1
|
Yin Z, Zhang M, Jing C, Cai Y. Organic matter in geothermal springs and its association with the microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176775. [PMID: 39378948 DOI: 10.1016/j.scitotenv.2024.176775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Organic matter (OM) plays an important role in the biogeochemical cycles of carbon, nitrogen, and other elements, shaping the structure of the microbiome and vice versa. However, the molecular composition of OM and its impact on the microbial community in terrestrial geothermal environments remain unclear. In this study, we characterized the OM in water and sediment from a typical geothermal field using ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry. By combining high-throughput amplicon sequencing and multivariate analyses, we deciphered the association between OM components and microbial community. A surprisingly high chemodiversity of OM was observed in the waters (11,088 compounds) and sediments (7772 compounds) in geothermal springs. Sulfur-containing organic compounds, a characteristic molecular signature of geothermal springs, accounted for 21 % ± 5 % in waters and 33 % ± 4 % in sediments. Multivariate analyses revealed that both labile and recalcitrant fractions of OM (e.g., carbohydrates intensity and tannins chemodiversity) influenced the structure and function of the microbial community. Co-occurrence networks showed that Proteobacteria and Crenarchaeota accounted for most of the connections with OM in waters (33 % and 15 %, respectively) and sediments (15 % and 12 %, respectively), highlighting their key roles in carbon cycling. This study expands our understanding of the molecular compositions of OM in geothermal springs and highlights its potentially important role in global climate change through microbial carbon cycling.
Collapse
Affiliation(s)
- Zhipeng Yin
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Min Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Cai
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
2
|
Zhang H, Wang Z, Dai Q, Ni J, Cheng Y, Wei R, Chen W. The heterogenous molecular characteristics of biomass-pyrogenic smoke dissolved organic matters (BPS-DOMs) binding with PAHs: Novel insights from combined analysis of FT-ICR MS and fluorescence variation. JOURNAL OF HAZARDOUS MATERIALS 2024; 482:136547. [PMID: 39577283 DOI: 10.1016/j.jhazmat.2024.136547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Biomass-pyrogenic smoke dissolved organic matter (BPS-DOM) can co-deposit with polycyclic aromatic hydrocarbons (PAHs), thereby altering their environmental behavior and fate in surface environments. However, the heterogeneous molecular characteristics of BPS-DOM binding with PAHs remain unclear. This study systematically elucidates the binding characteristics of PAHs (phenanthrene and pyrene), with various molecular compositions in BPS-DOM, utilizing FT-ICR MS and fluorescence variation analysis. CHO compounds in BPS-DOM, characterized by high aromaticity and abundant CO bonds, significantly enhance PAHs binding by promoting π-π electron donor-acceptor interactions. In contrast, CHON compounds with higher aliphaticity inhibit pyrene binding by competing for binding sites on BPS-DOM. Furthermore, the binding sequence of different fluorescent molecules follows the order of CHO→CHOS→CHON for phenanthrene and CHO→CHON→CHOS for pyrene. This was primarily due to the larger conjugated aromatic structures of CHO compounds, which provide stronger π-π interaction sites for PAHs binding. The difference in binding sequences between phenanthrene and pyrene is primarily attributed to phenanthrene's reliance on π-π electron donor-acceptor interactions induced by -SO and -N = O, while pyrene binding depended on π-π interactions driven by larger conjugated aromatic structures. These results provide an important theoretical foundation for further understanding the molecular-level interactions between BPS-DOM and PAHs.
Collapse
Affiliation(s)
- Huiying Zhang
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Zhigeng Wang
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Qin Dai
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jinzhi Ni
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Yue Cheng
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ran Wei
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Weifeng Chen
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| |
Collapse
|
3
|
Wang L, Gao J, Wu WM, Luo J, Bank MS, Koelmans AA, Boland JJ, Hou D. Rapid Generation of Microplastics and Plastic-Derived Dissolved Organic Matter from Food Packaging Films under Simulated Aging Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20147-20159. [PMID: 39467053 DOI: 10.1021/acs.est.4c05504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In this study, we show that low-density polyethylene films, a prevalent choice for food packaging in everyday life, generated high numbers of microplastics (MPs) and hundreds to thousands of plastic-derived dissolved organic matter (DOM) substances under simulated food preparation and storage conditions. Specifically, the plastic film generated 66-2034 MPs/cm2 (size range 10-5000 μm) under simulated aging conditions involving microwave irradiation, heating, steaming, UV irradiation, refrigeration, freezing, and freeze-thaw cycling alongside contact with water, which were 15-453 times that of the control (plastic film immersed in water without aging). We also noticed a substantial release of plastic-derived DOM. Using ultrahigh-resolution mass spectrometry, we identified 321-1414 analytes with molecular weights ranging from 200 to 800 Da, representing plastic-derived DOM containing C, H, and O. The DOM substances included both degradation products of polyethylene (including oxidized forms of oligomers) and toxic plastic additives. Interestingly, although no apparent oxidation was observed for the plastic film under aging conditions, plastic-derived DOM was more oxidized (average O/C increased by 27-46%) following aging with a higher state of carbon saturation and higher polarity. These findings highlight the future need to assess risks associated with MP and DOM release from plastic wraps.
