1
|
Sjöström Y, Tao F, Ricklund N, de Wit CA, Hagström K, Hagberg J. Children's exposure to halogenated flame retardants and organophosphate esters through dermal absorption and hand-to-mouth ingestion in Swedish preschools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173635. [PMID: 38821289 DOI: 10.1016/j.scitotenv.2024.173635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Children are exposed to endocrine disrupting chemicals (EDCs) through inhalation and ingestion, as well as through dermal contact in their everyday indoor environments. The dermal loadings of EDCs may contribute significantly to children's total EDC exposure due to dermal absorption as well as hand-to-mouth behaviors. The aim of this study was to measure potential EDCs, specifically halogenated flame retardants (HFRs) and organophosphate esters (OPEs), on children's hands during preschool attendance and to assess possible determinants of exposure in preschool indoor environments in Sweden. For this, 115 handwipe samples were collected in winter and spring from 60 participating children (arithmetic mean age 4.5 years, standard deviation 1.0) and analyzed for 50 compounds. Out of these, 31 compounds were identified in the majority of samples. Levels were generally several orders of magnitude higher for OPEs than HFRs, and 2-ethylhexyl diphenyl phosphate (EHDPP) and tris(2-butoxyethyl) phosphate (TBOEP) were detected in the highest median masses, 61 and 56 ng/wipe, respectively. Of the HFRs, bis(2-ethyl-1-hexyl)-2,3,4,5-tetrabromobenzoate (BEH-TEBP) and 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether (BDE-209) were detected in the highest median masses, 2.8 and 1.8 ng/wipe, respectively. HFR and/or OPE levels were found to be affected by the number of plastic toys, and electrical and electronic devices, season, municipality, as well as building and/or renovation before/after 2004. Yet, the calculated health risks for single compounds were below available reference dose values for exposure through dermal uptake as well as for ingestion using mean hand-to-mouth contact rate. However, assuming a high hand-to-mouth contact rate, at the 95th percentile, the calculated hazard quotient was above 1 for the maximum handwipe mass of TBOEP found in this study, suggesting a risk of negative health effects. Furthermore, considering additive effects from similar compounds, the results of this study indicate potential concern if additional exposure from other routes is as high.
Collapse
Affiliation(s)
- Ylva Sjöström
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| | - Fang Tao
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China; Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Niklas Ricklund
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| | - Cynthia A de Wit
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Katja Hagström
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| | - Jessika Hagberg
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| |
Collapse
|
2
|
Liu Y, Kannan K. Concentrations, Profiles, and Potential Sources of Liquid Crystal Monomers in Residential Indoor Dust from the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12400-12408. [PMID: 38967412 DOI: 10.1021/acs.est.4c03131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Liquid crystal monomers (LCMs) are biphenyl- or cyclohexane-based organic chemicals used in electronic digital displays, and several of them possess bioaccumulative and toxic properties. Little is known about their occurrence in indoor dust from the United States. We analyzed 60 LCMs in 104 residential indoor dust samples collected from 16 states across the United States. Forty-seven of 60 LCMs were detected in dust samples at a median ∑LCM concentration of 402 ng/g (range: not detected to 4300 ng/g). Trans-4-propylcyclohexyl trans,trans-4'-propylbicyclohexyl-4-carboxylate (MPVBC) and (trans,trans)-4-fluorophenyl 4'-pentyl-[1,1'-bi(cyclohexane)]-4-carboxylate (FPeBC) were frequently detected in dust samples. We investigated potential sources of LCMs in dust by determining concentrations and profiles of these chemicals in smartphone screens, desktop and laptop computer monitors, and displays of other electronic devices and found that profiles in smartphones matched closely with those found in dust. The calculated median daily intake of ∑LCM through dust ingestion was 1.19 ng/kg bw/d for children, whereas that through dermal absorption was 0.18 ng/kg bw/d for adults in the United States.
