1
|
Bharali P, Gogoi B, Sorhie V, Acharjee SA, Walling B, Alemtoshi, Vishwakarma V, Shah MP. Autochthonous psychrophilic hydrocarbonoclastic bacteria and its ecological function in contaminated cold environments. Biodegradation 2024; 35:1-46. [PMID: 37436665 DOI: 10.1007/s10532-023-10042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023]
Abstract
Petroleum hydrocarbon (PH) pollution has mostly been caused by oil exploration, extraction, and transportation activities in colder regions, particularly in the Arctic and Antarctic regions, where it serves as a primary source of energy. Due to the resilience feature of nature, such polluted environments become the realized ecological niches for a wide community of psychrophilic hydrocarbonoclastic bacteria (PHcB). In contrast, to other psychrophilic species, PHcB is extremely cold-adapted and has unique characteristics that allow them to thrive in greater parts of the cold environment burdened with PHs. The stated group of bacteria in its ecological niche aids in the breakdown of litter, turnover of nutrients, cycling of carbon and nutrients, and bioremediation. Although such bacteria are the pioneers of harsh colder environments, their growth and distribution remain under the influence of various biotic and abiotic factors of the environment. The review discusses the prevalence of PHcB community in colder habitats, the metabolic processes involved in the biodegradation of PH, and the influence of biotic and abiotic stress factors. The existing understanding of the PH metabolism by PHcB offers confirmation of excellent enzymatic proficiency with high cold stability. The discovery of more flexible PH degrading strategies used by PHcB in colder environments could have a significant beneficial outcome on existing bioremediation technologies. Still, PHcB is least explored for other industrial and biotechnological applications as compared to non-PHcB psychrophiles. The present review highlights the pros and cons of the existing bioremediation technologies as well as the potential of different bioaugmentation processes for the effective removal of PH from the contaminated cold environment. Such research will not only serve to investigate the effects of pollution on the basic functional relationships that form the cold ecosystem but also to assess the efficacy of various remediation solutions for diverse settings and climatic conditions.
Collapse
Affiliation(s)
- Pranjal Bharali
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India.
| | - Bhagyudoy Gogoi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Viphrezolie Sorhie
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Shiva Aley Acharjee
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Bendangtula Walling
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Alemtoshi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida, NCR Delhi, India
| | - Maulin Pramod Shah
- Industrial Waste Water Research Lab, Division of Applied and Environmental Microbiology Lab at Enviro Technology Ltd., Ankleshwar, Gujarat, India
| |
Collapse
|
2
|
Nielsen AF, Baun A, Andersen SI, Skjolding LM. Critical review of the OSPAR risk-based approach for offshore-produced water discharges. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:1172-1187. [PMID: 36461708 DOI: 10.1002/ieam.4715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The management of produced water (PW) discharges from offshore oil and gas installations in the North Atlantic is under the auspices of OSPAR (Oslo/Paris convention for Protection of the Marine Environment of the North-East Atlantic). In 2010, OSPAR introduced the risk-based approach (RBA) for PW management. The RBA includes a hazard assessment estimating PW ecotoxicity using two approaches: whole-effluent toxicity (WET) and substance-based (SB). Set against the framework of the WET and SB approach, we conducted a literature review on the magnitude and cause of PW ecotoxicity, respectively, and on the challenges of estimating these. A large variability in the reported magnitude of PW WET was found, with EC50 or LC50 values ranging from <1% to >100%, and a median of 11% (n = 301). Across the literature, metals, hydrocarbons, and production chemicals were identified as causing ecotoxicity. However, this review reveals how knowledge gaps on PW composition and high sample and species dependency of PW ecotoxicity make clear identification and generalization difficult. It also highlights how limitations regarding the availability and reliability of ecotoxicity data result in large uncertainties in the subsequent risk estimates, which is