1
|
Gupta P, Mahapatra A, Manna B, Suman A, Ray SS, Singhal N, Singh RK. Sorption of PFOS onto polystyrene microplastics potentiates synergistic toxic effects during zebrafish embryogenesis and neurodevelopment. CHEMOSPHERE 2024; 366:143462. [PMID: 39368493 DOI: 10.1016/j.chemosphere.2024.143462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/14/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Microplastics (MPs) have become an emerging anthropogenic pollutant, and their ability to sorb contaminants potentially enhances the threats to the ecosystem. Only a few studies are available to understand the combined effects of microplastics and other pollutants. The present study investigated the sorption of perfluorooctane sulfonic acid (PFOS) onto polystyrene microplastics (PS-MPs) at varying concentrations, using molecular dynamics simulation (MDS) to preliminarily explore the adsorption behavior. The MDS results revealed negative interaction energies between PFOS and PS-MPs, underscoring PS-MPs' role as a potential adsorbent for PFOS in an aqueous solution. Thereafter, zebrafish embryos were employed to explore the toxic effects of combined exposure to PS-MPs and PFOS. Fluorescence and Scanning Electron Microscopy (SEM) suggested PS-MP accumulation individually and in combination with PFOS on the embryonic chorion membrane. As a result, the exposed group showed increased inner pore size of the chorionic membrane and accelerated heartbeat, indicating hypoxic conditions and hindered gaseous exchange. PS-MPs aggravated the toxicity of PFOS during larval development manifested by delayed hatching rate, increased mortality, and malformation rate. Additionally, increased ROS accumulation and altered antioxidant enzymatic status were observed in all the exposed groups suggesting perturbation of the redox state. Additionally, co-exposure of zebrafish larvae to PS-MPs and PFOS resulted in an abrupt behavioral response, which decreased AChE activity and altered neurotransmitter levels. Taken together, our results emphasize that PS-MPs can act as a potential vector for PFOS, exerting synergistic toxic effects in the aquatic environment, and hence their health risks cannot be ignored.
Collapse
Affiliation(s)
- Priya Gupta
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India.
| | - Archisman Mahapatra
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| | - Bharat Manna
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, 1142, New Zealand; Water Research Centre, University of Auckland, Auckland, 1142, New Zealand.
| | - Anjali Suman
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India.
| | - Shubhendu Shekhar Ray
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India.
| | - Naresh Singhal
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, 1142, New Zealand; Water Research Centre, University of Auckland, Auckland, 1142, New Zealand.
| | - Rahul Kumar Singh
- Molecular Endocrinology and Toxicology Laboratory (METLab), Department of Zoology, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
2
|
Chen WJ, Chen SF, Song H, Li Z, Luo X, Zhang X, Zhou X. Current insights into environmental acetochlor toxicity and remediation strategies. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:356. [PMID: 39083106 DOI: 10.1007/s10653-024-02136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024]
Abstract
Acetochlor is a selective pre-emergent herbicide that is widely used to control annual grass and broadleaf weeds. However, due to its stable chemical structure, only a small portion of acetochlor exerts herbicidal activity in agricultural applications, while most of the excess remains on the surfaces of plants or enters ecosystems, such as soil and water bodies, causing harm to the environment and human health. In recent years, researchers have become increasingly focused on the repair of acetochlor residues. Compared with traditional physical and chemical remediation methods, microorganisms are the most effective way to remediate chemical pesticide pollution, such as acetochlor, because of their rich species, wide distribution, and diverse metabolic pathways. To date, researchers have isolated and identified many high-efficiency acetochlor-degrading strains, such as Pseudomonas oleovorans, Klebsiella variicola, Bacillus subtilus, Rhodococcus, and Methylobacillus, among others. The microbial degradation pathways of acetochlor include dechlorination, hydroxylation, N-dealkylation, C-dealkylation, and dehydrogenation. In addition, the microbial enzymes, including hydrolase (ChlH), debutoxylase (Dbo), and monooxygenase (MeaXY), responsible for acetochlor biodegradation are also being investigated. In this paper, we review the migration law of acetochlor in the environment, its toxicity to nontarget organisms, and the main metabolic methods. Moreover, we summarize the latest progress in the research on the microbial catabolism of acetochlor, including the efficient degradation of microbial resources, biodegradation metabolic pathways, and key enzymes for acetochlor degradation. At the end of the article, we highlight the existing problems in the current research on acetochlor biodegradation, provide new ideas for the remediation of acetochlor pollution in the environment, and propose future research directions.
Collapse
Affiliation(s)
- Wen-Juan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Haoran Song
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Zeren Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofang Luo
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xidong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Chen K, Chen L, Shao H, Li J, Wang H, Mao C, Xu G. Investigation into the characteristics of electron beam-aged microplastics and adsorption behavior of dibutyl phthalate. CHEMOSPHERE 2024; 360:142342. [PMID: 38754492 DOI: 10.1016/j.chemosphere.2024.142342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Microplastics are increasingly prevalent in the environment, and their ability to adsorb various organic additives, posing harm to organisms, has attracted growing attention. Currently, there are no effective methods to age microplastics, and there is limited discussion on the subsequent treatment of aged microplastics. This study focuses on micro polyethylene (PE) and employs electron beam technology for aging treatment, investigating the adsorption and leaching behavior between PE and dibutyl phthalate (DBP) before and after aging. Experimental results indicate that with increasing doses of electron beam irradiation, the surface microstructure of PE worsens, inducing the generation of oxygen-containing functional groups on the surface of polyethylene. Comparative evaluations between electron beam aging and existing methods show that electron beam technology surpasses existing aging methods, achieving a level of aging exceeding 0.7 within an extremely short period of 1 min at doses exceeding 350 kGy. Adsorption experiments demonstrate that the adsorption between PE and DBP conforms to pseudo-second-order kinetics and the Freundlich model both before and after aging. The adsorption capacity of microplastics for DBP increases from 76.8 mg g-1 to 167.0 mg g-1 after treatment, exceeding that of conventional DBP adsorbents. Electron beam irradiation causes aging of microplastics mainly through the generation of ·OH, which lead to the formation of oxygen-containing functional groups on the microplastics' surface, thereby enhancing their adsorption capacity for DBP. This provides a new perspective for the degradation of aged microplastics and composite pollutants.
Collapse
Affiliation(s)
- Kang Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Haiyang Shao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China.
| | - Jiayuan Li
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Hongyong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Chengkai Mao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, PR China; Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, 200444, PR China.
| |
Collapse
|
4
|
Tao HY, Shi J, Zhang J, Ge H, Zhang M, Li XY. Developmental toxicity and mechanism of dibutyl phthalate and alternative diisobutyl phthalate in the early life stages of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106962. [PMID: 38797068 DOI: 10.1016/j.aquatox.2024.106962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Diisobutyl phthalate (DiBP), is widely chemical replacement for Dibutyl phthalate (DBP). Although DBP and DiBP have been detected in surface water worldwide, few studies to date have systematically assessed the risks of DBP and its alternatives to aquatic organisms. The present study compared DBP and DiBP for their individual and joint toxicity as well as thyroid hormone levels in zebrafish embryo. Transcripts of key genes related to the hypothalamic-pituitary-thyroid (HPT) axis were investigated in developing zebrafish larvae by application of real time polymerase chain reaction. The median half-lethal concentrations of DBP and DiBP to zebrafish at 96 h were 0.545 mg L-1 and 1.149 mg L-1, respectively. The joint toxic effect of DBP-DiBP (0.25-0.53 mg L-1) with the same ratio showed a synergistic effect. Thyroid hormones levels increased with exposure to 10 μg L-1 of DBP or 50 μg L-1 of DiBP, and exposure to both compounds significantly increased thyroid gland-specific transcription of thyroglobulin gene (tg), hyronine deiodinase (dio2), and transthyretin (ttr), indicating an adverse effect associated with the HPT axis. Molecular docking results indicated that DBP (-7.10 kcal/M and -7.53 kcal/M) and DiBP (-6.63 kcal/M and -7.42 kcal/M) had the same docking energy with thyroid hormone receptors. Our data facilities an understand of potential harmful effects of DBP and its alternative (DiBP).
Collapse
Affiliation(s)
- Huan-Yu Tao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Jianghong Shi
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jiawei Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Hui Ge
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mengtao Zhang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Xiao-Yan Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
5
|
Toledano JM, Puche-Juarez M, Moreno-Fernandez J, Gonzalez-Palacios P, Rivas A, Ochoa JJ, Diaz-Castro J. Implications of Prenatal Exposure to Endocrine-Disrupting Chemicals in Offspring Development: A Narrative Review. Nutrients 2024; 16:1556. [PMID: 38892490 PMCID: PMC11173790 DOI: 10.3390/nu16111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
During the last decades, endocrine-disrupting chemicals (EDCs) have attracted the attention of the scientific community, as a result of a deepened understanding of their effects on human health. These compounds, which can reach populations through the food chain and a number of daily life products, are known to modify the activity of the endocrine system. Regarding vulnerable groups like pregnant mothers, the potential damage they can cause increases their importance, since it is the health of two lives that is at risk. EDCs can affect the gestation process, altering fetal development, and eventually inducing the appearance of many disorders in their childhood and/or adulthood. Because of this, several of these substances have been studied to clarify the influence of their prenatal exposure on the cognitive and psychomotor development of the newborn, together with the appearance of non-communicable diseases and other disorders. The most novel research on the subject has been gathered in this narrative review, with the aim of clarifying the current knowledge on the subject. EDCs have shown, through different studies involving both animal and human investigation, a detrimental effect on the development of children exposed to the during pregnancy, sometimes with sex-specific outcomes. However, some other studies have failed to find these associations, which highlights the need for deeper and more rigorous research, that will provide an even more solid foundation for the establishment of policies against the extended use of these chemicals.
