1
|
Roy M, Kraaijeveld E, Gude JCJ, van Genuchten CM, Rietveld LC, van Halem D. Embedding Fe(0) electrocoagulation in a biologically active As(III) oxidising filter bed. WATER RESEARCH 2024; 252:121233. [PMID: 38330719 DOI: 10.1016/j.watres.2024.121233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Long-term consumption of groundwater containing elevated levels of arsenic (As) can have severe health consequences, including cancer. To effectively remove As, conventional treatment technologies require expensive chemical oxidants to oxidise neutral arsenite (As(III)) in groundwater to negatively charged arsenate (As(V)), which is more easily removed. Rapid sand filter beds used in conventional aeration-filtration to treat anaerobic groundwater can naturally oxidise As(III) through biological processes but require an additional step to remove the generated As(V), adding complexity and cost. This study introduces a novel approach where As(V), produced through biological As(III) oxidation in a sand filter, is effectively removed within the same filter by embedding and operating an iron electrocoagulation (FeEC) system inside the filter. Operating FeEC within the biological filter achieved higher As(III) removal (81 %) compared to operating FeEC in the filter supernatant (67 %). This performance was similar to an analogous embedded-FeEC system treating As(V)-contaminated water (85 %), confirming the benefits of incorporating FeEC in a biological bed for comparable As(III) and As(V) removal. However, operating FeEC in the sand matrix consumed more energy (14 Wh/m3) compared to FeEC operated in a water matrix (7 Wh/m3). The efficiency of As removal increased and energy requirements decreased in such embedded-FeEC systems by deep-bed infiltration of Fe(III)-precipitates, which can be controlled by adjusting flow rate and pH. This study is one of the first to demonstrate the feasibility of embedding FeEC systems in sand filters for groundwater arsenic removal. Such systems capitalise on biological As(III) oxidation in aeration-filtration, effectively eliminating As(V) within the same setup without the need for chemicals or major modifications.
Collapse
Affiliation(s)
- Mrinal Roy
- Water Management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628CN Delft, the Netherlands.
| | - Erik Kraaijeveld
- Water Management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628CN Delft, the Netherlands
| | - Jink C J Gude
- NX Filtration BV, Josink Esweg 44, 7545PN Delft, the Netherlands
| | - Case M van Genuchten
- Department of Geochemistry, Geological Survey of Denmark and Greenland, Copenhagen DK-1350, Denmark
| | - Luuk C Rietveld
- Water Management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628CN Delft, the Netherlands
| | - Doris van Halem
- Water Management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628CN Delft, the Netherlands
| |
Collapse
|
2
|
Hossain MH, Abdullah N, Tan KH, Saidur R, Mohd Radzi MA, Shafie S. Evolution of Vanadium Redox Flow Battery in Electrode. CHEM REC 2024; 24:e202300092. [PMID: 37144668 DOI: 10.1002/tcr.202300092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Indexed: 05/06/2023]
Abstract
The vanadium redox flow battery (VRFB) is a highly regarded technology for large-scale energy storage due to its outstanding features, such as scalability, efficiency, long lifespan, and site independence. This paper provides a comprehensive analysis of its performance in carbon-based electrodes, along with a comprehensive review of the system's principles and mechanisms. It discusses potential applications, recent industrial involvement, and economic factors associated with VRFB technology. The study also covers the latest advancements in VRFB electrodes, including electrode surface modification and electrocatalyst materials, and highlights their effects on the VRFB system's performance. Additionally, the potential of two-dimensional material MXene to enhance electrode performance is evaluated, and the author concludes that MXenes offer significant advantages for use in high-power VRFB at a low cost. Finally, the paper reviews the challenges and future development of VRFB technology.
