1
|
Münzel T, Hahad O, Lelieveld J, Aschner M, Nieuwenhuijsen MJ, Landrigan PJ, Daiber A. Soil and water pollution and cardiovascular disease. Nat Rev Cardiol 2025; 22:71-89. [PMID: 39317838 DOI: 10.1038/s41569-024-01068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/26/2024]
Abstract
Healthy, uncontaminated soils and clean water support all life on Earth and are essential for human health. Chemical pollution of soil, water, air and food is a major environmental threat, leading to an estimated 9 million premature deaths worldwide. The Global Burden of Disease study estimated that pollution was responsible for 5.5 million deaths related to cardiovascular disease (CVD) in 2019. Robust evidence has linked multiple pollutants, including heavy metals, pesticides, dioxins and toxic synthetic chemicals, with increased risk of CVD, and some reports suggest an association between microplastic and nanoplastic particles and CVD. Pollutants in soil diminish its capacity to produce food, leading to crop impurities, malnutrition and disease, and they can seep into rivers, worsening water pollution. Deforestation, wildfires and climate change exacerbate pollution by triggering soil erosion and releasing sequestered pollutants into the air and water. Despite their varied chemical makeup, pollutants induce CVD through common pathophysiological mechanisms involving oxidative stress and inflammation. In this Review, we provide an overview of the relationship between soil and water pollution and human health and pathology, and discuss the prevalence of soil and water pollutants and how they contribute to adverse health effects, focusing on CVD.
Collapse
Affiliation(s)
- Thomas Münzel
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Omar Hahad
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Philip J Landrigan
- Global Observatory on Planetary Health, Boston College, Boston, MA, USA
- Centre Scientifique de Monaco, Monaco, Monaco
| | - Andreas Daiber
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
2
|
Xiong Z, Kong Q, Hua J, Chen Q, Wang D. Cardiotoxicity of polystyrene nanoplastics and associated mechanism of myocardial cell injury in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117712. [PMID: 39818135 DOI: 10.1016/j.ecoenv.2025.117712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
AIMS Nanoplastics (NPs) are emerging organic pollutants generated by plastic degradation and are ubiquitous in the environment. They can be accumulated through the food webs and enter the human body through dietary intake, posing health risks. The main target organs of NP accumulation are the lungs, liver, heart, and kidneys. However, compared with that for other target organs, research on the adverse effects of NPs on the heart is limited. We aimed to investigate the toxic effects of polystyrene NPs on the heart and the associated mechanisms. METHODS AND RESULTS Forty-eight male C57BL/6 mice were randomly divided into control and experimental groups. Three experimental groups were exposed to NP doses of 30, 60, and 100 mg/L for 42 days. The mice exhibited enlarged ventricular chambers, thinned ventricular walls, decreased ejection fraction, reduced heart rate, and lowered blood pressure with increasing PS-NP concentration. In vitro experiments using H9C2 myocardial cells demonstrated that PS-NPs activate the TNF-α/NF-κB and P38/MAPK signaling pathways and thereby induce inflammatory infiltration and oxidative stress. This can lead to myocardial fibrosis and apoptosis and thus eccentric cardiac hypertrophy and impaired contractile function. CONCLUSIONS This study provides new evidence regarding the potential mechanisms of PS-NP cardiovascular toxicity as well as insights into the diagnosis and treatment of unexplained dilated cardiomyopathy in clinical settings.
Collapse
Affiliation(s)
- Ziyi Xiong
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi Province 330006, China
| | - Qiling Kong
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi Province 330006, China
| | - Juan Hua
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi Province 330006, China
| | - Qi Chen
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi Province 330006, China.
| | - Dandan Wang
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi Province 330006, China.
| |
Collapse
|
3
|
Sahoo AK, Madgaonkar SR, Chivukula N, Karthikeyan P, Ramesh K, Marigoudar SR, Sharma KV, Samal A. Network-based investigation of petroleum hydrocarbons-induced ecotoxicological effects and their risk assessment. ENVIRONMENT INTERNATIONAL 2024; 194:109163. [PMID: 39612746 DOI: 10.1016/j.envint.2024.109163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
Petroleum hydrocarbons (PHs) are compounds composed mostly of carbon and hydrogen, originating from crude oil and its derivatives. PHs are primarily released into the environment through the diffusion of oils, resulting from anthropogenic activities like transportation and offshore drilling, and accidental incidents such as oil spills. Once released, these PHs can persist in different ecosystems and cause long-term detrimental ecological impacts. While the hazards associated with such PH contaminations are often assessed by the concentrations of total petroleum hydrocarbons in the environment, studies focusing on the risks associated with individual PHs are limited. In this study, different network-based frameworks were utilized to explore and understand the adverse ecological effects associated with PH exposure. First, a list of 320 PHs was systematically curated from published reports. Next, biological endpoint data from toxicological databases was systematically integrated, and a stressor-centric adverse outcome pathway (AOP) network, linking 75 PHs with 177 ecotoxicologically-relevant high confidence AOPs within AOP-Wiki, was constructed. Further, stressor-species networks, based on reported toxicity concentrations and bioconcentration factors data within ECOTOX, were constructed for 80 PHs and 28 PHs, respectively. It was found that crustaceans are documented to be affected by many of these PHs. Finally, the aquatic toxicity data within ECOTOX was used to construct species sensitivity distributions for PHs, and their corresponding hazard concentrations (HC05), that are harmful to 5% of species in the aquatic ecosystem, were derived. Further, the predicted no-effect concentrations (PNECs) and risk quotients for the US EPA priority polycyclic aromatic hydrocarbons (PAHs) were computed by using their environmental concentration data for Indian coastal and river waters. Overall, this study highlights the importance of using network-based approaches and risk assessment methods to understand the PH-induced toxicities effectively.
Collapse
Affiliation(s)
- Ajaya Kumar Sahoo
- The Institute of Mathematical Sciences (IMSc), Chennai, India; Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Shreyes Rajan Madgaonkar
- The Institute of Mathematical Sciences (IMSc), Chennai, India; Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Nikhil Chivukula
- The Institute of Mathematical Sciences (IMSc), Chennai, India; Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Panneerselvam Karthikeyan
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, Pallikaranai, Chennai, India
| | | | | | - Krishna Venkatarama Sharma
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, Pallikaranai, Chennai, India
| | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc), Chennai, India; Homi Bhabha National Institute (HBNI), Mumbai, India.
| |
Collapse
|
4
|
Vogel A, Tentschert J, Pieters R, Bennet F, Dirven H, van den Berg A, Lenssen E, Rietdijk M, Broßell D, Haase A. Towards a risk assessment framework for micro- and nanoplastic particles for human health. Part Fibre Toxicol 2024; 21:48. [PMID: 39614364 PMCID: PMC11606215 DOI: 10.1186/s12989-024-00602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Human exposure to micro- and nanoplastic particles (MNPs) is inevitable but human health risk assessment remains challenging for several reasons. MNPs are complex mixtures of particles derived from different polymer types, which may contain plenty of additives and/or contaminants. MNPs cover broad size distributions and often have irregular shapes and morphologies. Moreover, several of their properties change over time due to aging/ weathering. Case-by-case assessment of each MNP type does not seem feasible, more straightforward methodologies are needed. However, conceptual approaches for human health risk assessment are rare, reliable methods for exposure and hazard assessment are largely missing, and meaningful data is scarce. METHODS Here we reviewed the state-of-the-art concerning risk assessment of chemicals with a specific focus on polymers as well as on (nano-)particles and fibres. For this purpose, we broadly screened relevant knowledge including guidance documents, standards, scientific publications, publicly available reports. We identified several suitable concepts such as: (i) polymers of low concern (PLC), (ii) poorly soluble low toxicity particles (PSLT) and (iii) fibre pathogenicity paradigm (FPP). We also aimed to identify promising methods, which may serve as a reasonable starting point for a test strategy. RESULTS AND CONCLUSION Here, we propose a state-of-the-art modular risk assessment framework for MNPs, focusing primarily on inhalation as a key exposure route for humans that combines several integrated approaches to testing and assessment (IATAs). The framework starts with basic physicochemical characterisation (step 1), followed by assessing the potential for inhalative exposure (step 2) and includes several modules for toxicological assessment (step 3). We provide guidance on how to apply the framework and suggest suitable methods for characterization of physicochemical properties, exposure and hazard assessment. We put special emphasis on new approach methodologies (NAMs) and included grouping, where adequate. The framework has been improved in several iterative cycles by taking into account expert feedback and is currently being tested in several case studies. Overall, it can be regarded as an important step forward to tackle human health risk assessment.
Collapse
Affiliation(s)
- Amelie Vogel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jutta Tentschert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Raymond Pieters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Francesca Bennet
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Hubert Dirven
- Department of Environmental Health, Norwegian Institute of Public Health (NPIH), Oslo, Norway
| | | | - Esther Lenssen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Dirk Broßell
- Federal Institute for Occupational Safety and Health (BAuA), Berlin, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Hong AR, Kim JS. Biological hazards of micro- and nanoplastic with adsorbents and additives. Front Public Health 2024; 12:1458727. [PMID: 39651483 PMCID: PMC11621061 DOI: 10.3389/fpubh.2024.1458727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
With the increased worldwide production of plastics, interest in the biological hazards of microplastics (MP) and nanoplastics (NP), which are widely distributed as environmental pollutants, has also increased. This review aims to provide a comprehensive overview of the toxicological effects of MP and NP on in vitro and in vivo systems based on studies conducted over the past decade. We summarize key findings on how the type, size, and adsorbed substances of plastics, including chemical additives, impact organisms. Also, we address various exposure routes, such as ingestion, inhalation, and skin contact, and their biological effects on both aquatic and terrestrial organisms, as well as human health. Additionally, the review highlights the increased toxicity of MP and NP due to their smaller size and higher bioavailability, as well as the interactions between these particles and chemical additives. This review emphasizes the need for further research into the complex biological interactions and risks posed by the accumulation of MP and NP in the environment, while also proposing potential directions for future studies.
Collapse
Affiliation(s)
- Ah Reum Hong
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jin Su Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
6
|
Ortiz C, Müller L, Borges L, Pinto LADA, Cadaval TRS, Tesser MB, Pedrosa VF, Romano LA, Wasielesky W, Ventura-Lima J. The use of chitosan as an antioxidant in the feed of cultivated P. vannamei shrimp against oxidative stress induced by exposure to microplastics. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106747. [PMID: 39293272 DOI: 10.1016/j.marenvres.2024.106747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Microplastics (MP) are omnipresent in aquaculture and can induce several toxic effects, mainly oxidative stress. Therefore, alternatives to minimize these effects are welcome. In this study, chitosan (1 and 3 g/kg) was supplemented through the feed of farmed shrimp P. vannamei for 30 days. After this period, the shrimp were exposed to MP (0.5 mg/L) for 7 days. The results showed the presence of MP in hepatopancreas, gills and muscle. Hepatopancreas morphological alterations, as well as lipid peroxidation, a decrease in GSH level, and an increase in SOD activity indicated an oxidative stress that was reversed by chitosan. The muscle was also affected by MP, showing decreased CAT activity and increased SOD activity, though no lipid peroxidation was observed. In muscle, chitosan reversed the SOD increase to basal activity. The results obtained showed that chitosan was more effective against oxidative stress than in preventing accumulation and histological damage.