Collapse
Affiliation(s)
- Juan M. Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.J.O.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Maria Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.J.O.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.J.O.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| | - Patricia Gonzalez-Palacios
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Department of Nutrition and Food Science, University of Granada, 18071 Granada, Spain
| | - Ana Rivas
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
- Department of Nutrition and Food Science, University of Granada, 18071 Granada, Spain
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.J.O.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.J.O.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| |
Collapse
|
6
|
Hou T, Fan X, Zhang Q, Zhang H, Zhang D, Tao L, Wang Z. Dibutyl phthalate exposure induced mitochondria-dependent ferroptosis by enhancing VDAC2 in zebrafish ZF4 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123846. [PMID: 38548160 DOI: 10.1016/j.envpol.2024.123846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Dibutyl phthalate (DBP) contamination has raised global concern for decades, while its health risk with toxic mechanisms requires further elaboration. This study used zebrafish ZF4 cells to investigate the toxicity of ferroptosis with underlying mechanisms in response to DBP exposure. Results showed that DBP induced ferroptosis, characterized by accumulation of ferrous iron, lipid peroxidation, and decrease of glutathione peroxidase 4 levels in a time-dependent manner, subsequently reduced cell viability. Transcriptome analysis revealed that voltage-dependent anion-selective channel (VDAC) in mitochondrial outer membrane was upregulated in ferroptosis signaling pathways. Protecting mitochondria with a VDAC2 inhibitor or siRNAs attenuated the accumulation of mitochondrial superoxide and lipid peroxides, the opening of mitochondrial permeability transition pore (mPTP), and the overload of iron levels, suggesting VDAC2 oligomerization mediated the influx of iron into mitochondria that is predominant and responsible for mitochondria-dependent ferroptosis under DBP exposure. Furthermore, the pivotal role of activating transcription factor 4 (ATF4) was identified in the transcriptional regulation of vdac2 by ChIP assay. And the intervention of atf4b inhibited DBP-induced VDAC2 upregulation and oligomerization. Taken together, this study reveals that ATF4-VDAC2 signaling pathway is involved in the DBP-induced ferroptosis in zebrafish ZF4 cells, contributing to the in-depth understanding of biotoxicity and the ecological risk assessment of phthalates.
Collapse
Affiliation(s)
- Tingting Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qianqing Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haowei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dingfu Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lu Tao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
7
|
Chen H, Wang Y, Liang H. The combined neurotoxicity of DBP and nano-TiO 2 in embryonic zebrafish (Danio rerio) revealed by oxidative activity, neuro-development genes expression and metabolomics changes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106881. [PMID: 38430782 DOI: 10.1016/j.aquatox.2024.106881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Dibutyl phthalate (DBP) is a commonly used plasticizer that is frequently detected in water samples due to its widespread use. Titanium dioxide nanoparticles (n-TiO2) have been found to enhance the harmful effects of organic contaminants by increasing their bioavailability in aquatic environments. However, the combined toxic effects of DBP and n-TiO2 on aquatic organisms remain unclear. This study aimed to investigate the neurotoxicity of DBP and n-TiO2 synergistic exposure during the early life stage of zebrafish. The results of the study revealed that co-exposure of DBP and n-TiO2 led to an increase in deformities and a significant reduction in the active duration of zebrafish larvae. Furthermore, the co-exposure of DBP and n-TiO2 resulted in elevated levels of oxidative stress and altered gene expression related to neurodevelopment and apoptosis. Notably, n-TiO2 exacerbated the oxidative damage and apoptosis induced by DBP alone exposure. Additionally, co-exposure of the 1.0 mg/L DBP and n-TiO2 significantly affected the expression of genes associated with neurodevelopment. Moreover, disturbances in amino acid metabolism and interference with lipid metabolism were observed as a result of DBP and n-TiO2 co-exposure. In general, n-TiO2 aggravated the neurotoxicity of DBP in the early life stage of zebrafish by increasing oxidative stress, apoptosis, and disrupting amino acid synthesis and lipid metabolism. Therefore, it is essential to consider the potential risks caused by DBP and nanomaterials co-existence in the aquatic environment.
Collapse
Affiliation(s)
- Haiyue Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, Hohhot, 010021, China
| | - Yingjia Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, Hohhot, 010021, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, Hohhot, 010021, China.
| |
Collapse
|
8
|
Li N, Kang H, Liu Z, Li L, Deng Y, Wang M, Li Y, Xu W, Li X, Wang Y, Zhu J, Tao J, Yu P. Association of maternal phthalates exposure and metabolic gene polymorphisms with congenital heart diseases: a multicenter case-control study. BMC Pregnancy Childbirth 2024; 24:167. [PMID: 38408952 PMCID: PMC10895762 DOI: 10.1186/s12884-024-06343-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND The majority of congenital heart diseases (CHDs) are thought to result from the interactions of genetics and the environment factors. This study aimed to assess the association of maternal non-occupational phthalates exposure, metabolic gene polymorphisms and their interactions with risk of CHDs in offspring. METHODS A multicenter case-control study of 245 mothers with CHDs infants and 268 control mothers of health infant was conducted from six hospitals. Maternal urinary concentrations of eight phthalate metabolites were measured by ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Twenty single nucleotide polymorphisms (SNPs) in cytochrome P450 family 2 subfamily C member 9 (CYP2C9) and 19 (CYP2C19), uridine diphosphate (UDP) glucuronosyl transferase family 1 member A7 (UGT1A7), family 2 member B7 (UGT2B7) and B15(UGT2B15) genes were genotyped. The multivariate logistic regressions were used to estimate the association between maternal phthalates exposure or gene polymorphisms and risk of CHDs. Generalized multifactor dimensionality reduction (GMDR) was used to analyze the gene-gene and gene-phthalates exposure interactions. RESULTS There was no significant difference in phthalate metabolites concentrations between the cases and controls. No significant positive associations were observed between maternal exposure to phthalates and CHDs. The SNPs of UGT1A7 gene at rs4124874 (under three models, log-additive: aOR = 1.74, 95% CI:1.28-2.37; dominant: aOR = 1.86, 95% CI:1.25-2.78; recessive: aOR = 2.50, 95% CI: 1.26-4.94) and rs887829 (under the recessive model: aOR = 13.66, 95% CI: 1.54-121) were significantly associated with an increased risk of CHDs. Furthermore, the associations between rs4124874 (under log-additive and dominant models) of UGT1A7 were statistically significant after the false discovery rate correction. No significant gene-gene or gene-phthalate metabolites interactions were observed. CONCLUSIONS The polymorphisms of maternal UGT1A7 gene at rs4124874 and rs887829 were significantly associated with an increased risk of CHDs. More large-scale studies or prospective study designs are needed to confirm or refute our findings in the future.
Collapse
Affiliation(s)
- Nana Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Hong Kang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Zhen Liu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Lu Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Ying Deng
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Meixian Wang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yuting Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Wenli Xu
- Department of Maternal Healthcare, Pidu Maternal and Child Care Hospital, Chengdu, China
| | - Xiaohong Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yanping Wang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jun Zhu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jing Tao
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.
| | - Ping Yu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Sec.3 No.17, South RenMin Road, Chengdu, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Ding Z, Jia H, Yang Z, Yao N, Wang Y. The cardiovascular toxicity of clozapine in embryonic zebrafish and RNA sequencing-based transcriptome analysis. J Appl Toxicol 2024; 44:175-183. [PMID: 37605992 DOI: 10.1002/jat.4530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Clozapine (CLZ) is the most prescribed medication for treating refractory schizophrenia but is associated with significant cardiovascular toxicity. This study aimed to investigate the cardiovascular toxicity induced by CLZ using zebrafish as a model animal. For this purpose, zebrafish developed to 80-h post-fertilization were exposed to different CLZ concentration solutions for 24 h followed by cardiac morphological observations in yolk sac edema, pericardial edema, and blood coagulation, in addition to increased SV-BA distance, functionally manifested as bradycardia, and decreased cardiac ejection fraction using the untreated embryos as control. At the same time, RNA sequencing was used to study the possible molecular mechanism of CLZ-induced cardiovascular toxicity. The results indicated that compared to the control group, the experimental groups possessed a total of 5888 differentially expressed genes (DEGs), where gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment of analysis indicated that DEGs were mainly enriched in the pathways related to ion channels. These findings may provide new insights and directions for the subsequent in-depth study of the molecular mechanism of CLZ-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Zijiao Ding
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huiting Jia
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ziqian Yang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Nan Yao
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Yunyun Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
10
|
Yang Y, Tao Y, Yi X, Zhong G, Gu Y, Cui Y, Zhang Y. Crosstalk between aryl hydrocarbon receptor and Wnt/β-catenin signaling pathway: Possible culprit of di (2-ethylhexyl) phthalate-mediated cardiotoxicity in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167907. [PMID: 37866606 DOI: 10.1016/j.scitotenv.2023.167907] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Typical plasticizer di (2-ethylhexyl) phthalate (DEHP) has been demonstrated to induce cardiotoxicity in zebrafish, but the potential molecular mechanisms involved have not been fully elucidated. Aryl hydrocarbon receptor (AhR), an essential protein for inducing developmental abnormalities, has been demonstrated to be activated by DEHP in other species, but whether the AhR signaling pathway also contributes to DEHP-mediated cardiac developmental toxicity in zebrafish remains unclear. Firstly, molecular docking simulations initially confirmed the possibility that DEHP has AhR agonistic activity. To further confirm this conjecture, this work analyzed the changes of cardiac-related indexes in zebrafish stressed by DEHP at individual, protein, and gene levels. The results showed that DEHP mediated cardiac phenotypic developmental defects, increased CYP1A1 activity, and oxidative stress as well as significant changes in the expression levels of key proteins and genes of AhR, Wnt/β-catenin, and Nrf2-Keap1 signaling pathways. Notably, the addition of AhR inhibitors effectively alleviated the above negative effects, indicating that the AhR signaling pathway and its crosstalk with the Wnt/β-catenin signaling pathway is an essential pathway for DEHP-mediated cardiac developmental toxicity. Overall, this work enriches the molecular mechanism of DEHP-mediated cardiac developmental defects in zebrafish and provides a reliable biomarker for future environmental risk assessment of DEHP.