Collapse
Affiliation(s)
- Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jing Gao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305-4020, United States
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States
| | | | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
| | - John J Boland
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Charamba LVC, Houska T, Kaiser K, Knorr KH, Krüger S, Krause T, Chen H, Krám P, Hruška J, Kalbitz K. Tracing sources of dissolved organic matter along the terrestrial-aquatic continuum in the Ore Mountains, Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173807. [PMID: 38852873 DOI: 10.1016/j.scitotenv.2024.173807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
There is growing concern about the rising levels of dissolved organic matter (DOM) in surface waters across the Northern hemisphere. However, only limited research has been conducted to unveil its precise origin. Compositional changes along terrestrial-aquatic pathways can help determine the terrestrial sources of DOM in streams. Stream water, soil water and soil horizons were sampled at four sites representing typical settings within a forested catchment in the Ore Mountains (Erzgebirge, Germany) from winter 2020 to spring 2022. The samples were analyzed using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The resulting data were successfully subjected to semi-automatic processing of the molecular composition of DOM, reaching a percentage of identified peaks up to 98 %. Principal component analysis (PCA) and cluster analyses were carried out to identify distinct differences between DOM from the potential sources and in the streams. According to the PCA, organic soil horizons, soil water, and stream water samples could be clearly distinguished. Cluster analysis revealed that soil water DOM at all depths of Peats and deeper horizons of the Peaty Gleysols contributed the most to DOM in the stream section dominated by organic soils. In areas dominated by mineral soils, stream DOM resembled the DOM from the deeper mineral horizons of Cambisols and Podzols. Overall, our results suggested that most of the DOM exported from the catchment was derived from deeper mineral soil horizons, with little contribution of DOM derived from organic soils. Therefore, DOM fingerprint analysis of in-situ soil water proved to be a promising approach for tracing back the main sources of stream water DOM.
Collapse
Affiliation(s)
- Livia V C Charamba
- Institute of Soil Science and Site Ecology, TUD Dresden University of Technology, Tharandt, Germany.
| | - Tobias Houska
- Institute of Soil Science and Site Ecology, TUD Dresden University of Technology, Tharandt, Germany; Department of Landscape Ecology and Resource Management, University of Gießen, Gießen, Germany
| | - Klaus Kaiser
- Soil Science and Soil Protection, Martin Luther University Halle Wittenberg, Halle (Saale), Germany
| | - Klaus-Holger Knorr
- Institute for Landscape Ecology, Ecohydrology and Biogeochemistry Group, University of Münster, Münster, Germany
| | - Stephan Krüger
- Institute of Soil Science and Site Ecology, TUD Dresden University of Technology, Tharandt, Germany
| | - Tobias Krause
- Institute of Soil Science and Site Ecology, TUD Dresden University of Technology, Tharandt, Germany
| | - Huan Chen
- Department of Environmental Engineering and Earth Science, Clemson University, SC 29634, United States
| | - Pavel Krám
- Czech Geological Survey, Prague, Czech Republic; Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jakub Hruška
- Czech Geological Survey, Prague, Czech Republic; Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Karsten Kalbitz
- Institute of Soil Science and Site Ecology, TUD Dresden University of Technology, Tharandt, Germany
| |
Collapse
|
5
|
Shen Q, Zhao T, Wawryk NJP, Chau KNM, Zhang D, Carroll K, Chu W, Huan T, Li XF. Nontargeted Analysis of Reactive Nitrogenous Compounds in Suwannee River Standard Reference Materials and Authentic River Water Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15807-15815. [PMID: 39163399 PMCID: PMC11375767 DOI: 10.1021/acs.est.4c05165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Concerns over toxic nitrogenous disinfection byproducts (N-DBPs) necessitate identifying their precursors in source water. Natural organic amino compounds are known precursors to N-DBPs. Three Suwannee River (SR) standard reference materials (SRMs), humic acids (HA), fulvic acids (FA), and natural organic matter (NOM), are commonly used to study DBP formation, but the chemical makeup of amino compounds in SRSRMs remains largely unknown. To address this, we combined stable hydrogen/deuterium isotope labeling, HDPairFinder bioinformatics, and nontargeted high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) to characterize these compounds in SRSRMs. This method classifies reactive amines, provides accurate masses and MS/MS spectra, and quantifies intensities. We identified 2707 high-quality features with primary and/or secondary amines in SRSRMs and 75% of them having an m/z < 300. Across all three SRSRMs, 327 amino features were detected, while 856, 794, and 200 unique features were found in SRNOM, SRHA, and SRFA, respectively. In North Saskatchewan River (NSR) samples, a total of 6449 amino features were detected, 818 of them matched those in SRSRMs, and 87% of them were different between the two rivers. Using chemical standards, we confirmed 10 compounds and tentatively identified 5 more. This study highlights similarities and differences in reactive N-precursors in SRSRMs and local river water, enhancing the understanding of geo-differences in reactive N-precursors in different source waters.
