1
|
Moura DS, Pestana CJ, Moffat CF, Gkoulemani N, Hui J, Irvine JTS, Lawton LA. Toxic effects of fluoxetine-loaded onto virgin or aged polypropylene, polyamide and polyvinyl chloride microparticles on Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137645. [PMID: 39970646 DOI: 10.1016/j.jhazmat.2025.137645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/29/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
There is an increasing recognition that microplastics can act as a vector for micropollutants when co-occurring in the environment and that pollutant-loaded microplastics can become integral to food-webs. To evaluate whether fluoxetine-loaded microplastics can act as a vector for fluoxetine to enter the food chain, a toxicity assay with Daphnia magna neonates was performed. This study evaluated the fluoxetine availability when adsorbed onto virgin or aged polypropylene, polyamide, and polyvinyl chloride (PVC). Results demonstrated that fluoxetine-loaded microplastics displayed toxic effects for all microplastic types, with varying toxicity depending on plastic type and weathering. D. magna ingested microplastics in all experiments that microplastics were present, but survival rates were not significantly affected by microplastics alone. Neonate mortality did not correlate with the adsorption/desorption capacity of the microplastics. Fluoxetine showed the highest adsorption on virgin and aged polypropylene (83-98 %), followed by aged polyamide (25-68 %) and PVC (38-90 %). While negligible desorption occurred with polypropylene, polyamide and PVC exhibited up to 20 % desorption. However, higher mortality was observed with fluoxetine-loaded virgin polypropylene (30 %), polyamide (40 %), and PVC (35 %) compared to aged particles (0-10 %). The results indicate that microplastic can enter the food-chain and act as a vector for pollutants, exhibiting hazardous effects to wildlife.
Collapse
Affiliation(s)
- Diana S Moura
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK.
| | - Carlos J Pestana
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Colin F Moffat
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Nikoletta Gkoulemani
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Scotland KY16 9ST, UK
| | - Jianing Hui
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Scotland KY16 9ST, UK
| | - John T S Irvine
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Scotland KY16 9ST, UK
| | - Linda A Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| |
Collapse
|
2
|
Tao S, Feng S, Chen Y, Duan T, Liu Z, Li L, Yun R, Chilouch C. The Impact of Microplastics on Adsorption of Chlorophenols by River-Suspended Sediments. ENVIRONMENTAL MANAGEMENT 2025; 75:1401-1415. [PMID: 40274612 DOI: 10.1007/s00267-025-02169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025]
Abstract
Although microplastics (MPs) are widely recognized as carriers of environmental pollutants, their impact on the adsorption behavior of chlorophenols (CPs) by river-suspended sediments (SS) remains poorly understood. This study systematically investigated the effects of three common MPs (PVC, PS, and PE) on the adsorption of 4-chlorophenol (MCP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) by SS from the Yellow River. Adsorption isotherms revealed that PVC significantly promoted CP adsorption, fitting well with the Langmuir model (R² > 0.95), whereas PS and PE showed better agreement with the Freundlich model (R² > 0.96). The enhancement effect varied with MP type and CP species, with PVC demonstrating the most pronounced promotion (65% increase for 2,4,6-TCP). Conversely, PS and PE hindered 2,4-DCP adsorption due to its higher partition coefficient in SS (36.83 ± 6.3 L/kg) compared to MPs (1.85 ± 0.01 L/kg for PS and 2.03 ± 0.05 L/kg for PE). Environmental factor analysis revealed that ionic strength exerted dual effects by initially enhancing CP adsorption through reduced solubility and later inhibiting it via electrostatic repulsion. Humic acid (HA) promoted TCP adsorption but inhibited DCP adsorption through aggregation and dispersal mechanisms on SS surfaces. Acidic conditions (pH 2-6) significantly enhanced CP adsorption by maintaining their molecular states, while alkaline conditions reduced adsorption due to electrostatic repulsion. Mechanistically, MPs altered SS surface properties and formed aggregates that either facilitated or competed for CP adsorption sites. This study provides a theoretical basis for ecological risk assessment of combined microplastic-pollutant contamination in sediment-laden rivers.
Collapse
Affiliation(s)
- Shiqi Tao
- School of Water and Environment, Chang'an University, Middle South Second Ring Road Xi'an, 710061, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China
| | - Simin Feng
- School of Water and Environment, Chang'an University, Middle South Second Ring Road Xi'an, 710061, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China
| | - Yuyun Chen
- School of Water and Environment, Chang'an University, Middle South Second Ring Road Xi'an, 710061, Xi'an, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China.
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China.
| | - Ting Duan
- School of Water and Environment, Chang'an University, Middle South Second Ring Road Xi'an, 710061, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China
| | - Zengyu Liu
- School of Water and Environment, Chang'an University, Middle South Second Ring Road Xi'an, 710061, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China
| | - Ling Li
- School of Water and Environment, Chang'an University, Middle South Second Ring Road Xi'an, 710061, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China
| | - Rongrong Yun
- School of Water and Environment, Chang'an University, Middle South Second Ring Road Xi'an, 710061, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China
| | - Chayma Chilouch
- School of Water and Environment, Chang'an University, Middle South Second Ring Road Xi'an, 710061, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China
| |
Collapse
|
3
|
Ali Ahmad F, Salam DA. Adsorption behavior of crude oil hydrocarbons on polyethylene microplastics in batch experiments. MARINE POLLUTION BULLETIN 2025; 215:117832. [PMID: 40112646 DOI: 10.1016/j.marpolbul.2025.117832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
This study examines the impact of microplastics on the fate of spilled crude oil in water. Batch adsorption experiments were conducted using polyethylene microplastics ranging in size between 300 and 600 μm. Environmentally relevant concentrations of crude oil and microplastics were tested. Samples processing involved liquid-liquid extraction (LLE) followed by quantitative analysis using Gas-Chromatography coupled to Mass Spectrometry. Kinetic analyses employed the most commonly used models in microplastic adsorption studies, including the pseudo-first order, pseudo second-order, Elovich, and intra-particle diffusion models. Results mainly conformed to the Elovich model, followed by the pseudo-second order model, suggesting chemisorption. Isotherm evaluations involved the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models, selected for their effectiveness in describing the behavior of microplastics in adsorption studies. These models revealed diverse behaviors: alkanes from nC11-nC21 conformed to the Freundlich isotherm, suggesting multilayer adsorption. While nC10, nC27-nC29, nC33, and nC34 were best described by the Langmuir model, and nC22-nC26 and nC30-nC32 adhered to the Temkin model, both indicative of monolayer adsorption. Notably, nC35 adsorption was best described by the Dubinin-Radushkevich model. The different PAHs exhibited preferences for either the Freundlich or the Langmuir model. The maximum adsorption capacities of the contaminants onto polyethylene were 263.12 and 101.57 mg.g-1 for the targeted alkanes and PAHs, respectively, corresponding to a maximum adsorption of 5.75 mg of targeted hydrocarbons per m2 of polyethylene. The study highlighted the potential role of microplastics in influencing the environmental fate of selected crude oil hydrocarbons and provided insights into their interaction and partitioning behavior in water.
Collapse
Affiliation(s)
- Farah Ali Ahmad
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
| | - Darine A Salam
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
| |
Collapse
|
4
|
García-Pimentel MM, Moltó V, Fernández-Galindo B, Campillo JA, León VM. Sorption and dissipation of current-use pesticides and personal-care products on high-density polyethylene microplastics in seawater. ENVIRONMENTAL RESEARCH 2025; 280:121887. [PMID: 40404087 DOI: 10.1016/j.envres.2025.121887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/24/2025]
Abstract
Sorption kinetics and the desorption of three current-use pesticides (CUPs: methyl-chlorpyrifos - m-CPF -, pendimethalin and propyzamide) and three personal-care products (PCPs: triclosan - TCS-, tonalide and galaxolide) on high-density polyethylene (HDPE) in seawater were characterised in this study. Sorption kinetic equilibrium and mass balance were determined for all contaminants, evidencing simultaneous dissipation processes (degradation, volatilization, etc.) after 72 h, particularly for propyzamide, pendimethalin, galaxolide and tonalide. However, they were lower than 24 % for TCS and m-CPF, getting the steady-state for all considered analytes in 24 h. The concentration of contaminants sorbed on HDPE increased with the hydrophobicity from 13.9 ng g-1 to 35.1 ng g-1 for m-CPF and TCS, respectively. No clear effect of temperature was observed for m-CPF sorption, and apparently the sorption of TCS was higher at 15 °C than at 25 °C, but it can be affected by the higher dissipation at 25 °C for this compound. This study confirmed the desorption of TCS and m-CPF from HDPE, being higher than 30 % in all cases during the first 24 h, especially for the highest tested concentrations (200 ng L-1). Sorption of TCS and m-CPF were favoured (4-7 times) on HDPE with the highest specific surface (estimated in an increase of 49-fold times).
Collapse
Affiliation(s)
- M M García-Pimentel
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Spain, Apdo. 22, C/ Varadero 1, 30740, San Pedro del Pinatar, Murcia, Spain.
| | - V Moltó
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Spain, Apdo. 22, C/ Varadero 1, 30740, San Pedro del Pinatar, Murcia, Spain
| | - B Fernández-Galindo
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Spain, Apdo. 22, C/ Varadero 1, 30740, San Pedro del Pinatar, Murcia, Spain
| | - J A Campillo
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Spain, Apdo. 22, C/ Varadero 1, 30740, San Pedro del Pinatar, Murcia, Spain
| | - V M León
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Spain, Apdo. 22, C/ Varadero 1, 30740, San Pedro del Pinatar, Murcia, Spain.
| |
Collapse
|
5
|
Yang N, Yang S. Mechanistic insights into sludge inorganics suppressing methane yield through organic-inorganic interactions during anaerobic digestion. BIORESOURCE TECHNOLOGY 2025; 432:132659. [PMID: 40360029 DOI: 10.1016/j.biortech.2025.132659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025]
Abstract
High inorganic content poses a significant challenge to the anaerobic digestion of sludge. This study elucidates the impact of sludge inorganics on anaerobic digestion by correlating the binding mechanisms with the biodegradability of organics. The results show that sludge inorganics (SiO2, FeCl2, Fe2O3, Al2O3, Al2SiO5, and metal carbonates) have good acid-base buffering capacity and can provide a stable acid-base environment for microorganisms. However, small particle size organics enter the pores of minerals, adhere to sludge inorganics, and undergo hydrogen bonding, van der Waals forces, ligand exchanges, Ca2+ bridging, and electrostatic interactions with inorganics, making it more difficult for microorganisms to utilize. Inorganics can also obstruct electron transfer between microorganisms, leading to a 42.1 % ± 1.5 % decrease in cumulative methane production and a 54.6 % ± 5.7 % decrease in methane production rate during anaerobic digestion. The study elucidates the effect of sludge inorganics on anaerobic digestion, thus providing theoretical guidance for subsequent enhancement of anaerobic digestion efficiency.
Collapse
Affiliation(s)
- Ning Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shucheng Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
6
|
Zhang D, Li J, Sun C, Manullang CY, Yin J, Cao W, Jiang F. Interface adsorption characteristics of microplastics on multiple morphological arsenic compounds. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137234. [PMID: 39904163 DOI: 10.1016/j.jhazmat.2025.137234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
Polystyrene (PS) and polyethylene terephthalate (PET) are commonly used materials that degrade into microplastics in the environment. These microplastics, possessing unique physical properties, can adsorb pollutants and contribute to composite pollution effects. This study examined the loading characteristics and toxic effects of PS and PET on six arsenic compounds, revealing that PS and PET displayed different adsorption capacities for these compounds, with PS demonstrating high adsorption for monomethylarsonic acid (MMA). The adsorption kinetics and isotherm analyses indicated that arsenic compounds quickly reached equilibrium on PS and PET. The kinetics were effectively described by pseudo-first-order models, and the isotherms aligned with the Langmuir and Freundlich models. Furthermore, simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) were used to desorb arsenic compounds bound to PS and PET. The effects of aging, pH, salinity, anions, and humic acid (HA) on the ability of inorganic arsenic (iAs) to bind to PS and PET were analyzed. The results indicated that aging and HA increased the adsorption capacity of the microplastics, while salinity, anions, and elevated pH negatively affected this capacity. Additionally, the influence of microplastics and iAs on the clearance of free radicals by reduced glutathione (GSH) was explored. Microplastics inhibited the clearance of 1,1-diphenyl-2-picryl-hydrazyl (DPPH) by GSH, whereas iAs, especially arsenate, facilitated this process, likely due to synergistic effects with the oxidized form of GSH generated through GSH reactions. This study offers a theoretical foundation for understanding how microplastics transport various forms of arsenic compounds and their potential environmental risks.
