatever the studied site despite: (i) large differences noticed in the sediment quality and (ii) some concentrations in the overlying waters exceeding the Environmental Quality Standards (EQS) defined by the Water Framework Directive. Conversely, Pb was highly bioaccumulated with values systematically exceeding the threshold value whatever the site. Therefore, the impact of navigation cannot be proved and the difference between the 3 monitoring periods is rather attributed to environmental variability, probably linked to the seasonality. Moreover, this study also confirms that organisms sampled from a local population in the vicinity of the three studied watercourses could be used as test organisms, leading to similar results than the ones obtained with reference gammarids initially used for developing all the biological responses. This would simplify and then promote the development of studies based on gammarid amphipod, G. fossarum, as bioindicators.
Collapse
Affiliation(s)
- E Prygiel
- University Lille 1, Laboratory LASIR - UMR CNRS 8516, Cité Scientifique, 59655 Villeneuve d'Ascq, France; CEREMA, Direction Territoriale Nord-Picardie, 151 rue de Paris, 02100 Saint-Quentin, France
| | - G Billon
- University Lille 1, Laboratory LASIR - UMR CNRS 8516, Cité Scientifique, 59655 Villeneuve d'Ascq, France
| | - A François
- IRSTEA, UR MAEP Ecotoxicology, 5 rue de la Doua, 69626 Villeurbanne Cedex, France
| | - D Dumoulin
- University Lille 1, Laboratory LASIR - UMR CNRS 8516, Cité Scientifique, 59655 Villeneuve d'Ascq, France
| | - A Chaumot
- IRSTEA, UR MAEP Ecotoxicology, 5 rue de la Doua, 69626 Villeurbanne Cedex, France
| | - O Geffard
- IRSTEA, UR MAEP Ecotoxicology, 5 rue de la Doua, 69626 Villeurbanne Cedex, France.
| | - J Criquet
- University Lille 1, Laboratory LASIR - UMR CNRS 8516, Cité Scientifique, 59655 Villeneuve d'Ascq, France
| | - J Prygiel
- University Lille 1, Laboratory LASIR - UMR CNRS 8516, Cité Scientifique, 59655 Villeneuve d'Ascq, France; Agence de l'Eau Artois-Picardie, 200 rue Marceline, 59500 Douai, France
| |
Collapse
|
41
|
High-throughput proteome dynamics for discovery of key proteins in sentinel species: Unsuspected vitellogenins diversity in the crustacean Gammarus fossarum. J Proteomics 2016; 146:207-14. [DOI: 10.1016/j.jprot.2016.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 01/10/2023]
|
42
|
Effect of Silymarin Supplementation on Nickel Oxide Nanoparticle Toxicity to Rainbow Trout (Oncorhynchus mykiss) Fingerlings: Pancreas Tissue Histopathology and Alkaline Protease Activity. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE 2016. [DOI: 10.1007/s40995-016-0052-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Filipović Marijić V, Dragun Z, Sertić Perić M, Matoničkin Kepčija R, Gulin V, Velki M, Ečimović S, Hackenberger BK, Erk M. Investigation of the soluble metals in tissue as biological response pattern to environmental pollutants (Gammarus fossarum example). CHEMOSPHERE 2016; 154:300-309. [PMID: 27060638 DOI: 10.1016/j.chemosphere.2016.03.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/22/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
In the present study, Gammarus fossarum was used to investigate the bioaccumulation and toxic effects of aquatic pollutants in the real environmental conditions. The novelty of the study is the evaluation of soluble tissue metal concentrations in gammarids as indicators in early assessment of metal exposure. In the Sutla River, industrially/rurally/agriculturally influenced catchment in North-Western Croatia, physico-chemical water properties pointed to disturbed ecological status, which was reflected on population scale as more than 50 times lower gammarid density compared to the reference location, Črnomerec Stream. Significantly higher levels of soluble toxic metals (Al, As, Cd, Pb, Sb, Sn, Sr) were observed in gammarids from the Sutla River compared to the reference site and reflected the data on higher total dissolved metal levels in the river water at that site. The soluble metal estimates were supplemented with the common multibiomarker approach, which showed significant biological responses for decreased acetylcholinesterase activity and increased total soluble protein concentrations, confirming stressed environmental conditions for biota in the Sutla River. Biomarker of metal exposure, metallothionein, was not induced and therefore, toxic effect of metals was not confirmed on molecular level. Comparable between-site pattern of soluble toxic metals in gammarids and total dissolved metal levels in water suggests that prior to biomarker response and observed toxic impact, soluble metals in tissue might be used as early warning signs of metal impact in the aquatic environment and improve the assessment of water quality.
