1
|
Schwantes U. Impact of anthropogenous environmental factors on the marine ecosystem of trophically transmitted helminths and hosting seabirds: Focus on North Atlantic, North Sea, Baltic and the Arctic seas. Helminthologia 2023; 60:300-326. [PMID: 38222492 PMCID: PMC10787638 DOI: 10.2478/helm-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 09/21/2023] [Indexed: 01/16/2024] Open
Abstract
Alongside natural factors, human activities have a major impact on the marine environment and thus influence processes in vulnerable ecosystems. The major purpose of this review is to summarise the current understanding as to how manmade factors influence the marine biocenosis of helminths, their intermediate hosts as well as seabirds as their final hosts. Moreover, it highlights current knowledge gaps regarding this ecosystem, which should be closed in order to gain a more complete understanding of these interactions. This work is primarily focused on helminths parasitizing seabirds of the North Atlantic and the Arctic Ocean. The complex life cycles of seabird helminths may be impacted by fishing and aquaculture, as they interfere with the abundance of fish and seabird species, while the latter also affects the geographical distribution of intermediate hosts (marine bivalve and fish species), and may therefore alter the intertwined marine ecosystem. Increasing temperatures and seawater acidification as well as environmental pollutants may have negative or positive effects on different parts of this interactive ecosystem and may entail shifts in the abundance or regional distribution of parasites and/or intermediate and final hosts. Organic pollutants and trace elements may weaken the immune system of the hosting seabirds and hence affect the final host's ability to control the endoparasites. On the other hand, in some cases helminths seem to function as a sink for trace elements resulting in decreased concentrations of heavy metals in birds' tissues. Furthermore, this article also describes the role of helminths in mass mortality events amongst seabird populations, which beside natural causes (weather, viral and bacterial infections) have anthropogenous origin as well (e.g. oil spills, climate change, overfishing and environmental pollution).
Collapse
Affiliation(s)
- U. Schwantes
- Verein Jordsand zum Schutz der Seevögel und der Natur e.V., Ahrensburg, Germany
| |
Collapse
|
2
|
Monnolo A, Clausi MT, Del Piano F, Santoro M, Fiorentino ML, Barca L, Fusco G, Degli Uberti B, Ferrante L, Mercogliano R, Ferrante MC. Do Organochlorine Contaminants Modulate the Parasitic Infection Degree in Mediterranean Trout ( Salmo trutta)? Animals (Basel) 2023; 13:2961. [PMID: 37760361 PMCID: PMC10526105 DOI: 10.3390/ani13182961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
We investigated the occurrence of organochlorine pollutants (OCs) in the muscle of brown trout and evaluated their potential modulation of parasite infection. The toxicological risk for consumer health was assessed, too. Trout were collected from the Sila National Park (Calabria region, South of Italy). The highest concentrations emerged for the sum of the 6 non-dioxin-like (ndl) indicator polychlorinated biphenyls (Σ6ndl-PCBs), followed by the 1,1,1-trichloro-2,2-di(4-chlorophenyl)-ethane (DDT), dioxin-like PCBs, hexachlorobenzene (HCB), and dieldrin. Measured on lipid weight (LW), the mean value of Σ6ndl-PCBs amounted to 201.9 ng g-1, that of ΣDDTs (the sum of DDT-related compounds) to 100.2 ng g-1, with the major contribution of the DDT-metabolite p,p'-DDE which was detected in all sample units (97.6 ng g-1 on average). Among dioxin-like congeners, PCB 118 showed the highest mean concentration (21.96 ng g-1 LW) and was detected in all sample units. Regression analysis of intestinal parasites on OC concentration was performed, controlling for two potential confounding factors, namely sex and sexual stage. The results evidenced the existence of interactions between the dual stressors in the host-parasite system in the wild. A negative and statistically significant correlation was estimated, suggesting that OCs may decrease parasite infection degree. Regarding the toxicological risk evaluation, OC concentrations were consistently below the current European Maximum Residue Limits.
Collapse
Affiliation(s)
- Anna Monnolo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (A.M.); (F.D.P.); (R.M.)
| | - Maria Teresa Clausi
- Experimental Zooprophylactic Institute of Southern Italy, Calabria Section, 88100 Catanzaro, Italy;
| | - Filomena Del Piano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (A.M.); (F.D.P.); (R.M.)
| | - Mario Santoro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Maria Lorena Fiorentino
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy;
| | - Lorella Barca
- Experimental Zooprophylactic Institute of Southern Italy, Calabria Section, 87100 Cosenza, Italy;
| | - Giovanna Fusco
- Experimental Zooprophylactic Institute of Southern Italy, 80055 Portici, Italy; (G.F.); (B.D.U.)
| | - Barbara Degli Uberti
- Experimental Zooprophylactic Institute of Southern Italy, 80055 Portici, Italy; (G.F.); (B.D.U.)
| | - Luigia Ferrante
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy;
| | - Raffaelina Mercogliano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (A.M.); (F.D.P.); (R.M.)
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy; (A.M.); (F.D.P.); (R.M.)
| |
Collapse
|
3
|
Sures B, Nachev M, Schwelm J, Grabner D, Selbach C. Environmental parasitology: stressor effects on aquatic parasites. Trends Parasitol 2023; 39:461-474. [PMID: 37061443 DOI: 10.1016/j.pt.2023.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 04/17/2023]
Abstract
Anthropogenic stressors are causing fundamental changes in aquatic habitats and to the organisms inhabiting these ecosystems. Yet, we are still far from understanding the diverse responses of parasites and their hosts to these environmental stressors and predicting how these stressors will affect host-parasite communities. Here, we provide an overview of the impacts of major stressors affecting aquatic ecosystems in the Anthropocene (habitat alteration, global warming, and pollution) and highlight their consequences for aquatic parasites at multiple levels of organisation, from the individual to the community level. We provide directions and ideas for future research to better understand responses to stressors in aquatic host-parasite systems.