Collapse
Affiliation(s)
- Chaelen Ortiz
- Programa de Pós-graduação em Aquicultura, Universidade Federal de Rio Grande, - FURG, Rio Grande, RS, Brazil
| | - Larissa Müller
- Instituto de Ciências Biológicas (ICB), Universidade Federal de Rio Grande, - FURG, Rio Grande, RS, Brazil
| | - Lucélia Borges
- Laboratório de Carcinocultura, Instituto de Oceanografia (IO), Universidade Federal de Rio Grande, - FURG, Rio Grande, RS, Brazil; Programa de Pós-graduação em Aquicultura, Universidade Federal de Rio Grande, - FURG, Rio Grande, RS, Brazil
| | | | | | - Marcelo Borges Tesser
- Programa de Pós-graduação em Aquicultura, Universidade Federal de Rio Grande, - FURG, Rio Grande, RS, Brazil
| | - Virgínia Fonseca Pedrosa
- Programa de Pós-graduação em Aquicultura, Universidade Federal de Rio Grande, - FURG, Rio Grande, RS, Brazil
| | - Luis Alberto Romano
- Programa de Pós-graduação em Aquicultura, Universidade Federal de Rio Grande, - FURG, Rio Grande, RS, Brazil
| | - Wilson Wasielesky
- Laboratório de Carcinocultura, Instituto de Oceanografia (IO), Universidade Federal de Rio Grande, - FURG, Rio Grande, RS, Brazil; Programa de Pós-graduação em Aquicultura, Universidade Federal de Rio Grande, - FURG, Rio Grande, RS, Brazil
| | - Juliane Ventura-Lima
- Programa de Pós-graduação em Aquicultura, Universidade Federal de Rio Grande, - FURG, Rio Grande, RS, Brazil; Instituto de Ciências Biológicas (ICB), Universidade Federal de Rio Grande, - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
7
|
Martínez-Pérez S, Schell T, Franco D, Rosal R, Redondo-Hasselerharm PE, Martínez-Hernández V, Rico A. Fate and effects of an environmentally relevant mixture of microplastics in simple freshwater microcosms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107104. [PMID: 39306962 DOI: 10.1016/j.aquatox.2024.107104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 11/12/2024]
Abstract
Most studies assessing the effects of microplastics (MPs) on freshwater ecosystems use reference materials of a certain size, shape, and polymer type. However, in the environment, aquatic organisms are exposed to a mixture of different polymers with different sizes and shapes, resulting in different bioaccessible fractions and effects. This study assesses the fate and effects of an environmentally relevant mixture of high-density polyethylene (HDPE) fragments, polypropylene (PP) fragments, and polyester (PES) fibres in indoor freshwater microcosms over 28 days. The MP mixture contained common polymers found in freshwater ecosystems, had a size range between 50 and 3887 µm, and was artificially aged using a mercury lamp. The invertebrate species included in the microcosms, Lymnea stagnalis (snail) and Lumbriculus variegatus (worm), were exposed to four MP concentrations: 0.01, 0.05, 0.1 and 1 % of sediment dry weight. MPs fate was assessed by performing a balance of the MPs in the surface water, water column, and sediment after a stabilization period and at the end of the experiment. Sedimentation rates per day were calculated (2.13 % for PES, 1.46 % for HDPE, 1.87 % for PP). The maximum size of MPs taken up by the two species was determined and compared to the added mixture and their mouth size. The size range taken up by L. variegatus was smaller than L. stagnalis and significantly different from the size range in the added mixture. The No Observed Effect Concentrations (NOECs) for the reproduction factor of L. variegatus and the number of egg clutches produced by L. stagnalis were 0.01 % and 0.1 % sediment dry weight, respectively. The EC10 and EC50 for the same endpoint for L. stagnalis were 0.25 % and 0.52 %, respectively. This study shows that current MP exposure levels in freshwater sediments can result in sub-lethal effects on aquatic organisms, highlighting the importance of testing MP mixtures.
Collapse
Affiliation(s)
- Sara Martínez-Pérez
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 9 Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain; Alcalá University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering E-28871 Madrid, Spain
| | - Theresa Schell
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 9 Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain
| | - Daniel Franco
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 9 Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain
| | - Roberto Rosal
- Alcalá University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering E-28871 Madrid, Spain
| | - Paula E Redondo-Hasselerharm
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 9 Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain
| | - Virtudes Martínez-Hernández
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 9 Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 9 Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2 46980, Paterna, Valencia, Spain.
| |
Collapse
|
8
|
Djekoun M, Gaaied S, Romdhani I, Mohamed Rida A, Missaoui Y, Boubekeur MS, Trea F, Lakbar C, Ouali K, Banni M. Abundance and distribution of environmental microplastic in edible fish and mussels from the south Mediterranean coasts. MARINE POLLUTION BULLETIN 2024; 206:116705. [PMID: 39047604 DOI: 10.1016/j.marpolbul.2024.116705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
The present study aims to address a gap of knowledge by evaluating the in-situ ability of edible wild fish (Liza aurata, Sparus aurata and Sarpa salpa) and mussel Mytilus galloprovincialis to serve as environmental vectors of MPs along the eastern Algerian coastline (namely; Sidi Salem, Ain Achir and Saint Cloud). Our data showed the widespread accumulation of MPs in highly consumed fish species and mussels in Annaba coastal area. MPs were found in all investigated organisms from the three studied areas. The most common size range of MPs was between 0,45 μm and 1,22 μm. Six polymers of MPs were identified from the sampling areas; polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polyethylene-vinyl acetate (PEVA), high-density polyethylene (HDPE), and low-density polyethylene (LDPE). The data provided by this study can serve as a support for assessing the status of MPs pollution in the Algerian coast areas and the associated human health risks.
Collapse
Affiliation(s)
- Manel Djekoun
- Laboratory of Agrobiodiversity and Ecotoxicology, Sousse University, Sousse, Tunisia; Laboratory of Environmental Biomonitoring, BAdji Mokhtar University, Annaba 23000, Algeria
| | - Sonia Gaaied
- Laboratory of Agrobiodiversity and Ecotoxicology, Sousse University, Sousse, Tunisia
| | - Ilef Romdhani
- Laboratory of Agrobiodiversity and Ecotoxicology, Sousse University, Sousse, Tunisia
| | - Abelouah Mohamed Rida
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Yossra Missaoui
- Laboratory of Agrobiodiversity and Ecotoxicology, Sousse University, Sousse, Tunisia
| | | | - Fouzia Trea
- Laboratory of Environmental Biomonitoring, BAdji Mokhtar University, Annaba 23000, Algeria
| | - Chanez Lakbar
- Laboratory of Environmental Biomonitoring, BAdji Mokhtar University, Annaba 23000, Algeria
| | - Khaireddine Ouali
- Laboratory of Environmental Biomonitoring, BAdji Mokhtar University, Annaba 23000, Algeria
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, Sousse University, Sousse, Tunisia; Higher Institute of Biotechnology, University of Monastir, Monastir, Tunisia.
| |
Collapse
|
9
|
Vianna de Pinho J, Celano MR, Andrade J, Castro Cardoso De Almeida AE, Hauser-Davis RA, Conte-Junior CA, Xing B. Effects of salinity on naphthalene adsorption and toxicity of polyethylene microparticles on Artemia salina. CHEMOSPHERE 2024; 362:142718. [PMID: 38945219 DOI: 10.1016/j.chemosphere.2024.142718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Plastic pollution in aquatic ecosystems is increasing and plastic particles may adsorb and transport a diverse array of contaminants, thereby increasing their bioavailability to biota. This investigation aimed to evaluate the effects of varying polyethylene microplastics (PE MPs) and naphthalene (NAPH) concentrations on the survival and feeding rates of the model organism, Artemia salina, as well as NAPH adsorption to microplastics at different salinity levels (17, 75, 35.5 and 52.75 g L-1) under selected climate change scenarios. Survival (48 h) and feeding rates (6 h) of A. salina were also monitored, revealing that the presence of higher PE and NAPH concentrations lead to decreased survival rates while also increasing the number and size of microplastic particles in the saline solutions. Higher PE concentrations negatively affected A. salina feeding rates and NAPH concentrations were positively correlated with particle number and size, as well as with NAPH and PE adsorption rates in solution. Our findings demonstrate that the co-occurrence of microplastics and NAPH in aquatic environments can result in detrimental zooplankton survival and feeding rate effects. Furthermore, this interaction may contribute to the accumulation of these contaminants in the environment, highlighting the need to simultaneously monitor and mitigate the presence of microplastics and organic pollutants, like NAPH, in aquatic environments.
Collapse
Affiliation(s)
- Julia Vianna de Pinho
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, 21941-598, RJ, Brazil; National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-900, RJ, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-900, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, 21941-909, RJ, Brazil
| | - Michael Ribas Celano
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-902, Brazil
| | - Jelmir Andrade
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, 21941-598, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, 21941-909, RJ, Brazil
| | - Antonio Eugênio Castro Cardoso De Almeida
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, 21941-598, RJ, Brazil; National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-900, RJ, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, 21040-360, Brazil.
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, 21941-598, RJ, Brazil; National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-900, RJ, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-900, RJ, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, 21941-909, RJ, Brazil; Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niteroi, 24220-000, RJ, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, 21941-909, RJ, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, 21941-909, RJ, Brazil.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
10
|
Chowdhury OS, Schmidt PJ, Anderson WB, Emelko MB. Advancing Evaluation of Microplastics Thresholds to Inform Water Treatment Needs and Risks. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:441-452. [PMID: 39049895 PMCID: PMC11264269 DOI: 10.1021/envhealth.3c00174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 07/27/2024]
Abstract
Although human health impacts of microplastics are not well understood, concern regarding chemical contaminants retained on or within them is growing. Drinking water providers are increasingly asked about these risks, but strategies for evaluating them and the extent of treatment needed to manage them are currently lacking. Microplastics can potentially induce health effects if the concentration of contaminants adsorbed to them exceeds predetermined drinking water guidelines (e.g., Maximum Contaminant Levels). The risk posed by microplastics due to adsorbed contaminants is difficult to determine, but a worst-case scenario can be evaluated by using adsorption capacity. Here, a "Threshold Microplastics Concentration" (TMC) framework is developed to evaluate whether waterborne microplastic concentrations can potentially result in the intake of regulated contaminants on/in microplastics at levels of human health concern and identify treatment targets for managing associated health risk. Exceeding the TMC does not indicate an immediate health risk; it informs the need for detailed risk assessment or further treatment evaluation to ensure particle removal targets are achieved. Thus, the TMC concept and framework provide an updateable, science-based screening tool to determine if there is a need for detailed risk assessment or treatment modification due to waterborne microplastics in supplies used for potable water production.
Collapse
Affiliation(s)
- Omar S. Chowdhury
- Department of Civil and Environmental
Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L
3G1, Canada
| | - Philip J. Schmidt
- Department of Civil and Environmental
Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L
3G1, Canada
| | - William B. Anderson
- Department of Civil and Environmental
Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L
3G1, Canada
| | - Monica B. Emelko
- Department of Civil and Environmental
Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L
3G1, Canada
| |
Collapse
|
11
|
Teng J, Yu T, Yan F. GABA attenuates neurotoxicity of zinc oxide nanoparticles due to oxidative stress via DAF-16/FoxO and SKN-1/Nrf2 pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173214. [PMID: 38754507 DOI: 10.1016/j.scitotenv.2024.173214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are one of the most widely used metal oxide nanomaterials. The increased use of ZnO-NPs has exacerbated environmental pollution and raised the risk of neurological disorders in organisms through food chains, and it is urgent to look for detoxification strategies. γ-Aminobutyric acid (GABA) is an inhibitory neurotransmitter that has been shown to have anxiolytic, anti-aging and inhibitory effects on nervous system excitability. However, there are few reports on the prevention and control of the toxicity of nano-metal ions by GABA. In zebrafish, ZnO-NPs exposure led to increased mortality and behavioral abnormalities of larva, which could be moderated by GABA intervention. Similar results were investigated in Caenorhabditis elegans, showing lifespan extension, abnormal locomotor frequency and behavior recovery when worms fed with GABA under ZnO-NPs exposure. Moreover, GABA enhanced antioxidant enzyme activities by upregulating the expression of antioxidant-related genes and thus scavenged excessive O2-. In the case of ZnO-NPs exposure, inhibition of nuclear translocation of DAF-16 and SKN-1 was restored by GABA. Meanwhile, the protective effect of GABA was blocked in daf-16 (-) and skn-1 (-) mutant, suggesting that DAF-16/FoxO and SKN-1/Nrf2 pathways is the key targets of GABA. This study provides a new solution for the application of GABA and mitigation of metal nanoparticle neurotoxicity.
Collapse
Affiliation(s)
- Jialuo Teng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Cheng X, Gao L, Cao X, Zhang Y, Ai Q, Weng J, Liu Y, Li J, Zhang L, Lyu B, Wu Y, Zheng M. Identification and Prioritization of Organic Pollutants in Human Milk from the Yangtze River Delta, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11935-11944. [PMID: 38913859 DOI: 10.1021/acs.est.4c02909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Pollutants in human milk are critical for evaluating maternal internal exposure and infant external exposure. However, most studies have focused on a limited range of pollutants. Here, 15 pooled samples (prepared from 467 individual samples) of human milk from three areas of the Yangtze River Delta (YRD) in China were analyzed by gas chromatography quadrupole time-of-flight mass spectrometry. In total, 171 compounds of nine types were preliminarily identified. Among these, 16 compounds, including 2,5-di-tert-butylhydroquinone and 2-tert-butyl-1,4-benzoquinone, were detected in human milk for the first time. Partial least-squares discriminant analysis identified ten area-specific pollutants, including 2-naphthylamine, 9-fluorenone, 2-isopropylthianthrone, and benzo[a]pyrene, among pooled human milk samples from Shanghai (n = 3), Jiangsu Province (n = 6), and Zhejiang Province (n = 6). Risk index (RI) values were calculated and indicated that legacy polycyclic aromatic hydrocarbons (PAHs) contributed only 20% of the total RIs for the identified PAHs and derivatives, indicating that more attention should be paid to PAHs with various functional groups. Nine priority pollutants in human milk from the YRD were identified. The most important were 4-tert-amylphenol, caffeine, and 2,6-di-tert-butyl-p-benzoquinone, which are associated with apoptosis, oxidative stress, and other health hazards. The results improve our ability to assess the health risks posed by pollutants in human milk.