not adequately reflected in the RBA output (e.g., environmental impact factors). Thus, it is recommended to increase the focus on improving ecotoxicity data quality before further use in the RBA, and that WET should play a more pronounced role in the testing strategy. To increase the reliability of the SB approach, more attention should be paid to the actual composition of PW. Bioassay-directed chemical analysis, combining outcomes of WET and SB in toxicity identification evaluations, may hold the key to identifying drivers of ecotoxicity in PW. Finally, an uncertainty appraisal must be an integrated part of all reporting of risk estimates in the RBA, to avoid mitigation actions based on uncertainties rather than reliable ecotoxicity estimations. Integr Environ Assess Manag 2023;19:1172-1187. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Ann F Nielsen
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anders Baun
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Simon I Andersen
- Danish Offshore Technology Centre, Elektrovej, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lars M Skjolding
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Gutgesell RM, Jamshed L, Frank RA, Hewitt LM, Thomas PJ, Holloway AC. Naphthenic acid fraction components from oil sands process-affected water from the Athabasca Oil Sands Region impair murine osteoblast differentiation and function. J Appl Toxicol 2022; 42:2005-2015. [PMID: 35894097 PMCID: PMC9804983 DOI: 10.1002/jat.4370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/08/2022] [Accepted: 07/23/2022] [Indexed: 01/09/2023]
Abstract
The extraction of bitumen from surface mining in the Athabasca Oil Sands Region (AOSR) produces large quantities of oil sands process-affected water (OSPW) that needs to be stored in settling basins near extraction sites. Chemical constituents of OSPW are known to impair bone health in some organisms, which can lead to increased fracture risk and lower reproductive fitness. Naphthenic acid fraction components (NAFCs) are thought to be among the most toxic class of compounds in OSPW; however, the effect of NAFCs on osteoblast development is largely unknown. In this study, we demonstrate that NAFCs from OSPW inhibit osteoblast differentiation and deposition of extracellular matrix, which is required for bone formation. Extracellular matrix deposition was inhibited in osteoblasts exposed to 12.5-125 mg/L of NAFC for 21 days. We also show that components within NAFCs inhibit the expression of gene markers of osteoblast differentiation and function, namely, alkaline phosphatase (Alp), osteocalcin, and collagen type 1 alpha 1 (Col1a1). These effects were partially mediated by the induction of glucocorticoid receptor (GR) activity; NAFC induces the expression of the GR activity marker genes Sgk1 (12.5 mg/L) and p85a (125 mg/L) and inhibits GR protein (125 mg/L) and Opg RNA (12.5 mg/L) expression. This study provides evidence that NAFC concentrations of 12.5 mg/L and above can directly act on osteoblasts to inhibit bone formation and suggests that NAFCs contain components that can act as GR agonists, which may have further endocrine disrupting effects on exposed wildlife.
Collapse
Affiliation(s)
| | - Laiba Jamshed
- Department of Obstetrics and GynecologyMcMaster UniversityHamiltonONCanada
| | - Richard A. Frank
- Water Science and Technology DirectorateEnvironment and Climate Change CanadaBurlingtonONCanada
| | - L. Mark Hewitt
- Water Science and Technology DirectorateEnvironment and Climate Change CanadaBurlingtonONCanada
| | - Philippe J. Thomas
- Environment and Climate Change CanadaNational Wildlife Research CentreOttawaONCanada
| | - Alison C. Holloway
- Department of Obstetrics and GynecologyMcMaster UniversityHamiltonONCanada
| |
Collapse
|
4
|
Beyer J, Goksøyr A, Hjermann DØ, Klungsøyr J. Environmental effects of offshore produced water discharges: A review focused on the Norwegian continental shelf. