1
|
Jorquera MA, Acuña JJ, Huerta N, Bai J, Zhang L, Xiao R, Sadowsky MJ. Multiple antibiotic resistance and herbicide catabolic profiles of bacteria isolated from Lake Villarrica surface sediments (Chile). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124538. [PMID: 39002747 DOI: 10.1016/j.envpol.2024.124538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Antibiotics and herbicides are contaminants of emerging concern in aquatic environments. Lake Villarrica is a relevant freshwater body in Chile and was recently designated a 'saturated nutrient zone'. Here, we investigated the occurrence of multiple antibiotic resistance (MAR) and herbicide catabolic profiles among bacteria present in the surface sediments of Lake Villarrica. The occurrence of antibiotic-resistant genes (ARGs; blaTEM, catA and tetM) and herbicide-catabolic genes (HCGs; phnJ and atzA) was investigated by qPCR. Subsequently, the presence of culturable bacteria with multiple resistance to amoxicillin (AMX), chloramphenicol (CHL) and oxytetracycline (OXT) was studied. Forty-six culturable MAR (AMX + CHL + OXT) strains were isolated and characterized with respect to their resistance to 11 antibiotics by using a disc diffusion assay and testing their ability to use herbicides as a nutrient source. qPCR analyses revealed that ARGs and HCGs were present in all sediment samples (101 to 103 gene copies g-1), with significant (P ≤ 0.05) higher values in sites near Villarrica city and cattle pastures. The plate method was used to recover MAR isolates from sediment (103-106 CFU g-1), and most of the 46 isolates also showed resistance to oxacillin (100%), cefotaxime (83%), erythromycin (96%) and vancomycin (93%). Additionally, 54 and 57% of the MAR isolates were able to grow on agar supplemented (50 mg L-1) with atrazine and glyphosate as nutrient sources, respectively. Most of the MAR isolates were taxonomically close to Pseudomonas (76.1%) and Pantoea (17.4%), particularly those isolated from urbanized sites (Pucón city). This study shows the presence of MAR bacteria with herbicide catabolic activity in sediments, which is valuable for conservation strategies and risk assessments of Lake Villarrica. However, major integrative studies on sediments as reservoirs or on the fate of MAR strains and traces of antibiotics and herbicides as a result of anthropic pressure are still needed.
Collapse
Affiliation(s)
- Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
| | - Jacquelinne J Acuña
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile; Millennium Institute Center for Genome Regulation (MI-CGR), Valenzuela Puelma 10207, La Reina, 7800003, Chile
| | - Nicole Huerta
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Junhong Bai
- School of Environment, Beijing Normal University, 19, Xinjiekouwaida Street, Haidian District, Beijing, 100875, China
| | - Ling Zhang
- School of Environment, Beijing Normal University, 19, Xinjiekouwaida Street, Haidian District, Beijing, 100875, China
| | - Rong Xiao
- College of Environment & Safety Engineering, FuZhou University, Fuzhou, China
| | - Michael J Sadowsky
- College of Agriculture, Food, and Environmental Sciences, University of Minnesota, St. Paul, Minnesota, 55108, USA
| |
Collapse
|
2
|
Gueroui Y, Bousbia A, Boudalia S, Touati H, Benaissa M, Maoui A. Groundwater quality and hydrochemical characteristics in the upper Seybouse sub-basin, Northeast Algeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26628-26645. [PMID: 38453758 DOI: 10.1007/s11356-024-32716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The present study aims to evaluate the groundwater quality in an area characterized by significant human anthropic activities within the upper Seybouse. In order to assess the quality, a total of 20 samples were analyzed to identify the chemical and bacteriological composition of the water, its variations, and their potential impacts on the environment and human health. The results revealed concentrations of the chemical and bacteriological elements exceeding the WHO standards, with high levels of electrical conductivity (EC) (peak = 4210 μS/cm), Ca2+ (peak = 340.68 mg/L), Na+ (peak = 360 mg/L), HCO3- (peak = 287 mg/L), Cl- (peak = 542 mg/L), SO42- (peak = 687 mg/L), NO3- (pek = 65.91 mg/L), fecal coliforms (FC) (peak = 160 UFC/mL), fecal Streptococcus (FS) (peak = 43 UFC/mL), and Clostridium perfringens (CP) (peak = 29 UFC/mL). Within the basin, two different facies have been identified: Cl-SO4-Na type and Cl-SO4-Ca type. The calculated Water Quality Index (WQI) indicates that none of the groundwater samples are suitable for drinking or human consumption. The detection of pathogenic microorganisms through diverse molecular methods has revealed the existence of eight distinct species, encompassing pathogenic strains that can affect human health. Moreover, the dissolution of geologic formations can influence the water's chemistry. In this region, groundwater pollution seems to be influenced by anthropogenic and agricultural factors such as fertilizer application, irrigation practices, and the release of domestic sewage.
Collapse
Affiliation(s)
- Yassine Gueroui
- Département des Sciences de la Nature et de la Vie, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria.
- Laboratoire de Génie Civil et d'Hydraulique (LGCH), Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria.
| | - Aissam Bousbia
- Département des Sciences de la Nature et de la Vie, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
- Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
| | - Sofiane Boudalia
- Département des Sciences de la Nature et de la Vie, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
- Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
| | - Hassen Touati
- Département d'Ecologie et Génie de l'Environnement, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
| | - Mahdid Benaissa
- Laboratoire de Biologie, Eau et Environnement, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
| | - Ammar Maoui
- Département des Sciences de la Nature et de la Vie, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
- Laboratoire de Génie Civil et d'Hydraulique (LGCH), Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
| |
Collapse
|
3
|
Yan D, Han Y, Zhong M, Wen H, An Z, Capo E. Historical trajectories of antibiotics resistance genes assessed through sedimentary DNA analysis of a subtropical eutrophic lake. ENVIRONMENT INTERNATIONAL 2024; 186:108654. [PMID: 38621322 DOI: 10.1016/j.envint.2024.108654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Investigating the occurrence of antibiotic-resistance genes (ARGs) in sedimentary archives provides opportunities for reconstructing the distribution and dissemination of historical (i.e., non-anthropogenic origin) ARGs. Although ARGs in freshwater environments have attracted great attention, historical variations in the diversity and abundance of ARGs over centuries to millennia remain largely unknown. In this study, we investigated the vertical change patterns of bacterial communities, ARGs and mobile genetic elements (MGEs) found in sediments of Lake Chenghai spanning the past 600 years. Within resistome preserved in sediments, 177 ARGs subtypes were found with aminoglycosides and multidrug resistance being the most abundant. The ARG abundance in the upper sediment layers (equivalent to the post-antibiotic era since the 1940s) was lower than those during the pre-antibiotic era, whereas the ARG diversity was higher during the post-antibiotic era, possibly because human-induced lake eutrophication over the recent decades facilitated the spread and proliferation of drug-resistant bacteria. Statistical analysis suggested that MGEs abundance and the bacterial community structure were significantly correlated with the abundance and diversity of ARGs, suggesting that the occurrence and distribution of ARGs may be transferred between different bacteria by MGEs. Our results provide new perspectives on the natural history of ARGs in freshwater environments and are essential for understanding the temporal dynamics and dissemination of ARGs.
Collapse
Affiliation(s)
- Dongna Yan
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China
| | - Yongming Han
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China; National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Xi'an, Shaanxi 710061, China.
| | - Meifang Zhong
- Department of Ecology and Environmental Science, Umeå University, Linnaeus väg 4-6, 907 36 Umeå, Sweden
| | - Hanfeng Wen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhisheng An
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China
| | - Eric Capo
- Department of Ecology and Environmental Science, Umeå University, Linnaeus väg 4-6, 907 36 Umeå, Sweden.
| |
Collapse
|
4
|
Sun X, Wang X, Han Q, Yu Q, Wanyan R, Li H. Bibliometric analysis of papers on antibiotic resistance genes in aquatic environments on a global scale from 2012 to 2022: Evidence from universality, development and harmfulness. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168597. [PMID: 37981129 DOI: 10.1016/j.scitotenv.2023.168597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Antibiotic resistance genes (ARGs), emerging pollutants, are widely distributed in aquatic environments, and are tightly linked to human health. However, the research progress and trends in recent years on ARGs of aquatic environments are still unclear. This paper made a comprehensive understanding of the research advance, study trends and key topics of 1592 ARGs articles from 2012 to 2022 by bibliometrics. Publications on ARGs increased rapidly from 2012 to 2022, and scholars paid closer attention to the field of Environmental Sciences & Ecology. The most influential country and institution was mainly China and Chinese Academy of Sciences, respectively. The most articles (14.64 %) were published in the journal Science of the total environment. China and USA had the most cooperation, and USA was more inclined to international cooperation. PCR-based methods for water ARG research were the most widely used, followed by metagenomics. The most studied ARG types were sulfonamides, tetracyclines. Moreover, ARGs from wastewater and rivers were popularly concerned. Current topics mainly included pollution investigation, characteristics, transmission, reduction and risk identification of ARGs. Additionally, future research directions were proposed. Generally, by bibliometrics, this paper reviews the research hotspots and future directions of ARGs on a global scale, and summarizes the more important categories of ARGs, the pollution degree of ARGs in the relevant water environment and the research methods, which can provide a more comprehensive information for the future breakthrough of resistance mechanism, prevention and control standard formulation of ARGs.
Collapse
Affiliation(s)
- Xiaofang Sun
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Ruijun Wanyan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Liu H, Wang Y, Zhang Z, Qi H, Zhang Y, Li W, Shi Q, Xie X. Nutrient condition modulates the antibiotic tolerance of Pseudomonas aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166749. [PMID: 37659534 DOI: 10.1016/j.scitotenv.2023.166749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/06/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
The variation in nutrient content across diverse environments has a significant impact on the survival and metabolism of microorganisms. In this study, we examined the influence of nutrients on the antibiotic tolerance of the PAO1 strain of Pseudomonas aeruginosa. Our findings indicate that under nutrient-rich conditions, this strain exhibited relatively high tolerance to ceftazidime, chloramphenicol, and tetracycline, but not aminoglycosides and fluoroquinolones. Transcriptome analysis revealed that genes associated with antibiotic tolerance were expressed more efficiently in nutrient-rich media, including ribosomal protein genes and multidrug efflux pump genes, which conferred higher tetracycline tolerance to the strain. Furthermore, the genes responsible for translation, biosynthesis, and oxidative phosphorylation were suppressed when nutrients were limited, resulting in decreased metabolic activity and lower sensitivity to ciprofloxacin. Artificial interference with ATP synthesis utilizing arsenate confirmed that the curtailment of energy provision bolstered the observed tolerance to ciprofloxacin. In general, our results indicate that this strain of P. aeruginosa tends to activate its intrinsic resistance mechanisms in nutrient-rich environments, thereby enhancing resistance to certain antibiotics. Conversely, in nutrient-limited environments, the strain is more likely to enter a dormant state, which enables it to tolerate antibiotics to which it would otherwise be sensitive. These findings further suggest that antibiotics released in environments with varying eutrophication levels may have divergent effects on the development of bacterial antibiotic resistance.
Collapse
Affiliation(s)
- Huizhong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yingsi Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhiqing Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hong Qi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Wenru Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
6
|
Feng Y, Lu Y, Chen Y, Xu J, Jiang J. Microbial community structure and antibiotic resistance profiles in sediments with long-term aquaculture history. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118052. [PMID: 37141714 DOI: 10.1016/j.jenvman.2023.118052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The aim of this investigation was to examine the microbial populations and their resistance patterns towards antibiotics, including the impact of nitrogen metabolism in response to the reintroduction of antibiotics, as well as the presence of resistance genes in sediments from shrimp ponds that have been utilized for extended periods of 5, 15, and over 30 years. Results showed that the sediments exhibited a high prevalence of Proteobacteria, Bacteroidetes, Planctomycetes, Chloroflexi, and Oxyphotobacteria as the most abundant bacterial phyla, accounting for 70.35-77.43% of the total bacterial community. The five most abundant phyla of fungi detected in all sediments, namely Rozellomycota, Ascomycota, Aphelidiomycota, Basidiomycota, and Mortierellomycota, constituted 24.26-32.54% of the total fungal community. It was highly probable that the Proteobacteria and Bacteroidetes phyla serve as the primary reservoir of antibiotic-resistant bacteria (ARB) in the sediment, which included various genera like Sulfurovum, Woeseia, Sulfurimonas, Desulfosarcina, and Robiginitalea. Among these genera, Sulfurovum appeared to be the most widespread in the sediment of aquaculture ponds that have been in operation for more than three decades, while Woeseia dominated in ponds that have been recently reclaimed and have a 15-year aquaculture history. Antibiotic resistance genes (ARGs) were categorized into seven distinct groups according to their mechanism of action. The prevalence of multidrug-resistant ARGs was found to be the highest among all types, with an abundance ranging from 8.74 × 10-2 to 1.90 × 10-1 copies per 16S rRNA gene copies. The results of a comparative analysis of sediment samples with varying aquaculture histories indicated that the total relative abundance of ARGs was significantly diminished in sediment with a 15-year aquaculture history as opposed to sediment with either a 5-year or 30-year aquaculture history. Another assessment of antibiotic resistances in aquaculture sediments involved an examination of the effects of reintroducing antibiotics on nitrogen metabolism processes. The findings revealed that the rates of ammonification, nitrification, and denitrification in the sediment with a history of 5 years and 15 years, decreased as the concentration of oxytetracycline increased from 1 to 300, and 2000 mg/kg, and inhibitory effects were found to be less pronounced in sediments with a 5-year history compared to those with a 15-year history. In contrast, oxytetracycline exposure led to a significant decrease in the rates of these processes in aquaculture pond sediments with a >30 years of aquaculture history across all the concentrations tested. The emergence and dissemination of antibiotic resistance profiles in aquaculture environments requires attention in future aquaculture management.