Collapse
Affiliation(s)
- Xin Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Xiaoying Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaofeng Ai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyuan Weng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingguang Li
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Lei Zhang
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Bing Lyu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
13
|
Kadac-Czapska K, Ośko J, Knez E, Grembecka M. Microplastics and Oxidative Stress-Current Problems and Prospects. Antioxidants (Basel) 2024; 13:579. [PMID: 38790684 PMCID: PMC11117644 DOI: 10.3390/antiox13050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Microplastics (MPs) are plastic particles between 0.1 and 5000 µm in size that have attracted considerable attention from the scientific community and the general public, as they threaten the environment. Microplastics contribute to various harmful effects, including lipid peroxidation, DNA damage, activation of mitogen-activated protein kinase pathways, cell membrane breakages, mitochondrial dysfunction, lysosomal defects, inflammation, and apoptosis. They affect cells, tissues, organs, and overall health, potentially contributing to conditions like cancer and cardiovascular disease. They pose a significant danger due to their widespread occurrence in food. In recent years, information has emerged indicating that MPs can cause oxidative stress (OS), a known factor in accelerating the aging of organisms. This comprehensive evaluation exposed notable variability in the reported connection between MPs and OS. This work aims to provide a critical review of whether the harmfulness of plastic particles that constitute environmental contaminants may result from OS through a comprehensive analysis of recent research and existing scientific literature, as well as an assessment of the characteristics of MPs causing OS. Additionally, the article covers the analytical methodology used in this field. The conclusions of this review point to the necessity for further research into the effects of MPs on OS.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (K.K.-C.); (J.O.); (E.K.)
| |
Collapse
|
14
|
Shahriar SIM, Islam N, Emon FJ, Ashaf-Ud-Doulah M, Khan S, Shahjahan M. Size dependent ingestion and effects of microplastics on survivability, hematology and intestinal histopathology of juvenile striped catfish (Pangasianodon hypophthalmus). CHEMOSPHERE 2024; 356:141827. [PMID: 38583529 DOI: 10.1016/j.chemosphere.2024.141827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Microplastic pollution is drastically increasing in aquatic ecosystems and it is assumed that different sizes of microplastics have diverse impacts on the physiology of aquatic organisms. Therefore, this study was intended to examine the ingestion and size specific effects of polyamide microplastic (PA-MP) on different physiological aspects such as growth, feed utilization, survivability, blood parameters and intestinal histopathology of juvenile striped catfish (Pangasianodon hypophthalmus). In a 28-day exposure, the fish were fed with different sized PA-MP with a concentration of 500 mg per kg of feed in order to simulate highly microplastic contaminated environment. Three different treatments were set for this experiment i.e. T1, 25-50 μm (smaller microplastic); T2, 300 μm-2 mm (larger microplastic); T3, (mixed) including a control (C); each had three replicates. The highest ingestion was recorded in the gastrointestinal tract (GIT) of fish exposed to smaller PA-MP treatments (T1 followed by T3). The results also showed compromised weight gain (WG; g), specific growth rate (SGR; %/day) and feed conversion ratio (FCR) with the exposure of PA-MP. Besides, survivability significantly reduced among treatments with the ingestion of smaller sized microplastic and found lowest in T1 (65.0 ± 5.0). In addition, the presence of PA-MP in feed negatively affected the concentration of hemoglobin and blood glucose. Similarly, smaller PA-MP caused most erythrocytic cellular and nuclear abnormalities; found highest in T1 that significantly different from other treatments (p < 0.05). Various histopathological deformities were observed in fish fed with PA-MP incorporated feed. The principal component analysis (PCA) showed that the toxicity and stress imparted by smaller PA-MP affected the survivability and blood parameters where larger PA-MP caused mild to severe abnormalities. Based on eigenvector values, the major abnormalities in intestine included occurrence of epithelium columnar degeneration (ECD: 0.402; PC1), hyperplasia of internal mucosa (HISM: 0.411; PC1), beheading of villi (BV: 0.323; PC1), atrophy of mucosa (AM: 0.322; PC1), tiny vacuoles in apical villi (TV: 0.438. PC2), crypt degeneration (CD: 0.375: PC2) and atrophy of goblet cell (AGC: 0.375; PC2). Therefore, it has been speculated that the size based PA-MP ingestion in the GIT interfered with the digestion and absorption as well as caused deformities that reflected negatively in survivability and hemato-biochemical parameters of juvenile striped catfish.
Collapse
Affiliation(s)
- Sheik Istiak Md Shahriar
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Naimul Islam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Farhan Jamil Emon
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | | | - Saleha Khan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
15
|
Rehman A, Huang F, Zhang Z, Habumugisha T, Yan C, Shaheen U, Zhang X. Nanoplastic contamination: Impact on zebrafish liver metabolism and implications for aquatic environmental health. ENVIRONMENT INTERNATIONAL 2024; 187:108713. [PMID: 38703446 DOI: 10.1016/j.envint.2024.108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Nanoplastics (NPs) are increasingly pervasive in the environment, raising concerns about their potential health implications, particularly within aquatic ecosystems. This study investigated the impact of polystyrene nanoparticles (PSN) on zebrafish liver metabolism using liquid chromatography hybrid quadrupole time of flight mass spectrometry (LC-QTOF-MS) based non-targeted metabolomics. Zebrafish were exposed to 50 nm PSN for 28 days at low (L-PSN) and high (H-PSN) concentrations (0.1 and 10 mg/L, respectively) via water. The results revealed significant alterations in key metabolic pathways in low and high exposure groups. The liver metabolites showed different metabolic responses with L-PSN and H-PSN. A total of 2078 metabolite features were identified from the raw data obtained in both positive and negative ion modes, with 190 metabolites deemed statistically significant in both L-PSN and H-PSN groups. Disruptions in lipid metabolism, inflammation, oxidative stress, DNA damage, and amino acid synthesis were identified. Notably, L-PSN exposure induced changes in DNA building blocks, membrane-associated biomarkers, and immune-related metabolites, while H-PSN exposure was associated with oxidative stress, altered antioxidant metabolites, and liver injury. For the first time, L-PSN was found depolymerized in the liver by cytochrome P450 enzymes. Utilizing an analytical approach to the adverse outcome pathway (AOP), impaired lipid metabolism and oxidative stress have been identified as potentially conserved key events (KEs) associated with PSN exposure. These KEs further induced liver inflammation, steatosis, and fibrosis at the tissue and organ level. Ultimately, this could significantly impact biological health. The study highlights the PSN-induced effects on zebrafish liver metabolism, emphasizing the need for a better understanding of the risks associated with NPs contamination in aquatic ecosystems.
Collapse
Affiliation(s)
- Abdul Rehman
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fuyi Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China
| | - Zixing Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China
| | - Théogène Habumugisha
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Changzhou Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China
| | - Uzma Shaheen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China.
| |
Collapse
|
16
|
Du Y, Teng J, Zhao J, Ren J, Ma H, Zhang T, Xia B, Sun S, Wang Q. Effects of ocean acidification and polystyrene microplastics on the oysters Crassostrea gigas: An integrated biomarker and metabolomic approach. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106434. [PMID: 38460223 DOI: 10.1016/j.marenvres.2024.106434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
The adverse impacts of microplastics (MPs) or ocean acidification (OA) on mollusks have been widely reported, however, little is known about their combined effects on mollusks. The oysters Crassostrea gigas were exposed to two sizes of polystyrene MPs with 1 × 104 particles/L (small polystyrene MPs (SPS-MPs): 6 μm, large polystyrene MPs (LPS-MPs): 50-60 μm) at two pH levels (7.7 and 8.1) for 14 days. The antagonistic effects between MPs and OA on oysters were mainly observed. Single SPS-MPs exposure can induce CAT enzyme activity and LPO level in gills, while LPS-MPs exposure alone can increase PGK and PEPCK gene expression in digestive glands. Ocean acidification can increase clearance rate and inhibit antioxidant enzyme activity, whereas combined exposure of OA and SPS-MPs can affect the metabolomic profile of digestive glands. This study emphasized that the potential toxic effects of MPs under the scene of climate change should be concerned.
Collapse
Affiliation(s)
- Yunchao Du
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jingying Ren
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Hengyuan Ma
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209 16, PR China
| | - Tianyu Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Shan Sun
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China.
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| |
Collapse
|
17
|
De Boever S, Devisscher L, Vinken M. Unraveling the micro- and nanoplastic predicament: A human-centric insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170262. [PMID: 38253106 DOI: 10.1016/j.scitotenv.2024.170262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Micro- and nanoplastics are vast anthropogenic pollutants in our direct surroundings with a robust environmental stability and a potential for a long-lasting and increasing global circulation. This has raised concerns among the public and policy makers for human health upon exposure to these particles. The micro- and nanoplastic burden on humans is currently under debate, along with criticism on the experimental approaches used in hazard assessment. The present review presents an overview of the human-relevant aspects associated with the current micro-and nanoplastic burden. We focus on environmental circulation and the estimation of exposure quantities to humans, along with a state-of-the-art overview of particle accumulation in over 15 human organs and other specimen. Additionally, data regarding particle characteristics used in toxicity testing was extracted from 91 studies and discussed considering their environmental and human relevance.
Collapse
Affiliation(s)
- Sybren De Boever
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Centre Ghent, Faculty of Medicine and Health Sciences, Universiteit Gent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
18
|
Bucci K, Bayoumi M, Stevack K, Watson-Leung T, Rochman CM. Microplastics may induce food dilution and endocrine disrupting effects in fathead minnows (Pimephales promelas), and decrease offspring quality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123551. [PMID: 38350533 DOI: 10.1016/j.envpol.2024.123551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Microplastics are a complex environmental contaminant that have been reported to cause a variety of impacts, although the mechanism of these impacts remains unclear. Many studies have investigated either sub-organismal or apical endpoints, while very few have attempted to integrate and link endpoints seen at multiple levels of organization. Here, we exposed fathead minnows to microplastics for their entire lifecycle, from the egg stage through to reproduction, and raised a subset of the offspring in clean water. We show that both preconsumer and environmentally sourced microplastics impact adult growth, lipid storage, and external colouration, suggesting a potential food dilution effect. Environmentally sourced microplastics, but not preconsumer microplastics, had further endocrine disrupting impacts on the parental generation and their offspring in the low concentration treatments such that egg production began later, eggs were less viable, and the offspring had higher rates of malformation. Low dose effects are a typical dose-response for endocrine disrupting contaminants. These results suggest that microplastic exposure, at concentrations relevant to what is being found in the environment, has potential implications for forage fish populations. Our findings also highlight the importance of using an integrative approach to understanding the mechanisms behind how and why microplastics impact organisms.
Collapse
Affiliation(s)
- Kennedy Bucci
- Department of Ecology and Evolutionary Biology, University of Toronto, M5S 3B1, Toronto, Ontario, Canada.
| | - Malak Bayoumi
- Department of Ecology and Evolutionary Biology, University of Toronto, M5S 3B1, Toronto, Ontario, Canada
| | - Kathleen Stevack
- Ministry of the Environment, Conservation and Parks, M9P 3V6, Etobicoke, Ontario, Canada
| | - Trudy Watson-Leung
- Ministry of the Environment, Conservation and Parks, M9P 3V6, Etobicoke, Ontario, Canada
| | - Chelsea M Rochman
- Department of Ecology and Evolutionary Biology, University of Toronto, M5S 3B1, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Nam SH, Kim D, Lee TY, An YJ. Analyzing species sensitivity distribution of evidently edible microplastics for freshwater biota. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133520. [PMID: 38232553 DOI: 10.1016/j.jhazmat.2024.133520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Assessing the ecological risks of microplastics is difficult because of the limited availability of reliable ecotoxicity data. Although freshwater is a valuable sink for microplastics, the current framework for ecological risk assessment using traditional toxicity data is not applicable to freshwater ecosystems. Herein, species sensitivity distribution (SSD) curves were compared for edible and all microplastics exposed to aquatic organisms based on traditional endpoint-based and all-endpoint-based databases. Freshwater toxicity data for microplastics were screened after verifying microplastic presence in test species (56 toxicity datapoints for one microalga, three water fleas, one fish, and one crab; 0.02-100 µm-sized microplastics). SSD and curve parameters were compared with or without non-traditional toxicity endpoints. The HC50 in all endpoint databases was more sensitive than that in the traditional endpoint database and showed a good fit. SSD curves derived from the database for all microplastics were compared and analyzed with edible microplastics. HCx increased for edible microplastics (0.02-100 µm-sized) than for all microplastics (0.02-200 µm-sized), and the size of edible microplastics was lower than of all microplastics. Thus, using non-traditional toxicity data, the SSD approach compensates for the limited ecotoxicity data on microplastics while considering the internalization of microplastics in biota.
