1
|
Vergara-Luis I, Rutkoski CF, Urionabarrenetxea E, Almeida EA, Anakabe E, Olivares M, Soto M, Prieto A. Assessment of sulfamethoxazole and oxytetracycline uptake and transformation in Eisenia fetida earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176397. [PMID: 39304161 DOI: 10.1016/j.scitotenv.2024.176397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The scientific community is becoming increasingly concerned about the recent detection of transformation products (TPs) of antimicrobials (AMs) and their presence in the food chain. There are growing concerns about the potential consequences on food safety and the proliferation of antimicrobial resistance. In this work, the transformation process of sulfamethoxazole (SMX) and oxytetracycline (OTC) in soil was thoroughly evaluated. For that purpose, soils were homogeneously contaminated at three concentration levels of SMX and OTC, independently, and samples were analysed after 7 and 14 days by Ultra High-Performance Liquid Chromatography coupled to a triple quadrupole mass spectrometer (UHPLC-MS/MS). The results have demonstrated a remarkable transformation, particularly noteworthy for SMX, as it exhibited an 89 % - 94 % decrease in concentration within the initial 7 days of the experiment. In addition, to assess whether terrestrial organisms would be able to accumulate the AMs, Eisenia fetida (E. fetida) earthworms were exposed to the above-mentioned concentration levels of AMs in soil. Both AMs were accumulated in the organisms after 14 days, but higher bioaccumulation factor values (BCF) were determined for SMX (0.52-17.84) compared to OTC (0.02-0.21) at all tested concentrations. The analyses were extended to search for TPs in earthworms and soils using a suspect screening approach. Concretely, by means of UHPLC-high resolution mass spectrometry (UHPLC-HRMS) three TPs were identified at 2a and 2b of confidence level. To the best of our knowledge, one SMX-TP and one OTC-TP were identified in earthworms and soil, respectively, for the first time in the present work. Earthworms did not experience weight loss or mortality in the presence of these AMs at levels found in the environment, but there was a decrease in riboflavin levels, which is linked to changes in the immune system. This study represents a significant advancement in understanding the impact of AMs in soil and their subsequent entry into the food chain. It also provides valuable insights into the potential effects of AMs and their TPs on organisms.
Collapse
Affiliation(s)
- I Vergara-Luis
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - C F Rutkoski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| | - E Urionabarrenetxea
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - E A Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil; Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil
| | - E Anakabe
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - M Soto
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - A Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| |
Collapse
|
2
|
Aouaichia K, Grara N, Bazri KE, Barbieri E, Mamine N, Hemmami H, Capaldo A, Rosati L, Bellucci S. Morphophysiological and Histopathological Effects of Ammonium Sulfate Fertilizer on Aporrectodea trapezoides (Dugès, 1828) Earthworm. Life (Basel) 2024; 14:1209. [PMID: 39337991 PMCID: PMC11433119 DOI: 10.3390/life14091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The present study used the adult earthworm Aporrectodea trapezoides as a bioindicator species to look into the possible dangers of ammonium sulfate (AS) fertilizer. Two complementary toxicity tests were conducted to determine the LC50values, growth rate inhibition, morphological alterations, and histopathological texture of worms. The lethality test included four increasing concentrations of AS fertilizer (ranging from 2500 to 7500 mg/kg of dry soil weight (d.w.)), while sub-lethal concentrations were based on 10%, 30%, 40%, and 50% of the 14-day median lethal concentration (LC50), with a control group included for both tests. The LC(50) values for AS fertilizer were significantly higher at 7 days (4831.13 mg/kg d.w.) than at 14 days (2698.67 mg/kg d.w.) of exposure. Notably, earthworms exhibited significant growth rate inhibition under exposure to various concentrations and time durations (14/28 exposure days). Morphological alterations such as clitellar swelling, bloody lesions, whole body coiling and constriction, body strangulation, and fragmentation were accentuated steadily, with higher concentrations. Histopathological manifestations included severe injuries to the circular and longitudinal muscular layers, vacuolation, muscle layer atrophy, degradation of the chloragogenous tissue in the intestine, collapsed digestive epithelium of the pharynx with weak reserve inclusion, and fibrosis of blood vessels. These effects were primarily influenced by increasing concentrations of fertilizer and time exposure. The study highlights the strong relationship between concentration and exposure time responses and underscores the potential of A. trapezoides earthworms as valuable biological control agents against acidic ammonium sulfate fertilizer. Importantly, this research contributes to the use of such biomarkers in evaluating soil toxicity and the biological control of environmental risk assessment associated with chemical fertilizers.
Collapse
Affiliation(s)
- Khaoula Aouaichia
- Laboratory Sciences and Technical Water and Environment, Department of Biology, Faculty of Natural Sciences and Life, Mohamed Cherif Messaadia University, P.O. Box 1553, Souk Ahras 41000, Algeria;
| | - Nedjoud Grara
- Department of Biology, Faculty of Natural and Life Sciences and Earth and Universe Sciences, University of 8 Mai 1945 Guelma, P.O. Box 401, Guelma 24000, Algeria
| | - Kamel Eddine Bazri
- Laboratory of Ecology, Department of Plant Biology and Ecology, University Constantine 1, Constantine 25017, Algeria;
| | - Edison Barbieri
- Instituto de Pesca, Governo do Estado de São Paulo, São Paulo 01027-000, Brazil;
| | - Nedjma Mamine
- Laboratory of Aquatic and Terrestrial Ecosystems, Department of Biology, Faculty of Natural Sciences and Life, Mohamed Cherif Messaadia University, P.O. Box 1553, Souk Ahras 41000, Algeria;
| | - Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria;
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Anna Capaldo
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy; (A.C.); (L.R.)
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy; (A.C.); (L.R.)
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy;
| |
Collapse
|
3
|
Yan W, Zheng Q, Zhu S, Miao X, Yang L, Wu J, Wang B, Zhang Z, Xu H. Coating of maize seeds with acephate for precision agriculture: Safety assessment in earthworms, bees, and soil microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173761. [PMID: 38851355 DOI: 10.1016/j.scitotenv.2024.173761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/27/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Acephate is commonly used as a seed treatment (ST) in precision agriculture, but its impact on pollinators, earthworms, and soil microorganisms remains unclear. This study aimed to compare the fate of acephate seed dressing (SD) and seed coating (SC) treatments and assess potential risks to bees, earthworms, and soil microorganisms. Additionally, a follow-up study on maize seeds treated with acephate in a greenhouse was conducted to evaluate the maize growth process and the dissipation dynamics of the insecticide. The results indicated that acephate SC led to greater uptake and translocation in maize plants, resulting in lower residue levels in the soil. However, high concentrations of acephate metabolites in the soil had a negative impact on the body weight of earthworms, whereas acephate itself did not. The potential risk to bees from exposure to acephate ST was determined to be low, but dose-dependent effects were observed. Furthermore, acephate ST had no significant effect on soil bacterial community diversity and abundance compared to a control. This study provides valuable insights into the uptake and translocation of acephate SD and SC, and indicates that SC is safer than SD in terms of adverse effects on bees and nontarget soil organisms.
Collapse
Affiliation(s)
- Wenjuan Yan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Qun Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Shiqi Zhu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Xiaoran Miao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Liupeng Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Botong Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China.
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
4
|
Martin WJ, Sibley PK, Prosser RS. Effect of Insecticide Exposure Across Multiple Generations of the Earthworm Eisenia andrei. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2058-2070. [PMID: 38980316 DOI: 10.1002/etc.5948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
The toxicity of neonicotinoids and many of their replacement insecticides to nontarget soil invertebrates such as earthworms has previously been established. However, the long-term effects of these substances on these organisms are largely unknown. In the field of soil ecotoxicology, lumbricid earthworms such as Eisenia andrei are used extensively due to the availability of standardized test methods and their adaptability to laboratory culture and testing. Multigenerational studies have gained popularity and attention in recent years, with a shift toward the use of long-term assays and lower concentrations of test chemicals. The use of exposure concentrations that include those measured in a monitoring program carried out by the Government of Ontario presents a realistic exposure scenario that may not show significant effects in contemporary, shorter term studies. We used current standardized test methods as a basis for the development of multigenerational studies on E. andrei. The effects of exposure to a single application of the insecticides thiamethoxam and cyantraniliprole on the survival and reproduction of E. andrei were observed over three (thiamethoxam) or two (cyantraniliprole) generations using consecutive reproduction tests. No significant impacts on adult survival were reported in any generation for either insecticide, whereas reproduction decreased between the first and second generations in the thiamethoxam test, with median effective concentration (EC50) values of 0.022 mg/kg dry weight reported for the first generation compared with 0.002 mg/kg dry weight in the second generation. For cyantraniliprole, an EC50 of 0.064 was determined for the first generation compared with 0.016 mg/kg dry weight in the second generation. A third generation was completed for the thiamethoxam test, and a significant decrease in reproduction was observed in all treatments and controls compared with previous generations. No significant difference between thiamethoxam treatments and the control treatment was reported for the third generation. Collectively, these data indicate that exposure of oligochaetes to these two insecticides at concentrations representative of field conditions may result in long-term stresses. Environ Toxicol Chem 2024;43:2058-2070. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- William J Martin
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
5
|
Liu X, Qi R, Li F, Han M, Li B, Sun H. The development of silk glands and transcriptome aberration induced by cyantraniliprole in Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106111. [PMID: 39277412 DOI: 10.1016/j.pestbp.2024.106111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Bombyx mori is an insect species of great economic importance, and its silk gland is a vital organ for the synthesis and secretion of silk protein. However, long-term artificial domestication of B. mori has resulted in high sensitivity to chemical toxins, especially insecticides. Cyantraniliprole (Cya), a second-generation ryanodine receptor modulator insecticide, is widely utilized in agriculture for pest control. In this study, the impact of Cya toxicity on the development of silk glands in the 5th instar larvae of B. mori was assessed using Cya LC5, LC10 and LC20, as well as a starvation treatment group for comparison. Short-term exposure (24 h) to different concentrations of Cya resulted in delayed development of silk glands in B. mori. Meanwhile, the body weight, silk gland weight, silk gland index and cocoon quality were significantly reduced in a concentration-dependent manner, except for the Cya LC5 treatment. Histopathological and ultrastructural analysis revealed that Cya LC10 induced disruption of the nuclear membrane and endoplasmic reticulum in the posterior silk gland (PSG) cells, leading to the formation of intracellular vacuoles. Transcriptome sequencing of PSGs identified 2152 genes that were differentially expressed after exposure to Cya LC10, with 1153 down-regulated genes and 999 up-regulated genes. All differentially expressed genes were subjected to functional annotation using gene ontology and Kyoto encyclopedia of genes and genomes database, and it was found that protein synthesis-related pathways were significantly enriched, with the majority of genes being down-regulated. Furthermore, the transcription levels of genes involved in "protein processing in endoplasmic reticulum", "protein export", "proteasome" and "DNA replication" were quantified using qRT-PCR. Our findings suggested that short-term exposure to Cya LC10 resulted in disruption of DNA replication, as well as protein transport, processing and hydrolysis in the PSG cells of B. mori. The results of this study provide a theoretical foundation for the safe utilization of Cya in sericulture production.