Collapse
Affiliation(s)
- Di Zhang
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jingxi Li
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Chengjun Sun
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Corry Yanti Manullang
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok 16424, Indonesia
| | - Jiaxuan Yin
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Wei Cao
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Fenghua Jiang
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
7
|
Xu Q, Li H, Li S, Li Z, Chen S, Liang Y, Li Y, Li J, Yuan M. Impact of Microplastics on Ciprofloxacin Adsorption Dynamics and Mechanisms in Soil. TOXICS 2025; 13:294. [PMID: 40278610 PMCID: PMC12030773 DOI: 10.3390/toxics13040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
The co-occurrence of microplastics (MPs) and antibiotics as emerging contaminants demonstrates significant ecological perturbations in soil matrices. Of particular scientific interest is the potential for MPs to mediate the environmental fate and transport dynamics of co-existing antibiotics. This study investigated MP-mediated ciprofloxacin (CIP) adsorption in lateritic soils. Batch experiments with polyethylene (PE), polypropylene (PP), and poly (ethylene-terephthalate) (PET) revealed soil components dominated CIP retention, while 10% (w/w) MPs reduced soil adsorption capacity by ≥10.8%, with inhibition intensity following PET > PE > PP. Adsorption thermodynamics exhibited significant pH dependence, achieving maximum sorption efficiency at pH 5.0 (± 0.2), which was approximately 83%. Competitive adsorption analysis demonstrated inverse proportionality between ionic strength and CIP retention, with trivalent cations exhibiting superior competitive displacement capacity compared to mono- and divalent counterparts. Isothermal modeling revealed multilayer adsorption mechanisms governed by hybrid chemisorption/physisorption processes in both soil and MP substrates. Spectroscopic characterization suggested differential adsorption pathways: MP-CIP interactions were primarily mediated through hydrophobic partitioning and π-π electron coupling, while soil-MP composite systems exhibited dominant cation exchange capacity and surface complexation mechanisms. Notably, electrostatic attraction/repulsion forces modulated adsorption efficiency across all experimental conditions, particularly under varying pH regimes. This work advances understanding of co-contaminant dynamics in soil ecosystems, informing risk assessment frameworks.
Collapse
Affiliation(s)
- Qian Xu
- Department of Environmental Science, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China; (Q.X.); (H.L.); (Z.L.); (S.C.); (Y.L.); (Y.L.); (J.L.); (M.Y.)
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Hanbing Li
- Department of Environmental Science, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China; (Q.X.); (H.L.); (Z.L.); (S.C.); (Y.L.); (Y.L.); (J.L.); (M.Y.)
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Sumei Li
- Department of Environmental Science, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China; (Q.X.); (H.L.); (Z.L.); (S.C.); (Y.L.); (Y.L.); (J.L.); (M.Y.)
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Ziyi Li
- Department of Environmental Science, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China; (Q.X.); (H.L.); (Z.L.); (S.C.); (Y.L.); (Y.L.); (J.L.); (M.Y.)
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
- Meteorological Bureau of Haidian District, Beijing 100080, China
| | - Sha Chen
- Department of Environmental Science, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China; (Q.X.); (H.L.); (Z.L.); (S.C.); (Y.L.); (Y.L.); (J.L.); (M.Y.)
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Yixuan Liang
- Department of Environmental Science, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China; (Q.X.); (H.L.); (Z.L.); (S.C.); (Y.L.); (Y.L.); (J.L.); (M.Y.)
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Yuyang Li
- Department of Environmental Science, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China; (Q.X.); (H.L.); (Z.L.); (S.C.); (Y.L.); (Y.L.); (J.L.); (M.Y.)
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Jianan Li
- Department of Environmental Science, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China; (Q.X.); (H.L.); (Z.L.); (S.C.); (Y.L.); (Y.L.); (J.L.); (M.Y.)
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Mengxin Yuan
- Department of Environmental Science, College of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China; (Q.X.); (H.L.); (Z.L.); (S.C.); (Y.L.); (Y.L.); (J.L.); (M.Y.)
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
8
|
Wang S, Liu J, Kang R, Liu Y, Zhao X, Wang L, Wu Z, Lei Y, Li J. Effect of polystyrene micro/nanoplastics on PCBs removal in constructed wetlands planted with Myriophyllum aquaticum. ENVIRONMENTAL RESEARCH 2025; 269:120887. [PMID: 39828187 DOI: 10.1016/j.envres.2025.120887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The co-occurrence of microplastics (MPs) and nanoplastics (NPs) with polychlorinated biphenyls (PCBs) is an emerging environmental concern. Wetland plants, with their unique anaerobic-aerobic environments, offer a promising approach for PCBs removal. However, the impact of MPs and NPs on PCBs dynamics in constructed wetlands is not well understood. This study examined the influence of polystyrene MPs and NPs of two different sizes on PCBs fate in constructed wetlands featuring Myriophyllum aquaticum. Results showed that although there was no significant difference in overall PCBs removal rates, the presence of MPs increased residues of highly chlorinated PCBs from 331 μg/kg to 379 μg/kg, while the presence of NPs increased residues of lightly chlorinated PCBs from 125 μg/kg to 153 μg/kg. Additionally, MPs and NPs increased plant uptake of PCBs from 0.08% to 0.10-0.14%, despite potential inhibition of plant growth. While MPs/NPs elevated microorganism counts, they did not affect microbial diversity or community structure. Importantly, MPs significantly inhibited the main PCB-dechlorinating bacteria (Dehalococcoidia) and had a greater impact on PCB-degrading enzymes (dioxygenase, K03381) compared to NPs. This study highlights the complex interactions between MPs/NPs and PCBs in wetland environments and their implications for bioremediation strategies.
Collapse
Affiliation(s)
- Shuang Wang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Jun Liu
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Rongjie Kang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Ya Liu
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Xuan Zhao
- College of Architecture and Civil Engineering, Kunming University, Kunming 650214, China
| | - LiTing Wang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Zhaocheng Wu
- Guangdong Agribusiness Tropical Agriculture Institute Co., Ltd, China
| | - Yan Lei
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China.
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
9
|
Sankoda K, Saito K. Effect of sunlight aging on physicochemical properties and sorption capacities of environmental microplastics: implications for contamination by PAHs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7085-7094. [PMID: 40038166 DOI: 10.1007/s11356-025-36138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/14/2025] [Indexed: 03/06/2025]
Abstract
This study investigates the effects of ultraviolet (UV) aging on the physicochemical properties and adsorption capacity of three plastics commonly detected in the environment: polyethylene (PE), polypropylene (PP), and polystyrene (PS). One set of plastic samples was exposed to Xe-based simulated sunlight for up to 5 days and another set to outdoor conditions for up to 69 days. The physicochemical properties and ability of the pristine and aged plastic particles to adsorb pyrene, a representative polycyclic aromatic hydrocarbon (PAH), are evaluated. For the outdoor-exposed PP and PS samples, distinct Fourier transform infrared peaks related to carbonyl groups are detected. The adsorption coefficients of pyrene after 72 h of agitation in PE and PP samples aged via 69 days of outdoor exposure are 2.9 and 3.5 times higher compared with that in the respective pristine samples. This increase in adsorption capacity is probably attributed to these plastics undergoing changes in surface properties, including embrittlement. The findings indicate that the accumulation of PAHs on microplastics is accelerated on aged material surfaces, emphasizing the need for further studies under conditions that simulate natural sunlight exposure.
Collapse
Affiliation(s)
- Kenshi Sankoda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-Shi, Toyama, 939-0398, Japan.
| | - Koki Saito
- Department of Environmental and Civil Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-Shi, Toyama, 939-0398, Japan
| |
Collapse
|
10
|
Nadarajah K, Jeganathan Y, Ramakrishnan SL, Bandala ER. Understanding the interaction between selected microplastics and the toxic dye "Congo red" in water. CHEMOSPHERE 2025; 372:144097. [PMID: 39862652 DOI: 10.1016/j.chemosphere.2025.144097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/01/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
This study thoroughly investigated the adsorption of Congo Red (CR) dye onto various microplastics (MPs), including high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP) and polyethylene terephthalate (PET). Initial adsorption capacities (qe) revealed that HDPE had the highest value (21.90 mg/g), followed by PVC (4.2 mg/g), LDPE (3.7 mg/g), PP (3.1 mg/g) and PET (2.8 mg/g). Based on these findings, HDPE and PVC were selected for detailed analysis. Adsorption experiments were conducted under controlled conditions: CR concentration of 100 mg/L, adsorbent dosage of 2 g/L, pH of 5, and temperature of 303 K. Isotherm studies indicated that HDPE followed the Freundlich model (R2 - 0.99), while PVC was best described by the Redlich-Peterson model (R2 - 0.97). Kinetic analysis showed that HDPE adhered to the Bangham model (reliable ((R2 = 0.9267, 0.950, 0.988, and 0.988) R2 values obtained for all the concentrations), highlighting pore-filling mechanisms. The conclusion, supported by FTIR analysis, indicates no significant changes in HDPE's functional groups after the adsorption. In contrast, PVC followed a pseudo-second order kinetic model (reliable R2 values (0.999, 0.765, 0.956, 0.972) obtained for all the concentrations), suggesting chemisorption, confirmed by FTIR changes in the C-Cl bonds. The optimal pH for adsorption was 5 for HDPE and 4 for PVC. Both processes were exothermic with intraparticle and film diffusion identified as rate-limiting steps. Maximum adsorption capacities (qmax) were 110.1 mg/g for HDPE and 8.1 mg/g for PVC. Desorption experiments were conducted only for HDPE due to PVC's lower adsorption. The highest desorption for HDPE occurred at pH 4 (5.7 mg/L) with an adsorbent dosage of 2 g/L. This study underscores the dual environmental threat posed by MPs, which not only adsorb organic pollutants like CR but also release them under certain conditions. While this research advances our understanding of MPs as pollutant carriers, future work should focus on their desorption behavior in complex, real-world environments. Further studies on other organic pollutants and microplastic types in real wastewater systems are also recommended.
Collapse
Affiliation(s)
- Kannan Nadarajah
- Department of Agricultural Engineering, Faculty of Agriculture, University of Jaffna, Sri Lanka.
| | - Yanushiya Jeganathan
- Department of Agricultural Engineering, Faculty of Agriculture, University of Jaffna, Sri Lanka
| | - Shri Lasha Ramakrishnan
- Department of Agricultural Engineering, Faculty of Agriculture, University of Jaffna, Sri Lanka
| | | |
Collapse
|
11
|
Xu J, Zhang Y, Zi S, Zhang X, Qian Z, Liu J. Aging-mediated selective adsorption of antibiotics by tire wear particles: Hydrophobic and electrostatic interactions effects. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104482. [PMID: 39662238 DOI: 10.1016/j.jconhyd.2024.104482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Tire wear particles (TWPs), as a prevalent form of microplastic pollution in aquatic environments, have been shown to adsorb antibiotics, potentially exacerbating their toxic effects. This study provides a comprehensive analysis of the adsorption of ofloxacin (OFL), ciprofloxacin (CIP), sulfadiazine (SDZ), and tetracycline (TC) on TWPs that have undergone various aging processes, including cyclic freeze-thaw and ozone aging. We observed a significant increase in the specific surface area (SBET) of TWPs after aging, from an initial 2.81 ± 0.29 to 6.63 ± 0.16 m2/g for ozone-aged TWPs. This enhancement in surface area and pore volume led to a respective 1.36-fold and 28-fold increase in adsorption capacity for OFL and CIP, highlighting the substantial impact of aging on TWPs' adsorptive properties. Conversely, the adsorption of SDZ and TC was reduced post-aging, suggesting a complex interaction between antibiotic physicochemical properties and TWPs' surface characteristics. The pseudo-second-order model, indicating chemisorption interactions, effectively described the adsorption kinetics, with the Freundlich isotherm model capturing the adsorption behavior more accurately than the Langmuir model. Our findings underscore the critical role of hydrophobic and electrostatic interactions in the adsorption process, particularly for SDZ and TC. This study's results offer crucial insights into the environmental implications of TWPs, emphasizing the need for further research on their role in the transport and fate of antibiotics in aquatic ecosystems.