Collapse
Affiliation(s)
- Ying Feng
- School of Resources and Environmental Science, Quanzhou Normal University, 362000, Quanzhou, China; Institute of Environmental Sciences, Quanzhou Normal University, 362000, Quanzhou, China
| | - Yue Lu
- School of Resources and Environmental Science, Quanzhou Normal University, 362000, Quanzhou, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Yongshan Chen
- School of Resources and Environmental Science, Quanzhou Normal University, 362000, Quanzhou, China; Institute of Environmental Sciences, Quanzhou Normal University, 362000, Quanzhou, China.
| | - Jinghua Xu
- School of Resources and Environmental Science, Quanzhou Normal University, 362000, Quanzhou, China; Institute of Environmental Sciences, Quanzhou Normal University, 362000, Quanzhou, China
| | - Jinping Jiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| |
Collapse
|
7
|
Effects of Resource Availability and Antibiotic Residues on Intestinal Antibiotic Resistance in Bellamya aeruginosa. Microorganisms 2023; 11:microorganisms11030765. [PMID: 36985338 PMCID: PMC10058807 DOI: 10.3390/microorganisms11030765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Widespread and inappropriate use of antibiotics has been shown to increase the spread of antibiotics and antimicrobial resistance genes (ARGs) in aquatic environments and organisms. Antibiotic use for the treatment of human and animal diseases is increasing continuously globally. However, the effects of legal antibiotic concentrations on benthic consumers in freshwater environments remain unclear. In the present study, we tested the growth response of Bellamya aeruginosa to florfenicol (FF) for 84 days under high and low concentrations of sediment organic matter (carbon [C] and nitrogen [N]). We characterized FF and sediment organic matter impact on the bacterial community, ARGs, and metabolic pathways in the intestine using metagenomic sequencing and analysis. The high concentrations of organic matter in the sediment impacted the growth, intestinal bacterial community, intestinal ARGs, and microbiome metabolic pathways of B. aeruginosa. B. aeruginosa growth increased significantly following exposure to high organic matter content sediment. Proteobacteria, at the phylum level, and Aeromonas at the genus level, were enriched in the intestines. In particular, fragments of four opportunistic pathogens enriched in the intestine of high organic matter content sediment groups, Aeromonas hydrophila, Aeromonas caviae, Aeromonas veronii, and Aeromonas salmonicida, carried 14 ARGs. The metabolic pathways of the B. aeruginosa intestine microbiome were activated and showed a significant positive correlation with sediment organic matter concentrations. In addition, genetic information processing and metabolic functions may be inhibited by the combined exposure to sediment C, N, and FF. The findings of the present study suggest that antibiotic resistance dissemination from benthic animals to the upper trophic levels in freshwater lakes should be studied further.
Collapse
|
8
|
Jütte M, Abdighahroudi MS, Waldminghaus T, Lackner S, V Lutze H. Bacterial inactivation processes in water disinfection - mechanistic aspects of primary and secondary oxidants - A critical review. WATER RESEARCH 2023; 231:119626. [PMID: 36709565 DOI: 10.1016/j.watres.2023.119626] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/14/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Water disinfection during drinking water production is one of the most important processes to ensure safe drinking water, which is gaining even more importance due to the increasing impact of climate change. With specific reaction partners, chemical oxidants can form secondary oxidants, which can cause additional damage to bacteria. Cases in point are chlorine dioxide which forms free available chlorine (e.g., in the reaction with phenol) and ozone which can form hydroxyl radicals (e.g., during the reaction with natural organic matter). The present work reviews the complex interplay of all these reactive species which can occur in disinfection processes and their potential to affect disinfection processes. A quantitative overview of their disinfection strength based on inactivation kinetics and typical exposures is provided. By unifying the current data for different oxidants it was observable that cultivated wild strains (e.g., from wastewater treatment plants) are in general more resistant towards chemical oxidants compared to lab-cultivated strains from the same bacterium. Furthermore, it could be shown that for selective strains chlorine dioxide is the strongest disinfectant (highest maximum inactivation), however as a broadband disinfectant ozone showed the highest strength (highest average inactivation). Details in inactivation mechanisms regarding possible target structures and reaction mechanisms are provided. Thereby the formation of secondary oxidants and their role in inactivation of pathogens is decently discussed. Eventually, possible defense responses of bacteria and additional effects which can occur in vivo are discussed.
Collapse
Affiliation(s)
- Mischa Jütte
- Technical University of Darmstadt, Institute IWAR, Chair of environmental analytics and pollutants, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - Mohammad Sajjad Abdighahroudi
- Technical University of Darmstadt, Institute IWAR, Chair of environmental analytics and pollutants, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - Torsten Waldminghaus
- Technical University of Darmstadt, Centre for synthetic biology, Chair of molecular microbiology, Schnittspahnstraße 12, D-64287 Darmstadt, Germany
| | - Susanne Lackner
- Technical University of Darmstadt, Institute IWAR, Chair of water and environmental biotechnology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - Holger V Lutze
- Technical University of Darmstadt, Institute IWAR, Chair of environmental analytics and pollutants, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany; IWW Water Centre, Moritzstraße 26, D-45476 Mülheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, D-45141 Essen, Germany.
| |
Collapse
|
9
|
Su W, Wang X, Yang J, Yu Q, Li X, Zhang S, Li H. Multi-omics methods reveal that putrescine and cadaverine cause different degrees of enrichment of high-risk resistomes and opportunistic pathogens in the water and sediment of the Yellow River. ENVIRONMENTAL RESEARCH 2023; 219:115069. [PMID: 36549489 DOI: 10.1016/j.envres.2022.115069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Contamination of antibiotic resistomes due to animal carcass decay has become a serious environmental concern. However, the relationship between main metabolite compounds of corpse decomposition (i.e., putrescine and cadaverine) and antibiotic resistomes remains unclear. To tackle this issue, the response of antibiotic resistance genes (ARGs) and microbiome in aquatic environment to excess putrescine, cadaverine and a mixture of both based on laboratory simulation experiment was investigated by high-throughput quantitative PCR and amplicon sequencing methods. Our results showed putrescine and cadaverine led to the increasing of TC (total carbon) and TN (total nitrogen) both in water and sediment. Under the exposure of putrescine and cadaverine, the total abundance of mobile genetic elements (MGEs) and most ARGs in water was higher than in sediment. In particular, putrescine and cadaverine caused significantly different decreases in alpha diversity of microbial community in water and sediment compared with the control group. Microbial community structures both in water and sediment were also significantly affected by cadaverine and putrescine. Furthermore, putrescine and cadaverine led to different degrees of increases of high-risk ARGs (like mecA) and opportunistic pathogens (like Delftia) in sediment, promoting the prevalence of antibiotic resistant bacteria. In conclusion, our findings revealed the influences of main metabolites of carcass decay on microbiome and resistomes, providing references for risk assessment and pollution management.
Collapse
Affiliation(s)
- Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaocheng Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoshan Li
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Wanzhou 404120, China
| | - Shiheng Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Wanzhou 404120, China.
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|
10
|
Wang C, Yao Z, Zhan P, Yi X, Chen J, Xiong J. Significant tipping points of sediment microeukaryotes forewarn increasing antibiotic pollution. J Environ Sci (China) 2023; 124:429-439. [PMID: 36182151 DOI: 10.1016/j.jes.2021.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 06/16/2023]
Abstract
Antibiotic pollution imposes urgent threats to public health and microbial-mediated ecological processes. Existing studies have primarily focused on bacterial responses to antibiotic pollution, but they ignored the microeukaryotic counterpart, though microeukaryotes are functionally important (e.g., predators and saprophytes) in microbial ecology. Herein, we explored how the assembly of sediment microeukaryotes was affected by increasing antibiotic pollution at the inlet (control) and across the outlet sites along a shrimp wastewater discharge channel. The structures of sediment microeukaryotic community were substantially altered by the increasing nutrient and antibiotic pollutions, which were primarily controlled by the direct effects of phosphate and ammonium (-0.645 and 0.507, respectively). In addition, tetracyclines exerted a large effect (0.209), including direct effect (0.326) and indirect effect (-0.117), on the microeukaryotic assembly. On the contrary, the fungal subcommunity was relatively resistant to antibiotic pollution. Segmented analysis depicted nonlinear responses of microeukaryotic genera to the antibiotic pollution gradient, as supported by the significant tipping points. We screened 30 antibiotic concentration-discriminatory taxa of microeukaryotes, which can quantitatively and accurately predict (98.7% accuracy) the in-situ antibiotic concentration. Sediment microeukaryotic (except fungal) community is sensitive to antibiotic pollution, and the identified bioindicators could be used for antibiotic pollution diagnosis.
Collapse
Affiliation(s)
- Chaohua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Zhiyuan Yao
- Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Pingping Zhan
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xianghua Yi
- Lanshion Marine Science and Technology Co., Ltd., Ningbo 315715, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
11
|
He H, Choi Y, Wu SJ, Fang X, Anderson AK, Liou SY, Roberts MC, Lee Y, Dodd MC. Application of Nucleotide-Based Kinetic Modeling Approaches to Predict Antibiotic Resistance Gene Degradation during UV- and Chlorine-Based Wastewater Disinfection Processes: From Bench- to Full-Scale. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15141-15155. [PMID: 36098629 DOI: 10.1021/acs.est.2c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study investigated antibiotic resistance gene (ARG) degradation kinetics in wastewaters during bench- and full-scale treatment with UV light and chlorine─with the latter maintained as free available chlorine (FAC) in low-ammonia wastewater and converted into monochloramine (NH2Cl) in high-ammonia wastewater. Twenty-three 142-1509 bp segments (i.e., amplicons) of seven ARGs (blt, mecA, vanA, tet(A), ampC, blaNDM, blaKPC) and the 16S rRNA gene from antibiotic resistant bacteria (ARB) strains Bacillus subtilis, Staphylococcus aureus, Enterococcus faecium, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae were monitored as disinfection targets by qPCR. Rate constants for ARG and 16S rRNA gene amplicon degradation by UV, FAC, and NH2Cl were measured in phosphate buffer and used to expand and validate several recently developed approaches to predict DNA segment degradation rate constants based solely on their nucleotide contents, which were then applied to model ARG degradation during bench-scale treatment in buffer and wastewater matrixes. Kinetics of extracellular and intracellular ARG degradation by UV and FAC were well predicted up to ∼1-2-log10 elimination, although with decreasing accuracy at higher levels for intracellular genes, while NH2Cl yielded minimal degradation under all conditions (agreeing with predictions). ARB inactivation kinetics varied substantially across strains, with intracellular gene degradation lagging cell inactivation in each case. ARG degradation levels observed during full-scale disinfection at two wastewater treatment facilities were consistent with bench-scale measurements and predictions, where UV provided ∼1-log10 ARG degradation, and chlorination of high-ammonia wastewater (dominated by NH2Cl) yielded minimal ARG degradation.
Collapse
Affiliation(s)
- Huan He
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Yegyun Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sean J Wu
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Xuzhi Fang
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Annika K Anderson
- Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Sin-Yi Liou
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| | - Marilyn C Roberts
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Michael C Dodd
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195, United States
| |
Collapse
|
12
|
Kraemer SA, Barbosa da Costa N, Oliva A, Huot Y, Walsh DA. A resistome survey across hundreds of freshwater bacterial communities reveals the impacts of veterinary and human antibiotics use. Front Microbiol 2022; 13:995418. [PMID: 36338036 PMCID: PMC9629221 DOI: 10.3389/fmicb.2022.995418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Our decreasing ability to fight bacterial infections is a major health concern. It is arising due to the evolution of antimicrobial resistance (AMR) in response to the mis- and overuse of antibiotics in both human and veterinary medicine. Lakes integrate watershed processes and thus may act as receptors and reservoirs of antibiotic resistance genes (ARGs) introduced into the watershed by human activities. The resistome – the diversity of ARGs – under varying anthropogenic watershed pressures has been previously studied either focused on few select genes or few lakes. Here, we link the resistome of ~350 lakes sampled across Canada to human watershed activity, trophic status, as well as point sources of ARG pollution including wastewater treatment plants and hospitals in the watershed. A high percentage of the resistance genes detected was either unimpacted by human activity or highly prevalent in pristine lakes, highlighting the role of AMR in microbial ecology in aquatic systems, as well as a pool of genes available for potential horizontal gene transfer to pathogenic species. Nonetheless, watershed agricultural and pasture area significantly impacted the resistome. Moreover, the number of hospitals and the population density in a watershed, the volume of wastewater entering the lake, as well as the fraction of manure applied in the watershed as fertilizer significantly impacted ARG diversity. Together, these findings indicate that lake resistomes are regularly stocked with resistance genes evolved in the context of both veterinary and human antibiotics use and represent reservoirs of ARGs that require further monitoring.