Collapse
Affiliation(s)
- Xiaohan Liu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Ruinan Qi
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fanchi Li
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Minjin Han
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, PR China
| | - Bing Li
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Haina Sun
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
6
|
Wang M, Guo Z, Du J, Lu H, Liu L, Wang T, Pan S. Assessing the hepatotoxicity of phosphogypsum leachate in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172018. [PMID: 38547988 DOI: 10.1016/j.scitotenv.2024.172018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
The improper disposal of large amounts of phosphogypsum generated during the production process of the phosphorus chemical industry (PCI) still exists. The leachate formed by phosphogypsum stockpiles could pose a threat to the ecological environment and human health. Nevertheless, information regarding the harmful effects of phosphogypsum leachate on organisms is still limited. Herein, the physicochemical characteristics of phosphogypsum leachate were analyzed, and its toxicity effect on zebrafish (Danio rerio), particularly in terms of hepatotoxicity and potential mechanisms, were evaluated. The results indicated that P, NH3-N, TN, F-, As, Cd, Cr, Co, Ni, Zn, Mn, and Hg of phosphogypsum leachate exceeded the V class of surface water environmental quality standards (GB 3838-2002) to varying degrees. Acute toxicity test showed that the 96 h LC50 values of phosphogypsum leachate to zebrafish was 2.08 %. Under exposure to phosphogypsum leachate, zebrafish exhibited concentration-dependent liver damage, characterized by vacuolization and infiltration of inflammatory cells. The increased in Malondialdehyde (MDA) content and altered activities of antioxidant enzymes in the liver indicated the induction of oxidative stress and oxidative damage. The expression of apoptosis-related genes (P53, PUMA, Caspase3, Bcl-2, and Bax) were up-regulated at low dosage group and down-regulated at medium and high dosage groups, suggesting the occurrence of hepatocyte apoptosis or necrosis. Additionally, phosphogypsum leachate influenced the composition of the zebrafish gut microbiota by reducing the relative abundance of Bacteroidota, Aeromonas, Flavobacterium, Vibrio, and increasing that of Rhodobacter and Pirellula. Correlation analysis revealed that gut microbiota dysbiosis was associated with phosphogypsum leachate-induced hepatotoxicity. Altogether, exposure to phosphogypsum leachate caused liver damage in zebrafish, likely through oxidative stress and apoptosis, with the intestinal flora also playing a significant role. These findings contribute to understanding the ecological toxicity of phosphogypsum leachate and promote the sustainable development of PCI.
Collapse
Affiliation(s)
- Min Wang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, Guizhou 561113, China
| | - Ziyu Guo
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, Guizhou 561113, China
| | - Jiangfeng Du
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, Guizhou 561113, China
| | - Hongliang Lu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, Guizhou 561113, China
| | - Long Liu
- School of Basic Medicine, Guizhou Medical University, Guian New Area, Guizhou 561113, China; Key Laboratory of Microbiology and Parasitology of Institution of Higher Learning of Guizhou, Guian New Area, Guizhou 561113, China
| | - Tao Wang
- School of Basic Medicine, Guizhou Medical University, Guian New Area, Guizhou 561113, China; Key Laboratory of Microbiology and Parasitology of Institution of Higher Learning of Guizhou, Guian New Area, Guizhou 561113, China
| | - Sha Pan
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, Guizhou 561113, China.
| |
Collapse
|
7
|
Vergara-Luis I, Rutkoski CF, Urionabarrenetxea E, Almeida EA, Anakabe E, Olivares M, Soto M, Prieto A. Antimicrobials in Eisenia fetida earthworms: A comprehensive study from method development to the assessment of uptake and degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171214. [PMID: 38408672 DOI: 10.1016/j.scitotenv.2024.171214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
In this work, an accurate analytical method was developed for the simultaneous analysis of twenty-seven antimicrobials (AMs) in earthworms using liquid chromatography coupled to a triple quadrupole mass spectrometry detector (UHPLC-MS/MS). Adequate apparent recoveries (80-120 %) and limits of quantification (LOQ) (1 μg·kg-1 - 10 μg·kg-1) were obtained, with the exception of norfloxacin (34 μg·kg-1). The method was applied to evaluate the accumulation of sulfamethazine (SMZ) and tetracycline (TC) in earthworms after performing OECD-207 toxicity test, in which Eisenia fetida (E. fetida) organisms were exposed to soils spiked with 10 mg·kg-1, 100 mg·kg-1 or 1000 mg·kg-1 of SMZ and TC, individually. The results confirmed the bioaccumulation of both AMs in the organisms, showing a greater tendency to accumulate SMZ since higher bioconcentration factor values were obtained for this compound at the exposure concentrations tested. In addition, the degradation of both AMs in both matrices, soils and earthworms was studied using liquid chromatography coupled to a q-Orbitrap high resolution mass spectrometry detector. Thirteen transformation products (TPs) were successfully identified, eight of them being identified for the first time in soil/earthworm (such as 4-Amino-3-chloro-n-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide or 4-(dimethylamino)-1,11,12a-trihydroxy-6,6-dimethyl-3,7,10,12-tetraoxo-3,4,4a,5,5a,6,7,10,12,12a-decahydrotetracene-2-carboxamide, among others) and their formation/degradation trend over time was also studied. Regarding the biological effects, only SMZ caused changes in earthworm growth, evidenced by weight loss in earthworms exposed to concentrations of 100 mg·kg-1 and 1000 mg·kg-1. Riboflavin decreased at all concentrations of SMZ, as well as at the highest concentration of TC. This indicates that these antibiotics can potentially alter the immune system of E. fetida. This research represents a significant advance in improving our knowledge about the contamination of soil by AM over time. It investigates the various ways in which earthworms are exposed to AMs, either by skin contact or ingestion. Furthermore, it explores how these substances accumulate in earthworms, the processes by which earthworms break them down or metabolise them, as well as the resulting TPs. Finally, it examines the potential effects of these substances on the environment.
Collapse
Affiliation(s)
- I Vergara-Luis
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - C F Rutkoski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| | - E Urionabarrenetxea
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - E A Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil; Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil
| | - E Anakabe
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - M Soto
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - A Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| |
Collapse
|
8
|
Yin T, Zhang J, Liu C, Xue Y, Liu Z, Liu S, Guo L, Wang J, Xia X. Environmental-related doses of afidopyropen induced toxicity effects in earthworms (Eisenia fetida). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116223. [PMID: 38493704 DOI: 10.1016/j.ecoenv.2024.116223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Afidopyropen has high activity against pests. However, it poses potential risks to the soil ecology after entering the environment. The toxicity of afidopyropen to earthworms (Eisenia fetida) was studied for the first time in this study. The results showed that afidopyropen had low level of acute toxicity to E. fetida. Under the stimulation of chronic toxicity, the increase of reactive oxygen species (ROS) level activated the antioxidant and detoxification system, which led to the increase of superoxide dismutase (SOD) and glutathione S-transferase (GST) activities. Lipid peroxidation and DNA damage were characterized by the increase of malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) contents. Meanwhile, the functional genes SOD, CAT, GST, heat shock protein 70 (HSP70), transcriptionally controlled tumor protein (TCTP), and annetocin (ANN) played a synergistic role in antioxidant defense. However, the comprehensive toxicity of high concentration still increased on the 28th day. In addition, strong histopathological damage in the body wall and intestine was observed, accompanied by weight loss, which indicated that afidopyropen inhibited the growth of E. fetida. The molecular docking revealed that afidopyrene combined with the surface structure of SOD and GST proteins, which made SOD and GST become sensitive biomarkers reflecting the toxicity of afidopyropen to E. fetida. Summing up, afidopyropen destroys the homeostasis of E. fetida through chronic toxic. These results provide theoretical data for evaluating the environmental risk of afidopyropen to soil ecosystem.