Collapse
Affiliation(s)
- Jiale Xu
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuting Zhang
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shaoxin Zi
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xuanqi Zhang
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhengtong Qian
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China; School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Jin Liu
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China; Key Laboratory of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang 110044, China; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China.
| |
Collapse
|
12
|
Megha KB, Anvitha D, Parvathi S, Neeraj A, Sonia J, Mohanan PV. Environmental impact of microplastics and potential health hazards. Crit Rev Biotechnol 2025; 45:97-127. [PMID: 38915217 DOI: 10.1080/07388551.2024.2344572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/30/2023] [Accepted: 02/23/2024] [Indexed: 06/26/2024]
Abstract
Microscopic plastic (microplastic) pollutants threaten the earth's biodiversity and ecosystems. As a result of the progressive fragmentation of oversized plastic containers and products or manufacturing in small sizes, microplastics (particles of a diameter of 5 mm with no lower limit) are used in medicines, personal care products, and industry. The incidence of microplastics is found everywhere in the air, marine waters, land, and even food that humans and animals consume. One of the greatest concerns is the permanent damage that is created by plastic waste to our fragile ecosystem. The impossibility of the complete removal of all microplastic contamination from the oceans is one of the principal tasks of our governing body, research scientists, and individuals. Implementing the necessary measures to reduce the levels of plastic consumption is the only way to protect our environment. Cutting off the plastic flow is the key remedy to reducing waste and pollution, and such an approach could show immense significance. This review offers a comprehensive exploration of the various aspects of microplastics, encompassing their composition, types, properties, origins, health risks, and environmental impacts. Furthermore, it delves into strategies for comprehending the dynamics of microplastics within oceanic ecosystems, with a focus on averting their integration into every tier of the food chain.
Collapse
Affiliation(s)
- K B Megha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - D Anvitha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - S Parvathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - A Neeraj
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - J Sonia
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| |
Collapse
|
13
|
Zou H, Song J, Luo X, Ali W, Li S, Xiong L, Chen Y, Yuan Y, Ma Y, Tong X, Liu Z. Cadmium and polyvinyl chloride microplastics induce mitochondrial damage and apoptosis under oxidative stress in duck kidney. Poult Sci 2025; 104:104490. [PMID: 39571196 PMCID: PMC11617461 DOI: 10.1016/j.psj.2024.104490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 12/08/2024] Open
Abstract
Polyvinyl chloride microplastics (PVC-MPs) and Cadmium (Cd) are widely occurring water pollutants that interact with each other to exert toxic effects. As a waterfowl, Muscovy duck is more susceptible to PVC-MPs and Cd than land poultry. In this study, Muscovy duck was used as a research model, and 10 mg/L PVC-MPs and 50 mg/kg Cd were used alone and in combine to explore the effect on the kidney of Muscovy duck. We found that treatment of Cd or PVC-MPs alone changed the kidney weight, increased creatinine and urea nitrogen content, and disrupted oxidative balance and macro/trace element metabolism, while the combination of PVC-MPs+Cd reduced the accumulation of Cd in the kidney. In addition, treatment of Cd and PVC-MPs alone caused mitochondrial damage, increase or decrease of mitochondria-associated proteins (Fis1, Drp1, PGC-1α, Nrf1), and Nrf2 signaling pathway plays a key role in detoxification and alleviation of oxidative stress, and we found that PVC-MPs+Cd treatment recovered related proteins (Nrf2, Keap-1, HO-1, NQO1, AC-SOD2, SOD2) compared with the Cd and PVC-MPs alone treatment. Finally, we detected changes in apoptosis-related proteins and genes (Caspase-3, Caspase-9, Bax, Bcl-2, Cytc) and TUNEL staining, and after PVC-MPs+Cd treatment, apoptosis-related proteins/genes recovered and the apoptosis rate decreased compared with the Cd and PVC-MPs alone treatment. These results indicate that renal function is impaired, oxidative stress and trace element metabolism disorder, nuclear factor-E2 related factor 2 (Nrf2) is activated into the nucleus to induce the expression of related antioxidant proteins (such as HO-1, NQO1). These injuries can induce mitochondrial damage and eventually lead to renal cell apoptosis. To sum up, these evidence show that Cd or PVC-MPs can induce kidney oxidative damage, trace element metabolism disorder, mitochondrial damage and apoptosis.
Collapse
Affiliation(s)
- Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China.
| | - Jie Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Xianzu Luo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Sifan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Ling Xiong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Xishuai Tong
- Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
14
|
Fröhlich E. Local and systemic effects of microplastic particles through cell damage, release of chemicals and drugs, dysbiosis, and interference with the absorption of nutrients. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:315-344. [PMID: 39324551 DOI: 10.1080/10937404.2024.2406192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Microplastic particles (MPs) have been detected in a variety of environmental samples, including soil, water, food, and air. Cellular studies and animal exposures reported that exposure to MPs composed of different polymers might result in adverse effects at the portal of entry (local) or throughout the body (systemic). The most relevant routes of particle uptake into the body are oral and respiratory exposure. This review describes the various processes that may contribute to the adverse effects of MPs. Only MPs up to 5 µm were found to cross epithelial barriers to a significant extent. However, MPs may also exert a detrimental impact on human health by acting at the epithelial barrier and within the lumen of the orogastrointestinal and respiratory tract. The potential for adverse effects on human health resulting from the leaching, sorption, and desorption of chemicals, as well as the impact of MPs on nutritional status and dysbiosis, are reviewed. In vitro models are suggested as a means of (1) assessing permeation, (2) determining adverse effects on cells of the epithelial barrier, (3) examining influence of digestive fluids on leaching, desorption, and particle properties, and (4) role of microbiota-epithelial cell interactions. The contribution of these mechanisms to human health depends upon exposure levels, which unfortunately have been estimated very differently.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| |
Collapse
|
15
|
Maja V, Sanja V, Tajana S, Branko K, Jelena MJ, Jasmina A, Aleksandra T. Assessing the interaction between 4-methylbenzylidene camphor and microplastic fibers in aquatic environments: Adsorption kinetics and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177383. [PMID: 39505040 DOI: 10.1016/j.scitotenv.2024.177383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/02/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Wastewater treatment plants play a crucial role in managing environmental pollutants, but they often release persistent contaminants like synthetic microplastic fibers (MPFs) into ecosystems. These microplastics, mainly from the textile industry and domestic washing of synthetic fabrics, are a major type of microplastic found in aquatic environments. Some harmful chemicals have an affinity for these microplastics, making them vectors for contaminants. This study investigates the adsorption of 4-methylbenzylidene camphor (4-MBC), an organic UV filter, onto microplastic fibers from two different sources. Batch experiments conducted at room temperature (25 °C) under laboratory conditions assessed the adsorption kinetics and mechanisms. Morphological and visual characterization of the microplastic fibers was done using optical microscopy and scanning electron microscopy (SEM), revealing diverse shapes, types, and colors. Physico-chemical properties were confirmed through thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR). The data matched well with the PSO kinetic model and Langmuir isotherm, indicating monolayer chemisorption with equilibrium achieved within 24 h. The adsorption mechanisms involved electrostatic attraction, hydrogen bonding, and π-π interactions. Both types of microplastic fibers exhibited a tendency to adsorb 4-MBC, indicating the significance of this research in understanding the interactions between this compound and various fiber types emphasizing the need for further research under the different environmental conditions.
Collapse
Affiliation(s)
- Vujić Maja
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia.
| | - Vasiljević Sanja
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Simetić Tajana
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Kordić Branko
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Molnar Jazić Jelena
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Agbaba Jasmina
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Tubić Aleksandra
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| |
Collapse
|
16
|
Yang J, Ji W, Li Y, Wu Y, Yao M, Wu W, Jing K, Zhang G. Adsorption behavior and quantum chemical analysis of surface functionalized polystyrene nano-plastics on gatifloxacin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63287-63300. [PMID: 39480581 DOI: 10.1007/s11356-024-35457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
In this paper, the adsorption of gatifloxacin (GAT) by three types of polystyrene nano-plastics (PSNPs), including 400 nm polystyrene (PS), amino-modified PS (PS-NH2), and carboxyl-modified PS (PS-COOH) was studied and the adsorption mechanism were assessed. Experimental findings revealed that the equilibrium adsorption capacity of PSNPs to GAT followed the order PS-NH2 > PS-COOH > PS. The adsorption was regulated by both physical and chemical mechanisms, with intra-particle and external diffusion jointly controlling the adsorption rate. The adsorption process was heterogeneous, spontaneous, and entropy-driven. Sodium chloride (NaCl), alginic acid, copper ions (Cu2+), and zinc ions (Zn2+) inhibited adsorption, with Cu2+ and Zn2+ having the strongest effect on PS-NH2. Theoretical computations indicated that π-π and electrostatic interactions dominated PS adsorption of GAT, while PS-COOH and PS-NH2 adsorbed GAT through electrostatic interactions, hydrogen bonds, and van der Waals (vdW) forces. The surface electrostatic potential of PS-COOH and PS-NH2 was considerably higher than that of PS, with the maximum vdW penetration distance of GAT-PS-NH2 being 1.20 Å. This study's findings provide a theoretical foundation for the migration and synergistic removal of antibiotics, micro-plastics (MPs), and nano-plastics (NPs).
Collapse
Affiliation(s)
- Jie Yang
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Wei Ji
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Yanan Li
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China.
| | - Yaning Wu
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Meijing Yao
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Weiqin Wu
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Kangjian Jing
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | | |
Collapse
|
17
|
Nikić J, Watson M, Jokić Govedarica J, Vujić M, Pešić J, Rončević S, Agbaba J. Adsorption Performance of Fe-Mn Polymer Nanocomposites for Arsenic Removal: Insights from Kinetic and Isotherm Models. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5089. [PMID: 39459794 PMCID: PMC11509112 DOI: 10.3390/ma17205089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Global concern over arsenic contamination in drinking water necessitates innovative and sustainable remediation technologies. This study evaluates the adsorption performance of Fe-Mn binary oxide (FMBO) nanocomposites developed by coating polyethylene (PE) and polyethylene terephthalate (PET) with FMBO for the removal of As(III) and As(V) from water. Adsorption kinetics were rapid, with equilibrium achieved within 1-4 h depending on the material and pH. PET-FMBO and FMBO exhibited faster rates and higher arsenic removal (up to 96%) than PE-FMBO. Maximum As(III) adsorption capacities ranged from 4.76 to 5.75 mg/g for PE-FMBO, 7.2 to 12.0 mg/g for PET-FMBO, and up to 20.8 mg/g for FMBO, while capacities for As(V) ranged from 5.20 to 5.60 mg/g, 7.63 to 18.4 mg/g, and up to 46.2 mg/g, respectively. The results of the Dubinin-Radushkevich isotherm model, with free energy (Ea) values exceeding 16 kJ/mol, suggest chemisorption is the dominant mechanism, which is supported by the kinetics data. Given the effective removal of As(III), chemisorption likely proceeds through ligand exchange during the Mn oxide-mediated oxidation of As(III) and complexation with hydroxyl groups on the nanocomposite. These findings highlight the strong potential of Fe-Mn polymer nanocomposites, particularly PET-FMBO, for efficient arsenic removal during practical water treatment applications.
Collapse
Affiliation(s)
| | - Malcolm Watson
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (J.N.); (J.J.G.); (M.V.); (J.P.); (S.R.); (J.A.)
| | | | | | | | | | | |
Collapse
|
18
|
Liu C, Zhao Z, Sui J, Ma H, Zhu L, Jiang H, Zhou R, Wang S, Dai Y. The Sword of Damocles: Microplastics and the molecular dynamics of sulfamonomethoxine revealed. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117058. [PMID: 39299208 DOI: 10.1016/j.ecoenv.2024.117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
In recent years, the environmental impact of microplastics (MPs) and antibiotics (ATs) as pollutants cannot be ignored. In order to evaluate the carrier effect of MPs in the aqueous environment, three MPs, polyamide (PA), polyethylene (PE) and polyethylene terephthalate (PET), were selected in this study, and their structures were analyzed by means of characterization. A preliminary description of their interactions with sulfamonomethoxine was carried out by adsorption kinetics and isotherm fitting. The dominance of non-bonding capacity (van der Waals and electrostatic interaction forces) in the adsorption process was demonstrated using molecular dynamics (MD) simulations and density functional theory (DFT), with the interaction strengths ranked as PA > PE > PET, respectively. PA is less adsorbent stable at the molecular level but exhibits the largest adsorption capacity influenced by the characterized structure and multiple interaction forces. PET possesses a stronger stability and is not easily replaced by other substances. This will help to further understand the complex effect mechanism between MPs and organic pollutants, and provide an important reference for the prevention and control of environmental pollution.