Collapse
Affiliation(s)
- Bernd Sures
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Essen, Germany.
| | - Milen Nachev
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Jessica Schwelm
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Essen, Germany
| | - Daniel Grabner
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Christian Selbach
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany; Freshwater Ecology Group, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
Kochmann J, Laier M, Klimpel S, Wick A, Kunkel U, Oehlmann J, Jourdan J. Infection with acanthocephalans increases tolerance of Gammarus roeselii (Crustacea: Amphipoda) to pyrethroid insecticide deltamethrin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55582-55595. [PMID: 36897452 PMCID: PMC10121498 DOI: 10.1007/s11356-023-26193-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/23/2023] [Indexed: 06/09/2023]
Abstract
Crustacean amphipods serve as intermediate hosts for parasites and are at the same time sensitive indicators of environmental pollution in aquatic ecosystems. The extent to which interaction with the parasite influences their persistence in polluted ecosystems is poorly understood. Here, we compared infections of Gammarus roeselii with two species of Acanthocephala, Pomphorhynchus laevis, and Polymorphus minutus, along a pollution gradient in the Rhine-Main metropolitan region of Frankfurt am Main, Germany. Prevalence of P. laevis was very low at the unpolluted upstream reaches (P ≤ 3%), while higher prevalence (P ≤ 73%) and intensities of up to 9 individuals were found further downstream-close to an effluent of a large wastewater treatment plant (WWTP). Co-infections of P. minutus and P. laevis occurred in 11 individuals. Highest prevalence of P. minutus was P ≤ 9% and one parasite per amphipod host was the maximum intensity recorded. In order to assess whether the infection affects survival in the polluted habitats, we tested the sensitivity of infected and uninfected amphipods towards the pyrethroide insecticide deltamethrin. We found an infection-dependent difference in sensitivity within the first 72 h, with an effect concentration (24 h EC50) of 49.8 ng/l and 26.6 ng/l for infected and uninfected G. roeselii, respectively. Whereas final host abundance might partially explain the high prevalence of P. laevis in G. roeselii, the results of the acute toxicity test suggest a beneficial effect of acanthocephalan infection for G. roeselii at polluted sites. A strong accumulation of pollutants in the parasite could serve as a sink for pesticide exposure of the host. Due to the lack of a co-evolutionary history between parasite and host and a lack of behavioral manipulation (unlike in co-evolved gammarids), the predation risk by fish remains the same, explaining high local prevalence. Thus, our study exemplifies how organismic interaction can favor the persistence of a species under chemical pollution.
Collapse
Affiliation(s)
- Judith Kochmann
- Department of Integrative Parasitology and Zoophysiology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
- Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch Weg 15, 55128 Mainz, Germany
| | - Melanie Laier
- Department of Integrative Parasitology and Zoophysiology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
- Department Aquatic Ecotoxicology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Sven Klimpel
- Department of Integrative Parasitology and Zoophysiology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - Arne Wick
- Federal Institute of Hydrology, Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Uwe Kunkel
- Federal Institute of Hydrology, Am Mainzer Tor 1, D-56068 Koblenz, Germany
- Present Address: Bavarian Environment Agency, Specific Analysis for Environmental Monitoring, Bürgermeister-Ulrich-Str. 160, D-86179 Augsburg, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Jonas Jourdan
- Department Aquatic Ecotoxicology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Aravind Kumar J, Krithiga T, Sathish S, Renita AA, Prabu D, Lokesh S, Geetha R, Namasivayam SKR, Sillanpaa M. Persistent organic pollutants in water resources: Fate, occurrence, characterization and risk analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154808. [PMID: 35341870 DOI: 10.1016/j.scitotenv.2022.154808] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Persistent organic pollutants (POPs) are organic chemicals that can persist in the environment for a longer period due to their non-biodegradability. The pervasive and bio-accumulative behavior of POPs makes them highly toxic to the environmental species including plants, animals, and humans. The present review specifies the POP along with their fate, persistence, occurrence, and risk analysis towards humans. The different biological POPs degradation methods, especially the microbial degradation using bacteria, fungi, algae, and actinomycetes, and their mechanisms were described. Moreover, the source, transport of POPs to the environmental sources, and the toxic nature of POPs were discussed in detail. Agricultural and industrial activities are distinguished as the primary source of these toxic compounds, which are delivered to air, soil, and water, affecting on the social and economic advancement of society at a worldwide scale. This review also demonstrated the microbial degradation of POPs and outlines the potential for an eco-accommodating and cost-effective approach for the biological remediation of POPs using microbes. The direction for future research in eliminating POPs from the environmental sources through various microbial processes was emphasized.
Collapse
Affiliation(s)
- J Aravind Kumar
- Department of Biomass and Energy Conversion, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai - 600119, India
| | - S Sathish
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai - 600119, India
| | - A Annam Renita
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai - 600119, India.
| | - D Prabu
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai - 600119, India
| | - S Lokesh
- Department of Biomass and Energy Conversion, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Geetha
- Department of Instrumentation and Control Engineering, Saveetha School of Engineering, SIMATS, Chennai, India
| | - S Karthick Raja Namasivayam
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Mika Sillanpaa
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| |
Collapse
|
6
|
Nur FM, Batubara AS, Fadli N, Rizal S, Siti-Azizah MN, Wilkes M, Muchlisin ZA. Lernaea cyprinacea Linnaeus, 1758 (Copepoda: Lernaeidae) infection on Betta rubra Perugia, 1893 (Anabantiformes: Osphronemidae) from Aceh Province, Indonesia. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2022; 31:e020421. [PMID: 35293430 PMCID: PMC9901870 DOI: 10.1590/s1984-29612022015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/17/2022] [Indexed: 11/22/2022]
Abstract
Betta rubra is an ornamental freshwater fish endemic to northern Sumatra, Indonesia. The B. rubra population has decreased in recent decades, and is classified as an endangered species in the IUCN Red List. This study aims to report for the first time infection by L. cyprinacea in B. rubra harvested from the Aceh Besar region of Indonesia. The fish samples were obtained from the Cot Bira tributaries, Aceh Besar District, Indonesia from January to December 2020. The results showed that the parasite infected 6 out of 499 samples in August and September, with a prevalence and intensity rate of 1% and 2 parasites/fish, respectively. The eyes and pectoral fins were the common infection sites. Despite B. rubra is not an optimal host (small size) for the parasite, this parasite might serve as additional threatening factors for the endangered B. rubra fish population.
Collapse
Affiliation(s)
- Firman Muhammad Nur
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Agung Setia Batubara
- Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan, North Sumatera, Indonesia
| | - Nur Fadli
- Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Syamsul Rizal
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia.,Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Mohd Nor Siti-Azizah
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Martin Wilkes
- Center for Agroecology, Water and Resilience, Coventry University, Coventry, United Kingdom
| | - Zainal Abidin Muchlisin
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia.,Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
7
|
Brázová T, Miklisová D, Barčák D, Uhrovič D, Šalamún P, Orosová M, Oros M. Hazardous pollutants in the environment: Fish host-parasite interactions and bioaccumulation of polychlorinated biphenyls. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118175. [PMID: 34543958 DOI: 10.1016/j.envpol.2021.118175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
The present paper reports on the interrelationships of fish, parasites and the bioaccumulation of hazardous organic compounds in the Zemplínska Šírava water reservoir in eastern Slovakia, which is heavily polluted with polychlorinated biphenyls (PCBs). The concentrations of these contaminants were measured in various fish matrices (dorsal and abdominal muscle tissues, hepatopancreas, intestine wall and adipose tissue) of the freshwater bream, Abramis brama (Cyprinidae), and in its intestinal parasite Caryophyllaeus laticeps (Cestoda), which was used for the first time as a model for a PCB bioaccumulation study. Regarding the fish, the highest concentrations of PCBs were found in the intestine, followed by hepatopancreas and muscle tissues. The amounts of PCBs were higher in abdominal muscles than in their dorsal parts. Concentrations of ∑PCBs above the limits set by European regulations were detected in both muscle parts in the fish, confirming the persistent unfavorable conditions in this locality and high risk for biota and humans. Based on bioconcentration factor values (BCFs), PCBs reached much higher levels in cestodes compared to bream matrices. Some significant differences in PCB amounts between infected and uninfected bream were determined. Fulton's condition factor (CF) significantly differed in infected and non-infected fish (p ˂ 0.05), with CF values surprisingly lower in fish free of parasites compared to parasitized fish, which suggests a "mutualistic" relationship between the parasite and its host.