Collapse
Affiliation(s)
- Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaodong Yi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Guanyu Zhong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yanyan Gu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yunhe Cui
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
11
|
Chen H, Zhao Y, Zhao T, Li Y, Ren B, Liang H, Liang H. Multi-walled carbon nanotubes enhance the toxicity effects of dibutyl phthalate on early life stages of zebrafish (Danio rerio): Research in physiological, biochemical and molecular aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165684. [PMID: 37482360 DOI: 10.1016/j.scitotenv.2023.165684] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Phthalate esters (PAEs) are widely used as plasticizers. PAEs are ubiquitous in natural water bodies, with dibutyl phthalate (DBP) being one of the most common PAEs. DBP is prone to leaching or migration into the environment, posing serious health and environmental risks. Carbon nanotubes (CNTs) have been widely used in various fields with the rapid development of nanotechnology. CNTs could alter the environmental behavior and toxicity of co-existing pollutants. CNTs have been shown to rapidly adsorb PEAs. However, current knowledge about the effects of CNTs on DBP toxicity is limited. Here we show that the toxic effects of single and combined exposure to DBP (0.1, 0.5, 1.0 mg/L) and different CNTs (MWCNTs/MWCNTs-COOH, 0.5 mg/L) on the early growth stage of zebrafish. The results suggested that a significant increase in heart rate and heart malformation rate was observed after co-exposure of DBP and MWCNTs/MWCNTs-COOH (p < 0.05). Furthermore, combined exposure increased antioxidant enzyme activity during early developmental stages in zebrafish (p < 0.05). The qRT-PCR results revealed that DBP and MWCNTs/MWCNTs-COOH co-exposure significantly interfered with the expression of genes related to oxidative stress, energy metabolism, development of cardiac function, and apoptosis (p < 0.05). In addition, for oxidative stress and cardiotoxicity, MWCNTs/MWCNTs-COOH aggravated the toxic effects of 0.5 mg/L DBP on embryos/larvae. The metabolomics results showed that co-exposure mitigated the disturbance of amino acid metabolism mediated by single DBP exposure. In general, MWCNTs/MWCNTs-COOH increased the impact of DBP in the early developmental stages of zebrafish. This study provides new insights into the toxicology of early developmental stages of aquatic organisms exposed to co-exist pollutants of DBP and CNTs.
Collapse
Affiliation(s)
- Haiyue Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tingting Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yanhong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Bo Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hanlin Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
12
|
Mileo A, Chianese T, Fasciolo G, Venditti P, Capaldo A, Rosati L, De Falco M. Effects of Dibutylphthalate and Steroid Hormone Mixture on Human Prostate Cells. Int J Mol Sci 2023; 24:14341. [PMID: 37762641 PMCID: PMC10531810 DOI: 10.3390/ijms241814341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Phthalates are a family of aromatic chemical compounds mainly used as plasticizers. Among phthalates, di-n-butyl phthalate (DBP) is a low-molecular-weight phthalate used as a component of many cosmetic products, such as nail polish, and other perfumed personal care products. DBP has toxic effects on reproductive health, inducing testicular damage and developmental malformations. Inside the male reproductive system, the prostate gland reacts to both male and female sex steroids. For this reason, it represents an important target of endocrine-disrupting chemicals (EDCs), compounds that are able to affect the estrogen and androgen signaling pathways, thus interfering with prostate homeostasis and inducing several prostate pathologies. The aim of this project was to investigate the effects of DBP, alone and in combination with testosterone (T), 17β-estradiol (E2), and both, on the normal PNT1A human prostate cell-derived cell line, to mimic environmental contamination. We showed that DBP and all of the tested mixtures increase cell viability through activation of both estrogen receptor α (ERα) and androgen receptor (AR). DBP modulated steroid receptor levels in a nonmonotonic way, and differently to endogenous hormones. In addition, DBP translocated ERα to the nucleus over different durations and for a more prolonged time than E2, altering the normal responsiveness of prostate cells. However, DBP alone seemed not to influence AR localization, but AR was continuously and persistently activated when DBP was used in combination. Our results show that DBP alone, and in mixture, alters redox homeostasis in prostate cells, leading to a greater increase in cell oxidative susceptibility. In addition, we also demonstrate that DBP increases the migratory potential of PNT1A cells. In conclusion, our findings demonstrate that DBP, alone and in mixtures with endogenous steroid hormones, acts as an EDC, resulting in an altered prostate cell physiology and making these cells more prone to cancer transformation.
Collapse
Affiliation(s)
- Aldo Mileo
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
| | - Teresa Chianese
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
| | - Gianluca Fasciolo
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
| | - Paola Venditti
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
| | - Anna Capaldo
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
| | - Luigi Rosati
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
- CIRAM, Centro Interdipartimentale di Ricerca “Ambiente”, University Federico II of Naples, Via Mezzocannone 16, 80134 Naples, Italy
| | - Maria De Falco
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80126 Naples, Italy; (A.M.); (T.C.); (G.F.); (P.V.); (A.C.); (L.R.)
- National Institute of Biostructures and Biosystems (INBB), Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
| |
Collapse
|
13
|
Zhang Q, Ma W, Zhu J. Combined Toxicities of Di-Butyl Phthalate and Polyethylene Terephthalate to Zebrafish Embryos. TOXICS 2023; 11:toxics11050469. [PMID: 37235283 DOI: 10.3390/toxics11050469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
The increasing concern for the ecological risks of microplastics (MPs) as carriers of hydrophobic organic contaminants is evident. Di-butyl phthalate (DBP) is extensively utilized as an additive in plastic products, and both DBP and MPs are widespread in the environment. However, the combined toxicity of these substances remains uncertain. In this study, zebrafish embryos were employed to assess the toxic effects of polyethylene terephthalate (PET, MPs) and DBP, with a focus on the DBP toxicities influenced by PET. The embryonic chorion was partially covered by PET particles, and PET led to a delayed hatching of zebrafish embryos without inducing death or teratogenesis. On the other hand, exposure to DBP considerably inhibited the hatching of embryos, leading to severe lethal and teratogenic effects. The most common phenotypes induced by DBP exposure were delayed yolk sac absorption and pericardial edema. The mortality increased in co-treatment with 100 particles/mL PET and 2 mg/L DBP at 24 hpf and 48 hpf. The malformation phenotype, bent notochord, and delayed yolk sac absorption became more severe in 1 mg/L DBP exposition with the co-exposure of 100 particles/mL PET at 72 hpf. PET might act as a carrier that enhances the bioavailability of ambient DBP.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Fishery, Zhejiang Ocean University, Zhoushan 316022, China
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Wenjie Ma
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Jingmin Zhu
- School of Fishery, Zhejiang Ocean University, Zhoushan 316022, China
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| |
Collapse
|
14
|
Bu H, Tang S, Liu G, Miao C, Zhou X, Yang H, Liu B. In silico, in vitro and in vivo studies: Dibutyl phthalate promotes prostate cancer cell proliferation by activating Forkhead Box M1 and remission after Natura-α pretreatment. Toxicology 2023; 488:153465. [PMID: 36828243 DOI: 10.1016/j.tox.2023.153465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Dibutyl phthalate (DBP) is widely used in perfumes, cosmetics, shampoos and medical devices. It is ubiquitous in the environment and greatly endangers people's health. Several studies have reported that being exposed to it can promote the development of lung cancer, breast cancer, hepatoma, and multiple myeloma. However, there are still few studies on the specific molecular mechanism and prevention methods of DBP promoting the progression of prostate cancer. This study, in silico, in vitro and in vivo, aims to explore the promoting effect of DBP on prostate cancer cell proliferation. In silico analysis, we obtained a set of DBP interactive genes by utilizing TCGA, CTD and GEO database. These genes are mainly enriched in cell cycle regulatory pathways and they have high degree of homogeneity. We found that these genes shared one transcription factor - Forkhead Box M1 (FOXM1) by performing Chip-X Enrichment Analysis (Version 3.0). FOXM1, once called the 2010 Molecule of the Year, aberrantly expressed in up to 20 kinds of tumors. In vitro experiments, we used DBP at concentrations of 10-8 M and 5 * 10-7 M to treat C4-2 and PC3 cells for 6 days, respectively. Cell viability was promoted significantly. When Natura-α was added in the background of above-mentioned concentration of DBP, this effect was significantly inhibited. In addition, we also found that DBP can interfering with the efficacy of enzalutamide therapy. The introduction of Natura-α can also reverse this phenomenon. In vivo, subcutaneous tumor formation experiments in nude mice, 800 mg/kg/day DBP can promote the growth of prostate cancer. This phenomenon was suppressed when Natura-α (100 mg/kg/day) was added. Based on the results of the above three levels, we confirmed that DBP can target FOXM1 to promote prostate cancer cell proliferation. Natura-α can reverse its cancer-promoting effect. This study provides new insights into the impact of DBP on prostate cancer.