Collapse
Affiliation(s)
- Chunrui Liu
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Zitong Zhao
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Jia Sui
- College of Life Sciences, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Haoran Ma
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Liya Zhu
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Huating Jiang
- School of Environmental Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Ruyi Zhou
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Shiyao Wang
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Yingjie Dai
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China.
| |
Collapse
|
19
|
Wang X, Li J, Pan X. How micro-/nano-plastics influence the horizontal transfer of antibiotic resistance genes - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173881. [PMID: 38871331 DOI: 10.1016/j.scitotenv.2024.173881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Plastic debris such as microplastics (MPs) and nanoplastics (NPTs), along with antibiotic resistance genes (ARGs), are pervasive in the environment and are recognized as significant global health and ecological concerns. Micro-/nano-plastics (MNPs) have been demonstrated to favor the spread of ARGs by enhancing the frequency of horizontal gene transfer (HGT) through various pathways. This paper comprehensively and systematically reviews the current study with focus on the influence of plastics on the HGT of ARGs. The critical role of MNPs in the HGT of ARGs has been well illustrated in sewage sludge, livestock farms, constructed wetlands and landfill leachate. A summary of the performed HGT assay and the underlying mechanism of plastic-mediated transfer of ARGs is presented in the paper. MNPs could facilitate or inhibit HGT of ARGs, and their effects depend on the type, size, and concentration. This review provides a comprehensive insight into the effects of MNPs on the HGT of ARGs, and offers suggestions for further study. Further research should attempt to develop a standard HGT assay and focus on investigating the impact of different plastics, including the oligomers they released, under real environmental conditions on the HGT of ARGs.
Collapse
Affiliation(s)
- Xiaonan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou 310015, China; School of Environment Science and Spatial Information, China University of Mining and Technology, Xuzhou 221116, China; Shaoxing Research Institute of Zhejiang University of Technology, Shaoxing 312000, China
| | - Jiahao Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
20
|
Wang C, Liu X, Ma Q, Xing S, Yuan L, Ma Y. Distribution and effects of microplastics as carriers of heavy metals in river surface sediments. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104396. [PMID: 39047425 DOI: 10.1016/j.jconhyd.2024.104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/16/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
There are few studies on microplastics (MPs) in urban river sediments compared to oceans, soils, and even rivers. In this study, the seasonal abundance of MPs, as well as their influencing factors on heavy metal adsorption in river sediments of the Ancient Canal of Zhenjiang City, China, were investigated for the first time. Through on-site sampling, microscopic observation, Raman spectroscopy, scanning electron microscopy, and high-temperature digestion, the abundance, shape, color, particle size, type, and surface characteristics of MPs in Ancient Canal sediments in different seasons, as well as the influencing factors of MPs as heavy metal carriers in different seasons, were analyzed. The results showed that the average abundance of MPs is 2049.09 ± 883.78 and 2216.36 ± 826.21 items kg-1 dry sediments in summer and winter, respectively, and different sites change significantly. In addition, particle sizes, types, colors, and shapes of MPs exhibited seasonal variations. Four MPs shapes were mainly observed: fibers, fragments, particles, and films. Among them, MPs in summer sediments are mainly fiber, and MPs in winter sediments are mainly particles. In the sediment in summer and winter, transparent MPs and small-size (<0.5 mm) MPs are the main ones, where the abundance of MPs decreased with increasing MPs size. The main MPs species are polyvinyl chloride (PVC), polystyrene (PS), polypropylene (PP), polyethylene terephthalate (PET), polycarbonate (PC), and polyethylene (PE), with PP being the predominant MPs in the sediments in different seasons. Scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) revealed that the surfaces of the MPs were characterized by rough, porous, cracked, and torn, with the attachment of various heavy metal elements, and all of the heavy metal elements accumulated to different degrees on the MPs. There was a significant positive correlation (p < 0.05) between the Mn content in the MPs and the Mn content in the sediments in winter, suggesting that the Mn in the MPs in winter may be derived from the sediments. In addition, the type, shape, size, and color of MPs affect the adsorption capacity of heavy metals. Most of the adsorption of MPs on Pb showed a significant negative correlation, and the adsorption of MPs on Cr, Zn, Cu, Cd, and Mn showed a significant positive correlation. MPs can be used as carriers of heavy metals, which will further enhance the hazards of living organisms and pose a potential threat to the safety of the urban river environment.
Collapse
Affiliation(s)
- Changyuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province 210014, China; National Agricultural Experiment Station for Agricultural Environment, Luhe, Nanjing 210014, China
| | - Xin Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qianqian Ma
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shuyu Xing
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lubin Yuan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yan Ma
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province 210014, China; National Agricultural Experiment Station for Agricultural Environment, Luhe, Nanjing 210014, China.
| |
Collapse
|
21
|
He J, Zhang H, Yang R, Jin J, Huang M, Qin Y, Dong G, Yang F, Yang Y. Analysis of the Adsorption Behavior of Phenanthrene on Microplastics Based on Two-Dimensional Correlation Spectroscopy. APPLIED SPECTROSCOPY 2024:37028241267326. [PMID: 39095054 DOI: 10.1177/00037028241267326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Microplastics (MPs), an emerging pollutant, widely co-occur with polycyclic aromatic hydrocarbons (PAHs) in the environment. Therefore, the interaction between MPs and PAHs has been the focus of much attention in recent years. In this study, three types of MPs, i.e., polypropylene, polystyrene, and poly(vinyl chloride), with the same main chain were selected as the adsorbents, with phenanthrene (PHE) as the representative PAHs. The adsorption mechanisms were explored from the perspective of the molecular spectral level using a combination of Fourier transform infrared spectroscopy (FT-IR) with a two-dimensional correlation technique. The adsorption kinetics results showed that the adsorption of PHE on the three MPs was dominated by chemisorption. However, the FT-IR analysis results indicated that no new covalent bond was created during the adsorption process. Based on the above research, a generalized two-dimensional (2D) correlation spectral technique was employed to investigate the sequence of functional group changes during the adsorption process for different MPs. Furthermore, the hybrid 2D correlation spectral technique explored the effect of side groups attached to the main chain molecules of MPs on adsorption. The results showed that for all three MPs, the functional groups in the side chain have a higher affinity for PHE, which is due to their higher hydrophobicity. This study provides a feasible way to analyze the adsorption of pollutants on MPs, and the results are important for understanding the adsorption interaction between PAHs and MPs in the aquatic environment.
Collapse
Affiliation(s)
- Jiyuan He
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Han Zhang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Renjie Yang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Jianmin Jin
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Minyue Huang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Yiyang Qin
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Guimei Dong
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Fan Yang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Yanrong Yang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
22
|
Yao J, Qian H, Yan Z, Zhao X, Gao N, Zhang Z. Insight into the effect of UVC-based advanced oxidation processes on the interaction of typical microplastics and their derived disinfection byproducts during disinfection. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134597. [PMID: 38759281 DOI: 10.1016/j.jhazmat.2024.134597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
The 10 µm polystyrene and polyethylene-terephthalate microplastics (MPs), prevalent in finished drink water, were employed to investigate the effect of normal dosage UVC-based advanced-oxidation-processes (UVC-AOPs) on the interaction between MPs and their derived disinfection-byproducts (DBPs) during subsequent chlorination-disinfection, in the presence of Br-, for the first time. The results indicated that UVC/H2O2 caused higher leaching of microplastic-derived dissolved-organic-matter (MP-DOM), with smaller and narrower molecular-weight-distribution than UVC and UVC/peroxymonosulfate (UVC/PMS). The trihalomethanes (as dominant DBPs) molar-formation-potentials (THMs-MFPs) for MP-DOM leached in different UVC-AOPs followed the order of UVC/H2O2>UVC/PMS>UVC. The adsorption of formed THMs, especially Br-THMs, back on MPs was observed in all MPs suspensions with or without UVC-AOPs pre-treatment. The Cl-THMs adsorption by MPs is more sensitive to UVC-AOPs than Br-THMs. The adsorption experiments showed that UVC-AOPs reduce the capacity but increase the rate of THMs adsorption by MPs, suggesting the halogen and hydrogen bonding forces governed the THMs adsorption rate while hydrophobic interaction determines their adsorption capacity. The UVC-AOPs pre-treatment sharply increased the total yield of THMs via both indirectly inducing MP-DOM leaching and directly increasing the THMs-MFPs of MPs by oxidation. 21.36-41.96% of formed THMs adsorbed back on the UVC-AOPs-pretreated MPs, which might increase the toxicity of MPs.
Collapse
Affiliation(s)
- Juanjuan Yao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China.
| | - Hanyang Qian
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China
| | - Zhihao Yan
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China
| | - Xiong Zhao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China
| |
Collapse
|
23
|
Shi J, Sun C, An T, Jiang C, Mei S, Lv B. Unraveling the effect of micro/nanoplastics on the occurrence and horizontal transfer of environmental antibiotic resistance genes: Advances, mechanisms and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174466. [PMID: 38964386 DOI: 10.1016/j.scitotenv.2024.174466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Microplastics can not only serve as vectors of antibiotic resistance genes (ARGs), but also they and even nanoplastics potentially affect the occurrence of ARGs in indigenous environmental microorganisms, which have aroused great concern for the development of antibiotic resistance. This article specifically reviews the effects of micro/nanoplastics (concentration, size, exposure time, chemical additives) and their interactions with other pollutants on environmental ARGs dissemination. The changes of horizontal genes transfer (HGT, i.e., conjugation, transformation and transduction) of ARGs caused by micro/nanoplastics were also summarized. Further, this review systematically sums up the mechanisms of micro/nanoplastics regulating HGT process of ARGs, including reactive oxygen species production, cell membrane permeability, transfer-related genes expression, extracellular polymeric substances production, and ARG donor-recipient adsorption/contaminants adsorption/biofilm formation. The underlying mechanisms in changes of bacterial communities induced by micro/nanoplastics were also discussed as it was an important factor for structuring the profile of ARGs in the actual environment, including causing environmental stress, providing carbon sources, forming biofilms, affecting pollutants distribution and environmental factors. This review contributes to a systematical understanding of the potential risks of antibiotic resistance dissemination caused by micro/nanoplastics and provokes thinking about perspectives for future research and the management of micro/nanoplastics and plastics.
Collapse
Affiliation(s)
- Jianhong Shi
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chaoli Sun
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Tingxuan An
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Changhai Jiang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Shenglong Mei
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, China.
| |
Collapse
|
24
|
Chen K, Chen L, Shao H, Li J, Wang H, Mao C, Xu G. Investigation into the characteristics of electron beam-aged microplastics and adsorption behavior of dibutyl phthalate. CHEMOSPHERE 2024; 360:142342. [PMID: 38754492 DOI: 10.1016/j.chemosphere.2024.142342] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Microplastics are increasingly prevalent in the environment, and their ability to adsorb various organic additives, posing harm to organisms, has attracted growing attention. Currently, there are no effective methods to age microplastics, and there is limited discussion on the subsequent treatment of aged microplastics. This study focuses on micro polyethylene (PE) and employs electron beam technology for aging treatment, investigating the adsorption and leaching behavior between PE and dibutyl phthalate (DBP) before and after aging. Experimental results indicate that with increasing doses of electron beam irradiation, the surface microstructure of PE worsens, inducing the generation of oxygen-containing functional groups on the surface of polyethylene. Comparative evaluations between electron beam aging and existing methods show that electron beam technology surpasses existing aging methods, achieving a level of aging exceeding 0.7 within an extremely short period of 1 min at doses exceeding 350 kGy. Adsorption experiments demonstrate that the adsorption between PE and DBP conforms to pseudo-second-order kinetics and the Freundlich model both before and after aging. The adsorption capacity of microplastics for DBP increases from 76.8 mg g-1 to 167.0 mg g-1 after treatment, exceeding that of conventional DBP adsorbents. Electron beam irradiation causes aging of microplastics mainly through the generation of ·OH, which lead to the formation of oxygen-containing functional groups on the microplastics' surface, thereby enhancing their adsorption capacity for DBP. This provides a new perspective for the degradation of aged microplastics and composite pollutants.
Collapse
Affiliation(s)
- Kang Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Haiyang Shao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China.
| | - Jiayuan Li
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Hongyong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Chengkai Mao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China; Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, 200444, PR China.
| |
Collapse
|
25
|
Li Y, Neema P, Andrews S. Adsorption Behavior and Mechanisms of Trihalomethanes onto Virgin and Weathered Polyvinyl Chloride Microplastics. TOXICS 2024; 12:450. [PMID: 39058102 PMCID: PMC11281136 DOI: 10.3390/toxics12070450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024]
Abstract
Microplastics that adsorb various toxic contaminants in water may be transported into cells and organs, possibly posing toxicological risks in the aquatic environment. Disinfection byproducts (DBPs), which are ubiquitous in chlorinated drinking water and wastewater, may have some potential to sorb onto microplastics (MPs) through hydrophobic or electrostatic interactions. However, DBP adsorption on microplastics has not yet been closely examined. This work investigated the adsorption behavior of trihalomethanes (THMs)-a regulated and ubiquitous DBP class in chlorinated water-onto virgin and weathered polyvinyl chloride (PVC) microplastics, the most widely used plastic material in drinking water distribution and sewer systems. A comparative analysis of kinetic and isotherm test results indicated that the adsorption mechanisms mainly involved hydrophobic interactions from a combination of weak and strong physisorption behavior and possibly chemisorption. The adsorption coefficients from all the models examined suggested that the adsorption of THMs, and perhaps chemically similar DBPs, onto virgin PVC microplastics can be 10-20 µg g-1. However, the weathered PVC microplastics contained more polar functional groups, which led to a decreased hydrophobicity and reduced THM adsorption capacity by approximately 10%. These findings offer novel insights into the possible adsorption characteristics of disinfection byproducts (DBPs) onto microplastics and will assist in targeting more toxic DBPs for future investigations.