Collapse
Affiliation(s)
- Vlatka Filipović Marijić
- Division for Marine and Environmental Research, "Ruđer Bošković" Institute, P.O. Box 180, 10000, Zagreb, Croatia.
| | - Zrinka Dragun
- Division for Marine and Environmental Research, "Ruđer Bošković" Institute, P.O. Box 180, 10000, Zagreb, Croatia.
| | - Mirela Sertić Perić
- Department of Zoology, Faculty of Science, University of Zagreb, Roosevelt trg 6, 10000, Zagreb, Croatia.
| | - Renata Matoničkin Kepčija
- Department of Zoology, Faculty of Science, University of Zagreb, Roosevelt trg 6, 10000, Zagreb, Croatia.
| | - Vesna Gulin
- PrimeVigilance Zagreb d.o.o., Oreškovićeva 20A, 10000, Zagreb, Croatia.
| | - Mirna Velki
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana Street 8/A, 31000, Osijek, Croatia.
| | - Sandra Ečimović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana Street 8/A, 31000, Osijek, Croatia.
| | - Branimir K Hackenberger
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana Street 8/A, 31000, Osijek, Croatia.
| | - Marijana Erk
- Division for Marine and Environmental Research, "Ruđer Bošković" Institute, P.O. Box 180, 10000, Zagreb, Croatia.
| |
Collapse
|
44
|
Quintaneiro C, Ranville JF, Nogueira AJA. Physiological effects of essential metals on two detritivores: Atyaephyra desmarestii (Millet) and Echinogammarus meridionalis (Pinkster). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1442-1448. [PMID: 26472099 DOI: 10.1002/etc.3284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/30/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
Freshwater ecosystems are essential for humans; however, input of several types of contamination has led to the degradation of these ecosystems. Thus, it is urgent to assess their health to allow actions for prevention and remediation. The level of trace metals can be enhanced by natural or anthropogenic sources. Essential metals, such as copper and zinc, become toxic when present in the environment above threshold concentrations. To evaluate the physiological effects of these 2 essential metals for 2 freshwater detritivores, the shrimp Atyaephyra desmarestii and the amphipod Echinogammarus meridionalis, acute tests were performed. Forty-eight hour median lethal concentration (LC50) values were estimated for these species using static bioassays with copper and zinc. Sublethal assays for both metals with several phases were also done to evaluate the effects on feeding behavior. The LC50 values of copper for the shrimp A. desmarestii and amphipod E. meridionalis were 0.128 mg/L and 0.050 mg/L and those of zinc were 7.951 mg/L and 11.860 mg/L, respectively. The results indicated that copper is more toxic to both species. Only E. meridionalis showed deleterious effects of copper on feeding rate. Zinc showed some tendency for feeding inhibition in both species. Environ Toxicol Chem 2016;35:1442-1448. © 2015 SETAC.