Collapse
Affiliation(s)
- Tímea Brázová
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Dana Miklisová
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Daniel Barčák
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Dalibor Uhrovič
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Peter Šalamún
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Martina Orosová
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Mikuláš Oros
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia.
| |
Collapse
|
8
|
Monnolo A, Clausi MT, Mercogliano R, Fusco G, Fiorentino ML, Buono F, Lama A, Ferrante MC. Levels of polychlorinated biphenyls and organochlorine pesticides in donkey milk: Correlation with the infection level by intestinal strongyles. CHEMOSPHERE 2020; 258:127287. [PMID: 32535446 DOI: 10.1016/j.chemosphere.2020.127287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
AIM The study aimed at evaluating the concentration levels of organochlorine pollutants in donkey milk and their modulation on the intestinal strongyle infection. Risk evaluation for consumer health was also investigated. METHODS We analyzed milk of grazing donkeys living in areas of Southern of Italy affected by organochlorine compounds environmental pollution and parasite infection. The presence of pollutants was assessed through summary statistics; regression analysis of intestinal strongyle on pollutant concentration was performed to investigate the relationship between the two variables. RESULTS PCB concentrations (mainly non-dioxin-like (ndl)-PCBs) were higher than OCP ones. Mean values of ndl-PCBs across areas ranged from 93.13 to 263.64 ng g-1. In all sample units we detected the six indicator PCBs with the prevalence of the PCB 153, followed by the PCB 28 and the PCB 101. Among the dioxin-like (dl)-PCBs, non-ortho PCB 169, 77 and 126 were assessed in some milk samples; in all areas we detected the mono-ortho PCB 118 and PCB 105. Positive correlation between infection level and six indicator PCBs as well as between the former and HCB, on WW and LW, were observed (at least statistically significant at 5 percent). In some cases, Dl-PCB concentrations emerged as dangerous given the EU maximum residue limit for PCDD/Fs and dl-PCBs. CONCLUSION Evidence supports the hypothesis of an immunosuppressive role of organochlorine pollutants; risk evaluation reveals the potential health impact of dl-PCB intake, particularly for major donkey milk consumers such as infants, children with cow milk and multiple food intolerance, and elders.
Collapse
Affiliation(s)
- A Monnolo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - M T Clausi
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
| | - R Mercogliano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - G Fusco
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
| | - M L Fiorentino
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - F Buono
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - A Lama
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - M C Ferrante
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
9
|
Mille T, Soulier L, Caill-Milly N, Cresson P, Morandeau G, Monperrus M. Differential micropollutants bioaccumulation in European hake and their parasites Anisakis sp. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115021. [PMID: 32593923 DOI: 10.1016/j.envpol.2020.115021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/29/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Organisms are exposed to various stressors including parasites and micropollutants. Their combined effects are hard to predict. This study assessed the trophic relationship, micropollutants bioaccumulation and infection degree in a host-parasite couple. Carbon and nitrogen isotopic ratios were determined in hake Merluccius merluccius muscle and in its parasite Anisakis sp.. Concentrations of both priority (mercury species and polychlorinated biphenyls congeners) and emerging (musks and sunscreens) micropollutants were also measured for the parasite and its host, to detect potential transfer of contaminants between the two species. The results showed partial trophic interaction between the parasite and its host, in accordance with the Anisakis sp. life encysted in hake viscera cavity. PCB transfer between the two species may result from some lipids uptake by the parasite, while no relation occurred for the two other contaminants. Finally, a positive correlation was found between the number of Anisakis sp. larvae and the methylmercury contamination for hake, emphasizing the assumption that the contamination level in methylmercury can weaken immune system of the host enough to affect parasite infection degree.
Collapse
Affiliation(s)
- Tiphaine Mille
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Anglet, France
| | - Laurent Soulier
- Institut des Milieux Aquatiques, 1 Rue Donzac, 64100, Bayonne, France
| | - Nathalie Caill-Milly
- Ifremer, LITTORAL, Laboratoire Environnement Ressources d'Arcachon, 64600, Anglet, France
| | - Pierre Cresson
- Ifremer, Centre Manche Mer du Nord, Laboratoire Ressources Halieutiques Manche Mer du Nord, 150 quai Gambetta, 62200, Boulogne sur Mer, France
| | - Gilles Morandeau
- Ifremer, LITTORAL, Laboratoire Environnement Ressources d'Arcachon, 64600, Anglet, France
| | - Mathilde Monperrus
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Anglet, France.
| |
Collapse
|
10
|
Akinsanya B, Ayanda IO, Fadipe AO, Onwuka B, Saliu JK. Heavy metals, parasitologic and oxidative stress biomarker investigations in Heterotis niloticus from Lekki Lagoon, Lagos, Nigeria. Toxicol Rep 2020; 7:1075-1082. [PMID: 32923373 PMCID: PMC7476227 DOI: 10.1016/j.toxrep.2020.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
Abstract
Occurrence of parasites in fish could bio accumulate heavy metals by as much as 200 % more than values present in fish tissues. Parasitic infection in fish is positively skewed towards male fish. Parasitism in fish alters histological structures of vital fish organs. Combined effects of parasitism and heavy metal pollution in fish elicits antioxidant response in fish.
Heavy metal toxicity in aquatic life as a result of human activities poses a grave health threat to water quality, aquatic and human life. Parasites may serve as indicators of heavy metal pollution. This research investigated the health status of the fish Heterotis niloticus viz-a-viz quality of the water and sediments in Lekki lagoon, parasitic infection, presence of heavy metals and oxidative stress response in the liver and intestine of the fish. Parasites recovered were also analyzed for the extent of bioaccumulation of heavy metals. The metals in water, sediments, parasites, and fish were analyzed using Atomic Absorption Spectrometry. Heavy metal concentrations in the surface water were generally below regulatory limits of World Health Organization. Sediment had high levels of aluminium (124.78 mg/kg) and iron (327.41 mg/kg); other heavy metals were below regulatory limits. Tenuisentis niloticus, an acanthocephalan, was the only parasite recovered. Seventy (70) out of 100 fish sampled were infected with the parasite. T. niloticus bioaccumulated Cd, Ni, and Pb between 65 to 100 times more than the liver and 12 to 200 times more than the intestine. Other metals bioaccumulated from the host tissues by the parasite had the magnitude between 1 to 12 times as the liver and 1 to 30 times as the intestine. There were significant differences in the activities of antioxidant enzymes between the parasitized and non-parasitized fishes. Fish tissues also showed histological alterations, ranging from mild infiltration of inflammatory cells to moderate inflammation and haemorrhagic lesions. Human activities that introduce stressors into the lagoon should be controlled.