Collapse
Affiliation(s)
- Yi Li
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada; (P.N.); (S.A.)
| | | | | |
Collapse
|
26
|
Zhao B, Chen F, Yao Q, Lin M, Zhou K, Mi S, Pan H, Zhao X. Toxicity effects and mechanism of micro/nanoplastics and loaded conventional pollutants on zooplankton: An overview. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106547. [PMID: 38739970 DOI: 10.1016/j.marenvres.2024.106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Micro/nanoplastics in aquatic environments is a noteworthy environmental problem. Zooplankton, an important biological group in aquatic ecosystems, readily absorb micro/nanoplastics and produce a range of toxic endpoints due to their small size. This review summarises relevant studies on the effects of micro/nanoplastics on zooplankton, including combined effects with conventional pollutants. Frequently reported adverse effects include acute/chronic lethal effects, oxidative stress, gene expression, energetic homeostasis, and growth and reproduction. Obstruction by plastic entanglement and blockage is the physical mechanism. Genotoxicity and cytotoxicity are molecular mechanisms. Properties of micro/nanoplastics, octanol/water partition coefficients of conventional pollutants, species and intestinal environments are important factors influencing single and combined toxicity. Selecting a wider range of micro/nanoplastics, focusing on the aging process and conducting field studies, adopting diversified zooplankton models, and further advancing the study of mechanisms are the outstanding prospects for deeper understanding of impacts of micro/nanoplastics on aquatic ecosystem.
Collapse
Affiliation(s)
- Bo Zhao
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Fang Chen
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Qiang Yao
- Ocean College, Hebei Agriculture University, Qinhuangdao, 066004, China.
| | - Manfeng Lin
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Kexin Zhou
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Shican Mi
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Haixia Pan
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Xin Zhao
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
27
|
Sun J, Su F, Chen Y, Wang T, Ali W, Jin H, Xiong L, Ma Y, Liu Z, Zou H. Co-exposure to PVC microplastics and cadmium induces oxidative stress and fibrosis in duck pancreas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172395. [PMID: 38608882 DOI: 10.1016/j.scitotenv.2024.172395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/20/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
PVC microplastics (PVC-MPs) are environmental pollutants that interact with cadmium (Cd) to exert various biological effects. Ducks belong to the waterfowl family of birds and therefore are at a higher risk of exposure to PVC-MPs and Cd than other animals. However, the effects of co-exposure of ducks to Cd and PVC-MPs are poorly understood. Here, we used Muscovy ducks to establish an in vivo model to explore the effects of co-exposure to 1 mg/L PVC-MPs and 50 mg/kg Cd on duck pancreas. After 2 months of treatment with 50 mg/kg Cd, pancreas weight decreased by 21 %, and the content of amylase and lipase increased by 25 % and 233 %. However, exposure to PVC-MPs did not significantly affect the pancreas. Moreover, co-exposure to PVC-MPs and Cd worsened the reduction of pancreas weight and disruption of pancreas function compared to exposure to either substance alone. Furthermore, our research has revealed that exposure to PVC-MPs or Cd disrupted mitochondrial structure, reduced ATP levels by 10 % and 18 %, inhibited antioxidant enzyme activity, and increased malondialdehyde levels by 153.8 % and 232.5 %. It was found that exposure to either PVC-MPs or Cd can induce inflammation and fibrosis in the duck pancreas. Notably, co-exposure to PVC-MPs and Cd exacerbated inflammation and fibrosis, with the content of IL-1, IL-6, and TNF-α increasing by 169 %, 199 %, and 98 %, compared to Cd exposure alone. The study emphasizes the significance of comprehending the potential hazards linked to exposure to these substances. In conclusion, it presents promising preliminary evidence that PVC-MPs accumulate in duck pancreas, and increase the accumulation of Cd. Co-exposure to PVC-MPs and Cd disrupts the structure and function of mitochondria and promotes the development of pancreas inflammation and fibrosis.
Collapse
Affiliation(s)
- Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Fangyu Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Hengqi Jin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Ling Xiong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
28
|
Yu Y, Tang N, Huang Y, Lu J, Wang W, Guo F, Yao W, Peng J. Study on the photoaging process and metal ion release of plastic films with two kinds of structures in marine environment: Aliphatic and aromatic polymers. MARINE POLLUTION BULLETIN 2024; 203:116474. [PMID: 38762936 DOI: 10.1016/j.marpolbul.2024.116474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/18/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
The prevalence of plastics in the oceans has significantly intensified microplastic pollution, contributing to broader marine secondary pollution issues. This paper examines how plastic structure affects the aging characteristics of plastics and the release of metal ions, to better understand this secondary source of marine pollution. This study simulate the photoaging of plastics in natural environments, focusing on aliphatic and aromatic polymers. The results showed that the photodegradation degree was higher for aliphatic than aromatic polymers. All polymers contained thirteen detectable metals, with their release increasing over time due to photoaging, The release dynamics of these metal ions correlated more strongly with the level of polymer degradation rather than with the polymer structure itself, adhering to a second-order kinetic model driven by surface and intraparticle diffusion processes. The results will help control and treat marine plastic pollution.
Collapse
Affiliation(s)
- Yuxuan Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Nian Tang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yihui Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jinqing Lu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Weiquan Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Fan Guo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Weike Yao
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China.
| | - Jinping Peng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
29
|
Okeke ES, Ezeorba TPC, Chen Y, Mao G, Feng W, Wu X. Association of tetrabromobisphenol A (TBBPA) with micro/nano-plastics: A review of recent findings on ecotoxicological and health impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172308. [PMID: 38599396 DOI: 10.1016/j.scitotenv.2024.172308] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Despite the diverse research into the environmental impact of plastics, several stones have yet to be unraveled in terms of their ecotoxicological potential. Moreover, their detrimental impacts have become terrifying in recent years as the understanding of their tendency to associate and form cohorts with other emerging contaminants grew. Despite the hypothesis that microplastics may potentially adsorb organic pollutants, sequestering and making them not bioavailable for enhanced toxicity, evidence with pollutants such as Tetrabromobisphenol A (TBBPA) defers this assertion. TBBPA, one of the most widely used brominated flame retardants, has been enlisted as an emerging contaminant of serious environmental and human health concerns. Being also an additive to plasticware, it is not far to suspect that TBBPA could be found in association with micro/nanoplastics in our environment. Several pieces of evidence from recent studies have confirmed the micro/nanoplastics-TBBPA association and have exposed their compounded detrimental impacts on the environment and human health. This study, therefore, presents a comprehensive and up-to-date review of recent findings regarding their occurrence, factors that foster their association, including their sorption kinetics and isotherms, and their impacts on aquatic/agroecosystem and human health. The way forward and prospects for future studies were presented. This research is believed to be of significant interest to the readership due to its relevance to current environmental challenges posed by plastics and TBBPA. The study not only contributes valuable insights into the specific interaction between micro/nanoplastics and TBBPA but also suggests the way forward and prospects for future studies in this field.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Timothy Prince Chidike Ezeorba
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
30
|
Hyodo N, Gan H, Ilangovan M, Kimura S, Kasuya KI, Isobe N, Iwata T. Coastal and deep-sea biodegradation of polyhydroxyalkanoate microbeads. Sci Rep 2024; 14:10302. [PMID: 38705904 PMCID: PMC11070421 DOI: 10.1038/s41598-024-60949-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
Microbeads find widespread usage in personal care items and cosmetics, serving as exfoliants or scrubbing agents. Their micro-scale size poses challenges in effective drainage capture and given their origin from non-biodegradable oil-based plastics, this contributes substantially to marine pollution. In this study, microbeads were prepared by a simple yet scalable melt homogenization method using four types of polyhydroxyalkanoates (PHA), namely poly[(R)-3-hydroxybutyrate] (P(3HB)), poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] (P(3HB-co-3HV)), poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] (P(3HB-co-3HHx)) and poly[(R)-3-hydroxybutyrate-co-(R)-4-hydroxyvalerate] (P(3HB-co-4HB)). Microbeads with different surface smoothness, compressive strength (6.2-13.3 MPa) and diameter (from 1 ~ 150 μm) could be produced. The microbeads were subjected to a comprehensive degradation analysis using three techniques: enzymatic, Biochemical Oxygen Demand (BOD) evaluations, and in situ degradation tests in the deep-sea off Misaki Port in the northern Pacific Ocean (depth of 757 m). Qualitatively, results from enzymatic and in situ degradation demonstrated significant degradation within one week and five months, respectively. Quantitatively, BOD findings indicated that all PHA microbeads degraded similarly to cellulose (~ 85% biodegradability in 25 days). In conclusion, PHA microbeads from this study exhibit promising potential as alternatives to conventional non-biodegradable microbeads.
Collapse
Affiliation(s)
- Natsumi Hyodo
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Hongyi Gan
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Manikandan Ilangovan
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Satoshi Kimura
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Ken-Ichi Kasuya
- Green Polymer Research Laboratory, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Noriyuki Isobe
- Biogeochemistry Research Center, Research Institute for Marine Resources Utilization (MRU), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Tadahisa Iwata
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
31
|
Li T, Lan J, Wang Y, Sun L, Li Y, Zhao Z. Enhanced biotoxicity by co-exposure of aged polystyrene and ciprofloxacin: the adsorption and its influence factors. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:185. [PMID: 38695908 DOI: 10.1007/s10653-024-01961-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/18/2024] [Indexed: 06/17/2024]
Abstract
Microplastics (MPs), as emerging contaminants, usually experience aging processes in natural environments and further affect their interactions with coexisted contaminants, resulting in unpredictable ecological risks. Herein, the effect of MPs aging on their adsorption for coexisting antibiotics and their joint biotoxicity have been investigated. Results showed that the adsorption capacity of aged polystyrene (PS, 100 d and 50 d) for ciprofloxacin (CIP) was 1.10-4.09 times higher than virgin PS due to the larger BET surface area and increased oxygen-containing functional groups of aged PS. Following the increased adsorption capacity of aged PS, the joint toxicity of aged PS and CIP to Shewanella Oneidensis MR-1 (MR-1) was 1.03-1.34 times higher than virgin PS and CIP. Combined with the adsorption process, CIP posed higher toxicity to MR-1 compared to aged PS due to the rapid adsorption of aged PS for CIP in the first 12 h. After that, the adsorption process tended to be gentle and hence the joint toxicity to MR-1 was gradually dominated by aged PS. A similar transformation between the adsorption rate and the joint toxicity of PS and CIP was observed under different conditions. This study supplied a novel perception of the synergistic effects of PS aging and CIP on ecological health.
Collapse
Affiliation(s)
- Tongtong Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jing Lan
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yaoyao Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Lulu Sun
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yaru Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
32
|
Zhou X, Wang Y, Liu R, Mo B, Li D, He L, Wang Y, Wang Y, Zheng H, Li F. Adsorption and desorption of Hg(II) by four aged microplastics and its effects on gaseous elemental mercury production in seawater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116036. [PMID: 38325271 DOI: 10.1016/j.ecoenv.2024.116036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Microplastics (MPs) weather after entering the environment gradually, and the interaction with metal ions in the aqueous environment has received extensive attention. However, there are few studies on Hg(Ⅱ), especially the effect of MPs on the release of Hg0(DEM) in water after entering the aqueous environment. In this study, four types of MPs (PP, PE, PET, PVC) were selected to study the adsorption and desorption behavior of Hg(Ⅱ) after photoaging and to explore the influence of MPs on the release of DEM in seawater under different lighting conditions. The results showed that the specific surface area, negative charges, and oxygen-containing functional group of MPs increased after aging. The adsorption capacity of aged MPs for Hg(Ⅱ) was significantly improved, which was consistent with the pseudo-first-order and pseudo-second-order model, indicating that the adsorption process was a chemical and physical adsorption. The fitting results of the in-particle diffusion model indicated that the adsorption was controlled by multiple steps. Hg(Ⅱ) was easier to desorb in the simulated gastric fluid environment. Because the aged MPs had the stronger binding force to Hg(Ⅱ), their desorption rate is lower than new MPs. Under visible light and UVA irradiation, MPs inhibited the release of Hg0. Under UVA, the mass of DEM produced in seawater with aged PE and PVC was higher than that of new PE and PVC. The aged PE and PVC could produce more ·O2-, which was conducive to the reduction of mercury. However, in UVB irradiation, the addition of MPs promoted the release of DEM, and ·O2- also played an important contribution in affecting the photochemical reaction of mercury. Therefore, the presence of aged MPs will significantly affect the water-air exchange of Hg in water. Compared with new MPs, aged MPs improved the contribution of free radicals in Hg transformation by releasing reactive oxygen species. This study extends the understanding of the effects of MPs on the geochemical cycle of Hg(Ⅱ) in seawater, better assesses the potential combined ecological risks of MPs and Hg(Ⅱ), and provides certain guidance for the pollution prevention and control of MPs.