Collapse
Affiliation(s)
- Hengtao Bu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Sensheng Tang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guiting Liu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chenkui Miao
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiang Zhou
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haiwei Yang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Bianjiang Liu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
15
|
Baralić K, Pavić A, Javorac D, Živančević K, Božić D, Radaković N, Antonijević Miljaković E, Buha Djordjevic A, Ćurčić M, Bulat Z, Antonijević B, Đukić-Ćosić D. Comprehensive investigation of hepatotoxicity of the mixture containing phthalates and bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130404. [PMID: 36455319 DOI: 10.1016/j.jhazmat.2022.130404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/23/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Connections between the mixture containing bis(2- ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and bisphenol A (BPA) and liver injury were explored through in silico investigation and 2 in vivo models. Comparative Toxicogenomics Database (CTD), ShinyGO, ToppCluster and Cytoscape were used for bioinformatic analysis. In vivo subacute study was performed on rats - five groups (n = 6): (1) Control: corn oil, (2) DEHP: 50 mg/kg b.w./day, (3) DBP: 50 mg/kg b.w./day, (4) BPA: 25 mg/kg b.w./day, (5) MIX: DEHP + DBP + BPA. Zebrafish embryos were exposed to the investigated substances in different doses, singularly and combined (binary and ternary mixtures). Liver injury was linked to 75 DEHP, DBP, and BPA genes, mostly connected to inflammation/oxidative stress. In rats, significant alterations in redox status/bioelements and pathohistology were most notable or exclusively present in MIX (probable additive effects). BPA decreased liver area (LA) index in dose-dependent manner. DEHP (< 2 µg/mL) and DBP (≤ 5 µg/mL) reduced LA values, while their higher doses increased LA index. The effect of DBP in binary mixtures led to a lethal outcome at the two highest concentrations, while the hepatotoxicity of DEHP/DBP/BPA mixture was dictated by BPA (confirmed by the benchmark dose analysis).
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Aleksandar Pavić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; University of Belgrade - Faculty of Biology, Institute of Physiology and Biochemistry "Ivan Djaja", Studentski trg, 3, Belgrade, Serbia
| | - Dragica Božić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Nataša Radaković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
16
|
Yang X, Wang C, Zheng Q, Liu Q, Wawryk NJP, Li XF. Emerging Disinfection Byproduct 2,6-Dichlorobenzoquinone-Induced Cardiovascular Developmental Toxicity of Embryonic Zebrafish and Larvae: Imaging and Transcriptome Analysis. ACS OMEGA 2022; 7:45642-45653. [PMID: 36530307 PMCID: PMC9753109 DOI: 10.1021/acsomega.2c06296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Epidemiological studies have observed the potential association of water disinfection byproduct (DBP) exposure with cardiac defects. Aromatic DBPs represent a significant portion of total DBPs, but their effects on cardiovascular development are unclear. In this study, we examined the effects of an aromatic DBP, 2,6-dichlorobenzoquinone (DCBQ), on the cardiovascular development of zebrafish embryos. After exposure to 2, 4, and 8 μM DCBQ, morphological images of growing zebrafish embryos clearly showed cardiovascular malformation. Fluorescent images of transgenic zebrafish strains with fluorescently labeled heart and blood vessels show that DCBQ exposure resulted in deformed atrium-ventricle looping, degenerated abdomen and trunk vessels, pericardial edema, and decreased blood flow. Furthermore, the expression of the marker gene myl7 (essential for the differentiation and motility of cardiomyocytes) was inhibited in a dose-dependent manner by DCBQ exposure. Finally, transcriptome analysis found that in the 4 μM DCBQ exposure group, the numbers of differentially expressed genes (DEGs) were 113 (50 upregulated and 63 downregulated) at 24 hpf, 2123 (762 upregulated and 1361 downregulated) at 48 hpf, and 61 (11 upregulated and 50 downregulated) at 120 hpf; in the 8 μM DCBQ exposure group, the number of DEGs was 1407 (647 upregulated and 760 downregulated) at 120 hpf. The FoxO signaling pathway was significantly altered. The in vivo results demonstrate the effects of 2,6-DCBQ (0-8 μM) on cardiovascular development, contributing to the understanding of the developmental toxicity of aromatic DBP halobenzoquinones (HBQs).
Collapse
Affiliation(s)
- Xue Yang
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Chang Wang
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Qi Zheng
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Qiongyu Liu
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Nicholas J. P. Wawryk
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xing-Fang Li
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
17
|
Li Y, Wang R, Li Y, Sun G, Mo H. Protective effects of tree peony seed protein hydrolysate on Cd-induced oxidative damage, inflammation and apoptosis in zebrafish embryos. FISH & SHELLFISH IMMUNOLOGY 2022; 126:292-302. [PMID: 35654387 DOI: 10.1016/j.fsi.2022.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The objective of this study was to investigate protective effects of tree peony seed protein hydrolysate by Alcalase (AL-TPSPH) on oxidative damage, inflammation and apoptosis using Cd-induced zebrafish embryos. Zebrafish embryos were treated with either Cd (2 μg/L) or AL-TPSPH (25, 50 and 75 μg/mL) alone or in combination of both from 4 to 144 h post fertilization (hpf). The effects of these treatments on developments, antioxidant parameters and mRNA expression of genes related to oxidative damage, inflammation and apoptosis were examined. The results showed that co-treatment with Cd and AL-TPSPH significantly increased hatching and survival rates and decreased malformation rates of zebrafish embryos compared with Cd treatment alone group (P < 0.05). Cd-induced increase of MDA content, decreases of T-AOC content, GSH/GSSG ratio and activities of SOD, CAT and GPx in zebrafish embryos were modified upon treatment with AL-TPSPH. AL-TPSPH treatment significantly suppressed Cd-induced down-regulations of the antioxidant gene expressions (Mn-sod, Cat and GPx1a) in zebrafish embryos (P < 0.05). AL-TPSPH also prevented Cd-induced up-regulations of pro-inflammatory cytokine (TNF-α, IL-1β and IFN-γ) expressions. Moreover, AL-TPSPH inhibited Cd-induced up-regulations of pro-apoptotic genes (C-jun, Caspase-3 and Caspase-9) in zebrafish embryos. Collectively, these results indicated that AL-TPSPH could reduce Cd-induced oxidative damage, inflammation and apoptosis in zebrafish embryos, suggesting its future applications as functional food or pharmaceutical ingredient.
Collapse
Affiliation(s)
- Yan Li
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan, 250353, China
| | - Ruixue Wang
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan, 250353, China
| | - Yingqiu Li
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan, 250353, China.
| | - Guijin Sun
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan, 250353, China.
| | - Haizhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 453003, China
| |
Collapse
|
18
|
Paquette E, Mumper N, Rodrigues A, Voulo M, Rich S, Roy NM. Hindbrain defects induced by Di-butyl phthalate (DBP) in developing zebrafish embryos. Neurotoxicol Teratol 2022; 92:107093. [PMID: 35477034 DOI: 10.1016/j.ntt.2022.107093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
Di-butyl phthalate (DBP) is a globally used plasticizer found in alarmingly high concentrations in soil and water ecosystems. As phthalates are non-covalently bound to plastic polymers, phthalates easily leach into the aquatic environment. The effects of DBP on aquatic organisms is concerning, most notably, studies have focused on the endocrine-disrupting effects. However, reports on the developmental neurotoxicity of DBP are rare. Using the zebrafish vertebrate model system, we treated pre-gastrulation staged embryos with 2.5 μM DBP, a concentration environmentally noted. We find that general hindbrain structure and rhombomere patterning is disrupted at 72 h post fertilization (hpf). We investigated hindbrain specific neural patterning of cranial motor neurons and find defects in branchiomotor neuron patterning and migration. Furthermore, defects in r4 specific Mauthner neuron development were also noted. Thus, we conclude that DBP exposure during embryonic development induces defects to the hindbrain and concomitantly the neurons that are born and differentiate there.