Collapse
Key Words
- APHA, American public health association
- Aquatic
- CAT, catalase
- COD, chemical oxygen demand
- FAO, food and agricultural organization
- GSH, reduced glutathione
- H&E, haematoxyline and eosin
- Heterotis niloticus
- Histopathology
- MDA, malondialdehyde
- Oxidative stress
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- TBA, thiobarbituric acid
- TBARS, thiobarbituric acid reactive substances
- TCA, trichloroacetic acid
- Tenuisentis niloticus
- WHO, world health organization
Collapse
Affiliation(s)
| | - Isaac O Ayanda
- Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Adeola O Fadipe
- Department of Zoology, University of Lagos, Lagos State, Nigeria
| | - Benson Onwuka
- Department of Zoology, University of Lagos, Lagos State, Nigeria
| | - Joseph K Saliu
- Department of Zoology, University of Lagos, Lagos State, Nigeria
| |
Collapse
|
11
|
Molbert N, Alliot F, Leroux-Coyau M, Médoc V, Biard C, Meylan S, Jacquin L, Santos R, Goutte A. Potential Benefits of Acanthocephalan Parasites for Chub Hosts in Polluted Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5540-5549. [PMID: 32267695 DOI: 10.1021/acs.est.0c00177] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Some parasites are expected to have beneficial impacts on wild populations in polluted environments because of their bioaccumulation potential of pollutants from their hosts. The fate of organic micropollutants in host-parasite systems and the combined effect of parasitism and pollution were investigated in chub Squalius cephalus, a freshwater fish, infected (n = 73) or uninfected (n = 45) by acanthocephalan parasites Pomphorhynchus sp. from differently contaminated riverine sites. Several ubiquitous pollutants (polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl-ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), phthalates, insecticides, pyrethroids, and N,N-diethyl-meta-toluamide (DEET)) and some of their metabolites were characterized for the first time in parasites and various fish matrices (muscle, liver, and stomach content). Most organic pollutants reached higher levels in parasites than in chub matrices. In contrast, metabolite levels were lower in parasite tissues compared to fish matrices. Infected and uninfected chub exhibited no significant differences in their pollutant load. Body condition, organo-somatic indices, and immunity were not affected by parasitism, and few correlations were found with chemical pollution. Interestingly, infected chub exhibited lower oxidative damage compared to uninfected fish, irrespective of their pollutant load. In light of these results, this correlative study supports the hypothesis that acanthocephalan parasites could bring benefits to their hosts to cope with organic pollution.
Collapse
Affiliation(s)
- Noëlie Molbert
- Sorbonne Université, CNRS, EPHE, UMR METIS, F-75005 Paris, France
| | - Fabrice Alliot
- Sorbonne Université, CNRS, EPHE, UMR METIS, F-75005 Paris, France
- EPHE, PSL Research University, UMR METIS, F-75005 Paris, France
| | - Mathieu Leroux-Coyau
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, F-75005 Paris, France
| | - Vincent Médoc
- Equipe Neuro Ethologie Sensorielle, ENES/Neuro-PSI CNRS UMR 9197, Université de Lyon/Saint-Etienne, F-42100 Saint-Etienne, France
| | - Clotilde Biard
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, F-75005 Paris, France
| | - Sandrine Meylan
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, F-75005 Paris, France
| | - Lisa Jacquin
- Laboratoire Evolution & Diversité Biologique EDB, UMR 5174, Université Toulouse 3 Paul Sabatier; UPS; CNRS; IRD, F-31062 Toulouse, France
| | - Raphaël Santos
- Ecology and Engineering of Aquatic Systems Research Group, HEPIA, University of Applied Sciences Western Switzerland, CH-1254 Jussy, Switzerland
| | - Aurélie Goutte
- Sorbonne Université, CNRS, EPHE, UMR METIS, F-75005 Paris, France
- EPHE, PSL Research University, UMR METIS, F-75005 Paris, France
| |
Collapse
|
12
|
Soler-Jiménez LC, Hernández-Núñez E, Velázquez-Abunader I, Centeno-Chalé A, Vidal-Martínez VM. Polycyclic aromatic hydrocarbons in the cestode Oncomegas wageneri parasite of Mexican flounder Cyclopsetta chittendeni. Parasitol Res 2020; 119:903-913. [PMID: 32008065 PMCID: PMC7075845 DOI: 10.1007/s00436-019-06597-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022]
Abstract
The concentrations of polycyclic aromatic hydrocarbon metabolites (PAHm) and their bioconcentration factors (BCF) were determined in the larval stages of the cestode Oncomegas wageneri, recovered from the intestine of the Mexican flounder Cyclopsetta chittendeni, in the southern Gulf of Mexico. The PAHm concentrations in O. wageneri were measured using fixed-wavelength fluorescence spectrometry and compared with PAHm concentrations in host bile. Oncomegas wageneri PAHm concentrations were markedly higher than those in host tissues. The highest BCF values were obtained for 1-hydroxypyrene (OHP) and benzo(a)pyrene (BaP). Using a General Linear Model, a significant negative relationship was found between O. wageneri PAHm concentrations (as response variable) and the number of O. wageneri and oil well proximity. Low BCF values and PAHm concentrations in C. chittendeni correlated positively with O. wageneri PAHm concentrations. In contrast, high BCF values for PAHm concentrations in C. chittendeni had a negative association with O. wageneri PAHm concentrations. This study provides the first evidence of the presence of PAHm in intestinal larval cestodes of marine flatfishes, demonstrating levels of PAHm that were higher than levels in their hosts.