Collapse
Affiliation(s)
- Xuyuan Zhou
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yan Wang
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ruhai Liu
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Bing Mo
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Dongting Li
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Likun He
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yudong Wang
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yunxu Wang
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hao Zheng
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fengmin Li
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
33
|
Wang X, Wang X, Zhu W, Ding L, Liang X, Wu R, Jia H, Huang X, Guo X. Insight into interactions between microplastics and fulvic acid: Mechanisms affected by microplastics type. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169427. [PMID: 38135066 DOI: 10.1016/j.scitotenv.2023.169427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Microplastics (MPs) can interact with dissolved organic matter (DOM), a common component found in the environment. However, the effect of MPs type on its interaction with DOM has not been systematically studied. Therefore, the binding properties of different MPs with fulvic acid (FA) were explored in this study. The results showed that polypropylene (PP) and polyethylene (PE) had higher adsorption affinity for FA than polystyrene (PS) and polyvinyl chloride (PVC). The interaction between MPs and FA conformed to the pseudo-first-order model and Freundlich model (except PS). The interaction mechanisms between various MPs tested in this paper and FA are considered to be different. PP, PE and PS interacted with the aromatic structure of FA and were entrapped in the FA polymers by the carboxyl groups and CO bonds, resulting in a highly conjugated co-polymer, suggesting that oxygen-containing functional groups played a key role. However, it was assumed that the interaction between PVC and FA was more likely to be caused by hydrophobic interaction. This research will help to enhance our comprehension of the environmental behavior of MPs and their interaction with the DOM specifically.
Collapse
Affiliation(s)
- Xinglei Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoxiao Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weimin Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Renren Wu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China.
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xianfei Huang
- Guizhou Provincial Key Laboratory for Environment, Guizhou Normal University, Guiyang, Guizhou 550001, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
34
|
Yan Z, Qian H, Yao J, Guo M, Zhao X, Gao N, Zhang Z. Mechanistic insight into the role of typical microplastics in chlorination disinfection: Precursors and adsorbents of both MP-DOM and DBPs. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132716. [PMID: 37820530 DOI: 10.1016/j.jhazmat.2023.132716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Microplastics (MPs) in drinking water are predominantly < 10 µm. The leaching of MPs derived dissolved organic matters (MP-DOM) from 5 µm polypropylene MPs (PP-MPs) and polystyrene MPs (PS-MPs) and the formation of MP-DOM derived disinfection byproducts during chlorination disinfection were first investigated. Comparably, PS-MPs are more vulnerable to chlorination and the primary attacks are on para C in aromatic side-chains via electrophilic Cl-substitution and oxidation by two-electron transfer. The O/C and Cl/C ratio of polystyrene MPs was linear and exponential versus initial available Cl2 concentrations, respectively. The significant PS-DOM leaching was observed with initial available Cl2 of 4.0 mg/L (USEPA recommended upper dose). As the initial available Cl2 concentration increased to 8.0 mg/L, the adsorption of chloro-phenolic-components of 200 Daltons in PS-DOM by 5 µm PS-MPs was observed for the first time. Trichloromethane (TCM) was identified as the dominant disinfection byproduct with a formation potential of 60.3 ± 7.8 and 73.7 ± 9.8 μg/mg for PS-DOM and PP-DOM, respectively. The derived TCM could adsorb onto PS-MPs followed the pseudo-second-order kinetic and Langmuir isotherm models. Extreme chlorination could reduce the maximal adsorption capacity of TCM on 5 µm PS-MPs from 196.68 ± 48.66 to 146.02 ± 32.98 μg/g. Thus, PS-MPs act as precursors and carriers of TCM in chlorination.
Collapse
Affiliation(s)
- Zhihao Yan
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hanyang Qian
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Juanjuan Yao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Meng Guo
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xiong Zhao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
35
|
Ololade IA, Apata A, Oladoja NA, Alabi BA, Ololade OO. Microplastic particles in river sediments and water of southwestern Nigeria: insights on the occurrence, seasonal distribution, composition, and source apportionment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1314-1330. [PMID: 38038917 DOI: 10.1007/s11356-023-31118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Microplastics (MPs) are globally recognized as an emerging environmental threat, particularly in the aquatic environment. This study presents baseline data on the occurrence and distribution of MPs in sediments and surface water of major rivers in southwestern Nigeria. Microplastics were extracted by density separation and polymer identification using Fourier transformed infrared spectroscopy in attenuated total reflectance mode (FTIR-ATR). The abundance of MPs in surface sediment and water samples across all locations ranged from 12.82 to 22.90 particle/kg dw and 6.71 to 17.12 particle/L during the dry season and 5.69 to 14.38 particle/kg dw and 12.41 to 22.73 particle/L during the wet season, respectively. On average, fiber constituted the highest percentage of MP in sediments (71%) and water (67%) while foam accounted for the lowest values of 0.6% and 1.7%, respectively. Polypropylene (PP) and polyethylene (PE) were the main MPs across all locations based on Fourier transform infrared spectroscopy (FTIR). MPs of size < 1 mm were the most abundant (≥ 55%) on average in both water and sediments. The study identified run-off from human activities and industrial wastewater as potential sources of MP exposure based on positive matrix factorization. The study suggests assessing the impact of different land-use activities on MPs occurrence and distribution in addition to quantifying MPs in seafood as a way forward in food safety management systems for further studies. This study confirmed the occurrence and widespread distribution of MPs in surface water and sediments and provides a database on MP pollution in Nigeria.
Collapse
Affiliation(s)
- Isaac Ayodele Ololade
- Environmental Monitoring Unit, Department of Chemical Sciences, Adekunle Ajasin University, PMB 001, AkungbaAkoko, Ondo State, Nigeria.
| | - Abiodun Apata
- Environmental Monitoring Unit, Department of Chemical Sciences, Adekunle Ajasin University, PMB 001, AkungbaAkoko, Ondo State, Nigeria
- Puget Sound Naval Shipyard, 1400 Farragut Street, Bremerton, Washington, 98314, USA
| | - Nurudeen Abiola Oladoja
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, AkungbaAkoko, Nigeria
| | - Bosede Adenike Alabi
- Environmental Monitoring Unit, Department of Chemical Sciences, Adekunle Ajasin University, PMB 001, AkungbaAkoko, Ondo State, Nigeria
| | - Oluwaranti Olubunmi Ololade
- Environmental Monitoring Unit, Department of Chemical Sciences, Adekunle Ajasin University, PMB 001, AkungbaAkoko, Ondo State, Nigeria
| |
Collapse
|
36
|
Tan H, Mong GR, Wong SL, Wong KY, Sheng DDCV, Nyakuma BB, Othman MHD, Kek HY, Razis AFA, Wahab NHA, Wahab RA, Lee KQ, Chiong MC, Lee CH. Airborne microplastic/nanoplastic research: a comprehensive Web of Science (WoS) data-driven bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:109-126. [PMID: 38040882 DOI: 10.1007/s11356-023-31228-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
This paper presents the landscape of research on airborne microplastics and nanoplastics (MPs/NPs) according to the bibliometric analysis of 147 documents issued between 2015 and 2021, extracted from the Web of Science database. The publications on airborne MPs/NPs have increased rapidly from 2015 onwards, which is largely due to the existence of funding support. Science of the Total Environment is one of the prominent journals in publishing related papers. China, England, the USA, and European Countries have produced a significant output of airborne MP/NP research works, which is associated with the availability of funding agencies regionally or nationally. The research hotspot on the topic ranges from the transport of airborne MPs/NPs to their deposition in the terrestrial or aquatic environments, along with the contamination of samples by indoor MPs/NPs. Most of the publications are either research or review papers related to MPs/NPs. It is crucial to share the understanding of global plastic pollution and its unfavorable effects on humankind by promoting awareness of the existence and impact of MPs/NPs. Funding agencies are vital in boosting the research development of airborne MPs/NPs. Some countries that are lacking funding support were able to publish research findings related to the field of interest, however, with lesser research output. Without sufficient fundings, some impactful publications may not be able to carry a substantial impact in sharing the findings and discoveries with the mass public.
Collapse
Affiliation(s)
- Huiyi Tan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Guo Ren Mong
- School of Energy and Chemical Engineering, Faculty of Engineering, Xiamen University Malaysia, Sepang, Xiamen, Selangor, Malaysia
| | - Syie Luing Wong
- Dpto. Matemática Aplicada, Ciencia e Ingeniería de Materiales y Tecnología Electrónica, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Keng Yinn Wong
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
| | | | - Bemgba Bevan Nyakuma
- Department of Chemistry, Faculty of Sciences, Benue State University, Makurdi, Benue State, Nigeria
- Department of Chemical Sciences, Faculty of Science and Computing, Pen Resource University, P. M. B. 086, Gombe, Gombe State, Nigeria
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Hong Yee Kek
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Roswanira Abdul Wahab
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
- Department of Chemistry, Faculty of Sciences, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Kee Quen Lee
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Meng Choung Chiong
- Faculty of Engineering, Technology & Built Environment, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Chia Hau Lee
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
37
|
Mubin AN, Islam ARMT, Hasan M, Islam MS, Ali MM, Siddique MAB, Alam MS, Rakib MRJ, Islam MS, Momtaz N, Senapathi V, Idris AM, Malafaia G. The path of microplastics through the rare biodiversity estuary region of the northern Bay of Bengal. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104271. [PMID: 38056088 DOI: 10.1016/j.jconhyd.2023.104271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Due to its harmful effects on ecosystems and human health, microplastic (MP) pollution has become a significant environmental problem on a global scale. Although MPs' pollution path and toxic effects on marine habitats have been examined worldwide, the studies are limited to the rare biodiversity estuary region of Hatiya Island from the northern Bay of Bengal. This study aimed to investigate the MP pollution path and its influencing factors in estuarine sediments and water in rare biodiversity Hatiya Island in the northern Bay of Bengal. Sixty water and sediment samples were collected from 10 sampling sites on the Island and analyzed for MPs. The abundance of MPs in sediment ranged from 67 to 143 pieces/kg, while the abundance in water ranged from 24.34 to 59 pieces/m3. The average concentrations of MPs in sediment and water were 110.90 ± 20.62 pieces/kg and 38.77 ± 10.09 pieces/m3, respectively. Most identified MPs from sediment samples were transparent (51%), while about 54.1% of the identified MPs from water samples were colored. The fragment was the most common form of MP in both compartments, with a value of 64.6% in sediment samples and 60.6% in water samples. In sediment and water samples, almost 74% and 80% of MP were <0.5 mm, respectively. Polypropylene (PP) was the most abundant polymer type, accounting for 51% of all identified polymers. The contamination factor, pollution load index, polymer risk score, and pollution risk score values indicated that the study area was moderately polluted with MPs. The spatial distribution patterns and hotspots of MPs echoed profound human pathways. Based on the results, sustainable management strategies and intervention measures were proposed to reduce the pollution level in the ecologically diverse area. This study provides important insights into evaluating estuary ecosystem susceptibility and mitigation policies against persistent MP issues.