Collapse
Affiliation(s)
- Sun-Hwa Nam
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Dokyung Kim
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Yang Lee
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
20
|
Jeong J, Im J, Choi J. Integrating aggregate exposure pathway and adverse outcome pathway for micro/nanoplastics: A review on exposure, toxicokinetics, and toxicity studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116022. [PMID: 38309230 DOI: 10.1016/j.ecoenv.2024.116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Micro/nanoplastics (MNPs) have emerged as a significant environmental concern due to their widespread distribution and potential adverse effects on human health and the environment. In this study, to integrate exposure and toxicity pathways of MNPs, a comprehensive review of the occurrence, toxicokinetics (absorption, distribution, and excretion [ADE]), and toxicity of MNPs were investigated using the aggregate exposure pathway (AEP) and adverse outcome pathway (AOP) frameworks. Eighty-five papers were selected: 34 papers were on detecting MNPs in environmental samples, 38 papers were on the ADE of MNPs in humans and fish, and 36 papers were related to MNPs toxicity using experimental models. This review not only summarizes individual studies but also presents a preliminary AEP-AOP framework. This framework offers a comprehensive overview of pathways, enabling a clearer visualization of intricate processes spanning from environmental media, absorption, distribution, and molecular effects to adverse outcomes. Overall, this review emphasizes the importance of integrating exposure and toxicity pathways of MNPs by utilizing AEP-AOP to comprehensively understand their impacts on human and ecological organisms. The findings contribute to highlighting the need for further research to fill the existing knowledge gaps in this field and the development of more effective strategies for the safe management of MNPs.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jeongeun Im
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
21
|
Ferreira-Filipe DA, Paço A, Pinho B, Silva R, Silva SAM, Jesus F, Pereira JL, Duarte AC, Rocha-Santos TAP, Patrício-Silva AL. Microplastics from agricultural mulch films: Biodegradation and ecotoxicity in freshwater systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169287. [PMID: 38103621 DOI: 10.1016/j.scitotenv.2023.169287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
The application of bio-based biodegradable mulch films in agriculture has raised environmental concerns regarding their potential impacts on adjacent freshwater ecosystems. This study investigated the biodegradation of microplastics derived from a bio-based biodegradable mulch (bio-MPs) and its acute and chronic ecotoxicity considering relevant scenarios (up to 200 and 250 mg/kg of sediment, using pristine and/or UV-aged particles), using the fungus Penicillium brevicompactum and the dipteran Chironomus riparius as model organisms, respectively, due to their ecological relevance in freshwater environments. Fourier-transform infrared spectroscopy analysis suggested changes in the fungus's carbohydrate reserves and bio-MP degradation through the appearance of low molecular weight esters throughout a 28 day biodegradation test. In a short-term exposure (48 h), C. riparius larvae exposed to pristine or UV-aged bio-MPs had up to 2 particles in their gut. Exposure to pristine bio-MPs decreased larval aerobic metabolism (<20 %) and increased neurotransmission (>15 %), whereas exposure to UV-aged bio-MPs activated larval aerobic metabolism (>20 %) and increased antioxidant defences (catalase activity by >30 % and glutathione-s-transferase by >20 %) and neurotransmission (>30 %). Longer-term (28-d) exposure to UV-aged bio-MPs did not affect larval survival and growth nor the dipteran's emergence but increased male numbers (>30 %) at higher concentrations. This study suggests that the selected agricultural bio-based mulch film is prone to biodegradation by a naturally occurring fungus. However, there is a potential for endocrine disruption in the case of prolonged exposures to UV-aged microplastics. This study emphasises the importance of further research to elucidate the potential ecological effects of these plastic products, to ensure effective management practices, and to establish new regulations governing their use.
Collapse
Affiliation(s)
- Diogo A Ferreira-Filipe
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Paço
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruna Pinho
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rafael Silva
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sara A M Silva
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fátima Jesus
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana L Pereira
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa A P Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Patrício-Silva
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
22
|
Rafa N, Ahmed B, Zohora F, Bakya J, Ahmed S, Ahmed SF, Mofijur M, Chowdhury AA, Almomani F. Microplastics as carriers of toxic pollutants: Source, transport, and toxicological effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123190. [PMID: 38142809 DOI: 10.1016/j.envpol.2023.123190] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/25/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Microplastic pollution has emerged as a new environmental concern due to our reliance on plastic. Recent years have seen an upward trend in scholarly interest in the topic of microplastics carrying contaminants; however, the available review studies have largely focused on specific aspects of this issue, such as sorption, transport, and toxicological effects. Consequently, this review synthesizes the state-of-the-art knowledge on these topics by presenting key findings to guide better policy action toward microplastic management. Microplastics have been reported to absorb pollutants such as persistent organic pollutants, heavy metals, and antibiotics, leading to their bioaccumulation in marine and terrestrial ecosystems. Hydrophobic interactions are found to be the predominant sorption mechanism, especially for organic pollutants, although electrostatic forces, van der Waals forces, hydrogen bonding, and pi-pi interactions are also noteworthy. This review reveals that physicochemical properties of microplastics, such as size, structure, and functional groups, and environmental compartment properties, such as pH, temperature, and salinity, influence the sorption of pollutants by microplastic. It has been found that microplastics influence the growth and metabolism of organisms. Inadequate methods for collection and analysis of environmental samples, lack of replication of real-world settings in laboratories, and a lack of understanding of the sorption mechanism and toxicity of microplastics impede current microplastic research. Therefore, future research should focus on filling in these knowledge gaps.
Collapse
Affiliation(s)
- Nazifa Rafa
- Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EN, United Kingdom
| | - Bushra Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Fatema Zohora
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Jannatul Bakya
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Samiya Ahmed
- Biological and Biomedical Sciences Department, College of Health and Life sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ashfaque Ahmed Chowdhury
- School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702, Australia; Centre for Intelligent Systems, Clean Energy Academy, Central Queensland University, Rockhampton, QLD 4702, Australia
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, Doha, Qatar.
| |
Collapse
|
23
|
Wang L, Pei W, Li J, Feng Y, Gao X, Jiang P, Wu Q, Li L. Microplastics induced apoptosis in macrophages by promoting ROS generation and altering metabolic profiles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115970. [PMID: 38218108 DOI: 10.1016/j.ecoenv.2024.115970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
The ubiquitous presence of Microplastics (MPs) in various environments documented in recent years has recently raised significant concerns about their toxic effects. While macrophages serve as the first line of defense against toxic substances and pathogens, the impact and mechanisms of microplastics on these immune cells remain unclear. This study aims to explore whether MPs induce macrophage apoptosis through the promotion of reactive oxygen species (ROS) generation and alterations in metabolic profiles. The viability of RAW264.7 cells decreased as the concentration of 0.5 µm or 5 µm MPs ranged from 0.2 to 1.5 mg/mL, with a more pronounced effect observed in the 0.5 µm MPs group. Zebrafish exposed to 0.5 µm or 5 µm MPs at a concentration of 0.5 mg/mL exhibited decreased macrophage abundance and increased apoptosis, accompanied by alterations in the expression of inflammatory and apoptosis-related genes. While 0.5 µm MPs were observed to enter macrophages, 5 µm MPs only adhered to the cell membrane surface. Both particle sizes induced ROS generation and disrupted cellular metabolism in RAW264.7 cells. Notably, macrophages exhibited a more pronounced response to 0.5 µm MPs, characterized by heightened ROS generation, increased secretion of pro-inflammatory mediators, and a significant decrease in sphingolipid metabolism. These findings suggest that the adverse effects on macrophages are greater with 0.5 µm MPs compared to 5 µm MPs, possibly attributed to particle size effects. This study contributes additional evidence on the impact of MPs on human immune cells.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Pathogen Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Wenlong Pei
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Jiacong Li
- Department of Pathogen Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Yiming Feng
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Xingsu Gao
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Ping Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Qian Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| |
Collapse
|
24
|
Peng M, Vercauteren M, Grootaert C, Catarino AI, Everaert G, Rajkovic A, Janssen C, Asselman J. Bioenergetic effects of pristine and ultraviolet-weathered polydisperse polyethylene terephthalate and polystyrene nanoplastics on human intestinal Caco-2 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168267. [PMID: 37918727 DOI: 10.1016/j.scitotenv.2023.168267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The ubiquitous human exposure to nanoplastics (NPs) increasingly raises concerns regarding impact on our health. However, little is known on the biological effects of complex mixtures of weathered NPs with heterogenous size and irregular shape present in the environment. In this study, the bioenergetic effects of four such NPs mixtures on human intestinal Caco-2 cells were investigated. To this aim, Caco-2 cells were exposed to polydisperse nanoPET (<800 nm) and nanoPS (mixture of 100 and 750 nm) samples with and without ultraviolet (UV) weathering at low concentration range (102-107 particles/mL) for 48 h. Mitochondrial respiration, glycolytic functions and ATP production rates of exposed cells were measured by Seahorse XFe96 Analyzer. Among four NPs samples, polydisperse nanoPET with irregular shapes induced significant stimulation of mitochondrial respiration, glycolysis and ATP production rates in Caco-2 cells. Spherical nanoPS caused significant stimulation on glycolytic functions of Caco-2 cells at the highest concentration used (106 particles/mL). ATR-FTIR spectra and carbonyl index indicated formation of carbonyl groups in nanoPET and nanoPS after UV weathering. UV weathering could alleviate bioenergetic stress caused by NPs in Caco-2 cells and even shifted the energy pathways from mitochondrial respiration to glycolysis due to electrostatic repulsion between negatively charged UV-aged NPs and cell membranes. This research is the first to study in-vitro bioenergetic responses of NPs samples with multidimensional features (polymer type, irregular shape, heterogenous size, UV-weathering) on human health. It highlights that effects between pristine and weathered NPs are different at a bioenergetic level, which has important implications for the risk assessment of NPs on human health.
Collapse
Affiliation(s)
- Miao Peng
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium.
| | - Maaike Vercauteren
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Charlotte Grootaert
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ana Isabel Catarino
- Ocean and Human Health Division, Flanders Marine Institute, Jacobsenstraat 1, B-8400 Ostend, Belgium
| | - Gert Everaert
- Ocean and Human Health Division, Flanders Marine Institute, Jacobsenstraat 1, B-8400 Ostend, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Colin Janssen
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium
| |
Collapse
|
25
|
Le VG, Nguyen MK, Nguyen HL, Lin C, Hadi M, Hung NTQ, Hoang HG, Nguyen KN, Tran HT, Hou D, Zhang T, Bolan NS. A comprehensive review of micro- and nano-plastics in the atmosphere: Occurrence, fate, toxicity, and strategies for risk reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166649. [PMID: 37660815 DOI: 10.1016/j.scitotenv.2023.166649] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Micro- and nano-plastics (MNPs) have received considerable attention over the past 10 years due to their environmental prevalence and potential toxic effects. With the increase in global plastic production and disposal, MNP pollution has become a topic of emerging concern. In this review, we describe MNPs in the atmospheric environment, and potential toxicological effects of exposure to MNPs. Studies have reported the occurrence of MNPs in outdoor and indoor air at concentrations ranging from 0.0065 items m-3 to 1583 items m-3. Findings have identified plastic fragments, fibers, and films in sizes predominantly <1000 μm with polyamide (PA), polyester (PES), polyethylene terephthalate (PET), polypropylene (PP), rayon, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyacrylonitrile (PAN), and ethyl vinyl acetate (EVA) as the major compounds. Exposure through indoor air and dust is an important pathway for humans. Airborne MNPs pose health risks to plants, animals, and humans. Atmospheric MNPs can enter organism bodies via inhalation and subsequent deposition in the lungs, which triggers inflammation and other adverse health effects. MNPs could be eliminated through source reduction, policy/regulation, environmental awareness and education, biodegradable materials, bioremediation, and efficient air-filtration systems. To achieve a sustainable society, it is crucial to implement effective strategies for reducing the usage of single-use plastics (SUPs). Further, governments play a pivotal role in addressing the pressing issue of MNPs pollution and must establish viable solutions to tackle this significant challenge.