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105155. [PMID: 32992224 DOI: 10.1016/j.marenvres.2020.105155] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Produced water (PW), a large byproduct of offshore oil and gas extraction, is reinjected to formations or discharged to the sea after treatment. The discharges contain dispersed crude oil, polycyclic aromatic hydrocarbons (PAHs), alkylphenols (APs), metals, and many other constituents of environmental relevance. Risk-based regulation, greener offshore chemicals and improved cleaning systems have reduced environmental risks of PW discharges, but PW is still the largest operational source of oil pollution to the sea from the offshore petroleum industry. Monitoring surveys find detectable exposures in caged mussel and fish several km downstream from PW outfalls, but biomarkers indicate only mild acute effects in these sentinels. On the other hand, increased concentrations of DNA adducts are found repeatedly in benthic fish populations, especially in haddock. It is uncertain whether increased adducts could be a long-term effect of sediment contamination due to ongoing PW discharges, or earlier discharges of oil-containing drilling waste. Another concern is uncertainty regarding the possible effect of PW discharges in the sub-Arctic Southern Barents Sea. So far, research suggests that sub-arctic species are largely comparable to temperate species in their sensitivity to PW exposure. Larval deformities and cardiac toxicity in fish early life stages are among the biomarkers and adverse outcome pathways that currently receive much attention in PW effect research. Herein, we summarize the accumulated ecotoxicological knowledge of offshore PW discharges and highlight some key remaining knowledge needs.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Norway; Institute of Marine Research (IMR), Bergen, Norway
| | | | | |
Collapse
|
5
|
Heinosalo T, Saarinen N, Poutanen M. Role of hydroxysteroid (17beta) dehydrogenase type 1 in reproductive tissues and hormone-dependent diseases. Mol Cell Endocrinol 2019; 489:9-31. [PMID: 30149044 DOI: 10.1016/j.mce.2018.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/14/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
Abnormal synthesis and metabolism of sex steroids is involved in the pathogenesis of various human diseases, such as endometriosis and cancers arising from the breast and uterus. Steroid biosynthesis is a multistep enzymatic process proceeding from cholesterol to highly active sex steroids via different intermediates. Human Hydroxysteroid (17beta) dehydrogenase 1 (HSD17B1) enzyme shows a high capacity to produce the highly active estrogen, estradiol, from a precursor hormone, estrone. However, the enzyme may also play a role in other steps of the steroid biosynthesis pathway. In this article, we have reviewed the literature on HSD17B1, and summarize the role of the enzyme in hormone-dependent diseases in women as evidenced by preclinical studies.
Collapse
Affiliation(s)
- Taija Heinosalo
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| | - Niina Saarinen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland; Institute of Medicine, The Sahlgrenska Academy, Gothenburg University, 413 45, Gothenburg, Sweden
| |
Collapse
|
6
|
Dogra Y, Scarlett AG, Rowe D, Galloway TS, Rowland SJ. Predicted and measured acute toxicity and developmental abnormalities in zebrafish embryos produced by exposure to individual aromatic acids. CHEMOSPHERE 2018; 205:98-107. [PMID: 29689530 DOI: 10.1016/j.chemosphere.2018.04.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Petroleum acids, often called 'Naphthenic Acids' (NA), enter the environment in complex mixtures from numerous sources. These include from Produced and Process-Affected waters discharged from some oil industry activities, and from the environmental weathering of spilled crude oil hydrocarbons. Here, we test the hypothesis that individual NA within the complex mixtures can induce developmental abnormalities in fish, by screening a range of individual acids, with known chemical structures. Sixteen aromatic NA were tested using a Thamnocephalus platyrus (beavertail fairyshrimp) assay, to establish acute toxicity. Toxicities ranged from 568 to 8 μM, with the methylbiphenyl acid, 4-(p-tolyl)benzoic acid, most toxic. Next, five of the most toxic monoacids and for comparison, a diacid, were assayed using Danio rerio (zebrafish) embryos to test for lethality and developmental abnormalities. The toxicities were also predicted using Admet predictor™ software. Exposure to the five monoacids produced deformities in zebrafish embryos in a dose-dependent manner. Thus, exposure to 4-(p-tolyl)benzoic acid produced abnormalities in >90% of the embryos at concentrations of <1 μM; exposure to dehydroabietic acid caused pericardial edema and stunted growth in 100% of the embryos at 6 μM and exposure to pyrene-1-carboxylic acid caused 80% of embryos to be affected at 3 μM. The findings of this preliminary study therefore suggest that some aromatic acids are targets for more detailed mechanistic studies of mode of action. The results should help to focus on those NA which may be important for monitoring in oil industry wastewaters and polluted environmental samples.