Collapse
Affiliation(s)
- Yuan Liu
- New York State Department of Health, Wadsworth Center, Empire State Plaza, Albany, New York 12237, United States
| | - Kurunthachalam Kannan
- New York State Department of Health, Wadsworth Center, Empire State Plaza, Albany, New York 12237, United States
- Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York 12237, United States
| |
Collapse
|
3
|
Pinto-Vidal FA, Novák J, Jílková SR, Rusina T, Vrana B, Melymuk L, Hilscherová K. Endocrine disrupting potential of total and bioaccessible extracts of dust from seven different types of indoor environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133778. [PMID: 38460255 DOI: 10.1016/j.jhazmat.2024.133778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/11/2024]
Abstract
Information on the indoor environment as a source of exposure with potential adverse health effects is mostly limited to a few pollutant groups and indoor types. This study provides a comprehensive toxicological profile of chemical mixtures associated with dust from various types of indoor environments, namely cars, houses, prefabricated apartments, kindergartens, offices, public spaces, and schools. Organic extracts of two different polarities and bioaccessible extracts mimicking the gastrointestinal conditions were prepared from two different particle size fractions of dust. These extracts were tested on a battery of human cell-based bioassays to assess endocrine disrupting potentials. Furthermore, 155 chemicals from different pollutant groups were measured and their relevance for the bioactivity was determined using concentration addition modelling. The exhaustive and bioaccessible extracts of dust from the different microenvironments interfered with aryl hydrocarbon receptor, estrogen, androgen, glucocorticoid, and thyroid hormone (TH) receptor signalling, and with TH transport. Noteably, bioaccessible extracts from offices and public spaces showed higher estrogenic effects than the organic solvent extracts. 114 of the 155 targeted chemicals were detectable, but the observed bioactivity could be only marginally explained by the detected chemicals. Diverse toxicity patterns across different microenvironments that people inhabit throughout their lifetime indicate potential health and developmental risks, especially for children. Limited data on the endocrine disrupting potency of relevant chemical classes, especially those deployed as replacements for legacy contaminants, requires further study.
Collapse
Affiliation(s)
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Simona Rozárka Jílková
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Tatsiana Rusina
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Branislav Vrana
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
4
|
Wang C, Li J, Li J, Li Y, Li C, Ren L. What can be done to protect toddlers from air pollution: Current evidence. J Pediatr Nurs 2024; 76:e50-e59. [PMID: 38278746 DOI: 10.1016/j.pedn.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
PROBLEM Toddlers are more prone to exposure to widely distributed air pollution and to health damage from it. However, systematic summaries of evidence on protective behaviors against air pollution for toddlers are lacking. OBJECTIVE To identify currently available evidence on protective behaviors against air pollution for toddlers. METHODS The literature retrieval was performed in selected databases, limited from 2002 to 2022. Studies meeting the following criteria were included and praised: 1) clinical practice guideline, systematic review, expert consensus, recommended practice, randomized control test (RCT) or cohort study published in Chinese or English; 2) studies reporting effects of protective behaviors against air pollution on toddlers' health outcomes or providing recommendation on these behaviors. The evidence in the included studies was extracted, synthesized and graded for evidence summary. RESULTS Studies (N = 19) were used for evidence summary development and 35 pieces of best evidence were synthesized, which were divided into three categories, including "avoiding or reducing air pollution generation", "removing existing air pollution", and "avoiding or reducing exposure to existing air pollution". CONCLUSIONS More evidence is needed to identify protective measures against outdoor air pollution and tobacco smoke. Research in the future should focus on the safety, effectiveness and feasibility of universal measures implemented in toddlers, and try to develop protective measures specific to toddlers which highlight their special nature. IMPLICATIONS The results of this study can help pediatric nurses provide individualized advice and assistance for toddlers and their families, and conduct research on the effectiveness of toddler-targeting protective behaviors more efficiently.