Collapse
Affiliation(s)
- Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University (CRES-VNU), Hanoi, 111000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Mohammed Hadi
- Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Norway
| | - Nguyen Tri Quang Hung
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai 810000, Viet Nam
| | - Khoi Nghia Nguyen
- Department of Soil Science, College of Agriculture, Can Tho University, Can Tho City 270000, Viet Nam
| | - Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 700000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Viet Nam.
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Nanthi S Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
26
|
Kumar M, Mazumder P, Silori R, Manna S, Panday DP, Das N, Sethy SK, Kuroda K, Mahapatra DM, Mahlknecht J, Tyagi VK, Singh R, Zang J, Barceló D. Prevalence of pharmaceuticals and personal care products, microplastics and co-infecting microbes in the post-COVID-19 era and its implications on antimicrobial resistance and potential endocrine disruptive effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166419. [PMID: 37625721 DOI: 10.1016/j.scitotenv.2023.166419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
The COVID-19 (coronavirus disease 2019) pandemic's steady condition coupled with predominance of emerging contaminants in the environment and its synergistic implications in recent times has stoked interest in combating medical emergencies in this dynamic environment. In this context, high concentrations of pharmaceutical and personal care products (PPCPs), microplastics (MPs), antimicrobial resistance (AMR), and soaring coinfecting microbes, tied with potential endocrine disruptive (ED) are critical environmental concerns that requires a detailed documentation and analysis. During the pandemic, the identification, enumeration, and assessment of potential hazards of PPCPs and MPs and (used as anti-COVID-19 agents/applications) in aquatic habitats have been attempted globally. Albeit receding threats in the magnitude of COVID-19 infections, both these pollutants have still posed serious consequences to aquatic ecosystems and the very health and hygiene of the population in the vicinity. The surge in the contaminants post-COVID also renders them to be potent vectors to harbor and amplify AMR. Pertinently, the present work attempts to critically review such instances to understand the underlying mechanism, interactions swaying the current health of our environment during this post-COVID-19 era. During this juncture, although prevention of diseases, patient care, and self-hygiene have taken precedence, nevertheless antimicrobial stewardship (AMS) efforts have been overlooked. Unnecessary usage of PPCPs and plastics during the pandemic has resulted in increased emerging contaminants (i.e., active pharmaceutical ingredients and MPs) in various environmental matrices. It was also noticed that among COVID-19 patients, while the bacterial co-infection prevalence was 0.2-51%, the fungi, viral, protozoan and helminth were 0.3-49, 1-22, 2-15, 0.4-15% respectively, rendering them resistant to residual PPCPs. There are inevitable chances of ED effects from PPCPs and MPs applied previously, that could pose far-reaching health concerns. Furthermore, clinical and other experimental evidence for many newer compounds is very scarce and demands further research. Pro-active measures targeting effective waste management, evolved environmental policies aiding strict regulatory measures, and scientific research would be crucial in minimizing the impact and creating better preparedness towards such events among the masses fostering sustainability.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico.
| | - Payal Mazumder
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Rahul Silori
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Suvendu Manna
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Durga Prasad Panday
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Nilotpal Das
- ENCORE Insoltech Pvt. Ltd, Randesan, Gandhinagar, Gujarat 382421, India
| | - Susanta Kumar Sethy
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu 939 0398, Japan
| | - Durga Madhab Mahapatra
- Department of Chemical and Petroleum Engineering, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Jürgen Mahlknecht
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Vinay Kumar Tyagi
- Wastewater Division, National Institute of Hydrology Roorkee, Roorkee, Uttranchal, India
| | - Rajesh Singh
- Wastewater Division, National Institute of Hydrology Roorkee, Roorkee, Uttranchal, India
| | - Jian Zang
- Department of Civil Engineering, Chongqing University, China
| | - Damià Barceló
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona 08034, Spain
| |
Collapse
|
27
|
Lopes C, Ambrosino AC, Figueiredo C, Caetano M, Santos MM, Garrido S, Raimundo J. Microplastic distribution in different tissues of small pelagic fish of the Northeast Atlantic Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166050. [PMID: 37543340 DOI: 10.1016/j.scitotenv.2023.166050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The accumulation of microplastics (MP) by marine species of ecological and commercial interest represents a major concern, particularly for those present in human diet. This study analysed the accumulation of MP in three species of coastal pelagic fish with high commercial value, European sardine (Sardina pilchardus), European anchovy (Engraulis encrasicolus) and horse mackerel (Trachurus trachurus), collected along the Western coast of the Iberian Peninsula. The gastrointestinal tract (GT), gills and muscle were analysed and a total of 504 particles were observed. MP were found in all target tissues of the studied species. Horse mackerel exhibited significantly higher concentrations of microplastics in GT compared to other tissues. On the other hand, anchovies and sardines had significantly lower microplastic concentrations in their muscle tissue. The accumulation of microplastics in the gills showed a significant difference between species, with anchovy having significantly higher concentrations compared to horse mackerel. Horse mackerel had the highest percentage of individuals with microplastics in their GT (92 %), followed by sardine (75 %) and anchovy (50 %). Horse mackerel was also the species that registered the highest percentage of individuals with particles in the muscle (63 %), followed by anchovy (40 %) and finally sardine (39 %). MP in the gills of European sardines and anchovies were similar to those found in water samples. The majority of MP found measured <0.5 mm and were blue fibers. Furthermore, the presence of MP in the GT showed a weak and moderated significant negative correlation with the Fulton Condition Index in horse mackerel and European sardine. Our study confirms the ubiquitous extent of MP contamination in the ocean and provides baseline evidence of MP tissue distribution in three small pelagic fish species with distinct feeding behaviour, while correlating this with the presence of MP in water. Importantly, the results of this study contribute to improve the understanding of biological partitioning of MP in open sea fish species with high commercial relevance, and the potential deleterious effects of our increasingly MP contaminated world.
Collapse
Affiliation(s)
- Clara Lopes
- IPMA - Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal; CIIMAR/CIIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal.
| | - Ana C Ambrosino
- IPMA - Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal
| | - Cátia Figueiredo
- CIIMAR/CIIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Miguel Caetano
- IPMA - Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal; CIIMAR/CIIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Miguel M Santos
- CIIMAR/CIIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Susana Garrido
- IPMA - Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal; MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa Campo Grande, 1749-016 Lisbon, Portugal
| | - Joana Raimundo
- IPMA - Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal; CIIMAR/CIIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
28
|
Jensen H, Lehto N, Almond P, Gaw S, Robinson B. The Uptake of Rare Trace Elements by Perennial Ryegrass ( Lolium perenne L.). TOXICS 2023; 11:929. [PMID: 37999581 PMCID: PMC10674648 DOI: 10.3390/toxics11110929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023]
Abstract
Technological development has increased the use of chemical elements that have hitherto received scant scientific attention as environmental contaminants. Successful management of these rare trace elements (RTEs) requires elucidation of their mobility in the soil-plant system. We aimed to determine the capacity of Lolium perenne (a common pasture species) to tolerate and accumulate the RTEs Be, Ga, In, La, Ce, Nd, and Gd in a fluvial recent soil. Cadmium was used as a reference as a well-studied contaminant that is relatively mobile in the soil-plant system. Soil was spiked with 2.5-283 mg kg-1 of RTE or Cd salts, representing five, 10, 20, and 40 times their background concentrations in soil. For Be, Ce, In, and La, there was no growth reduction, even at the highest soil concentrations (76, 1132, 10.2, and 874 mg kg-1, respectively), which resulted in foliar concentrations of 7.1, 12, 0.11, and 50 mg kg-1, respectively. The maximum no-biomass reduction foliar concentrations for Cd, Gd, Nd, and Ga were 0.061, 0.1, 7.1, and 11 mg kg-1, respectively. Bioaccumulation coefficients ranged from 0.0030-0.95, and increased Ce < In < Nd ≅ Gd < La ≅ Be ≅ Ga < Cd. Beryllium and La were the RTEs most at risk of entering the food chain via L. perenne, as their toxicity thresholds were not reached in the ranges tested, and the bioaccumulation coefficient (plant/soil concentration quotient) trends indicated that uptake would continue to increase at higher soil concentrations. In contrast, In and Ce were the elements least likely to enter the food chain. Further research should repeat the experiments in different soil types or with different plant species to test the robustness of the findings.
Collapse
Affiliation(s)
- Hayley Jensen
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand (S.G.)
| | - Niklas Lehto
- Department of Soil and Physical Sciences, Lincoln University, Lincoln 7647, New Zealand; (N.L.); (P.A.)
| | - Peter Almond
- Department of Soil and Physical Sciences, Lincoln University, Lincoln 7647, New Zealand; (N.L.); (P.A.)
| | - Sally Gaw
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand (S.G.)
| | - Brett Robinson
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand (S.G.)
| |
Collapse
|
29
|
Peng M, Vercauteren M, Grootaert C, Rajkovic A, Boon N, Janssen C, Asselman J. Cellular and bioenergetic effects of polystyrene microplastic in function of cell type, differentiation status and post-exposure time. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122550. [PMID: 37716692 DOI: 10.1016/j.envpol.2023.122550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
The ubiquity of microplastics (MPs) in food sources and personal care products increasingly raises concerns on human health. However, little is known about the duration of the effects of MPs and whether effects depend on cellular differentiation status. Herein, cellular and bioenergetic effects of MPs in different exposure scenarios on four types of human cell lines derived from lung (A549 and BEAS-2B), colon (Caco-2) and liver (HepG2) were investigated. These cell lines are models for the major exposure routes in the body (inhalation, ingestion and physiological transport through the liver by the portal vein). To this aim, different scenarios were implemented by exposing undifferentiated and differentiated cells to single dosing of 2-μm polystyrene (PS) (102-105 particles/mL) for 48 h and 12 days. The undifferentiated Caco-2 cells with short exposure (48 h) showed the highest uptake rate of PS yet without significant cellular and mitochondrial responses. The biological effects, with the exception of ROS production, were not influenced by differentiation states of A549 and Caco-2 cells although differentiated cells showed much weaker ability to internalize PS. However, PS had significantly long-term impacts on cellular and mitochondrial functions even after the initial exposure period. In particular, Caco-2 cells that were post-exposed for 12 days after single PS dosing suffered higher oxidative stress and exhibited mitochondrial dysfunction than that for short exposure. Correspondingly, we observed that PS particles still remained in cell membrane and even in nuclei with high retention rate by 14-d post exposure during which metabolism and exchange of internalization and release occurred in cells. This indicates PS could induce chronic stress and even harmful effects on human cells after single intake that persists for a long time. This study paves the way for assessing the influence of PS on human health at low particle concentrations and with multiple exposure scenarios.
Collapse
Affiliation(s)
- Miao Peng
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium.
| | - Maaike Vercauteren
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium
| | - Charlotte Grootaert
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Technology and Ecology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Colin Janssen
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400, Oostende, Belgium
| |
Collapse
|
30
|
Yang L, Tang BZ, Wang WX. Near-Infrared-II In Vivo Visualization and Quantitative Tracking of Micro/Nanoplastics in Fish. ACS NANO 2023; 17:19410-19420. [PMID: 37782069 DOI: 10.1021/acsnano.3c07571] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
As emerging contaminants, micro/nanoplastics (MNPs) are widely present in aquatic environments and are often ingested by aquatic organisms. However, the in vivo trafficking and fate of MNPs remain largely unknown. Here, we developed near-infrared (NIR) aggregated-induced emission (AIE) fluorophore-labeled microplastics (2 μm) and nanoplastics (100 nm) as models of MNPs. This model was based on the NIR-AIE technique with strong emission at the second near-infrared (NIR-IIII) window, which overcomes the interference of autofluorescence and observation artifacts in the detection of commercial fluorescent-labeled particles. Due to its deep tissue penetration and noninvasiveness, the dynamic process of accumulation and transport of MNPs in individuals can be tracked with NIR imaging. We then directly visualized and quantified the uptake and depuration processes of MPs and NPs in zebrafish. The results showed that the MPs and NPs were mainly accumulated in the fish gut, and the distribution was heterogeneous. MPs tended to accumulate more in the fore and mid areas of the gut compared with NPs. Besides, both MPs and NPs could accumulate in large quantities locally in the gut and might cause intestinal obstruction. MNPs accumulated slowly during the initial exposure followed by rapid and sustained accumulation in gut. Based on these kinetic accumulation and depuration, we developed a refined toxicokinetic (TK) model to describe the dynamic changes in the uptake and depuration of MNPs. Overall, this study proposed a MNP model based on the NIR-AIE technique, which provided a reliable tracer technology for the visualization, tracking and quantification of MNPs in vivo.