Collapse
Affiliation(s)
- Qiming Shen
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Tingting Zhao
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Nicholas J P Wawryk
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - K N Minh Chau
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Di Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kristin Carroll
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tao Huan
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
6
|
Potemkin AA, Proskurnin MA, Volkov DS. Noise Filtering Algorithm Using Gaussian Mixture Models for High-Resolution Mass Spectra of Natural Organic Matter. Anal Chem 2024; 96:5455-5461. [PMID: 38530650 DOI: 10.1021/acs.analchem.3c05453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
High-resolution mass spectra of natural organic matter (NOM) contain a large number of noise signals. These signals interfere with the correct molecular composition estimation during nontargeted analysis because formula-assignment programs find empirical formulas for such peaks as well. Previously proposed noise filtering methods that utilize the profile of the intensity distribution of mass spectrum peaks rely on a histogram to calculate the intensity threshold value. However, the histogram profile can vary depending on the user settings. In addition, these algorithms are not automated, so they are handled manually. To overcome the mentioned drawbacks, we propose a new algorithm for noise filtering in mass spectra. This filter is based on Gaussian Mixture Models (GMMs), a machine learning method to find the intensity threshold value. The algorithm is completely data-driven and eliminates the need to work with a histogram. It has no customizable parameters and automatically determines the noise level for each individual mass spectrum. The algorithm performance was tested on mass spectra of natural organic matter obtained by averaging a different number of microscans (transients), and the results were compared with other noise filters proposed in the literature. Finally, the effect of this noise filtering approach on the fraction of peaks with assigned formulas was investigated. It was shown that there is always an increase in the identification rate, but the magnitude of the effect changes with the number of microscans averaged. The increase can be as high as 15%.
Collapse
Affiliation(s)
- Alexander A Potemkin
- Chemistry Department of M.V. Lomonosov Moscow State University, Leninskie Gory, 1-3, GSP-1, Moscow 119991, Russia
| | - Mikhail A Proskurnin
- Chemistry Department of M.V. Lomonosov Moscow State University, Leninskie Gory, 1-3, GSP-1, Moscow 119991, Russia
| | - Dmitry S Volkov
- Chemistry Department of M.V. Lomonosov Moscow State University, Leninskie Gory, 1-3, GSP-1, Moscow 119991, Russia
| |
Collapse
|
7
|
Yu W, Yang H, Chen J, Liao P, Wu J, Jiang L, Guo W. Molecular insights into the microbial degradation of sediment-derived DOM in a macrophyte-dominated lake under aerobic and hypoxic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170257. [PMID: 38253098 DOI: 10.1016/j.scitotenv.2024.170257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
The mineralization of dissolved organic matter (DOM) in sediments is an important factor leading to the eutrophication of macrophyte-dominated lakes. However, the changes in the molecular characteristics of sediment-derived DOM during microbial degradation in macrophyte-dominated lakes are not well understood. In this study, the microbial degradation process of sediment-derived DOM in Lake Caohai under aerobic and hypoxic conditions was investigated using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and metagenomics. The results revealed that the microbial degradation of sediment-derived DOM in macrophyte-dominated lakes was more intense under aerobic conditions. The microorganisms mainly metabolized the protein-like substances in the macrophyte-dominated lakes, and the carbohydrate-active enzyme genes and protein/lipid-like degradation genes played key roles in sediment-derived DOM degradation. Organic compounds with high H/C ratios such as lipids, carbohydrates, and protein/lipid-like compounds were preferentially removed by microorganisms during microbial degradation. Meanwhile, there was an increase in the abundance of organic molecular formula with a high aromaticity such as tannins and unsaturated hydrocarbons with low molecular weight and low double bond equivalent. In addition, aerobic/hypoxic environments can alter microbial metabolic pathways of sediment-derived DOM by affecting the relative abundance of microbial communities (e.g., Gemmatimonadetes and Acidobacteria) and functional genes (e.g., ABC.PE.P1 and ABC.PE.P) in macrophyte-dominated lakes. The abundances of lipids, unsaturated hydrocarbons, and protein compounds in aerobic environments decreased by 58 %, 50 %, and 44 %, respectively, compared to in hypoxic environments under microbial degradation. The results of this study deepen our understanding of DOM biodegradation in macrophyte-dominated lakes under different redox environments and provide new insights into nutrients releases from sediment and continuing eutrophication in macrophyte-dominated lakes.