Collapse
Affiliation(s)
- Tao Yin
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Jingru Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Chang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Yannan Xue
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Zhenlong Liu
- Weifang Vocational College, Weifang 262737, PR China.
| | - Shuang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Longzhi Guo
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Xiaoming Xia
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China; Shandong Province Higher Education Provincial Key Pesticide Toxicology and Application Technology Laboratory, Tai'an 271018, PR China.
| |
Collapse
|
9
|
Wen S, Wang Y, Wang X, Liu C, Xue Y, Liu C, Wang J, Xia X. Fluopicolide-Induced Oxidative Stress and DNA Damage in the Earthworm Eisenia foetida. TOXICS 2023; 11:808. [PMID: 37888659 PMCID: PMC10610927 DOI: 10.3390/toxics11100808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Fluopicolide is a new benzamide fungicide with a unique mechanism of action and is toxic to some non-target organisms. However, there is a lack of research on the chronic toxicity of fluopicolide to earthworms. In this study, in order to evaluate the chronic toxicity of fluopicolide to earthworms, the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST), and DNA oxidative damage (8-hyoxy-2-deoxyguanosine content) in earthworms were measured at 7, 14, 21, and 28 days after exposure to different concentrations (0, 0.1, 0.5, 1, 2.5, 5, and 10 mg/kg) of fluopicolide. In most treatment groups, the ROS levels increased significantly 7 days after exposure and then decreased gradually with an increase in exposure time, a certain dose-effect relationship. The antioxidant enzymes' activities (SOD and CAT) in most treatment groups were activated, showing an increasing trend at first and then a decreasing trend; however, the CAT activity in the high-concentration treatment group was inhibited 21 days after exposure. The GST activity and MDA content showed an increasing trend at first and then a decreasing trend, which was dependent on the dose. As a biomarker of DNA damage, the 8-OHdG content was positively correlated with the concentration of fluopicolide. The results showed that a low dose of fluopicolide could cause oxidative stress and DNA damage in earthworms.
Collapse
Affiliation(s)
- Shengfang Wen
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (S.W.); (Y.W.); (X.W.); (C.L.); (Y.X.); (C.L.)
- College of Resources and Environment, Shandong Agricultural University, Tai’an 271018, China;
| | - Youwei Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (S.W.); (Y.W.); (X.W.); (C.L.); (Y.X.); (C.L.)
| | - Xueting Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (S.W.); (Y.W.); (X.W.); (C.L.); (Y.X.); (C.L.)
| | - Chang Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (S.W.); (Y.W.); (X.W.); (C.L.); (Y.X.); (C.L.)
| | - Yannan Xue
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (S.W.); (Y.W.); (X.W.); (C.L.); (Y.X.); (C.L.)
| | - Chao Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (S.W.); (Y.W.); (X.W.); (C.L.); (Y.X.); (C.L.)
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Tai’an 271018, China;
| | - Xiaoming Xia
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (S.W.); (Y.W.); (X.W.); (C.L.); (Y.X.); (C.L.)
| |
Collapse
|
10
|
Kumar V, Sharma N, Sharma P, Pasrija R, Kaur K, Umesh M, Thazeem B. Toxicity analysis of endocrine disrupting pesticides on non-target organisms: A critical analysis on toxicity mechanisms. Toxicol Appl Pharmacol 2023; 474:116623. [PMID: 37414290 DOI: 10.1016/j.taap.2023.116623] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Endocrine disrupting compounds are the chemicals which mimics the natural endocrine hormones and bind to the receptors made for the hormones. Upon binding they activate the cascade of reaction which leads to permanent activating of the signalling cycle and ultimately leads to uncontrolled growth. Pesticides are one of the endocrine disrupting chemicals which cause cancer, congenital birth defects, and reproductive defects in non-target organisms. Non-target organisms are keen on exposing to these pesticides. Although several studies have reported about the pesticide toxicity. But a critical analysis of pesticide toxicity and its role as endocrine disruptor is lacking. Therefore, the presented review literature is an endeavour to understand the role of the pesticides as endocrine disruptors. In addition, it discusses about the endocrine disruption, neurological disruption, genotoxicity, and ROS induced pesticide toxicity. Moreover, biochemical mechanisms of pesticide toxicity on non-target organisms have been presented. An insight on the chlorpyrifos toxicity on non-target organisms along with species names have been presented.
Collapse
Affiliation(s)
- Vinay Kumar
- Bioconversion and Tissue Engineering Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam-602105, India.
| | - Neha Sharma
- Metagenomics and Bioprocess Design Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Komalpreet Kaur
- Punjab Agricultural University, Institute of Agriculture, Gurdaspur 143521, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560029, Karnataka, India
| | - Basheer Thazeem
- Waste Management Division, Integrated Rural Technology Centre (IRTC), Palakkad 678592, Kerala, India
| |
Collapse
|
11
|
Chen Q, Sun S, Yang X, Yan H, Wang K, Ba X, Wang H. Sublethal Effects of Neonicotinoid Insecticides on the Development, Body Weight and Economic Characteristics of Silkworm. TOXICS 2023; 11:toxics11050402. [PMID: 37235217 DOI: 10.3390/toxics11050402] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Silkworm Bombyx mori (L.) (Lepidoptera: Bombycidae) is a critical insect for silk producers, but the inappropriate application of insecticides negatively affects the physiology and behavior of silkworms. This study found that the effects of neonicotinoid insecticides applied using two spraying methods on the growth and development of silkworms were different: the median lethal concentration (LC50) values of two pesticides applied using the leaf-dipping method were 0.33 and 0.83 mg L-1 and those of two pesticides applied using the quantitative spraying method were 0.91 and 1.23 mg kg-1. The concentration of pesticides on the mulberry leaves did not decrease after their application using the quantitative spraying method, and a uniform spraying density was observed after the mulberry leaves were air-dried (no liquid) under realistic conditions. We then treated silkworms with the quantitative spraying method and leaf-dipping method. The treatment of silkworm larvae with imidacloprid and thiamethoxam at sublethal concentrations significantly prolonged the development time and significantly decreased the weight and pupation rate, as well as economic indicators of enamel layers and sputum production. Thiamethoxam treatment significantly increased the activities of carboxylesterase (CarE) and glutathione-S-transferase (GST). The activity of CarE and GST increased, decreased, and then increased, and the highest activity was detected on the 10th and 12th days. Thiamethoxam exposure significantly elevated the transcription levels of CarE-11, GSTe3 and GSTz2 and induced DNA damage in hemocytes. This study confirmed that the quantitative spray method is more stable than the leaf-dipping method. Moreover, imidacloprid and thiamethoxam treatment affected the economy and indexes of silkworms and induced changes in detoxification enzymes and DNA damage in silkworms. These results provide a basis for understanding the mechanism of the sublethal effects of insecticides on silkworms.
Collapse
Affiliation(s)
- Qiqi Chen
- Department of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Shoumin Sun
- Department of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Xiu Yang
- Department of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Haohao Yan
- Department of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Kaiyun Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Xiucheng Ba
- Agricultural Technology Extension Center of Binzhou, Binzhou 256600, China
| | - Hongyan Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
12
|
Xia R, Sun M, Balcázar JL, Yu P, Hu F, Alvarez PJJ. Benzo[a]pyrene stress impacts adaptive strategies and ecological functions of earthworm intestinal viromes. THE ISME JOURNAL 2023:10.1038/s41396-023-01408-x. [PMID: 37069233 DOI: 10.1038/s41396-023-01408-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The earthworm gut virome influences the structure and function of the gut microbiome, which in turn influences worm health and ecological functions. However, despite its ecological and soil quality implications, it remains elusive how earthworm intestinal phages respond to different environmental stress, such as soil pollution. Here we used metagenomics and metatranscriptomics to investigate interactions between the worm intestinal phages and their bacteria under different benzo[a]pyrene (BaP) concentrations. Low-level BaP (0.1 mg kg-1) stress stimulated microbial metabolism (1.74-fold to control), and enhanced the antiphage defense system (n = 75) against infection (8 phage-host pairs). Low-level BaP exposure resulted in the highest proportion of lysogenic phages (88%), and prophages expressed auxiliary metabolic genes (AMGs) associated with nutrient transformation (e.g., amino acid metabolism). In contrast, high-level BaP exposure (200 mg kg-1) disrupted microbial metabolism and suppressed the antiphage systems (n = 29), leading to the increase in phage-bacterium association (37 phage-host pairs) and conversion of lysogenic to lytic phages (lysogenic ratio declined to 43%). Despite fluctuating phage-bacterium interactions, phage-encoded AMGs related to microbial antioxidant and pollutant degradation were enriched, apparently to alleviate pollution stress. Overall, these findings expand our knowledge of complex phage-bacterium interactions in pollution-stressed worm guts, and deepen our understanding of the ecological and evolutionary roles of phages.
Collapse
Affiliation(s)
- Rong Xia
- Soil Ecology Lab, Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization and Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing, 210095, China
| | - Mingming Sun
- Soil Ecology Lab, Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization and Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing, 210095, China.