Collapse
Affiliation(s)
- Carla Quintaneiro
- CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - James F Ranville
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado, USA
| | - António J A Nogueira
- CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
45
|
Urien N, Lebrun JD, Fechner LC, Uher E, François A, Quéau H, Coquery M, Chaumot A, Geffard O. Environmental relevance of laboratory-derived kinetic models to predict trace metal bioaccumulation in gammarids: Field experimentation at a large spatial scale (France). WATER RESEARCH 2016; 95:330-339. [PMID: 27016643 DOI: 10.1016/j.watres.2016.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/03/2016] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
Kinetic models have become established tools for describing trace metal bioaccumulation in aquatic organisms and offer a promising approach for linking water contamination to trace metal bioaccumulation in biota. Nevertheless, models are based on laboratory-derived kinetic parameters, and the question of their relevance to predict trace metal bioaccumulation in the field is poorly addressed. In the present study, we propose to assess the capacity of kinetic models to predict trace metal bioaccumulation in gammarids in the field at a wide spatial scale. The field validation consisted of measuring dissolved Cd, Cu, Ni and Pb concentrations in the water column at 141 sites in France, running the models with laboratory-derived kinetic parameters, and comparing model predictions and measurements of trace metal concentrations in gammarids caged for 7 days to the same sites. We observed that gammarids poorly accumulated Cu showing the limited relevance of that species to monitor Cu contamination. Therefore, Cu was not considered for model predictions. In contrast, gammarids significantly accumulated Pb, Cd, and Ni over a wide range of exposure concentrations. These results highlight the relevance of using gammarids for active biomonitoring to detect spatial trends of bioavailable Pb, Cd, and Ni contamination in freshwaters. The best agreements between model predictions and field measurements were observed for Cd with 71% of good estimations (i.e. field measurements were predicted within a factor of two), which highlighted the potential for kinetic models to link Cd contamination to bioaccumulation in the field. The poorest agreements were observed for Ni and Pb (39% and 48% of good estimations, respectively). However, models developed for Ni, Pb, and to a lesser extent for Cd, globally underestimated bioaccumulation in caged gammarids. These results showed that the link between trace metal concentration in water and in biota remains complex, and underlined the limits of these models, in their present form, to assess trace metal bioavailability in the field. We suggest that to improve model predictions, kinetic models need to be complemented, particularly by further assessing the influence of abiotic factors on trace metal uptake, and the relative contribution of the trophic route in the contamination of gammarids.
Collapse
Affiliation(s)
- N Urien
- Irstea, UR HBAN Hydrosystems and Bioprocesses, 1 rue Pierre-Gilles de Gennes, F-92761 Antony Cedex, France; FIRE FR-3020, 4 place Jussieu, 75005 Paris, France.
| | - J D Lebrun
- Irstea, UR HBAN Hydrosystems and Bioprocesses, 1 rue Pierre-Gilles de Gennes, F-92761 Antony Cedex, France; FIRE FR-3020, 4 place Jussieu, 75005 Paris, France
| | - L C Fechner
- Irstea, UR HBAN Hydrosystems and Bioprocesses, 1 rue Pierre-Gilles de Gennes, F-92761 Antony Cedex, France; FIRE FR-3020, 4 place Jussieu, 75005 Paris, France; AgroParisTech, 19 Avenue du Maine, F-75732 Paris Cedex 15, France
| | - E Uher
- Irstea, UR HBAN Hydrosystems and Bioprocesses, 1 rue Pierre-Gilles de Gennes, F-92761 Antony Cedex, France
| | - A François
- Irstea, UR MAEP Freshwater Systems, Ecology and Pollution, F-69626 Villeurbanne Cedex, France
| | - H Quéau
- Irstea, UR MAEP Freshwater Systems, Ecology and Pollution, F-69626 Villeurbanne Cedex, France
| | - M Coquery
- Irstea, UR MAEP Freshwater Systems, Ecology and Pollution, F-69626 Villeurbanne Cedex, France
| | - A Chaumot
- Irstea, UR MAEP Freshwater Systems, Ecology and Pollution, F-69626 Villeurbanne Cedex, France
| | - O Geffard
- Irstea, UR MAEP Freshwater Systems, Ecology and Pollution, F-69626 Villeurbanne Cedex, France
| |
Collapse
|
46
|
Jiang H, Kong X, Wang S, Guo H. Effect of Copper on Growth, Digestive and Antioxidant Enzyme Activities of Juvenile Qihe Crucian Carp, Carassius carassius, During Exposure and Recovery. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 96:333-340. [PMID: 26781633 DOI: 10.1007/s00128-016-1738-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
The toxicity of copper (Cu) on growth and activities of digestive and antioxidant enzymes in the hepatopancreas and intestine of juvenile Qihe crucian carp Carassius carassius was evaluated. The fish were exposed in different Cu solutions for 20 days, and the 0.60 mg/L group was then transferred to clean water to initiate a 20-day recovery period after Cu exposure. Results showed that all enzyme activities decreased significantly at high-concentration (0.30 and 0.60 mg/L) and long-time (20 days) Cu exposures and increased significantly at high-concentration (0.60 mg/L) and short-time Cu exposures (1 day). After the 20-day recovery period, all enzyme activities in the 0.60 mg/L group had recovered to control levels. High-concentration (0.60 mg/L) and long-time (20 days) Cu exposure markedly hindered the growth of fish, whereas the loss of fish growth can not be compensated for by a 20-day recovery period.