Collapse
Affiliation(s)
- Evelyn Paquette
- Department of Biology, Sacred Heart University, Fairfield, CT, United States of America
| | - Naomi Mumper
- Department of Biology, Sacred Heart University, Fairfield, CT, United States of America
| | - Alissa Rodrigues
- Department of Biology, Sacred Heart University, Fairfield, CT, United States of America
| | - Morgan Voulo
- Department of Biology, Sacred Heart University, Fairfield, CT, United States of America
| | - Sierrah Rich
- Department of Biology, Sacred Heart University, Fairfield, CT, United States of America
| | - Nicole M Roy
- Department of Biology, Sacred Heart University, Fairfield, CT, United States of America.
| |
Collapse
|
19
|
Song P, Jiang N, Zhang K, Li X, Li N, Zhang Y, Wang Q, Wang J. Ecotoxicological evaluation of zebrafish liver (Danio rerio) induced by dibutyl phthalate. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128027. [PMID: 34906872 DOI: 10.1016/j.jhazmat.2021.128027] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Dibutyl phthalate (DBP), one of the most commonly applied plasticizers, has been frequently detected in the aquatic environment, posing potential risks to aquatic organisms. Currently, reports about the toxicity of zebrafish liver with DBP exposure are rare, and the toxic mechanism is still not clear. In this study, zebrafish (Danio rerio) were used to explore the ecotoxicological effects of DBP from the physiological, biochemical, genetic, and molecular levels. The results showed oxidative stress, lipid peroxidation, and DNA damage occurred in zebrafish liver according to changes in antioxidant enzymes, MDA and 8-OHdG content. AchE activity was always active, and negatively correlated with the DBP concentration. The expression of Cu/Zn-sod and gpx genes were similar to that of antioxidant enzymes from 7 to 21 days, while in the end, the inconsistent result appeared due to the time lag effect in protein modification, gene transcription and translation. Besides, the mRNA abundance of Caspase-3 and p53 were upregulated, showing a "dose-response" relationship. The integrated biomarker reaction indicated that the effects of exposure time on zebrafish liver was 14th day> 28th day> 7th day> 21th day. These results are of great significance to evaluate the toxicological effects and explore the toxic mechanism of DBP on aquatic organisms.
Collapse
Affiliation(s)
- Peipei Song
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Nan Jiang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Kaiqu Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Na Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Youai Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
20
|
Martyniuk CJ, Martínez R, Navarro-Martín L, Kamstra JH, Schwendt A, Reynaud S, Chalifour L. Emerging concepts and opportunities for endocrine disruptor screening of the non-EATS modalities. ENVIRONMENTAL RESEARCH 2022; 204:111904. [PMID: 34418449 PMCID: PMC8669078 DOI: 10.1016/j.envres.2021.111904] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 05/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are ubiquitous in the environment and involve diverse chemical-receptor interactions that can perturb hormone signaling. The Organization for Economic Co-operation and Development has validated several EDC-receptor bioassays to detect endocrine active chemicals and has established guidelines for regulatory testing of EDCs. Focus on testing over the past decade has been initially directed to EATS modalities (estrogen, androgen, thyroid, and steroidogenesis) and validated tests for chemicals that exert effects through non-EATS modalities are less established. Due to recognition that EDCs are vast in their mechanisms of action, novel bioassays are needed to capture the full scope of activity. Here, we highlight the need for validated assays that detect non-EATS modalities and discuss major international efforts underway to develop such tools for regulatory purposes, focusing on non-EATS modalities of high concern (i.e., retinoic acid, aryl hydrocarbon receptor, peroxisome proliferator-activated receptor, and glucocorticoid signaling). Two case studies are presented with strong evidence amongst animals and human studies for non-EATS disruption and associations with wildlife and human disease. This includes metabolic syndrome and insulin signaling (case study 1) and chemicals that impact the cardiovascular system (case study 2). This is relevant as obesity and cardiovascular disease represent two of the most significant health-related crises of our time. Lastly, emerging topics related to EDCs are discussed, including recognition of crosstalk between the EATS and non-EATS axis, complex mixtures containing a variety of EDCs, adverse outcome pathways for chemicals acting through non-EATS mechanisms, and novel models for testing chemicals. Recommendations and considerations for evaluating non-EATS modalities are proposed. Moving forward, improved understanding of the non-EATS modalities will lead to integrated testing strategies that can be used in regulatory bodies to protect environmental, animal, and human health from harmful environmental chemicals.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| | - Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Adam Schwendt
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Lorraine Chalifour
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW With cardiovascular disease (CVD) being the top cause of deaths worldwide, it is important to ensure healthy cardiovascular aging through enhanced understanding and prevention of adverse health effects exerted by external factors. This review aims to provide an updated understanding of environmental influences on cardiovascular aging, by summarizing epidemiological and mechanistic evidence for the cardiovascular health impact of major environmental stressors, including air pollution, endocrine-disrupting chemicals (EDCs), metals, and climate change. RECENT FINDINGS Recent studies generally support positive associations of exposure to multiple chemical environmental stressors (air pollution, EDCs, toxic metals) and extreme temperatures with increased risks of cardiovascular mortality and morbidity in the population. Environmental stressors have also been associated with a number of cardiovascular aging-related subclinical changes including biomarkers in the population, which are supported by evidence from relevant experimental studies. The elderly and patients are the most vulnerable demographic groups to majority environmental stressors. Future studies should account for the totality of individuals' exposome in addition to single chemical pollutants or environmental factors. Specific factors most responsible for the observed health effects related to cardiovascular aging remain to be elucidated.
Collapse
Affiliation(s)
- Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi'an City, Shaanxi Province, 710061, People's Republic of China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi'an City, Shaanxi Province, 710061, People's Republic of China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China.
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| |
Collapse
|
22
|
Barbagallo S, Baldauf C, Orosco E, Roy NM. Di-butyl phthalate (DBP) induces defects during embryonic eye development in zebrafish. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:178-185. [PMID: 34773557 DOI: 10.1007/s10646-021-02468-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Di-butyl phthalate (DBP) is a phthalate ester (PAEs) added during the manufacturing of plastics to make them stronger, yet more pliable. DBP is noncovalently bound to plastics resulting in leaching into the environment. Concerning concentrations of DBP have been noted in surface and groundwater, aquatic ecosystems, soil and atmospheric environments globally. Global production of phthalates and thus concomitant exposure has increased over the years making studies on the ecological and environmental safety needed. Most of the literature on DBP focuses on the endocrine disrupting properties of phthalate esters, but the developmental toxicity of DBP is an understudied area. Here, we treat gastrula staged zebrafish embryos with environmentally relevant concentrations of DBP (2.5 µM). We find defects in eye development at 96 h post fertilization including a decrease in the size of the lens and retina in DBP-treated embryos. Defects in eye vascularization as well as loss of the optic nerve and optic tectum were also noted. Here we conclude that exposure to environmentally relevant doses of DBP during early embryonic development is toxic to eye development.
Collapse
Affiliation(s)
| | - Cassidy Baldauf
- Department of Biology, Sacred Heart University, Fairfield, CT, USA
| | - Emily Orosco
- Department of Biology, Sacred Heart University, Fairfield, CT, USA
| | - Nicole M Roy
- Department of Biology, Sacred Heart University, Fairfield, CT, USA.
| |
Collapse
|
23
|
Svoboda LK, Ishikawa T, Dolinoy DC. Developmental toxicant exposures and sex-specific effects on epigenetic programming and cardiovascular health across generations. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac017. [PMID: 36325489 PMCID: PMC9600458 DOI: 10.1093/eep/dvac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/12/2022] [Accepted: 10/01/2022] [Indexed: 05/15/2023]
Abstract
Despite substantial strides in diagnosis and treatment, cardiovascular diseases (CVDs) continue to represent the leading cause of death in the USA and around the world, resulting in significant morbidity and loss of productive years of life. It is increasingly evident that environmental exposures during early development can influence CVD risk across the life course. CVDs exhibit marked sexual dimorphism, but how sex interacts with environmental exposures to affect cardiovascular health is a critical and understudied area of environmental health. Emerging evidence suggests that developmental exposures may have multi- and transgenerational effects on cardiovascular health, with potential sex differences; however, further research in this important area is urgently needed. Lead (Pb), phthalate plasticizers, and perfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants with numerous adverse human health effects. Notably, recent evidence suggests that developmental exposure to each of these toxicants has sex-specific effects on cardiovascular outcomes, but the underlying mechanisms, and their effects on future generations, require further investigation. This review article will highlight the role for the developmental environment in influencing cardiovascular health across generations, with a particular emphasis on sex differences and epigenetic mechanisms. In particular, we will focus on the current evidence for adverse multi and transgenerational effects of developmental exposures to Pb, phthalates, and PFAS and highlight areas where further research is needed.