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), 17003, Girona, Spain
- University of Girona, 17004, Girona, Spain
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310085, China.
| | - Feng Hu
- Soil Ecology Lab, Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization and Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing, 210095, China
| | - Pedro J J Alvarez
- Civil and Environmental Engineering Department, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
13
|
Wagh MS, Sivarajan S, Osborne WJ. A new paradigm in the bioremoval of lead, nickel, and cadmium using a cocktail of biosystems: a metagenomic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58967-58985. [PMID: 37002522 DOI: 10.1007/s11356-023-26705-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/25/2023] [Indexed: 05/10/2023]
Abstract
Lead (Pb), nickel (Ni), and cadmium (Cd) are known for its harmful effects on the environment. Microbial community related to soil plays a pivotal role in configuring several properties of the ecosystem. Thus, remediation of such heavy metals using multiple biosystems had shown excellent bioremoval potential. The current study demonstrates the integrated approach of Chrysopogon zizanioides in combination with earthworm Eisenia fetida augmented with VITMSJ3 potent strain for the uptake of metals like Pb, Ni, and Cd from the contaminated soil. For the uptake of heavy metals, Pb, Ni, and Cd with the concentrations of 50, 100, and 150 mg kg-1 were supplemented in pots with plants and earthworms. C. zizanioides was used for bioremoval due to their massive fibrous root system which can absorb heavy metals. A substantial increase of 70-80% Pb, Ni, and Cd was found for VITMSJ3 augmented setup. A total of 12 earthworms were introduced in each setup and were tested for the toxicity and damages in the various internal structures. Reduction in malondialdehyde (MDA) content was observed in the earthworms with VITMSJ3 strain proving less toxicity and damages. Metagenomic analysis of the soil associated bacterial diversity was assessed by amplifying the V3V4 region of the 16S rRNA gene and the annotations were studied. Firmicutes were found to be the predominant genus with 56.65% abundance in the bioaugmented soil R (60) proving the detoxification of metals in the bioaugmented soil. Our study proved that a synergistic effect of plant and earthworm in association with potent bacterial strain had higher uptake of Pb, Ni, and Cd. Metagenomic analysis revealed the changes in microbial abundance in the soil before and after treatment.
Collapse
Affiliation(s)
- Mrunal Subhash Wagh
- Biomolecules Laboratory, School of Biosciences and Technology, Vellore Institute of Technology-Vellore, Tamil, Nadu-632014, India
| | - Saravanan Sivarajan
- GIS and Remote Sensing Laboratory, VIT- School of Agricultural Innovation and Learning, Vellore Institute of Technology-Vellore, Tamil, Nadu-632014, India
| | - William Jabez Osborne
- Biomolecules Laboratory, School of Biosciences and Technology, Vellore Institute of Technology-Vellore, Tamil, Nadu-632014, India.
| |
Collapse
|
14
|
Xue Y, Li Z, Liu C, Liu D, Wang J, Liu C, Xia X. Effect of different exposure times and doses of cyantraniliprole on oxidative stress and genotoxicity in earthworms (Eisenia fetida). CHEMOSPHERE 2023; 319:138023. [PMID: 36731673 DOI: 10.1016/j.chemosphere.2023.138023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Cyantraniliprole, the second generation of diamide insecticides, is widely used to control various pests, which will certainly result in adverse effects on earthworms in soil. In this study, after exposure with six doses of cyantraniliprole (0, 0.5, 1, 2.5, 5, and 10 mg kg-1) by artificial soil method, six biomarkers, four functional genes, and histopathological changes of Eisenia fetida were measured on the 7th, 14th, 21st, and 28th days. The comprehensive toxicity was assessed by the IBR version 2 (IBRv2) method. The results showed that the reactive oxygen species (ROS) level was induced significantly. The superoxide dismutase (SOD) activity was activated in 7-28 days. The catalase (CAT) and glutathione S-transferases (GST) activities were also activated in the initial 14 days. The 8-hydroxy-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) contents in the high treatment increased until the late stage of exposure. On the 28th day, the metallothionein (MT) and calreticulin (CRT) genes were up-regulated, the transcriptionally controlled tumor protein (TCTP) gene was down-regulated. The SOD gene showed a good correlation with SOD activity. Extensive histopathological damage was found in the endoderm and ectoderm of E. fetida. The 5 and 10 mg kg-1 treatments showed higher comprehensive toxicity than the 0.5, 1, and 2.5 mg kg-1 treatments on the 28th day. These results suggest that cyantraniliprole exerted certain subchronic toxic effects of oxidative stress, DNA damage, and histopathological changes to E. fetida, which provided theoretical basis for rational use of cyantraniliprole and evaluation of its safety to soil environment.
Collapse
Affiliation(s)
- Yannan Xue
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Zhaoge Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Chao Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Dongmei Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Chang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Xiaoming Xia
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China.
| |
Collapse
|
15
|
Zhu L, Liu J, Zhou J, Wu X, Yang K, Ni Z, Liu Z, Jia H. The overlooked toxicity of environmentally persistent free radicals (EPFRs) induced by anthracene transformation to earthworms (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158571. [PMID: 36075414 DOI: 10.1016/j.scitotenv.2022.158571] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Environmentally persistent free radicals (EPFRs) as intermediate products exist widely in the PAHs-contaminated soils, but toxicity assessment associated with EPFRs for terrestrial invertebrates remains unclear. Using the model organism Eisenia fetida, we compared the adverse effects among anthracene (ANT), anthraquinone (ANQ), and EPFRs induced by ANT transformation on clay surfaces. Our results showed that EPFRs-exposed earthworms experienced histopathological damage, which was more severe than ANT and ANQ-exposed earthworms. The source of EPFRs damage was associated with the obvious dysbiosis of reactive oxygen species in earthworms. Specifically, EPFRs trigged more severe antioxidant responses and oxidative damages (e.g., membrane lipid and DNA injury) in comparison with ANT and ANQ exposure, as evidenced by the values of integrated biomarker response (IBR) following the order of EPFRs (14.5) > ANT (12.8) > ANQ (10.9). Moreover, high-throughput sequencing found that EPFRs induced dramatic changes in the composition and structure of earthworm gut microbiota, which may involve immune and metabolism dysfunction, in turn aggravated EPFRs toxicity. Overall, the obtained information highlights the more severe injury of EPFRs to terrestrial organisms, deserving more attentions for the assessment of potential risks associated with radical intermediates in PAHs-contaminated soils.
Collapse
Affiliation(s)
- Lang Zhu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jinbo Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jinyi Zhou
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Xintong Wu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kangjie Yang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zheng Ni
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Ze Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
16
|
Qiao Z, Li P, Tan J, Peng C, Zhang F, Zhang W, Jiang X. Oxidative stress and detoxification mechanisms of earthworms (Eisenia fetida) after exposure to flupyradifurone in a soil-earthworm system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:115989. [PMID: 36055090 DOI: 10.1016/j.jenvman.2022.115989] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Flupyradifurone (FLU) has great application potential in agricultural production as a new generation of neonicotinoid insecticide after imidacloprid. Nevertheless, the toxic effects of FLU on non-target soil organisms remain unclear, resulting in considerable environmental risks. We evaluated the acute and subchronic toxicities of FLU to earthworms. The results of acute toxicity show that the median lethal concentration (LC50) values (14 d) of FLU were 186.9773 mg kg-1 for adult earthworms and 157.6502 mg kg-1 for juveniles, respectively. The subchronic toxicity of FLU that focused on the activities of antioxidant and detoxication enzymes showed the superoxide dismutase (SOD), catalase (CAT), and glutathione-S transferase (GST) activities in earthworms increased while the peroxidase (POD) and acetylcholinesterase (AChE) activities decreased after exposure to FLU. Oxidative damage analyses revealed that the reactive oxygen species (ROS) level and malonaldehyde (MDA) content in earthworms were increased by FLU, resulting in DNA damage. Transcriptomics and RT-qPCR confirmed that FLU influenced the expression of genes related to antioxidant response and detoxification of earthworms. Ultimately detoxification metabolism, environmental information processing, cell processes, and immune system pathways are significantly enriched to respond jointly to FLU. Our study fills the gaps in the toxicity of FLU to earthworms, providing a basis for its risk assessment of soil ecosystems and non-target biological toxicity.