Collapse
Affiliation(s)
- Lilia C Soler-Jiménez
- Laboratorios de Parasitología y Pesquerías, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) Unidad Mérida, Carretera Antigua a Progreso Km. 6, Cordemex, C.P. 97310, Mérida, Yucatán, Mexico
| | - Emanuel Hernández-Núñez
- Laboratorios de Parasitología y Pesquerías, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) Unidad Mérida, Carretera Antigua a Progreso Km. 6, Cordemex, C.P. 97310, Mérida, Yucatán, Mexico
| | - Iván Velázquez-Abunader
- Laboratorios de Parasitología y Pesquerías, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) Unidad Mérida, Carretera Antigua a Progreso Km. 6, Cordemex, C.P. 97310, Mérida, Yucatán, Mexico
| | - Arturo Centeno-Chalé
- Laboratorios de Parasitología y Pesquerías, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) Unidad Mérida, Carretera Antigua a Progreso Km. 6, Cordemex, C.P. 97310, Mérida, Yucatán, Mexico
| | - Víctor M Vidal-Martínez
- Laboratorios de Parasitología y Pesquerías, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) Unidad Mérida, Carretera Antigua a Progreso Km. 6, Cordemex, C.P. 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
13
|
Borchert EJ, Leaphart JC, Bryan AL, Beasley JC. Ecotoxicoparasitology of mercury and trace elements in semi-aquatic mammals and their endoparasite communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:307-316. [PMID: 31085411 DOI: 10.1016/j.scitotenv.2019.04.326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/21/2019] [Accepted: 04/21/2019] [Indexed: 06/09/2023]
Abstract
Many contaminants persist in the environment for decades or more, influencing ecosystem health. Environmental contamination with mercury (Hg) is a particular concern due to its ability to biomagnify in food webs and its lethal and sub-lethal effects in exposed organisms. Despite the known impacts of anthropogenic contamination, there remains a need for data on wildlife exposure to Hg and other contaminants, and the effects of exposure on wildlife health. The objectives of this study were to: 1) quantify differences in concentrations of mercury and other trace elements among three sympatric semiaquatic mammals of different assumed trophic position: North American river otter (Lontra canadensis), raccoon (Procyon lotor), and North American beaver (Castor canadensis), 2) compare trace element concentrations between animals captured on the Savannah River Site (SRS) in South Carolina, USA, where known inputs of Hg and other trace elements have occurred, and reference sites in South Carolina (SC) and Georgia (GA), USA, and 3) investigate the relationship between host trace element concentrations and endoparasite communities. River otters, beavers, and raccoons were sampled from the SRS, SC, and GA to quantify trace element concentrations in liver tissue and quantify endoparasite communities. Both species and sampling location were important factors determining hepatic trace element concentration, however, there was no consistent trend of elevated trace element concentrations among animals sampled on the SRS. Only Hg demonstrated biomagnification based on assumed trophic position, with river otters having the highest Hg concentrations among the sampled species. Additionally, the results suggest a possible relationship between host hepatic mercury concentration and endoparasite abundance, while hepatic selenium concentration may be related to endoparasite diversity. These findings further demonstrate how wildlife can accumulate anthropogenic contamination, although future research is needed to determine the mechanisms contributing to patterns observed between endoparasite communities and the contaminant concentrations of their mammalian hosts.
Collapse
Affiliation(s)
- Ernest J Borchert
- University of Georgia, Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802, USA; University of Georgia, Warnell School of Forestry and Natural Resources, Athens, GA 30602, USA.
| | - James C Leaphart
- University of Georgia, Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802, USA; University of Georgia, Warnell School of Forestry and Natural Resources, Athens, GA 30602, USA
| | - Albert L Bryan
- University of Georgia, Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802, USA
| | - James C Beasley
- University of Georgia, Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802, USA; University of Georgia, Warnell School of Forestry and Natural Resources, Athens, GA 30602, USA
| |
Collapse
|
14
|
Gilbert BM, Avenant-Oldewage A. Parasites and pollution: the effectiveness of tiny organisms in assessing the quality of aquatic ecosystems, with a focus on Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:18742-18769. [PMID: 28660518 DOI: 10.1007/s11356-017-9481-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
The aquatic environment represents the final repository for many human-generated pollutants associated with anthropogenic activities. The quality of natural freshwater systems is easily disrupted by the introduction of pollutants from urban, industrial and agricultural processes. To assess the extent of chemical perturbation and associated environmental degradation, physico-chemical parameters have been monitored in conjunction with biota in numerous biological monitoring protocols. Most studies incorporating organisms into such approaches have focussed on fish and macroinvertebrates. More recently, interest in the ecology of parasites in relation to environmental monitoring has indicated that these organisms are sensitive towards the quality of the macroenvironment. Variable responses towards exposure to pollution have been identified at the population and component community level of a number of parasites. Furthermore, such responses have been found to differ with the type of pollutant and the lifestyle of the parasite. Generally, endoparasite infection levels have been shown to become elevated in relation to poorer water quality conditions, while ectoparasites are more sensitive, and exposure to contaminated environments resulted in a decline in ectoparasite infections. Furthermore, endoparasites have been found to be suitable accumulation indicators for monitoring levels of several trace elements and metals in the environment. The ability of these organisms to accumulate metals has further been observed to be of benefit to the host, resulting in decreased somatic metal levels in infected hosts. These trends have similarly been found for host-parasite models in African freshwater environments, but such analyses are comparatively sparse compared to other countries. Recently, studies on diplozoids from two freshwater systems have indicated that exposure to poorer water quality resulted in decreased infections. In the Vaal River, the poor water quality resulted in the extinction of the parasite from a site below the Vaal River Barrage. Laboratory exposures have further indicated that oncomiracidia of Paradiplozoon ichthyoxanthon are sensitive to exposure to dissolved aluminium. Overall, parasites from African freshwater and marine ecosystems have merit as effect and accumulation indicators; however, more research is required to detail the effects of exposure on sensitive biological processes within these organisms.
Collapse
|
15
|
Sures B, Nachev M, Selbach C, Marcogliese DJ. Parasite responses to pollution: what we know and where we go in 'Environmental Parasitology'. Parasit Vectors 2017; 10:65. [PMID: 28166838 PMCID: PMC5294906 DOI: 10.1186/s13071-017-2001-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/24/2017] [Indexed: 01/13/2023] Open
Abstract
Environmental parasitology deals with the interactions between parasites and pollutants in the environment. Their sensitivity to pollutants and environmental disturbances makes many parasite taxa useful indicators of environmental health and anthropogenic impact. Over the last 20 years, three main research directions have been shown to be highly promising and relevant, namely parasites as accumulation indicators for selected pollutants, parasites as effect indicators, and the role of parasites interacting with established bioindicators. The current paper focuses on the potential use of parasites as indicators of environmental pollution and the interactions with their hosts. By reviewing some of the most recent findings in the field of environmental parasitology, we summarize the current state of the art and try to identify promising ideas for future research directions. In detail, we address the suitability of parasites as accumulation indicators and their possible application to demonstrate biological availability of pollutants; the role of parasites as pollutant sinks; the interaction between parasites and biomarkers focusing on combined effects of parasitism and pollution on the health of their hosts; and the use of parasites as indicators of contaminants and ecosystem health. Therefore, this review highlights the application of parasites as indicators at different biological scales, from the organismal to the ecosystem.