Collapse
Affiliation(s)
- Yuktee Dogra
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| | - Alan G Scarlett
- Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Darren Rowe
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| | - Tamara S Galloway
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| | - Steven J Rowland
- Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| |
Collapse
|
7
|
Petersen K, Hultman MT, Rowland SJ, Tollefsen KE. Toxicity of organic compounds from unresolved complex mixtures (UCMs) to primary fish hepatocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:150-161. [PMID: 28711771 DOI: 10.1016/j.aquatox.2017.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/06/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
Many environmental matrices contaminated with organic pollutants derived from crude oil or degraded petroleum contain mixtures so complex that they are typically unresolved by conventional analytical techniques such as gas chromatography. The resulting chromatographic features have become known as 'humps' or unresolved complex mixtures (UCMs). These UCMs often dominate the organic contaminants of polluted environmental samples: for example, in oil sands produced water up to 150mgL-1 of 'naphthenic acids' appear as UCMs when examined by gas chromatography as the esters. In oil-contaminated mussels, aromatic hydrocarbon UCMs may comprise almost all of the total toxic hydrocarbons, with over 7000μgg-1 dry weight reported in some samples. Over the last 25 years, efforts to resolve and thus identify, or at least to produce average structures, for some UCM components, have proved fruitful. Numerous non-polar UCM hydrocarbons and more polar UCM acids have been identified, then synthesised or purchased from commercial suppliers. As UCMs have been proposed to represent a risk to aquatic organisms, the need for assessment of the ecotoxicological effects and characterisation of the mode of action (MoA) of these environmental pollutants has arisen. In the present study, several chemicals with structures typical of those found in some UCMs, were assessed for their potential to disrupt membrane integrity, inhibit metabolic activity, activate the aryl hydrocarbon receptor (AhR), and activate the estrogen receptor (ER) in primary rainbow trout hepatocytes (Oncorhynchus mykiss). These endpoints were determined in order to screen for common toxic modes of action (MoA) in this diverse group of chemicals. The results from the in vitro screening indicated that of the endpoints tested, the predominant toxic MoA was cytotoxicity. EC50 values for cytotoxicity were obtained for 16 compounds and ranged from 77μM-24mM, whereof aliphatic monocyclic acids, monoaromatic acids, polycyclic monoaromatic acids and alkylnaphthalenes were the most toxic. The observed cytotoxicity of the chemicals correlated well with the hydrophobicity (LogKOW) suggesting that the toxicity was predominantly due to a non-specific MoA. Interestingly, two compounds induced the ER-mediated production of vitellogenin (Vtg) and six compounds induced the AhR-mediated Ethoxyresorufin-O-deethylase (EROD) enzymatic activity to >20% of the positive control; by doing so suggesting that they may act as ER or AhR agonists in fish. The heterogeneous group of 'UCM compounds' tested exhibited multiple MoA that may potentially cause adverse effects in fish. Additional studies to determine if these compounds may cause adverse effects in vivo at environmentally relevant concentrations, are warranted to identify if such compounds are indeed of potential environmental concern.
Collapse
Affiliation(s)
- Karina Petersen
- Norwegian Institute for Water Research, Gaustadalleen 21, N-0349 Oslo, Norway
| | - Maria T Hultman
- Norwegian Institute for Water Research, Gaustadalleen 21, N-0349 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Steven J Rowland
- Petroleum & Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth, Plymouth, PL4 8AA, Devon, UK
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research, Gaustadalleen 21, N-0349 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.
| |
Collapse
|
8
|
Dissanayake A, Scarlett AG, Jha AN. Diamondoid naphthenic acids cause in vivo genetic damage in gills and haemocytes of marine mussels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7060-7066. [PMID: 26884235 DOI: 10.1007/s11356-016-6268-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
Diamondoids are polycyclic saturated hydrocarbons that possess a cage-like carbon skeleton approaching that of diamond. These 'nano-diamonds' are used in a range of industries including nanotechnologies and biomedicine. Diamondoids were thought to be highly resistant to degradation, but their presumed degradation acid products have now been found in oil sands process-affected waters (OSPW) and numerous crude oils. Recently, a diamondoid-related structure, 3-noradamantane carboxylic acid, was reported to cause genetic damage in trout hepatocytes under in vitro conditions. This particular compound has never been reported in the environment but led us to hypothesise that other more environmentally relevant diamondoid acids could also be genotoxic. We carried out in vivo exposures (3 days, semi-static) of marine mussels to two environmentally relevant diamondoid acids, 1-adamantane carboxylic acid and 3,5-dimethyladamantane carboxylic acid plus 3-noradamantane carboxylic acid with genotoxic damage assessed using the Comet assay. An initial screening test confirmed that these acids displayed varying degrees of genotoxicity to haemocytes (increased DNA damage above that of controls) when exposed in vivo to a concentration of 30 μmol L(-1). In a further test focused on 1-adamantane carboxylic acid with varying concentrations (0.6, 6 and 30 μmol L(-1)), significant (P < 0.05%) DNA damage was observed in different target cells (viz. gills and haemocytes) at 0.6 μmol L(-1). Such a level of induced genetic damage was similar to that observed following exposure to a known genotoxin, benzo(a)pyrene (exposure concentration, 0.8 μmol L(-1)). These findings may have implications for a range of worldwide industries including oil extraction, nanotechnology and biomedicine.