Collapse
Affiliation(s)
- Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Peiyao Li
- College of Agriculture, Qingdao Agricultural University, Qingdao, Shandong, 266109, PR China
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fengwen Zhang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, PR China; Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, Shandong, 266101, PR China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Xingyin Jiang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, PR China.
| |
Collapse
|
17
|
Li X, Sun Z, Yan T, Li Y, Zhang X, Liu M, Lin Y, Zhang Z, Xu H. Residue and distribution of drip irrigation and spray application of two diamide pesticides in corn and dietary risk assessment for different consumer groups. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6676-6686. [PMID: 35608937 DOI: 10.1002/jsfa.12035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As the use of diamide insecticides on corn continues to increase, there is growing concern about their residue levels on corn and dietary risks to populations. In this study, the distribution, dispersion and transfer efficiency of two diamide insecticides (tetrachlorantraniliprole (TCAP) and cyantraniliprole (CNAP)) in different parts of corn and soil were investigated in a 1-year field trial in Guangzhou and Lanzhou using two different application methods - spray and drip irrigation, respectively - and the dietary risk of the insecticides to different consumer populations was assessed under the two application methods. RESULTS The results showed that drip irrigation had a longer persistence period than spraying, and there was a hysteresis in the absorption distribution of the agent in different parts of corn, which was gradually transferred to the leaves after absorption from the roots. The average TE1 (transfer efficiency) and TE2 were 0.230-0.261 and 1.749-1.851 for TCAP and 0.168-0.187 and 2.363-2.815 for CNAP, respectively. At corn harvest, both TCAP and CNAP were below detectable levels in soil and corn. For different consumer populations, hazard quotients ranged from 0.001 to 0.066 for TCAP and from 0.003 to 0.568 for CNAP - both well below 100%. CONCLUSION This study indicates that TCAP and CNAP applied by spray or drip irrigation are safe for long-term risk of human intake and also provides guidance for the use of both insecticides in agricultural production to control corn pests, especially in arid and semi-arid areas. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xianjia Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zheng Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Tiantian Yan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yuan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xue Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Miaojiao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yigang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zhixiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Gautam K, Seth M, Dwivedi S, Jain V, Vamadevan B, Singh D, Roy SK, Downs CA, Anbumani S. Soil degradation kinetics of oxybenzone (Benzophenone-3) and toxicopathological assessment in the earthworm, Eisenia fetida. ENVIRONMENTAL RESEARCH 2022; 213:113689. [PMID: 35718163 DOI: 10.1016/j.envres.2022.113689] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
A preponderance of recent evidence indicates that oxybenzone and other personal-care product chemicals threaten the biota inhabiting various ecological niches. What is understudied is the ecotoxicological impact of oxybenzone, a UV filter in sunscreens and anti-aging products, to terrestrial/soil organisms that are keystone species in these habitats. In the present study, acute exposure (14-day) to oxybenzone resulted in earthworm mortality (LC50 of 364 mg/kg) and growth rate inhibition. Environmentally relevant concentration of oxybenzone (3.64, 7.28 and 36.4 mg/kg) at exposures of 7-day, 14-day, 28-day induced oxidative stress and neurotoxicity followed by perturbations in reproduction processes and changes in vital organs. Decreased levels of superoxide dismutase (SOD) and catalase (CAT) activity were statistically lower than controls (p < 0.05) on day 14 for all three concentrations, while glutathione-s-transferase (GST) activity was significantly elevated from controls on days 7 and 14. On day 28, SOD and CAT activities were either not significantly different from the control or were higher, demonstrating a temporal multiphasic response of anti-oxidant enzymes. GST activity on day 28 was significantly reduced compared to controls. Acetylcholinesterase levels across the three-time points exhibited a complicated behaviour, with every exposure concentration being significantly different from the control. Chronic exposure negatively influences earthworm health status with elevated biomarker values analysed using IBRv2 index. This, in turn, impacted higher levels of hierarchical organization, significantly impairing reproduction and organismal homeostasis at the histological level and manifesting as decreasing cocoon formation and successful hatching events. Thus, the overall findings demonstrate that oxybenzone is toxic to Eisenia fetida at low-level, long-term exposure. Based on the concentration verification analysis and application of the EPA PestDF tool, oxybenzone undergoes single first-order kinetics degradation in OECD soil with DT50 and DT90 as 8.7-28.9 days, respectively.
Collapse
Affiliation(s)
- Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Monika Seth
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shreya Dwivedi
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Veena Jain
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Beena Vamadevan
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Dhirendra Singh
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Somendu K Roy
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C A Downs
- Haereticus Environmental Laboratory, Clifford, VA, 24522, USA
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
19
|
He F, Li X, Huo C, Chu S, Cui Z, Li Y, Wan J, Liu R. Evaluation of fluorene-caused ecotoxicological responses and the mechanism underlying its toxicity in Eisenia fetida: Multi-level analysis of biological organization. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129342. [PMID: 35716570 DOI: 10.1016/j.jhazmat.2022.129342] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Fluorene is an important toxic chemical that exists ubiquitously in the environment, and it has also been suggested to exert potential deleterious effects on soil invertebrates. However, knowledge about the toxic effects of fluorene and its underlying mechanisms of the effects on key soil organism earthworms remains limited. From this view point, this study was undertaken to explore the potential effects of fluorene and its underlying mechanisms in Eisenia fetida at the level of experimental animals, tissue, cell, and molecule. It was concluded that fluorene exerted lethal activity to adult E. fetida on day 14 with the LC50 determined to be 88.61 mg/kg. Fluorene-induced ROS caused oxidative stress in E. fetida, resulting in DNA damage, protein carbonylation, and lipid peroxidation. Moreover, changed antioxidative enzymatic activities, non-enzymatic antioxidative activities, and total antioxidative capacity in E. fetida by fluorene stress are associated with antioxidative and protective effects. High-dose fluorene (> 2.5 mg/kg) exposure significantly caused histopathological lesions including the microstructure of body wall, intestine, and seminal vesicle of earthworms. Also, the reproductive system of E. fetida was clearly disrupted by fluorene stress, leading to poor reproduction ability (decreased cocoon and juvenile production) in earthworms. It is found that E. fetida growth was significantly inhibited when treated with high-dose fluorene, thereby causing normal growth disorders. Additionally, fluorene stress triggered the abnormal mRNA expression related to oxidative stress (e.g., metallothionein and heat shock protein 70), growth (translationally controlled tumour protein), reproduction (annetocin precursor) in E. fetida. Together, both high-dose and long-term exposure elicited more severe poisoning effects on earthworms using the Integrated Biological Response (IBR) index, and E. fetida coelomocyte DNA was the most negatively affected by fluorene stress. This study comprehensively evaluated fluorene-induced toxicity in E. fetida, and its underlying molecular mechanisms mediating the toxic responses have been elucidated. These findings provide valuable data for assessing potential ecological risks posed by fluorene-contaminated soil.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shanshan Chu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Zhihan Cui
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuze Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
20
|
Zhang M, Chen J, Li Y, Li G, Zhang Z. Sub-chronic ecotoxicity of triphenyl phosphate to earthworms (Eisenia fetida) in artificial soil: Oxidative stress and DNA damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113796. [PMID: 35751932 DOI: 10.1016/j.ecoenv.2022.113796] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/03/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
As a flame retardant, triphenyl phosphate (TPHP) is commonly added to various daily products. Due to its easy diffusion, TPHP pollution has become a global concern. Despite the wide focus on environmental risk, the sub-chronic ecotoxicity of TPHP in soil organisms remains unclear. In this study, the artificial soil exposure method was used to analyze the oxidative stress and DNA damage in earthworms with 0, 20, 40, 60 and 80 mg/kg TPHP treatments through the response of reactive oxygen species (ROS), antioxidant and detoxifying enzymes, malondialdehyde (MDA) and olive tail moment (OTM) at 7, 14, 21 and 28 days. Throughout the experimental period, the results showed that the ROS content in earthworms treated with 20, 40, 60 and 80 mg/kg TPHP treatments increased by 9.43-18.37 %, 6.07-25.73 %, 7.71-42.61 % and 8.22-46.70 %, respectively, compared to the control treatment. Meanwhile, the activities of antioxidant and detoxification enzymes in earthworms with all TPHP treatments were significantly activated after exposure for 7 and 14 days, and then inhibited at 21 and 28 days. Despite the protection of antioxidant enzymes and detoxification enzymes, MDA content in earthworms with the 20 mg/kg treatment still significantly increased at 7 and 14 days of exposure, as well as in the other three treatments. Compared to the control treatment, the obviously higher OTM values in earthworms with TPHP treatments possibly indicated a genotoxicity of TPHP in earthworms. Furthermore, the integrated biomarker response index (IBRv2) revealed that earthworms showed an obvious biochemical response TPHP-contaminated soil, which was strongly correlated with TPHP concentrations and exposure time. This study provides insights into the TPHP hazard in the soil environment and offers a reference to assess its environmental risk to soil ecosystems.
Collapse
Affiliation(s)
- Mengdi Zhang
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jianing Chen
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yanqiang Li
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Guangde Li
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Zhongwen Zhang
- Weifang Environmental Science Research & Design Institute, Weifang, Shandong 26104, China
| |
Collapse
|
21
|
Yan S, Gu N, Peng M, Jiang Q, Liu E, Li Z, Yin M, Shen J, Du X, Dong M. A Preparation Method of Nano-Pesticide Improves the Selective Toxicity toward Natural Enemies. NANOMATERIALS 2022; 12:nano12142419. [PMID: 35889640 PMCID: PMC9323491 DOI: 10.3390/nano12142419] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/23/2022]
Abstract
Various nano-delivery systems have been designed to deliver synthetic/botanical pesticides for improved bioactivity. However, the enhanced toxicity of nanocarrier-loaded pesticides may injure the natural enemies, and their selective toxicity should be evaluated before the large-scale application. In this context, a star polymer (SPc)-based cyantraniliprole (CNAP) nano-delivery system was constructed, and its selective toxicity was evaluated using pest Frankliniella occidentalis (WFT) and predator Orius sauteri. The amide NH of CNAP could assemble with carbonyl groups or tertiary amines of SPc through hydrogen bonds to form CNAP/SPc complex spontaneously. The above self-assembly decreased the particle size of CNAP from 808 to 299 nm. With the help of SPc, the lethal concentration 50 (LC50) values of CNAP decreased from 99 to 54 mg/L and 230 to 173 mg/L toward WFTs and O. sauteri due to the enhancement of broad-spectrum bioactivity. Interestingly, the toxicity selective ratio (TSR) of CNAP increased from 2.33 to 3.23 with the help of SPc, revealing the higher selectivity of SPc-loaded CNAP. To our knowledge, it was the first successful exploration of the selective toxicity of nanocarrier-loaded pesticides, and the higher selective toxicity of SPc-loaded CNAP was beneficial for alleviating the negative impacts on predators.