Collapse
Affiliation(s)
- Laurie K Svoboda
- *Correspondence address. Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA. Tel: +734-764-2032; E-mail:
| | - Tomoko Ishikawa
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Zhu X, Yin T, Yue X, Liao S, Cheang I, Zhu Q, Yao W, Lu X, Shi S, Tang Y, Zhou Y, Li X, Zhang H. Association of urinary phthalate metabolites with cardiovascular disease among the general adult population. ENVIRONMENTAL RESEARCH 2021; 202:111764. [PMID: 34329633 DOI: 10.1016/j.envres.2021.111764] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/06/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE This study aims to explore the relationship between urinary phthalate metabolites and total and specific cardiovascular disease (CVD) among the general adult population. METHODS This cross-sectional study analyzed 11 urinary phthalates in the general population from the 2005-2016 National Health and Nutrition Examination Survey (NHANES) (n = 10,427). Multivariate logistic regression and weighted quantile sum (WQS) regression were applied to examine the relationship between phthalate metabolites and mixtures and the prevalence rates of total and specific CVD. RESULTS Compared to the lowest quartile, mono-isobutyl phthalate (MiBP) (OR 1.37; 95% CI 1.03-1.83, P for trend = 0.032) and mono-benzyl phthalate (MBzP) (OR 1.44; 95% CI 1.10-1.88, P for trend = 0.013) in the highest quartile were independently associated with increased total CVD. The WQS index of phthalate mixtures was independently correlated with total CVD (adjusted OR 1.17; 95% CI 1.01-1.36, P = 0.039), and MBzP (weight = 0.392) was the most heavily weighted component. In addition, restricted cubic spline regression demonstrated that the MBzP level had a positive correlation and linear association with total CVD (P for nonlinearity = 0.182). CONCLUSIONS Our findings suggest that high phthalate mixture levels are associated with an increased prevalence of CVD, with the greatest influence coming from MBzP.
Collapse
Affiliation(s)
- Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Ting Yin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xin Yue
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Iokfai Cheang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Qingqing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Wenming Yao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xinyi Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Shi Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Yuan Tang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Yanli Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China; Department of Cardiology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China.
| |
Collapse
|
25
|
Fan X, Gu C, Cai J, Bian Y, Yang X, Sun C, Jiang X. Study on active response of superoxide dismutase and relevant binding interaction with bioaccumulated phthalates and key metabolites in Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112559. [PMID: 34333384 DOI: 10.1016/j.ecoenv.2021.112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Phthalic acid esters (PAEs) are a group of widespread persistent organic pollutants in the environment. Though the harmful effect of PAEs including activity inhibition of superoxide dismutase (SOD) to arouse oxidative stress were well documented, the deep insights into mechanisms that are relevant with SOD activity are still lacking. By 7d-cultivation of Eisenia fetida in artificially-polluted soil, the different active responses of SOD in earthworm were shown to PAE congeners. Despite the less bioaccumulation and bioavailability, the di-butyl phthalate (DBP) etc. structurally coupled with longer ester-chains appeared more effective to trigger the up-regulation and then the slight decline of SOD activity. Given the remarkable biotransformation especially for short-chain PAEs, the SOD activity response in earthworm should be regarded as joint effect with their metabolites, e.g. monophthalates (MAEs) and phthalic acid (PA). The in vitro SOD activity was shown with the obvious inhibition of 21.31% by DBP, 88.93% by MBP, and 58.57% by PA respectively when the concentrations were elevated up to 0.03 mM. The SOD activity inhibition confirmed the molecular binding with pollutants as an essential event besides the biological regulation for activity. The binding interaction was thermodynamically exothermic, spontaneous and strengthened primarily by Van der Waals force and hydrogen bonds, and was spectrally diagnosed with the conformational changes including diminution of α-helix content and spatial reorientation of fluorophore tryptophan. As coherently illustrated with the larger fluorescence quenching constants (3.65*104-4.47*104/mol) than DBP, the metabolites should be the priority concern due to stronger activity inhibition and toxicological risks.
Collapse
Affiliation(s)
- Xiuli Fan
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenggang Gu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jun Cai
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xinglun Yang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
26
|
Yuan M, Li W, Xiao P. Bixafen causes cardiac toxicity in zebrafish (Danio rerio) embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36303-36313. [PMID: 33694115 DOI: 10.1007/s11356-021-13238-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Bixafen (BIX) is a succinate dehydrogenase inhibitor (SDHI)-class fungicide that is used to control crop diseases. However, data on the toxicity of BIX to zebrafish are limited. Here, zebrafish embryos were exposed to 0.1, 0.3, and 0.9 μM BIX. After BIX exposure, zebrafish embryos exhibited cardiac dysplasia and dysfunction, including pericardial edema, reduced heart rate, and drastically decreased erythrocytes in the cardiac area; the severity of these negative effects increased with BIX concentration and the duration of BIX exposure. In addition, the transcription levels of erythropoiesis-related genes decreased significantly in BIX-treated embryos, as compared to untreated control embryos. Similarly, compared with the control, key genes responsible for cardiac development (myh6, nkx2.5, and myh7) also exhibited dysregulated expression patterns in response to BIX treatment, suggesting that BIX might specifically affect cardiac development. Finally, cell apoptosis was induced in embryos after BIX treatment. In combination, our results suggested that exposure to BIX induced cardiac toxicity in zebrafish. These data will be valuable for future evaluations of the environmental risks of BIX.
Collapse
Affiliation(s)
- Mingrui Yuan
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, China
| | - Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, China.
| | - Peng Xiao
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
27
|
Zhang Y, Jiao Y, Tao Y, Li Z, Yu H, Han S, Yang Y. Monobutyl phthalate can induce autophagy and metabolic disorders by activating the ire1a-xbp1 pathway in zebrafish liver. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125243. [PMID: 33524730 DOI: 10.1016/j.jhazmat.2021.125243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/01/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Monobutyl phthalate (MBP) can exist in biological organisms for a long time because of its excellent fat solubility, and it has been found to have certain toxic effects. In this study, the acute effects of MBP on endoplasmic reticulum (ER) stress and metabolism in the zebrafish liver were studied. After continuous exposure to MBP (5 and 10 mg / L) for 96 h, ER damage and the appearance of apoptotic bodies and autophagosomes were found in liver. This is because MBP stimulated the ire-xbp1 pathway of ER stress, thus leading to apoptosis and autophagy. Also, through analysis of metabolic enzymes and genes, it was found that the activated ire-xbp1 pathway could promote lipid synthesis and cause the accumulation of lipid droplets. The gene pparγ related to lipid storage affected the level of insulin, which can also further affect the glucose metabolism process, that is, glycolysis and aerobic respiration were inhibited. And the pentose phosphate pathway (PPP) was activated as a compensation mechanism to alleviate glycogen accumulation. The abnormal supply of energy and the death of excessive cells will eventually severely damage the zebrafish liver. This study will enrich the knowledge about the toxic effects of MBP.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Hui Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Siyue Han
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
28
|
Fernandes M, Lopes I, Magalhães L, Sárria MP, Machado R, Sousa JC, Botelho C, Teixeira J, Gomes AC. Novel concept of exosome-like liposomes for the treatment of Alzheimer's disease. J Control Release 2021; 336:130-143. [PMID: 34126168 DOI: 10.1016/j.jconrel.2021.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/29/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022]
Abstract
Exosomes are cell-derived vesicles that act as carriers for proteins and nucleic acids, with therapeutic potential and high biocompatibility. We propose a new concept of exosome-like liposomes for controlled delivery. The goal of this work was to develop a new type of liposomes with a unique mixture of phospholipids, similar to naturally occurring exosomes but overcoming their limitations of heterogeneity and low productivity, for therapeutic delivery of bioactive compounds. Curcumin was chosen as model compound, as it is a phytochemical molecule known to have antioxidant and anti-inflammatory properties, which can protect the brain against oxidative stress and reduce β-amyloid accumulation, major hallmarks of Alzheimer's disease (AD). These new liposomes can efficiently encapsulate hydrophobic curcumin, yielding particles with a size smaller than 200 nm, and a polydispersity index lower than 0.20, which make them ideal for crossing the blood-brain barrier. These particles have a long shelf life, being stable up to 6 months. The curcumin encapsulation efficiency was higher than 85% (up to approximately 94%). Curcumin-loaded liposomes were not cytotoxic (up to 20 μM curcumin, and 200 μM of exo-liposomes), and significantly reduced oxidative stress induced in SH-SY5Y neuronal cells, indicating their potential for neuroprotection. They also do not show any toxicity and are internalized in zebrafish embryos, concentrating in lipid enriched areas, as the brain and the yolk sac. Such innovative carriers are a new effective approach to deliver drugs into the brain, as these are stable, protect the cargo and are uptaken by neuronal cells. Upon internalization, liposomes release the therapeutic biomolecules, resulting in successful neuroprotection, being a positive alternative strategy for AD therapy.