Collapse
Affiliation(s)
- Md Hasnat Hossain
- Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Norulsamani Abdullah
- Research Center for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, 47500, Selangor Darul Ehsan, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Cluster, Sunway University, Petaling Jaya, Selangor, 47500, Malaysia
| | - Kim Han Tan
- Research Center for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, 47500, Selangor Darul Ehsan, Malaysia
| | - R Saidur
- Research Center for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, 47500, Selangor Darul Ehsan, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Cluster, Sunway University, Petaling Jaya, Selangor, 47500, Malaysia
- School of Engineering, Lancaster University, Lancaster, LA1 4YW, UK
| | - Mohd Amran Mohd Radzi
- Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Suhaidi Shafie
- Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Patel B, Gundaliya R, Desai B, Shah M, Shingala J, Kaul D, Kandya A. Groundwater arsenic contamination: impacts on human health and agriculture, ex situ treatment techniques and alleviation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1331-1358. [PMID: 35962925 DOI: 10.1007/s10653-022-01334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Groundwater is consumed by a large number of people as their primary source of drinking water globally. Among all the countries worldwide, nations in South Asia, particularly India and Bangladesh, have severe problem of groundwater arsenic (As) contamination so are on our primary focus in this study. The objective of this review study is to provide a viewpoint about the source of As, the effect of As on human health and agriculture, and available treatment technologies for the removal of As from water. The source of As can be either natural or anthropogenic and exposure mediums can either be air, drinking water, or food. As-polluted groundwater may lead to a reduction in crop yield and quality as As enters the food chain and disrupts it. Chronic As exposure through drinking water is highly associated with the disruption of many internal systems and organs in the human body including cardiovascular, respiratory, nervous, and endocrine systems, soft organs, and skin. We have critically reviewed a complete spectrum of the available ex situ technologies for As removal including oxidation, coagulation-flocculation, adsorption, ion exchange, and membrane process. Along with that, pros and cons of different techniques have also been scrutinized on the basis of past literatures reported. Among all the conventional techniques, coagulation is the most efficient technique, and considering the advanced and emerging techniques, electrocoagulation is the most prominent option to be adopted. At last, we have proposed some mitigation strategies to be followed with few long and short-term ideas which can be adopted to overcome this epidemic.
Collapse
Affiliation(s)
- Bhavi Patel
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Rohan Gundaliya
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Bhavya Desai
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Manan Shah
- Department of Chemical Engineering School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India.
| | - Jainish Shingala
- School of Petroleum Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Daya Kaul
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Anurag Kandya
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
Abdollahi J, Alavi Moghaddam MR, Habibzadeh S. The role of the current waveform in mitigating passivation and enhancing electrocoagulation performance: A critical review. CHEMOSPHERE 2023; 312:137212. [PMID: 36395897 DOI: 10.1016/j.chemosphere.2022.137212] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Electrocoagulation (EC) can be an efficient alternative to existing water and wastewater treatment methods due to its eco-friendly nature, low footprint, and facile operation. However, the electrodes applied in the EC process suffer from passivation or fouling, an issue resulting from the buildup of poorly conducting materials on the electrode surface. Indeed, such passivation gives rise to various operational problems and restricts the practical implementation of EC on a large scale. Therefore, it has been suggested that using pulsed direct current (PDC), alternating pulse current (APC), and sinusoidal alternating current (AC) waveforms in EC as alternatives to conventional direct current (DC) can help mitigate passivation and alleviate its associated detrimental effects. This paper presents a critical review of the impact of the current waveform on the EC process towards the capabilities of the PDC, APC, and AC waveforms in de-passivation and performance enhancement while comparing them to the conventional DC. Additionally, current waveform parameters influencing the surface passivation of electrodes and process efficiency are elaborately discussed. Meanwhile, the performance of the EC process is evaluated under different current waveforms based on pollutant removal efficiency, energy consumption, electrode usage, sludge production, and operating cost. The proper current waveforms for treating various water and wastewater matrices are also explained. Finally, concluding remarks and outlooks for future research are provided.
Collapse
Affiliation(s)
- Javad Abdollahi
- Department of Civil & Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | | | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| |
Collapse
|
5
|
Glade S, Bandaru SR, Nahata M, Majmudar J, Gadgil A. Adapting a drinking water treatment technology for arsenic removal to the context of a small, low-income California community. WATER RESEARCH 2021; 204:117595. [PMID: 34543977 DOI: 10.1016/j.watres.2021.117595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Small, low-income, and rural communities across the United States are disproportionately exposed to arsenic contaminated drinking water because existing treatment solutions are too expensive and difficult to operate. This paper describes efforts to overcome some barriers and limitations of conventional iron electrocoagulation (Fe-EC) to enable its use in the rural Californian (U.S.) context. Barriers and limitations of Fe-EC's application in rural California considered in this work include: 1) Frequent labor intensive electrode cleaning is required to overcome rust accumulation, 2) Electrolysis durations are long, reducing throughput for a given system size, and 3) Waste needs compliance with California standards. We report results from an investigation for overcoming these limitations via a field trial on a farm in Allensworth, a small, low-income, rural community in California. Our strategies to overcome each of the above barriers and limitations are respectively, 1) operating the Fe-EC reactor at high current density to result in sustained Fe production, 2) operating at high charge dosage rate with external H2O2, and 3) characterization of the arsenic-laden waste, and are discussed further in the paper. Main findings are: (1) Fe-EC removed arsenic consistently below the federal (and state) standard of 10 µg/L, (2) high current density failed to sustain Fe production whereas low current density did not, (3) electrolysis time decreased from > 1 hour to < 2 min with H2O2 dosing of 5 mg/L at higher charge dosage rates, (4) dilution of As-sludge is required to comply with State's non-hazardous waste status, and (5) discrepancies were observed between lab and field results in using current density to overcome labor-intensive electrode cleanings. Finally, implications of overcoming limitations to scale-up of Fe-EC in relevant California communities are discussed.
