1
|
Tran-Lam TT, Pham PT, Dao YH, Tran QH. Organophosphate esters and their metabolites in eggs from Vietnam. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024:1-13. [PMID: 39514129 DOI: 10.1080/19393210.2024.2419588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Data on the occurrence of organophosphate tri-esters (tri-OPEs) and their metabolites (di-OPEs) in hen's eggs are scarce. Therefore, 200 egg samples were gathered in 2023 in Hanoi, Vietnam and analysed by UHPLC-Q-Exactive HRMS. The majority of these compounds were detected, with tris(2-ethylhexyl) phosphate (0.10-2.7 ng/g wet weight (ww)) and trihexyl phosphate (0.08-2.3 ng/g ww) being the most prevalent tri-OPEs. Significant differences in tri-OPE profiles were observed in egg samples from battery-cage and free-range farming (p < .05). Despite egg levels ranging from 0.05 to 11.2 ng/g ww, Σdi-OPE accumulation in yolk and egg white was not significantly different in (p > .05). Among di-OPEs, dibutyl phosphate was found at the highest levels in the egg white, while bis(2-ethylhexyl) phosphate had the highest levels in yolk. There was no carcinogenic human health risk associated with OPEs in eggs (HQs <1).
Collapse
Affiliation(s)
- Thanh-Thien Tran-Lam
- Department of Marine Mechanics and Environment, Institute of Mechanics and Applied Informatics, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City, Vietnam
- Institute of Mechanics and Applied Informatics, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City, Vietnam
| | - Phuong Thi Pham
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Yen Hai Dao
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Quang Huu Tran
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
2
|
Hu Y, Sun Y, Zhang H, Luo L, Wang H, Zhang R, Ge M. 2-ethylhexyl diphenyl phosphate exposure induces duodenal inflammatory injury through oxidative stress in chickens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116784. [PMID: 39088896 DOI: 10.1016/j.ecoenv.2024.116784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
2-ethylhexyl diphenyl phosphate (EHDPHP) is a widely used organophosphorus flame retardant and plasticizer, which is commonly found in the environment. EHDPHP not only potentially harms the environment but also causes different degrees of damage to the organism. In this study, the duodenum of chicks was selected as the potential toxic target organ to explore the mechanism of duodenal injury induced by EHDPHP exposure. Ninety one-day-old healthy male chicks were selected and randomly divided into C1(control group), C2(solvent control group), L(800 mg/kg), M(1600 mg/kg), H(3200 mg/kg) according to different doses of EHDPHP after one week of environmental adaptation. The chicks were given continuous gavage for 14 d, 28 d, and 42 d. It was found that constant exposure to EHDPHP caused an increase in duodenal MDA content, a decrease in P-gp, SOD, GSH-Px activities, and a decrease in duodenal mucosal immune factor (sIgA, GSH-Px). The expression of sIgM and mucosal link proteins (CLDN, OCLN, ZO-1, JAM) decreased, and the expression of the inflammatory protein (NF-κB, COX2) in duodenal tissues was up-regulated. The results showed that continuous exposure to EHDPHP could cause duodenal oxidative stress, inflammation, and mucosal barrier damage in chicks, which provided a basis for studying the mechanism of toxic damage caused by EHDPHP in poultry.
Collapse
Affiliation(s)
- Yihan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China.
| | - Yiming Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China.
| | - Haolin Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China.
| | - Linghuan Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China.
| | - Haibin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China.
| | - Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China.
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China.
| |
Collapse
|
3
|
Tran-Lam TT, Pham PT, Bui MQ, Dao YH, Le GT. Organophosphate esters and their metabolites in silver pomfret (Pampus argenteus) of the Vietnamese coastal areas: Spatial-temporal distribution and exposure risk. CHEMOSPHERE 2024; 362:142724. [PMID: 38950748 DOI: 10.1016/j.chemosphere.2024.142724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
A large number of studies on organophosphate esters (tri-OPEs) in marine organisms have not assessed the simultaneous occurrence of tri-OPEs and their metabolites (di-OPEs) in these species. This research investigated the concentration and geographical distribution of 15 tri-OPEs and 7 di-OPEs in 172 samples of Pampus argenteus that were collected annually from 2021 to 2023 at three distinct locations along the Vietnamese coast. As a result, tri-OPEs and di-OPEs were detected in numerous fish samples, indicating their widespread spatial and temporal occurrence in marine fish and pointing out the importance of monitoring their levels. The tri-OPEs and di-OPEs ranged within 2.1-38.9 ng g-1 dry weight (dw) and 3.2-263.4 ng g-1 dw, respectively. The mean concentrations of tri-OPEs ranged from 0.4 (TIPrP) to 5.4 ng g-1 dw (TBOEP), with TBOEP and TEHP having the highest mean values. In addition, the profiles of tri-OPEs in fish exhibited a descending order: Σalkyl OPEs > ΣCl-alkyl OPEs > Σaryl OPEs. The di-OPEs, namely BEHP and DMP, had the highest mean levels, measuring 33.4 ng g-1 dw and 23.8 ng g-1 dw, respectively. Furthermore, there have been significant findings of strong positive correlations between di-OPEs and tri-OPE pairs (p < 0.05). It is worth noting that there is a noticeable difference in the composition of tri-OPEs between the North and other regions. Despite these findings, the presence of OPE-contaminated fish did not pose any health risks to Vietnam's coastal population.
Collapse
Affiliation(s)
- Thanh-Thien Tran-Lam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10000, Viet Nam; Institute of Mechanics and Applied Informatics, Vietnam Academy of Science and Technology (VAST), 291 Dien Bien Phu, Ward 7, District 3, Ho Chi Minh City, 70000, Viet Nam
| | - Phuong Thi Pham
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Minh Quang Bui
- Center for High Technology Research and Development, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10000, Viet Nam
| | - Yen Hai Dao
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Giang Truong Le
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam.
| |
Collapse
|
4
|
Ma Y, Romanak KA, Capozzi SL, Xia C, Lehman DC, Harrad S, Cline-Cole R, Venier M. Socio-Economic Factors Impact US Dietary Exposure to Halogenated Flame Retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:478-484. [PMID: 37333937 PMCID: PMC10269323 DOI: 10.1021/acs.estlett.3c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023]
Abstract
Although diet is an important route of exposure for brominated flame retardants (BFRs), little is known of their presence in US food. Therefore, we purchased meat, fish, and dairy product samples (n = 72) in Bloomington, IN, from 3 stores representing national retail chains at different price levels. Composite samples (n = 42) were analyzed for polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDD), novel BFRs (NBFRs), and dechlorane plus (DP). Concentrations of total halogenated flame retardants (HFRs) ranged between 54 and 1,400 pg/g ww, with PBDEs being the predominant compounds. Concentrations of NBFRs, but not PBDEs, in US food items were significantly impacted by price, raising the issue of environmental justice. Nonorganic food generally had a higher abundance of BDE-209 than organic food items. Estimates of dietary exposure revealed that meat and cheese consumption contribute most to the overall HFR intake and that intakes are highest for children and for non-Hispanic Asians. Taking into account several caveats and limitations of this study, these results as a whole suggest that health burdens from dietary exposure to HFRs have become minimal for US citizens, highlighting the positive impact of regulatory efforts.
Collapse
Affiliation(s)
- Yulong Ma
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Kevin Andrew Romanak
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Staci Lynn Capozzi
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Chunjie Xia
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Daniel Crawford Lehman
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Reginald Cline-Cole
- Department of African Studies & Anthropology, School of History and Cultures, University of Birmingham, Birmingham B15 2TT, U.K
| | - Marta Venier
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
5
|
Ma Y, Stubbings WA, Abdallah MAE, Cline-Cole R, Harrad S. Temporal trends in concentrations of brominated flame retardants in UK foodstuffs suggest active impacts of global phase-out of PBDEs and HBCDD. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160956. [PMID: 36528953 DOI: 10.1016/j.scitotenv.2022.160956] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Global restrictions on use of legacy brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD) have generated demand for novel BFRs (NBFRs) as substitutes. Our research group has previously reported decreased concentrations of PBDEs and HBCDD and increased concentrations of NBFRs in UK indoor environments, suggesting that restrictions on PBDEs and HBCDD are exerting an impact. In this study, we analysed UK foodstuffs collected in 2020-21 and compared the BFR concentrations found with those found in similar samples collected in 2015 to investigate whether similar trends in BFR concentrations would be observed. Concentrations of PBDEs and HBCDD isomers detected in our samples had declined by 78-92 % and 59-97 % since the 2015 study, respectively. Moreover, concentrations of NBFRs (dominated by 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE or TBE), and bis(2-ethyl hexyl) tetrabromophthalate (BEH-TEBP or TBPH)) in UK foodstuffs increased significantly (28-1400 %) between 2015 and 2020-21. Combined, these findings suggest that restrictions on use of PBDEs and HBCDD have had a discernible impact on concentrations of these legacy BFRs and their NBFR replacements in UK foodstuffs. Interestingly, given recent reports of a significant increase in concentrations of decabromodiphenyl ethane (DBDPE) in UK house dust between 2014 and 2019, a significant decline (70-84 %) in concentrations of DBDPE was observed in UK foodstuffs.
Collapse
Affiliation(s)
- Yulong Ma
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Reginald Cline-Cole
- Department of African Studies & Anthropology, School of History and Cultures, University of Birmingham, Birmingham B15 2TT, UK
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
6
|
Feng Y, Cui X, Yin J, Shao B. Chlorinated organophosphorus flame retardants-induced mitochondrial abnormalities and the correlation with progesterone production in mLTC-1 cells. Food Chem Toxicol 2022; 169:113432. [PMID: 36115506 DOI: 10.1016/j.fct.2022.113432] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/13/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022]
Abstract
Environmental monitoring data have indicated that three chlorinated organophosphorus flame retardants (Cl-OPFRs), including tris(2-chloroethyl)-phosphate (TCEP), tris(2-chloropropyl)-phosphate (TCPP), and tris(1,3-dichloro-2-propyl)-phosphate (TDCPP) are the predominant chemicals in various environmental matrices and exhibit reproductive endocrine disrupting activities. Currently, mitochondrial abnormality is a new paradigm for evaluating chemical-mediated cell dysfunction. However, a comprehensive correlation between these two aspects of Cl-OPFRs remains unclear. In this research, the effects of TCEP, TCPP, and TDCPP on progesterone production and mitochondrial impairment were investigated by using mouse Leydig tumor cells (mLTC-1). The half maximal inhibitory concentration (IC50) values at 48 h exposure indicated that the rank order of anti-androgenic activity was TDCPP > TCPP. Whereas, TCEP exhibited elevation of progesterone production. At concentrations close to IC50 of progesterone production by TCPP and TDCPP, the elevation of intracellular reactive oxygen species (ROS), depletion of mitochondrial membrane potential (MMP), reduction of cellular adenosine triphosphate (ATP) content, and alteration of mitochondrial structures was observed. In addition, the expression of main genes related to progesterone synthesis was dramatically down-regulated by TCPP and TDCPP treatments. These results imply that the inhibition effect of TCPP and TDCPP on progesterone production might be related to mitochondrial damage and down-regulated steroidogenic genes.
Collapse
Affiliation(s)
- Yixing Feng
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, 100013, China
| | - Xia Cui
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, 100013, China
| | - Jie Yin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, 100013, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, 100013, China; School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
7
|
Zhang W, Giesy JP, Wang P. Organophosphate esters in agro-foods: Occurrence, sources and emerging challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154271. [PMID: 35245542 DOI: 10.1016/j.scitotenv.2022.154271] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/03/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Safety and sustainable agro-food production is important for food and nutrition security. Agro-foods safety is challenged by various emerging environmental contaminants. Organophosphate esters (OPEs) have been reported to occur in various agro-food items worldwide, which has resulted in increasing concerns for effects on health of humans and wildlife, including through agriculture. However, information on presence, sources and transfer routes of OPEs in agro-foods, and consequent health risks remains scant. This review critically evaluates available information on concentrations of OPEs in various agro-foods, and discusses potential sources of OPEs in agro-foods, which are closely related to the ambient agri-environment, agricultural inputs, and agro-foods processing. Some directions for future research are suggested. First, since food is an important exposure pathway to OPEs, systematic monitoring of concentrations of OPEs in various categories of agro-foods is recommended. Second, surveillance of concentrations and characteristics of OPEs in agro-foods and ambient agri-environments, agricultural inputs or processing in the agro-food chain is needed to obtain a more complete description of exposure and transmission behavior of OPEs in agro-foods. Third, future comprehensive studies of transmission, metabolism and accumulation of OPEs in animals or plants, are required. Finally, measures to control emissions of OPEs as sources to agriculture should be taken.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States; Department of Environmental Sciences, Baylor University, Waco, TX 76798-7266, United States; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, PR China
| | - Peilong Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
8
|
Choo G, Ekpe OD, Park KW, Chung D, Lee J, Oh JE. Temporal and spatial trends of chlorinated paraffins and organophosphate flame retardants in black-tailed gull (Larus crassirostris) eggs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150137. [PMID: 34788941 DOI: 10.1016/j.scitotenv.2021.150137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
In this study, eggs of black-tailed gull (Larus crassirostris), a top trophic level predator of marine ecosystem were, for the first time, monitored to assess the temporal and spatial trends of emerging pollutants in South Korea. Two Island regions, namely, Baekryeong-do (Site A) and Hong-do (Site B) were investigated from 2012 to 2018, and the total levels of short chain chlorinated paraffins (SCCPs), medium chain CPs (MCCPs), and organophosphate flame retardants (OPFRs) for both Site A and B were 1180-2931 and 694-2023 ng/g lipid weight (lw), 1287-4898 and 1034-3075 ng/g lw, and 203-499 and 233-409 ng/g lw, respectively. The time-trends of the concentration of pollutants showed an increasing tendency from 2012 to 2018, with the levels predicted to be doubled within three years, following the results of regression analysis. A shift in temporal-trends from shorter to longer chain CPs was noted, suggesting the effect of industrial-related contamination. Especially, significantly high levels of CPs and OPFRs were found in the site adjacent to China, which is reasonable as China is the largest producer and consumer of FRs and plasticizers worldwide. This study is valuable to understand the temporal increment of emerging pollutants as the alternatives of phased-out FRs and plasticizers, while raising the need for continuous environmental management.