Collapse
Affiliation(s)
- Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher - e - Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Sha Alam
- Institute of Mining, Mineralogy & Metallurgy (IMMM), Bangladesh Council of Scientific & Industrial Research (BCSIR), Joypurhat 5900, Bangladesh
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Nasima Momtaz
- Biological Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
38
|
You H, Cao C, Sun X, Huang B, Qian Q, Chen Q. Microplastics as an emerging vector of Cr(VI) in water: Correlation of aging properties and adsorption behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166480. [PMID: 37611697 DOI: 10.1016/j.scitotenv.2023.166480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Microplastics (MPs) are emerging contaminants with growing concerns due to their potential adverse effects on the environment. However, understanding the aging properties and adsorption behavior of MPs is still limited. In this study, we investigated the correlation between the adsorption capacity, aging stages, and aging properties of polyethylene MPs using a correlation equation. Our results revealed that the trends of O/C ratio and contact angle of polyethylene MPs with aging time were fitted to be linear under xenon lamp accelerated aging conditions. Conversely, the trends of other properties such as particle size, crystallinity, and molecular weight with time were fitted to conform to the Boltzmann equation. Moreover, the aging curve data for carbonyl index and molecular weight (Mw) perfectly matched, confirming Mw play a crucial role in verifying the aging process. Additionally, the adsorption amount of polyethylene MPs increased sharply with the increase of aging ages, reaching up to 1.850 mg/g. The adsorption data fit well to the pseudo-second-order kinetics and Langmuir model, suggesting that the adsorption process is dominated by chemisorption. The low pH and low salt concentration is beneficial to the adsorption capacity of MPs onto Cr(VI). Further, a relationship equation was established to predict adsorption risk at different aging stages. These findings provide new insights into the impact of aging on pollutants transport and the fate of MPs, enabling the prediction of adsorption risk of MPs at different aging stages in water environments.
Collapse
Affiliation(s)
- Huimin You
- College of Environmental and Ecology, College of Coastal and Ocean Management Institute, Xiamen University, Xiamen 361000, China; College of Environmental and Resource Sciences; College of Carbon Neutral Modern Industry; Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Changlin Cao
- College of Environmental and Resource Sciences; College of Carbon Neutral Modern Industry; Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Xiaoli Sun
- College of Environmental and Resource Sciences; College of Carbon Neutral Modern Industry; Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Baoquan Huang
- College of Environmental and Resource Sciences; College of Carbon Neutral Modern Industry; Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| | - Qingrong Qian
- College of Environmental and Resource Sciences; College of Carbon Neutral Modern Industry; Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| | - Qinghua Chen
- College of Environmental and Resource Sciences; College of Carbon Neutral Modern Industry; Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
39
|
Rajendran D, Chandrasekaran N. Unveiling the Modification of Esterase-like Activity of Serum Albumin by Nanoplastics and Their Cocontaminants. ACS OMEGA 2023; 8:43719-43731. [PMID: 38027364 PMCID: PMC10666218 DOI: 10.1021/acsomega.3c05447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023]
Abstract
Nanoplastics and other cocontaminants have raised concerns due to their widespread presence in the environment and their potential to enter the food chain. The harmful effects of these particles depend on various factors, such as nanoparticle size, shape, surface charge, and the nature of the cocontaminants involved. On entering the human body, human serum albumin (HSA) molecules bind and transport these particles in the blood system. The esterase-like activity of HSA, which plays a role in metabolizing drug/toxic compounds, was taken as a representative to portray the effects of these particles on HSA. Polystyrene nanoplastics (PSNPs) with different surface functionalization (plain (PS), amine (PS-NH2), and carboxy (PS-COOH)), different sizes (100 and 500 nm), and PS with cocontaminant metformin hydrochloride (Met-HCl), a widely used antidiabetic drug, were investigated in this study. Fluorescence emission spectra of HSA revealed that PS-NH2 exhibits a greater effect on protein conformation, smaller NPs have a greater influence on protein structure than larger NPs, and Met-HCl lowers PSNPs' affinity for HSA by coating the surface of the NPs, which may result in direct NP distribution to the drug's target organs and toxicity. Circular dichroism spectra also supported these results in terms of secondary structural changes. Esterase activity of HSA was inhibited by all the particles (except Met-HCl) by competitive inhibition as concluded from constant Vmax and increasing Km. Greater reduction in enzyme activity was observed for PS-NH2 among functionalizations and for 100 nm PS among sizes. Furthermore, Met-HCl lowers the inhibitory impact of PSNPs on HSA since the drug binds weakly to HSA, and so they can serve as a vector delivering PSNPs to their target organs, resulting in serious implications.
Collapse
Affiliation(s)
- Durgalakshmi Rajendran
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT University), Vellore 632014, Tamil Nadu, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT University), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
40
|
Fan Z, Jiang C, Muhammad T, Ali I, Feng Y, Sun L, Geng H. Impacts and mechanism of biodegradable microplastics on lake sediment properties, bacterial dynamics, and greenhouse gasses emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165727. [PMID: 37487892 DOI: 10.1016/j.scitotenv.2023.165727] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
The accumulation of microplastics (MPs) in freshwater ecosystems plays a vital role in greenhouse gases (GHGs) emissions from lake sediment by altering sediment properties and microbial communities. Thus, a short-term microcosm experiment was performed to explore the effect of conventional polyethylene (PE) and biodegradable Poly (butylene-adipate-co-terephtalate) (PBAT) MPs on carbon dioxide (CO2) and methane (CH4) emissions from lake sediment and associated microbial community. The results indicated that at 1.0 % concentration, the cumulative CO2 emissions were increased by 16.8 % and the cumulative CH4 emissions were increased more than four times following the addition of biodegradable MPs compared to conventional MPs, which was due to the more dissolved organic carbon (DOC) provided by biodegradable MPs for microbial respiration. Furthermore, the cumulative CO2 and CH4 emissions significantly (p < 0.05) increased with the increasing concentrations of biodegradable MPs. Notably, the accumulation of MPs could weaken the microbial stress from requirements of energy and substrate, and increase the microbial biomass carbon (MBC) value, thus eventually improving the respiratory capacity of microbes. In addition, the biodegradable MPs significantly increased the abundance of microbes, such as Firmicutes, Myxococcota and Actinobacteriota, which were related to the function of anaerobic respiration. Overall, we concluded that the abundant DOC provided by biodegradable MPs could promote the growth of microbes in lake sediment, and they could change the structure and diversity of the microbial community, which would eventually enhance the anaerobic respiration of microbes and aggravate the GHGs emissions.
Collapse
Affiliation(s)
- Zequn Fan
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Cuiling Jiang
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Tahir Muhammad
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Imran Ali
- College of environment, Hohai University, Nanjing 210098, China
| | - Yakun Feng
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Lei Sun
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Hui Geng
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| |
Collapse
|
41
|
Zhang X, Saravanakumar K, Sathiyaseelan A, Lu Y, Wang MH. Adsorption of methyl orange dye by SiO 2 mesoporous nanoparticles: adsorption kinetics and eco-toxicity assessment in Zea mays sprout and Artemia salina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117000-117010. [PMID: 36884180 DOI: 10.1007/s11356-023-26173-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Herein, we prepared the silica nanoparticles (SiO2 NPs) by a modified Stober's method for methyl orange (MO) removal. The SiO2 NPs were found to be spherical with a zeta size of 152.5 d. nm, a PDI of 0.377, and a zeta potential of -5.59 mV. The effect of different parameters (initial dye concentration, reaction time, temperature, and pH) on the adsorption of MO by SiO2 NPs was determined. The adsorption pattern of SiO2 NPs was highly fitted with the Langmuir, Freundlich, Redlich-Peteroen, and Temkin isotherm models. The highest adsorption rate was recorded at 69.40 mg/g of SiO2 NPs. Furthermore, the toxic effect of before and after removal of MO in aqueous solution was tested in terms of phytotoxicity and acute toxicity. The SiO2 NPs treated MO dye solution were not exhibited significant toxicity to corn seeds and Artemia salina. These results indicated that SiO2 NPs can be used for the adsorption of MO.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yuting Lu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
- College of Bioscience and Biotechnology, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
42
|
Yan S, Biswal BK, Balasubramanian R. Insights into interactions of biodegradable and non-biodegradable microplastics with heavy metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107419-107434. [PMID: 37335512 DOI: 10.1007/s11356-023-27906-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/21/2023] [Indexed: 06/21/2023]
Abstract
Biodegradable microplastics (BMPs) are considered to be environmentally friendly compared to non-biodegradable plastics (NMPs). However, BMPs are likely to become toxic during their transport because of the adsorption of pollutants (e.g., heavy metals) onto them. This study investigated the uptake of six heavy metals (Cd2+, Cu2+, Cr3+, Ni2+, Pb2+, and Zn2+) by a common BMPs (polylactic acid (PLA)) and compared their adsorption characteristics to those of three types of NMPs (polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC)) for the first time. The order of heavy metal adsorption capacity among the four MPs was PE > PLA > PVC > PP. The findings suggest that BMPs contained more toxic heavy metals than some NMPs. Among the six heavy metals, Cr3+ showed considerably stronger adsorption than other heavy metals in both BMPS and NMPs. The adsorption of heavy metals on MPs can be well explained using the Langmuir isotherm model, while the adsorption kinetic curves showed the best fit to the pseudo-second-order kinetic equation. Desorption experiments revealed that BMPs released a higher percentage of heavy metals (54.6-62.6%) in the acidic environment in a shorter time (~ 6 h) compared to NMPs. Overall, this study provides insights into interactions of BMPs and NMPs with heavy metals and their removal mechanisms in aquatic environment.
Collapse
Affiliation(s)
- Shuyue Yan
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
43
|
Wang K, Wang K, Chen Y, Liang S, Zhang Y, Guo C, Wang W, Wang J. Desorption of sulfamethoxazole from polyamide 6 microplastics: Environmental factors, simulated gastrointestinal fluids, and desorption mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115400. [PMID: 37651796 DOI: 10.1016/j.ecoenv.2023.115400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
Microplastics (MPs) can enrich pollutants after being released into the environment, and the contaminants-loaded MPs are usually ingested by organisms, resulting in a potential dual biotoxic effect. In this paper, the adsorption behavior of Sulfamethoxazole (SMX) on Polyamide 6 (PA6) MPs was systematically investigated and simulated by the kinetic and isotherm models. The effect of environmental conditions (pH, salinity) on the adsorption process was studied, and the desorption behavior of SMX-loaded PA6 MPs was focused on simulating the seawater, ultrapure water, gastric and intestinal fluids. We found that lower pH and solubilization of SMX by gastrointestinal components (bovine serum albumin (BSA), sodium taurocholate (NaT), and pepsin) can reduce the electrostatic interaction between the surface charge of PA6 MPs and SMX. The result will lead to an increase in the desorption capacity of SMX-loaded PA6 MPs in gastrointestinal fluids and therefore will provide a reasonable mechanism for the desorption of SMX-loaded PA6 MPs in the gastrointestinal fluids. This study will provide a theoretical reference for studying the desorption behavior of SMX-loaded PA6 MPs under gastrointestinal conditions.
Collapse
Affiliation(s)
- Kefu Wang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, School of chemical engineering and technology, Xinjiang University, Urumqi, China
| | - Kangkang Wang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, School of chemical engineering and technology, Xinjiang University, Urumqi, China
| | - Yaoyao Chen
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, School of chemical engineering and technology, Xinjiang University, Urumqi, China
| | - Siqi Liang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, School of chemical engineering and technology, Xinjiang University, Urumqi, China
| | - Yi Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Changyan Guo
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, School of chemical engineering and technology, Xinjiang University, Urumqi, China.
| | - Wei Wang
- Department of Chemistry and Center for Pharmacy, University of Bergen, Bergen N-5007, Norway.
| | - Jide Wang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, School of chemical engineering and technology, Xinjiang University, Urumqi, China.
| |
Collapse
|
44
|
Dong Z, Zhou R, Wan W, Li H, Zhou W, He Y, Xu T, Xie G, Xia J, Li J, Wang L, Shi X, Wu T, Wang R, Li B. Hydrolysis of propyrisulfuron in water: Kinetics, influence of 34 environmental factors, transformation products identification, mechanisms and toxicities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115476. [PMID: 37716074 DOI: 10.1016/j.ecoenv.2023.115476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Propyrisulfuron is a novel sulfonylurea herbicide used for controlling annual grass and broad-leaved weeds in fields, but its fates and behaviors in environment are still unknown, which are of utmost importance for environmental protection. To reduce its potential environmental risks in agricultural production, the hydrolysis kinetics, influence of 34 environmental factors including 12 microplastics (MPs), disposable face masks (DFMs) and its different parts, 6 fertilizers, 5 ions, 3 surfactants, a co-existed herbicide of florpyrauxifen-benzy, humic acid and biochar, and the effect of MPs and DFMs on its hydrolysis mechanisms were systematically investigated. The main hydrolysis products (HPs), possible mechanisms, toxicities and potential risks to aquatic organisms were studied. Propyrisulfuron hydrolysis was an acid catalytic pyrolysis, endothermic and spontaneous process driven by the reduction of activation enthalpy, and followed the first-order kinetics. All environmental factors can accelerate propyrisulfuron hydrolysis to varying degrees except humic acid, and different hydrolysis mechanisms occurred in the presence of MPs and DFMs. In addition, 10 possible HPs and 7 possible mechanisms were identified and proposed. ECOSAR prediction and ecotoxicity testing showed that acute toxicity of propyrisulfuron and its HPs for aquatic organisms were low, but may have high chronic toxicity and pose a potential threat to aquatic ecosystems. The investigations are significantly important for elucidating the environmental fates and behaviors of propyrisulfuron, assessing the risks in environmental protection, and further providing guidance for scientific application in agro-ecosystem.