Collapse
Affiliation(s)
- Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.Y.); (N.G.); (Q.J.); (J.S.); (X.D.)
| | - Na Gu
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.Y.); (N.G.); (Q.J.); (J.S.); (X.D.)
| | - Min Peng
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; (M.P.); (M.Y.)
| | - Qinhong Jiang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.Y.); (N.G.); (Q.J.); (J.S.); (X.D.)
| | - Enliang Liu
- Research Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Zhiqiang Li
- Adsen Biotechnology Co., Ltd., Urumqi 830022, China;
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; (M.P.); (M.Y.)
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.Y.); (N.G.); (Q.J.); (J.S.); (X.D.)
| | - Xiangge Du
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.Y.); (N.G.); (Q.J.); (J.S.); (X.D.)
| | - Min Dong
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.Y.); (N.G.); (Q.J.); (J.S.); (X.D.)
- Correspondence:
| |
Collapse
|
22
|
He F, Yu H, Shi H, Li X, Chu S, Huo C, Liu R. Behavioral, histopathological, genetic, and organism-wide responses to phenanthrene-induced oxidative stress in Eisenia fetida earthworms in natural soil microcosms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40012-40028. [PMID: 35113383 DOI: 10.1007/s11356-022-18990-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Phenanthrene (PHE) contamination not only changes the quality of soil environment but also threatens to the soil organisms. There is lack of focus on the eco-toxicity potential of this contaminant in real soil in the current investigation. Here, we assessed the toxic effects of PHE on earthworms (Eisenia fetida) in natural soil matrix. PHE exhibited a relatively high toxicity to E. fetida in natural soil, with the LC50 determined to be 56.68 mg kg-1 after a 14-day exposure. Excessive ROS induced by PHE, leading to oxidative damage to biomacromolecules in E. fetida, including lipid peroxidation, protein carbonylation, and DNA damage. The antioxidant defense system (total antioxidant capacity, glutathione S-transferase, peroxidase, catalase, carboxylesterase, and superoxide dismutase) in E. fetida responded quickly to scavenge excess ROS and free radicals. Exposure to PHE resulted in earthworm avoidance responses (2.5 mg kg-1) and habitat function loss (10 mg kg-1). Histological observations indicated that the intestine, body wall, and seminal vesicle in E. fetida were severely damaged after exposure to high-dose PHE. Moreover, earthworm growth (weight change) and reproduction (cocoon production and the number of juvenile) were also inhibited after exposure to this pollutant. Furthermore, the integrated toxicity of PHE toward E. fetida at different doses and exposure times was assessed by the integrated biomarker response (IBR), which confirmed that PHE is more toxic to earthworms in the high-dose and long-term exposure groups. Our results showed that PHE exposure induced oxidative stress, disturbed antioxidant defense system, and caused oxidative damage in E. fetida. These effects can trigger behavior changes and damage histological structure, finally cause growth inhibition, genotoxicity, and reproductive toxicity in earthworms. The strength of this study is the comprehensive toxicity evaluation of PHE to earthworms and highlights the need to investigate the eco-toxicity potential of exogenous environmental pollutants in a real soil environment.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Hanmei Yu
- Yanzhou District Branch of Jining Ecological Environment Bureau, No. 159, Wenhua East Road , Yanzhou District, Jining City, Shandong Province, 272100, People's Republic of China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Shanshan Chu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China.
| |
Collapse
|
23
|
He F, Wan J, Li X, Chu S, Sun N, Liu R. Toxic effects of benzovindiflupyr, a new SDHI-type fungicide on earthworms (Eisenia fetida). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62782-62795. [PMID: 34215985 DOI: 10.1007/s11356-021-15207-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Benzovindiflupyr has received increasing attention as a new novel succinate dehydrogenase inhibitor (SDHI)-type fungicide. Nonetheless, its traces remaining in soil potentially trigger an ecotoxicological threat to soil organisms including earthworms. This paper evaluates the eco-toxicity of different benzovindiflupyr doses (0.1, 1, 5, and 10 mg kg-1) on earthworms (Eisenia fetida) after long-term exposure. Consequently, benzovindiflupyr at higher doses significantly inhibited the activities of respiratory chain complex II and succinate dehydrogenase (SDH) in E. fetida. Besides, the reactive oxygen species (ROS) and lipid peroxidation (LPO) were significantly induced in earthworms when treated with this fungicide. After benzovindiflupyr exposure, activities of antioxidant enzymes including catalase, peroxidase, and superoxide dismutase were activated. However, glutathione S-transferase activity in E. fetida was initially induced then inhibited in earthworms after treatment. Furthermore, benzovindiflupyr exposure induced the protein carbonylation (PCO) level in cells indicating oxidative damage to the cellular protein. Due to the destruction of the normal function in the coelomocytes, the phagocytic activity was initially activated, then inhibited when earthworms were treated at 5 and 10 mg kg-1 concentrations. Additionally, DNA damage was induced (larger olive tail moment (OTM) values) with the increase of benzovindiflupyr doses and exposure time. The weight was significantly decreased after benzovindiflupyr exposure on days 21 and 28. Benzovindiflupyr at higher doses significantly decreased the reproduction (number of cocoons and juveniles) of E. fetida. These findings reveal that benzovindiflupyr potentially induces a potential toxicological risk to earthworms when applied in the mentioned above dosages.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China.
| | - Jingqiang Wan
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Shanshan Chu
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Ning Sun
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Rutao Liu
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| |
Collapse
|
24
|
Yang F, Li G, Sang N. The phytotoxicities of agricultural soil samples from a coal gangue stacking area to several maize cultivars (Zea mays L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52319-52328. [PMID: 34009574 DOI: 10.1007/s11356-021-14250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
In Shanxi, a major energy province in China, environmental pollution caused by coal gangue accumulation is becoming an increasingly serious problem. In addition, crops are the first trophic level in the human food chain, and the security and production of crops are closely related to human well-being. The objective of this study was to estimate the phytotoxicities of agricultural soil samples contaminated by coal gangue accumulation using maize (Zea mays L.) as a model organism. Finally, a tolerant maize cultivar was screened for coal gangue stacking areas. Seven cultivars of maize seeds were treated with agricultural soil leachate around the coal gangue stacking area at various concentrations of 0, 1:27, 1:9, 1:3, and 1:1. The results revealed that the agricultural soil leachate treatment could inhibit seed germination and the growth of roots and shoots and that the soil leachate-induced phytotoxicities were cultivar-dependent. At the same exposure concentration, tolerant maize cultivar displayed lower toxicity symptoms than sensitive maize cultivar in terms of growth inhibition, oxidative damage, and DNA damage. Stronger activities of antioxidant enzymes were observed in the tolerant maize cultivar than in the sensitive maize cultivar, indicating that the difference between cultivars in antioxidant capacity is one reason for the difference in plant tolerance. Our study provides experimental evidence for the ecological risk assessment of soil and the selection of maize cultivars with high environmental pollutant tolerance for use in coal gangue stacking areas.
Collapse
Affiliation(s)
- Fenglong Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| |
Collapse
|
25
|
Zhang F, He M, Zhang C, Lin D, Zhang J. Combined toxic effects of dioxin-like PCB77 with Fe-based nanoparticles in earthworm Eisenia fetida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144347. [PMID: 33418254 DOI: 10.1016/j.scitotenv.2020.144347] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Iron-based nanomaterials hold promise for in situ remediation of persistent halogenated contaminants such as dioxin-like polychlorinated biphenyls, however, their complex interactions and joint toxicity toward beneficial soil biological functions remain unknown. This study examined the effects of nano-zero valent iron (nZVI) on the physiological and morphological changes, on the bioaccumulation of co-existed dioxin-like 3,3',4,4'-tetrachloro-biphenyls (PCB77), and the joint toxicity of nZVI and PCB77 in earthworms Eisenia fetida. An orthogonally designed experiment was conducted through the exposure of E. fetida to the combined and separate nZVI and PCB77 at various concentrations in soil for 28 days (nZVI at the levels of g-Fe/kg-soil and PCB77 at the levels of mg-PCB/kg-soil). Results indicated that both nZVI and PCB77 inhibited the growth and reproduction of earthworms, and the combined exposure resulted in a synergistic effect. The addition of 10 g/kg nZVI decreased the contents of PCB77 and significantly increased the accumulation of PCB77 to a level ranging 14-97 mg/kg in earthworms in a nZVI dose dependent manner. The observed synergism might relate to the aggravated damage of earthworm epidermis in the presence of nZVI. PCB77 and nZVI at their corresponding high levels (10 mg/kg and 10 g/kg) induced oxidative stress and lipid peroxidation in the earthworms through the increased levels of reactive oxygen species and the subsequent inhibition of antioxidant enzymes including superoxide dismutase and catalase. Further metabolomics analyses revealed that the normal glutamic acid metabolism and tricarboxylic acid cycle were disturbed in earthworms exposed to the combined treatment of 10 mg/kg PCB77 and 10 g/kg nZVI. Our findings suggested that earthworms as a sentinel species could be readily employed in toxicity and tolerance studies to succeed the safe applications of nZVI and interestingly earthworms themselves also hold promise for vermiremediation owing to the high bioaccumulation potential of PCBs from contaminated soils.