Collapse
Affiliation(s)
- Gyojin Choo
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; National Fishery Products Quality Management Service, Busan 48943, Republic of Korea
| | - Okon Dominic Ekpe
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Ki Wan Park
- National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - David Chung
- National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Jangho Lee
- National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
9
|
Zhang Q, Li X, Wang Y, Zhang C, Cheng Z, Zhao L, Li X, Sun Z, Zhang J, Yao Y, Wang L, Li W, Sun H. Occurrence of novel organophosphate esters derived from organophosphite antioxidants in an e-waste dismantling area: Associations between hand wipes and dust. ENVIRONMENT INTERNATIONAL 2021; 157:106860. [PMID: 34500363 DOI: 10.1016/j.envint.2021.106860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Electronic waste (e-waste) is a well-known source of plastic additives in the environment. However, the e-waste-related occupational exposure to organophosphite antioxidants (OPAs) and the relevant oxidation products-novel organophosphate esters (NOPEs)-via different pathways is still unknown. In this study, six OPAs and three NOPEs were measured in 116 dust and 43 hand-wipe samples from an e-waste dismantling area in Central China. The median concentrations of ΣOPAs and ΣNOPEs were 188 and 13,900 ng·g-1 in workshop dust and 5,250 ng·m-2 and 53,600 ng·m-2 on workers' hands, respectively. The increasing concentrations of dust in the form of triphenyl phosphate (TPHP) (p < 0.01) and tris(2,4-di-tert-butylphenyl) phosphate (AO168 = O) (p < 0.05) were strongly associated with the corresponding concentration on workers' hands. Furthermore, men had significantly lower levels of NOPEs on their hands than did women (p < 0.01). Moreover, the hand wipe levels of AO168 = O (41,600 ng·m-2) was significantly higher than that of the typical OPE (TPHP, 7370 ng·m-2), and the hand-to-mouth contact (ΣOPAs, 9.48 ng·kg bw-1·day-1; ΣNOPEs, 109 ng·kg bw-1·day-1) was a more significant and integrated pathway than dust ingestion (ΣOPAs, 0.10 ng·kg bw-1·day-1; ΣNOPEs, 5.01 ng·kg bw-1·day-1) of e-waste related occupational exposure to these "new" chemicals.
Collapse
Affiliation(s)
- Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuejiao Li
- College of Environmental and Resource Sciences, Shanxi University, Shanxi 030006, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Chong Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhaoyang Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingran Zhang
- SCIEX, Analytical Instrument Trading Co., Ltd, Beijing 100015, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wei Li
- College of Environmental and Resource Sciences, Shanxi University, Shanxi 030006, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
10
|
Wang Y, Yang M, Wang F, Chen X, Wu M, Ma J. Organophosphate Esters in Indoor Environment and Metabolites in Human Urine Collected from a Shanghai University. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9212. [PMID: 34501802 PMCID: PMC8431728 DOI: 10.3390/ijerph18179212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022]
Abstract
In China, organophosphate esters (OPEs) are widely used in indoor environments. However, there is little information regarding the internal and external exposure of university students to OPEs. Therefore, in this study, nine OPEs and eight OPE metabolites (mOPEs) were measured in indoor dust and atmospheric PM2.5 samples from a university campus in Shanghai, as well as in urine samples collected from the university students. The total concentration of OPEs in the indoor dust in female dormitories (1420 ng/g) was approximately twice that in male dormitories (645 ng/g). In terms of indoor PM2.5, the highest OPE concentration was found in meeting rooms (105 ng/m3, on average), followed by chemical laboratories (51.2 ng/m3), dormitories (44.9 ng/m3), and offices (34.9 ng/m3). The total concentrations of the eight mOPEs ranged from 279 pg/mL to 14,000 pg/mL, with a geometric mean value of 1590 pg/mL. The estimated daily intake values based on the indoor dust and PM2.5 OPE samples (external exposure) were 1-2 orders of magnitude lower than that deduced from the concentration of urinary mOPEs (internal exposure), indicating that dermal contact, dust ingestion, and inhalation do not contribute significantly to OPE exposure in the general population. Moreover, additional exposure routes lead to the accumulation of OPEs in the human body.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (Y.W.); (M.Y.); (F.W.); (X.C.); (M.W.)
| |
Collapse
|
11
|
Tang Z, Cheng J, Yin H, Meng T, Sun J. Methylsiloxane occurrence and distribution in free-range poultry eggs near a rural industrial park: Indicators of potential risks to birds. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125683. [PMID: 33773252 DOI: 10.1016/j.jhazmat.2021.125683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The ecological harm from methylsiloxanes has drawn worldwide attention. This study investigated three cyclic (D4-D6) and four linear siloxanes (L7-L10) in the eggs of free-range poultry collected near a rural industrial park in China and found total concentrations in the range of 19.2-1204 (median, 268) ng/g dry weight. Higher concentrations of methylsiloxanes were observed in chicken eggs than duck eggs. Cyclic siloxanes represented a median of 62.2% of the total methylsiloxane concentrations. A source assessment indicated that local soils and outdoor dust were more important sources of egg methylsiloxanes than poultry food. The partitioning of methylsiloxanes between egg yolk and egg albumen was investigated, and preferential distributions of the chemicals in the yolk were observed. This study confirmed that methylsiloxanes were highly prevalent in the study poultry eggs. The results suggested that the potential risks to some wild birds inhabiting this area should be of concern, as their physiologies and feeding ecologies are similar to those of the studied poultry, although available ecotoxicological data of the chemicals to birds remains scarce. Additional research is needed to characterize the accumulation of methylsiloxanes in different bird species and its associated adverse effects on their offspring.
Collapse
Affiliation(s)
- Zhenwu Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jiali Cheng
- Key Laboratory of Trace Element Nutrition of the National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| | - Hongmin Yin
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Tong Meng
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Jiazheng Sun
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
12
|
Peng X, Chen G, Fan Y, Zhu Z, Guo S, Zhou J, Tan J. Lifetime bioaccumulation, gender difference, tissue distribution, and parental transfer of organophosphorus plastic additives in freshwater fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116948. [PMID: 33773303 DOI: 10.1016/j.envpol.2021.116948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Plastic pollution has been a growing global issue. Various plastic additives may enter the environment with plastic debris, which could also become contaminants. Lifetime bioaccumulation, gender difference, tissue distribution, and parental transfer potential of commonly applied organophosphorus plastic additives (OPPAs) were investigated in wildlife fish of the Pearl River system, China. The OPPAs were widely detected in 7 consumable fish species. Tris (2-chloropropyl) phosphate was the predominant compound, with a median concentration of 18.8 ng/g lipid weight. The total OPPA concentrations (ΣOPPAs) were higher in the livers and swimming bladders, suggesting important roles of lipophilicity on the OPPAs accumulation in the fish. Besides, the livers were more abundant in the non-chlorinated OPPAs relative to the other tissues, indicating potentially stronger metabolism of the chlorinated OPPAs in the livers. Redbelly tilapia contained obviously lower ΣOPPAs than the other species. On the other hand, proportions of the chlorinated OPPAs were obviously lower in barbel chub and Guangdong black bream. For an individual species, higher ΣOPPAs were usually detected in the female than in the male fish. Furthermore, the females contained higher proportions of the non-chlorinated OPPAs. These results suggested potentially more accumulation of the OPPAs, particularly the non-chlorinated OPPAs in the female than in the male fish. Body weight dependence of the OPPAs accumulation showed varied patterns depending on species, tissue, and compound. Species-specific characteristics affected by both ecology and organisms' physiology should be considered in combination in assessing bioaccumulation of the OPPAs. The OPPAs were slightly bioaccumulative with LogBAFs of 1.2-3.3. The OPPAs did not show obvious inclination to be partitioned to biota from sediment. Omnipresence of the OPPAs in both egg/ovary and testis of the fish suggested potential transgenerational transfer of these chemicals, which can be a serious ecological issue and warrants further research.
Collapse
Affiliation(s)
- Xianzhi Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; Guangdong - Hong Kong - Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou, 510640, China.
| | - Guangshi Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujuan Fan
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zewen Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shang Guo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhou
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Tan
- Guangzhou Institute of Quality Monitoring and Testing, Guangzhou, 510050, China
| |
Collapse
|
13
|
Hao Y, Zheng S, Wang P, Sun H, Matsiko J, Li W, Li Y, Zhang Q, Jiang G. Ecotoxicology of persistent organic pollutants in birds. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:400-416. [PMID: 33660728 DOI: 10.1039/d0em00451k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Considering the explosive growth of the list of persistent organic pollutants (POPs), the scientific community is combatting increasing challenges to protect humans and wildlife from the potentially negative consequences of POPs. Herein, we characterize the main aspects and progress in the ecotoxicology of POPs in avian species since 2000. The majority of previous efforts has revealed the global occurrence of high levels of various POPs in birds. Laboratory research and epidemiological studies imply that POPs exert a broad-spectrum of side-effects on birds by interfering with their endocrine, immune and neural system, reproduction, and development, and growth. However, inconsistent results suggest that the potential effects of POP exposure on the physiological parameters in birds are multifactorial, involving a multitude of biological processes, species-specific differences, gender, age and types of compounds. Great progress has been achieved in identifying the species-specific sensitivity to dioxin-like compounds, which is attributed to different amino acid residues in the ligand-binding domain of the aryl hydrocarbon receptor. Besides the conventional concentration additivity, several studies have suggested that different classes of POPs possibly act synergistically or antagonistically based on their concentration. However, ecotoxicology information is still recorded in a scattered and inadequate manner, including lack of enough avian species, limited number of POPs investigated, and insufficient geographical representation, and thus our understanding of the effects of POPs on birds remains rudimentary, although mechanistic understanding of their mode of action is progressing. Particularly, research on what happens to wild bird populations and their ecosystems under POP stress is still unavailable. Thus, our aim is to predict and trace the effects POPs at different biological organization levels, especially from the molecular, cellular and individual levels to the population, community and ecosystem levels because of the limited and scattered information, as mentioned above.
Collapse
Affiliation(s)
- Yanfen Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schreckenbach SA, Simmons D, Ladak A, Mullin L, Muir DCG, Simpson MJ, Jobst KJ. Data-Independent Identification of Suspected Organic Pollutants Using Gas Chromatography-Atmospheric Pressure Chemical Ionization-Mass Spectrometry. Anal Chem 2021; 93:1498-1506. [PMID: 33355455 DOI: 10.1021/acs.analchem.0c03733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The identity of an unknown environmental pollutant is reflected by the mass and dissociation chemistry of its (quasi)molecular ion. Gas chromatography-atmospheric pressure chemical ionization-mass spectrometry (GC-APCI-MS) increases the yield of molecular ions (compared to conventional electron ionization) by collisional cooling. Scanning quadrupole data-independent acquisition (SQDIA) permits unbiased, unattended selection of (quasi)molecular ions and acquisition of structure-diagnostic collision-induced dissociation mass spectra, while minimizing interferences, by sequentially cycling a quadrupole isolation window through the m/z range. This study reports on the development of a suspect screening method based on industrial compounds with bioaccumulation potential. A comparison of false and correct identifications in a mixed standard containing 30 analytes suggests that SQDIA results in a markedly lower false-positive rate than standard DIA: 5 for SQDIA and 82 for DIA. Electronic waste dust was analyzed using GC and quadrupole time-of-flight MS with APCI and SQDIA acquisition. A total of 52 brominated, chlorinated, and organophosphorus compounds were identified by suspect screening; 15 unique elemental compositions were identified using nontargeted screening; 17 compounds were confirmed using standards and others identified to confidence levels 2, 3, or 4. SQDIA reduced false-positive identifications, compared to experiments without quadrupole isolation. False positives also varied by class: 20% for Br, 37% for Cl, 75% for P, and >99% for all other classes. The structure proposal of a previously reported halogenated compound was revisited. The results underline the utility of GC-SQDIA experiments that provide information on both the (quasi)molecular ions and its dissociation products for a more confident structural assignment.