Collapse
Affiliation(s)
- Susanne A. Kraemer
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Department of Biology, Concordia University, Montreal, QC, Canada
- *Correspondence: Susanne A. Kraemer,
| | | | - Anais Oliva
- Department of Applied Geomatics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Yannick Huot
- Department of Applied Geomatics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - David A. Walsh
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
13
|
Lau SH, Hsu JT, Chen YJ, Li ZF, Chao WL, Yeh SL, Ying C. Sub-lethal concentration of sulfamethoxazole affects the growth performance of milkfish (Chanos chanos), the microbial composition of antibiotic-resistant bacteria and the prevalence of sulfonamide-resistance genes in mariculture. MARINE POLLUTION BULLETIN 2022; 182:113989. [PMID: 35939929 DOI: 10.1016/j.marpolbul.2022.113989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
To investigate the impacts of sub-lethal concentrations of antibiotic agents in mariculture, culturable approach and DNA based detection were employed to isolate and analyse resistant bacteria and resistant genes in this study. Milkfish (Chanos chanos), the target rearing animal was exposed to sulfamethoxazole (SMX; 2 mg/L) for 8 weeks and resulted in reduced survival rate and weight gain to 61.9 % and 28.4 %, respectively compared to control milkfish (p < 0.001). The composition of SMX-resistant bacteria isolated from the culture water and the gastrointestinal tracts of milkfish underwent changes in response to SMX treatment with a reduced diversity. The prevalence of SMX resistant genes sul in bacterial isolates was elevated from 2.8 % of control to 100 % of SMX-administrated water. Exposure to SMX at a sub-lethal dosage enhanced the prevalence of resistance genes sul1 and sul2 in resistant bacteria, thus implying high frequency of resistance dissemination in the marine environment and surrounding ecosystems.
Collapse
Affiliation(s)
- Sai Hung Lau
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Jih-Tay Hsu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-Jie Chen
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Ze-Fong Li
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Wei-Liang Chao
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Shinn-Lih Yeh
- Mariculture Research Centre, Council of Agriculture, Tainan City, Taiwan
| | - Chingwen Ying
- Department of Microbiology, Soochow University, Taipei, Taiwan.
| |
Collapse
|
14
|
Xing G, Lu J, Xuan L, Chen J, Xiong J. Sediment prokaryotic assembly, methane cycling, and ammonia oxidation potentials in response to increasing antibiotic pollution at shrimp aquafarm. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128885. [PMID: 35421673 DOI: 10.1016/j.jhazmat.2022.128885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 05/28/2023]
Abstract
Antibiotic pollution poses serious threats to public health and ecological processes. However, systematic research regarding the interactive effects of increasing nutrient and antibiotic pollutions on the prokaryotic community, particularly taxa that contribute to greenhouse gas emissions, is lacking. By exploring the complex interactions that occur between interkingdom bacteria and archaea, biotic and abiotic factors, the responses of sediment prokaryotic assembly were determined along a significant antibiotic pollution gradient. Bacterial and archaeal communities were primarily governed by sediment antibiotic pollution, ammonia, phosphate, and redox potential, which further affected enzyme activities. The two communities nonlinearly responded to increasing antibiotic pollution, with significant tipping points of 3.906 and 0.979 mg/kg antibiotics, respectively. The combined antibiotic concentration-discriminatory taxa of bacteria and archaea accurately (98.0% accuracy) diagnosed in situ antibiotic concentrations. Co-abundance analysis revealed that the methanogens, methanotrophs, sulfate-reducing bacteria, and novel players synergistically contributed to methane cycling. Antibiotic pollution caused the dominant role of ammonia-oxidizing archaea in ammonia oxidation at these alkaline sediments. Collectively, the significant tipping points and bio-indicators afford indexes for regime shift and quantitative diagnosis of antibiotic pollution, respectively. Antibiotic pollution could expedite methane cycling and mitigate nitrous oxide yield, which are previously unrecognized ecological effects. These findings provide new insights into the interactive biological and ecological consequences of increasing nutrient and antibiotic pollutions.
Collapse
Affiliation(s)
- Guorui Xing
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiaqi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Lixia Xuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
15
|
Treskova M, Kuhlmann A, Freise F, Kreienbrock L, Brogden S. Occurrence of Antimicrobial Resistance in the Environment in Germany, Austria, and Switzerland: A Narrative Review of Existing Evidence. Microorganisms 2022; 10:microorganisms10040728. [PMID: 35456779 PMCID: PMC9027620 DOI: 10.3390/microorganisms10040728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: This study summarizes the current research on antibiotic resistance (AR) in the environment conducted in Austria, Germany, and Switzerland; (2) Methods: A narrative systematic literature review of epidemiological studies based on searches in EMBASE and CAB abstracts (up to 16 June2021) was conducted. Environmental reservoirs included water sources, wastewater, animal husbandry, wildlife, soil, and sediment; (3) Results: Four hundred and four records were screened, and 52 studies were included. Thirteen studies examined aquatic environments, and eleven investigated wastewater. Eight studies investigated both wildlife and animal husbandry. Less evidence was available for sediments, soil, and air. Considerable heterogeneity in research focus, study design, sampling, and measurement of resistance was observed. Resistance to all categories of antimicrobials in the WHO CIA list was identified. Resistance to critically important and highly important substances was reported most frequently; (4) Conclusions: The current research scope presents data-gathering efforts. Usage of a unified protocol for isolate collection, selecting sampling sites, and susceptibility testing is required to provide results that can be compared between the studies and reservoirs. Epidemiological, environmental, and ecological factors should be considered in surveys of the environmental dissemination of AR. Systematic epidemiological studies investigating AR at the interface of human, animal, and environmental health are needed.
Collapse
Affiliation(s)
- Marina Treskova
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.T.); (F.F.); (L.K.)
- Heidelberg Institute of Global Health, Faculty of Medicine, University Heidelberg, 69120 Heidelberg, Germany
| | - Alexander Kuhlmann
- Faculty of Medicine, Martin Luther University of Halle Wittenberg, 06108 Halle (Saale), Germany;
| | - Fritjof Freise
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.T.); (F.F.); (L.K.)
| | - Lothar Kreienbrock
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.T.); (F.F.); (L.K.)
| | - Sandra Brogden
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.T.); (F.F.); (L.K.)
- Correspondence:
| |
Collapse
|
16
|
Ma N, Tong L, Li Y, Yang C, Tan Q, He J. Distribution of antibiotics in lake water-groundwater - Sediment system in Chenhu Lake area. ENVIRONMENTAL RESEARCH 2022; 204:112343. [PMID: 34748778 DOI: 10.1016/j.envres.2021.112343] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/01/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics pollution in lakes has been widely reported worldwide, however rare studies were concerned about antibiotics distribution in lake water - groundwater - sediment system. Here, a total of 22 antibiotics and 4 sulfonamides metabolites were detected in lake water, sediments, and different depth of groundwater surrounding Chenhu Lake during the wet and dry seasons. N4-acetylsulfonamides (Ac-SAs), fluoroquinolones (FQs), and tetracyclines (TCs) were the main groups of antibiotics in the study area. In the whole lake environment, there were more types of antibiotics in the aquatic environments than in the sediments, and the antibiotics distribution was closely related to geographical location. Specifically, the average concentration of antibiotics in groundwater decreased with an increase in sampling site distance from the lake. All antibiotics, except oxytetracycline (OTC), showed a significant decline during the dry season that could be due to the implementation of lake conservation policies, which significantly helped reducing lake pollution. There were obvious differences in the distribution of antibiotics in distinct sedimentary environments. In the surface sediments, the antibiotics content in the reclamation and the perennially flooded areas was higher than in the lakeshore area. The hydraulic interactions in the perennial flooded area facilitated the deep migration of antibiotics into lake sediments. Correlation analysis revealed a good relevance between the distribution of antibiotics in lake water and groundwater. Redundancy analysis shows that dissolved oxygen and temperature were the main factors affecting the distribution of antibiotics.
Collapse
Affiliation(s)
- Naijin Ma
- School of Environmental Studies, China University of Geosciences, 430074, Wuhan, PR China
| | - Lei Tong
- School of Environmental Studies, China University of Geosciences, 430074, Wuhan, PR China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, PR China.
| | - Yuqiong Li
- School of Environmental Studies, China University of Geosciences, 430074, Wuhan, PR China
| | - Cong Yang
- School of Environmental Studies, China University of Geosciences, 430074, Wuhan, PR China
| | - Qin Tan
- School of Environmental Studies, China University of Geosciences, 430074, Wuhan, PR China
| | - Jun He
- Wuhan Geological Survey Center, China Geological Survey, Wuhan, PR China
| |
Collapse
|
17
|
Han M, Zhang L, Zhang N, Mao Y, Peng Z, Huang B, Zhang Y, Wang Z. Antibiotic resistome in a large urban-lake drinking water source in middle China: Dissemination mechanisms and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127745. [PMID: 34799156 DOI: 10.1016/j.jhazmat.2021.127745] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The increasing pollution of urban drinking water sources by antibiotic resistance genes (ARGs) threatens human health worldwide. However, the distribution and influencing factors of ARGs, especially how to reveal the risks of ARGs in this environment remains unclear. Hence, Chaohu Lake was selected as an example to investigate the characteristics of ARGs and explore the interactions among physicochemical factors, microorganisms, and ARGs by metagenomic approach. In this work, 75 ARG subtypes with an average of 30.4 × /Gb (ranging from 15.2 ×/Gb to 57.9 ×/Gb) were identified, and multidrug and bacA were most frequent in Chaohu Lake. Non-random co-occurrence patterns and potential host bacteria of ARGs were revealed through co-occurrence networks. Microbial community and mobile genetic elements (MGEs) were the major direct factors in ARG profiles. The dissemination of ARGs was mainly driven by plasmids. Considering the interactions among MGEs, human bacterial pathogens, and ARGs, antibiotic resistome risk index (ARRI) was proposed to manifest the risks of ARGs. Overall, our work systemically investigated the composition and associated factors of ARGs and built ARRI to estimate the potential risks of ARGs in a typical urban drinking water source, providing an intuitive indicator for managing similar lakes.
Collapse
Affiliation(s)
- Maozhen Han
- School of Life Science, Anhui Medical University, Hefei, Anhui 230032, China
| | - Lu Zhang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan 430077, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Zhang
- School of Life Science, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yujie Mao
- School of Life Science, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhangjie Peng
- School of Life Science, Anhui Medical University, Hefei, Anhui 230032, China
| | - Binbin Huang
- School of Life Science, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yan Zhang
- School of Life Sciences, Hefei Normal University, Hefei, Anhui 230601, China.
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan 430077, China.
| |
Collapse
|
18
|
Hou L, Liu F, Zhao C, Fan L, Hu H, Yin S. Combination of Oxytetracycline and Quinocetone Synergistically Induces Hepatotoxicity via Generation of Reactive Oxygen Species and Activation of Mitochondrial Pathway. Toxicol Mech Methods 2021; 32:49-57. [PMID: 34348565 DOI: 10.1080/15376516.2021.1965273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Oxytetracycline (OTC) and Quinocetone (QCT) are antimicrobials, whose residues have been found in food and environment. These two are sometimes used simultaneously in livestock and aquaculture, potentially resulting in the simultaneous consumption of multi-antimicrobials by consumers. However, the combined toxic effects of this phenomenon have yet to be addressed. Since the liver is a major target of both OTC and QCT, we tested their hepatotoxic effect using both cell cultures and animal models. Results showed that the QCT (5-25 μM) or OTC (20-100 μM) treatments alone caused dose-dependent reductions in cell numbers, while their combination strongly further enhanced inhibitory effects. Mechanistically, the combination enhanced the generation of reactive oxygen species (ROS) and activated mitochondrial cell death pathways. It also showed that the combination of OTC (800 mg/kg, i.g., 5d) and QCT (5000 mg/kg, i.g., 5d) resulted in significantly enhanced liver toxicity in C57BL/6N mice, the serum alanine transaminase (ALT) and aspartate transaminase (AST) were significantly increased by the OTC/QCT. These findings indicate the necessity of considering the combined toxicity of these two antimicrobials in safety assessments.