Collapse
Affiliation(s)
- Sara Glade
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, CA, 94720, United States
| | - Siva Rs Bandaru
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, CA, 94720, United States
| | - Mohit Nahata
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, CA, 94720, United States
| | - Jay Majmudar
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, 94720, United States
| | - Ashok Gadgil
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, CA, 94720, United States.
| |
Collapse
|
6
|
Chow H, Ingelsson M, Roberts EPL, Pham ALT. How does periodic polarity reversal affect the faradaic efficiency and electrode fouling during iron electrocoagulation? WATER RESEARCH 2021; 203:117497. [PMID: 34371234 DOI: 10.1016/j.watres.2021.117497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Electrocoagulation (EC) is a promising electrochemical water treatment technology. However, a major challenge to sustaining effective long-term EC operation is controlling the precipitation of materials on the electrodes, commonly referred to as fouling. Periodically reversing electrode polarity has been suggested as an in-situ fouling mitigation strategy and is often implemented in EC field applications. However, the utility of this approach has not been investigated in detail. In this study, the effect of polarity reversal (PR) on the performance of EC using iron electrodes was examined under different water chemistry conditions and at a range of reversal frequencies. It was observed that the faradaic efficiency in PR-EC was always lower than that in the EC systems operated with a direct current (i.e., DC-EC). It was also observed that the faradaic efficiency progressively decreased as the current reversal frequency increased, with the faradaic efficiency dropping as low as 10% when the PR interval was 0.5 min. Results from fouling layer, chronopotentiometric, and cyclic voltammetric investigations indicated that the decrease in the faradaic efficiency was caused by (i) increased electrode fouling by iron precipitates and (ii) electrochemical side reactions at the electrode-electrolyte interface. The extent of these effects was dependent on the solution chemistry; oxyanions and sulfide were found to be particularly detrimental to the performance of PR-EC, causing severe electrode fouling while decreasing the faradaic efficiency. Fouling could be mitigated by increasing the solution convection rate, resulting in a shear on the electrode surface that removed iron and other electrochemically reactive species from the electrodes.
Collapse
Affiliation(s)
- Héline Chow
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario ON N2L 3G1, Canada
| | - Markus Ingelsson
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1NF, Canada
| | - Edward P L Roberts
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1NF, Canada.
| | - Anh Le-Tuan Pham
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario ON N2L 3G1, Canada.
| |
Collapse
|
7
|
Oliveira JT, de Sousa MC, Martins IA, de Sena LMG, Nogueira TR, Vidal CB, Neto EFA, Romero FB, Campos OS, do Nascimento RF. Electrocoagulation/oxidation/flotation by direct pulsed current applied to the removal of antibiotics from Brazilian WWTP effluents. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Chow H, Pham ALT. Mitigating Electrode Fouling in Electrocoagulation by Means of Polarity Reversal: The Effects of Electrode Type, Current Density, and Polarity Reversal Frequency. WATER RESEARCH 2021; 197:117074. [PMID: 33784607 DOI: 10.1016/j.watres.2021.117074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
One of the biggest issues in electrocoagulation (EC) water treatment processes is electrode fouling, which can cause decreased coagulant production, increased ohmic resistance and energy consumption, and reduced contaminant removal efficiency, among other operational problems. While it has been suggested that switching the current direction intermittently (i.e., polarity reversal, PR) can help mitigate electrode fouling, conflicting results about the utility of this approach have been reported in the literature. The objective of this study was to systematically investigate the effects of PR frequency and current density on the performance of Fe-EC and Al-EC. It was found that operating Fe-EC under the PR mode reduced neither electrode fouling nor energy consumption. Notably, the Faradaic efficiency (ϕ) in Fe-EC decreased with increasing PR frequency; ϕ was as low as 10% when a PR frequency of 0.5 minutes was employed. Unlike Fe-EC, operating Al-EC under the PR mode resulted in high coagulant production efficiencies, reduced energy consumption, and diminished electrode fouling. In addition to comparing PR-EC and DC-EC, a novel strategy to minimize electrode fouling was investigated. This strategy involved operating Fe DC-EC and Al DC-EC with a Ti-IrO2 cathode, whose fouling by Ca- and Mg-containing minerals could be readily avoided by periodically switching the current direction.