Collapse
Affiliation(s)
- Sophia A Schreckenbach
- Department of Chemistry, University of Toronto, Toronto, Ontario, M1C 1A4, Canada.,Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Denina Simmons
- Depertment of Biology, University of Ontario Institute of Technology, Oshawa, Ontario L1G 0C5, Canada
| | - Adam Ladak
- Waters Corporation, Milford, Massachusetts 01757, United States
| | - Lauren Mullin
- Waters Corporation, Milford, Massachusetts 01757, United States
| | - Derek C G Muir
- Environment and Climate Change Canada, Burlington, Ontario ON L7S 1A1, Canada
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, Toronto, Ontario, M1C 1A4, Canada.,Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada
| |
Collapse
|
15
|
Bekele TG, Zhao H, Wang Q. Tissue distribution and bioaccumulation of organophosphate esters in wild marine fish from Laizhou Bay, North China: Implications of human exposure via fish consumption. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123410. [PMID: 32653798 DOI: 10.1016/j.jhazmat.2020.123410] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Despite organophosphate esters (OPEs) are ubiquitous in the environment, limited information is available about their tissue-specific accumulation potential in marine fish and exposure risks. Ten fish species from the coastal area of Laizhou Bay, North China, were sampled and analyzed to investigate tissue levels, bioaccumulation, and human exposure risks of 20 OPEs. Seventeen OPEs were detected in fish tissues with total concentration ranging from 6.6-107 ng/g dry weight. The average log bioaccumulation factor (BAF) values of OPEs ranged from 2.8 to 4.4 in livers, 2.3-3.8 in muscles, 2.5-3.9 in gills, and 2.8-4.4 in kidneys. The log BAF values of OPEs significantly increased with increasing their log KOW values (r = 0.55-0.63, p < 0.001). The estimated daily intake of OPEs ranged from 1.7-12.0 and 3.1-22.1 ng/kg bw/d for rural and urban residents, respectively. The hazard quotients of OPEs were in the range of 4 × 10 -5 to 6.7 × 10 -4 and 7 × 10 -5 to 1.2 × 10 -3 for rural and urban residents, respectively. Results showed that the human health risks of OPEs associated with fish consumption is at low level.
Collapse
Affiliation(s)
- Tadiyose Girma Bekele
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; Department of Natural Resource Management, Arba Minch University, Arba Minch 21, Ethiopia
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Qingzhi Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
16
|
Ma Y, Stubbings WA, Cline-Cole R, Harrad S. Human exposure to halogenated and organophosphate flame retardants through informal e-waste handling activities - A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115727. [PMID: 33010546 DOI: 10.1016/j.envpol.2020.115727] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Informal electrical and electronic waste (e-waste) handling activities constitute a potentially important source of halogenated (HFRs) and organophosphate flame retardants (OPFRs) to the environment and humans. In this review, two electronic databases (ScienceDirect and Web of Science Core Collection) were searched for papers that addressed this topic. A total of 82 relevant studies (including 72 studies selected from the two databases and 10 studies located from the references of the first 72 selected studies) were identified that reported on human external and internal exposure to HFRs and OPFRs arising as a result of informal e-waste handling activities. Compared to the general population, higher levels of external exposure (i.e., inhalation, ingestion, and dermal absorption) and internal exposure (i.e., blood serum, hair, breast milk, urine, and other human matrices) to HFRs and OPFRs were identified for e-waste recyclers and residents inhabiting e-waste dismantling and recycling zones, especially for younger adults and children. Food intake and dust ingestion were the dominant exposure pathways for the majority of brominated flame retardants (BFRs) and dechlorane plus (DP); while inhalation was identified as the most significant pathway of human exposure to OPFRs in informal e-waste sites. The majority of research to date has focused on China and thus future studies should be conducted in other regions such as Africa and South Asia. Other suggested foci of future research are: examination of exposure via dermal contact with e-waste, dietary exposure of local populations to OPFRs, confirmation of the existence of and cause(s) of the higher body burdens of females compared with males amongst populations impacted by informal e-waste handling, and characterisation of exposure of such populations to chlorinated paraffins.
Collapse
Affiliation(s)
- Yulong Ma
- School of Geography, Earth and Environmental Sciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - William A Stubbings
- School of Geography, Earth and Environmental Sciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Reginald Cline-Cole
- Centre of West African Studies, Department of African Studies & Anthropology, School of History and Cultures, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
17
|
Du B, Shen M, Chen H, Zhang Y, Deng M, Li J, Zeng L. Beyond Traditional Organophosphate Triesters: Prevalence of Emerging Organophosphate Triesters and Organophosphate Diesters in Indoor Dust from a Mega E-waste Recycling Industrial Park in South China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12001-12012. [PMID: 32886878 DOI: 10.1021/acs.est.0c02255] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Numerous studies have reported the environmental contamination with traditional organophosphate triesters (tri-OPEs), but there is very little information on emerging tri-OPEs and organophosphate diesters (di-OPEs), especially in e-waste recycling areas. In this study, we conducted a comprehensive survey to monitor a broad suite of 11 traditional tri-OPEs, 12 emerging OPEs, and 10 di-OPEs in indoor dust collected from the workshops of (n = 42) and residential homes adjacent to (n = 24) a mega e-waste recycling industrial park in South China. In addition to traditional tri-OPEs, all of the emerging OPEs and di-OPEs were frequently detected in the dust samples. Total concentrations of emerging tri-OPEs and di-OPEs were in the range of 1210-62 900 and 2010-55 600 ng/g in the workshop dust and 435-23 700 and 186-4350 ng/g in the local home dust, respectively, which were comparable to those of traditional tri-OPEs (1160-61 500 and 370-13 900 ng/g, respectively). Most OPEs exhibited significantly higher concentrations in workshop dust versus local home dust (p < 0.05), indicating that e-waste dismantling activities contributed to the high residues of OPEs in indoor dust. Correlation analysis revealed that tri-OPEs have some common emission sources, i.e., e-waste and household products, while di-OPEs could originate from different sources, e.g., tri-OPE degradation, direct commercial application, and impurities in tri-OPE formulas. For both occupational workers and local adults, the median estimated daily intake values of emerging tri-OPEs (7.5 and 1.7 ng/kg bw/day, respectively) and di-OPEs (3.9 and 0.2 ng/kg bw/day, respectively) were comparable to that of traditional tri-OPEs (4.3 and 1.0 ng/kg bw/day, respectively), which suggests the important contribution of the emerging tri-OPEs and di-OPEs to the overall risks of human external exposure to OPE chemicals.
Collapse
Affiliation(s)
- Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Mingjie Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Hui Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Yun Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Man Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Juan Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| |
Collapse
|
18
|
Ding Y, Han M, Wu Z, Zhang R, Li A, Yu K, Wang Y, Huang W, Zheng X, Mai B. Bioaccumulation and trophic transfer of organophosphate esters in tropical marine food web, South China Sea. ENVIRONMENT INTERNATIONAL 2020; 143:105919. [PMID: 32623222 DOI: 10.1016/j.envint.2020.105919] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Environmental exposure to organophosphate esters (OPEs) continues to be a concern. Little is known about their bioaccumulation and trophodynamics, especially in tropical food webs. This study collected seawater and fifteen types of organism from a tropical ecosystem, South China Sea, to investigate the species-specific compositional, bioaccumulation, and trophic transfer of OPEs. The total concentrations of 11 target OPEs (ng/g dw) in the organisms decreased with the increase of their trophic levels in the order: phytoplankton (922) > zooplankton (660) > oysters (309) > crabs (225) > coral tissues (202) > fishes (58.2). The composition profiles (relative abundances) of OPEs were different among the species of organisms, which is likely affected by metabolism and the physicochemical property of OPEs. The trophic biomagnification of tripentyl phosphate (TPTP) in the pelagic food web was unexpected and requires further investigation. The trophic magnification factors (TMFs) of OPEs were generally lower in this tropical aquatic food web than in temperate and frigid aquatic food web. Our analysis suggests that there is a significant positive linear correlation between latitude and TMF. Intakes of OPEs through the consumption of the seafood involved in this work does not pose health risk to adults.
Collapse
Affiliation(s)
- Yang Ding
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, Guangxi University, Nanning 530004, China
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, Guangxi University, Nanning 530004, China
| | - Zhiqiang Wu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, Guangxi, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519080 Zhuhai, China; Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago 60612, USA.
| | - An Li
- Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago 60612, USA
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519080 Zhuhai, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, Guangxi University, Nanning 530004, China
| | - Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, Guangxi University, Nanning 530004, China
| | - Xiaobo Zheng
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
19
|
Maddela NR, Venkateswarlu K, Megharaj M. Tris(2-chloroethyl) phosphate, a pervasive flame retardant: critical perspective on its emissions into the environment and human toxicity. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1809-1827. [PMID: 32760963 DOI: 10.1039/d0em00222d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Regulations and the voluntary activities of manufacturers have led to a market shift in the use of flame retardants (FRs). Accordingly, organophosphate ester flame retardants (OPFRs) have emerged as a replacement for polybrominated diphenyl ethers (PBDEs). One of the widely used OPFRs is tris(2-chloroethyl) phosphate (TCEP), the considerable usage of which has reached 1.0 Mt globally. High concentrations of TCEP in indoor dust (∼2.0 × 105 ng g-1), its detection in nearly all foodstuffs (max. concentration of ∼30-300 ng g-1 or ng L-1), human body burden, and toxicological properties as revealed by meta-analysis make TCEP hard to distinguish from traditional FRs, and this situation requires researchers to rethink whether or not TCEP is an appropriate choice as a new FR. However, there are many unresolved issues, which may impede global health agencies in framing stringent regulations and manufacturers considering the meticulous use of TCEP. Therefore, the aim of the present review is to highlight the factors that influence TCEP emissions from its sources, its bioaccessibility, threat of trophic transfer, and toxicogenomics in order to provide better insight into its emergence as an FR. Finally, remediation strategies for dealing with TCEP emissions, and future research directions are addressed.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador and Facultad la Ciencias la Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Faculty of Science, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
20
|
Purchase D, Abbasi G, Bisschop L, Chatterjee D, Ekberg C, Ermolin M, Fedotov P, Garelick H, Isimekhai K, Kandile NG, Lundström M, Matharu A, Miller BW, Pineda A, Popoola OE, Retegan T, Ruedel H, Serpe A, Sheva Y, Surati KR, Walsh F, Wilson BP, Wong MH. Global occurrence, chemical properties, and ecological impacts of e-wastes (IUPAC Technical Report). PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-0502] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
The waste stream of obsolete electronic equipment grows exponentially, creating a worldwide pollution and resource problem. Electrical and electronic waste (e-waste) comprises a heterogeneous mix of glass, plastics (including flame retardants and other additives), metals (including rare Earth elements), and metalloids. The e-waste issue is complex and multi-faceted. In examining the different aspects of e-waste, informal recycling in developing countries has been identified as a primary concern, due to widespread illegal shipments; weak environmental, as well as health and safety, regulations; lack of technology; and inadequate waste treatment structure. For example, Nigeria, Ghana, India, Pakistan, and China have all been identified as hotspots for the disposal of e-waste. This article presents a critical examination on the chemical nature of e-waste and the resulting environmental impacts on, for example, microbial biodiversity, flora, and fauna in e-waste recycling sites around the world. It highlights the different types of risk assessment approaches required when evaluating the ecological impact of e-waste. Additionally, it presents examples of chemistry playing a role in potential solutions. The information presented here will be informative to relevant stakeholders seeking to devise integrated management strategies to tackle this global environmental concern.