Collapse
Affiliation(s)
- Chongkun Wang
- School of Nursing, Peking University, Beijing, China
| | - Junying Li
- School of Nursing, Peking University, Beijing, China
| | - Jiahe Li
- School of Nursing, Peking University, Beijing, China
| | - Yuxuan Li
- School of Nursing, Peking University, Beijing, China
| | - Chunying Li
- Associate Research Librarian, Peking University Medical Library, Peking University, Beijing, China
| | - Lihua Ren
- Associate Researcher, School of Nursing, Peking University, Beijing, China.
| |
Collapse
|
5
|
Shi S, Feng Q, Zhang J, Wang X, Zhao L, Fan Y, Hu P, Wei P, Bu Q, Cao Z. Global patterns of human exposure to flame retardants indoors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169393. [PMID: 38104845 DOI: 10.1016/j.scitotenv.2023.169393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
To fill the knowledge gaps regarding the global patterns of human exposure to flame retardants (FRs) (i.e., brominated flame retardants (BFRs) and organophosphorus flame retardants (OPFRs)), data on the levels and distributions of FRs in external and internal exposure mediums, including indoor dust, indoor air, skin wipe, serum and urine, were summarized and analysed. Comparatively, FR levels were relatively higher in developed regions in all mediums, and significant positive correlations between FR contamination and economic development level were observed in indoor dust and air. Over time, the concentration of BFRs showed a slightly decreasing trend in all mediums worldwide, whereas OPFRs represented an upward tendency in some regions (e.g., the USA and China). The occurrence levels of FRs and their metabolites in all external and internal media were generally correlated, implying a mutual indicative role among them. Dermal absorption generally contributed >60% of the total exposure of most FR monomers, and dust ingestion was dominant for several low volatile compounds, while inhalation was found to be negligible. The high-risk FR monomers (BDE-47, BDE-99 and TCIPP) identified by external exposure assessment showed similarity to the major FRs or metabolites observed in internal exposure mediums, suggesting the feasibility of using these methods to characterize human exposure and the contribution of indoor exposure to the human burden of FRs. This review highlights the significant importance of exposure assessment based on multiple mediums for future studies.
Collapse
Affiliation(s)
- Shiyu Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qian Feng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jiayi Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaoyu Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yujuan Fan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengtuan Hu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengkun Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
6
|
Chen Z, Gao Y, Xia F, Bi C, Mo J. Formation kinetics of SVOC organic films and their impact on child exposure in indoor environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168970. [PMID: 38043806 DOI: 10.1016/j.scitotenv.2023.168970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
We conducted an SVOC mass transfer and child-exposure modeling analysis considering the combined sorption of multiple SVOCs containing DnBP, BBP, DEHP, DINP and DINCH in indoor environments. A mechanistic model was applied to describe the organic film formation, and a partition-coefficient-prediction model was originally developed for the realistic organic films. The characteristics of film formation on impermeable surfaces were examined based on three different assumptions: the widely-used constant Kns,im assumption, Koa assumption, and the proposed Kom assumption (predicted specifically for the realistic organic films in this study). After long-term SVOC sorption, the organic film reached increasing equilibrium gradually under constant Kns,im assumption. While under Koa and Kom assumption, organic films exhibited nearly linear increases on surfaces, the trends of which agreed well with field studies. However, the film thicknesses calculated under Kom assumption with larger film partition coefficients were approximately twice larger than those under Koa assumption. Meanwhile, Horizontal surfaces with higher deposition rates of particle-phase SVOCs exhibited larger velocities of film growth compared to vertical surfaces. Under the Kom assumption, exposures of hazardous SVOCs for a 3-year-old child increased by 87.5 %-198.7 % even with the weekly cleaning of indoor impermeable surfaces, carpet and cloth. This study is anticipated to provide valuable insights into the film-forming characteristics of multiple SVOCs and the accompanying significant health risks to human beings in indoor environments.