Collapse
Affiliation(s)
- Lanpeng Yang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
31
|
Nam SH, Lee TY, Kim SA, An YJ. Non-traditional species sensitivity distribution approaches to analyze hazardous concentrations of microplastics in marine water. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132174. [PMID: 37531763 DOI: 10.1016/j.jhazmat.2023.132174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Owing to their ubiquitous nature, microplastics are a major environmental concern. This study reviewed the toxicity data of microplastics in marine water, and analyzed their species sensitivity distribution (SSD) curves and hazardous concentrations (HCs). Toxicity database of no-observed effect concentration (NOEC), 50% effect concentration (EC50), and highest observed no-effect concentration (HONEC), and lethal, developing, reproductive, biochemical, and behavioral toxicity endpoints was used. Using 169 chronic NOEC databases, all non-traditional toxicity endpoint databases showed stronger HC values, better fit, and more variable toxicity sensitivity than those derived from traditional values. Moreover, using 426 chronic NOEC, EC50, and HONEC data points, HC values calculated from traditional plus HONEC toxicity values showed weaker HC values, slightly better fit, and more variable toxicity sensitivity than those derived from traditional toxicity values. The SSD approach using non-traditional toxicity and marine water toxicity data can expand the marine water toxicity database, including information on SSD curves and HCs of diverse microplastics.
Collapse
Affiliation(s)
- Sun-Hwa Nam
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Yang Lee
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang A Kim
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
32
|
Wang X, Li F, Meng X, Xia C, Ji C, Wu H. Abnormality of mussel in the early developmental stages induced by graphene and triphenyl phosphate: In silico toxicogenomic data-mining, in vivo, and toxicity pathway-oriented approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106674. [PMID: 37666107 DOI: 10.1016/j.aquatox.2023.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Increasing number of complex mixtures of organic pollutants in coastal area (especially for nanomaterials and micro/nanoplastics associated chemicals) threaten aquatic ecosystems and their joint hazards are complex and demanding tasks. Mussels are the most sensitive marine faunal groups in the world, and their early developmental stages (embryo and larvae) are particularly susceptible to environmental contaminants, which can distinguish the probable mechanisms of mixture-induced growth toxicity. In this study, the potential critical target and biological processes affected by graphene and triphenyl phosphate (TPP) were developed by mining public toxicogenomic data. And their combined toxic effects were verified by toxicological assay at early developmental stages in filter-feeding mussels (embryo and larvae). It showed that interactions among graphene/TPP with 111 genes (ABCB1, TP53, SOD, CAT, HSP, etc.) affected phenotypes along conceptual framework linking these chemicals to developmental abnormality endpoints. The PPAR signaling pathway, monocarboxylic acid metabolic process, regulation of lipid metabolic process, response to oxidative stress, and gonad development were noted as the key molecular pathways that contributed to the developmental abnormality. Enriched phenotype analysis revealed biological processes (cell proliferation, cell apoptosis, inflammatory response, response to oxidative stress, and lipid metabolism) affected by the investigated mixture. Combined, our results supported that adverse effects induced by contaminants/ mixture could not only be mediated by single receptor signaling or be predicted by the simple additive effect of contaminants. The results offer a framework for better comprehending the developmental toxicity of environmental contaminants in mussels and other invertebrate species, which have considerable potential for hazard assessment of coastal mixture.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Xiangjing Meng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chunlei Xia
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
33
|
Wang L, Zhang X, Xu M, Zheng G, Chen J, Li S, Cui J, Zhang S. Implication of ferroptosis in hepatic toxicity upon single or combined exposure to polystyrene microplastics and cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122250. [PMID: 37487871 DOI: 10.1016/j.envpol.2023.122250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 07/26/2023]
Abstract
Microplastics (MPs) are a newly emerging type of pollutants. To date, MPs have been found in the atmosphere, soil, water, and even in human samples, posing a non-negligible threat to humans. Furthermore, multiple heavy metals have been found to co-exist with MPs or be absorbed by MPs. This leads to a widespread concern about their combined toxicity, which is currently elusive. Herein, we investigated the single or combined toxic effects of polystyrene MPs (PS-MPs) and cadmium chloride (CdCl2) on the liver and hepatocytes. After co-incubation, cadmium (Cd) can be absorbed by PS-MPs, resulting in physiochemical alterations of PS-MPs. In vivo and in vitro experiments revealed that PS-MPs solely or together with CdCl2 induced ferroptosis in hepatocytes, a newly defined programmed cell death characterized by lipid oxidation and iron accumulation. PS-MPs exerted more ferroptotic effect on hepatocytes than CdCl2, and combined exposure to PS-MPs and CdCl2 enhanced their ferroptotic effect, mainly by stimulating reactive oxygen species (ROS) production and inhibiting antioxidant activity. Upon single or combined exposure to PS-MPs and CdCl2, the induction of ferroptosis in hepatocytes can be inhibited by N-acetyl-cysteine (NAC, an ROS scavenger), deferoxamine (DFO, an iron chelator), and particularly ferrostatin-1 (Fer-1, a specific ferroptosis inhibitor). Fer-1 efficiently rescued the cell viability of hepatocytes upon exposure to PS-MPs and CdCl2 through enhancing the antioxidant system via upregulating GPX4 and SLC7A11. These findings would contribute to an in-depth understanding of the single and combined toxicity of microplastics and cadmium.
Collapse
Affiliation(s)
- Lixin Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, 050018, China
| | - Xuan Zhang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, 050018, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Man Xu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, 050018, China
| | - Guangzhe Zheng
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Jiamin Chen
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, 050018, China
| | - Shan Li
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, 050018, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Jiansheng Cui
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang, 050018, China
| | - Shuping Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
34
|
Yang Z, DeLoid GM, Zarbl H, Baw J, Demokritou P. Micro- and nanoplastics (MNPs) and their potential toxicological outcomes: State of science, knowledge gaps and research needs. NANOIMPACT 2023; 32:100481. [PMID: 37717636 PMCID: PMC10841092 DOI: 10.1016/j.impact.2023.100481] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Plastic waste has been produced at a rapidly growing rate over the past several decades. The environmental impacts of plastic waste on marine and terrestrial ecosystems have been recognized for years. Recently, researchers found that micro- and nanoplastics (MNPs), micron (100 nm - 5 mm) and nanometer (1 - 100 nm) scale particles and fibers produced by degradation and fragmentation of plastic waste in the environment, have become an important emerging environmental and food chain contaminant with uncertain consequences for human health. This review provides a comprehensive summary of recent findings from studies of potential toxicity and adverse health impacts of MNPs in terrestrial mammals, including studies in both in vitro cellular and in vivo mammalian models. Also reviewed here are recently released biomonitoring studies that have characterized the bioaccumulation, biodistribution, and excretion of MNPs in humans. The majority MNPs in the environment to which humans are most likely to be exposed, are of irregular shapes, varied sizes, and mixed compositions, and are defined as secondary MNPs. However, the MNPs used in most toxicity studies to date were commercially available primary MNPs of polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and other polymers. The emerging in vitro and in vivo evidence reviewed here suggests that MNP toxicity and bioactivity are largely determined by MNP particle physico-chemical characteristics, including size, shape, polymer type, and surface properties. For human exposure, MNPs have been identified in human blood, urine, feces, and placenta, which pose potential health risks. The evidence to date suggests that the mechanisms underlying MNP toxicity at the cellular level are primarily driven by oxidative stress. Nonetheless, large knowledge gaps in our understanding of MNP toxicity and the potential health impacts of MNP exposures still exist and much further study is needed to bridge those gaps. This includes human population exposure studies to determine the environmentally relevant MNP polymers and exposure concentrations and durations for toxicity studies, as well as toxicity studies employing environmentally relevant MNPs, with surface chemistries and other physico-chemical properties consistent with MNP particles in the environment. It is especially important to obtain comprehensive toxicological data for these MNPs to understand the range and extent of potential adverse impacts of microplastic pollutants on humans and other organisms.
Collapse
Affiliation(s)
- Zhenning Yang
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Glen M DeLoid
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Joshua Baw
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
35
|
Castaño-Ortiz JM, Courant F, Gomez E, García-Pimentel MM, León VM, Campillo JA, Santos LHMLM, Barceló D, Rodríguez-Mozaz S. Combined exposure of the bivalve Mytilus galloprovincialis to polyethylene microplastics and two pharmaceuticals (citalopram and bezafibrate): Bioaccumulation and metabolomic studies. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131904. [PMID: 37356174 DOI: 10.1016/j.jhazmat.2023.131904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Pharmaceuticals and microplastics constitute potential hazards in aquatic systems, but their combined effects and underlying toxicity mechanisms remain largely unknown. In this study, a simultaneous characterization of bioaccumulation, associated metabolomic alterations and potential recovery mechanisms was performed. Specifically, a bioassay on Mediterranean mussels (Mytilus galloprovincialis) was carried out with polyethylene microplastics (PE-MPLs, 1 mg/L) and citalopram or bezafibrate (500 ng/L). Single and co-exposure scenarios lasted 21 days, followed by a 7-day depuration period to assess their potential recovery. PE-MPLs delayed the bioaccumulation of citalopram (lower mean at 10 d: 447 compared to 770 ng/g dw under single exposure), although reaching similar tissue concentrations after 21 d. A more limited accumulation of bezafibrate was observed overall, regardless of PE-MPLs co-exposure (<MQL-3.2 ng/g dw). Metabolic profiles showed a strong effect of pharmaceuticals, generally independent of PE-MPLs co-exposure. Alterations of the citrate cycle (bezafibrate exposure) and steroid and prostaglandin metabolism (citalopram and bezafibrate exposures) were highlighted. PE-MPLs alone also impacted metabolic pathways, such as neurotransmitters or purine metabolism. After depuration, relevant latent or long-lasting effects were demonstrated as, for instance, the effect of citalopram on neurotransmitters metabolism. Altogether, the observed molecular-level responses to pharmaceuticals and/or PE-MPLs may lead to a dysregulation of mussels' reproduction, energy metabolism, and/or immunity.
Collapse
Affiliation(s)
- J M Castaño-Ortiz
- University of Girona, Girona, Spain; Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain.
| | - F Courant
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - E Gomez
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - M M García-Pimentel
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, C/Varadero 1, San Pedro del Pinatar, Murcia, Spain
| | - V M León
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, C/Varadero 1, San Pedro del Pinatar, Murcia, Spain
| | - J A Campillo
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, C/Varadero 1, San Pedro del Pinatar, Murcia, Spain
| | - L H M L M Santos
- University of Girona, Girona, Spain; Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain
| | - D Barceló
- University of Girona, Girona, Spain; Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - S Rodríguez-Mozaz
- University of Girona, Girona, Spain; Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain
| |
Collapse
|
36
|
Hu S, Xu M, Cui Z, Xiao Y, Liu C, Liu R, Li X. Study on the binding of polystyrene microplastics with superoxide dismutase at the molecular level by multi-spectroscopy methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122511. [PMID: 36854229 DOI: 10.1016/j.saa.2023.122511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Microplastics are harmful pollutants that widely exist worldwide and pose a severe threat to all types of organisms. The effects of polystyrene microplastics (PS-MPs) on organisms have been extensively studied, but the interaction mechanism between PS-MPs and superoxide dismutase (SOD) at the molecular level has not been reported yet. Therefore, based on multiple spectroscopic methods and enzyme activity measurements, the molecular mechanism of the interaction between PS-MPs and SOD was investigated. The multispectral results showed that the protein skeleton and secondary structure of SOD were altered by PS-MPs, resulting in decreased α-helix and β-sheet content. After PS-MPs exposure, fluorescence sensitization occurred, and micelles were formed, along with the enhanced hydrophobicity of aromatic amino acids in SOD. Moreover, the resonance light scattering (RLS) spectra result suggested that the PS-MPs and SOD combined to form a larger complex. Eventually, the activity of SOD was increased due to these structural changes, and the concentration of PS-MPs is positively correlated with SOD activity. This study can provide experimental support for studying the toxicological effects of PS-MPs.