Collapse
Affiliation(s)
- Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology , Middlesex University , The Burroughs , London NW4 4BT , UK
| | | | - Lieselot Bisschop
- Erasmus Initiative on Dynamics of Inclusive Prosperity & Erasmus School of Law , Erasmus University Rotterdam , P.O. Box 1738 – 3000 DR , Rotterdam , Netherlands
| | - Debashish Chatterjee
- Faculty of Analytical Chemistry , University of Kalyani , Kalyani , Nadia , 741235 , India
| | - Christian Ekberg
- Department of Chemistry and Chemical Engineering, Nuclear Chemistry and Industrial Materials Recycling , Chalmers University of Technology , SE-41296 , Göteborg , Sweden
| | - Mikhail Ermolin
- National University of Science and Technology “MISiS” , 4 Leninsky Prospect , Moscow , 119049 , Russia
| | - Petr Fedotov
- V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry , Russian Academy of Sciences , 19 Kosygin Street , Moscow , 119991 , Russia
| | - Hemda Garelick
- Department of Natural Sciences, Faculty of Science and Technology , Middlesex University , The Burroughs , London NW4 4BT , UK
| | - Khadijah Isimekhai
- Ateda Ventures Limited , P.P. Box 13394 , Benin City , Edo State , Nigeria
| | - Nadia G. Kandile
- Department of Chemistry, Faculty of Women , Ain Shams University , Heliopolis , 11757 , Cairo , Egypt
| | - Mari Lundström
- Department of Chemical and Metallurgical Engineering (CMET), School of Chemical Engineering , Aalto University , P.O. Box 16200 , AALTO , Finland
| | - Avtar Matharu
- Green Chemistry Centre of Excellence, Department of Chemistry , University of York , York , YO10 5DD , UK
| | | | - Antonio Pineda
- Departamento de Química Orgánica , Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra Nnal IVa, Km 396 , Córdoba , E-14014 , Spain
| | - Oluseun E. Popoola
- Department of Chemical Science , Yaba College of Technology , Lagos , Nigeria
| | - Teodora Retegan
- Department of Chemistry and Chemical Engineering, Nuclear Chemistry and Industrial Materials Recycling , Chalmers University of Technology , SE-41296 , Göteborg , Sweden
| | - Heinz Ruedel
- Department Environmental Specimen Bank and Elemental Analysis , Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME) , Schmallenberg , 57392 , Germany
| | - Angela Serpe
- Department of Civil and Environmental Engineering and Architecture (DICAAR) and INSTM Unit , University of Cagliari and Environmental Geology and Geoengineering Institute of the National Research Council (IGAG-CNR) , Via Marengo 2 , Cagliari , 09123 , Italy
| | | | - Kiran R. Surati
- Department of Chemistry , Sardar Patel University , Vallabh Vidyanagar , Anand , Gujarat , 388120 , India
| | - Fiona Walsh
- Maynooth University , Maynooth , Co Kildare , Ireland
| | - Benjamin P. Wilson
- Department of Chemical and Metallurgical Engineering (CMET), School of Chemical Engineering , Aalto University , P.O. Box 16200 , AALTO , Finland
| | - Ming Hung Wong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control and State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control , Southern University of Science and Technology, Shenzhen, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong , Tai Po , Hong Kong , China
| |
Collapse
|
21
|
Li Z, He C, Thai P, Wang X, Bräunig J, Yu Y, Luo X, Mai B, Mueller JF. Organophosphate esters and their specific metabolites in chicken eggs from across Australia: Occurrence, profile, and distribution between yolk and albumin fractions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114260. [PMID: 32114330 DOI: 10.1016/j.envpol.2020.114260] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/04/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
A substantial increase in the usage of organophosphate esters (OPEs) as flame retardants and plasticizers in rubbers, textiles, upholstered furniture, lacquers, plastics, building materials and electronic equipment has resulted in their increasing concentrations in the environment over time. However, little is known about the concentrations and fate of OPEs and their metabolites (mOPEs) in biota, including chicken eggs. The aim of this study was to understand the spatial variation in the concentrations in chicken eggs and the partitioning between yolk and albumin. In total, 153 chicken eggs were purchased across Australia and analysed for 9 OPEs and 11 mOPE. Most of the compounds were found to be deposited in egg yolk, where diphenyl phosphate (DPHP, 3.8 ng/g wet weight, median) and tris(2-chloroisopropyl) phosphate (TCIPP, 1.8 ng/g wet weight, median) were predominant mOPE and OPE, respectively. Moreover, no spatial differences in concentrations of OPEs and mOPEs in eggs purchased from different locations were found in this study. Although comparable levels of ∑OPEs were detected in egg yolk and albumin, much higher concentrations of ∑mOPEs were found in yolk than albumin. Meanwhile, a negative correlation (R2 = 0.964, p = 0.018) was found between the molecular mass of analytes and partitioning coefficient of Cyolk/Cyolk+albumin (defined as chemical concentration in egg yolk divided by the sum of chemical concentrations in both yolk and albumin). These results indicate that n-octanol/water partition coefficients (log KOW) may not be a crucial factor in the distribution of OPEs and mOPEs between egg yolk and albumin, which is important in understanding distribution of emerging organic contaminants in biota.
Collapse
Affiliation(s)
- Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4102, Brisbane, Australia; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Chang He
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4102, Brisbane, Australia.
| | - Phong Thai
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4102, Brisbane, Australia
| | - Xianyu Wang
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4102, Brisbane, Australia
| | - Jennifer Bräunig
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4102, Brisbane, Australia
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4102, Brisbane, Australia
| |
Collapse
|
22
|
Aznar-Alemany Ò, Eljarrat E. Food contamination on flame retardants. EMERGING HALOGENATED FLAME RETARDANTS IN THE ENVIRONMENT 2020. [DOI: 10.1016/bs.coac.2019.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Liu YE, Tang B, Liu Y, Luo XJ, Mai BX, Covaci A, Poma G. Occurrence, biomagnification and maternal transfer of legacy and emerging organophosphorus flame retardants and plasticizers in water snake from an e-waste site. ENVIRONMENT INTERNATIONAL 2019; 133:105240. [PMID: 31654917 DOI: 10.1016/j.envint.2019.105240] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/10/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Water snake and small common carp samples collected from a Chinese pond polluted with electronic waste (e-waste) were analyzed for organophosphorus flame retardants (PFRs), PFR metabolites, and plasticizers to investigate their occurrence, biomagnification, and maternal transfer in ovoviviparous species. Mean concentrations of total PFRs, PFR metabolites, and plasticizers were 2.2-16, 1.3-2.8 and 151-1320 ng/g wet weight (ww), respectively in analyzed organisms. Metabolites of PFRs were found in the same order of magnitude as or even higher than their parent compounds, indicating the importance of monitoring metabolites to evaluate the internal exposure of PFRs in organisms. Biomagnification factors (BMFs) were below 1 for all targeted chemicals and negatively correlated with metabolite/parent ratios (MPRs), suggesting a biodilution driven by metabolism. The lipid normalized concentrations were lower in eggs than in muscle for most of targeted chemicals. The maternal transfer potential was significantly and positively correlated with log KOW (p < 0.05) when log KOW was below 6.
Collapse
Affiliation(s)
- Yin-E Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Bin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, People's Republic of China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China.
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Giulia Poma
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
24
|
Huang Q, Wei L, Bignert A, Ye H, Huang F, Qiu Y, Bergman Å. Organophosphate flame retardants in heron eggs from upper Yangtze River basin, southwest China. CHEMOSPHERE 2019; 236:124327. [PMID: 31319314 DOI: 10.1016/j.chemosphere.2019.07.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
The egg samples of four heron species, including black-crowned night heron (Nycticorax nycticorax), little egret (Egretta garzetta), Chinese pond heron (Ardeola bacchus) and cattle egret (Bubulcus ibis), were collected from the upper Yangtze River (Changjiang) Basin, Southwest China in early summer of 2017. Nine out of ten target organophosphate flame retardants (PFRs) were detected in these heron egg samples. The sum of concentrations of the PFRs quantified (∑PFRs) ranged from 63 to 590 pmol g-1 ww (18-185 ng g-1 ww) with a median value of 139 pmol g-1 ww (48 ng g-1 ww) among all samples. The median ∑PFRs in eggs of night herons (160 pmol g-1 ww) was higher than Chinese pond herons (median 121 pmol g-1 ww) and little egrets (median 109 pmol g-1 ww). In heron eggs, ∑PFRs were mainly contributed by tri-n-butyl phosphate (TNBP), tris (isobutyl) phosphate (TIBP), tris (1-chloro-2-propyl) phosphate (TCIPP) and tri-2-methylphenyl phosphate (TMPP). Alkyl-PFRs accounted for approximately 28%-85% (median 57%) of the nine PFRs quantified while the rest is contributed by aryl-PFRs and chlorinated PFRs. Lower levels of PFRs in little egret eggs were found upstream than downstream of the Yangtze. In addition, the daily intakes of PFRs through ingestion of heron eggs were estimated at lower levels.
Collapse
Affiliation(s)
- Qinghui Huang
- Key Laboratory of Yangtze Estuary Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Lai Wei
- Key Laboratory of Yangtze Estuary Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Anders Bignert
- Yibin Research Base of the Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Yibin University, Yibin, 644000, Sichuan Province, China; Swedish Museum of Natural History, SE-10405, Stockholm, Sweden
| | - Hua Ye
- Yibin Research Base of the Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Yibin University, Yibin, 644000, Sichuan Province, China
| | - Fei Huang
- Yibin Research Base of the Key Laboratory of Yangtze River Water Environment of the Ministry of Education, Yibin University, Yibin, 644000, Sichuan Province, China
| | - Yanling Qiu
- Key Laboratory of Yangtze Estuary Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Åke Bergman
- International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-10691, Stockholm, Sweden; MTM Research Centre, School of Science and Technology, Örebro University, SE-70182, Örebro, Sweden
| |
Collapse
|
25
|
Liu YE, Luo XJ, Zapata Corella P, Zeng YH, Mai BX. Organophosphorus flame retardants in a typical freshwater food web: Bioaccumulation factors, tissue distribution, and trophic transfer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113286. [PMID: 31563785 DOI: 10.1016/j.envpol.2019.113286] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Water, sediment, and wild aquatic species were collected from an electronic waste (e-waste) polluted pond in South China. This study aimed to investigate the bioaccumulation, tissue distribution, and trophic transfer of organophosphorus flame retardants (PFRs) in these aquatic organisms. The concentrations of PFRs detected in the analyzed organisms were between 1.7 and 47 ng/g wet weight (ww). Oriental river prawn and snakehead exhibited the highest and lowest levels, respectively. Tri-n-butyl phosphate (TnBP), tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCPP) and triphenyl phosphate (TPhP) were dominant contaminants, accounting for approximately 86% of the total sum. The mean values of bioaccumulation factors (BCFs) and logarithmic biota-sediment accumulation factors (log BSAFs) for individual PFRs varied from 6.6 to 1109 and from -2.0 to 0.41, respectively. Both log BCFs and log BSAFs of PFRs were significantly and positively correlated with their octanol-water partitioning coefficient (log KOW). The concentrations of PFRs in tissues of large mud carp and snakehead were significantly and positively correlated with the lipid content (each p < 0.05) and the liver, kidney, and gill exhibited high PFR levels. When the concentration was expressed on a lipid basis, liver exhibited the lowest level, indicating the probable effects of metabolism. Significantly positive correlation was also found between lipid content and total PFR concentration in muscle of all aquatic organisms, given the strong correlation between lipid content and the concentration of TnBP. Trophic magnification factors (TMF) of TnBP and TPhP were lower than 1 (0.57 and 0.62), indicating that these PFRs undergo trophic dilution in this aquatic food web.
Collapse
Affiliation(s)
- Yin-E Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Pablo Zapata Corella
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
26
|
Li N, Ho W, Sun Wu RS, Ying GG, Wang Z, Jones K, Deng WJ. Organophosphate flame retardants and bisphenol A in children's urine in Hong Kong: has the burden been underestimated? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109502. [PMID: 31394373 DOI: 10.1016/j.ecoenv.2019.109502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
The urine levels of organophosphate flame retardants (PFRs) and bisphenol A (BPA) in kindergarten children (n = 31, 4-6 years old, sampling performed in 2016) in Hong Kong were measured. The detection frequency of the target PFRs, tri(2-chloroethyl)phosphate (TCEP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(chloroisopropyl)phosphate (TCIPP), triphenyl phosphate (TPHP) and 2-ethylhexyl diphenyl phosphate (EHDPP) ranged from 52% to 84%. The 95th percentile urinary concentrations of TPHP, TDCIPP, TCIPP, EHDPP and TCEP were 1.70, 0.24, 0.03, 0.05, 0.68 and 0.03 ng/mL, respectively. The median urine level of BPA was 1.69 ng/mL, with a detection frequency of 77%. Due to the lack of metabolism information, two scenarios were used to calculate the estimated daily intake (EDI) of these compounds. Back-calculated EDIs of PFRs using the urinary excretion rates from in vivo animal data (scenario 2) were up to 2.97 μg/kg/d (TDCIPP), which was only a little less than that observed in a sample of American infants, and the reference dose (RfD), meaning that the potential health risk of TDCIPP cannot be ignored. Dust ingestion was suggested to be the major pathway of exposure to PFRs, but when the levels in dust and air particles in kindergartens in Hong Kong were used to predict EDIs, these values were nearly half as much as those predicted from urinary TDCIPP in this study. This suggested that children's PFRs burden may be underestimated when considering only PFR levels in dust or air. There is thus a need for further studies with large-scale surveys and investigation of exposure routes.
Collapse
Affiliation(s)
- Na Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong Special Administrative Region, People's Republic of China
| | - Wingkei Ho
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong Special Administrative Region, People's Republic of China
| | - Rudolf Shiu Sun Wu
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong Special Administrative Region, People's Republic of China
| | - Guang-Guo Ying
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, China.