Collapse
Affiliation(s)
- Awantha Dissanayake
- School of Biological Sciences, Plymouth University, Plymouth, PL4 8AA, Devon, UK
| | - Alan G Scarlett
- Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, Plymouth University, Drake Circus, Plymouth, Devon, PL4 8AA, UK.
- WA-Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, Department of Chemistry, Curtin University, Building 500, Kent Street, G.P.O. Box U1987, Perth, WA, 6845, Australia.
| | - Awadhesh N Jha
- School of Biological Sciences, Plymouth University, Plymouth, PL4 8AA, Devon, UK
| |
Collapse
|
9
|
Kassotis CD, Tillitt DE, Lin CH, McElroy JA, Nagel SC. Endocrine-Disrupting Chemicals and Oil and Natural Gas Operations: Potential Environmental Contamination and Recommendations to Assess Complex Environmental Mixtures. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:256-64. [PMID: 26311476 PMCID: PMC4786988 DOI: 10.1289/ehp.1409535] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 07/22/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. OBJECTIVES We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. METHODS We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. DISCUSSION In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. CONCLUSIONS We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.
Collapse
Affiliation(s)
| | - Donald E. Tillitt
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - Chung-Ho Lin
- Department of Forestry, School of Natural Resources, University of Missouri, Columbia, Missouri, USA
| | | | - Susan C. Nagel
- Department of Obstetrics, Gynecology and Women’s Health, School of Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
10
|
Wang J, Cao X, Sun J, Chai L, Huang Y, Tang X. Transcriptional responses of earthworm (Eisenia fetida) exposed to naphthenic acids in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 204:264-270. [PMID: 25984985 DOI: 10.1016/j.envpol.2015.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 06/04/2023]
Abstract
In this study, earthworms (Eisenia fetida) were exposed to commercial NAs contaminated soil, and changes in the levels of reactive oxygen species (ROS) and gene expressions of their defense system were monitored. The effects on the gene expression involved in reproduction and carcinogenesis were also evaluated. Significant increases in ROS levels was observed in NAs exposure groups, and the superoxide dismutase (SOD) and catalase (CAT) genes were both up-regulated at low and medium exposure doses, which implied NAs might exert toxicity by oxidative stress. The transcription of CRT and HSP70 coincided with oxidative stress, which implied both chaperones perform important functions in the protection against oxidative toxicity. The upregulation of TCTP gene indicated a potential adverse effect of NAs to terrestrial organisms through induction of carcinogenesis, and the downregulation of ANN gene indicated that NAs might potentially result in deleterious reproduction effects.
Collapse
Affiliation(s)
- Jie Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaofeng Cao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jinhua Sun
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liwei Chai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xiaoyan Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Wang J, Cao X, Huang Y, Tang X. Developmental toxicity and endocrine disruption of naphthenic acids on the early life stage of zebrafish (Danio rerio). J Appl Toxicol 2015; 35:1493-501. [PMID: 25995127 DOI: 10.1002/jat.3166] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 12/21/2022]
Abstract
Oil sands process-affected water (OSPW) has been reported to exhibit adverse effects on the environment and wildlife. Although the compounds responsible are unknown, naphthenic acids (NAs) have been considered to be implicated. The current study was designed to investigate whether NAs might cause developmental toxicity and endocrine disruption on the early life stage of zebrafish (Danio rerio). The success of embryo hatch was inhibited by 2.5 mg l(-1) oil sands NAs (OS-NAs) exposure, and both OSPW NAs and commercial NAs (C-NAs) exposure resulted in a variety of developmental lesions in the fish larvae, such as yolk sac edema, pericardial edema and spinal malformation. The transcription of genes involved cytochrome P450 aromatase (CYP19a and CYP19b), estrogen receptors (ERα, ERβ1 and ERβ2), and vitellogenin (VTG) was analyzed to evaluate the endocrine disrupting effects of NAs. Significant up-regulated gene expressions of CYP19b, ERα and VTG were observed in both OS-NAs and C-NAs groups, which indicated the deleteriously estrogenic potential of NAs. These results confirmed that NAs derived from crude petroleum could negatively impact the development and endocrine function of zebrafish, and be primarily responsible for the toxicity of OSPW.