Collapse
Affiliation(s)
- Héline Chow
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Anh Le-Tuan Pham
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
9
|
Removal of Fluorides from Aqueous Solutions Using Exhausted Coffee Grounds and Iron Sludge. WATER 2021. [DOI: 10.3390/w13111512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many countries are confronted with a striking problem of morbidity of fluorosis that appears because of an increased concentration of fluorides in drinking water. The objective of this study is to explore opportunities for removal of fluoride from aqueous solutions using cheap and easily accessible adsorbents, such as exhaustive coffee grounds and iron sludge and to establish the efficiency of fluoride removal. Twelve doses (1, 2, 3, 4, 5, 6, 10, 20, 30, 40, 50 and 60 g/L) of adsorbents were used and five durations of the sorption process (30, 60, 90, 120 and 150 min). The results showed that the most optimum dose of iron sludge for 3 mg/L of fluoride removal was 30 g/L and the contact time was 30 min, the efficiency of fluoride removal achieved 62.92%; the most optimum dose of exhausted coffee grounds was 60 g/L with the most optimum contact time of 60 min; at a dose of 50 g/L with contact time of 90 min, the efficiency of fluoride removal achieved 56.67%. Findings demonstrate that adsorbents have potential applicability in fluoride removal up to the permissible norms.
Collapse
|
10
|
Ingelsson M, Yasri N, Roberts EPL. Electrode passivation, faradaic efficiency, and performance enhancement strategies in electrocoagulation-a review. WATER RESEARCH 2020; 187:116433. [PMID: 33002774 DOI: 10.1016/j.watres.2020.116433] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Treating water and wastewater is energy-intensive, and traditional methods that require large amounts of chemicals are often still used. Electrocoagulation (EC), an electrochemical treatment technology, has been proposed as a more economically and environmentally sustainable alternative. In EC, sacrificial metal electrodes are used to produce coagulant in-situ, which offers many benefits over conventional chemical coagulation. However, material precipitation on the electrodes during long term operation induces a passivating effect that decreases treatment performance and increases power requirements. Overcoming this problem is considered to be the greatest challenge facing the development of EC. In this critical review, the studies that have examined the nature of electrode passivation, and its effect on treatment performance are considered. A fundamental approach is used to examine the association between passivation and faradaic efficiency, a surrogate for EC performance. In addition, the strategies that have been proposed to remove or avoid passivation are reviewed, including aggressive ion addition, AC current operation, polarity reversal, ultrasonication, and mechanical cleaning of the electrodes. It is concluded that the success of implementing each method is dependent on critical operating parameters, and careful consideration should be taken when designing an EC system based on the phenomena discussed in this article. In conclusion, this review provides insight into passivation mechanisms, delivers guidelines for sustaining high treatment performance, and offers an outlook for the future development of EC.
Collapse
Affiliation(s)
- Markus Ingelsson
- Department of Chemical & Petroleum Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Nael Yasri
- Department of Chemical & Petroleum Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Edward P L Roberts
- Department of Chemical & Petroleum Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
11
|
Akansha J, Nidheesh PV, Gopinath A, Anupama KV, Suresh Kumar M. Treatment of dairy industry wastewater by combined aerated electrocoagulation and phytoremediation process. CHEMOSPHERE 2020; 253:126652. [PMID: 32272308 DOI: 10.1016/j.chemosphere.2020.126652] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
As dairy industries has been emerged as one of the most rapidly developing industry in both small as well as large scale, the volume of effluent generated is also very high. In the present study, aerated electrocoagulation combined with phytoremediation treatment was conducted in dairy industry wastewater. Electrocoagulation was performed with aluminium and iron electrodes and effect of various operating parameters such as electrode combination, pH, and voltage were tested. Electrocoagulation was found effective at neutral pH and its efficiency increased with increase in applied voltage. The maximum COD removal efficiency of 86.4% was obtained in case of Al-Fe electrode combination with aeration at 120 min reaction time, initial pH 7, voltage 5 V. Significant growth of Canna indica was observed in electrocoagulation treated wastewater compared to raw dairy wastewater. COD removal of 97% was achieved when combined electrocoagulation and phytoremediation process was used. Thus, it proves to be a proficient method for the treatment of dairy industry wastewater. In addition to the above, bacterial toxicity tests were performed to investigate the toxic nature of wastewater and the results showed that both treated and untreated wastewater favoured bacterial growth.