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Kevin Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Wen-Jing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong Special Administrative Region, People's Republic of China; The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, China.
| |
Collapse
|
27
|
Abdallah MAE, Nguyen KH, Moehring T, Harrad S. First insight into human extrahepatic metabolism of flame retardants: Biotransformation of EH-TBB and Firemaster-550 components by human skin subcellular fractions. CHEMOSPHERE 2019; 227:1-8. [PMID: 30981098 DOI: 10.1016/j.chemosphere.2019.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and a mixture of EH-TBB, Bis(2-ethylhexyl)tetrabromphthalate (BEH-TEBP) and Triphenyl phosphate (TPhP), prepared in a ratio similar to the Firemaster-550™ (FM550) flame retardant formulation, were exposed to human skin subcellular fractions (S9) to evaluate their dermal in vitro metabolism for the first time. After 60 min of incubation, tetrabromobenzoic acid (TBBA) and diphenyl phosphate (DPhP) were identified as the major metabolites of EH-TBB and TPhP, respectively using UPLC-Q-Exactive Orbitrap™-MS analysis. Dermal biotransformation of EH-TBB and TPhP was catalyzed by skin carboxylesterases rather than CYP450 enzymes, while no stable metabolites could be identified for BEH-TEBP. Metabolite formation rates of EH-TBB as individual compound and as a component of FM550 fitted the Michaelis-Menten model, while no steady state could be reached for TPhP under experimental conditions. Estimated maximum metabolic rate (Vmax) for TBBA formation upon exposure to FM550 was lower than Vmax for EH-TBB (1.08 and 15.2 pmol min-1 mg protein-1, respectively). This indicates dermal metabolism would contribute less to the clearance of EH-TBB body burden than hepatic metabolism (Vmax = 644 pmol min-1 mg protein-1). Implications for human exposure include EH-TBB accumulation in skin tissue and human exposure to dermal metabolic products, which may have different toxicokinetic and toxicodynamic parameters than parent flame retardants.
Collapse
Affiliation(s)
- Mohamed Abou-Elwafa Abdallah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B5 2TT, United Kingdom; Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526, Assiut, Egypt.
| | - Khanh-Hoang Nguyen
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B5 2TT, United Kingdom
| | - Thomas Moehring
- Thermo Fisher Scientific (GmbH) Bremen, Hanna-Kunath-Str. 11, 28199, Bremen, Germany
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B5 2TT, United Kingdom
| |
Collapse
|
28
|
Li J, Zhao L, Letcher RJ, Zhang Y, Jian K, Zhang J, Su G. A review on organophosphate Ester (OPE) flame retardants and plasticizers in foodstuffs: Levels, distribution, human dietary exposure, and future directions. ENVIRONMENT INTERNATIONAL 2019; 127:35-51. [PMID: 30901640 DOI: 10.1016/j.envint.2019.03.009] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 05/24/2023]
Abstract
Given the ongoing studies on the adverse effects of organophosphate ester (OPE) flame retardants and plasticizers on human health, there is an increasing scientific interest in the risk of exposure to OPEs via dietary intake. Using peer-reviewed literature published up to 2018, this review surveyed and compiled the available and reported data on the concentrations and distributions of 30 OPEs based on their occurrence in various food samples from around the world. Regardless of sampling locations or food categories, 22 OPEs were detectable in at least one of analyzed sample, and there were clear variations in OPE levels among samples from different locations or food categories. For instance, cereals and fats/oils were the most contaminated by OPEs in China and Belgium, whereas fats/oils and desserts were the main polluted products in Sweden. In contrast, vegetables, fruits, fluid dairy products, and cereals were reported as the primary categories of food polluted by OPEs in Australia. Animal-based food categories such as eggs, fish and meat were the least contaminated, whereas the highest median OPE concentrations were found in meat and fish from the United State. The levels and distribution patterns of OPEs in foodstuffs demonstrated a tremendous difference even when collected from the same country and the same food item. Rice from China had the highest tris(2‑chloroethyl) phosphate (TCEP, mean: 29.8 ng/g dw) levels, whereas 2‑ethylhexyl‑diphenyl phosphate (EHDPP, mean: 4.17 ng/g ww), triphenyl phosphate (TPHP, mean: 26.14 ng/g ww), tris(2-chloroisopropyl) phosphate (TCIPP, mean: 0.87 ng/g ww) and tributyl phosphate (TNBP, median: 0.55 ng/g ww) concentrations were the highest in the same food category from Sweden, Belgium, Australia, and the United States, respectively. These discrepancies may be due to a variety of reasons such as differences in OPE physico-chemical properties, extent of usage, uptake, metabolic pathways, industrial food manufacturing processes, OPE level differences as a function of habitat, and accumulation and degradability of OPEs in different species. It is worth noting that, due to its worldwide usage in food packaging materials, EHDPP was more prominently found in processed food compared to non-processed food. Based on reported OPE levels in various foods, this review conducted a preliminary assessment of human exposure to OPEs through dietary intake, which suggested that the OPE estimated daily intake (EDI) for humans was around 880 ng/kg bw/day (95th percentile). This value was well below the corresponding OPE health reference dose given by the U.S. EPA (≥15,000 ng/kg bw/day). Even so, dietary exposure to OPEs via food intake may be not negligible based on some important factors such as dilution effects, cooking processes, and the contribution of as yet unknown means of OPE exposure. Overall, this review highlights several gaps in our understanding of OPEs in foodstuffs: 1) the investigation of contamination levels of OPEs in foodstuffs should be extended to other regions, especially North America and European countries, where OPEs are widely used and frequently detected in environmental samples, and 2) newly identified OPE derivatives/by-products, e.g., OP diesters and hydroxylated metabolites, which have been reported as end-products of OPE enzymatic metabolism or degradation through aqueous hydrolysis, and which may co-exist with parent OPEs, could also be screened with precursor OPEs in foodstuffs in future studies.
Collapse
Affiliation(s)
- Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Luming Zhao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Yayun Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Kang Jian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jinhua Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
29
|
Poma G, Liu Y, Cuykx M, Tang B, Luo XJ, Covaci A. Occurrence of organophosphorus flame retardants and plasticizers in wild insects from a former e-waste recycling site in the Guangdong province, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:709-712. [PMID: 30212701 DOI: 10.1016/j.scitotenv.2018.09.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Due to the fast growth of the electronic industry, a large quantity of electronic waste (e-waste) is generated worldwide and then often inappropriately dismantled and disposed of. In a pilot study, the occurrence of organophosphorus flame retardants and plasticizers (PFRs) was investigated for the first time in several wild insect species collected from a former e-waste recycling site in the Guangdong province, South China. TEHP was the most abundant PFR (average concentration of 5.8 ng/g ww), followed by TPHP (2.5 ng/g ww), TCIPP (2.2 ng/g ww), TCEP (0.8 ng/g ww), EHDPHP and TCP (both 0.1 ng/g ww). Dragonfly nymphs were the most contaminated insects, with total PFR concentrations of 68 ng/g ww, followed by moth adults (26 ng/g ww) and terrestrial stinkbug (17 ng/g ww). The different contamination patterns observed in the analyzed insects could be explained by their different habitats and feeding habits. This study shows that e-waste recycling areas can be an important local source of contamination with PFRs, mainly caused by inadequate recycling activities.
Collapse
Affiliation(s)
- Giulia Poma
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Yu Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, PR China
| | - Matthias Cuykx
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Bin Tang
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
30
|
Wei K, Yin H, Peng H, Lu G, Dang Z. Bioremediation of triphenyl phosphate in river water microcosms: Proteome alteration of Brevibacillus brevis and cytotoxicity assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:563-570. [PMID: 30176467 DOI: 10.1016/j.scitotenv.2018.08.342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Triphenyl phosphate (TPHP), an organophosphate flame retardant, was detected in river water samples collected from an electronic waste recycling area in Guiyu, Southern China. The concentrations of TPHP ranged from not detected to 347.2 ng/L, with an average of 138.8 ng/L. The bioaugmentation potential of Brevibacillus brevis on TPHP biodegradation by aerobic microcosms contained in river water from Guiyu was assessed. The results showed that TPHP degradation efficiency was significantly improved to 97.9% by bioaugmentation with B. brevis after 96 h incubation. A total of 182 significantly changed proteins in B. brevis were identified and quantified by isobaric tags for relative and absolute quantification (iTRAQ) in response to TPHP stress. The differentially expressed proteins were mainly associated with energy metabolism, lipid metabolism, cell wall biosynthesis, amino acid transport, and metabolism. The identification that proteins of B. brevis respond to TPHP existence provides novel insights into biodegradation mechanisms of bacteria under environmental stress. Additionally, cytotoxicity assays indicated that the degrading intermediates of TPHP, namely diphenyl phosphate and phenyl phosphate, were less cytotoxic to human HepG2 cells compared with TPHP. Collectively, these findings suggest that aerobic bioaugmentation with degrading microorganisms is a potential strategy for in situ treatment of TPHP-contaminated sites.
Collapse
Affiliation(s)
- Kun Wei
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem, Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology, Research Center for Environxmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem, Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology, Research Center for Environxmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem, Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology, Research Center for Environxmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem, Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology, Research Center for Environxmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| |
Collapse
|
31
|
He MJ, Lu JF, Wei SQ. Organophosphate esters in biota, water, and air from an agricultural area of Chongqing, western China: Concentrations, composition profiles, partition and human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:388-397. [PMID: 30352353 DOI: 10.1016/j.envpol.2018.10.085] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
We measured the concentrations of organophosphate esters (OPEs) in some biotic samples which can serve as human foodstuffs and ambient environments including air and river water from an agricultural area of Chongqing, western China. Fish samples exhibited highest OPEs levels (960 ng/g lipid weight) among the biota, followed by chicken (676 ng/g lw), cattle (545 ng/g lw) and pigs (535 ng/g lw). Tributyl phosphate (TNBP), tris (2-methylpropyl) (TIBP) and chlorinated OPEs were the major analogs in biotic samples, which appeared similar with the patterns from river water and outdoor air, but apparently different from indoor air. To further investigate the influence of ambient environment on the distribution of OPEs in biota, we analyzed the correlation between OPEs concentrations in ambient environment and biological samples, and the results revealed that most of the samples (except for pig samples) heavily correlated with outdoor air, whereas only fish and cattle samples were strongly correlated with river water. The partitioning behaviors of OPEs among biota, air and river water were also studied through calculating the biota-water accumulation factors (BWAFs), biota-air accumulation factors (BAAFs) and air-water partitioning factor (AWPFs). Significantly linear correlations (P < 0.05) were observed between log (BWAFs) and log (KOW) values, and between log (AWPFs) and log H (Henry's law constants), nevertheless log (BAAFs) was increasing along with the log (KOA) values. The daily intake (DI) values were estimated via foodstuffs ingestion and environmental exposure. The estimated DI values of OPEs from food and ambient environments were 1.78 ng/kg-bw/day, 1.23 ng/kg-bw/day and 1.42 ng/kg-bw/day in toddlers, children and adults, respectively, which lay at the low end of the reported data and well below the reference dose (RfD).
Collapse
Affiliation(s)
- Ming-Jing He
- College of Resources and Environment, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China.
| | - Jun-Feng Lu
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Shi-Qiang Wei
- College of Resources and Environment, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China
| |
Collapse
|
32
|
Awasthi AK, Wang M, Awasthi MK, Wang Z, Li J. Environmental pollution and human body burden from improper recycling of e-waste in China: A short-review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1310-1316. [PMID: 30268981 DOI: 10.1016/j.envpol.2018.08.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 05/07/2023]
Abstract
BRIEF BACKGROUND E-waste generation has become a serious environmental challenge worldwide. The global quantity of e-waste was estimated 44.7 million metric tons (Mt) in 2016. The improper recycling of e-waste is still a challenging issue in developing countries. OBJECTIVE The objectives of this a review article to present comprehensive information of recent studied on environment pollution and effect on human health in China. METHOD The search engines consulted, period of publications reviewed 2015-2018. For search study, we used different key words: 'improper recycling', 'primitive recycling,' 'backyard recycling,' 'e-waste,' 'WEEE', and the studies related to improper recycling of e-waste. RESULTS According to reports, the e-waste recycled by unorganized sectors in China. These unorganized sector workers daily go for work, such as e-waste collection from consumer house and manual dismantling of e-waste by using simple method, at unauthorized workshop. These backyard workshop are reported in small clusters in or around city e.g., Qingyuan village; Taizhou, Longtang Town, Guiyu, nearby Nanyang River and Beigang River in China. DISCUSSION The earlier reported studies directed the heavy metals effect (causing effects both acute and chronic effects; respiratory irritation, reproductive problem, cardiovascular and urinary infection/disease) on human health. According the reports, the improper recycling of e-waste which need to be address for the environment protection and prevention of public health risk. However, if e-waste exposure is not avoided very well, the associated contamination will be continuing, and simultaneously needful to increase the awareness for proper e-waste management in China. CONCLUSIONS In order to solve the e-waste problem in China, more detail research is needed. Furthermore, for environment protection and health safety, the proper e-waste dismantling techniques, environmentally sound management, and the regular monitoring are very important.