Collapse
Affiliation(s)
- Zhuo Chen
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Yilun Gao
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Fanxuan Xia
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Chenyang Bi
- Aerodyne Research Inc., Billerica, Massachusetts, 01821, USA
| | - Jinhan Mo
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China; Key Laboratory of Coastal Urban Resilient Infrastructures (Shenzhen University), Ministry of Education, Shenzhen 518060, China; Key Laboratory of Eco Planning & Green Building (Tsinghua University), Ministry of Education, Beijing 100084, China; State Key Laboratory of Subtropical Building and Urban Science, Guangzhou 510641, China.
| |
Collapse
|
7
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
8
|
Page J, Whaley P, Bellingham M, Birnbaum LS, Cavoski A, Fetherston Dilke D, Garside R, Harrad S, Kelly F, Kortenkamp A, Martin O, Stec A, Woolley T. A new consensus on reconciling fire safety with environmental & health impacts of chemical flame retardants. ENVIRONMENT INTERNATIONAL 2023; 173:107782. [PMID: 36858883 DOI: 10.1016/j.envint.2023.107782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Flame retardants are chemical substances that are intended to mitigate fire safety risks posed by a range of goods including furniture, electronics, and building insulation. There are growing concerns about their effectiveness in ensuring fire safety and the potential harms they pose to human health and the environment. In response to these concerns, on 13 June 2022, a roundtable of experts was convened by the UKRI Six Clean Air Strategic Priorities Fund programme 7. The meeting produced a Consensus Statement that summarises the issues around the use of flame retardants, laying out a series of policy recommendations that should lead to more effective fire safety measures and reduce the human and environmental health risks posed by these potentially toxic chemicals.
Collapse
Affiliation(s)
- Jamie Page
- The Cancer Prevention & Education Society, UK.
| | - Paul Whaley
- Lancaster Environment Centre, Lancaster University, UK.
| | - Michelle Bellingham
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, UK
| | - Linda S Birnbaum
- National Institute of Environmental Health Sciences and National Toxicology Program, Scholar in Residence, Nicholas School of the Environment, Duke University, USA
| | | | | | - Ruth Garside
- University of Exeter Medical School, University of Exeter, UK
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, UK
| | - Frank Kelly
- Faculty of Medicine, School of Public Health, Imperial College, London, UK
| | | | - Olwenn Martin
- Department of Arts and Sciences, University College London, UK
| | - Anna Stec
- Centre for Fire and Hazards Sciences, University of Central Lancashire, UK
| | - Tom Woolley
- Ecological Design Association Northern Ireland, NI, UK
| |
Collapse
|
9
|
Louis LM, Quirós-Alcalá L, Kuiper JR, Diette G, Hansel NN, McCormack MC, Meeker JD, Buckley JP. Variability and predictors of urinary organophosphate ester concentrations among school-aged children. ENVIRONMENTAL RESEARCH 2022; 212:113192. [PMID: 35346652 PMCID: PMC9232954 DOI: 10.1016/j.envres.2022.113192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate esters (OPE) are flame retardants and plasticizers used in a wide range of consumer products. Despite their widespread use, few studies have characterized pediatric exposures. We assessed variability and predictors of OPE exposures in a cohort panel study of 179 predominantly Black school-aged children with asthma in Baltimore City, MD. The study design included up to four seasonal week-long in-home study visits with urine sample collection on days 4 and 7 of each visit (nsamples = 618). We quantified concentrations of 9 urinary OPE biomarkers: bis(2-chloroethyl) phosphate (BCEtp), bis(1-chloro-2-propyl) phosphate, bis(1,3-dichloro-2-propyl) phosphate (BDCPP), di-benzyl phosphate (DBuP), di-benzyl phosphate, di-o-cresylphosphate, di-p-cresylphosphate (DPCP), di-(2-propylheptyl) phthalate (DPHP), 2,3,4,5-tetrabromo benzoic acid. We