Collapse
Affiliation(s)
- Lirui Hou
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Fang Liu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Zhao
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Yunamingyuan West Road, Haidian District, Beijing 100193, China
| | - Hongbo Hu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shutao Yin
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
19
|
Sta Ana KM, Madriaga J, Espino MP. β-Lactam antibiotics and antibiotic resistance in Asian lakes and rivers: An overview of contamination, sources and detection methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116624. [PMID: 33571856 DOI: 10.1016/j.envpol.2021.116624] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Lakes and rivers are sources of livelihood, food and water in many parts of the world. Lakes provide natural resources and valuable ecosystem services. These aquatic ecosystems are also vulnerable to known and new environmental pollutants. Emerging water contaminants are now being studied including antibiotics because of the global phenomenon on antibiotic resistance. β-Lactam antibiotics are widely used in human and animal disease prevention or treatment. The emergence of antibiotic resistance is a public health threat when bacteria become more resistant and infections consequently increase requiring treatment using last resort drugs that are more expensive. This review summarizes the key findings on the occurrence, contamination sources, and determination of β-lactam antibiotics and β-lactam antibiotic resistant bacteria and genes in the Asian lake and river waters. The current methods in the analytical measurements of β-lactam antibiotics in water involving solid-phase extraction and liquid chromatography-mass spectrometry are discussed. Also described is the determination of antibiotic resistance genes which is primarily based on a polymerase chain reaction method. To date, β-lactam antibiotics in the Asian aquatic environments are reported in the ng/L concentrations. Studies on β-lactam resistant bacteria and resistance genes were mostly conducted in China. The occurrence of these emerging contaminants is largely uncharted because many aquatic systems in the Asian region remain to be studied. Comprehensive investigations encompassing the environmental behavior of β-lactam antibiotics, emergence of resistant bacteria, transfer of resistance genes to non-resistant bacteria, multiple antibiotic resistance, and effects on aquatic biota are needed particularly in rivers and lakes that are eventual sinks of these water contaminants.
Collapse
Affiliation(s)
- Katrina Marie Sta Ana
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Jonalyn Madriaga
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Maria Pythias Espino
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines.
| |
Collapse
|
20
|
Liu L, Li J, Xin Y, Huang X, Liu C. Evaluation of wetland substrates for veterinary antibiotics pollution control in lab-scale systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116152. [PMID: 33307393 DOI: 10.1016/j.envpol.2020.116152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/03/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
The behaviors of typical veterinary antibiotics (oxytetracycline, ciprofloxacin and sulfamethazine) and 75 types of corresponding antibiotic resistant genes (ARGs) in four substrate systems (zeolite, gravel, red brick, and oyster shell) were investigated in this study. The results indicated that during treating synthetic livestock wastewater with individual antibiotic influent concentration of 100 μg/L, the effluent contained oxytetracycline and ciprofloxacin concentrations of 0.7-1.5 μg/L and 1.0-1.9 μg/L, respectively, in the zeolite and red brick systems, which were significantly lower than those of the other substrate systems (4.6-14.5 μg/L). Statistical correlation analyses indicated that the difference regarding oxytetracycline and ciprofloxacin removal among the four substrates was determined by their adsorption capacity which was controlled by the chemisorption mechanism. The average removal efficiency of sulfamethazine in the gravel system (48%) was higher than that of the other substrate systems (34-45%), and biodegradation may alter the sulfamethazine performance because of its co-metabolism process. Although tetG, floR, sul1, and qacEΔ1 were the dominant ARGs in all substrate systems (8.74 × 10-2-6.34 × 10-1), there was difference in the total ARG enrichment levels among the four substrates. Oyster shell exhibited the lowest total relative abundance (1.56 × 100) compared to that of the other substrates (1.82 × 100-2.27 × 100), and the ARG total relative abundance exhibited significant negative and positive correlations with the substrate pH and system bacterial diversity (P < 0.05), respectively. In summary, this study indicated that due to the difference of adsorption capacity and residual abundant nutrient in wastewater, the wetland substrate selection can affect the removal efficiency of veterinary antibiotics, and antibiotics may not be the determining factor of ARG enrichment in the substrate system.
Collapse
Affiliation(s)
- Lin Liu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Fujian Institute of Innovation, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Jie Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Xin
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Huang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chaoxiang Liu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
21
|
Ondon BS, Li S, Zhou Q, Li F. Sources of Antibiotic Resistant Bacteria (ARB) and Antibiotic Resistance Genes (ARGs) in the Soil: A Review of the Spreading Mechanism and Human Health Risks. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 256:121-153. [PMID: 33948742 DOI: 10.1007/398_2020_60] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Soil is an essential part of our ecosystem and plays a crucial role as a nutrient source, provides habitat for plants and other organisms. Overuse of antibiotics has accelerated the development and dissemination of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). ARB and ARGs are recognized as emerging environmental contaminants causing soil pollution and serious risks to public health. ARB and ARGs are discharged into soils through several pathways. Application of manure in agriculture is one of the primary sources of ARB and ARGs dissemination in the soil. Different sources of contamination by ARB and ARGs were reviewed and analyzed as well as dissemination mechanisms in the soil. The effects of ARB and ARGs on soil bacterial community were evaluated. Furthermore, the impact of different sources of manure on soil microbial diversity as well as the effect of antibiotics on the development of ARB and ARGs in soils was analyzed. Human health risk assessments associated with the spreading of ARB and ARGs in soils were investigated. Finally, recommendations and mitigation strategies were proposed.
Collapse
Affiliation(s)
- Brim Stevy Ondon
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Shengnan Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
22
|
Khmelevtsova LE, Sazykin IS, Azhogina TN, Sazykina MA. The dissemination of antibiotic resistance in various environmental objects (Russia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43569-43581. [PMID: 32935217 DOI: 10.1007/s11356-020-10231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Environmental objects (surface and groundwater, soil, bottom sediments, wastewater) are reservoirs in which large-scale multidirectional exchange of determinants of antibiotic resistance between clinical strains and natural bacteria takes place. The review discusses the results of studies on antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG) isolated from environmental objects (water, soil, sewage, permafrost) of the Russian Federation. Despite the relevance of the topic, the number of available publications examining the resistomes of Russian water bodies and soils is small. The most studied environmental objects are surface waters (rivers, lakes), permafrost deposits. Soil resistomes are less studied. Data on ARG and ARB in wastewater are the least covered in publications. In most of the studies, antibiotic resistance of isolated pure bacterial cultures was determined phenotypically. A significant number of publications are devoted to the resistance of natural isolates of Vibrio cholerae, since the lower reaches of the Volga and Don rivers are endemic to cholera. Molecular genetic methods were used in a small number of studies. Geographically, the south of the European part of Russia is the most studied. There are also publications on the distribution of ARG in water bodies of Siberia and the Russian Far East. There are practically no publications on such developed regions of Russia as the center and northwest of the European part of Russia. The territory of the country is very large, anthropogenic and natural factors in its various regions vary significantly; therefore, it seems interesting to combine all available data in one work.
Collapse
Affiliation(s)
| | - Ivan Sergeevich Sazykin
- Southern Federal University, 194/2, Stachki Avenue, Rostov-on-Don, Russian Federation, 344090
| | | | | |
Collapse
|
23
|
Li XD, Chen YH, Liu C, Hong J, Deng H, Yu DJ. Eutrophication and Related Antibiotic Resistance of Enterococci in the Minjiang River, China. MICROBIAL ECOLOGY 2020; 80:1-13. [PMID: 31838570 DOI: 10.1007/s00248-019-01464-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Antimicrobial resistance (AMR) in the aquatic environment has received increasing attention in recent years, and growing eutrophication problems may contribute to AMR in aquatic ecosystems. To evaluate whether and how eutrophication affects AMR, 40 surface water samples were collected from the Minjiang River, Fujian Province, China. Total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (CODMn) were measured as eutrophication factors. Additionally, enterococci species were isolated and their resistance to six common antibiotics was tested. Eutrophication generally showed a trend of increasing with the flow direction of the Minjiang River, with 25 sites (62.5%) having a TN/TP value over the Redfield value (16:1), which indicated that eutrophication in this region was of phosphorus limitation. High nutrition sites were in or near urban areas. Poor quality water was found in the middle and lower reaches of the Minjiang River system. The resistance frequency of 40 enterococci isolates to the six antibiotics tested was as follows: oxytetracycline > erythromycin > ciprofloxacin > chloramphenicol > ampicillin > vancomycin (70, 50, 17.5, 12.5, 2.5, 0%), and the multi-resistant rate reached 50% with eight resistance phenotypes. AMR also increased along the direction of water flow downstream, and most of the sites with the highest AMR were in or near urban areas, as was true for nutrition levels. Positive correlations between AMR and eutrophication factors (TN, TP, and CODMn) were identified using the Pearson's correlation coefficient, and TN/TP generally was negatively related to AMR. These results indicated that eutrophication may induce or selective for resistance of water-borne pathogens to antibiotics, with a high resistance level and a wide resistance spectrum.
Collapse
Affiliation(s)
- Xiao-Dong Li
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu-Hong Chen
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Vocational College of Agriculture, Fuzhou, 350119, China
| | - Can Liu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Juan Hong
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Deng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dao-Jin Yu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
24
|
Ai Y, Lee S, Lee J. Drinking water treatment residuals from cyanobacteria bloom-affected areas: Investigation of potential impact on agricultural land application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135756. [PMID: 31940734 DOI: 10.1016/j.scitotenv.2019.135756] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 05/22/2023]
Abstract
In cyanobacteria bloom-affected areas, drinking water treatment processes are optimized to ensure the absence of cyanotoxins in their finished water. A concern about the sludge generated from water treatment has emerged because the removed cyanotoxins and cyanobacteria can get concentrated in the sludge, called water treatment residuals (WTR), and these WTR are often applied on land for beneficial purposes. However, the impact of WTR from bloom-affected areas on the agricultural application and public health is hardly reported. The objective of this study was to characterize bloom-affected WTR by focusing on cyanotoxins, toxin-producing cyanobacteria, microbiomes, and resistome profiles. In addition, the fate of WTR-originated microcystin in crops and soil was examined. WTR samples were obtained from a bloom-affected area in Ohio, USA in November 2017. Cyanotoxins and toxin-producing cyanobacteria were quantified with the enzyme-linked immunosorbent assay and droplet digital PCR, respectively. Microbiome and resistome were determined with Nanopore sequencing. Cyanotoxin concentrations were measured: microcystin (259 μg/kg), saxitoxin (0.16 μg/kg), anatoxin-a (not detected), and β-Methylamino-L-alanine (BMAA) (575 μg/kg). MC-producing cyanobacteria concentrations were determined: Planktothrix (5.3 × 107 gene copies/g) and Microcystis (3.3 × 103 gene copies/g). Proteobacteria was the most predominant and Planktothrix phage was a remarkably dominant virus in the WTR microbiome. Aminoglycoside resistance was the most abundant class, and antibiotic resistance was found in multiple pathogens (e.g. Mycobacterium). WTR land application was simulated by growing carrots with a mixture of WTR and soil in a greenhouse. At harvest, ~80% of WTR-originated microcystin was found in the soil (83-96 μg/kg) and 5% accumulated in carrots (19-28 μg/kg). This study provides the first insight into the cyanotoxin, microbiome, and resistome profile of bloom-affected WTR. Our finding suggests that careful WTR management is needed for the beneficial use of WTR for protecting agricultural environments, especially soil and groundwater, and food safety.
Collapse
Affiliation(s)
- Yuehan Ai
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Seungjun Lee
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Jiyoung Lee
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Canizalez-Roman A, Velazquez-Roman J, Valdez-Flores MA, Flores-Villaseñor H, Vidal JE, Muro-Amador S, Guadrón-Llanos AM, Gonzalez-Nuñez E, Medina-Serrano J, Tapia-Pastrana G, León-Sicairos N. Detection of antimicrobial-resistance diarrheagenic Escherichia coli strains in surface water used to irrigate food products in the northwest of Mexico. Int J Food Microbiol 2019; 304:1-10. [DOI: 10.1016/j.ijfoodmicro.2019.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/16/2023]
|
26
|
Fijani E, Barzegar R, Deo R, Tziritis E, Skordas K. Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:839-853. [PMID: 30138884 DOI: 10.1016/j.scitotenv.2018.08.221] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
Accurate prediction of water quality parameters plays a crucial and decisive role in environmental monitoring, ecological systems sustainability, human health, aquaculture and improved agricultural practices. In this study a new hybrid two-layer decomposition model based on the complete ensemble empirical mode decomposition algorithm with adaptive noise (CEEMDAN) and the variational mode decomposition (VMD) algorithm coupled with extreme learning machines (ELM) and also least square support vector machine (LSSVM) was designed to support real-time environmental monitoring of water quality parameters, i.e. chlorophyll-a (Chl-a) and dissolved oxygen (DO) in a Lake reservoir. Daily measurements of Chl-a and DO for June 2012-May 2013 were employed where the partial autocorrelation function was applied to screen the relevant inputs for the model construction. The variables were then split into training, validation and testing subsets where the first stage of the model testing captured the superiority of the ELM over the LSSVM algorithm. To improve these standalone predictive models, a second stage implemented a two-layer decomposition with the model inputs decomposed in the form of high and low frequency oscillations, represented by the intrinsic mode function (IMF) through the CEEMDAN algorithm. The highest frequency component, IMF1 was further decomposed with the VMD algorithm to segregate key model input features, leading to a two-layer hybrid VMD-CEEMDAN model. The VMD-CEEMDAN-ELM model was able to reduce the root mean square and the mean absolute error by about 14.04% and 7.12% for the Chl-a estimation and about 5.33% and 4.30% for the DO estimation, respectively, compared with the standalone counterparts. Overall, the developed methodology demonstrates the robustness of the two-phase VMD-CEEMDAN-ELM model in identifying and analyzing critical water quality parameters with a limited set of model construction data over daily horizons, and thus, to actively support environmental monitoring tasks, especially in case of high-frequency, and relatively complex, real-time datasets.