Collapse
Affiliation(s)
- Abhishek Kumar Awasthi
- School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory for Solid Waste Management and Environment Safety (Ministry of Education of China), Tsinghua University, Beijing 100084, China
| | - Mengmeng Wang
- School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory for Solid Waste Management and Environment Safety (Ministry of Education of China), Tsinghua University, Beijing 100084, China
| | | | - Zhishi Wang
- Macau Environmental Research Institute, Macau University of Science and Technology, Macau, China
| | - Jinhui Li
- School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory for Solid Waste Management and Environment Safety (Ministry of Education of China), Tsinghua University, Beijing 100084, China.
| |
Collapse
|
33
|
Zhang B, Lu S, Huang M, Zhou M, Zhou Z, Zheng H, Jiang Y, Bai X, Zhang T. Urinary metabolites of organophosphate flame retardants in 0-5-year-old children: Potential exposure risk for inpatients and home-stay infants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:318-325. [PMID: 30195161 DOI: 10.1016/j.envpol.2018.08.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 05/24/2023]
Abstract
Organophosphate flame retardants (OPFRs) have been commonly observed in indoor dust, food, and drinking water in China, but little is known about their exposure levels or factors leading to exposure in Chinese children. In this study, we measured eight metabolites of OPFRs (mOPFRs) in 227 urine samples collected from 0- to 5-year-old children in China. The high detection rates of mOPFRs (60%-100%) in the collected urine samples demonstrated the widespread exposure of this population to OPFRs. The median concentrations indicated that bis(2-chloroethyl)phosphate (BCEP, 0.85 ng/mL) and diphenyl phosphate (DPHP, 0.27 ng/mL) were the dominant chlorinated mOPFRs and nonchlorinated mOPFRs, respectively. Interestingly, the median urinary levels of bis(1-chloro-2-propyl)phosphate (BCIPP, 6.48 ng/mL) and bis(2-butoxyethyl)phosphate (BBOEP, 0.31 ng/mL) in inpatient infants were one order of magnitude higher (p < 0.01) than those observed in outpatient infants. For home-stay participants, furthermore, infants (0-1 year) had the highest median levels of BCIPP (0.72 ng/mL) and dibutyl phosphate (DBP, 0.14 ng/mL) among the three age groups (i.e., 0-1, >1-3, and >3-5 years), and significantly (p < 0.05) negative age-related relationships were found for both urinary mOPFRs. Two set of data on estimated daily intakes (EDIs) were calculated based on the fraction of OPFR excreted as the corresponding mOPFR (FUE) in human liver microsomes (EDIHLM) and S9 fraction (EDIS9) system, respectively. In general, children have relatively high EDIs of tris(2-chloroethyl)phosphate (TCEP: EDIHLM = 485 ng/kg bw/day, EDIS9 = 261 ng/kg bw/day). Furthermore, 17% or 21% of inpatient infants had EDIs that exceeded the reference dose, whereas this value was reduced to 13% in outpatient infants; and this value decreased with age among all home-stay children (0-5 years). Our results indicated that inpatient and home-stay infants had a higher potential risk of OPFR exposure. To our knowledge, this is the first study to identify the elevated urinary levels of mOPFRs in inpatients.
Collapse
Affiliation(s)
- Bo Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, 510275, PR China
| | - Shaoyou Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, PR China
| | - Mingzhi Huang
- Environmental Research Institute, Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou, 510631, PR China
| | - Meizhou Zhou
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Ziqing Zhou
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Hangcong Zheng
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Yongchen Jiang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Xueyuan Bai
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, 510275, PR China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, 510275, PR China.
| |
Collapse
|
34
|
Saillenfait AM, Ndaw S, Robert A, Sabaté JP. Recent biomonitoring reports on phosphate ester flame retardants: a short review. Arch Toxicol 2018; 92:2749-2778. [PMID: 30097699 DOI: 10.1007/s00204-018-2275-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/30/2018] [Indexed: 11/28/2022]
Abstract
Organophosphate triesters (PEFRs) are used increasingly as flame retardants and plasticizers in a variety of applications, such as building materials, textiles, and electric and electronic equipment. They have been proposed as alternatives to brominated flame retardants. This updated review shows that biomonitoring has gained incrementally greater importance in evaluating human exposure to PEFRs, and it holds the advantage of taking into account the multiple potential sources and various intake pathways of PEFRs. Simultaneous and extensive internal exposure to a broad range of PEFRs have been reported worldwide. Their metabolites, mainly dialkyl or diaryl diesters, have been used as biomarkers of exposure and have been ubiquitously detected in the urine of adults and children in the general population. Concentrations and profiles of PEFR urinary metabolites are seen to be variable and are highly dependent on individual and environmental factors, including age, country regulation of flame retardants, and types and quantities of emissions in microenvironments, as well as analytical procedures. Additional large biomonitoring studies, using a broad range of urinary diesters and hydroxylated metabolites, would be useful to improve the validity of the biomarkers and to refine assessments of human exposure to PEFRs.
Collapse
Affiliation(s)
- Anne-Marie Saillenfait
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS, 60027, 54519, Vandoeuvre Cedex, France.
| | - Sophie Ndaw
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS, 60027, 54519, Vandoeuvre Cedex, France
| | - Alain Robert
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS, 60027, 54519, Vandoeuvre Cedex, France
| | - Jean-Philippe Sabaté
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS, 60027, 54519, Vandoeuvre Cedex, France
| |
Collapse
|
35
|
Ruan Y, Zhang X, Qiu JW, Leung KMY, Lam JCW, Lam PKS. Stereoisomer-Specific Trophodynamics of the Chiral Brominated Flame Retardants HBCD and TBECH in a Marine Food Web, with Implications for Human Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8183-8193. [PMID: 29939731 DOI: 10.1021/acs.est.8b02206] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stereoisomers of 1,2,5,6,9,10-hexabromocyclododecane (HBCD) and 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (TBECH) were determined in sediments and 30 marine species in a marine food web to investigate their trophic transfer. Lipid content was found to affect the bioaccumulation of ΣHBCD and ΣTBECH in these species. Elevated biomagnification of each diastereomer from prey species to marine mammals was observed. For HBCD, biota samples showed a shift from γ- to α-HBCD when compared with sediments and technical mixtures; trophic magnification potential of (-)-α- and (+)-α-HBCD were observed in the food web, with trophic magnification factors (TMFs) of 11.8 and 8.7, respectively. For TBECH, the relative abundance of γ- and δ-TBECH exhibited an increasing trend from abiotic matrices to biota samples; trophic magnification was observed for each diastereomer, with TMFs ranging from 1.9 to 3.5. The enantioselective bioaccumulation of the first eluting enantiomer of δ-TBECH in organisms at higher TLs was consistently observed across samples. This is the first report on the trophic transfer of TBECH in the food web. The estimated daily intake of HBCD for Hong Kong residents was approximately 16-times higher than that for the general population in China, and the health risk to local children was high, based on the relevant available reference dose.
Collapse
Affiliation(s)
| | - Xiaohua Zhang
- Department of Science and Environmental Studies , The Education University of Hong of Kong , Hong Kong SAR , China
| | - Jian-Wen Qiu
- Department of Biology , Hong Kong Baptist University , Hong Kong SAR , China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - James C W Lam
- Department of Science and Environmental Studies , The Education University of Hong of Kong , Hong Kong SAR , China
| | | |
Collapse
|
36
|
Zhang Y, Zheng X, Wei L, Sun R, Guo H, Liu X, Liu S, Li Y, Mai B. The distribution and accumulation of phosphate flame retardants (PFRs) in water environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:164-170. [PMID: 29477114 DOI: 10.1016/j.scitotenv.2018.02.215] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/17/2018] [Accepted: 02/18/2018] [Indexed: 06/08/2023]
Abstract
Phosphate flame retardants (PFRs) were measured in surface water (n=11), suspended particle matter (SPM, n=11), sediment (n=11), and fish samples (n=26) from the Pearl River Delta located in South China. Triethyl phosphate (TEP), tri(2-chloroethyl) phosphate (TCEP), tris(chloroisopropyl) phosphate (TCIPP), tri-n-butyl phosphate (TNBP), triphenyl phosphate (TPHP), and tricresyl phosphate (TMPP) were detected in more than half of surface water, SPM, and sediment samples. The median ΣPFR levels were 837ng/L, 54.6ng/g dry weight (dw), and 37.1ng/g dw in surface water, SPM, and sediment samples, respectively. No significant correlations were found between the concentrations of most PFRs and organic carbon contents in SPM and sediment (p>0.05). In surface water samples, tris(2-butoxyethyl) phosphate (TBOEP, 27% of ΣPFRs) and TEP (23% of ΣPFRs) were the predominant chemicals, while TNBP (38% of ΣPFRs) and TCEP (32% of ΣPFRs) dominated in ΣPFRs in SPM samples, and TCEP (48% of ΣPFRs) and TCIPP (25% of ΣPFRs) dominated in ΣPFRs in sediment samples. The proportions of phenyl-PFRs and chlorinated-PFRs in ΣPFRs increased from surface water to SPM and sediment. The distribution ratios of PFRs between water and organic carbon in SPM (or observed KOC) were generally 2-3 orders of magnitude higher than the predicted KOC. TNBP (nd-2.42ng/g wet weight (ww)), TCEP (nd-4.96ng/g ww), and TCIPP (nd-2.42ng/g ww) were detected in 27%, 35%, and 23% of all fish samples, respectively. The log bioaccumulation factors (BAFs) ranged 2.56-2.78, 2.15-3.11, and 2.61-3.10 for TNBP, TCEP, and TCIPP, respectively. The biota-sediment accumulation factors (BSAFs) of TNBP, TCEP, and TCIPP were generally lower than 1 except for the BSAF of TCIPP in common carp. The results indicate the species-specific bioaccumulation of PFRs in fish species.
Collapse
Affiliation(s)
- Ying Zhang
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Scientific Institute of Pearl River Water Resources Protection, Monitoring Center of Pearl River Valley Aquatic Environment, Guangzhou 510611, China
| | - Xiaobo Zheng
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Lifei Wei
- Scientific Institute of Pearl River Water Resources Protection, Monitoring Center of Pearl River Valley Aquatic Environment, Guangzhou 510611, China
| | - Runxia Sun
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Huiying Guo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xinyu Liu
- Scientific Institute of Pearl River Water Resources Protection, Monitoring Center of Pearl River Valley Aquatic Environment, Guangzhou 510611, China
| | - Shengyu Liu
- Scientific Institute of Pearl River Water Resources Protection, Monitoring Center of Pearl River Valley Aquatic Environment, Guangzhou 510611, China
| | - Yi Li
- Scientific Institute of Pearl River Water Resources Protection, Monitoring Center of Pearl River Valley Aquatic Environment, Guangzhou 510611, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
37
|
Poma G, Sales C, Bruyland B, Christia C, Goscinny S, Van Loco J, Covaci A. Occurrence of Organophosphorus Flame Retardants and Plasticizers (PFRs) in Belgian Foodstuffs and Estimation of the Dietary Exposure of the Adult Population. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2331-2338. [PMID: 29376341 DOI: 10.1021/acs.est.7b06395] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The occurrence of 14 organophosphorus flame retardants and plasticizers (PFRs) was investigated in 165 composite food samples purchased from the Belgian market and divided into 14 food categories, including fish, crustaceans, mussels, meat, milk, cheese, dessert, food for infants, fats and oils, grains, eggs, potatoes and derived products, other food (stocks), and vegetables. Seven PFRs [namely, tri-n-butyl phosphate (TnBP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), triphenyl phosphate (TPHP), 2-ethylhexyldiphenyl phosphate (EHDPHP), and tris(2-ethylhexyl) phosphate (TEHP)] were detected at concentrations above quantification limits. Fats and oils were the most contaminated category, with a total PFR concentration of 84.4 ng/g of wet weight (ww), followed by grains (36.9 ng/g of ww) and cheese (20.1 ng/g of ww). Our results support the hypothesis that PFR contamination may occur during industrial processing and manipulation of food products (e.g., packaging, canning, drying, etc.). Considering the daily average intake of food for the modal adult Belgian (15-64 years of age), the dietary exposure to sum PFRs was estimated to be ≤7500 ± 1550 ng/day [103 ± 21 ng/kg of body weight (bw)/day]. For individual PFRs, TPHP contributed on average 3400 ng/day (46.6 ng/kg of bw/day), TCIPP 1350 ng/day (18.5 ng/kg of bw/day), and EHDPHP 1090 ng/day (15 ng/kg of bw/day), values that were lower than their corresponding health-based reference doses. The mean dietary exposure mainly originated from grains (39%), followed by fats and oils (21%) and dairy products (20%). No significant differences between the intakes of adult men and women were observed.