Collapse
Affiliation(s)
- Hongxia Jiang
- College of Fisheries, Henan Normal University, No. 46 Jianshe East Road, Xinxiang City, 453007, People's Republic of China
| | - Xianghui Kong
- College of Fisheries, Henan Normal University, No. 46 Jianshe East Road, Xinxiang City, 453007, People's Republic of China.
| | - Shuping Wang
- College of Fisheries, Henan Normal University, No. 46 Jianshe East Road, Xinxiang City, 453007, People's Republic of China
| | - Huiyun Guo
- College of Fisheries, Henan Normal University, No. 46 Jianshe East Road, Xinxiang City, 453007, People's Republic of China
| |
Collapse
|
47
|
Colin N, Porte C, Fernandes D, Barata C, Padrós F, Carrassón M, Monroy M, Cano-Rocabayera O, de Sostoa A, Piña B, Maceda-Veiga A. Ecological relevance of biomarkers in monitoring studies of macro-invertebrates and fish in Mediterranean rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 540:307-323. [PMID: 26148426 DOI: 10.1016/j.scitotenv.2015.06.099] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
Mediterranean rivers are probably one of the most singular and endangered ecosystems worldwide due to the presence of many endemic species and a long history of anthropogenic impacts. Besides a conservation value per se, biodiversity is related to the services that ecosystems provide to society and the ability of these to cope with stressors, including climate change. Using macro-invertebrates and fish as sentinel organisms, this overview presents a synthesis of the state of the art in the application of biomarkers (stress and enzymatic responses, endocrine disruptors, trophic tracers, energy and bile metabolites, genotoxic indicators, histopathological and behavioural alterations, and genetic and cutting edge omic markers) to determine the causes and effects of anthropogenic stressors on the biodiversity of European Mediterranean rivers. We also discuss how a careful selection of sentinel species according to their ecological traits and the food-web structure of Mediterranean rivers could increase the ecological relevance of biomarker responses. Further, we provide suggestions to better harmonise ecological realism with experimental design in biomarker studies, including statistical analyses, which may also deliver a more comprehensible message to managers and policy makers. By keeping on the safe side the health status of populations of multiple-species in a community, we advocate to increase the resilience of fluvial ecosystems to face present and forecasted stressors. In conclusion, this review provides evidence that multi-biomarker approaches detect early signs of impairment in populations, and supports their incorporation in the standardised procedures of the Water Frame Work Directive to better appraise the status of European water bodies.
Collapse
Affiliation(s)
- Nicole Colin
- Department of Animal Biology, Faculty of Biology, University of Barcelona, ES-08028 Barcelona, Spain; Institute of Research in Biodiversity (IRBio), Faculty of Biology, University of Barcelona, ES-08028 Barcelona, Spain.
| | - Cinta Porte
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), ES-08028 Barcelona, Spain
| | - Denise Fernandes
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), ES-08028 Barcelona, Spain
| | - Carlos Barata
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), ES-08028 Barcelona, Spain
| | - Francesc Padrós
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, ES-08193 Barcelona, Spain
| | - Maite Carrassón
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, ES-08193 Barcelona, Spain
| | - Mario Monroy
- Department of Animal Biology, Faculty of Biology, University of Barcelona, ES-08028 Barcelona, Spain; Institute of Research in Biodiversity (IRBio), Faculty of Biology, University of Barcelona, ES-08028 Barcelona, Spain
| | - Oriol Cano-Rocabayera
- Department of Animal Biology, Faculty of Biology, University of Barcelona, ES-08028 Barcelona, Spain; Institute of Research in Biodiversity (IRBio), Faculty of Biology, University of Barcelona, ES-08028 Barcelona, Spain
| | - Adolfo de Sostoa
- Department of Animal Biology, Faculty of Biology, University of Barcelona, ES-08028 Barcelona, Spain; Institute of Research in Biodiversity (IRBio), Faculty of Biology, University of Barcelona, ES-08028 Barcelona, Spain
| | - Benjamín Piña
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), ES-08028 Barcelona, Spain
| | - Alberto Maceda-Veiga
- Institute of Research in Biodiversity (IRBio), Faculty of Biology, University of Barcelona, ES-08028 Barcelona, Spain; School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Estación Biológica de Doñana (EBD-CSIC), ES-41092 Sevilla, Spain
| |
Collapse
|
48
|
Andreï J, Pain-Devin S, Felten V, Devin S, Giambérini L, Mehennaoui K, Cambier S, Gutleb AC, Guérold F. Silver nanoparticles impact the functional role of Gammarus roeseli (Crustacea Amphipoda). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 208:608-18. [PMID: 26552543 DOI: 10.1016/j.envpol.2015.10.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/09/2015] [Accepted: 10/21/2015] [Indexed: 05/14/2023]
Abstract
Silver nanoparticles (nAg) are widely used in consumer products and the risk associated with their potential release into freshwater ecosystems needs to be addressed using environmentally realistic exposure concentrations. Here, the effects of low concentrations (0.5-5 μg L(-1)) of two different sized nAg (10 and 60 nm) and a silver nitrate positive control were evaluated in Gammarus roeseli following exposure for 72 h. Cellular, individual and functional endpoints were independently studied and the most striking results were reported for functional endpoints. Indeed, without a change in their feeding activity, the gammarids produced significantly fewer fine particles of organic matter when exposed to nAg, even at 0.5 μg L(-1) of 10 nm nAg. These functional endpoints seem to be efficient markers for detecting the early effects of nAg on G. roeseli.