Collapse
Affiliation(s)
- Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, D-45141, Essen, Germany.,Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - Milen Nachev
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, D-45141, Essen, Germany.
| | - Christian Selbach
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - David J Marcogliese
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, St. Lawrence Centre, 105 McGill Street, 7th floor, Montreal, QC, H2Y 2E7, Canada.,St. Andrews Biological Station, Fisheries and Oceans Canada, 531 Brandy Cove Road, St, Andrews, NB, E5B 2 L9, Canada
| |
Collapse
|
16
|
Henríquez-Hernández LA, Carretón E, Camacho M, Montoya-Alonso JA, Boada LD, Valerón PF, Falcón-Cordón Y, Falcón-Cordón S, Almeida-González M, Zumbado M, Luzardo OP. The heartworm (Dirofilaria immitis) seems to be able to metabolize organochlorine pesticides and polychlorinated biphenyls: A case-control study in dogs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:1445-1452. [PMID: 27751690 DOI: 10.1016/j.scitotenv.2016.09.236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
It has been described that the co-existence of parasite infection and chemical exposure has various effects on the accumulation of persistent organochlorine pollutants (POPs) in the host. Certain parasites are not only able to accumulate POPs but also seem to have the ability to metabolize certain compounds. We have designed a case-control study aimed to disclose the role of Dirofilaria immitis in the bioavailability of POPs in dogs trying to know whether these parasites store or metabolize the POPs. A total of 40 common POPs (18 polychlorinated biphenyls congeners (PCBs) and 22 organochlorine pesticides were quantified in dog serum. The study included three groups of dogs prospectively recruited in the island of Gran Canaria (Canary Islands, Spain): a) control animals, non-parasitized (serologically tested negative, n=24); b) a group constituted by dogs tested positive for heartworm disease (D. immitis) and negative for other parasites (n=25); and c) the same group of parasitized dogs after the treatment against the parasite (n=25). The presence of D. immitis was strongly associated with lower serum levels of a wide range of pollutant in their hosts (PCB congeners 28, 105, 118, 123, 138, 153, 167 and 180; hexachlorobenzene, lindane, aldrin, dieldrin, and methoxychlor). The serum levels of these substances remained at very low levels after the treatment against the parasite, suggesting that D. immitis do not simply store such compounds, but they probably have some ability to metabolize these pollutants. We encourage the use of the parasite infestation status as a cofactor that needs to be taken into account in studies aimed to evaluate the serum levels of POPs.
Collapse
Affiliation(s)
- Luis A Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Elena Carretón
- Internal Medicine Service, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - María Camacho
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - José Alberto Montoya-Alonso
- Internal Medicine Service, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016, Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Pilar F Valerón
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016, Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Yaiza Falcón-Cordón
- Internal Medicine Service, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Soraya Falcón-Cordón
- Internal Medicine Service, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Maira Almeida-González
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016, Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
17
|
Henríquez-Hernández LA, Boada LD, Pérez-Arellano JL, Carranza C, Ruiz-Suárez N, Jaén Sánchez N, Valerón PF, Zumbado M, Camacho M, Luzardo OP. Relationship of polychlorinated biphenyls (PCBs) with parasitism, iron homeostasis, and other health outcomes: Results from a cross-sectional study on recently arrived African immigrants. ENVIRONMENTAL RESEARCH 2016; 150:549-556. [PMID: 26253855 DOI: 10.1016/j.envres.2015.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/29/2015] [Accepted: 07/26/2015] [Indexed: 06/04/2023]
Abstract
Polychlorinated biphenyls (PCBs) are toxic and persistent chemicals produced between 1930s and 1980s, which accumulate in humans and wildlife. Although a decreasing trend of PCB levels in humans has been described in developed countries, mainly as a consequence of strict regulations and remediation plans, an inverse trend has been recently reported in people from developing countries. We had the opportunity of sampling a series of African immigrants recently arrived to the Spanish archipelago of the Canary Islands, in which high levels of PCBs have been described, and we studied the relationships between their level of contamination and health status. A total of 570 subjects who underwent a complete medical examination and a face-to-face interview were recruited for this study. Hematological and biochemical parameters (blood and urine) were determined in all participants. Serology for the diagnostic of infectious diseases was also performed, and direct identification of parasites was performed in feces, urine or blood samples when appropriate. It is remarkable that up to 26.0% of the population had intestinal parasites, and we found an inverse relationship between PCB levels and parasitism and parasitic diseases: median values of PCBs were lower in parasitized subjects than in subjects without parasites in stool (237.6ng/g fat vs. 154.4ng/g fat for marker PCBs, p=0.015) and median values of dioxin-like PCBs were lower in subjects carrying pathogen parasites than among subjects showing non-pathogen parasites in stool (0.0 ng/g fat vs. 13.1ng/g fat, respectively; p=0.001). Although this inverse association had been described in some vertebrates this is the first study reporting such an association in humans. Furthermore, it has been also recently described that PCBs may disrupt iron metabolism, and we found a direct relationship between serum iron and total PCBs burden (r=0.231, p=0.025), suggesting that PCBs, although at subclinical level, could play a role on iron homeostasis. Although the role of PCBs in parasitism and in the iron metabolism needs future research, our findings may help to understand the adverse health outcomes associated to environmental exposure to PCBs and they might be used in exposed populations as indicators of subtle effects due to environmental insult.
Collapse
Affiliation(s)
- Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Instituto Canario de Investigación del Cáncer (ICIC) and Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Instituto Canario de Investigación del Cáncer (ICIC) and Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain.
| | - José Luis Pérez-Arellano
- Infectious Diseases and Tropical Medicine Unit, Hospital Universitario Insular de Gran Canaria, Avenida Marítima del Sur, 35016 Las Palmas de Gran Canaria, Spain; Department of Medical and Surgery Sciences, Universidad de Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Cristina Carranza
- Infectious Diseases and Tropical Medicine Unit, Hospital Universitario Insular de Gran Canaria, Avenida Marítima del Sur, 35016 Las Palmas de Gran Canaria, Spain; Department of Medical and Surgery Sciences, Universidad de Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Norberto Ruiz-Suárez
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Instituto Canario de Investigación del Cáncer (ICIC) and Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Nieves Jaén Sánchez
- Infectious Diseases and Tropical Medicine Unit, Hospital Universitario Insular de Gran Canaria, Avenida Marítima del Sur, 35016 Las Palmas de Gran Canaria, Spain
| | - Pilar F Valerón
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Instituto Canario de Investigación del Cáncer (ICIC) and Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Instituto Canario de Investigación del Cáncer (ICIC) and Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - María Camacho
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Instituto Canario de Investigación del Cáncer (ICIC) and Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Instituto Canario de Investigación del Cáncer (ICIC) and Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
18
|
Le TTY, Nachev M, Grabner D, Hendriks AJ, Sures B. Development and Validation of a Biodynamic Model for Mechanistically Predicting Metal Accumulation in Fish-Parasite Systems. PLoS One 2016; 11:e0161091. [PMID: 27548282 PMCID: PMC4993497 DOI: 10.1371/journal.pone.0161091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/31/2016] [Indexed: 11/19/2022] Open
Abstract
Because of different reported effects of parasitism on the accumulation of metals in fish, it is important to consider parasites while interpreting bioaccumulation data from biomonitoring programmes. Accordingly, the first step is to take parasitism into consideration when simulating metal bioaccumulation in the fish host under laboratory conditions. In the present study, the accumulation of metals in fish-parasite systems was simulated by a one-compartment toxicokinetic model and compared to uninfected conspecifics. As such, metal accumulation in fish was assumed to result from a balance of different uptake and loss processes depending on the infection status. The uptake by parasites was considered an efflux from the fish host, similar to elimination. Physiological rate constants for the uninfected fish were parameterised based on the covalent index and the species weight while the parameterisation for the infected fish was carried out based on the reported effects of parasites on the uptake kinetics of the fish host. The model was then validated for the system of the chub Squalius cephalus and the acanthocephalan Pomphorhynchus tereticollis following 36-day exposure to waterborne Pb. The dissolved concentration of Pb in the exposure tank water fluctuated during the exposure, ranging from 40 to 120 μg/L. Generally, the present study shows that the one-compartment model can be an effective method for simulating the accumulation of metals in fish, taking into account effects of parasitism. In particular, the predicted concentrations of Cu, Fe, Zn, and Pb in the uninfected chub as well as in the infected chub and the acanthocephalans were within one order of magnitude of the measurements. The variation in the absorption efficiency and the elimination rate constant of the uninfected chub resulted in variations of about one order of magnitude in the predicted concentrations of Pb. Inclusion of further assumptions for simulating metal accumulation in the infected chub led to variations of around two orders of magnitude in the predictions. Therefore, further research is required to reduce uncertainty while characterising and parameterising the model for infected fish.