Collapse
Affiliation(s)
- Elham Fijani
- School of Geology, College of Science, University of Tehran, Tehran, Iran.
| | - Rahim Barzegar
- Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Department of Bioresource Engineering, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, Quebec H9X3V9, Canada.
| | - Ravinesh Deo
- School of Agricultural Computational and Environmental Sciences, International Centre for Applied Climate Sciences, Institute of Agriculture and Environment, University of Southern Queensland, Springfield, Australia.
| | - Evangelos Tziritis
- Hellenic Agricultural Organization, Soil and Water Resources Institute, 57400 Sindos, Greece.
| | - Konstantinos Skordas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou street, 38446 Volos, Greece.
| |
Collapse
|
27
|
Guo Y, Liu M, Liu L, Liu X, Chen H, Yang J. The antibiotic resistome of free-living and particle-attached bacteria under a reservoir cyanobacterial bloom. ENVIRONMENT INTERNATIONAL 2018; 117:107-115. [PMID: 29734061 DOI: 10.1016/j.envint.2018.04.045] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 05/26/2023]
Abstract
In freshwater systems, both antibiotic resistance genes (ARGs) and cyanobacterial blooms attract global public health concern. Cyanobacterial blooms can greatly impact bacterial taxonomic communities, but very little is known about the influence of the blooms on antibiotic resistance functional community. In this study, the ARGs in both free-living (FL) and particle-attached (PA) bacteria under bloom and non-bloom conditions were simultaneously investigated in a subtropical reservoir using high-throughput approaches. In total, 145 ARGs and 9 mobile genetic elements (MGEs) were detected. The most diverse and dominant of which (68.93%) were multidrug resistance genes and efflux pump mechanism. The richness of ARGs in both FL and PA bacteria was significantly lower during the bloom period compared with non-bloom period. The abundance of ARGs in FL bacteria was significantly lower under bloom condition than in the non-bloom period, but the abundance of ARGs in PA bacteria stayed constant. More importantly, the resistant functional community in PA bacteria was more strongly influenced by the cyanobacterial bloom than in the FL bacteria, although >96% ARGs were shared in both FL and PA bacteria or both bloom and non-bloom periods. We also compared the community compositions between taxonomy and function, and found antibiotic resistant communities were highly variable and exhibited lower similarity between bloom and non-bloom periods than seen in the taxonomic composition, with an exception of FL bacteria. Altogether, cyanobacterial blooms appear to have stronger inhibitory effect on ARG abundance in FL bacteria, and stronger influence on antibiotic resistant community composition in PA bacteria. Our results further suggested that both neutral and selective processes interactively affected the ARG composition dynamics of the FL and PA bacteria. However, the antibiotic resistant community of FL bacteria exhibited a higher level of temporal stochasticity following the bloom event than PA bacteria. Therefore, we emphasized the bacterial lifestyles as an important mechanism, giving rise to different responses of antibiotic resistant community to the cyanobacterial bloom.
Collapse
Affiliation(s)
- Yunyan Guo
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Liu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lemian Liu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xuan Liu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
28
|
Yang Y, Song W, Lin H, Wang W, Du L, Xing W. Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis. ENVIRONMENT INTERNATIONAL 2018; 116:60-73. [PMID: 29653401 DOI: 10.1016/j.envint.2018.04.011] [Citation(s) in RCA: 365] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 05/17/2023]
Abstract
Lakes are an important source of freshwater, containing nearly 90% of the liquid surface fresh water worldwide. Long retention times in lakes mean pollutants from discharges slowly circulate around the lakes and may lead to high ecological risk for ecosystem and human health. In recent decades, antibiotics and antibiotic resistance genes (ARGs) have been regarded as emerging pollutants. The occurrence and distribution of antibiotics and ARGs in global freshwater lakes are summarized to show the pollution level of antibiotics and ARGs and to identify some of the potential risks to ecosystem and human health. Fifty-seven antibiotics were reported at least once in the studied lakes. Our meta-analysis shows that sulfamethoxazole, sulfamerazine, sulfameter, tetracycline, oxytetracycline, erythromycin, and roxithromycin were found at high concentrations in both lake water and lake sediment. There is no significant difference in the concentration of sulfonamides in lake water from China and that from other countries worldwide; however, there was a significant difference in quinolones. Erythromycin had the lowest predicted hazardous concentration for 5% of the species (HC5) and the highest ecological risk in lakes. There was no significant difference in the concentration of sulfonamide resistance genes (sul1 and sul2) in lake water and river water. There is surprisingly limited research on the role of aquatic biota in propagation of ARGs in freshwater lakes. As an environment that is susceptible to cumulative build-up of pollutants, lakes provide an important environment to study the fate of antibiotics and transport of ARGs with a broad range of niches including bacterial community, aquatic plants and animals.
Collapse
Affiliation(s)
- Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | - Wenjuan Song
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Hui Lin
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weibo Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Linna Du
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Wei Xing
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
29
|
Paul C, Bayrychenko Z, Junier T, Filippidou S, Beck K, Bueche M, Greub G, Bürgmann H, Junier P. Dissemination of antibiotic resistance genes associated with the sporobiota in sediments impacted by wastewater. PeerJ 2018; 6:e4989. [PMID: 29942682 PMCID: PMC6015491 DOI: 10.7717/peerj.4989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/27/2018] [Indexed: 12/14/2022] Open
Abstract
Aquatic ecosystems serve as a dissemination pathway and a reservoir of both antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG). In this study, we investigate the role of the bacterial sporobiota to act as a vector for ARG dispersal in aquatic ecosystems. The sporobiota was operationally defined as the resilient fraction of the bacterial community withstanding a harsh extraction treatment eliminating the easily lysed fraction of the total bacterial community. The sporobiota has been identified as a critical component of the human microbiome, and therefore potentially a key element in the dissemination of ARG in human-impacted environments. A region of Lake Geneva in which the accumulation of ARG in the sediments has been previously linked to the deposition of treated wastewater was selected to investigate the dissemination of tet(W) and sul1, two genes conferring resistance to tetracycline and sulfonamide, respectively. Analysis of the abundance of these ARG within the sporobiome (collection of genes of the sporobiota) and correlation with community composition and environmental parameters demonstrated that ARG can spread across the environment with the sporobiota being the dispersal vector. A highly abundant OTU affiliated with the genus Clostridium was identified as a potential specific vector for the dissemination of tet(W), due to a strong correlation with tet(W) frequency (ARG copy numbers/ng DNA). The high dispersal rate, long-term survival, and potential reactivation of the sporobiota constitute a serious concern in terms of dissemination and persistence of ARG in the environment.
Collapse
Affiliation(s)
- Christophe Paul
- Institute of Biology, Laboratory of Microbiology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Zhanna Bayrychenko
- Institute of Biology, Laboratory of Microbiology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Thomas Junier
- Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sevasti Filippidou
- Institute of Biology, Laboratory of Microbiology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Karin Beck
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Matthieu Bueche
- Institute of Biology, Laboratory of Microbiology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Pilar Junier
- Institute of Biology, Laboratory of Microbiology, University of Neuchatel, Neuchâtel, NE, Switzerland
| |
Collapse
|
30
|
Zhao Y, Zhang XX, Zhao Z, Duan C, Chen H, Wang M, Ren H, Yin Y, Ye L. Metagenomic analysis revealed the prevalence of antibiotic resistance genes in the gut and living environment of freshwater shrimp. JOURNAL OF HAZARDOUS MATERIALS 2018; 350:10-18. [PMID: 29448209 DOI: 10.1016/j.jhazmat.2018.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/12/2018] [Accepted: 02/03/2018] [Indexed: 05/08/2023]
Abstract
Antibiotic resistance disseminating from animals and their environments is a public issue that poses significant threats to human health. In the present study, the diversity and abundance of antibiotic resistance genes (ARGs) in 15 samples from the guts and related aquaculture environments (water and sediment) of shrimp were investigated. In total, 60 ARGs, 102 ARGs and 67 ARGs primarily belonging to 13, 15 and 15 different types were detected in the shrimp gut, pond water and sediment samples, respectively. Efflux pump and target modification were the predominant resistance mechanisms in all samples. It was found that Aeromonas, Yersinia and Clostridium XlVb were significantly correlated with the distribution of the ARGs. Besides, the relative abundance of ARGs was positively correlated with the levels of mobile genetic elements (MGEs). Moreover, variation partitioning analysis showed that MGEs, contributing to 74.46% of the resistome variation, played an important role in the affecting of the antibiotic resistome than the bacterial communities and their joint effects. Collectively, this study provides comprehensive information to better understand the ARG dissemination in aquaculture environments and to improve the ecological management of aquatic ecosystems.
Collapse
Affiliation(s)
- Yanting Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Zhonghua Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Cuilan Duan
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing 210036, China
| | - Huangen Chen
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing 210036, China
| | - Miaomiao Wang
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing 210036, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
31
|
Zhu YG, Gillings M, Simonet P, Stekel D, Banwart S, Penuelas J. Human dissemination of genes and microorganisms in Earth's Critical Zone. GLOBAL CHANGE BIOLOGY 2018; 24:1488-1499. [PMID: 29266645 DOI: 10.1111/gcb.14003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Earth's Critical Zone sustains terrestrial life and consists of the thin planetary surface layer between unaltered rock and the atmospheric boundary. Within this zone, flows of energy and materials are mediated by physical processes and by the actions of diverse organisms. Human activities significantly influence these physical and biological processes, affecting the atmosphere, shallow lithosphere, hydrosphere, and biosphere. The role of organisms includes an additional class of biogeochemical cycling, this being the flow and transformation of genetic information. This is particularly the case for the microorganisms that govern carbon and nitrogen cycling. These biological processes are mediated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions. Understanding human effects on microbial activity, fitness and distribution is an important component of Critical Zone science, but is highly challenging to investigate across the enormous physical scales of impact ranging from individual organisms to the planet. One arena where this might be tractable is by studying the dynamics and dissemination of genes for antibiotic resistance and the organisms that carry such genes. Here we explore the transport and transformation of microbial genes and cells through Earth's Critical Zone. We do so by examining the origins and rise of antibiotic resistance genes, their subsequent dissemination, and the ongoing colonization of diverse ecosystems by resistant organisms.
Collapse
Affiliation(s)
- Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Michael Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Pascal Simonet
- Environmental Microbial Genomics Group, Université de Lyon, Lyon, France
| | - Dov Stekel
- School of Biosciences, University of Nottingham, Nottingham, UK
| | - Steven Banwart
- Department of Geography, The University of Sheffield, Sheffield, UK
| | - Josep Penuelas
- CSIC, Global Ecology Unit, CREAF- CSIC-UAB, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| |
Collapse
|
32
|
Chen XP, Ali L, Wu LY, Liu C, Gang CX, Huang QF, Ruan JH, Bao SY, Rao YP, Yu D. Biofilm Formation Plays a Role in the Formation of Multidrug-Resistant Escherichia coli Toward Nutrients in Microcosm Experiments. Front Microbiol 2018; 9:367. [PMID: 29552003 PMCID: PMC5840168 DOI: 10.3389/fmicb.2018.00367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/16/2018] [Indexed: 01/08/2023] Open
Abstract
In this study, microcosms were established to determine the effect of nitrogen (N) and phosphorus (P) on the multidrug resistance and biofilm-forming abilities of Escherichia coli. The expression of biofilm-formation-related genes was detected to establish correlations between genotype and phenotype. Different concentrations of N and P were added to make one control group and four treatment groups. The glass tube method was used to determine biofilm-forming capabilities. Real-time PCR was used to detect the mRNA abundance of six biofilm-formation-related genes in E. coli. No resistant strains were isolated from the control group; meanwhile, multidrug resistance rates were high in the treatment groups. Expression of the biofilm-associated genes luxS, flhD, fliA, motA, and fimH was detected in all treatment groups; however, there was no expression of mqsR. The expression of luxS, flhD, fliA, motA, and fimH significantly correlated with the concentration of N and P, as well as with the appearance and duration of multidrug resistance in different groups. Overall, the results of this study suggest that biofilm-forming ability plays a key role in the formation of multidrug resistance in E. coli after the addition of N and P to a microcosm.