Collapse
Affiliation(s)
- Zemin Dong
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China; Jiangxi Agricultural Technology Extension Center, Nanchang 330046, PR China
| | - Rendan Zhou
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Wengen Wan
- Jiangxi Agricultural Technology Extension Center, Nanchang 330046, PR China
| | - Han Li
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Wenwen Zhou
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yichang He
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Tianfang Xu
- Jiangxi Agricultural Technology Extension Center, Nanchang 330046, PR China
| | - Guai Xie
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jun Xia
- Jiangxi Agricultural Technology Extension Center, Nanchang 330046, PR China
| | - Jinjin Li
- Jiangxi Agricultural Technology Extension Center, Nanchang 330046, PR China
| | - Long Wang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xianluo Shi
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Tianqi Wu
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Rong Wang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Baotong Li
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
45
|
Qiu Y, Li Z, Zhang T, Zhang P. Predicting aqueous sorption of organic pollutants on microplastics with machine learning. WATER RESEARCH 2023; 244:120503. [PMID: 37639990 DOI: 10.1016/j.watres.2023.120503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Microplastics (MPs) are ubiquitously distributed in freshwater systems and they can determine the environmental fate of organic pollutants (OPs) via sorption interaction. However, the diverse physicochemical properties of MPs and the wide range of OP species make a deeper understanding of sorption mechanisms challenging. Traditional isotherm-based sorption models are limited in their universality since they normally only consider the nature and characteristics of either sorbents or sorbates individually. Therefore, only specific equilibrium concentrations or specific sorption isotherms can be used to predict sorption. To systematically evaluate and predict OP sorption under the influence of both MPs and OPs properties, we collected 475 sorption data from peer-reviewed publications and developed a poly-parameter-linear-free-energy-relationship-embedded machine learning method to analyze the collected sorption datasets. Models of different algorithms were compared, and the genetic algorithm and support vector machine hybrid model displayed the best prediction performance (R2 of 0.93 and root-mean-square-error of 0.07). Finally, comparison results of three feature importance analysis tools (forward step wise method, Shapley method, and global sensitivity analysis) showed that chemical properties of MPs, excess molar refraction, and hydrogen-bonding interaction of OPs contribute the most to sorption, reflecting the dominant sorption mechanisms of hydrophobic partitioning, hydrogen bond formation, and π-π interaction, respectively. This study presents a novel sorbate-sorbent-based ML model with a wide applicability to expand our capacity in understanding the complicated process and mechanism of OP sorption on MPs.
Collapse
Affiliation(s)
- Ye Qiu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR
| | - Zhejun Li
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR
| | - Tong Zhang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR.
| |
Collapse
|
46
|
Shi Y, Almuhtaram H, Andrews RC. Adsorption of Per- and Polyfluoroalkyl Substances (PFAS) and Microcystins by Virgin and Weathered Microplastics in Freshwater Matrices. Polymers (Basel) 2023; 15:3676. [PMID: 37765530 PMCID: PMC10535594 DOI: 10.3390/polym15183676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Microplastics and per- and polyfluoroalkyl substances (PFAS) both represent persistent groups of environmental contaminants that have been associated with human health risks. Microcystin toxins are produced and stored in the cells of cyanobacteria and may be released into sources of drinking water. Recent concerns have emerged regarding the ability of microplastics to adsorb a range of organic contaminants, including PFAS and microcystins. This study examined the adsorption of two long-chain and two short-chain PFAS, as well as two common microcystins, by both virgin and weathered microplastics in freshwater. Natural weathering of microplastic surfaces may decrease adsorption by introducing hydrophilic oxygen-containing functional groups. Up to 50% adsorption of perfluorooctanesulfonic acid (PFOS) was observed for virgin PVC compared to 38% for weathered PVC. In contrast, adsorption capacities for microcystins by virgin LDPE were approximately 5.0 µg/g whereas no adsorption was observed following weathering. These results suggest that adsorption is driven by specific polymer types and dominated by hydrophobic interactions. This is the first known study to quantify PFAS and microcystins adsorption when considering environmentally relevant concentrations as well as weathered microplastics.
Collapse
Affiliation(s)
| | - Husein Almuhtaram
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4, Canada
| | | |
Collapse
|
47
|
Jiang H, Chen X, Dai Y. The carrier effect mechanism of butachlor in water by three typical microplastics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99232-99246. [PMID: 36112288 PMCID: PMC9483429 DOI: 10.1007/s11356-022-23027-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Butachlor (BUT) is a widely used herbicide that can cause environmental problems when used excessively. BUT has been found to exist in large quantities in the water environment so far. As an agricultural pre-emergent herbicide, BUT can enter the water environment through multiple channels and cause pollution. This study investigated the mechanism of three types of microplastics (MPs): polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC) to remove BUT from water. The adsorption behavior between MPs and BUT under different factors, namely pH, salt ion concentration, and aging, was investigated. This study further investigated the desorption and aging of BUT-adsorbed MPs. In this research, the adsorption capacity of BUT by PE, PP, and PVC are 13.65 μg/g, 14.82 μg/g, and 18.88 μg/g, respectively, and the order of carrier effect was: PVC>PP>PE. Experiments show that MPs have low adsorption performance on the microgram level for BUT. The adsorption behavior of PE, PP, and PVC on BUT conformed to pseudo-second-order kinetics, indicating the presence of physical and chemical adsorption. The Langmuir isotherm model fits well, indicating that the adsorption is a single-layer adsorption process. The pH value causes slight fluctuations in the overall carrier effect. Low concentration of salt ions can inhibit the carrier effect, and high concentration will promote the interaction between MPs and BUT. Aging experiments show that the carrier effect of the original materials was higher than the adsorption capacity of hydrogen peroxide and MPs after acid aging, and acid aging can cause the adsorption capacity to drop significantly.
Collapse
Affiliation(s)
- Huating Jiang
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Xin Chen
- Department of Chenghai, Bureau of Social Insurance Fund Administration of Shantou City of Guangdong Province, Building B, Danxia Park, Taixing Road, Shantou, 515000, Chenghai District, China
| | - Yingjie Dai
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
48
|
Liang S, Wang K, Wang K, Wang T, Guo C, Wang W, Wang J. Adsorption Behavior of Diclofenac on Polystyrene and Poly(butylene adipate- co-terephthalate) Microplastics: Influencing Factors and Adsorption Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12216-12225. [PMID: 37581507 PMCID: PMC10469442 DOI: 10.1021/acs.langmuir.3c01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Indexed: 08/16/2023]
Abstract
To unveil the intricacies surrounding the interaction between microplastics (MPs) and pollutants, diligent investigation is warranted to mitigate the environmental perils they pose. This exposition delves into the sorption behavior and mechanism of diclofenac sodium (DCF), a contaminant, upon two distinct materials: polystyrene (PS) and poly(butylene adipate-co-terephthalate) (PBAT). Experimental adsorption endeavors solidify the observation that the adsorption capacity of DCF onto the designated MPs amounts to Q(PBAT) = 9.26 mg g-1 and Q(PS) = 9.03 mg g-1, respectively. An exploration of the factors governing these discrepant adsorption phenomena elucidates the influence of MPs and DCF properties, environmental factors, as well as surfactants. Fitting procedures underscore the suitability of the pseudo-second-order kinetic and Freundlich models in capturing the intricacies of the DCF adsorption process onto MPs, corroborating the notion that the mentioned process is characterized by non-homogeneous chemisorption. Moreover, this inquiry unveils that the primary adsorption mechanisms of DCF upon MPs encompass electrostatic interaction, hydrogen bonding, and halo hydrogen bonding. An additional investigation concerns the impact of commonly encountered surfactants in aqueous environments on the adsorption of DCF onto MPs. The presence of surfactants elicits modifications in the surface charge properties of MPs, consequently influencing their adsorption efficacy vis-à-vis DCF.
Collapse
Affiliation(s)
- Siqi Liang
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, School of Chemical Engineering and
Technology, Xinjiang University, Urumqi 830046, China
| | - Kangkang Wang
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, School of Chemical Engineering and
Technology, Xinjiang University, Urumqi 830046, China
| | - Kefu Wang
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, School of Chemical Engineering and
Technology, Xinjiang University, Urumqi 830046, China
| | - Tao Wang
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, School of Chemical Engineering and
Technology, Xinjiang University, Urumqi 830046, China
| | - Changyan Guo
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, School of Chemical Engineering and
Technology, Xinjiang University, Urumqi 830046, China
| | - Wei Wang
- Department
of Chemistry, University of Bergen, Bergen 5007, Norway
- Centre
for Pharmacy, University of Bergen, Bergen 5020, Norway
| | - Jide Wang
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, School of Chemical Engineering and
Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
49
|
Chamanee G, Sewwandi M, Wijesekara H, Vithanage M. Global perspective on microplastics in landfill leachate; Occurrence, abundance, characteristics, and environmental impact. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:10-25. [PMID: 37634255 DOI: 10.1016/j.wasman.2023.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
Plastic wastes deposited in landfills eventually break down and degrade into microplastics by physical, chemical, and biological forces. Though microplastics in leachate pose significant threats to the environment, the leachate generated from landfills has not received much attention as a possible source of environmental microplastics. A descriptive and systematic investigationof the global distribution of microplastics in landfill leachate does not exist to date. Therefore, this attempt is to provide a concise scientometric review of the studies on the presence of microplastics in landfill leachate. The present review revealed that the global trend in research on microplastics in leachate has increased exponentially after 2018 and China is the leading country. Different geographical regions have reported different microplastic abundances with the highest of 291.0 ± 91.0 items/L from a landfill in Shanghai. The use of novel sampling techniques to detect small microplastics (20-100 µm) has led to the high abundance of microplastics in landfill leachate in Shanghai. Due to its widespread usage, polyethylene is the most typically encountered polymer type in landfill leachate around the world. However, it is quite challengingto compare the results among studies due to the use of different size categories and extraction techniques. The removal of microplastics by the current leachate treatment facilities is still mostly unexplored, thus it is crucial to develop novel technologies to treat the microplastics in landfill leachate. Further investigations on the transport of microplastics in landfill leachate are urgently required to have a better understanding of potential human exposure and health implications.
Collapse
Affiliation(s)
- Gayathri Chamanee
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Madushika Sewwandi
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
50
|
Yan Y, Yu Y, Sima J, Geng C, Yang J. Aging behavior of microplastics accelerated by mechanical fragmentation: alteration of intrinsic and extrinsic properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90993-91006. [PMID: 37468782 DOI: 10.1007/s11356-023-28736-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Microplastics (MPs) inevitably undergo multiple aging processes during their life cycle in the environment. However, the information regarding the mechanical fragmentation behavior of MPs remained unclear, including the changes in the intrinsic properties of aged MPs, the measurement of aging degree, the underlying mechanism, and the interaction with heavy metals. Here, MPs (PS, PP, PET) were aged by crushing (-CR) and ball-milling (-BM) to simulate mild and severe mechanical fragmentation, respectively. Our results indicated that mechanical fragmentation significantly affected the morphology of MPs. The aging degree of MP-BM was deeper compared to MP-CR owing to smaller particle size, larger specific surface area, poorer heat resistance, better hydrophilicity, and richer oxygen-containing functional groups. The carbonyl index (CI) and O/C ratio were used to measure the aging degree of the two mechanical aging treatments. Besides, the mechanism was proposed and the discrepancy between the two treatments was elaborated from three aspects including the excitation energy source, reaction interface, and reaction dynamics. Furthermore, the extrinsic properties of MPs altered with the increase of aging degree; specifically, the adsorption capacities of heavy metals were enhanced. Meanwhile, it was unveiled that the CI value and O/C ratio played a vital role in estimating the adsorption ability of heavy metals. The findings not only reveal the mechanical fragmentation behavior of MPs but also provide new insights into the assessment of the potential risks of the aged MPs via chemical indexes.
Collapse
Affiliation(s)
- Yuwei Yan
- The Ecological Technique and Engineering College, Shanghai Institute of Technology, No. 100 Haiquan Road, Fengxian District, Shanghai, 201418, China
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Yulu Yu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Jingke Sima
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
| | - Chunnu Geng
- The Ecological Technique and Engineering College, Shanghai Institute of Technology, No. 100 Haiquan Road, Fengxian District, Shanghai, 201418, China
| | - Jie Yang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| |
Collapse
|