Collapse
Affiliation(s)
- J Akansha
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India; Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - Ashitha Gopinath
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - K V Anupama
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - M Suresh Kumar
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
12
|
Catrouillet C, Hirosue S, Manetti N, Boureau V, Peña J. Coupled As and Mn Redox Transformations in an Fe(0) Electrocoagulation System: Competition for Reactive Oxidants and Sorption Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7165-7174. [PMID: 32364715 DOI: 10.1021/acs.est.9b07099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Iron electrocoagulation (EC) can be used for the decentralized treatment of arsenic(As)-contaminated groundwater. Iron EC involves the electrolytic dissolution of an Fe(0) electrode to Fe(II). This process produces reactive oxidants, which oxidize As(III) and Fe(II) to As(V) and a range of Fe(III) (oxyhydr)oxide phases. Here, we investigated the impact of manganese (Mn) on As removal, since the two often co-occur in groundwater. In the absence of Mn(II), we observed rapid As(III) oxidation and the formation of As(V)-Fe(III) polymers. Arsenic removal was achieved upon aggregation of the As(V)-Fe(III) polymers. In the presence of Mn, the mechanism of As removal varied with pH. At pH 4.5, As(III) was oxidized rapidly by OH• and the aggregation of the resulting As(V)-Fe(III) polymers was enhanced by the presence of Mn. At pH 8.5, As(III) and Mn(II) competed for Fe(IV), which led As(III) to persist in solution. The As(V) that did form was incorporated into a mixture of As(V)-Fe(III) polymers and a ferrihydrite-like phase that incorporated 8% Mn(III); some As(III) was also sorbed by these phases. At intermediate pH values, As(III) and Mn(II) also competed for the oxidants, but Mn(III) behaved as a reactive intermediate that reacted with Fe(II) or As(III). This result can explain the presence of As(V) in the solid phase. This detailed understanding of the As removal mechanisms in the presence of Mn can be used to tune the operating conditions of Fe EC for As removal under typical groundwater conditions.
Collapse
Affiliation(s)
- Charlotte Catrouillet
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Sachiko Hirosue
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Nathalie Manetti
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Victor Boureau
- Interdisciplinary Center for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Jasquelin Peña
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
13
|
Bandaru SRS, Roy A, Gadgil AJ, van Genuchten CM. Long-term electrode behavior during treatment of arsenic contaminated groundwater by a pilot-scale iron electrocoagulation system. WATER RESEARCH 2020; 175:115668. [PMID: 32163769 DOI: 10.1016/j.watres.2020.115668] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 05/12/2023]
Abstract
Iron electrocoagulation (Fe-EC) is an effective technology to remove arsenic (As) from groundwater used for drinking. A commonly noted limitation of Fe-EC is fouling or passivation of electrode surfaces via rust accumulation over long-term use. In this study, we examined the effect of removing electrode surface layers on the performance of a large-scale (10,000 L/d capacity) Fe-EC plant in West Bengal, India. We also characterized the layers formed on the electrodes in active use for over 2 years at this plant. The electrode surfaces developed three distinct horizontal sections of layers that consisted of different minerals: calcite, Fe(III) precipitates and magnetite near the top, magnetite in the middle, and Fe(III) precipitates and magnetite near the bottom. The interior of all surface layers adjacent to the Fe(0) metal was dominated by magnetite. We determined the impact of surface layer removal by mechanical abrasion on Fe-EC performance by measuring solution composition (As, Fe, P, Si, Mn, Ca, pH, DO) and electrochemical parameters (total cell voltage and electrode interface potentials) during electrolysis. After electrode cleaning, the Fe concentration in the bulk solution increased substantially from 15.2 to 41.5 mg/L. This higher Fe concentration led to increased removal of a number of solutes. For As, the concentration reached below the 10 μg/L WHO MCL more rapidly and with less total Fe consumed (i.e. less electrical energy) after cleaning (128.4 μg/L As removed per kWh) compared to before cleaning (72.9 μg/L As removed per kWh). Similarly, the removal of P and Si improved after cleaning by 0.3 mg/L/kWh and 1.1 mg/L/kWh, respectively. Our results show that mechanically removing the surface layers that accumulate on electrodes over extended periods of Fe-EC operation can restore Fe-EC system efficiency (concentration of solute removed/kWh delivered). Since Fe release into the bulk solution substantially increased upon electrode cleaning, our results also suggest that routine electrode maintenance can ensure robust and reliable Fe-EC performance over year-long timescales.