assessed potential predictors of exposure, including demographic factors, household characteristics, and cleaning behaviors. We calculated Spearman/tetrachoric correlations and intraclass correlation coefficients (ICCs) to examine within-week and seasonal intra-individual variability, respectively. We assessed OPE predictors using linear models for continuous log2 concentrations (BDCPP and DPHP) and logistic models for odds of detection (BCEtP, DBuP, DPCP), with generalized estimating equations to account for repeated measures. For all OPEs, we observed moderate within-week correlations (rs: 0.31-0.63) and weak to moderate seasonal reliability (ICC: 0.18-0.38). BDCPP and DPHP concentrations were higher in the summer compared to other seasons. DPHP concentrations were lower among males than females (%diff: -53.5%; 95% CI: -62.7, -42.0) and among participants spending >12 h/day indoors compared to ≤12 h (%diff: -20.7%; 95% CI: -32.2, -7.3). BDCPP concentrations were lower among children aged 8-10 years compared to 5-7 years (%diff: -39.1%; 95% CI: -55.9, -15.9) and higher among children riding in a vehicle on the day of sample collection compared to those who had not (%diff: 28.5%; 95% CI: 3.4, 59.8). This study is the first to characterize within-week and seasonal variability and identify predictors of OPE biomarkers among Black school-aged children, a historically understudied population.
Collapse
Affiliation(s)
- Lydia M Louis
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Lesliam Quirós-Alcalá
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan R Kuiper
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Gregory Diette
- Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Nadia N Hansel
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Meredith C McCormack
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - John D Meeker
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jessie P Buckley
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
10
|
Ho V, Pelland-St-Pierre L, Gravel S, Bouchard MF, Verner MA, Labrèche F. Endocrine disruptors: Challenges and future directions in epidemiologic research. ENVIRONMENTAL RESEARCH 2022; 204:111969. [PMID: 34461123 DOI: 10.1016/j.envres.2021.111969] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Public concern about the impact of endocrine disrupting chemicals (EDCs) on both humans and the environment is growing steadily. Epidemiologic research provides key information towards our understanding of the relationship between environmental exposures like EDCs and human health outcomes. Intended for researchers in disciplines complementary to epidemiology, this paper highlights the importance and challenges of epidemiologic research in order to present the key elements pertaining to the design and interpretation of an epidemiologic study on EDCs. The conduct of observational studies on EDCs derives from a thoughtful research question, which will help determine the subsequent methodological choices surrounding the careful selection of the study population (including the comparison group), the adequate ascertainment of exposure(s) and outcome(s) of interest, and the application of methodological and statistical concepts more specific to epidemiology. The interpretation of epidemiologic results may be arduous due to the latency occurring between EDC exposure and certain outcome(s), the complexity in capturing EDC exposure(s), and traditional methodological and statistical issues that also deserve consideration (e.g., confounding, effect modification, non-monotonic responses). Moving forward, we strongly advocate for an integrative approach of expertise in the fields of epidemiology, exposure science, risk assessment and toxicology to adequately study the health risks associated with EDCs while tackling their challenges.
Collapse
Affiliation(s)
- V Ho
- Health Innovation and Evaluation Hub, Université de Montréal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada; Department of Social and Preventive Medicine, School of Public Health (ESPUM), Université de Montréal, Montréal, Québec, Canada.