Collapse
Affiliation(s)
- Xiu P Chen
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liaqat Ali
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Biosciences, Faculty of Sciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Li-Yun Wu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Can Liu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chen X Gang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi F Huang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing H Ruan
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Song Y Bao
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yun P Rao
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - DaoJin Yu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
33
|
Madueño L, Paul C, Junier T, Bayrychenko Z, Filippidou S, Beck K, Greub G, Bürgmann H, Junier P. A historical legacy of antibiotic utilization on bacterial seed banks in sediments. PeerJ 2018; 6:e4197. [PMID: 29312823 PMCID: PMC5756452 DOI: 10.7717/peerj.4197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/05/2017] [Indexed: 12/31/2022] Open
Abstract
The introduction of antibiotics for both medical and non-medical purposes has had a positive effect on human welfare and agricultural output in the past century. However, there is also an important ecological legacy regarding the use of antibiotics and the consequences of increased levels of these compounds in the environment as a consequence of their use and disposal. This legacy was investigated by quantifying two antibiotic resistance genes (ARG) conferring resistance to tetracycline (tet(W)) and sulfonamide (sul1) in bacterial seed bank DNA in sediments. The industrial introduction of antibiotics caused an abrupt increase in the total abundance of tet(W) and a steady increase in sul1. The abrupt change in tet(W) corresponded to an increase in relative abundance from ca. 1960 that peaked around 1976. This pattern of accumulation was highly correlated with the abundance of specific members of the seed bank community belonging to the phylum Firmicutes. In contrast, the relative abundance of sul1 increased after 1976. This correlated with a taxonomically broad spectrum of bacteria, reflecting sul1 dissemination through horizontal gene transfer. The accumulation patterns of both ARGs correspond broadly to the temporal scale of medical antibiotic use. Our results show that the bacterial seed bank can be used to look back at the historical usage of antibiotics and resistance prevalence.
Collapse
Affiliation(s)
- Laura Madueño
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Christophe Paul
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Thomas Junier
- Vital-IT group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Zhanna Bayrychenko
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Sevasti Filippidou
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchâtel, NE, Switzerland
| | - Karin Beck
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchâtel, NE, Switzerland
| |
Collapse
|
34
|
Devarajan N, Köhler T, Sivalingam P, van Delden C, Mulaji CK, Mpiana PT, Ibelings BW, Poté J. Antibiotic resistant Pseudomonas spp. in the aquatic environment: A prevalence study under tropical and temperate climate conditions. WATER RESEARCH 2017; 115:256-265. [PMID: 28284092 DOI: 10.1016/j.watres.2017.02.058] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/20/2017] [Accepted: 02/25/2017] [Indexed: 06/06/2023]
Abstract
Microbial populations which are resistant to antibiotics are an emerging environmental concern with potentially serious implications for public health. Thus, there is a growing concern in exploring the occurrence of antibiotic resistance in the environment with no limitations to the factors that contribute to their emergence. The aquatic environment is considered to be a hot-spot for the acquisition and spread of antibiotic resistance due to pollution with emerging contaminants derived from anthropogenic activities. In this study, we report on the isolation and characterization of 141 Pseudomonas spp. from aquatic sediments receiving partially (un)treated hospital and communal effluents from three distinct geographical locations: Democratic Republic of the Congo (DRC), India (IN), and Switzerland (CH). P. putida (42%) and P. aeruginosa (39%) were the dominant Pseudomonas species. The highest frequency of antibiotic resistance against eight anti-pseudomonas agents was found among IN isolates (35-60%), followed by DRC (18-50%) and CH (12-54%). CTX-M was the most frequent β-lactamase found in CH (47% of isolates), while VIM-1 was dominant in isolates from DRC (61%) and IN (29%). NDM-1 was found in 29% of the total IN isolates and surprisingly also in 6% of CH isolates. Chromosomally-encoded efflux mechanisms were overexpressed in P. aeruginosa isolates from all three geographic locations. In vitro conjugative transfers of antibiotic resistance plasmids occurred more frequently under tropical temperatures (30 and 37 °C) than under temperate conditions (10 °C). The presence of Extended Spectrum β-lactamases (ESBLs) and Metallo β-lactamases (MBLs) in the isolates from environmental samples has important implications for humans who depend on public water supply and sanitation facilities. To our knowledge, this is the first study to demonstrate a comparison between treated/untreated effluents from urban and hospital settings as a source of microbial resistance by evaluating the aquatic ecosystems sediments from tropical and temperate climate conditions. Taken together, our findings demonstrate a widespread occurrence of antibiotic resistance in aquatic ecosystems sediments receiving untreated/treated wastewater and how these contemporary sources of contamination, contribute to the spread of microbial resistance in the aquatic environment. This research presents also useful tools to evaluate sediment quality in the receiving river/reservoir systems which can be applied to similar environments.
Collapse
Affiliation(s)
- Naresh Devarajan
- University of Geneva, Faculty of Sciences, Section of Earth and Environmental Science, Department F.-A. Forel for Environmental and Aquatic Sciences and Institute of Environmental Sciences, Blvd Carl-Vogt 66, CH-1205 Geneva, Switzerland
| | - Thilo Köhler
- Department of Microbiology and Molecular Medicine, University of Geneva, 1, rue Michel Servet, CH-1211 Geneva 4, Switzerland; Transplant Infectious Diseases Unit, University Hospitals Geneva, 4, rue Gabrielle-Perret-Gentil, CH-1211 Geneva 14, Switzerland
| | - Periyasamy Sivalingam
- University of Geneva, Faculty of Sciences, Section of Earth and Environmental Science, Department F.-A. Forel for Environmental and Aquatic Sciences and Institute of Environmental Sciences, Blvd Carl-Vogt 66, CH-1205 Geneva, Switzerland
| | - Christian van Delden
- Department of Microbiology and Molecular Medicine, University of Geneva, 1, rue Michel Servet, CH-1211 Geneva 4, Switzerland; Transplant Infectious Diseases Unit, University Hospitals Geneva, 4, rue Gabrielle-Perret-Gentil, CH-1211 Geneva 14, Switzerland
| | - Crispin K Mulaji
- University of Kinshasa (UNIKIN), Faculty of Science, Department of Chemistry, B.P. 190, Kinshasa XI, Democratic Republic of the Congo
| | - Pius T Mpiana
- University of Kinshasa (UNIKIN), Faculty of Science, Department of Chemistry, B.P. 190, Kinshasa XI, Democratic Republic of the Congo
| | - Bastiaan W Ibelings
- University of Geneva, Faculty of Sciences, Section of Earth and Environmental Science, Department F.-A. Forel for Environmental and Aquatic Sciences and Institute of Environmental Sciences, Blvd Carl-Vogt 66, CH-1205 Geneva, Switzerland
| | - John Poté
- University of Geneva, Faculty of Sciences, Section of Earth and Environmental Science, Department F.-A. Forel for Environmental and Aquatic Sciences and Institute of Environmental Sciences, Blvd Carl-Vogt 66, CH-1205 Geneva, Switzerland; University of Kinshasa (UNIKIN), Faculty of Science, Department of Chemistry, B.P. 190, Kinshasa XI, Democratic Republic of the Congo.
| |
Collapse
|
35
|
Ye Q, Wu Q, Zhang S, Zhang J, Yang G, Wang H, Huang J, Chen M, Xue L, Wang J. Antibiotic-Resistant Extended Spectrum ß-Lactamase- and Plasmid-Mediated AmpC-Producing Enterobacteriaceae Isolated from Retail Food Products and the Pearl River in Guangzhou, China. Front Microbiol 2017; 8:96. [PMID: 28217112 PMCID: PMC5289952 DOI: 10.3389/fmicb.2017.00096] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/13/2017] [Indexed: 12/18/2022] Open
Abstract
We conducted a survey in 2015 to evaluate the presence of extended spectrum β-lactamase (ESBL)- and plasmid-mediated AmpC-producing Enterobacteriaceae in retail food and water of the Pearl River in Guangzhou, China, as well as their antibiotic resistance profiles. Samples (88 fresh food samples and 43 water samples) from eight different districts were analyzed by direct plating and after enrichment. Multidrug-resistant strains were found in 41.7 and 43.4% of food and water samples, respectively. ESBLs were found in 3.4 and 11.6% of food and water samples, respectively, and AmpC producers were found in 13.6 and 16.3% of food and water samples, respectively. Molecular characterization revealed the domination of blaCTX−Mgenes; plasmidic AmpC was of the type DHA-1 both in food and water samples. Thirteen of Fifty one β-lactamase-producing positive isolates were detected to be transconjugants, which readily received the β-lactamase genes conferring resistance to β-lactam antibiotics as well as some non-β-lactam antibiotics. These findings provide evidence that retail food and the river water may be considered as reservoirs for the dissemination of β-lactam antibiotics, and these resistance genes could readily be transmitted to humans through the food chain and water.
Collapse
Affiliation(s)
- Qinghua Ye
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern ChinaGuangzhou, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied MicrobiologyGuangzhou, China; School of Bioscience and Bioengineering, South China University of TechnologyGuangzhou, China
| | - Qingping Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern ChinaGuangzhou, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied MicrobiologyGuangzhou, China
| | - Shuhong Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern ChinaGuangzhou, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied MicrobiologyGuangzhou, China
| | - Jumei Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern ChinaGuangzhou, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied MicrobiologyGuangzhou, China
| | - Guangzhu Yang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern ChinaGuangzhou, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied MicrobiologyGuangzhou, China
| | - Huixian Wang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern ChinaGuangzhou, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied MicrobiologyGuangzhou, China
| | - Jiahui Huang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern ChinaGuangzhou, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied MicrobiologyGuangzhou, China
| | - Mongtong Chen
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern ChinaGuangzhou, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied MicrobiologyGuangzhou, China
| | - Liang Xue
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern ChinaGuangzhou, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied MicrobiologyGuangzhou, China
| | - Juan Wang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern ChinaGuangzhou, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied MicrobiologyGuangzhou, China; College of Food Science, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
36
|
Tripathi V, Tripathi P. Antibiotic Resistance Genes: An Emerging Environmental Pollutant. PERSPECTIVES IN ENVIRONMENTAL TOXICOLOGY 2017. [DOI: 10.1007/978-3-319-46248-6_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
37
|
Skariyachan S. Exploring the Potential of Herbal Ligands Toward Multidrug-Resistant Bacterial Pathogens by Computational Drug Discovery. TRANSLATIONAL BIOINFORMATICS AND ITS APPLICATION 2017. [DOI: 10.1007/978-94-024-1045-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
38
|
Ali L, Wang YQ, Zhang J, Ajmal M, Xiao Z, Wu J, Chen JL, Yu D. Nutrient-induced antibiotic resistance in Enterococcus faecalis in the eutrophic environment. J Glob Antimicrob Resist 2016; 7:78-83. [DOI: 10.1016/j.jgar.2016.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 07/11/2016] [Accepted: 07/25/2016] [Indexed: 01/09/2023] Open
|
39
|
Laffite A, Kilunga PI, Kayembe JM, Devarajan N, Mulaji CK, Giuliani G, Slaveykova VI, Poté J. Hospital Effluents Are One of Several Sources of Metal, Antibiotic Resistance Genes, and Bacterial Markers Disseminated in Sub-Saharan Urban Rivers. Front Microbiol 2016; 7:1128. [PMID: 27499749 PMCID: PMC4956658 DOI: 10.3389/fmicb.2016.01128] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Data concerning the occurrence of emerging biological contaminants such as antibiotic resistance genes (ARGs) and fecal indicator bacteria (FIB) in aquatic environments in Sub-Saharan African countries is limited. On the other hand, antibiotic resistance remains a worldwide problem which may pose serious potential risks to human and animal health. Consequently, there is a growing number of reports concerning the prevalence and dissemination of these contaminants into various environmental compartments. Sediments provide the opportunity to reconstruct the pollution history and evaluate impacts so this study investigates the abundance and distribution of toxic metals, FIB, and ARGs released from hospital effluent wastewaters and their presence in river sediments receiving systems. ARGs (bla TEM, bla CTX-M, bla SHV, and aadA), total bacterial load, and selected bacterial species FIB [Escherichia coli, Enterococcus (ENT)] and species (Psd) were quantified by targeting species specific genes using quantitative PCR (qPCR) in total DNA extracted from the sediments recovered from 4 hospital outlet pipes (HOP) and their river receiving systems in the City of Kinshasa in the Democratic Republic of the Congo. The results highlight the great concentration of toxic metals in HOP, reaching the values (in mg kg(-1)) of 47.9 (Cr), 213.6 (Cu), 1434.4 (Zn), 2.6 (Cd), 281.5 (Pb), and 13.6 (Hg). The results also highlight the highest (P < 0.05) values of 16S rRNA, FIB, and ARGs copy numbers in all sampling sites including upstream (control site), discharge point, and downstream of receiving rivers, indicating that the hospital effluent water is not an exclusive source of the biological contaminants entering the urban rivers. Significant correlation were observed between (i) all analyzed ARGs and total bacterial load (16S rRNA) 0.51 to 0.72 (p < 0.001, n = 65); (ii) ARGs (except bla TEM) and FIB and Psd 0.57 < r < 0.82 (p < 0.001, n = 65); and (iii) ARGs (except bla TEM) and toxic metals (Cd, Cr, Cu, and Zn) 0.44 to 0.72, (p < 0.001, n = 65). These findings demonstrate that several sources including hospital and urban wastewaters contribute to the spread of toxic metals and biological emerging contaminants in aquatic ecosystems.