Collapse
Affiliation(s)
- Siva R S Bandaru
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Abhisek Roy
- Department of Civil Engineering, Jadavpur University, Kolkata, India
| | - Ashok J Gadgil
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Case M van Genuchten
- Department of Earth Science - Geochemistry, Faculty of Geoscience, Utrecht University, Utrecht, the Netherlands; Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark.
| |
Collapse
|
14
|
Syam Babu D, Nidheesh PV, Suresh Kumar M. Arsenite removal from aqueous solution by aerated iron electrocoagulation process. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1708932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- D. Syam Babu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - P. V. Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - M. Suresh Kumar
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| |
Collapse
|
15
|
Giwa A, Dindi A, Kujawa J. Membrane bioreactors and electrochemical processes for treatment of wastewaters containing heavy metal ions, organics, micropollutants and dyes: Recent developments. JOURNAL OF HAZARDOUS MATERIALS 2019; 370:172-195. [PMID: 29958700 DOI: 10.1016/j.jhazmat.2018.06.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 05/26/2023]
Abstract
Research and development activities on standalone systems of membrane bioreactors and electrochemical reactors for wastewater treatment have been intensified recently. However, several challenges are still being faced during the operation of these reactors. The current challenges associated with the operation of standalone MBR and electrochemical reactors include: membrane fouling in MBR, set-backs from operational errors and conditions, energy consumption in electrochemical systems, high cost requirement, and the need for simplified models. The advantage of this review is to present the most critical challenges and opportunities. These challenges have necessitated the design of MBR derivatives such as anaerobic MBR (AnMBR), osmotic MBR (OMBR), biofilm MBR (BF-MBR), membrane aerated biofilm reactor (MABR), and magnetically-enhanced systems. Likewise, electrochemical reactors with different configurations such as parallel, cylindrical, rotating impeller-electrode, packed bed, and moving particle configurations have emerged. One of the most effective approaches towards reducing energy consumption and membrane fouling rate is the integration of MBR with low-voltage electrochemical processes in an electrically-enhanced membrane bioreactor (eMBR). Meanwhile, research on eMBR modeling and sludge reuse is limited. Future trends should focus on novel/fresh concepts such as electrically-enhanced AnMBRs, electrically-enhanced OMBRs, and coupled systems with microbial fuel cells to further improve energy efficiency and effluent quality.
Collapse
Affiliation(s)
- Adewale Giwa
- Department of Chemical Engineering, Khalifa University of Science and Technology, Masdar City campus, P.O. Box 54224, Abu Dhabi, United Arab Emirates.
| | - Abdallah Dindi
- Department of Chemical Engineering, Khalifa University of Science and Technology, Masdar City campus, P.O. Box 54224, Abu Dhabi, United Arab Emirates
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland
| |
Collapse
|
16
|
Müller S, Behrends T, van Genuchten CM. Sustaining efficient production of aqueous iron during repeated operation of Fe(0)-electrocoagulation. WATER RESEARCH 2019; 155:455-464. [PMID: 30870635 DOI: 10.1016/j.watres.2018.11.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Iron-electrocoagulation is a promising contaminant (e.g. arsenic) removal technology that is based on electrochemical Fe(II) production from steel electrodes and subsequent transport of Fe(II) to the bulk solution, where contaminant removal occurs. Although Fe-electrocoagulation systems have been shown to effectively remove contaminants in extended field trials, the efficiency of field systems can be lower than in laboratory studies. One hypothesis for this disparity is that the Faradaic efficiency of short-term laboratory experiments is higher than field systems operated over extended periods. The Faradaic efficiency is a pivotal performance indicator that we define as the measured Fe dosage normalized by the theoretical Fe dosage calculated by Faraday's law. In this work, we investigated the Faradaic efficiency in laboratory experiments for up to 35 operating cycles (>2 months) with varied Fe(0) anode purity, charge dosage rate, and electrolyte composition. Our results showed that the Faradaic efficiency decreased continuously during repeated operation under typical field conditions (charge dosage rate = 4 C/L/min, synthetic groundwater) regardless of the Fe(0) anode purity, leading to a Faradaic efficiency ≈ 0.6 after 2 months. By contrast, increasing the charge dosage rate to ≥15 C/L/min produced a Faradaic efficiency >0.85 over the entire experiment for both Fe(0) anode purities. Electrolyte solutions free of oxyanions also resulted in sustained Faradaic efficiency >0.85, regardless of the charge dosage rate. Our results confirm a previously proposed relationship between low Faradaic efficiency and the formation of macroscopic electrode surface layers, which consist of Fe (oxyhydr)oxides on the anode and a mixture of Fe (oxyhydr)oxides and calcite on the cathode. Based on these results, we discuss potential strategies to maintain a high Faradaic efficiency during Fe-electrocoagulation field treatment.