| | - L Pelland-St-Pierre
- Health Innovation and Evaluation Hub, Université de Montréal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada; Department of Social and Preventive Medicine, School of Public Health (ESPUM), Université de Montréal, Montréal, Québec, Canada; Centre de recherche en santé publique (CReSP), Université de Montréal and CIUSSS Centre-Sud, Montréal, Québec, Canada
| | - S Gravel
- . Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montréal, Québec, Canada
| | - M F Bouchard
- Department of Environmental and Occupational Health, School of Public Health (ESPUM), Université de Montréal, Montréal, Québec, Canada; CHU Sainte-Justine Hospital Research Center, Montréal, Québec, Canada
| | - M-A Verner
- Centre de recherche en santé publique (CReSP), Université de Montréal and CIUSSS Centre-Sud, Montréal, Québec, Canada; Department of Environmental and Occupational Health, School of Public Health (ESPUM), Université de Montréal, Montréal, Québec, Canada
| | - F Labrèche
- Centre de recherche en santé publique (CReSP), Université de Montréal and CIUSSS Centre-Sud, Montréal, Québec, Canada; . Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montréal, Québec, Canada; Department of Environmental and Occupational Health, School of Public Health (ESPUM), Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
11
|
Wan Y, North ML, Navaranjan G, Ellis AK, Siegel JA, Diamond ML. Indoor exposure to phthalates and polycyclic aromatic hydrocarbons (PAHs) to Canadian children: the Kingston allergy birth cohort. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:69-81. [PMID: 33854194 DOI: 10.1038/s41370-021-00310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Canadian children are widely exposed to phthalates and polycyclic aromatic hydrocarbons (PAHs) from indoor sources. Both sets of compounds have been implicated in allergic symptoms in children. OBJECTIVE We characterize concentrations of eight phthalates and 12 PAHs in floor dust from the bedrooms of 79 children enrolled in the Kingston Allergy Birth Cohort (KABC). METHOD Floor dust was collected from the bedrooms of 79 children who underwent skin prick testing for common allergens after their first birthday. Data were collected on activities, household, and building characteristics via questionnaire. RESULTS Diisononyl phthalate (DiNP) and phenanthrene were the dominant phthalate and PAH with median concentrations of 561 µg/g and 341 ng/g, respectively. Benzyl butyl phthalate (BzBP) and chrysene had the highest variations among all tested homes, ranging from 1-95% to 1-99%, respectively. SIGNIFICANCE Some phthalates were significantly associated with product and material use such as diethyl phthalate (DEP) with fragranced products and DiNP and DiDP with vinyl materials. Some PAHs were significantly associated with household characteristics, such as benzo[a]pyrene with smoking, and phenanthrene and fluoranthene with the presence of an attached garage. Socioeconomic status (SES) had positive and negative relationships with some concentrations and some explanatory factors. No significant increases in risk of atopy (positive skin prick test) was found as a function of phthalate or PAH dust concentrations.
Collapse
Affiliation(s)
- Yuchao Wan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Michelle L North
- Department of Biomedical and Molecular Science, Queen's University, Kingston, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Novartis Pharmaceuticals Canada, Dorval, QC, Canada
| | - Garthika Navaranjan
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Anne K Ellis
- Department of Biomedical and Molecular Science, Queen's University, Kingston, ON, Canada
- Department of Medicine, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston General Hospital, Kingston, ON, Canada
| | - Jeffrey A Siegel
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Miriam L Diamond
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
- Department of Earth Sciences, University of Toronto, Toronto, ON, Canada.
- School of Environment, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Aurisano N, Fantke P, Huang L, Jolliet O. Estimating mouthing exposure to chemicals in children's products. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:94-102. [PMID: 34188178 PMCID: PMC8770116 DOI: 10.1038/s41370-021-00354-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Existing models for estimating children's exposure to chemicals through mouthing currently depends on the availability of chemical- and material-specific experimental migration rates, only covering a few dozen chemicals. OBJECTIVE This study objective is hence to develop a mouthing exposure model to predict migration into saliva, mouthing exposure, and related health risk from a wide range of chemical-material combinations in children's products. METHODS We collected experimental data on chemical migration from different products into saliva for multiple substance groups and materials, identifying chemical concentration and diffusion coefficient as main properties of influence. To predict migration rates into saliva, we adapted a previously developed migration model for chemicals in food packaging materials. We also developed a regression model based on identified chemical and material properties. RESULTS Our migration predictions correlate well with experimental data (R2 = 0.85) and vary widely from 8 × 10-7 to 32.7 µg/10 cm2/min, with plasticizers in PVC showing the highest values. Related mouthing exposure doses vary across chemicals and materials from a median of 0.005 to 253 µg/kgBW/d. Finally, we combined exposure estimates with toxicity information to yield hazard quotients and identify chemicals of concern for average and upper bound mouthing behavior scenarios. SIGNIFICANCE The proposed model can be applied for predicting migration rates for hundreds of chemical-material combinations to support high-throughput screening.