Collapse
Affiliation(s)
- Wei Yu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; School of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Haiquan Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
| | - Jingan Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Peng Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jiaxi Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Lujia Jiang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, PR China
| | - Wen Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| |
Collapse
|
8
|
Hu W, Niu XZ, Chen H, Ye B, Liang JK, Guan YT, Wu QY. Molecular insight of dissolved organic matter and chlorinated disinfection by-products in reclaimed water during chlorination with permanganate preoxidation. CHEMOSPHERE 2024; 349:140807. [PMID: 38029937 DOI: 10.1016/j.chemosphere.2023.140807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/09/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Permanganate is a common preoxidant applied in water treatment to remove organic pollutants and to reduce the formation of disinfection by-products. However, the effect of permanganate preoxidation on the transformation of dissolved effluent organic matter (dEfOM) and on the formation of unknown chlorinated disinfection by-products (Cl-DBPs) during chlorination remains unknown at molecular level. In this work, the molecular changes of dEfOM during permanganate preoxidation and subsequent chlorination were characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Permanganate preoxidation was found to decrease the DBE (double bond equivalent) and AImod (modified aromaticity index) of the dEfOM. The identity and fate of over 400 unknown Cl-DBPs during KMnO4-chlorine treatment were investigated. Most Cl-DBPs and the precursors were found to be highly unsaturated aliphatic and phenolic compounds. The Cl-DBPs precursors with lower H/C and lower O/C were preferentially removed by permanganate preoxidation. Additionally, permanganate preoxidation decreased the number of unknown Cl-DBPs by 30% and intensity of unknown Cl-DBPs by 25%. One-chlorine-containing DBPs were the major Cl-DBPs and had more CH2 groups and higher DBEw than Cl-DBPs containing two and three chlorine atoms. 60% of the Cl-DBPs formation was attributed to substitution reactions (i.e., +Cl-H, +2Cl-2H, +3Cl-3H, +ClO-H, +Cl2O3-2H). This work provides detailed molecular level information on the efficacy of permanganate preoxidation on the control of overall Cl-DBPs formation during chlorination.
Collapse
Affiliation(s)
- Wei Hu
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xi-Zhi Niu
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Huan Chen
- Department of Environmental Engineering and Earth Science, Clemson University, SC, 29634, USA
| | - Bei Ye
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jun-Kun Liang
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yun-Tao Guan
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Qian-Yuan Wu
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Wu DX, Lu Y, Ye B, Liang JK, Wang WL, Du Y, Wu QY. Phototransformation of Brominated Disinfection Byproducts and Toxicity Elimination in Sunlit-Ozonated Reclaimed Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1700-1708. [PMID: 38154042 DOI: 10.1021/acs.est.3c06972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Ozonation is universally used during water treatment but can form hazardous brominated disinfection byproducts (Br-DBPs). While sunlight exposure is advised to reduce the risk of Br-DBPs, their phototransformation pathways remain insufficiently understood. Here, sunlight irradiation was found to reduce adsorbable organic bromine by 63%. Applying high-resolution mass spectrometry, the study investigated transformations of dissolved organic matter in sunlit-ozonated reclaimed water, revealing the number and abundance of assigned formulas decreased after irradiation. The Br-DBPs with O/C < 0.6 and MW > 400 Da were decreased or removed after irradiation, with the majority being CHOBr compounds. The peak intensity reduction ratio of CHOBr compounds correlated positively with double bound equivalent minus oxygen ratios but negatively with O/C, suggesting that photo-susceptible CHOBr compounds were highly unsaturated. Mass difference analysis revealed that the photodegradation pathways were mainly oxidation aligned with debromination. Three typical CHOBr molecular structures were resolved, and their photoproducts were proposed. Toxicity estimates indicated decreased toxicity in these photoproducts compared to their parent compounds, in line with experimentally determined values. Our proposed phototransformation pathways for Br-DBPs enhance our comprehension of their degradation and irradiation-induced toxicity reduction in reclaimed water, further illuminating their transformation under sunlight in widespread environmental scenarios.
Collapse
Affiliation(s)
- De-Xiu Wu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Yao Lu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, People's Republic of China
| | - Bei Ye
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 6158540, Japan
| | - Jun-Kun Liang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Wen-Long Wang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Qian-Yuan Wu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
10
|
Chen H, Xie J, Huang C, Liang Y, Zhang Y, Zhao X, Ling Y, Wang L, Zheng Q, Yang X. Database and review of disinfection by-products since 1974: Constituent elements, molecular weights, and structures. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132792. [PMID: 37856956 DOI: 10.1016/j.jhazmat.2023.132792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Since trihalomethanes were discovered in 1974, disinfection by-products (DBPs) in drinking water have attracted extensive attention. In 2011, more than 600 known DBPs were compiled; however, newly reported DBPs have not been integrated. The rapid development of mass spectrometry has led to a significant increase in the number of DBPs, therefore, there is a need to develop a database of all DBPs and their properties. Herein, a database including 6310 DBPs (651 confirmed, 1478 identified and 4142 proposed) reported between 1974 and 2022 was constructed and made available for public use at https://dbps.com.cn/main. This database can be a tool in screening new DBPs, comprehensively reviewing, and developing predictive models. In this paper, to demonstrate the functions of the database and provide useful information for this area, the origin of the collected DBPs was presented, and some basic information, including elemental composition, molecular weight, functional groups, and carbon frameworks, were comparatively analyzed. The results showed that the proportion of DBPs verified by standard compounds and frequently detected in real water is less than 7.0%, and most of DBPs remained to be identified. Approximately 88% of DBPs contain halogens, and brominated -DBPs occupied a similar ratio to chlorinated -DBPs in real water. Acids were the main functional groups of DBPs, aliphatic and aromatic compounds are the two major carbon frameworks, and the molecular weights of most DBPs ranged from 200 to 400 Da. In addition, 4142 proposed DBPs as obtained using high-resolution mass spectrometry, were characterized based on the modified van Krevelen diagram and adjusted indexes with halogens. Most of the proposed DBPs featured lignin and tannin structures, and phenolic/highly unsaturated DBPs account for the majority.