Collapse
Affiliation(s)
- Giulia Poma
- Toxicological Center, University of Antwerp , Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Carlos Sales
- Research Institute for Pesticides and Water, University Jaume I , E-12071 Castellón, Spain
| | - Bram Bruyland
- Toxicological Center, University of Antwerp , Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Christina Christia
- Toxicological Center, University of Antwerp , Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Séverine Goscinny
- Food, Medicines and Consumer Safety, The Scientific Institute of Public Health , Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Joris Van Loco
- Food, Medicines and Consumer Safety, The Scientific Institute of Public Health , Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Adrian Covaci
- Toxicological Center, University of Antwerp , Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
38
|
Toxicogenomics of the flame retardant tris (2-butoxyethyl) phosphate in HepG2 cells using RNA-seq. Toxicol In Vitro 2018; 46:178-188. [DOI: 10.1016/j.tiv.2017.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/10/2017] [Accepted: 10/08/2017] [Indexed: 11/20/2022]
|
39
|
Ding J, Deng T, Xu M, Wang S, Yang F. Residuals of organophosphate esters in foodstuffs and implication for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:986-991. [PMID: 29037495 DOI: 10.1016/j.envpol.2017.09.092] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 05/25/2023]
Abstract
Foodstuffs may be contaminated by organophosphate esters (OPEs) and become an important source of human exposure since OPEs are ubiquitous in the environment. In the present study, 10 OPEs were analyzed in various food matrices collected from a city in Eastern China including chicken, pork, fishes, vegetables, tofu, eggs, milk and cereals. The concentrations of Σ10OPEs ranged from 1.1 to 9.6 ng g-1 fresh weight (fw) in the foodstuffs. Cereals had the highest residual level of total OPEs with a mean value of 5.7 ng g-1 fw. Tris(2-ethylhexyl) phosphate was detected in all foodstuff samples and showed the highest median residual concentration of 1.3 ng g-1 fw among the OPE analogs. The daily dietary intake of OPEs was calculated as 3.6 and 2.4 μg d-1 for adults and children. Cereals were identified as the major contributor to the total OPEs among different types of foodstuffs. Preliminary exposure assessment revealed that the current non-cancer health risks of OPEs via dietary intake were in the range of 10-5-10-3, indicating low risk levels. Moreover, the hazard index of OPEs indicated that the risk for children (3 × 10-3) was higher than adults (2 × 10-3).
Collapse
Affiliation(s)
- Jinjian Ding
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China; Laboratory of Environmental Monitoring, Research Institute of Zhejiang University-Taizhou, 318000 Taizhou, China
| | - Tongqing Deng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China
| | - Mengmeng Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China
| | - Shen Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058 Hangzhou, China.
| |
Collapse
|
40
|
Liu YE, Huang LQ, Luo XJ, Tan XX, Huang CC, Corella PZ, Mai BX. Determination of organophosphorus flame retardants in fish by freezing-lipid precipitation, solid-phase extraction and gas chromatography-mass spectrometry. J Chromatogr A 2018; 1532:68-73. [DOI: 10.1016/j.chroma.2017.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022]
|
41
|
Bakhiyi B, Gravel S, Ceballos D, Flynn MA, Zayed J. Has the question of e-waste opened a Pandora's box? An overview of unpredictable issues and challenges. ENVIRONMENT INTERNATIONAL 2018; 110:173-192. [PMID: 29122313 DOI: 10.1016/j.envint.2017.10.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 05/23/2023]
Abstract
Despite regulatory efforts and position papers, electrical and electronic waste (e-waste) remains ill-managed as evidenced by the extremely low rates of proper e-waste recycling (e-recycling) worldwide, ongoing illegal shipments to developing countries and constantly reported human health issues and environmental pollution. The objectives of this review are, first, to expose the complexity of e-waste problems, and then to suggest possible upstream and downstream solutions. Exploring e-waste issues is akin to opening a Pandora's box. Thus, a review of prevailing e-waste management practices reveals complex and often intertwined gaps, issues and challenges. These include the absence of any consistent definition of e-waste to date, a prevalent toxic potential still involving already banned or restricted hazardous components such as heavy metals and persistent and bioaccumulative organic compounds, a relentless growth in e-waste volume fueled by planned obsolescence and unsustainable consumption, problematic e-recycling processes, a fragile formal e-recycling sector, sustained and more harmful informal e-recycling practices, and more convoluted and unpredictable patterns of illegal e-waste trade. A close examination of the e-waste legacy contamination reveals critical human health concerns, including significant occupational exposure during both formal and informal e-recycling, and persistent environmental contamination, particularly in some developing countries. However, newly detected e-waste contaminants as well as unexpected sources and environmental fates of contaminants are among the emerging issues that raise concerns. Moreover, scientific knowledge gaps remain regarding the complexity and magnitude of the e-waste legacy contamination, specifically, a comprehensive characterization of e-waste contaminants, information on the scale of legacy contamination in developing countries and on the potential environmental damage in developed countries, and a stronger body of evidence of adverse health effects specifically ascribed to e-waste contaminants. However, the knowledge accumulated to date is sufficient to raise awareness and concern among all stakeholders. Potential solutions to curb e-waste issues should be addressed comprehensively, by focusing on two fronts: upstream and downstream. Potential upstream solutions should focus on more rational and eco-oriented consumer habits in order to decrease e-waste quantities while fostering ethical and sustained commitments from manufacturers, which include a limited usage of hazardous compounds and an optimal increase in e-waste recyclability. At the downstream level, solutions should include suitable and pragmatic actions to progressively reduce the illegal e-waste trade particularly through international cooperation and coordination, better enforcement of domestic laws, and monitoring in both exporting and receiving countries, along with the supervised integration of the informal sector into the recycling system of developing countries and global expansion of formal e-waste collection and recycling activities. Downstream solutions should also introduce stronger reverse logistics, together with upgraded, more affordable, and eco-friendly and worker-friendly e-recycling technologies to ensure that benefits are derived fully and safely from the great economic potential of e-waste.
Collapse
Affiliation(s)
- Bouchra Bakhiyi
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Quebec, Canada
| | - Sabrina Gravel
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Quebec, Canada; Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST), Montreal, Quebec, Canada
| | - Diana Ceballos
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michael A Flynn
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Joseph Zayed
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Quebec, Canada; Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST), Montreal, Quebec, Canada.
| |
Collapse
|
42
|
A toxicogenomics approach to screen chlorinated flame retardants tris(2-chloroethyl) phosphate and tris(2-chloroisopropyl) phosphate for potential health effects. J Appl Toxicol 2017; 38:459-470. [DOI: 10.1002/jat.3553] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/26/2022]
|
43
|
Isomers of tris(chloropropyl) phosphate (TCPP) in technical mixtures and environmental samples. Anal Bioanal Chem 2017; 409:6989-6997. [PMID: 29147747 DOI: 10.1007/s00216-017-0572-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/20/2017] [Accepted: 08/05/2017] [Indexed: 01/12/2023]
Abstract
Tris(chloropropyl) phosphate (TCPP) is an environmentally abundant organophosphate ester (OPE). TCPP is comprised of four isomers with seven possible structures, eight CAS numbers, and even more common names. A review of 54 studies reporting one or more TCPP isomers confirmed that the most abundant and most often reported TCPP isomer was tris(2-chloro-1-methylethyl) phosphate, also known as tris(chloroisopropyl) phosphate (TCiPP, referred to hereafter as TCPP1). Full-scan gas chromatography-mass spectrometry (GC-MS) was used to identify the other three isomers numbered here according to their elution order on a non-polar GC column (DB-5): bis(2-chloro-1-methylethyl) (2-chloropropyl) phosphate (TCPP2), bis(2-chloropropyl)(2-chloro-1-methylethyl) phosphate (TCPP3), and tris(2-chloropropyl) phosphate (TCPP4). GC with a flame ionization detector (FID) was used to identify the relative abundances of the isomers in commercially available standards with unknown isomer composition. In technical TCPP, TCPP1-4 isomers averaged 71 ± 1, 26 ± 0.4, 3 ± 0.5, and 0.1 ± 0.02%, respectively. When these percent masses are incorporated into GC-MS quantification, response factors (RFs) for TCPP1 and TCPP2 are significantly different from TCPP3 and TCPP4, indicating that the multiple RF approach is more accurate than the commonly employed single RF method. Samples from urban streams and wastewater treatment plant (WWTP) effluent from Toronto, Canada, had isomeric ratios of TCPP1/2 that were not significantly different from a technical mixture whereas rain had a significantly different ratio indicating enrichment in the more volatile TCPP1 isomer. Reporting TCPP isomers can provide insight into sources, transport, and fate of TCPP in the environment. Graphical Abstract ᅟ.
Collapse
|
44
|
Bui TT, Xu F, Van den Eede N, Cousins AP, Covaci A, Cousins IT. Probing the relationship between external and internal human exposure of organophosphate flame retardants using pharmacokinetic modelling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:550-560. [PMID: 28709054 DOI: 10.1016/j.envpol.2017.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/27/2017] [Accepted: 07/02/2017] [Indexed: 06/07/2023]
Abstract
Human external exposure (i.e. intake) of organophosphate flame retardants (PFRs) has recently been quantified, but no link has yet been established between external and internal exposure. In this study, we used a pharmacokinetic (PK) model to probe the relationship between external and internal exposure data for three PFRs (EHDPHP, TNBP and TPHP) available for a Norwegian cohort of 61 individuals from 61 different households. Using current literature on metabolism of PFRs, we predicted the metabolite serum/urine concentrations and compared it to measured data from the study population. Unavailable parameters were estimated using a model fitting approach (least squares method) after assigning reasonable constraints on the ranges of fitted parameters. Results showed an acceptable comparison between PK model estimates and measurements (<10-fold deviation) for EHDPHP. However, a deviation of 10-1000 was observed between PK model estimates and measurements for TNBP and TPHP. Sensitivity and uncertainty analysis on the PK model revealed that EHDPHP results showed higher uncertainty than TNBP or TPHP. However, there are indications that (1) current biomarkers of exposure (i.e. assumed metabolites) for TNBP and TPHP chemicals might not be specific and ultimately affecting the outcome of the modelling and (2) some exposure pathways might be missing. Further research, such as in vivo laboratory metabolism experiments of PFRs including identification of better biomarkers will reduce uncertainties in human exposure assessment.
Collapse
Affiliation(s)
- Thuy T Bui
- IVL Swedish Environmental Research Institute, SE-100 31 Stockholm, Sweden; Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Fuchao Xu
- Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitplein 1, B-2610 Wilrijk, Belgium
| | - Nele Van den Eede
- Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitplein 1, B-2610 Wilrijk, Belgium
| | - Anna Palm Cousins
- IVL Swedish Environmental Research Institute, SE-100 31 Stockholm, Sweden
| | - Adrian Covaci
- Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitplein 1, B-2610 Wilrijk, Belgium
| | - Ian T Cousins
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
45
|
Zheng X, Qiao L, Covaci A, Sun R, Guo H, Zheng J, Luo X, Xie Q, Mai B. Brominated and phosphate flame retardants (FRs) in indoor dust from different microenvironments: Implications for human exposure via dust ingestion and dermal contact. CHEMOSPHERE 2017; 184:185-191. [PMID: 28595143 DOI: 10.1016/j.chemosphere.2017.05.167] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Indoor dust has been widely used to monitor flame retardants (FRs) in indoor environment, but most studies only focused on floor dust. In the present study, FRs were examined in indoor dust from different locations. Dust from air conditioner (AC) filters, beddings, floor, and windows in bedrooms, and dust from AC filters, printer table surface, computer table surface, floor, and windows in offices were collected, respectively. Polybrominated diphenyl ether congener 209 (BDE 209) and decabromodiphenyl ethane (DBDPE) were the most abundant brominated flame retardants (BFRs), and tris(chloroisopropyl) phosphate (TCIPP), tris(1,3-dichloroisopropyl) phosphate (TDCIPP), and triphenyl phosphate (TPHP) were the most abundant phosphate flame retardants (PFRs). In bedrooms, the AC filter dust had the highest median levels of BDE 209 (536 ng/g) and DBDPE (2720 ng/g), while bed dust had the highest median levels of ΣPFRs (2750 ng/g) among dust samples. In offices, printer table dust had higher median levels of BDE 209 (1330 ng/g), DBDPE (8470 ng/g), and ΣPFRs (11,000 ng/g) than those in other dust samples. The high dust ingestion values of BDE 209, DBDPE, and individual PFR were 0.28, 1.20, and <0.01-0.32 ng/kg bw/day and 7.37, 31.2, and <0.01-4.54 ng/kg bw/day for BDE 209, DBDPE, and individual PFR for adults and toddlers, respectively. The high dermal exposure values of individual PFR during sleeping were <0.01-0.23 and <0.01-0.36 ng/kg bw/day for adults and toddlers, respectively. More human exposure pathways other than dust ingestion should be considered, such as the dermal contact with beddings and furniture.