Collapse
Affiliation(s)
- Shuncheng Hu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Mengchen Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Zhaohao Cui
- Qingdao Ecological Environment Monitoring Center, Qingdao 266003, PR China
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| |
Collapse
|
37
|
Shang Z, Wang R, Zhang X, Tu Y, Sheng C, Yuan H, Wen L, Li Y, Zhang J, Wang X, Yang G, Feng Y, Ren G. Differential effects of petroleum-based and bio-based microplastics on anaerobic digestion: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162674. [PMID: 36894074 DOI: 10.1016/j.scitotenv.2023.162674] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The number of plastics is increasing owing to the rapid development of the plastics industry. Microplastics (MPs) are formed during the use of both petroleum-based plastics and newly developed bio-based plastics. These MPs are inevitably released into the environment and are enriched in wastewater treatment plant sludge. Anaerobic digestion is a popular sludge stabilization method for wastewater treatment plants. Understanding the potential impacts of different MPs on anaerobic digestion is critical. This paper provides a comprehensive review of the mechanisms of petroleum-based MPs and bio-based MPs in anaerobic digestion methane production and compares their potential effects on biochemical pathways, key enzyme activities, and microbial communities. Finally, it identifies problems that must be solved in the future, proposes the focus of future research, and predicts the future development direction of the plastics industry.
Collapse
Affiliation(s)
- Zezhou Shang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Rui Wang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Xiyi Zhang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Yongle Tu
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Chenjing Sheng
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Huan Yuan
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Lei Wen
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Yulu Li
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Jing Zhang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Xiaojiao Wang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China.
| | - Gaihe Yang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Yongzhong Feng
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| | - Guangxin Ren
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, China
| |
Collapse
|
38
|
Huang W, Wu T, Wu R, Peng J, Zhang Q, Shi X, Wu K. Fish to learn: insights into the effects of environmental chemicals on eye development and visual function in zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27629-3. [PMID: 37195602 DOI: 10.1007/s11356-023-27629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023]
Abstract
Vision is the most essential sense system for the human being. Congenital visual impairment affects millions of people globally. It is increasingly realized that visual system development is an impressionable target of environmental chemicals. However, due to inaccessibility and ethical issues, the use of humans and other placental mammals is constrained, which limits our better understanding of environmental factors on ocular development and visual function in the embryonic stage. Therefore, as complementing laboratory rodents, zebrafish has been the most frequently employed to understand the effects of environmental chemicals on eye development and visual function. One of the major reasons for the increasing use of zebrafish is their polychromatic vision. Zebrafish retinas are morphologically and functionally analogous to those of mammalian, as well as evolutionary conservation among vertebrate eye. This review provides an update on harmful effects from exposure to environmental chemicals, involving metallic elements (ions), metal-derived nanoparticles, microplastics, nanoplastics, persistent organic pollutants, pesticides, and pharmaceutical pollutants on the eye development and visual function in zebrafish embryos. The collected data provide a comprehensive understanding of environmental factors on ocular development and visual function. This report highlights that zebrafish is promising as a model to identify hazardous toxicants toward eye development and is hopeful for developing preventative or postnatal therapies for human congenital visual impairment.
Collapse
Affiliation(s)
- Wenlong Huang
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Tianjie Wu
- Department of Anaesthesiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515041, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiajun Peng
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China
| | - Qiong Zhang
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China
| | - Xiaoling Shi
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China
| | - Kusheng Wu
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China.
| |
Collapse
|
39
|
He F, Liu R. Mechanistic insights into phenanthrene-triggered oxidative stress-associated neurotoxicity, genotoxicity, and behavioral disturbances toward the brandling worm (Eisenia fetida) brain: The need for an ecotoxicological evaluation. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131072. [PMID: 36857826 DOI: 10.1016/j.jhazmat.2023.131072] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In this study, earthworm (Eisenia fetida) brain was chosen as targeted receptors to probe the mechanisms of oxidative stress-related neurotoxicity, genotoxicity, and behavioral disturbances triggered by PHE. Results showed that PHE stress can initiate significant amounts of ROS, thus triggering oxidative stress in E. fetida brain. These effects were accompanied by a significant increase of damage to macromolecules DNA and lipids, resulting in severe oxidative effects. PHE exposure can induce AChE inhibition by ROS-induced injury and the accumulation of excess ACh at the nicotinic post-synaptic membrane, thus inducing aggravated neurological dysfunction and neurotoxicity of E. fetida through an oxidative stress pathway. Moreover, the burrowing behavior of earthworms was disturbed by oxidative stress-induced neurotoxicity after exposure to PHE. Furthermore, the abnormal mRNA expression profiles of oxidative stress- and neurotoxicity-related genes in worm brain were induced by PHE stress. The IBR results suggested that E. fetida brain was suffered more serious damage caused by PHE under higher doses and long-term exposure. Taken together, PHE exposure can trigger oxidative stress-mediated neurotoxicity and genotoxicity in worm brain and behavioral disorder through ROS-induced damage. This study is of great significance to evaluate the harmful effects of PHE and its mechanisms on soil ecological health.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
40
|
Liao W, Zhu Z, Feng C, Yan Z, Hong Y, Liu D, Jin X. Toxicity mechanisms and bioavailability of copper to fish based on an adverse outcome pathway analysis. J Environ Sci (China) 2023; 127:495-507. [PMID: 36522080 DOI: 10.1016/j.jes.2022.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 06/17/2023]
Abstract
Copper (Cu) exists in a variety of forms in different aquatic environments, and affects their bioavailability. In this study we provide a systematic review on toxicity of Cu which focuses on identifying evidence in the mechanisms of Cu toxicity, and apply an adverse outcome pathway (AOP) analysis to identify multiple potential mechanisms and their interactions of Cu toxicity to fish. This analysis process included the mechanisms of behavior toxicant, oxidative toxicant, ion regulation disruption toxicity, as well as endocrine disruption toxicity. It was found that at low levels of Cu exposure, swimming, avoid predators, locating prey and other sensory functions will be impaired, and the organism will suffer from metabolic alkalosis and respiratory acidosis following the inhibition of the carbonic anhydrase active. The main pathway of acute toxicity of Cu to fish is the inhibition of the Na+/K+-ATPase enzyme, and lead to reduced intracellular sodium absorption, as well as Cu-induced increased cell permeability, in turn resulting in increased sodium ion loss, leading to cardiovascular collapse and respiratory insufficiency. The endocrine disruption toxicity of Cu to fish caused growth inhibition and reproductive reduction. In addition, there are several key pathways of Cu toxicity that are affected by hardness (e.g., Ca2+) and intracellular DOC concentrations, including inhibiting Cu-induction, improving branchial gas exchange, altering membrane transport functions, decreasing Na+ loss, and increasing Na+ uptake. The results of the AOP analysis will provide a robust framework for future directed research on the mechanisms of Cu toxicity.
Collapse
Affiliation(s)
- Wei Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Wetland Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China; Jiangxi Irrigation Experiment Central Station, Nanchang 330201, China
| | - Ziwei Zhu
- Wetland Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yajun Hong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Daqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| |
Collapse
|
41
|
Devi A, Hansa A, Gupta H, Syam K, Upadhyay M, Kaur M, Lajayer BA, Sharma R. Microplastics as an emerging menace to environment: Insights into their uptake, prevalence, fate, and sustainable solutions. ENVIRONMENTAL RESEARCH 2023; 229:115922. [PMID: 37086886 DOI: 10.1016/j.envres.2023.115922] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
The inflated demand for plastic products has led to tremendous rise in plastic debris in different environmental matrices, thereby resulting in plastic pollution. This affects plants, animals, and even humans, as microplastics can enter the food chain and cause several health implications. Microplastics are the small plastic particles (size below 5 mm) that are largely debated nowadays owing to their environmental risk assessment. Their potential to interact with other toxic contaminants, their tendency to be ingested or taken up by living organisms and their longevity is a serious threat to our environment. However, despite wealth of recent information, still there is a gap, particularly in eco-toxicology studies, fate, prevalence and feasible solutions to cope up with the menace of microplastics pollution. This review unravels the environmental fate and behaviour of microplastics as well as their global distribution in the marine and terrestrial environment. Furthermore, we aim to contribute to the international debate on the microplastics global paradigm. We briefly suggest sustainable solutions and recommendations to achieve future research goals on microplastics. Our review reveals some of the newest biological (green algae and modified sponges) and physical (nano-particles and membrane treatment) remediation solutions to eradicate microplastics from different types of environment. This review presents a critical evaluation of the state of knowledge of micro-plastics and suggested some recommendations which can help in identifying some important key questions for future research.
Collapse
Affiliation(s)
- Anjali Devi
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Abish Hansa
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Hitakshi Gupta
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Karri Syam
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Manyata Upadhyay
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India
| | - Mandeep Kaur
- Henan Key Laboratory of Earth System Observation and Modelling, Henan University, Kaifeng, 475004, China
| | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture University of Tabriz, Tabriz, Iran
| | - Ritika Sharma
- Department of Botany, Central University of Jammu, Samba, Jammu and Kashmir, India.
| |
Collapse
|
42
|
Herrala M, Huovinen M, Järvelä E, Hellman J, Tolonen P, Lahtela-Kakkonen M, Rysä J. Micro-sized polyethylene particles affect cell viability and oxidative stress responses in human colorectal adenocarcinoma Caco-2 and HT-29 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161512. [PMID: 36626990 DOI: 10.1016/j.scitotenv.2023.161512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Plastic is a widely utilized material and polyethylene is one of the most used plastic types. Microplastics are plastic particles (size <5 mm) which are primarily a micro-size range or results from degeneration of larger plastic pieces in the environment. Drinking water and food are two main human exposure sources for microplastics and consequently effects of microplastics in gastrointestinal tract are considered important. Still, only little is known how microplastics and plastic associated chemicals affect the human health. The aim of our study was to evaluate the ability of micro-sized polyethylene to cause harmful effects in human intestinal cells. Raw ultra-high molecular-weight polyethylene (size 5-60 μm) was used. In addition, polyethylene particles were extracted with ethanol to determine the effect of extraction process on toxicity of the particles. In the experiments, human colorectal adenocarcinoma Caco-2 and HT-29 cells were exposed to polyethylene (0.25-1.0 mg/ml) or extracts for 48 h. After exposure, cell viability and cytotoxicity were assessed with MTT and lactate dehydrogenase assay. Reactive oxygen species (ROS) production was measured with dichlorofluorescin diacetate and cytoplasmic production of superoxide with dihydroethidium and mitochondrial superoxide production with MitoSOX. The 48-h exposure to polyethylene decreased dose-dependently cell viability and increased oxidative stress, especially mitochondrial superoxide production, in both cell lines. Effects on ROS or cytosolic superoxide production were not observed. Also, exposure to extracts decreased cell viability and increased oxidative stress in cell cultures, but there were differences between cell lines. These effects were most probably caused by the remaining particles rather than the compounds released from the plastic during the extraction. In conclusion, our study shows that micro-sized polyethylene and ethanol-extracted polyethylene in high concentrations decreased cell viability and increased oxidative stress responses in intestinal cells. These results contribute to the existing evidence on potential adverse human health effects of microplastics.
Collapse
Affiliation(s)
- Mikko Herrala
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| | - Marjo Huovinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Essi Järvelä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Julia Hellman
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Pauliina Tolonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
43
|
Makhdoumi P, Hossini H, Pirsaheb M. A review of microplastic pollution in commercial fish for human consumption. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:97-109. [PMID: 34973052 DOI: 10.1515/reveh-2021-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Today microplastics (MPs) have received worldwide attention as an emerging environmental pollution which is one of the four major global environmental threat and health hazard to human as well. Unfortunately, MPs have been founded in the all environments and media include air, water resources, sediments, and soil. It should not be forgotten MPs have also been detected in food and processing products like tuna. MPs can be ingested by marine organisms such as zooplankton, fish and birds. Accumulation and distribution of MPs by commercially important aquatic organisms is expected to lead to greater exposure risk for human populations with possible adverse effects over time. The aim of this work was to review the published literature regarding the contamination of commercial fish muscle for human consumption. Furthermore, a short revision of the environmental contamination and human health effects by MPs are included. We also estimated human daily intake considering the worldwide contamination of commercial fish muscle ranged from 0.016 items/g muscle of fish to 6.06 items/g muscle of fish. MPs have been found in 56.5% of the commercial fish samples analysed here. As fish is used in human food table across the word, they constitute a long-term exposure route for all humans and raise the concern about the potential public health risk.