Collapse
Affiliation(s)
- T. T. Yen Le
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Daniel Grabner
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - A. Jan Hendriks
- Department of Environmental Science, Faculty of Science, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa
| |
Collapse
|
19
|
Henríquez-Hernández LA, Carretón E, Camacho M, Montoya-Alonso JA, Boada LD, Valerón PF, Cordón YF, Almeida-González M, Zumbado M, Luzardo OP. Influence of parasitism in dogs on their serum levels of persistent organochlorine compounds and polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:128-135. [PMID: 27096633 DOI: 10.1016/j.scitotenv.2016.03.204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/26/2016] [Accepted: 03/26/2016] [Indexed: 06/05/2023]
Abstract
Persistent organochlorine pollutants (POPs) are toxic chemicals, which accumulate in humans and animals, as only few species have the capability of eliminating them. However, some authors have pointed to the possibility that certain species of invertebrates (i.e. nematodes) could metabolize this type of compounds. As certain species of nematodes act as parasites of vertebrates, this research was designed to explore the influence of some of the most common parasites of the dogs in their serum levels of 56 common POPs. The study included three groups of dogs (n=64), which were prospectively recruited in the island of Gran Canaria (Canary Islands, Spain): a) control animals, non-parasitized (serologically tested negative, n=24); b) dogs tested positive for intestinal parasites and negative for other parasites (n=24); and c) dogs tested positive for heartworm disease (Dirofilaria immitis) and negative for other parasites (n=16). The presence of Dirofilaria immitis was strongly associated with lower serum levels of a wide range of pollutant in their hosts (PCB congeners 28, 52, 118, 138, 153, and 180; hexachlorobenzene, lindane, aldrin, dieldrin, anthracene and pyrene). We also found an inverse association between the hosts' serum levels of PCBs and intestinal parasites. We did not find any association with DDT or its metabolites, but this might be explained by the recently suggested ability of dogs for the efficient metabolization of these compounds. According to the results of this study certain forms of parasitism would reduce the bioavailability of the major classes of POPs in dogs. However, further studies are needed to elucidate whether this phenomenon is due to a competence between parasites and hosts or could respond to a possible capability of parasitic nematodes for the metabolization of these POPs.
Collapse
Affiliation(s)
- Luis A Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Elena Carretón
- Internal Medicine Service, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - María Camacho
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - José Alberto Montoya-Alonso
- Internal Medicine Service, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Pilar F Valerón
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Yaiza Falcón Cordón
- Internal Medicine Service, Faculty of Veterinary Medicine, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Maira Almeida-González
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
20
|
Oluoch-Otiego J, Oyoo-Okoth E, Kiptoo KKG, Chemoiwa EJ, Ngugi CC, Simiyu G, Omutange ES, Ngure V, Opiyo MA. PCBs in fish and their cestode parasites in Lake Victoria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:483. [PMID: 27456696 DOI: 10.1007/s10661-016-5483-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Polychlorinated biphenyls (PCBs) are classified as persistent organic pollutants (POPs) regulated by the Stockholm Convention (2001). Although their production and use was stopped almost three decades ago, PCBs are environmental persistent, toxic, and bioaccumulate in biota. We assessed the levels of 7 PCB congeners (IUPAC nos. 28, 52, 101, 118, 138, 153, and 180) in sediment and fish (Oreochromis niloticus, Lates niloticus, and Rastrineobola argentea) and evaluated the potential of cestode fish endoparasite (Monobothrioides sp., Proteocephalaus sp., and Ligula intestinalis) as biomonitors of PCBs in Lake Victoria, Kenya. The median concentration of Σ7PCBs in sediments and fish were 2.2-96.3 μg/kg dw and 300-3,000 μg/kg lw, respectively. At all the sampling sites, CB138, CB153, and CB180 were the dominant PCB congeners in sediment and fish samples. Compared to the muscle of the piscine host, Proteocephalaus sp. (infecting L. niloticus) biomagnified PCBs ×6-14 while Monobothrioides sp. (infecting O. niloticus) biomagnified PCBs ×4-8. Meanwhile, L. intestinalis (infecting R. argentea) biomagnified PCBs ×8-16 compared to the muscle of unparasitized fish. We demonstrate the occurrence of moderate to high levels of PCB in sediments and fish in Lake Victoria. We also provide evidence that fish parasites bioaccumulate higher levels of PCBs than their piscine hosts and therefore provide a promising biomonitor of PCBs. We urge further a long-term study to validate the use of the above cestode fish parasites as biomonitoring tools for PCBs.