Collapse
Affiliation(s)
- Mário Fernandes
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S - Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Ivo Lopes
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centre of Biological Engeneering (CEB), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Luana Magalhães
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Marisa P Sárria
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | - Raul Machado
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S - Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - João Carlos Sousa
- ICVS - Life and Health Sciences Research Institute, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cláudia Botelho
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centre of Biological Engeneering (CEB), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - José Teixeira
- Centre of Biological Engeneering (CEB), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S - Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
29
|
Zhang Y, Jiao Y, Li Z, Tao Y, Yang Y. Hazards of phthalates (PAEs) exposure: A review of aquatic animal toxicology studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145418. [PMID: 33548714 DOI: 10.1016/j.scitotenv.2021.145418] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/24/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
Phthalates (PAEs) are of wide concern because they are commonly used in various plastic products as plasticizers, and can found their way into the environment. However, their interaction with the environment and their toxicity in aquatic animals is still a matter of intense debate. In this review on PAEs in aquatic environments (lakes, rivers and seas), it is found that there is a large variety and abundance of PAEs in developing countries, and the total concentration of PAEs even exceeds 200 μg / L. The interaction between metabolic processes involved in the toxicity induced by various PAEs is summarized for the first time in the article. Exposure of PAEs can lead to activation of the detoxification system CYP450 and endocrine system receptors of aquatic animals, which in turn causes oxidative stress, metabolic disorders, endocrine disorders, and immunosuppression. Meanwhile, each system can activate / inhibit each other, causing genotoxicity and cell apoptosis, resulting in the growth and development of organisms being blocked. The mixed PAEs shows no cumulative toxicity changes to aquatic animals. For the combined pollution of other chemicals and PAEs, PAE can act as an agonist or antagonist, leading to combined toxicity in different directions. Phthalate monoesters (MPEs), the metabolites of PAEs, are also toxic to aquatic animals, however, the toxicity is weaker than the corresponding parent compounds. This review summarizes and analyzes the current ecotoxicological effects of PAEs on aquatic animals, and provides guidance for future research.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
30
|
Shen J, Liu P, Sun Y, Xu X, Guo L, Rao Q, Chen M, Liu X. Embryonic exposure to prothioconazole induces oxidative stress and apoptosis in zebrafish (Danio rerio) early life stage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143859. [PMID: 33303200 DOI: 10.1016/j.scitotenv.2020.143859] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Triazole fungicides are extensively applied in general agriculture for fungal control and have negative impacts on aquatic organisms. Prothioconazole, a widely used triazole fungicide, is toxic to zebrafish, but systematic research on the negative effects caused by prothioconazole in zebrafish embryos is limited. In this study, we studied the developmental toxicology, oxidative stress and apoptosis caused by prothioconazole in zebrafish embryos. Exposure to 0.850 mg/L prothioconazole impacts embryo survival and hatching. Prothioconazole exposure caused embryo malformation, especially yolk-sac and pericardial edemas, and prothioconazole-induced apoptosis was observed. Additionally, exposure to a high prothioconazole concentration up-regulated the expression levels of oxidative stress defense-related genes and p53. The bax to bcl2 ratio increased along with exposure time and prothioconazole concentration. Prothioconazole induced apoptosis during the early life stages of zebrafish and may trigger oxidative-stress and p53-dependent pathway responses. Our findings increase our understanding of the molecular mechanisms of oxidative stress and cell death caused by prothioconazole.
Collapse
Affiliation(s)
- Jie Shen
- School of Agricultural and Food Science, Zhejiang A& F University, Hangzhou, China
| | - Peng Liu
- School of Agricultural and Food Science, Zhejiang A& F University, Hangzhou, China
| | - Yongqi Sun
- School of Agricultural and Food Science, Zhejiang A& F University, Hangzhou, China
| | - Xiaoxiao Xu
- School of Agricultural and Food Science, Zhejiang A& F University, Hangzhou, China
| | - Longfei Guo
- School of Agricultural and Food Science, Zhejiang A& F University, Hangzhou, China
| | - Qiong Rao
- School of Agricultural and Food Science, Zhejiang A& F University, Hangzhou, China
| | - Minlan Chen
- School of Agricultural and Food Science, Zhejiang A& F University, Hangzhou, China
| | - Xunyue Liu
- School of Agricultural and Food Science, Zhejiang A& F University, Hangzhou, China.
| |
Collapse
|
31
|
Shen C, Zuo Z. Zebrafish (Danio rerio) as an excellent vertebrate model for the development, reproductive, cardiovascular, and neural and ocular development toxicity study of hazardous chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43599-43614. [PMID: 32970263 DOI: 10.1007/s11356-020-10800-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
In the past decades, the type of chemicals has gradually increased all over the world, and many of these chemicals may have a potentially toxic effect on human health. The zebrafish, as an excellent vertebrate model, is increasingly used for assessing chemical toxicity and safety. This review summarizes the efficacy of zebrafish as a model for the study of developmental toxicity, reproductive toxicity, cardiovascular toxicity, neurodevelopmental toxicity, and ocular developmental toxicity of hazardous chemicals, and the transgenic zebrafish as biosensors are used to detect the environmental pollutants.
Collapse
Affiliation(s)
- Chao Shen
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiangan South Road, Xiamen, 361002, Fujian, China
| | - Zhenghong Zuo
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiangan South Road, Xiamen, 361002, Fujian, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361002, Fujian, China.
| |
Collapse
|
32
|
Huang W, Jiang P, Yin X, Zhang L, Zhao S, Zhou H, Ni X, Xu W. Selective enrichment-release of trace dibutyl phthalate via molecular-imprinting based photo-controlled switching followed by high-performance liquid chromatography analysis. J Sep Sci 2020; 44:513-520. [PMID: 33185321 DOI: 10.1002/jssc.202000950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/02/2020] [Accepted: 11/07/2020] [Indexed: 12/15/2022]
Abstract
A novel intelligent photo-controlled molecularly imprinted polymers were synthesized, based on the magnetic core-shell structure, with 4-[(4-methacryloyloxy) phenylazo] benzenesulfonic acid as the functional monomer and ethylene glycol dimethyl acrylate as the cross-linking agent. Subsequently, a series of light-controlled enrichment-release performance showed that it only took about 30 and 10 min to reach the equilibrium photosensitive characteristic peak, respectively. The photo-controlled polymers could intelligently select target molecules, the maximum adsorption capacity for dibutyl phthalate was 3.88 mg/g. However, the adsorption capacity for its structural analogue dicyclohexyl phthalate was only 0.88 mg/g. The Freundlich and Langmuir isothermal equations were discussed for the specific enrichment process. Finally, the photo-controlled molecularly imprinted polymers were successfully applied to the selective detection of dibutyl phthalate, with the recovery rate of 95.4-98.4%. It could be used for the analysis of trace dibutyl phthalate in actual samples.
Collapse
Affiliation(s)
- Weihong Huang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Pengfei Jiang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Xifeng Yin
- Zhenjiang Agricultural Products Quality Inspection and Testing Center, Zhenjiang, P. R. China
| | - Liming Zhang
- Zhenjiang Agricultural Products Quality Inspection and Testing Center, Zhenjiang, P. R. China
| | - Shan Zhao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Hengdeng Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Xiaoni Ni
- Zhenjiang Food and Drug Supervision and Inspection Center, Zhenjiang, P. R. China
| | - Wanzhen Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
33
|
Tao Y, Yang Y, Jiao Y, Wu S, Zhu G, Akindolie MS, Zhu T, Qu J, Wang L, Zhang Y. Monobutyl phthalate (MBP) induces energy metabolism disturbances in the gills of adult zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115288. [PMID: 32795888 DOI: 10.1016/j.envpol.2020.115288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Monobutyl phthalate (MBP) is a primary metabolite of an environmental endocrine disruptor dibutyl phthalate (DBP), which poses a potential threat to living organisms. In this research, the acute toxicity of MBP on energy metabolism in zebrafish gills was studied. Transmission electron microscopy (TEM) results show that 10 mg L-1 MBP can induce mitochondrial structural damage of chloride cells after 96 h of continuous exposure. The activity of ion ATPase and the expression level of oxidative phosphorylation-related genes suggest that MBP interferes with ATP synthesis and ion transport. Further leading to a decrease in mitochondrial membrane potential (MMP) and cell viability, thereby mediating early-stage cell apoptosis. Through a comprehensive analysis of principal component analysis (PCA) and integrated biomarker response (IBR) scores, atp5a1, a subunit of mitochondrial ATP synthase, is mainly inhibited by MBP, followed by genes encoding ion ATPase (atp1b2 and atp2b1). Importantly, MBP inhibits aerobic metabolism by inhibiting the key enzyme malate dehydrogenase (MDH) in the TCA cycle, forcing zebrafish to maintain ATP supply by enhancing anaerobic metabolism.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Song Wu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Guangxue Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Modupe Sarah Akindolie
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
34
|
Hu J, Xia M, Wang Y, Tian F, Sun B, Yang M, Yang W, Ding X, Xu H, Li W. Paternal exposure to di-n-butyl-phthalate induced developmental toxicity in zebrafish (Danio rerio). Birth Defects Res 2020; 113:14-21. [PMID: 33009721 DOI: 10.1002/bdr2.1812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Dibutyl phthalate (DBP) is an environmental endocrine disruptor detected in water, soil, and other environmental media frequently. Growing concerns regarding DBP exposure focus on toxicity to male reproduction. Reports about the developmental toxicity of paternal DBP exposure are rare. In this study, we investigated the developmental toxicity of paternal exposure to DBP on offspring in zebrafish. METHODS Adult male zebrafish with normal reproductive function were exposed to 0.2, 0.6, 1.8 mg/L of DBP or acetone solvent control for 30 days, and then mated with females. Thirty embryos per group were randomly selected to be observed, and malformations were recorded and photographed. The mating and observations were repeated three times, for a total of 90 embryos per group. RESULTS The results showed that the percentage of malformations, such as edema and a bent trunk, was increased in the 0.6 and 1.8 mg/L DBP exposure groups, the heart rate and spontaneous contraction decreased in the 0.6 and 1.8 mg/L DBP exposure groups and migration of primordial germ cells was disrupted in some F1 embryos in all DBP exposure group after paternal exposure. The axial skeleton was affected in some F1 adults in the 1.8 mg/L DBP exposure group. CONCLUSIONS Our findings demonstrate the developmental toxicity of paternal DBP exposure in zebrafish.