Collapse
Affiliation(s)
- Pouran Makhdoumi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hooshyar Hossini
- Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Meghdad Pirsaheb
- Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
44
|
Prata JC, Silva CJM, Serpa D, Soares AMVM, Gravato C, Patrício Silva AL. Mechanisms influencing the impact of microplastics on freshwater benthic invertebrates: Uptake dynamics and adverse effects on Chironomus riparius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160426. [PMID: 36427728 DOI: 10.1016/j.scitotenv.2022.160426] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Chironomids inhabit freshwater benthic ecosystems which are prone to microplastic contamination. This work aimed at understanding the factors and mechanisms influencing microplastic uptake and related adverse effects on Chironomus riparius, by exploring an extensive project database, conducting a literature review, and performing an agent-based model to explore trends in data. Results reveal that high concentrations of small microplastics fill the gut of fourth instar C. riparius (99.7 %). Ingested microplastics had an average size of 38-61 μm, presenting slower elimination rates than undigested organic or mineral particles. Ingestion rates of microplastics depend mainly on encounter rates, and therefore on available concentrations, until reaching a plateau corresponding to the maximum gut volume. Short-term toxicity of microplastics seems to result from damage to gut epithelium, with inflammatory reactions, production of reactive oxygen species, and a negative energy balance exacerbated by the lack of food (organic matter). Long-term toxicity is characterized by a reduction in larval body length and increase in mean time to emergence, seemly from increased energy costs rather than a decrease in nutrient absorption. Wild chironomids already present microplastics in their guts and environmental concentrations in hotspots may already exceed no effect concentrations. Therefore, environmental exposure to microplastics may induce adverse effects to wild C. riparius in freshwater benthic ecosystems, which could compromise their ecologic role as deposit-feeders (e.g., reducing their nutrient cycling ability) and key-stone species in aquatic food webs.
Collapse
Affiliation(s)
- Joana C Prata
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos J M Silva
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Dalila Serpa
- Centre for Environmental and Marine Studies (CESAM) & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Gravato
- Faculty of Sciences of the University of Lisbon & CESAM, Campo Grande, 1749-016 Lisbon, Portugal.
| | - Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
45
|
Junaid M, Liu S, Chen G, Liao H, Wang J. Transgenerational impacts of micro(nano)plastics in the aquatic and terrestrial environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130274. [PMID: 36327853 DOI: 10.1016/j.jhazmat.2022.130274] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Plastic particles of diameters ranging from 1 to 1000 nm and > 1 µm to 5 mm are respectively known as nanoplastics and microplastics, and are collectively termed micro(nano)plastics (MNPs). They are ubiquitously present in aquatic and terrestrial environments, posing adverse multifaceted ecological impacts. Recent transgenerational studies have demonstrated that MNPs negatively impact both the exposed parents and their unexposed generations. Therefore, this review summarizes the available research on the transgenerational impacts of MNPs in aquatic and terrestrial organisms, induced by exposure to MNPs alone or in combination with other organic and inorganic chemicals. The most commonly reported transgenerational effects of MNPs include tissue bioaccumulation and transfer, affecting organisms' survival, growth, reproduction, and energy metabolism; inducing oxidative stress; enzyme and genetic responses; and causing tissue damage. Similarly, co-exposure to MNPs and chemicals (organic and inorganic pollutants) significantly impacts survival, growth, and reproduction and induces oxidative stress, thyroid disruption, and genetic toxicity in organisms. The characteristics of MNPs (degree of aging, size, shape, polymer type, and concentration), exposure type and duration (parental exposure vs. multigenerational exposure and acute exposure vs. chronic exposure), and MNP-chemical interactions are the main factors affecting transgenerational impacts. Selecting MNP properties based on their realistic environmental behavior, employing more diverse animal models, and considering chronic exposure and MNP-chemical mixture exposure are salient research prospects for an in-depth understanding of the transgenerational impacts of MNPs.
Collapse
Affiliation(s)
- Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Guanglong Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
46
|
Jemec Kokalj A, Heinlaan M, Novak S, Drobne D, Kühnel D. Defining Quality Criteria for Nanoplastic Hazard Evaluation: The Case of Polystyrene Nanoplastics and Aquatic Invertebrate Daphnia spp. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:536. [PMID: 36770497 PMCID: PMC9919956 DOI: 10.3390/nano13030536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Polystyrene nanoparticles are the most investigated type of nanoplastics in environmental hazard studies. It remains unclear whether nanoplastic particles pose a hazard towards aquatic organisms. Thus, it was our aim to investigate whether the existing studies and data provided therein are reliable in terms of data completeness. We used the example of Daphnia spp. studies for the purpose of polystyrene nanoplastic (nanoPS) hazard evaluation. First, a set of quality criteria recently proposed for nanoplastic ecotoxicity studies was applied. These rather general criteria for all types of nanoplastics and different test organisms were then, in the second step, tailored and refined specifically for Daphnia spp. and nanoPS. Finally, a scoring system was established by setting mandatory (high importance) as well as desirable (medium importance) criteria and defining a threshold to pass the evaluation. Among the existing studies on nanoPS ecotoxicity for Daphnia spp. (n = 38), only 18% passed the evaluation for usability in hazard evaluation. The few studies that passed the evaluation did not allow for conclusions on the hazard potential of nanoPS because there was no consensus among the studies. The greatest challenge we identified is in data reporting, as only a few studies presented complete data for hazard evaluation.
Collapse
Affiliation(s)
- Anita Jemec Kokalj
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Margit Heinlaan
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Sara Novak
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Dana Kühnel
- Helmholtz Centre for Environmental Research—UFZ, Permoserstr. 15, 03418 Leipzig, Germany
| |
Collapse
|
47
|
Sun N, Shi H, Li X, Gao C, Liu R. Combined toxicity of micro/nanoplastics loaded with environmental pollutants to organisms and cells: Role, effects, and mechanism. ENVIRONMENT INTERNATIONAL 2023; 171:107711. [PMID: 36566717 DOI: 10.1016/j.envint.2022.107711] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Micro/nanoplastics (MPs/NPs) are ubiquitous in the environment and living organisms have been exposed to these substances for a long time. When MPs/NPs enter different organisms, they transport various pollutants, including heavy metals, persistent organic pollutants, drugs, bacteria, and viruses, from the environment. On this basis, this paper summarizes the combined toxicity induced by MPs/NPs accumulating contaminants from the environment and entering organisms through a systematic review of 162 articles. Moreover, the factors influencing toxic interactions are critically discussed, thus highlighting the dominant role of the relative concentrations of contaminants in the combined toxic effects. Furthermore, for the first time, we describe the threats posed by MPs/NPs combined with other pollutants to human health, as well as their cytotoxic behavior and mechanism. We found that the "Trojan horse" effect of nanoplastics can increase the bioaccessibility of environmental pollutants, thus increasing the carcinogenic risk to humans. Simultaneously, the complex pollutants entering the cells are observed to be constantly dissociated due to the transport of lysosomes. However, current research on the intracellular release of MP/NP-loaded pollutants is relatively poor, which hinders the accurate in vivo toxicity assessment of combined pollutants. Based on the findings of our critical review, we recommend analyzing the toxic effects by clarifying the dose relationship of each component pollutant in cells, which is challenging yet crucial to exploring the toxic mechanism of combined pollution. In the future, our findings can contribute to establishing a system modeling the complete load-translocation toxicological mechanism of MP/NP-based composite pollutants.
Collapse
Affiliation(s)
- Ning Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
48
|
Angnunavuri PN, Attiogbe F, Mensah B. Particulate plastics in drinking water and potential human health effects: Current knowledge for management of freshwater plastic materials in Africa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120714. [PMID: 36423889 DOI: 10.1016/j.envpol.2022.120714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Plastic materials have contributed to the release of environmentally relevant particulate plastics which can be found almost everywhere and may be present in drinking water. Human exposure to these materials is diverse and our understanding of their internalization in the human body is incipient. This review discusses the state of knowledge of particulate plastics exposure in drinking water and the potential risks of adverse health in the human body. Particulate plastics have problematized water systems worldwide, and about 4,000,000 fine plastics may be ingested from drinking water annually by an individual. Testing methods for these materials in environmental media are presently inconsistent and standard protocols do not exist. Their potential ecotoxicological consequences are recognised to be linked to their physicochemical diversity, biological transpositions, and cytological tolerance in living organisms. It is observed that toxicological endpoints are varied and lack properly defined modes of action. In particular, fine particulate plastics have been observed to translocate into body tissues and cells where they are capable of provoking endocrine disruption, genetic mutations, and cancer responses. We propose a reclassification of particulate plastics to cater for their biological deposition and attributable risks of adverse health. Environmental management of particulate plastics in many developing countries is weak and their potential releases into drinking water have received limited research. Given that large populations are exposed to fresh surface water and plastic packaged drinking water worldwide, and that the risk assessment pathways are unvalidated at the moment, we argue for developing countries to increase their capacity for the environmental monitoring and circular management of plastic materials. Large-scale epidemiological cohort studies and surrogate assessment pathways are also recommended to provide a better understanding of the hazard characterization of particulate plastics exposure.
Collapse
Affiliation(s)
- Prosper Naah Angnunavuri
- School of Engineering, Department of Civil and Environmental Engineering, University of Energy and Natural Resources, Sunyani, Ghana.
| | - Francis Attiogbe
- School of Engineering, Department of Civil and Environmental Engineering, University of Energy and Natural Resources, Sunyani, Ghana
| | - Bismark Mensah
- School of Engineering, Department of Materials Engineering, University of Ghana, Legon, Ghana
| |
Collapse
|
49
|
Ullah R, Tsui MTK, Chow A, Chen H, Williams C, Ligaba-Osena A. Micro(nano)plastic pollution in terrestrial ecosystem: emphasis on impacts of polystyrene on soil biota, plants, animals, and humans. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:252. [PMID: 36585967 DOI: 10.1007/s10661-022-10769-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Pollution with emerging microscopic contaminants such as microplastics (MPs) and nanoplastics (NPs) including polystyrene (PS) in aquatic and terrestrial environments is increasingly recognized. PS is largely used in packaging materials and is dumped directly into the ecosystem. PS micro-nano-plastics (MNPs) can be potentially bioaccumulated in the food chain and can cause human health concerns through food consumption. Earlier MP research has focused on the aquatic environments, but recent researches show significant MP and NP contamination in the terrestrial environments especially agricultural fields. Though PS is the hotspot of MPs research, however, to our knowledge, this systematic review represents the first of its kind that specifically focused on PS contamination in agricultural soils, covering sources, effects, and ways of PS mitigation. The paper also provides updated information on the effects of PS on soil organisms, its uptake by plants, and effects on higher animals as well as human beings. Directions for future research are also proposed to increase our understanding of the environmental contamination of PS in terrestrial environments.
Collapse
Affiliation(s)
- Raza Ullah
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27402, USA
| | - Martin Tsz-Ki Tsui
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27402, USA
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, New Territories, China
| | - Alex Chow
- Biogeochemistry & Environmental Quality Research Group, Clemson University, Clemson, SC, 29442, USA
- Dep. of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Huan Chen
- Biogeochemistry & Environmental Quality Research Group, Clemson University, Clemson, SC, 29442, USA
- Dep. of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Clinton Williams
- USDA-ARS, US Arid Land Agricultural Research Center, Cardon Ln, Maricopa, AZ, USA
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27402, USA.
| |
Collapse
|
50
|
Porcino N, Bottari T, Mancuso M. Is Wild Marine Biota Affected by Microplastics? Animals (Basel) 2022; 13:147. [PMID: 36611755 PMCID: PMC9817524 DOI: 10.3390/ani13010147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The present review provides detailed information on the adverse effects of MPs on wild marine organisms, including tissue damage, fish condition, oxidative stress, immune toxicity, and genotoxicity. A bibliometric analysis was carried out on CiteSpace (version 6.1.R3) (Drexel University, Philadelphia, PA, USA) to verify how many papers studied the effects on wild marine species. The results showed a total of 395 articles, but only 22 really presented data on the effects or impacts on marine biota, and of these, only 12 articles highlighted negative effects. This review shows that the observed effects in wild organisms were less severe and milder than those found in the experimental conditions. The knowledge of negative effects caused by direct ingestion of microplastics in wild animals is still limited; more efforts are necessary to fully understand the role of MPs and the adverse effects on wild marine organisms, the ecosystem, and human health.
Collapse
Affiliation(s)
- Nunziatina Porcino
- Institute for Marine Biological Resources and Biotechnology (IRBIM)—CNR, 98122 Messina, Italy
| | - Teresa Bottari
- Institute for Marine Biological Resources and Biotechnology (IRBIM)—CNR, 98122 Messina, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica “Anton Dohrn”, Sicily Marine Centre, 98167 Messina, Italy
| | - Monique Mancuso
- Institute for Marine Biological Resources and Biotechnology (IRBIM)—CNR, 98122 Messina, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica “Anton Dohrn”, Sicily Marine Centre, 98167 Messina, Italy
| |
Collapse
|