Collapse
Affiliation(s)
- Hechao Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Jidao Xie
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430078, China
| | | | - Yining Liang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Yulin Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Xiaoyan Zhao
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Yuhua Ling
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Lei Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
| | - Xiaoqiu Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
11
|
Yao C, Zhang J, Gao L, Jin C, Wang S, Jiang W, Liang H, Feng P, Li X, Ma L, Wei H, Sun C. Enhancing sodium percarbonate catalytic wet peroxide oxidation with artificial intelligence-optimized swirl flow: Ni single atom sites on carbon nanotubes for improved reactivity and silicon resistance. CHEMOSPHERE 2024; 346:140606. [PMID: 37939928 DOI: 10.1016/j.chemosphere.2023.140606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
H2O2 is widely used in the treatment of refractory organic pollutants.However, due to its explosive and corrosive chemical characteristics, H2O2 will bring great safety risks and troubles in transportation.So we chose sodium percarbonate(SPC) to be used in catalytic wet peroxide oxidation enhanced by swirl flow(SF-CWPO) and we designed carbon nanotubes with Ni single atom sites(Ni-NCNTs/AC) to activate SPC to treat an m-cresol wastewater containing Si.Meanwhile, artificial intelligence which used Artificial neural network (ANN) was used to optimize the conditions.Under the conditions of pH = 9.27, reaction time of 8.91 min, m-cresol concentration is 59.09 mg L-1, SPC dosage is 2.80 g L-1 and Na2SiO3·9H2O dosage is 77.27 mg L-1, the degradation rate of total organic carbon(TOC) and m-cresol reaches 94.37% and 100%, respectively.Finally, the applicability of Ni-NCNTs/AC-SPC-SF-CWPO technology was evaluated in a wastewater system of a sewage treatment enterprise and Fourier transform ion cyclotron resonance mass spectrum(FT-ICR MS) analysis and chemical oxygen demand(COD) analysis showed the great ability of Ni-NCNTs/AC-SPC-SF-CWPO technology to treat wastewater.It is believed that this paper is of great significance to the design and construction of the in-depth research and industrial application of SF-CWPO.
Collapse
Affiliation(s)
- Chenxing Yao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Liansong Gao
- Shenyang Jianzhu University, Shenyang, 110168, China
| | - Chengyu Jin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengzhe Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenshuo Jiang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanrui Liang
- Guangxi Normal University, Guilin, 541006, China
| | - Pan Feng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xianru Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lei Ma
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Chenglin Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
12
|
Wu S, Fujii M, Yang X, Fu QL. Characterization of halogenated organic compounds by the Fourier transform ion cyclotron resonance mass spectrometry: A critical review. WATER RESEARCH 2023; 246:120694. [PMID: 37832250 DOI: 10.1016/j.watres.2023.120694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Halogenated organic compounds (HOCs), widely present in various environments, are generally formed by natural processes (e.g., photochemical halogenation) and anthropogenic activities (e.g., water disinfection and anthropogenic discharge of HOCs), posing health and environmental risks. Therefore, in-depth knowledge of the molecular composition, transformation, and fate of HOCs is crucial to regulate and reduce their formation. Because of the extremely complex nature of HOCs and their precursors, the molecular composition of HOCs remains largely unknown. The Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) offers the most powerful resolution and mass accuracy for the simultaneous molecular-level characterization of HOCs and their precursors. However, there is still a paucity of reviews regarding the comprehensive characterization of HOCs by FT-ICR MS. Based on the FT-ICR MS, the formation mechanism, sample pretreatment, and analysis methods were summarized for two typical HOCs classes, namely halogenated disinfection byproducts and per- and polyfluoroalkyl substances in this review. Moreover, we have highlighted data analysis methods and some typical applications of HOCs using FT-ICR MS and proposed suggestions for current issues. This review will deepen our understanding of the chemical characterization of HOCs and their formation mechanisms and transformation at the molecular level in aquatic systems, facilitating the application of the state-of-the-art FT-ICR MS in environmental and geochemical research.
Collapse
Affiliation(s)
- Shixi Wu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-Ku, Tokyo 152-8550, Japan
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Qing-Long Fu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
13
|
Chen H, Wu J, Li Y, Zhang Y, Zhang Q, Xu G, Yang X. From mass to structure: Modified van Krevelen diagram and adjusted indexes for high-resolution mass data of organic matter. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9622. [PMID: 37706429 DOI: 10.1002/rcm.9622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023]
Affiliation(s)
- Hechao Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, China
| | - Jing Wu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, China
| | - Yaofei Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, China
| | - Yulin Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, China
| | - Qiwei Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, China
| | - Guiping Xu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, China
| | - Xiaoqiu Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, China
| |
Collapse
|
14
|
Usman M, Kuckelkorn J, Kämpfe A, Zwiener C, Wintgens TA, Linnemann V. Identification of disinfection by-products (DBP) in thermal water swimming pools applying non-target screening by LC-/GC-HRMS. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130981. [PMID: 36801715 DOI: 10.1016/j.jhazmat.2023.130981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The discovery of new disinfection by-products (DBPs) is still a rarely investigated research area in past studies. In particular, compared to freshwater pools, therapeutic pools with their unique chemical composition have rarely been investigated for novel DBPs. Here we have developed a semi-automated workflow that combines data from target and non-target screening, calculated and measured toxicities into a heat map using hierarchical clustering to assess the pool's overall potential chemical risk. In addition, we used complementary analytical techniques such as positive and negative chemical ionization to demonstrate how novel DBPs can be better identified in future studies. We identified two representatives of the haloketones (pentachloroacetone, and pentabromoacetone) and tribromo furoic acid detected for the first time in swimming pools. Non-target screening combined with target analysis and toxicity assessment may help to define risk-based monitoring strategies in the future, as required by regulatory frameworks for swimming pool operations worldwide.