Collapse
Affiliation(s)
- Simon Müller
- Department of Earth Sciences, Geochemistry, Faculty of Geosciences, Utrecht University, 3584CB Utrecht, the Netherlands
| | - Thilo Behrends
- Department of Earth Sciences, Geochemistry, Faculty of Geosciences, Utrecht University, 3584CB Utrecht, the Netherlands
| | - Case M van Genuchten
- Department of Earth Sciences, Geochemistry, Faculty of Geosciences, Utrecht University, 3584CB Utrecht, the Netherlands.
| |
Collapse
|
17
|
Maitlo HA, Lee J, Park JY, Kim JC, Kim KH, Kim JH. An energy-efficient air-breathing cathode electrocoagulation approach for the treatment of arsenite in aquatic systems. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Shamaei L, Khorshidi B, Perdicakis B, Sadrzadeh M. Treatment of oil sands produced water using combined electrocoagulation and chemical coagulation techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:560-572. [PMID: 30029132 DOI: 10.1016/j.scitotenv.2018.06.387] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/19/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Hybrid electrocoagulation-chemical coagulation (EC-CC) process has attracted a growing attention for the removal of various types of wastewaters contaminants. In this paper, the feasibility of EC-CC technique as an alternative to conventional chemical processes for the treatment of steam assisted gravity drainage (SAGD) produced water has been systematically studied. Eight parameters, namely electrode material, cell configuration, pH and temperature of the solution, chemical coagulant dosage, intensity of the electrical current, mixing rate, and treatment time were studied. To explore the synergistic effect of the design parameters, the experimental trials were arranged using Taguchi method. Analysis of variance (ANOVA) was performed to evaluate the effect of each design parameter on the organic matter removal from the SAGD produced water. It was found that all parameters except the electrode arrangement had a significant effect on the removal efficiency of the EC-CC process. Among these parameters, the chemical coagulant and the treatment time had the most significant contribution to the efficiency by 40% and 26%, respectively. The optimum condition for the highest TOC removal efficiency (39.8%) was obtained by applying 0.34 A to Al electrode in a bipolar (BP) configuration when the pH, temperature, coagulant concentration, mixing rate, and reaction time were set to 8, 60 °C, 200 mg/L, 700 rpm, and 90 min, respectively. Moreover, a second-order polynomial regression model was proposed to predict the removal efficiency in terms of design parameters. An excellent agreement between the model predictions and experimental data was obtained with the adjusted R2 of about 99%.
Collapse
Affiliation(s)
- Laleh Shamaei
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton T6G 1H9, AB, Canada.
| | - Behnam Khorshidi
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton T6G 1H9, AB, Canada.
| | - Basil Perdicakis
- Suncor Energy Inc., P.O. Box 2844, 150-6th Ave. SW, Calgary T2P 3E3, Alberta, Canada.
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton T6G 1H9, AB, Canada.
| |
Collapse
|
19
|
Nidheesh PV, Singh TSA. Arsenic removal by electrocoagulation process: Recent trends and removal mechanism. CHEMOSPHERE 2017; 181:418-432. [PMID: 28458217 DOI: 10.1016/j.chemosphere.2017.04.082] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 05/13/2023]
Abstract
Arsenic contamination in drinking water is a major issue in the present world. Arsenicosis is the disease caused by the regular consumption of arsenic contaminated water, even at a lesser contaminated level. The number of arsenicosis patients is increasing day-by-day. Decontamination of arsenic from the water medium is the only one way to regulate this and the arsenic removal can be fulfilled by water treatment methods based on separation techniques. Electrocoagulation (EC) process is a promising technology for the effective removal of arsenic from aqueous solution. The present review article analyzes the performance of the EC process for arsenic removal. Electrocoagulation using various sacrificial metal anodes such as aluminium, iron, magnesium, etc. is found to be very effective for arsenic decontamination. The performances of each anode are described in detail. A special focus has been made on the mechanism behind the arsenite and arsenate removal by EC process. Main trends in the disposal methods of sludge containing arsenic are also included. Comparison of arsenic decontamination efficiencies of chemical coagulation and EC is also reported.