Collapse
Affiliation(s)
- Jennifer Andreï
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) - Université de Lorraine, UMR 7360 CNRS, UFR SciFA, Campus Bridoux, Rue du Général Delestraint, 57070 Metz, France.
| | - Sandrine Pain-Devin
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) - Université de Lorraine, UMR 7360 CNRS, UFR SciFA, Campus Bridoux, Rue du Général Delestraint, 57070 Metz, France
| | - Vincent Felten
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) - Université de Lorraine, UMR 7360 CNRS, UFR SciFA, Campus Bridoux, Rue du Général Delestraint, 57070 Metz, France
| | - Simon Devin
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) - Université de Lorraine, UMR 7360 CNRS, UFR SciFA, Campus Bridoux, Rue du Général Delestraint, 57070 Metz, France
| | - Laure Giambérini
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) - Université de Lorraine, UMR 7360 CNRS, UFR SciFA, Campus Bridoux, Rue du Général Delestraint, 57070 Metz, France; International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix en Provence, France
| | - Kahina Mehennaoui
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) - Université de Lorraine, UMR 7360 CNRS, UFR SciFA, Campus Bridoux, Rue du Général Delestraint, 57070 Metz, France; Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST) - 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Sebastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST) - 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST) - 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - François Guérold
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) - Université de Lorraine, UMR 7360 CNRS, UFR SciFA, Campus Bridoux, Rue du Général Delestraint, 57070 Metz, France
| |
Collapse
|
49
|
Karray S, Tastard E, Moreau B, Delahaut L, Geffard A, Guillon E, Denis F, Hamza-Chaffai A, Chénais B, Marchand J. Transcriptional response of stress-regulated genes to industrial effluent exposure in the cockle Cerastoderma glaucum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17303-17316. [PMID: 25613800 DOI: 10.1007/s11356-015-4108-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/11/2015] [Indexed: 06/04/2023]
Abstract
This study assessed the responses of molecular biomarkers and heavy metal levels in Cerastoderma glaucum exposed for 1 week to two industrial effluents (1%) discharged into the Tunisian coastal area, F1 and F2, produced by different units of production of a phosphate treatment plant. A significant uptake of metals (Cd, Cu, Zn, and Ni) was observed in exposed cockles compared to controls, with an uptake higher for F1 than for F2. A decrease in LT50 (stress on stress test) was also observed after an exposure to the effluent F1. Treatments resulted in different patterns of messenger RNA (mRNA) expression of the different genes tested in this report. Gene transcription monitoring performed on seven genes potentially involved in the tolerance to metal exposure showed that for both exposures, mechanisms are rapidly and synchronically settled down to prevent damage to cellular components, by (1) handling and exporting out metal ions through the up-regulation of ATP-binding cassette xenobiotic transporter (ABCB1) and metallothionein (MT), (2) increasing the mRNA expression of antioxidant enzymes (catalase (CAT), superoxide dismutases, CuZnSOD and MnSOD), (3) protecting and/or repairing proteins through the expression of heat shock protein 70 (HSP70) mRNAs, and (4) increasing ATP production (through the up-regulation of cytochrome c oxidase 1 (CO1)) to provide energy for cells to tolerate stress exposure. The tools developed may be useful both for future control strategies and for the use of the cockle C. glaucum as a sentinel species.