Collapse
Affiliation(s)
- Nicolò Aurisano
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark.
| | - Lei Huang
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Olivier Jolliet
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| |
Collapse
|
13
|
Chen CY, Liu YH, Chieh CH, Chang WH. Fast and Environment-Friendly GC-MS Method for Eleven Organophosphorus Flame Retardants in Indoor Air, Dust, and Skin Wipes. TOXICS 2021; 9:toxics9120350. [PMID: 34941784 PMCID: PMC8707019 DOI: 10.3390/toxics9120350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
Organophosphorus based flame retardants (OPFRs) extensively used as alternatives to banned polybrominated diphenyl ethers and hexabromocyclododecane have been garnering interest due to the possibility that these compounds may have less significant impact on human and environmental health. Long pretreatment time, larger consumption of organic solvents, matrix interferents, and cross-contamination were found in previous studies while assessing OPFRs in indoor environments. We developed and optimized the extraction methods and simultaneous analysis of 11 OPFRs in indoor air, dust and skin wipe samples using the GC-MS approach. The proposed methods were validated using a standard addition approach, dust SRM 2585 and the real samples. Our procedures enabled the analyst to effectively limit coextracted interferences and simultaneous analytical methods of 11 target OPFRs for three matrices were achieved. The validation was performed according to standard guidelines (relative errors were identified by the analytes: −19% to 18% for indoor air, −11% to 14% for house dust, −15% to 16% for skin wipe). Good practices for quality assurance and quality control were well stated. The current high-Eco-scored methods could be categorized as “an excellent green analysis”. All analytes for the target OPFRs were detected in the real samples of indoor air, house dust and skin wipe collected from ten Taiwanese homes. Tris(2-butoxyethyl) phosphate, tris(1,3-dichloro-2-propyl)phosphate and tris(chloroisopropyl) phosphate were the most abundant OPFRs. Rapid, green and cost-effective GC-MS methods were developed and validated for the analysis of eleven OPFRs in indoor air, house dust and skin wipes.
Collapse
Affiliation(s)
- Chung-Yu Chen
- Department of Occupational Safety and Health, School of Safety and Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan;
- Occupation Environment and Food Safety Research Center, Chan Jung Christian University, Tainan 711, Taiwan
| | - Yu-Hsuan Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-H.L.); (C.-H.C.)
| | - Chia-Hui Chieh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-H.L.); (C.-H.C.)
| | - Wei-Hsiang Chang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-6-274-4412; Fax: +886-6-274-3748
| |
Collapse
|
14
|
Wang Y, Yang M, Wang F, Chen X, Wu M, Ma J. Organophosphate Esters in Indoor Environment and Metabolites in Human Urine Collected from a Shanghai University. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9212. [PMID: 34501802 PMCID: PMC8431728 DOI: 10.3390/ijerph18179212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022]
Abstract
In China, organophosphate esters (OPEs) are widely used in indoor environments. However, there is little information regarding the internal and external exposure of university students to OPEs. Therefore, in this study, nine OPEs and eight OPE metabolites (mOPEs) were measured in indoor dust and atmospheric PM2.5 samples from a university campus in Shanghai, as well as in urine samples collected from the university students. The total concentration of OPEs in the indoor dust in female dormitories (1420 ng/g) was approximately twice that in male dormitories (645 ng/g). In terms of indoor PM2.5, the highest OPE concentration was found in meeting rooms (105 ng/m3, on average), followed by chemical laboratories (51.2 ng/m3), dormitories (44.9 ng/m3), and offices (34.9 ng/m3). The total concentrations of the eight mOPEs ranged from 279 pg/mL to 14,000 pg/mL, with a geometric mean value of 1590 pg/mL. The estimated daily intake values based on the indoor dust and PM2.5 OPE samples (external exposure) were 1-2 orders of magnitude lower than that deduced from the concentration of urinary mOPEs (internal exposure), indicating that dermal contact, dust ingestion, and inhalation do not contribute significantly to OPE exposure in the general population. Moreover, additional exposure routes lead to the accumulation of OPEs in the human body.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (Y.W.); (M.Y.); (F.W.); (X.C.); (M.W.)