Collapse
Affiliation(s)
- Muhammad Usman
- Institute of Environmental Engineering, Environmental Analytical Laboratory, RWTH Aachen University, Mies-van-der-Rohe-Str.1, 52056 Aachen, Germany
| | - Jochen Kuckelkorn
- German Environment Agency, Toxicology of Drinking Water and Swimming Pool Water, Heinrich-Heine-Str. 12, 08645 Bad Elster, Germany
| | - Alexander Kämpfe
- German Environment Agency, Swimming Pool Water, Chemical Analytics, Heinrich-Heine-Str. 12, 08645 Bad Elster, Germany
| | - Christian Zwiener
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Thomas A Wintgens
- Institute of Environmental Engineering, Environmental Analytical Laboratory, RWTH Aachen University, Mies-van-der-Rohe-Str.1, 52056 Aachen, Germany
| | - Volker Linnemann
- Institute of Environmental Engineering, Environmental Analytical Laboratory, RWTH Aachen University, Mies-van-der-Rohe-Str.1, 52056 Aachen, Germany.
| |
Collapse
|
15
|
Xu S, Wu Y, Bu L, Deng L, Li G, Zhou S, Shi Z. Molecular insights towards changing behaviors of organic matter in a full-scale water treatment plant using FTICR-MS. CHEMOSPHERE 2023; 330:138731. [PMID: 37086984 DOI: 10.1016/j.chemosphere.2023.138731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
The changing behavior of organic matter in a full-scale water treatment process was characterized based on the three-dimensional excitation-emission matrix (3D-EEM) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Polyaluminum chloride (PAC) as a coagulant can help to effectively remove soluble microbial by-products-like and aromatic protein-like substances during coagulation and sedimentation, corresponding to tannin and coagulated aromatic regions. The leakage of soluble microbial products during sand filtration resulted in an increase in the intensity of biomass-like regions. Nitrogen-containing compounds have higher weighted average value of double bond equivalents (DBEw) and the modified aromaticity index (AImod-w) than nitrogen-free compounds. Water treatment can preferentially remove unsaturated nitrogen-containing compounds with more O atoms and higher-oxidation-state carbon. The dissolved organic carbon (DOC) and UV254 were not correlated well with changes in nitrogen-containing compounds due to the preferential removal of nitrogen-containing compounds. This study revealed the specificity of organic matter removal during water treatment, and it was helpful in optimizing treatment processes for various raw water to ensure water quality.
Collapse
Affiliation(s)
- Shunkai Xu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China; Beijing General Municipal Engineering Design & Research Institute Co. Ltd., Beijing 100082, China
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Lin Deng
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Guangchao Li
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Zhou Shi
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
16
|
Chen X, Wu Y, Zhang W, Bu L, Zhu S, Sheng D, Zhou S, Crittenden JC. Insight into the mechanisms of trichloronitromethane formation by vacuum ultraviolet: QSAR model and FTICR-MS analysis. J Environ Sci (China) 2023; 125:215-222. [PMID: 36375907 DOI: 10.1016/j.jes.2021.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 06/16/2023]
Abstract
Vacuum ultraviolet (VUV) photolysis is recognized as an environmental-friendly treatment process. Nitrate (NO3-) and natural organic matter (NOM) are widely present in water source. We investigated trichloronitromethane (TCNM) formation during chlorination after VUV photolysis, because TCNM is an unregulated highly toxic disinfection byproduct. In this study: (1) we found reactive nitrogen species that is generated under VUV photolysis of NO3- react with organic matter to form nitrogen-containing compounds and subsequently form TCNM during chlorination; (2) we found the mere presence of 0.1 mmol/L NO3- can result in the formation of up to 63.96 µg/L TCNM; (3) we found the changes in pH (6.0-8.0), chloride (1-4 mmol/L), and bicarbonate (1-4 mmol/L) cannot effectively diminish TCNM formation; and, (4) we established the quantitative structure-activity relationship (QSAR) model, which indicated a linear relationship between TCNM formation and the Hammett constant (σ) of model compounds; and, (5) we characterized TCNM precursors in water matrix after VUV photolysis and found 1161 much more nitrogen-containing compounds with higher aromaticity were generated. Overall, this study indicates more attention should be paid to reducing the formation risk of TCNM when applying VUV photolysis process at scale.