Collapse
Affiliation(s)
- Jie Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiaofeng Cao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiaoyan Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
12
|
Knag AC, Sebire M, Mayer I, Meier S, Renner P, Katsiadaki I. In vivo endocrine effects of naphthenic acids in fish. CHEMOSPHERE 2013; 93:2356-2364. [PMID: 24034895 DOI: 10.1016/j.chemosphere.2013.08.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/03/2013] [Accepted: 08/10/2013] [Indexed: 06/02/2023]
Abstract
Oil pollution from various sources, including exploration, production and transportation, is a growing global concern. The highest toxicity of hydrocarbon pollutants is associated with the water-soluble phase compounds, including naphthenic acids, a known component found in all hydrocarbon deposits. Recently, naphthenic acids (NAs) have shown estrogenic and anti-androgenic effects in vitro. For this reason we investigated the potential effects of two commercial mixtures of naphthenic acids on fish in vivo, using the three-spined stickleback (Gasterosteus aculeatus) as a model species. Anti-androgenic and estrogenic properties of tested compounds were evaluated using the androgenized female stickleback screen (AFSS) and a variant of the 21-d fish screen (TG230) respectively. One-dimensional gas chromatography-mass spectrometry (GC-MS) showed that the complex commercial NAs mixtures were dominated by acyclic carboxylic acids. In one experiment (freshwater) we found a clear effect of NA exposure on spiggin levels; this was contrary to our hypothesis since NAs enhanced the androgenic potency of DHT (when co-administered) without inducing spiggin when tested in the absence of DHT. Exposure to NAs did not have a statistically significant effect on vitellogenin (Vtg) production in male stickleback, although the Vtg responses were increasing with increasing exposure concentrations. This study shows that in contrast to previous in vitro data, NAs did not exhibit either estrogenic or anti-androgenic properties in vivo, at the concentrations tested. On the contrary, at least in freshwater, NAs appear to have an overall androgenic effect that is not mediated via the androgen receptor involved in spiggin synthesis. Possible reasons for this discrepancy between in vitro and in vivo results as well as between our studies are discussed.
Collapse
|
13
|
Knag AC, Taugbøl A. Acute exposure to offshore produced water has an effect on stress- and secondary stress responses in three-spined stickleback Gasterosteus aculeatus. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:173-80. [PMID: 23916882 DOI: 10.1016/j.cbpc.2013.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/16/2013] [Accepted: 07/21/2013] [Indexed: 02/06/2023]
Abstract
Pollution is one of today's greatest problems, and the release of contaminants into the environment can cause adverse changes in vitally important biological pathways. In this study, we exposed three-spined stickleback Gasterosteus aculeatus to produced water (PW), i.e. wastewater from offshore petroleum production. PW contains substances such as alkylphenols (APs) and aromatic hydrocarbons (PAHs) known to induce toxicant stress and endocrine disruption in a variety of organisms. Following exposure to PW, a standardized confinement treatment was applied as a second stressor (PW-stress), testing how fish already under stress from the pollutant would respond to an additional stressor. The endpoint for analysis was a combination of blood levels of cortisol and glucose, in addition to transcribed levels of a set of genes related to toxicant stress, endocrine disruption and general stress. The findings of this study indicate that low doses of PW do not induce vitellogenin in immature female stickleback, but do cause an upregulation of cytochrome (CYP1A) and UDP-glucuronsyltransferase (UDP-GT), two biomarkers related to toxicant stress. However, when the second stressor was applied, both genes were downregulated, indicating that the confinement exposure had a suppressive effect on the expression of toxicant biomarkers (CYP1A and UDP-GT). Further, two of the stress related genes, heat shock protein 90 (HSP90) and stress-induced phosphoprotein (STIP), were upregulated in both PW- and PW-stress-treatment, but not in the water control confinement treatment, indicating that PW posed as a larger stress-factor than confinement for these genes. The confinement stressor caused an increased level of glucose in both control and PW-treated fish, indicating hyperglycemia, a commonly reported stress response in fish.
Collapse
Affiliation(s)
- Anne Christine Knag
- Department of Biology, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway.
| | | |
Collapse
|