Collapse
Affiliation(s)
- John Oluoch-Otiego
- Division of Environmental Health, School of Environmental Studies, University of Eldoret, P.O. Box 1125, Eldoret, Kenya
| | - Elijah Oyoo-Okoth
- School of Natural Resources and Environmental Studies, Department of Natural Resource, Karatina University, P.O. Box 1957-10101, Karatina, Kenya.
| | | | - Emily J Chemoiwa
- Department of Biological Sciences, University of Eldoret, P.O. Box 1125, Eldoret, Kenya
| | - Charles C Ngugi
- Department of Agricultural Resource Management, Kenyatta University, School of Agriculture and Enterprise Development, P.O. Box 43844-00100, Nairobi, Kenya
| | - Gelas Simiyu
- Division of Environmental Health, School of Environmental Studies, University of Eldoret, P.O. Box 1125, Eldoret, Kenya
| | - Elijah S Omutange
- Department of Technology Education, Moi University, Eldoret, Kenya, P.O. Box 1125, Eldoret, Kenya
| | - Veronica Ngure
- Department of Biological Sciences, Laikipia University, Nyahururu, P.O. Box 1100-20300, Kenya
| | - Mary A Opiyo
- Kenya Marine and Fisheries Research Institute, National Aquaculture Research Development and Training Center, P.O. Box 451-10230, Sagana, Kenya
| |
Collapse
|
21
|
Smalling KL, Deshpande AD, Blazer VS, Dockum BW, Timmons D, Sharack BL, Baker RJ, Samson J, Reilly TJ. Young of the year bluefish (Pomatomus saltatrix) as a bioindicator of estuarine health: Establishing a new baseline for persistent organic pollutants after Hurricane Sandy for selected estuaries in New Jersey and New York. MARINE POLLUTION BULLETIN 2016; 107:422-431. [PMID: 27039958 DOI: 10.1016/j.marpolbul.2016.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/17/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Atlantic coastal bays of the US are essential habitat for young of year bluefish (Pomatomus saltatrix). Their residence in these estuaries during critical life stages, high lipid content, and piscivory make bluefish an ideal bioindicator species for evaluating estuarine health. Individual whole fish from four estuaries impacted by Hurricane Sandy were collected in August 2013, analyzed for a suite of persistent organic pollutants (POPs) including polychlorinated biphenyls, polybrominated diphenyl ethers and organochlorine pesticides and evaluated using health metrics. Concentrations in whole bluefish differed by estuary; however, concentrations for many POPs decreased or were similar to those observed prior to the hurricane. Prevalence of the ectoparasitic gill isopod (Lironeca ovalis) varied by estuary and no relationships between contaminants and lesions were observed. Bluefish should be considered for monitoring programs and, if sampled frequently, could be an effective bioindicator of incremental and episodic changes in contaminants within aquatic food webs.
Collapse
Affiliation(s)
- Kelly L Smalling
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ, USA.
| | - Ashok D Deshpande
- NOAA Fisheries, NEFSC, James J. Howard Marine Sciences Laboratory at Sandy Hook, NJ, USA
| | - Vicki S Blazer
- U.S. Geological Survey, Leetown Science Center, Kearneysville, WV, USA
| | - Bruce W Dockum
- NOAA Fisheries, NEFSC, James J. Howard Marine Sciences Laboratory at Sandy Hook, NJ, USA
| | - DeMond Timmons
- NOAA Fisheries, NEFSC, James J. Howard Marine Sciences Laboratory at Sandy Hook, NJ, USA
| | - Beth L Sharack
- NOAA Fisheries, NEFSC, James J. Howard Marine Sciences Laboratory at Sandy Hook, NJ, USA
| | - Ronald J Baker
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ, USA
| | - Jennifer Samson
- NOAA Fisheries, NEFSC, James J. Howard Marine Sciences Laboratory at Sandy Hook, NJ, USA
| | - Timothy J Reilly
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ, USA
| |
Collapse
|
22
|
Vidal-Martínez VM, Torres-Irineo E, Romero D, Gold-Bouchot G, Martínez-Meyer E, Valdés-Lozano D, Aguirre-Macedo ML. Environmental and anthropogenic factors affecting the probability of occurrence of Oncomegas wageneri (Cestoda: Trypanorhyncha) in the southern Gulf of Mexico. Parasit Vectors 2015; 8:609. [PMID: 26610603 PMCID: PMC4662013 DOI: 10.1186/s13071-015-1222-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/10/2015] [Indexed: 11/30/2022] Open
Abstract
Background Understanding the environmental and anthropogenic factors influencing the probability of occurrence of the marine parasitic species is fundamental for determining the circumstances under which they can act as bioindicators of environmental impact. The aim of this study was to determine whether physicochemical variables, polyaromatic hydrocarbons or sewage discharge affect the probability of occurrence of the larval cestode Oncomegas wageneri, which infects the shoal flounder, Syacium gunteri, in the southern Gulf of Mexico. Methods The study area included 162 sampling sites in the southern Gulf of Mexico and covered 288,205 km2, where the benthic sediments, water and the shoal flounder individuals were collected. We used the boosted generalised additive models (boosted GAM) and the MaxEnt to examine the potential statistical relationships between the environmental variables (nutrients, contaminants and physicochemical variables from the water and sediments) and the probability of the occurrence of this parasite. The models were calibrated using all of the sampling sites (full area) with and without parasite occurrences (n = 162) and a polygon area that included sampling sites with a depth of 1500 m or less (n = 134). Results Oncomegas wageneri occurred at 29/162 sampling sites. The boosted GAM for the full area and the polygon area accurately predicted the probability of the occurrence of O. wageneri in the study area. By contrast, poor probabilities of occurrence were obtained with the MaxEnt models for the same areas. The variables with the highest frequencies of appearance in the models (proxies for the explained variability) were the polyaromatic hydrocarbons of high molecular weight (PAHH, 95 %), followed by a combination of nutrients, spatial variables and polyaromatic hydrocarbons of low molecular weight (PAHL, 5 %). Conclusions The contribution of the PAHH to the variability was explained by the fact that these compounds, together with N and P, are carried by rivers that discharge into the ocean, which enhances the growth of hydrocarbonoclastic bacteria and the productivity and number of the intermediate hosts. Our results suggest that sites with PAHL/PAHH ratio values up to 1.89 promote transmission based on the high values of the prevalence of O. wageneri in the study area. In contrast, PAHL/PAHH ratio values ≥ 1.90 can be considered harmful for the transmission stages of O. wageneri and its hosts (copepods, shrimps and shoal flounders). Overall, the results indicate that the PAHHs affect the probability of occurrence of this helminth parasite in the southern Gulf of Mexico. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1222-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Víctor M Vidal-Martínez
- Laboratorio de Parasitología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Km 6 Carretera Antigua a Progreso, Cordemex, Mérida, Yucatán, 97310, México.
| | - Edgar Torres-Irineo
- Laboratorio de Tecnologías Geoespaciales, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Km 6 Carretera Antigua a Progreso, Cordemex, Mérida, Yucatán, 97310, México.
| | - David Romero
- Posgrado de Geografía. Facultad de Filosofía y Letras, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, 04510, México DF, México.
| | - Gerardo Gold-Bouchot
- Oceanography Department and GERG, Texas A&M University, College Station, TX, USA.
| | - Enrique Martínez-Meyer
- Laboratorio de Análisis Espaciales, Dpto. Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Apdo. Postal 70-153, 04510, México, DF, México.
| | - David Valdés-Lozano
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Km 6 Carretera Antigua a Progreso, Cordemex, Mérida, Yucatán, 97310, México.
| | - M Leopoldina Aguirre-Macedo
- Laboratorio de Parasitología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Km 6 Carretera Antigua a Progreso, Cordemex, Mérida, Yucatán, 97310, México.
| |
Collapse
|