Collapse
Affiliation(s)
- Amandine Laffite
- Faculty of Science, Earth and Environmental Science Section, F.-A. Forel Institute and Institute of Environmental Sciences, University of Geneva Geneva, Switzerland
| | - Pitchouna I Kilunga
- Department of Chemistry, Faculty of Science, University of Kinshasa Kinshasa, Democratic Republic of the Congo
| | - John M Kayembe
- Département de Géographie-Science de l'Environnement, Faculté des Sciences, Université Pédagogique Nationale Kinshasa, Democratic Republic of the Congo
| | - Naresh Devarajan
- Faculty of Science, Earth and Environmental Science Section, F.-A. Forel Institute and Institute of Environmental Sciences, University of Geneva Geneva, Switzerland
| | - Crispin K Mulaji
- Department of Chemistry, Faculty of Science, University of Kinshasa Kinshasa, Democratic Republic of the Congo
| | - Gregory Giuliani
- Faculty of Science, Earth and Environmental Science Section, F.-A. Forel Institute and Institute of Environmental Sciences, University of GenevaGeneva, Switzerland; enviroSPACE Lab., Institute for Environmental Sciences, University of GenevaGeneva, Switzerland; United Nations Environment Programme, Division of Early Warning and Assessment, Global Resource Information Database - Geneva, International Environment HouseGeneva, Switzerland
| | - Vera I Slaveykova
- Faculty of Science, Earth and Environmental Science Section, F.-A. Forel Institute and Institute of Environmental Sciences, University of Geneva Geneva, Switzerland
| | - John Poté
- Faculty of Science, Earth and Environmental Science Section, F.-A. Forel Institute and Institute of Environmental Sciences, University of GenevaGeneva, Switzerland; Department of Chemistry, Faculty of Science, University of KinshasaKinshasa, Democratic Republic of the Congo; Département de Géographie-Science de l'Environnement, Faculté des Sciences, Université Pédagogique NationaleKinshasa, Democratic Republic of the Congo
| |
Collapse
|
40
|
Sharma VK, Johnson N, Cizmas L, McDonald TJ, Kim H. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. CHEMOSPHERE 2016; 150:702-714. [PMID: 26775188 DOI: 10.1016/j.chemosphere.2015.12.084] [Citation(s) in RCA: 389] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/08/2015] [Accepted: 12/22/2015] [Indexed: 05/20/2023]
Abstract
Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental systems such as natural environments and drinking water resources. For example, ARG or ARB with resistance to ciprofloxacin, sulfamethoxazole, trimethoprim, quinolone, vancomycin, or tetracycline (e.g., tet(A), tet(B), tet(C), tet(G), tet(O), tet(M), tet(W), sul I, and sul II) have been detected in the environment. The development of resistance may be intrinsic, may be acquired through spontaneous mutations (de novo), or may occur due to horizontal gene transfer from donor bacteria, phages, or free DNA to recipient bacteria. An overview is also provided of the current knowledge regarding inactivation of ARB and ARG, and the mechanism of the effects of different disinfection processes in water and wastewater (chlorination, UV irradiation, Fenton reaction, ozonation, and photocatalytic oxidation). The effects of constructed wetlands and nanotechnology on ARB and ARG are also summarized.
Collapse
Affiliation(s)
- Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA.
| | - Natalie Johnson
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Leslie Cizmas
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Thomas J McDonald
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Hyunook Kim
- Department of Energy & Environmental System Engineering, The University of Seoul, 90 Jeonnong-dong Dongdaemun-gu, Seoul 130-743, Republic of Korea
| |
Collapse
|
41
|
Devarajan N, Laffite A, Mulaji CK, Otamonga JP, Mpiana PT, Mubedi JI, Prabakar K, Ibelings BW, Poté J. Occurrence of Antibiotic Resistance Genes and Bacterial Markers in a Tropical River Receiving Hospital and Urban Wastewaters. PLoS One 2016; 11:e0149211. [PMID: 26910062 PMCID: PMC4766091 DOI: 10.1371/journal.pone.0149211] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/28/2016] [Indexed: 12/21/2022] Open
Abstract
The occurrence of emerging biological contaminants including antibiotic resistance genes (ARGs) and Faecal Indicator Bacteria (FIB) is still little investigated in developing countries under tropical conditions. In this study, the total bacterial load, the abundance of FIB (E. coli and Enterococcus spp. (ENT)), Pseudomonas spp. and ARGs (blaTEM, blaCTX-M, blaSHV, blaNDM and aadA) were quantified using quantitative PCR in the total DNA extracted from the sediments recovered from hospital outlet pipes (HOP) and the Cauvery River Basin (CRB), Tiruchirappalli, Tamil Nadu, India. The abundance of bacterial marker genes were 120, 104 and 89 fold higher for the E. coli, Enterococcus spp. and Pseudomonas spp., respectively at HOP when compared with CRB. The ARGs aadA and blaTEM were most frequently detected in higher concentration than other ARGs at all the sampling sites. The ARGs blaSHV and blaNDM were identified in CRB sediments contaminated by hospital and urban wastewaters. The ARGs abundance strongly correlated (r ≥ 0.36, p < 0.05, n = 45) with total bacterial load and E. coli in the sediments, indicating a common origin and extant source of contamination. Tropical aquatic ecosystems receiving wastewaters can act as reservoir of ARGs, which could potentially be transferred to susceptible bacterial pathogens at these sites.
Collapse
Affiliation(s)
- Naresh Devarajan
- University of Geneva, Institute F. A. Forel and Institute of Environmental Sciences, Geneva, Switzerland
| | - Amandine Laffite
- University of Geneva, Institute F. A. Forel and Institute of Environmental Sciences, Geneva, Switzerland
| | - Crispin Kyela Mulaji
- University of Kinshasa (UNIKIN), Faculty of Science, Department of Chemistry, Kinshasa XI, Democratic Republic of the Congo
| | - Jean-Paul Otamonga
- Université Pédagogique Nationale (UPN), Croisement Route de Matadi et Avenue de la Libération, Quartier Binza/UPN, Kinshasa, Democratic Republic of the Congo
| | - Pius Tshimankinda Mpiana
- University of Kinshasa (UNIKIN), Faculty of Science, Department of Chemistry, Kinshasa XI, Democratic Republic of the Congo
| | - Josué Ilunga Mubedi
- Université Pédagogique Nationale (UPN), Croisement Route de Matadi et Avenue de la Libération, Quartier Binza/UPN, Kinshasa, Democratic Republic of the Congo
| | - Kandasamy Prabakar
- Postgraduate and Research Department of Zoology, Jamal Mohamed College, Tiruchirappalli-620020, Tamil Nadu, India
| | - Bastiaan Willem Ibelings
- University of Geneva, Institute F. A. Forel and Institute of Environmental Sciences, Geneva, Switzerland
| | - John Poté
- University of Geneva, Institute F. A. Forel and Institute of Environmental Sciences, Geneva, Switzerland
- University of Kinshasa (UNIKIN), Faculty of Science, Department of Chemistry, Kinshasa XI, Democratic Republic of the Congo
- Université Pédagogique Nationale (UPN), Croisement Route de Matadi et Avenue de la Libération, Quartier Binza/UPN, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
42
|
Blaustein RA, Shelton DR, Van Kessel JAS, Karns JS, Stocker MD, Pachepsky YA. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:56. [PMID: 26703979 DOI: 10.1007/s10661-015-5067-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hot spot for proliferation and gene exchange. Pipe-based irrigation systems that utilize surface waters may contribute to the dissemination of antibiotic-resistant bacteria in a similar manner. We conducted irrigation events at a perennial stream on a weekly basis for 1 month, and the concentrations of total heterotrophic bacteria, total coliforms, and fecal coliforms, as well as the concentrations of these bacterial groups that were resistant to ampicillin and tetracycline, were monitored at the intake water. Prior to each of the latter three events, residual pipe water was sampled and 6-in. sections of pipeline (coupons) were detached from the system, and biofilm from the inner-wall was removed and analyzed for total protein content and the above bacteria. Isolates of biofilm-associated bacteria were screened for resistance to a panel of seven antibiotics, representing five antibiotic classes. All of the monitored bacteria grew substantially in the residual water between irrigation events, and the biomass of the biofilm steadily increased from week to week. The percentages of biofilm-associated isolates that were resistant to antibiotics on the panel sometimes increased between events. Multiple-drug resistance was observed for all bacterial groups, most often for fecal coliforms, and the distributions of the numbers of antibiotics that the total coliforms and fecal coliforms were resistant to were subject to change from week to week. Results from this study highlight irrigation waters as a potential source for antibiotic-resistant bacteria, which can subsequently become incorporated into and proliferate within irrigation pipe-based biofilms.
Collapse
Affiliation(s)
- Ryan A Blaustein
- USDA-ARS Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, 10300 Baltimore Ave. Bldg. 173, Beltsville, MD, 20705, USA
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, USA
- Soil and Water Science Department, University of Florida, Gainesville, FL, USA
| | - Daniel R Shelton
- USDA-ARS Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, 10300 Baltimore Ave. Bldg. 173, Beltsville, MD, 20705, USA
| | - Jo Ann S Van Kessel
- USDA-ARS Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, 10300 Baltimore Ave. Bldg. 173, Beltsville, MD, 20705, USA
| | - Jeffrey S Karns
- USDA-ARS Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, 10300 Baltimore Ave. Bldg. 173, Beltsville, MD, 20705, USA
| | - Matthew D Stocker
- USDA-ARS Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, 10300 Baltimore Ave. Bldg. 173, Beltsville, MD, 20705, USA
| | - Yakov A Pachepsky
- USDA-ARS Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, 10300 Baltimore Ave. Bldg. 173, Beltsville, MD, 20705, USA.
| |
Collapse
|
43
|
Abia ALK, Ubomba-Jaswa E, Momba MNB. High prevalence of multiple-antibiotic-resistant (MAR) Escherichia coli in river bed sediments of the Apies River, South Africa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:652. [PMID: 26419380 DOI: 10.1007/s10661-015-4879-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
This study aimed at investigating the presence of antibiotic-resistant Escherichia coli in river bed sediments of the Apies River, Gauteng, South Africa, in order to better inform health management decisions designed to protect users of the river. Overall, 180 water and sediment samples were collected at 10 sites along the Apies River from January to February 2014. E. coli was enumerated using the Colilert® 18/Quanti-Tray® 2000 (IDEXX). Isolates were purified by streaking on eosin methylene blue agar followed by the indole test. Pure E. coli isolates were tested for resistance to nine antibiotics by the Kirby-Bauer disc diffusion method. Over 98% of the isolates were resistant to at least one of the antibiotics tested. The highest resistance was observed against nitrofurantoin (sediments) and ampicillin (water). Over 80% of all resistant isolates showed multiple antibiotic resistance (resistance to ≥3 antibiotics). The abundance of E. coli in the sediments not only adds to the evidence that sediments are a reservoir for bacteria and possibly other pathogens including antibiotic-resistant bacteria but also suggests that antibiotic-resistant genes could be transferred to pathogens due to the high prevalence of multiple-antibiotic-resistant (MAR) strains of E. coli observed in the sediment. Using untreated water from the Apies River following resuspension for drinking and other household purposes could pose serious health risks for users. Our results suggest that river bed sediments could serve as reservoirs for MAR bacteria including pathogens under different climatic conditions and their analysis could provide information of public health concerns.
Collapse
Affiliation(s)
- Akebe Luther King Abia
- Department of Environmental, Water and Earth Science, Tshwane University of Technology, Arcadia Campus, 175 Nelson Mandela Drive, Private Bag X 680, Pretoria, 0001, South Africa.
| | - Eunice Ubomba-Jaswa
- Natural Resources and the Environment, CSIR, PO Box 395, Pretoria, 0001, South Africa
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Science, Tshwane University of Technology, Arcadia Campus, 175 Nelson Mandela Drive, Private Bag X 680, Pretoria, 0001, South Africa.
| |
Collapse
|
44
|
Devarajan N, Laffite A, Graham ND, Meijer M, Prabakar K, Mubedi JI, Elongo V, Mpiana PT, Ibelings BW, Wildi W, Poté J. Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6528-6537. [PMID: 25933054 DOI: 10.1021/acs.est.5b01031] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Wastewater treatment plants (WWTP) receive the effluents from various sources (communities, industrial, and hospital effluents) and are recognized as reservoir for antibiotic-resistance genes (ARGs) that are associated with clinical pathogens. The aquatic environment is considered a hot-spot for horizontal gene transfer, and lake sediments offer the opportunity for reconstructing the pollution history and evaluating the impacts. In this context, variation with depth and time of the total bacterial load, the abundance of faecal indicator bacteria (FIB; E. coli and Enterococcus spp. (ENT)), Pseudomonas spp., and ARGs (blaTEM, blaSHV, blaCTX-M, blaNDM, and aadA) were quantified in sediment profiles of different parts of Lake Geneva using quantitative PCR. The abundance of bacterial marker genes was identified in sediments contaminated by WWTP following eutrophication of the lake. Additionally, ARGs, including the extended-spectrum ß-lactam- and aminoglycoside-resistance genes, were identified in the surface sediments. The ARG and FIB abundance strongly correlated (r ≥ 0.403, p < 0.05, n = 34) with organic matter and metal concentrations in the sediments, indicating a common and contemporary source of contamination. The contamination of sediments by untreated or partially treated effluent water can affect the quality of ecosystem. Therefore, the reduction of contaminants from the source is recommended for further improvement of water quality.