| |
Collapse
|
15
|
Bukowska B. Changes in Human Erythrocyte Exposed to Organophosphate Flame Retardants: Tris(2-chloroethyl) Phosphate and Tris(1-chloro-2-propyl) Phosphate. MATERIALS 2021; 14:ma14133675. [PMID: 34279245 PMCID: PMC8269848 DOI: 10.3390/ma14133675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022]
Abstract
Tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) phosphate (TCPP) are the main representatives of organophosphate flame retardants (OPFRs). The exposure of humans to OPFRs present in air, water, and food leads to their occurrence in the circulation. Thus far, no report has been published about the influence of these retardants on non-nucleated cells like mature erythrocytes. Therefore, the impact of TCEP and TCPP (in concentrations determined in human blood as well as potentially present in the human body after intoxication) on human erythrocytes was evaluated. In this study, the effect of TCEP and TCPP on the levels of methemoglobin, reduced glutathione (GHS), and reactive oxygen species (ROS), as well as the activity of antioxidative enzymes, was assessed. Moreover, morphological, hemolytic, and apoptotic alterations in red blood cells were examined. Erythrocytes were incubated for 24 h with retardants in concentrations ranging from 0.001 to 1000 μg/mL. This study has revealed that the tested flame retardants only in very high concentrations disturbed redox balance; increased ROS and methemoglobin levels; and induced morphological changes, hemolysis, and eryptosis in the studied cells. The tested compounds have not changed the activity of the antioxidative system in erythrocytes. TCPP exhibited a stronger oxidative, eryptotic, and hemolytic potential than TCEP in human red blood cells. Comparison of these findings with hitherto published data confirms a much lower toxicity of OPFRs in comparison with brominated flame retardants.
Collapse
Affiliation(s)
- Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland
| |
Collapse
|
16
|
Uncovering Evidence for Endocrine-Disrupting Chemicals That Elicit Differential Susceptibility through Gene-Environment Interactions. TOXICS 2021; 9:toxics9040077. [PMID: 33917455 PMCID: PMC8067468 DOI: 10.3390/toxics9040077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) is linked to myriad disorders, characterized by the disruption of the complex endocrine signaling pathways that govern development, physiology, and even behavior across the entire body. The mechanisms of endocrine disruption involve a complex system of pathways that communicate across the body to stimulate specific receptors that bind DNA and regulate the expression of a suite of genes. These mechanisms, including gene regulation, DNA binding, and protein binding, can be tied to differences in individual susceptibility across a genetically diverse population. In this review, we posit that EDCs causing such differential responses may be identified by looking for a signal of population variability after exposure. We begin by summarizing how the biology of EDCs has implications for genetically diverse populations. We then describe how gene-environment interactions (GxE) across the complex pathways of endocrine signaling could lead to differences in susceptibility. We survey examples in the literature of individual susceptibility differences to EDCs, pointing to a need for research in this area, especially regarding the exceedingly complex thyroid pathway. Following a discussion of experimental designs to better identify and study GxE across EDCs, we present a case study of a high-throughput screening signal of putative GxE within known endocrine disruptors. We conclude with a call for further, deeper analysis of the EDCs, particularly the thyroid disruptors, to identify if these chemicals participate in GxE leading to differences in susceptibility.
Collapse
|