Collapse
Affiliation(s)
- Fan Zhang
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Institute of Environmental Health, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Mengyang He
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Institute of Environmental Health, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, Houston, TX 77058, United States
| | - Daohui Lin
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jianying Zhang
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Institute of Environmental Health, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; National Demonstration Center for Experimental Environment and Resources Education, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
26
|
Ma D, Yang S, Jiang J, Zhu J, Li B, Mu W, Dou D, Liu F. Toxicity, residue and risk assessment of tetraniliprole in soil-earthworm microcosms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112061. [PMID: 33636466 DOI: 10.1016/j.ecoenv.2021.112061] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Maize seed treatment with chemicals to control underground pests is a common agricultural practice, but inappropriate use of insecticides poses a considerable threat to plant development and soil nontarget organisms. In this study, the availability of tetraniliprole seed dressing to control the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae) in the maize seeding stage and its safety to earthworms (Eisenia fetida) were investigated. The selective toxicity (ST) of tetraniliprole between E. fetida and A. ipsilon was greater than 4000. No significant adverse effect of tetraniliprole seed treatment on the germination of maize seeds was observed at concentrations of 2.4-9.6 g a.i. /kg seed. Compared with the untreated control, seed treatment with tetraniliprole at 9.6 g a.i. /kg seed greatly reduced the percentage of damaged plants from 88.73% to 26.67%, and achieved the highest control effect of 69.91%. Tetraniliprole of 2.4 g a.i. /kg seed can effectively inhibit A. ipsilon until 14 days after seed germination, with the lowest mortality rate of 44.44%. During the entire exposure period, the maximum residual concentration of tetraniliprole detected in the soil (5.86 mg/kg) was considerably lower than the LC50 value of tetraniliprole to E. fetida (>4000 mg/kg). According to the low-tier risk assessment, the highest risk quotient (RQ) of tetraniliprole seed treatment to earthworms at test concentrations was 2.8 × 10-3, which was evaluated as acceptable. This study provided data support for tetraniliprole seed treatment to control underground pests in maize fields.
Collapse
Affiliation(s)
- Dicheng Ma
- College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Song Yang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Jiangong Jiang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Jiamei Zhu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Beixing Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Daolong Dou
- College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China.
| |
Collapse
|
27
|
Zhang W, Xia X, Wang J, Zhu L, Wang J, Wang G, Chen Y, Kim YM. Oxidative stress and genotoxicity of nitenpyram to earthworms (Eisenia foetida). CHEMOSPHERE 2021; 264:128493. [PMID: 33039690 DOI: 10.1016/j.chemosphere.2020.128493] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
In this study, the artificial soil poisoning method was used to explore the antioxidative stress mechanism and gene changes of earthworms (Eisenia foetida) after application of nitenpyram. The toxic effects of nitenpyram on earthworms were combined with the method called the second-generation integrated biomarker response index method (IBRv2) to be comprehensively analyzed by studying the reactive oxygen species (ROS) content, superoxide dismutase (SOD) activity, catalase (CAT) activity, glutathione S-transferase (GST) activity, malondialdehyde (MDA) content and DNA damage degree in earthworms. The results showed that the ROS content in the high-concentration (2.5 mg/kg) nitenpyram treatment group changed significantly. The changes of antioxidant enzymes in earthworms were also obvious. In terms of SOD enzyme activity, under the induction of nitenpyram, SOD activity in the 1 mg/kg and 2.5 mg/kg treatment groups was significantly enhanced. The concentration-treated group could all affect the activity of earthworm detoxifying enzyme GST. Earthworm DNA olive tail in the nitenpyram treatment group with different concentrations was mainly concentrated at low and medium levels at 21d, and the proportion was the largest during the whole exposure period, showing a significant dose-effect relationship. This study confirms that nitenpyram not only has a toxic effect on the physiological and biochemical indicators of earthworms, but also cannot be underestimated on its genetic level.
Collapse
Affiliation(s)
- Wenjie Zhang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Xiaoming Xia
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, China.
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Lusheng Zhu
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Jun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Guangchi Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Yangyang Chen
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
28
|
Yan X, Wang J, Zhu L, Wang J, Li S, Kim YM. Oxidative stress, growth inhibition, and DNA damage in earthworms induced by the combined pollution of typical neonicotinoid insecticides and heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141873. [PMID: 32911142 DOI: 10.1016/j.scitotenv.2020.141873] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals pollution of soil and widespread application of neonicotinoid insecticides have caused environmental problems worldwide. To evaluate ecological toxicity resulting from the combined pollution of neonicotinoids and heavy metals, typical representatives of neonicotinoid insecticides (imidacloprid, thiamethoxam, dinotefuran) and heavy metals (cadmium, copper, zinc) were selected as soil pollutants; earthworms were used as test organisms. Analysis of the main and interaction effects of a combined pollution process were performed using a uniform design method. Results showed that the reactive oxygen species (ROS) content of earthworms in most treatment groups was higher during exposure than that of the control group. The malondialdehyde (MDA) and ROS content of earthworms demonstrated relatively low values on the 21st day and increased by the 28th day. The interaction between dinotefuran and Cd had significant antagonistic effects on ROS and MDA. The combined pollution adversely affected both the growth and genes of earthworms and also caused damage to the epidermis, midgut, and DNA. The interaction between imidacloprid and Cd was synergistic to ROS, weight inhibition rate, and Olive tail moment (OTM), but was antagonistic to MDA. Of all the single and combined exposures, Zn as a single chemical affected ROS and DNA damage the most, and MDA was significantly enhanced by imidacloprid. Composite pollutants may create different primary effects and interactions causing potential harm to soil organisms.
Collapse
Affiliation(s)
- Xiaojing Yan
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Shuyan Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
29
|
Qiao Z, Yao X, Liu X, Zhang J, Du Q, Zhang F, Li X, Jiang X. Transcriptomics and enzymology combined five gene expressions to reveal the responses of earthworms (Eisenia fetida) to the long-term exposure of cyantraniliprole in soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111824. [PMID: 33360783 DOI: 10.1016/j.ecoenv.2020.111824] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Cyantraniliprole is a novel diamide insecticide that acts upon the ryanodine receptor (RyR) and has broad application prospects. Accordingly, it is very important to evaluate the toxicity of cyantraniliprole to earthworms (Eisenia fetida) because of their vital role in maintaining a healthy soil ecosystem. In this study, an experiment was set up, using four concentrations (0.1, 1, 5, and 10 mg/kg) and solvent control group (0 mg/kg), to investigate the ecotoxicity of cyantraniliprole to earthworms. Our results showed that, after 28 days of exposure to cyantraniliprole, both cocoon production and the number of juvenile earthworms had decreased significantly at concentrations of either 5 or 10 mg/kg. On day 14, we measured the activities of digestive enzymes and ion pumps in the intestinal tissues of earthworms. These results revealed that cyantraniliprole exposure caused intestinal damage in earthworm, specifically changes to its intestinal enzyme activity and calcium ion content. Cyantraniliprole could lead to proteins' carbonylation under the high-dose treatments (i.e., 5 mg/kg, 10 mg/kg). At the same time, we also found that cyantraniliprole can cause the abnormal expression of key functional genes (including HSP70, CAT, RYR, ANN, and CAM genes). Moreover, the transcriptomics data showed that exposure to cyantraniliprole would affect the synthesis of carbohydrates, proteins and lipids, as well as their absorption and transformation, while cyantraniliprole would also affect signal transduction. In general, high-dose exposure to cyantraniliprole causes reproductive toxicity, genotoxicity, and intestinal damage to earthworms.
Collapse
Affiliation(s)
- Zhihua Qiao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong 271018, China
| | - Xiangfeng Yao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong 271018, China
| | - Xiang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong 271018, China
| | - Jianye Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong 271018, China
| | - Qingzhi Du
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong 271018, China
| | - Fengwen Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China
| | - Xiangdong Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xingyin Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong 271018, China.
| |
Collapse
|
30
|
Zhao S, Wang Y, Duo L. Biochemical toxicity, lysosomal membrane stability and DNA damage induced by graphene oxide in earthworms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116225. [PMID: 33316493 DOI: 10.1016/j.envpol.2020.116225] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
With the growing production and use of carbon nanomaterials (CNMs), the risk of their releases to the environment has drawn much attention. However, their potential effect on soil invertebrates has not yet been systematically assessed. Herein, the toxic effects of graphene oxide (GO) on earthworms (Eisenia fetida) were thoroughly investigated. Exposure to different doses of GO (0, 5, 10, 20, and 30 g kg-1) was conducted for 7, 14, 21, and 28 days. The results showed that enzymatic activity was stimulated at the early stages of exposure (7 days and 14 days) and inhibited after 14 days for catalase (CAT) and after 21 days for peroxidase (POD) and superoxide dismutase (SOD), especially at high GO doses. The content of MDA showed an increasing trend over the whole exposure period and was significantly elevated by GO from 21 days except at the dose of 5 g kg-1on day 21. Lysosomal membrane stability and DNA damage presented dose- and time-dependent relationships. Graphene oxide remarkably decreased lysosomal membrane stability except at the dose of 5 g kg-1 on day 7. The tail DNA%, tail length and olive tail moment increased with increasing GO dose throughout the exposure duration, reaching maximum values at the end of exposure (28 days). These findings suggest that GO induces oxidative stress and genotoxicity in Eisenia fetida, resulting in lipid peroxidation, decreased lysosomal membrane stability and DNA damage. Therefore, attention should be paid to the potential pollution and risk associated with graphene oxide application. The results can provide valuable information for environmental safety assessment of graphene nanomaterials in soil.