Collapse
Affiliation(s)
- Naresh Devarajan
- †University of Geneva, Faculty of Sciences, Earth and Environmental Sciences, Institute F. A. Forel and Institute of Environmental Sciences, Case Postale 416, 1290 Versoix, Switzerland
| | - Amandine Laffite
- †University of Geneva, Faculty of Sciences, Earth and Environmental Sciences, Institute F. A. Forel and Institute of Environmental Sciences, Case Postale 416, 1290 Versoix, Switzerland
| | - Neil D Graham
- †University of Geneva, Faculty of Sciences, Earth and Environmental Sciences, Institute F. A. Forel and Institute of Environmental Sciences, Case Postale 416, 1290 Versoix, Switzerland
| | - Maria Meijer
- †University of Geneva, Faculty of Sciences, Earth and Environmental Sciences, Institute F. A. Forel and Institute of Environmental Sciences, Case Postale 416, 1290 Versoix, Switzerland
| | - Kandasamy Prabakar
- ‡Postgraduate and Research Department of Zoology, Jamal Mohamed College, Tiruchirappalli, 620020 Tamil Nadu, India
| | - Josué I Mubedi
- §Université Pédagogique Nationale, Croisement Route de Matadi et Avenue de la Libération, Quartier Binza/UPN, Boı̂te Postale 8815, Kinshasa, République Démocratique du Congo
| | - Vicky Elongo
- ∥Université de Kinshasa, Faculté des Lettres et Sciences Humaines, Département des Sciences de l'Information et de la Communication, Boı̂te Postale 243, Kinshasa XI, République Démocratique du Congo
| | - Pius T Mpiana
- ⊥University of Kinshasa, Faculty of Science, Department of Chemistry, Boı̂te Postale 190, Kinshasa XI, Democratic Republic of the Congo
| | - Bastiaan Willem Ibelings
- †University of Geneva, Faculty of Sciences, Earth and Environmental Sciences, Institute F. A. Forel and Institute of Environmental Sciences, Case Postale 416, 1290 Versoix, Switzerland
| | - Walter Wildi
- †University of Geneva, Faculty of Sciences, Earth and Environmental Sciences, Institute F. A. Forel and Institute of Environmental Sciences, Case Postale 416, 1290 Versoix, Switzerland
| | - John Poté
- †University of Geneva, Faculty of Sciences, Earth and Environmental Sciences, Institute F. A. Forel and Institute of Environmental Sciences, Case Postale 416, 1290 Versoix, Switzerland
- §Université Pédagogique Nationale, Croisement Route de Matadi et Avenue de la Libération, Quartier Binza/UPN, Boı̂te Postale 8815, Kinshasa, République Démocratique du Congo
- ⊥University of Kinshasa, Faculty of Science, Department of Chemistry, Boı̂te Postale 190, Kinshasa XI, Democratic Republic of the Congo
| |
Collapse
|
45
|
Skariyachan S, Mahajanakatti AB, Grandhi NJ, Prasanna A, Sen B, Sharma N, Vasist KS, Narayanappa R. Environmental monitoring of bacterial contamination and antibiotic resistance patterns of the fecal coliforms isolated from Cauvery River, a major drinking water source in Karnataka, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:279. [PMID: 25896199 DOI: 10.1007/s10661-015-4488-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
The present study focuses prudent elucidation of microbial pollution and antibiotic sensitivity profiling of the fecal coliforms isolated from River Cauvery, a major drinking water source in Karnataka, India. Water samples were collected from ten hotspots during the year 2011-2012. The physiochemical characteristics and microbial count of water samples collected from most of the hotspots exhibited greater biological oxygen demand and bacterial count especially coliforms in comparison with control samples (p ≤ 0.01). The antibiotic sensitivity testing was performed using 48 antibiotics against the bacterial isolates by disk-diffusion assay. The current study showed that out of 848 bacterial isolates, 93.51% (n = 793) of the isolates were found to be multidrug-resistant to most of the current generation antibiotics. Among the major isolates, 96.46% (n = 273) of the isolates were found to be multidrug-resistant to 30 antibiotics and they were identified to be Escherichia coli by 16S rDNA gene sequencing. Similarly, 93.85% (n = 107), 94.49% (n = 103), and 90.22% (n = 157) of the isolates exhibited multiple drug resistance to 32, 40, and 37 antibiotics, and they were identified to be Enterobacter cloacae, Pseudomonas trivialis, and Shigella sonnei, respectively. The molecular studies suggested the prevalence of bla TEM genes in all the four isolates and dhfr gene in Escherichia coli and Sh. sonnei. Analogously, most of the other Gram-negative bacteria were found to be multidrug-resistant and the Gram-positive bacteria, Staphylococcus spp. isolated from the water samples were found to be methicillin and vancomycin-resistant Staphylococcus aureus. This is probably the first study elucidating the bacterial pollution and antibiotic sensitivity profiling of fecal coliforms isolated from River Cauvery, Karnataka, India.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- Department of Biotechnology Engineering, Dayananda Sagar Institutions, Bangalore, Karnataka, 560 078, India,
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Naquin A, Shrestha A, Sherpa M, Nathaniel R, Boopathy R. Presence of antibiotic resistance genes in a sewage treatment plant in Thibodaux, Louisiana, USA. BIORESOURCE TECHNOLOGY 2015; 188:79-83. [PMID: 25662190 DOI: 10.1016/j.biortech.2015.01.052] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 06/04/2023]
Abstract
Increasing uses and disposals of antibiotics to the environment have increased emergence of various antibiotic resistance. One of the sources for the spread of antibiotic resistance is wastewater treatment plant, where bacteria and antibiotics can come in contact and can acquire antibiotics resistance. There are very few studies on this subject from a small town sewage treatment plant. Therefore, this study was conducted using raw sewage as well as treated sewage from a sewage treatment plant in Thibodaux in rural southeast Louisiana in USA. Samples were collected monthly from the Thibodaux sewage treatment plant and the presence of antibiotic resistance genes was monitored. The study showed the presence of antibiotic resistance genes in both raw and treated sewage in every month of the study period. The genetic transformation assay showed the successful transformation of methicillin resistant gene, mecA to an antibiotic sensitive Staphylococcus aureus, which became antibiotic resistant within 24h.
Collapse
Affiliation(s)
- Anthony Naquin
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA
| | - Arsen Shrestha
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA
| | - Mingma Sherpa
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA
| | - Rajkumar Nathaniel
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA
| | - Raj Boopathy
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA.
| |
Collapse
|
47
|
Wunderlin T, Junier T, Roussel-Delif L, Jeanneret N, Junier P. Endospore-enriched sequencing approach reveals unprecedented diversity of Firmicutes in sediments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:631-639. [PMID: 25756117 DOI: 10.1111/1758-2229.12179] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a method for the physical isolation of endospores from environmental samples allowing the specific targeting of endospore-forming bacteria for sequencing (endospore-enriched community). The efficiency of the method was tested on lake sediment samples. After 16S rRNA gene amplicon sequencing, the composition in the endospore-enriched community was compared with the community from untreated control samples (whole community). In the whole community, Firmicutes had a relative abundance of 8% and 19% in the two different lake sediments. In contrast, in the endospore-enriched community, Firmicutes abundance increased to 90.6% and 83.9%, respectively, confirming the efficiency of the endospore enrichment. The relative abundance of other microbial groups that form spore-like resisting states (i.e. actinobacteria, cyanobacteria and myxococcales) was below 2% in the endospore-enriched community, indicating that the method is adapted to true endospores. Representatives from two out of the three known classes of Firmicutes (Bacilli and Clostridia) were detected and supposedly asporogenic groups (e.g. Ethanoligenes and Trichococcus) could be detected. The method presented here is a leap forward for ecological studies of endospore-forming Firmicutes. It can be applied to other types of samples in order to reveal the diversity and metabolic potential of this bacterial group in the environment.
Collapse
|
48
|
Coutinho FH, Silveira CB, Pinto LH, Salloto GRB, Cardoso AM, Martins OB, Vieira RP, Clementino MM. Antibiotic resistance is widespread in urban aquatic environments of Rio de Janeiro, Brazil. MICROBIAL ECOLOGY 2014; 68:441-452. [PMID: 24821495 DOI: 10.1007/s00248-014-0422-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
Bacterial resistance to antibiotics has become a public health issue. Over the years, pathogenic organisms with resistance traits have been studied due to the threat they pose to human well-being. However, several studies raised awareness to the often disregarded importance of environmental bacteria as sources of resistance mechanisms. In this work, we analyze the diversity of antibiotic-resistant bacteria occurring in aquatic environments of the state of Rio de Janeiro, Brazil, that are subjected to distinct degrees of anthropogenic impacts. We access the diversity of aquatic bacteria capable of growing in increasing ampicillin concentrations through 16S rRNA gene libraries. This analysis is complemented by the characterization of antibiotic resistance profiles of isolates obtained from urban aquatic environments. We detect communities capable of tolerating antibiotic concentrations up to 600 times higher than the clinical levels. Among the resistant organisms are included potentially pathogenic species, some of them classified as multiresistant. Our results extend the knowledge of the diversity of antibiotic resistance among environmental microorganisms and provide evidence that the diversity of drug-resistant bacteria in aquatic habitats can be influenced by pollution.
Collapse
Affiliation(s)
- Felipe H Coutinho
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil,
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang C, Gu X, Zhang S, Wang P, Guo C, Gu J, Hou J. Characterization of antibiotic-resistance genes in antibiotic resistance Escherichia coli isolates from a lake. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 65:635-641. [PMID: 23846774 DOI: 10.1007/s00244-013-9932-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
The spread of antibiotic-resistance bacteria and antibiotic-resistance genes (ARGs) has been of concern worldwide. In this study, 114 Escherichia coli isolates were isolated from surface water samples of a lake to identify their susceptibility to antibiotics, including tetracycline (TC), gentamicin (GN), ampicillin (AMP), streptomycin (ST), oxytetracycline (OC), levofloxacin (LEV), nalidixic acid (NA), and sulfamethoxazole/trimethoprim (SFT). Isolates showing resistance to TC, GN, AMP, ST, OC, LEV, NA, and SFT occurred in 50, 76, 68, 71, 55, 32, 82, and 85 % of the total isolates, respectively. Thirty-seven different resistance patterns were identified, and the most abundant resistance profile (28 of 104) was TC/GN/AMP/ST/OC/LEV/NA/SFT. The occurrence of 29 ARGs were detected in their corresponding resistance clones, and 88 % of TC-resistance, 94 % of SFT-resistance, 90 % of AMP-resistance, 78 % of ST-resistance, and 72 % of quinolone-resistance clones can be described by their corresponding ARGs. It should be noted that most of these antibiotic-resistance clones harbored at least two corresponding ARGs, indicating that high frequencies of combined ARGs occurred in these isolates. In addition, 9 new types of DNA sequence of qnr(B) gene were obtained and were clustered into the same group as showed by phylogenetic trees analysis. These results suggest that the development of antibiotic resistance can be ascribed to the high frequency in the recombination of ARGs through horizontal gene transfer.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road No. 1, Gulou District, Nanjing, 210098, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Lian F, Song Z, Liu Z, Zhu L, Xing B. Mechanistic understanding of tetracycline sorption on waste tire powder and its chars as affected by Cu(2+) and pH. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 178:264-270. [PMID: 23587856 DOI: 10.1016/j.envpol.2013.03.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/19/2013] [Accepted: 03/04/2013] [Indexed: 06/02/2023]
Abstract
The sorption characteristics of tetracycline (TC) by waste tire powder and its chars were investigated to explore the potential of using waste tires as effective sorbents for removal of TC from aqueous solution. Naphthalene (NAPH), a typical hydrophobic organic compound, was selected as asorbate for comparison. TC displayed much lower sorption affinity to tire powder than NAPH. However, it exhibited similar adsorption affinity as NAPH on the pyrolyzed tire chars, which was mainly attributed to π-π electron-donor-acceptor interactions of TC with the graphite surface of chars. TC and Cu(2+) could mutually facilitate the sorption of each other on both tire powder and pyrolyzed chars in a wide pH range. This could be explained by the metallic complexation and/or surface-bridging mechanisms (i.e., Cu- or TC-bridging). However, Cu(2+) and NAPH depressed the sorption of each other on tire powder and displayed negligible impact to each other on the highly pyrolyzed chars.
Collapse
Affiliation(s)
- Fei Lian
- Centre for Research in Ecotoxicology and Environmental Remediation, Institute of Agro-Environmental Protection, Ministry of Agriculture, Fukang Road 31, Nankai District, Tianjin 300191, China.
| | | | | | | | | |
Collapse
|