Collapse
Affiliation(s)
- Jingying Hu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
| | - Minjie Xia
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
| | - Yuzhu Wang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
| | - Fang Tian
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
| | - Bing Sun
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
| | - Mingjun Yang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
| | - Wei Yang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
| | - Xuncheng Ding
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
| | - Huihui Xu
- Division of Health Risk Factors Surveillance and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, P.R. China
| | - Weihua Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
| |
Collapse
|
35
|
Mu X, Chen X, Liu J, Yuan L, Wang D, Qian L, Qian Y, Shen G, Huang Y, Li X, Li Y, Lin X. A multi-omics approach reveals molecular mechanisms by which phthalates induce cardiac defects in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:113876. [PMID: 32806432 DOI: 10.1016/j.envpol.2019.113876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 06/11/2023]
Abstract
The potential risks of phthalates affecting human and animal health as well as the environment are emerging as serious concerns worldwide. However, the mechanism by which phthalates induce developmental effects is under debate. Herein, we found that embryonic exposure of zebrafish to di-(2-ethylhexyl) phthalate (DEHP) and di-butyl phthalate (DBP) increased the rate of heart defects including abnormal heart rate and pericardial edema. Changes in the transcriptional profile demonstrated that genes involved in the development of the heart, such as tbx5b, nppa, ctnt, my17, cmlc1, were significantly altered by DEHP and DBP at 50 μg/L, which agreed with the abnormal cardiac outcomes. Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) further showed that significant hypomethylation of nppa and ctnt was identified after DEHP and DBP exposure, which was consistent with the up-regulation of these genes. Notably, hypermethylation on the promoter region (<1 kb) of tbx5b was found after DEHP and DBP exposure, which might be responsible for its decrease in transcription. In conclusion, phthalates have the potential to induce cardiac birth defects, which might be associated with the transcriptional regulation of the involved developmental factors such as tbx5b. These findings would contribute to understand the molecular pathways that mediated the cardiac defects caused by phthalates.
Collapse
Affiliation(s)
- Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| | - Xiaofeng Chen
- College of Sciences, China Agricultural University, People's Republic of China
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Donghui Wang
- College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Le Qian
- College of Sciences, China Agricultural University, People's Republic of China
| | - Yu Qian
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Gongming Shen
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Xuxing Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Xiangming Lin
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| |
Collapse
|
36
|
Phthalates Implications in the Cardiovascular System. J Cardiovasc Dev Dis 2020; 7:jcdd7030026. [PMID: 32707888 PMCID: PMC7570088 DOI: 10.3390/jcdd7030026] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Today’s sedentary lifestyle and eating habits have been implicated as some of the causes of the increased incidence of several diseases, including cancer and cardiovascular diseases. However, environmental pollutants have also been identified as another possible cause for this increase in recent decades. The constant human exposure to plastics has been raising attention regarding human health, particularly when it comes to phthalates. These are plasticizers used in the manufacture of industrial and consumer products, such as PVC (Polyvinyl Chloride) plastics and personal care products, with endocrine-disrupting properties, as they can bind molecular targets in the body and interfere with hormonal function. Since these compounds are not covalently bound to the plastic, they are easily released into the environment during their manufacture, use, or disposal, leading to increased human exposure and enhancing health risks. In fact, some studies have related phthalate exposure with cardiovascular health, having already shown a positive association with the development of hypertension and atherosclerosis in adults and some cardiometabolic risk factors in children and adolescents. Therefore, the main purpose of this review is to present and relate the most recent studies concerning the implications of phthalates effects on the cardiovascular system.
Collapse
|
37
|
Sun Y, Cao Y, Tong L, Tao F, Wang X, Wu H, Wang M. Exposure to prothioconazole induces developmental toxicity and cardiovascular effects on zebrafish embryo. CHEMOSPHERE 2020; 251:126418. [PMID: 32443233 DOI: 10.1016/j.chemosphere.2020.126418] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
Prothioconazole is a fungicide that has been widely used in general agriculture and livestock husbandry. This study evaluated the acute toxicity of prothioconazole to zebrafish embryos by assessing their hatching rate and malformation when exposed to different concentrations of prothioconazole. The 96 h-LC50 value of zebrafish embryos was 1.70 mg/L. Upon exposure to 0.85 mg/L, the mortality rate of the embryos significantly increased while their hatching rate decreased significantly. At prothioconazole concentrations higher than 0.43 mg/L, developmental morphologic abnormalities such as heart and yolk-sac edema, spine curvature, tail deformity, shortened body length and decreased eye area were observed. The heart rate of embryos decreased in a dose-dependent fashion during the exposure time. Prothioconazole exposure also resulted in increased rates of cardiac malformation detected by significant increase in the distance between the sinus venosus and bulbus arteriosus and the pericardium area. Moreover, the expression levels of genes related to cardiac development (amhc, vmhc, fli1, hand2, gata4, nkx2.5, tbx5 and atp2a2a) were significantly altered after exposure to prothioconazole. Indeed, this study revealed the adverse effects on the developmental and cardiovascular system of zebrafish embryo caused by prothioconazole. It further elucidated the risk of prothioconazole exposure to vertebrate cardiovascular toxicity. As such, it provides a theoretical foundation for pesticide risk management measures.
Collapse
Affiliation(s)
- Yongqi Sun
- School of Agricultural and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Yi Cao
- School of Agricultural and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Lili Tong
- School of Agricultural and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Fangyi Tao
- School of Agricultural and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Xiaonan Wang
- School of Agricultural and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Huiming Wu
- School of Agricultural and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou, China.
| | - Mengcen Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide & Environmental Toxicology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
38
|
Mo N, Zhang M, Wang R, Xia S, Meng F, Qian Y, Li M. Effects of α-ethinyl estradiol (EE2) and diethylhexyl phthalate (DEHP) on growth performance, antioxidant status and immune response of juvenile yellow catfish Pelteobagrus fulvidraco. Comp Biochem Physiol C Toxicol Pharmacol 2019; 226:108615. [PMID: 31493583 DOI: 10.1016/j.cbpc.2019.108615] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 01/16/2023]
Abstract
The four experimental groups were carried out to test the response of yellow catfish to EE2 and DEHP: control group was exposed to DMSO; EE2 group was exposed to 1.0 μg/L EE2; DEHP group was exposed to 1.0 mg/L DEHP; mix group was exposed to 1.0 μg/L EE2 and 1.0 mg/L DEHP. The experiment continued for 56 days. Fish survival rate was not different among experimental groups. Fish in DEHP and mix groups had the highest weight gain, and lowest value appeared in control group. The highest hepatosomatic index was found in DEHP and mix groups. Serum alanine transaminase of fish in control group was lower than other groups, but the alkaline phosphatase value was the highest. Serum total anti-oxidation capacity, superoxide dismutase and catalase activities of fish in control group were higher than other groups, but malondialdehyde content is opposite. Respiratory burst and phagocytic indices of fish in EE2 group were the lowest. After 96 h of ammonia stress, the survival rate of fish in mix group was significantly lower than control group. This study indicates that EE2 and DEHP exposure can lead to gain weight of yellow catfish, which is related to liver damage and fat accumulation; EE2 and DEHP exerts its toxic effects by inducing ROS generation, leading to lipid peroxidation and immunosuppression.
Collapse
Affiliation(s)
- Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Muzi Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Silei Xia
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fanxing Meng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yunxia Qian
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
39
|
Lin Y, Zhang Y, Zhang F, Li R, Hu Y, Yu H, Tuyiringire D, Wang L. Effects of bok choy on the dissipation of dibutyl phthalate (DBP) in mollisol and its possible mechanisms of biochemistry and microorganisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:284-291. [PMID: 31201960 DOI: 10.1016/j.ecoenv.2019.05.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Phytoremediation is an ecologically sustainable method for remediating contaminated soils, however, research on phytoremediation and its mechanisms are still rarely reported. The highest dibutyl phthalate (DBP) dissipation rate was 91% in 0-3mm bok choy rhizosphere via a 45-day rhizo-box experiment, and bok choy could regulate soil nutrients by increasing soil ammonia nitrogen (AN) and available phosphorus (AP). The biochemistry mechanism of interaction between dissolved organic matter (DOM) and DBP was also elucidated by various spectroscopy techniques. It was found that the alkyl ester in DBP produced the fastest response during the binding process, and the aromatic, hydroxyl and phenolic groups of the DOM humic-like substances preceded amide in DOM protein-like substance. It was found that DBP pollution reduced the Chao1 richness and Shannon index of bacteria in black soil via a pot experiment and high-throughput sequencing, which disturbed the metabolic activities and functional diversity of microorganisms in Mollisol. The microbial abundance increased in bok choy amendments, which has a specific microbial community structure and a high abundance of Actinobacteria and Acidobacteria. We concluded that some enriched genera were responsible for DBP dissipation, Alsobacter, Lacibacter, Myceligenerans, Schrenkiella parvula and Undibacterium. The findings of this study revealed that the possible biochemistry and microbial mechanisms of phytoremediation promoting the DBP dissipation in rhizosphere Mollisol and provided more useful information for phytoremediation of organic pollutants.
Collapse
Affiliation(s)
- Yulong Lin
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Fuqing Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Rui Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yang Hu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hui Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Diogene Tuyiringire
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| |
Collapse
|