Collapse
Affiliation(s)
- P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - T S Anantha Singh
- Department of Civil Engineering, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, India
| |
Collapse
|
20
|
van Genuchten CM, Peña J. Mn(II) Oxidation in Fenton and Fenton Type Systems: Identification of Reaction Efficiency and Reaction Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2982-2991. [PMID: 28135801 DOI: 10.1021/acs.est.6b05584] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Efficient and low-cost methods of removing aqueous Mn(II) are required to improve the quality of impacted groundwater supplies. In this work, we show that Fe(0) electrocoagulation (EC) permits the oxidative removal of Mn(II) from solution by reaction with the reactive oxidant species produced through Fe(II) oxidation. Manganese(II) removal was enhanced when the accumulation of aqueous Fe(II) was minimized, which was achieved at low Fe(II) production rates, high pH, the presence of H2O2 instead of O2 as the initial Fe(II) oxidant, or a combination of all three. In addition, in the EC-H2O2 system, Mn(II) removal efficiency increased as pH decreased from 6.5 to 4.5 and as pH increased from 6.5 to 8.5, which implicates different reactive oxidants in acidic and alkaline solutions. Chemical analyses and X-ray absorption spectroscopy revealed that Mn(II) removal during Fe(0) EC leads to the formation of Mn(III) (0.02 to >0.26 Mn·Fe-1 molar ratios) and its incorporation into the resulting Fe(III) coprecipitates (lepidocrocite and hydrous ferric oxide for EC-O2 and EC-H2O2, respectively), regardless of pH and Fe(II) production rate. The Mn(II) oxidation pathways elucidated in this study set the framework to develop kinetic models on the impact of Mn(II) during EC treatment and in other Fenton type systems.
Collapse
Affiliation(s)
- Case M van Genuchten
- Institute of Earth Surface Dynamics, University of Lausanne , Lausanne CH-1015, Switzerland
- Department of Earth Sciences, Geochemistry, Faculty of Geosciences, Utrecht University , Utrecht 3508TA, The Netherlands
| | - Jasquelin Peña
- Institute of Earth Surface Dynamics, University of Lausanne , Lausanne CH-1015, Switzerland
| |
Collapse
|
21
|
Kartikaningsih D, Huang YH, Shih YJ. Electro-oxidation and characterization of nickel foam electrode for removing boron. CHEMOSPHERE 2017; 166:184-191. [PMID: 27697706 DOI: 10.1016/j.chemosphere.2016.09.091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The electrocoagulation (EC) using metallic Ni foam as electrodes was studied for the removal of boron from solution. The electrolytic parameters were pH (4-12), current density (0.6-2.5 mA cm-2), and initial concentration of boron (10-100 mg L-1). Experimental results revealed that removal efficiency was maximized at pH 8-9, and decreased as the pH increased beyond that range. At particular onset potentials (0.5-0.8 V vs. Hg/HgO), the micro-granular nickel oxide that was created on the surface of the nickel metal substrate depended on pH, as determined by cyclic voltammetry. Most of the crystallites of the precipitates comprised a mixed phase of β-Ni(OH)2, a theophrastite phase, and NiOOH, as revealed by XRD and SEM analyses. A current density of 1.25 mA cm-2 was effective in the EC of boron, and increasing the concentration of boric acid from 10 to 100 mg L-1 did not greatly impair removal efficiency. A kinetic investigation revealed that the reaction followed a pseudo-second order rate model. The optimal conditions under which 99.2% of boron was removed from treated wastewater with 10 mg L-1-B, leaving less than 0.1 mg L-1-B in the electrolyte, were pH 8 and 1.25 mA cm-2 for 120 min.
Collapse
Affiliation(s)
- Danis Kartikaningsih
- Department of Chemical Engineering, National Cheng-Kung University, Tainan 701, Taiwan
| | - Yao-Hui Huang
- Department of Chemical Engineering, National Cheng-Kung University, Tainan 701, Taiwan
| | - Yu-Jen Shih
- Department of Chemical Engineering, National Cheng-Kung University, Tainan 701, Taiwan.
| |
Collapse
|