Collapse
Affiliation(s)
- Xiaojun Chen
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Weiqiu Zhang
- School of Civil and Environmental Engineering and the Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Georgia 30332, USA
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Shumin Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Da Sheng
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - John C Crittenden
- School of Civil and Environmental Engineering and the Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Georgia 30332, USA
| |
Collapse
|
17
|
Shen J, Song Y, Cheng C, Duan F, Liu C, Chai Y, Wang S, Xiong Q, Wu J. Spectroscopic and compositional profiles of dissolved organic matters in urban snow from 2019 to 2021: Focusing on pollution features identification. WATER RESEARCH 2023; 229:119408. [PMID: 36462254 DOI: 10.1016/j.watres.2022.119408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Snow owns stronger adsorption capacity for organic pollutants compared with rain. Huge amounts of anthropogenic dissolved organic matters (DOMs) in the atmosphere may enter the water environment with urban snow and increase water pollution risk. Extracting stable pollution features of urban snow is conducive to identifying the urban snow pollution from the water environment. Herein, we systematically explored the spectroscopic and compositional profiles of urban snow in Beijing from three snow events by multiple analytical tools and extracted stable pollution features of urban snow for the first time. Results showed that conventional pollutants with high concentration were detected in urban snow. The fluorescence signals of humic-like and some protein-like materials, the molecular weight distributions of chromophoric DOM at 254 nm and humic-like materials, and 172 kinds of lignin-like molecular formulas were extracted as stable features for urban snow. These stable features of urban snow laid the foundation for the identification of urban snow pollution and the analysis of the impact mechanisms of atmospheric pollution sources on the water environment.
Collapse
Affiliation(s)
- Jian Shen
- Research Center of Environmental Technology in Water Pollution Source Identification and Precise Supervision, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Development Center of Advanced Environmental Supervision Technology and Instrument, Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yiming Song
- Research Center of Environmental Technology in Water Pollution Source Identification and Precise Supervision, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Development Center of Advanced Environmental Supervision Technology and Instrument, Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Cheng Cheng
- Research Center of Environmental Technology in Water Pollution Source Identification and Precise Supervision, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Development Center of Advanced Environmental Supervision Technology and Instrument, Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fengkui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chuanyang Liu
- Research Center of Environmental Technology in Water Pollution Source Identification and Precise Supervision, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Development Center of Advanced Environmental Supervision Technology and Instrument, Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yidi Chai
- Research Center of Environmental Technology in Water Pollution Source Identification and Precise Supervision, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Development Center of Advanced Environmental Supervision Technology and Instrument, Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China
| | - Siting Wang
- Research and Development Center of Advanced Environmental Supervision Technology and Instrument, Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China
| | - Qiuran Xiong
- Research Center of Environmental Technology in Water Pollution Source Identification and Precise Supervision, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Development Center of Advanced Environmental Supervision Technology and Instrument, Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jing Wu
- Research Center of Environmental Technology in Water Pollution Source Identification and Precise Supervision, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Development Center of Advanced Environmental Supervision Technology and Instrument, Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
18
|
Geng M, Huang X, Shi B, Yu J, Wang C, Du Y, Wang Y. Enhancement of thioethers removal by pre-oxidation-coagulation: Effects of background organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159465. [PMID: 36257419 DOI: 10.1016/j.scitotenv.2022.159465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Swampy/septic odor caused by thioethers has become the main taste and odor (T&O) problem in drinking water of China. Improving its removal performance by commonly traditional water treatment process is significant. In our study, we have found that pre-oxidation could modify the background dissolved organic matter (DOM) properties and thus improve the coagulation performance of thioethers, increasing the coagulation removal rates by 1.5-3 times. Particularly, after pre-ozonation only protein-like substances remained, and thioethers removal was 1.5 times higher than that after pre-chlorination (only coagulation not including oxidation). Compared with humic acid (HA), the thioethers compounds removal efficiencies under bovine serum albumin (BSA) as background DOM was increased by 0.3-3 times. Through Freundlich model analysis, the binding strength of BSA (KF = 20.712, at 298 K) to dimethyl disulfide (DMDS) was enhanced by 60 % compared to HA (KF = 12.778, at 298 K). According to thermodynamic parameters, the binding effect between HA/BSA and thioethers compounds was mainly van der Waals forces and hydrogen bond. BSA with more amino structure and oxygen groups was more easily to adsorb DMDS through hydrogen bond and thus achieved better coagulation performance. Therefore, pre-ozonation combined with coagulation was suggested to be more suitable for thioethers compounds control.