Collapse
Affiliation(s)
- Xiaobo Zheng
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Lin Qiao
- Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Runxia Sun
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Huiying Guo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jing Zheng
- Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qilai Xie
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
46
|
Xu F, Tay JH, Covaci A, Padilla-Sánchez JA, Papadopoulou E, Haug LS, Neels H, Sellström U, de Wit CA. Assessment of dietary exposure to organohalogen contaminants, legacy and emerging flame retardants in a Norwegian cohort. ENVIRONMENT INTERNATIONAL 2017; 102:236-243. [PMID: 28335995 DOI: 10.1016/j.envint.2017.03.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/27/2017] [Accepted: 03/14/2017] [Indexed: 06/06/2023]
Abstract
Polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), emerging halogenated flame retardants (EHFRs) and organophosphate flame retardants (PFRs) were detected in 24h duplicate diet samples from a Norwegian cohort (n=61), with concentrations ranging from <method limit of quantification (MLQ)-0.64ng/g ww, <MLQ-0.70ng/g ww, <MLQ-0.93ng/g ww, <MLQ-0.14ng/g ww, and <MLQ-150ng/g ww, respectively. All studied contaminants were detected in the duplicate diet samples with detection frequencies (DF) ranging from 1.6 to 98%. The major contaminants were CB153 (median 0.042ng/g ww), α-HCH (median 0.22ng/g ww), BDE209 (median 0.45ng/g ww), ethyl hexyl diphenyl phosphate (EHDPHP) (median 3.0ng/g ww) and bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEH-TEBP) (<MLQ-0.14ng/g ww). Human dietary exposure assessment was conducted for each participant based on individual body weight and contaminant concentrations in their collected duplicate diet samples. The estimated median (95th percentile) dietary exposures for ΣPFR, ΣPCB, ΣOCP, ΣPBDE, and ΣEHFR were 87 (340), 5.8 (27), 11 (31), 1.3 (14), and <0.01 (3.4) ng/kgbw/day, respectively. The median and 95th percentile dietary exposures of most of the target analytes did not exceed the reference dose (RfD), except for PCBs where 16% of the participants exceeded the RfD. However, a relatively short period of such high intake is not expected to result in any adverse health effects. Participants of this cohort were exposed to higher levels of EHDPHP than any other FRs. Fish was the major dietary route for PCB, OCP and PBDE exposure, while meat was the main dietary exposure route for PFRs.
Collapse
Affiliation(s)
- Fuchao Xu
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Joo-Hui Tay
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Juan Antonio Padilla-Sánchez
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health (NIPH), Lovisenberggata 8, Oslo, Norway
| | - Eleni Papadopoulou
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health (NIPH), Lovisenberggata 8, Oslo, Norway
| | - Line Småstuen Haug
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health (NIPH), Lovisenberggata 8, Oslo, Norway
| | - Hugo Neels
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ulla Sellström
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden
| | - Cynthia A de Wit
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
47
|
Lu SY, Li YX, Zhang T, Cai D, Ruan JJ, Huang MZ, Wang L, Zhang JQ, Qiu RL. Effect of E-waste Recycling on Urinary Metabolites of Organophosphate Flame Retardants and Plasticizers and Their Association with Oxidative Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2427-2437. [PMID: 28094923 DOI: 10.1021/acs.est.6b05462] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study, three chlorinated (Cl-mOPs) and five nonchlorinated (NCl-mOPs) organophosphate metabolites were determined in urine samples collected from participants living in an electronic waste (e-waste) dismantling area (n = 175) and two reference areas (rural, n = 29 and urban, n = 17) in southern China. Bis(2-chloroethyl) phosphate [BCEP, geometric mean (GM): 0.72 ng/mL] was the most abundant Cl-mOP, and diphenyl phosphate (DPHP, 0.55 ng/mL) was the most abundant NCl-mOP. The GM concentrations of mOPs in the e-waste dismantling sites were higher than those in the rural control site. These differences were significant for BCEP (p < 0.05) and DPHP (p < 0.01). Results suggested that e-waste dismantling activities contributed to human exposure to OPs. In the e-waste sites, the urinary concentrations of bis(2-chloro-isopropyl) phosphate (r = 0.484, p < 0.01), BCEP (r = 0.504, p < 0.01), dibutyl phosphate (r = 0.214, p < 0.05), and DPHP (r = 0.440, p < 0.01) were significantly increased as the concentration of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of DNA oxidative stress, increased. Our results also suggested that human exposure to OPs might be correlated with DNA oxidative stress for residents in e-waste dismantling areas. To our knowledge, this study is the first to report the urinary levels of mOPs in China and examine the association between OP exposure and 8-OHdG in humans.
Collapse
Affiliation(s)
- Shao-You Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University) , Guangzhou 510275, China
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, PR China
- Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University , Guangzhou 510632, China
| | - Yan-Xi Li
- School of Environmental Science and Engineering, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University) , Guangzhou 510275, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University) , Guangzhou 510275, China
- Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University , Guangzhou 510632, China
| | - Dan Cai
- School of Environmental Science and Engineering, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University) , Guangzhou 510275, China
| | - Ju-Jun Ruan
- School of Environmental Science and Engineering, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University) , Guangzhou 510275, China
| | - Ming-Zhi Huang
- School of Geograghy and Planning, Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, Sun Yat-sen University , Guangzhou 510275, PR China
| | - Lei Wang
- College of Environmental Science and Engineering, Nankai University , Tianjin 300350, PR China
| | - Jian-Qing Zhang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, PR China
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University) , Guangzhou 510275, China
| |
Collapse
|
48
|
Zhang X, Zou W, Mu L, Chen Y, Ren C, Hu X, Zhou Q. Rice ingestion is a major pathway for human exposure to organophosphate flame retardants (OPFRs) in China. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:686-693. [PMID: 27484948 DOI: 10.1016/j.jhazmat.2016.07.055] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/25/2016] [Accepted: 07/22/2016] [Indexed: 05/25/2023]
Abstract
Although organophosphate flame retardants (OPFRs) have been shown to accumulate in abiotic and biotic environmental compartments, data about OPFRs concentrations in various foods are limited and are none in humans through diets. In this work, the concentrations of 6 typical OPFRs were investigated in 50 rice samples, 75 commonly consumed foods and 45 human hair samples from China. The dietary intakes of OPFRs for adult people via food ingestion were estimated. The concentrations of ΣOPFRs in foods ranged from 0.004ng/g to 287ng/g. OPFRs were detected in 53.3% of the human hair samples. The highest OPFRs concentrations were found in rice and vegetables. Tri(2-chloroethyl)phosphate(TCEP), tris(2-chloroisopropyl)phosphate(TCIPP), and tri(2-ethyltexyl)phosphate(TEHP) were predominant in all food samples. OPFRs concentrations in foods were not significantly affected by the packaging materials. The mean dietary intakes of ΣOPFRs for adult males and females were 539 and 601ng/kg body weight/day, respectively. The greatest contribution to these values is from rice, accounting for approximately 60% of the total intake, particularly from rice protein. Rice ingestion was considered a potential major pathway for human exposure to OPFRs, and regional differences in the levels of OPFRs in foods and dietary differences should be given more attention in the future.
Collapse
Affiliation(s)
- Xingli Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Wei Zou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Li Mu
- Institute of Agro-environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| | - Yuming Chen
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Chaoxiu Ren
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
49
|
Greaves AK, Letcher RJ, Chen D, McGoldrick DJ, Gauthier LT, Backus SM. Retrospective analysis of organophosphate flame retardants in herring gull eggs and relation to the aquatic food web in the Laurentian Great Lakes of North America. ENVIRONMENTAL RESEARCH 2016; 150:255-263. [PMID: 27322497 DOI: 10.1016/j.envres.2016.06.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/29/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
With the phase-out and regulation of some flame retardant chemicals, the production and usage of organophosphate triester flame retardants (OPFRs) has increased in recent years. In the present study, 14 OPFRs (either chlorinated, brominated or non-halogenated) were analyzed in egg pools of 10-13 individual herring gull eggs from five colonial nesting sites for 11 years spanning 1990-2010, (for a total of n=55 egg pools) in the Laurentian Great Lakes of North America (Chantry Island, Fighting Island, Agawa Rocks, Toronto Harbour and Gull Island). OPFR profiles varied slightly between colony sites and collection years. For all five sites tris(2-chloroisopropyl) phosphate (TCIPP), tris(2-chloroethyl) phosphate (TCEP) and tris(2-butoxyethyl) phosphate (TBOEP) were detected, while triphenyl phosphate (TPHP) was only quantifiable in eggs from Chantry Island and Gull Island collected in 2008 and 2010. For the 2010 egg pools, the ΣOPFR concentrations were generally low and ranged from 2.02 to 6.69 ng/g wet weight (ww). ΣOPFR concentrations in 2010 were significantly higher (p<0.05) than they were between 1990 and 2004 (4.06 vs. 1.55 ng/g ww, respectively). In a pilot examination of Great Lakes aquatic food webs, 2010-collected alewife and rainbow smelt (major herring gull fish prey) and lake trout from western Lake Erie and Ontario, only contained TBOEP at low to sub ng/g ww concentrations. These results demonstrate that low to sub-ppb concentrations of at least three OPFRs, TCIPP, TCEP and TBOEP, have been persistent in herring gull eggs from the Great Lakes for at least the past 20 years, probably bioaccumulate mainly via the fish diet, and are transferred to the eggs of exposed herring gulls.
Collapse
Affiliation(s)
- Alana K Greaves
- Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada; Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Robert J Letcher
- Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada; Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Da Chen
- Cooperative Wildlife Research Laboratory and Department of Zoology, Southern Illinois University, Carbondale IL 62901, USA
| | - Daryl J McGoldrick
- Water Science & Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON L7S 1A1, Canada
| | - Lewis T Gauthier
- Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Sean M Backus
- Water Science & Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON L7S 1A1, Canada
| |
Collapse
|
50
|
Xu F, Giovanoulis G, van Waes S, Padilla-Sanchez JA, Papadopoulou E, Magnér J, Haug LS, Neels H, Covaci A. Comprehensive Study of Human External Exposure to Organophosphate Flame Retardants via Air, Dust, and Hand Wipes: The Importance of Sampling and Assessment Strategy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7752-60. [PMID: 27350238 DOI: 10.1021/acs.est.6b00246] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We compared the human exposure to organophosphate flame retardants (PFRs) via inhalation, dust ingestion, and dermal absorption using different sampling and assessment strategies. Air (indoor stationary air and personal ambient air), dust (floor dust and surface dust), and hand wipes were sampled from 61 participants and their houses. We found that stationary air contains higher levels of ΣPFRs (median = 163 ng/m(3), IQR = 161 ng/m(3)) than personal air (median = 44 ng/m(3), IQR = 55 ng/m(3)), suggesting that the stationary air sample could generate a larger bias for inhalation exposure assessment. Tris(chloropropyl) phosphate isomers (ΣTCPP) accounted for over 80% of ΣPFRs in both stationary and personal air. PFRs were frequently detected in both surface dust (ΣPFRs median = 33 100 ng/g, IQR = 62 300 ng/g) and floor dust (ΣPFRs median = 20 500 ng/g, IQR = 30 300 ng/g). Tris(2-butoxylethyl) phosphate (TBOEP) accounted for 40% and 60% of ΣPFRs in surface and floor dust, respectively, followed by ΣTCPP (30% and 20%, respectively). TBOEP (median = 46 ng, IQR = 69 ng) and ΣTCPP (median = 37 ng, IQR = 49 ng) were also frequently detected in hand wipe samples. For the first time, a comprehensive assessment of human exposure to PFRs via inhalation, dust ingestion, and dermal absorption was conducted with individual personal data rather than reference factors of the general population. Inhalation seems to be the major exposure pathway for ΣTCPP and tris(2-chloroethyl) phosphate (TCEP), while participants had higher exposure to TBOEP and triphenyl phosphate (TPHP) via dust ingestion. Estimated exposure to ΣPFRs was the highest with stationary air inhalation (median =34 ng·kg bw(-1)·day(-1), IQR = 38 ng·kg bw(-1)·day(-1)), followed by surface dust ingestion (median = 13 ng·kg bw(-1)·day(-1), IQR = 28 ng·kg bw(-1)·day(-1)), floor dust ingestion and personal air inhalation. The median dermal exposure on hand wipes was 0.32 ng·kg bw(-1)·day(-1) (IQR = 0.58 ng·kg bw(-1)·day(-1)) for ΣTCPP. The selection of sampling and assessment strategies could significantly affect the results of exposure assessment.
Collapse
Affiliation(s)
- Fuchao Xu
- Toxicological Centre, University of Antwerp , Universiteitsplein 1, 2610 Wilrijk, Belgium
| | | | - Sofie van Waes
- Toxicological Centre, University of Antwerp , Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Juan Antonio Padilla-Sanchez
- Division of Environmental Medicine, Norwegian Institute of Public Health , Lovisenberggata 8, Oslo N-0403, Norway
| | - Eleni Papadopoulou
- Division of Environmental Medicine, Norwegian Institute of Public Health , Lovisenberggata 8, Oslo N-0403, Norway
| | - Jorgen Magnér
- IVL Swedish Environmental Research Institute , SE-100 31 Stockholm, Sweden
| | - Line Småstuen Haug
- Division of Environmental Medicine, Norwegian Institute of Public Health , Lovisenberggata 8, Oslo N-0403, Norway
| | - Hugo Neels
- Toxicological Centre, University of Antwerp , Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp , Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|