Collapse
Affiliation(s)
- Shulan Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yanli Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Lian Duo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
31
|
Zhao Y, Sun L, Li Q, Yan X, Li Z, Liu B, Li G. Use of integrated biomarker response for evaluating antioxidant stress and DNA damage of earthworms (Eisenia fetida) in decabromodiphenyl ethane-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114706. [PMID: 32388306 DOI: 10.1016/j.envpol.2020.114706] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 05/22/2023]
Abstract
Decabromodiphenyl ethane (DBDPE) is a new and popular type of brominated flame retardant (BFR) with high bromine content, strong thermal stability, and ultraviolet resistance. To evaluated the potential toxicity of this new BFR to soil ecosystem, different concentrations of DBDPE were used to observe effects on earthworms (Eisenia fetida) in artificial soil. The reactive oxygen species (ROS) contents, activities of antioxidase system and detoxify enzyme, levels of malondialdehyde (MDA), as well as DNA damage in earthworms were measured after exposure to 0, 2.5, 5, 10, and 20 mg/kg DBDPE in artificial soil for 7, 14, 21, and 28 days. The results showed that ROS and MDA content significantly increased for all treatments from days 7-21, followed by a decrease. Throughout the experimental period, SOD, POD, and CAT activities increased. The GST activity was stimulated significantly from days 14-28. Besides, the olive tail moment (OTM) value in all treated groups was significantly higher than that in the control and exhibited a concentration-related and exposure time-related response. This is the first study evaluating the biological toxicity of BFR at different concentrations using an integrated biomarker response index. Our results show that DBDPE has biochemical toxicity on earthworms, which sheds some light on the potential risks of DBDPE in the soil environment and provides a basis for the monitoring and diagnosis of soils contaminated with DBDPE.
Collapse
Affiliation(s)
- Yiyi Zhao
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Liangqi Sun
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qianqian Li
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaotong Yan
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ziwei Li
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Bin Liu
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Guangde Li
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
32
|
Vischetti C, Casucci C, De Bernardi A, Monaci E, Tiano L, Marcheggiani F, Ciani M, Comitini F, Marini E, Taskin E, Puglisi E. Sub-Lethal Effects of Pesticides on the DNA of Soil Organisms as Early Ecotoxicological Biomarkers. Front Microbiol 2020; 11:1892. [PMID: 33013727 PMCID: PMC7461845 DOI: 10.3389/fmicb.2020.01892] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/20/2020] [Indexed: 01/13/2023] Open
Abstract
This review describes the researches performed in the last years to assess the impact of pesticide sub-lethal doses on soil microorganisms and non-target organisms in agricultural soil ecosystems. The overview was developed through the careful description and a critical analysis of three methodologies based on culture-independent approaches involving DNA extraction and sequencing (denaturing gradient gel electrophoresis, DGGE; next-generation sequencing, NGS) to characterize the microbial population and DNA damage assessment (comet assay) to determine the effect on soil invertebrates. The examination of the related published articles showed a continuous improvement of the possibility to detect the detrimental effect of the pesticides on soil microorganisms and non-target organisms at sub-lethal doses, i.e., doses which have no lethal effect on the organisms. Considering the overall critical discussion on microbial soil monitoring in the function of pesticide treatments, we can confirm the usefulness of PCR-DGGE as a screening technique to assess the genetic diversity of microbial communities. Nowadays, DGGE remains a preliminary technique to highlight rapidly the main differences in microbial community composition, which is able to give further information if coupled with culture-dependent microbiological approaches, while thorough assessments must be gained by high-throughput techniques such as NGS. The comet assay represents an elective technique for assessing genotoxicity in environmental biomonitoring, being mature after decades of implementation and widely used worldwide for its direct, simple, and affordable implementation. Nonetheless, in order to promote the consistency and reliability of results, regulatory bodies should provide guidelines on the optimal use of this tool, strongly indicating the most reliable indicators of DNA damage. This review may help the European Regulation Authority in deriving new ecotoxicological endpoints to be included in the Registration Procedure of new pesticides.
Collapse
Affiliation(s)
- Costantino Vischetti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Cristiano Casucci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Arianna De Bernardi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Elga Monaci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Maurizio Ciani
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Francesca Comitini
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Enrica Marini
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Eren Taskin
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Piacenza, Italy
| |
Collapse
|
33
|
Tian Y, Liu J, Pan L. The mechanism of Mitogen-Activated Protein Kinases to mediate apoptosis and immunotoxicity induced by Benzo[a]pyrene on hemocytes of scallop Chlamys farreri in vitro. FISH & SHELLFISH IMMUNOLOGY 2020; 102:64-72. [PMID: 32268177 DOI: 10.1016/j.fsi.2020.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Benzo [a]pyrene (B [a]P) has received widespread attention for serious pollution in the sea, which may reduce immunity and lead to the outbreak of disease in bivalves. However, the mechanism of immunotoxicity induced by B [a]P in bivalves was still unclear. Previous studies have found that Mitogen-Activated Protein Kinases (MAPKs) including three classic pathways (ERK, p38 and JNK) play an important role in mediating this process. Thus, in order to explore the mechanism of immunotoxicity induced by B [a]P in scallop Chlamys farreri, hemocytes were treated with PD98059 (ERK inhibitor), SB203580 (p38 inhibitor) and SP600125 (JNK inhibitor) for 1 h and then incubation with B [a]P for 24 h at 1 μg/mL. Indexes including oxidative damage, apoptotic rate, and immune indicators were detected in the present study. The results showed that the increase of Reactive Oxygen Species (ROS) and DNA damage induced by B [a]P was inhibited with PD98059 and SB203580. Besides, lysosomal membrane stability (LMS) damage was promoted by PD98059, while it was opposite when treated with SB203580. Moreover, the ascended apoptosis rate induced by B [a]P was increased significantly after treatment with PD98059, but it was remarkably attenuated by SB203580 and SP600125. However, the opposite pattern was showed in phagocytosis compared with apoptosis rate in all of three inhibitors. In addition, antibacterial activity and bacteriolytic activity were enhanced by SB203580 while inhibited by PD98059. Therefore, these results showed that MAPKs directly or indirectly mediate the decrease of oxidative damage, apoptosis and immune defense ability of C. farreri hemocytes, which suggesting ERK/p38/JNK pathways have different functions in the apoptosis and immunity of C. farreri hemocytes after B [a]P exposure. In conclusion, this study intended to enrich the theoretical basis for immunotoxicology of bivalves exposed to pollutants.
Collapse
Affiliation(s)
- Yimeng Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jing Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
34
|
Wang H, Zhang X, Wang L, Zhu B, Guo W, Liu W, Wang J. Biochemical responses and DNA damage induced by herbicide QYR301 in earthworm (Eisenia fetida). CHEMOSPHERE 2020; 244:125512. [PMID: 31816546 DOI: 10.1016/j.chemosphere.2019.125512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
QYR301, a novel herbicidal inhibitor of 4-hydroxyphenylpyruvate dioxygenase (HPPD), has great potential for resistant weed control in paddy fields, but massive use of pesticides may result in toxicity to soil non-target organisms. Thus, this study was designed to assess subchronic toxicity of different doses of QYR301 in artificial soil (0, 0.1, 1.0, 2.5, and 5.0 mg kg-1) to earthworms (Eisenia fetida) on days 7, 14, 21, and 28 after exposure, using biomarkers of reactive oxygen species (ROS) and malondialdehyde (MDA) contents, activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and glutathione-S-transferase (GST), and DNA damage. The ROS content significantly increased for all treatments on 7 and 14 days then decreased, and recovered to control level for 0.1 and 1.0 mg kg-1 treatment on day 28. Concerning enzymes activities, QYR301 increased POD, SOD, and GST activities, but inhibited CAT activity. Except for POD activity, SOD, CAT, and GST activities of 0.1 mg kg-1 group recovered to control level on day 28. Also, the MDA content of 0.1 mg kg-1 group reached control level on day 28. However, DNA damage was observed for all treatments throughout the experiment and it increased with increasing doses and time except for 5.0 mg kg-1 treatment on day 28. These results suggested that QYR301 induced excessive ROS production leading to oxidative stress in earthworms, which caused lipid membrane peroxidation and DNA damage ultimately. The findings could provide a theoretical foundation for assessing ecological damage of QYR301 to soils and a guide for future QYR301 applications.
Collapse
Affiliation(s)
- Hengzhi Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Agricultural University, Tai'an, 271018, Shandong, PR China
| | - Xiaolin Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Agricultural University, Tai'an, 271018, Shandong, PR China
| | - Lipeng Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Agricultural University, Tai'an, 271018, Shandong, PR China
| | - Baolin Zhu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Agricultural University, Tai'an, 271018, Shandong, PR China
| | - Wenlei Guo
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, PR China
| | - Weitang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Agricultural University, Tai'an, 271018, Shandong, PR China.
| | - Jinxin Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Agricultural University, Tai'an, 271018, Shandong, PR China.
| |
Collapse
|