Collapse
Affiliation(s)
- Sahar Karray
- EA 2460 Mer Molécules Santé, Institut Universitaire Mer et Littoral - FR3473 CNRS, Université du Maine - Le Mans, 72085, Le Mans Cedex, France
- Laboratoire d'Ecotoxicologie Marine et Environnementale, Université de Sfax, Sfax, Tunisia
| | - Emmanuelle Tastard
- EA 2460 Mer Molécules Santé, Institut Universitaire Mer et Littoral - FR3473 CNRS, Université du Maine - Le Mans, 72085, Le Mans Cedex, France
| | - Brigitte Moreau
- EA 2460 Mer Molécules Santé, Institut Universitaire Mer et Littoral - FR3473 CNRS, Université du Maine - Le Mans, 72085, Le Mans Cedex, France
| | - Laurence Delahaut
- UMR-I 02 Stress Environnementaux et Biosurveillance des Milieux aquatiques (SEBIO), Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687, Reims Cedex 2, France
| | - Alain Geffard
- UMR-I 02 Stress Environnementaux et Biosurveillance des Milieux aquatiques (SEBIO), Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687, Reims Cedex 2, France
| | - Emmanuel Guillon
- UMR 7312 CNRS-URCA Institut de Chimie Moléculaire de Reims (ICMR) Groupe Chimie de Coordination, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687, Reims Cedex 2, France
| | - Françoise Denis
- EA 2460 Mer Molécules Santé, Institut Universitaire Mer et Littoral - FR3473 CNRS, Université du Maine - Le Mans, 72085, Le Mans Cedex, France
- UMR 7208 CNRS-MNHN-IRD-UPMC, Biologie des Organismes et des Ecosystèmes Aquatiques (BOREA), Concarneau, France
| | - Amel Hamza-Chaffai
- Laboratoire d'Ecotoxicologie Marine et Environnementale, Université de Sfax, Sfax, Tunisia
| | - Benoît Chénais
- EA 2460 Mer Molécules Santé, Institut Universitaire Mer et Littoral - FR3473 CNRS, Université du Maine - Le Mans, 72085, Le Mans Cedex, France
| | - Justine Marchand
- EA 2460 Mer Molécules Santé, Institut Universitaire Mer et Littoral - FR3473 CNRS, Université du Maine - Le Mans, 72085, Le Mans Cedex, France.
| |
Collapse
|
50
|
A Comparison Effect of Copper Nanoparticles versus Copper Sulphate on Juvenile Epinephelus coioides: Growth Parameters, Digestive Enzymes, Body Composition, and Histology as Biomarkers. Int J Genomics 2015; 2015:783021. [PMID: 26527479 PMCID: PMC4617423 DOI: 10.1155/2015/783021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/02/2015] [Accepted: 02/18/2015] [Indexed: 11/17/2022] Open
Abstract
Copper nanoparticles (Cu-NPs) are components in numerous commercial products, but little is known about their potential hazard in the marine environments. In this study the effects of Cu-NPs and soluble Cu on juvenile Epinephelus coioides were investigated. The fish were exposed in triplicate to control, 20 or 100 µg Cu L(-1) as either copper sulphate (CuSO4) or Cu-NPs for 25 days. The growth performance decreased with increasing CuSO4 or Cu-NPs dose, more so in the CuSO4 than Cu-NPs treatment. Both forms of Cu exposure inhibited activities of digestive enzymes (protease, amylase, and lipase) found in liver, stomach, and intestine. With an increase in CuSO4 and Cu-NPs dose, crude protein and crude lipid decreased, but ash and moisture increased, more so in the CuSO4 than Cu-NPs treatment. The Cu-NPs treatment caused pathologies in liver and gills, and the kinds of pathologies were broadly of the same type as with CuSO4. With an increase in CuSO4 or Cu-NPs dose, the total polyunsaturated fatty acids decreased, but total monounsaturated fatty acids and total saturated fatty acids increased compared to control. Overall, these data showed that Cu-NPs had a similar type of toxic effects as CuSO4, but soluble Cu was more toxic than Cu-NPs.
Collapse
|