Collapse
Affiliation(s)
- Mengze Geng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xin Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunmiao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuning Du
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yili Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
19
|
Acter T, Lee S, Uddin N, Mow KM, Kim S. Characterization of petroleum‐related natural organic matter by ultrahigh‐resolution mass spectrometry. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Thamina Acter
- Department of Mathematical and Physical Sciences East West University Dhaka Bangladesh
| | - Seulgidaun Lee
- Department of Chemistry Kyungpook National University Daegu Republic of Korea
| | - Nizam Uddin
- Department of Nutrition and Food Engineering, Faculty of Allied Health Science Daffodil International University Dhaka Bangladesh
| | - Kamarum Monira Mow
- Department of Computer Science and Engineering East West University Dhaka Bangladesh
| | - Sunghwan Kim
- Department of Chemistry Kyungpook National University Daegu Republic of Korea
- Mass Spectrometry Based Convergence Research Institute Kyungpook National University Daegu Republic of Korea
- Green‐Nano Materials Research Center, Kyungpook National University Daegu Republic of Korea
| |
Collapse
|
20
|
Xu Y, Wang B, Ding S, Zhao M, Ji Y, Xie W, Feng Z, Feng Y. Hydrothermal carbonization of kitchen waste: An analysis of solid and aqueous products and the application of hydrochar to paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157953. [PMID: 35963404 DOI: 10.1016/j.scitotenv.2022.157953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Hydrothermal carbonization (HTC) technology can potentially be used to safely and sustainably utilize kitchen waste (KW). However, the characteristics of HTC solid products (hydrochar) and aqueous products (HAP) based on different types of KW have not yet been clarified. Here, four types of KW, cellulose-based (CL), skeleton-based (SK), protein-based (PT), and starch-based (ST) KW, were used for HTC at 180 °C, 220 °C, and 260 °C. The basic physicochemical properties and structures of hydrochars and HAP were analyzed, and the effects of different hydrochars on rice growth were characterized. HTC decreased the H/C and O/C of KW. All hydrochars were acidic (3.12 to 6.78) and the pH values increased with the HTC temperature, while high HTC temperature reduced the porosity of hydrochars. HTC promoted the enrichment of total carbon (up to 78.1 %), total nitrogen (up to 62.6 %), and total phosphorus (up to 171.6 %) in KW. More carbon (60.7-88.0 %) and nitrogen (up to 87.4 %) were present in the hydrochars than in the HAP. The relative content of C1s increased and O1s decreased in CL and ST hydrochars as the HTC temperature increased, while the opposite pattern was observed for SK and PT hydrochars. The dissolved organic matter (DOM) of different hydrochars and HAP were mainly humus-like substances. The biodegradability of the DOM in HAP was often higher than the corresponding hydrochar, and their DOM biodegradability increased with the HTC temperature. The content of heavy metals from different hydrochars did not exceed the relevant thresholds of fertilizer standards. Rice grain yield increased by 3.7-11.1 % in the hydrochar treatments without phosphate fertilizer addition compared with the control treatment. The results of this study provide new theoretical and empirical insights into the potential for HTC technology to be used for the recycling of KW and its products in the agricultural environment.
Collapse
Affiliation(s)
- Yongji Xu
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shudong Ding
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China
| | - Mengying Zhao
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yang Ji
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Wenping Xie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, China
| | - Zhaozhong Feng
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China
| |
Collapse
|
21
|
Ren H, Bi Y, Liu F, Zhang C, Wei N, Fan L, Zhou R. Removal of ofloxacin from wastewater by chloride electrolyte electro-oxidation: Analysis of the role of active chlorine and operating costs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157963. [PMID: 35952871 DOI: 10.1016/j.scitotenv.2022.157963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/06/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Electro-oxidation (EO) has received increasing attention as an efficient and green method for removing pollutants from wastewater. Chloride anions (Cl-), which commonly exist in wastewater, can act as an electrolyte for the EO process. However, the role of reactive chlorine species (RCS) generated near electrodes is often underestimated. In this study, we generated hydroxyl radicals (OH) and RCS in a boron-doped diamond (BDD) electrode system and investigated its degradation mechanism for ofloxacin (OFX) removal. The findings suggested that OFX degradation was dominated by OH existing near the anode in solution, with RCS playing a supporting role. Based on the produced intermediates, we proposed an OFX decomposition pathway. The biological toxicities of the intermediates were evaluated through the ECOSAR and T.E.S.T. procedure. Nearly half of the intermediates are less toxic than the parent compound. After optimizing the operating parameters by the response surface methodology, 20 mg/L OFX was almost completely degraded after 10 min of reaction in 1.45 g/L NaCl with a current density (j) of 18 mA/cm2, and the total organic carbon was decreased by 30.55 %. The energy consumption and current efficiency were 0.648 kW·h/gTOC and 8.65 %, respectively. Comparing the operating costs of the proposed and other EO methods, our method emerged as a viable new treatment scheme for similar polluted wastewaters. This study aims to comprehensively understand the potential application value of BDD electrodes in the treatment of Cl- containing organic wastewater.
Collapse
Affiliation(s)
- Hejun Ren
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Yuhang Bi
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Fangyuan Liu
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Chunpeng Zhang
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China.
| | - Nan Wei
- Chinese Academy of Environmental Planning, Beijing 100012, China
| | - Lujian Fan
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resource and Environment, Jilin University, Changchun 130021, China
| | - Rui Zhou
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resource and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
22
|
Fu QL, Fujii M, Watanabe A, Kwon E. Formula Assignment Algorithm for Deuterium-Labeled Ultrahigh-Resolution Mass Spectrometry: Implications of the Formation Mechanism of Halogenated Disinfection Byproducts. Anal Chem 2022; 94:1717-1725. [PMID: 35019276 DOI: 10.1021/acs.analchem.1c04298] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ultrahigh-resolution mass spectrometry (UHR-MS) coupled with isotope labeling has attracted significant attention in elucidating the mechanisms of the transformation of dissolved organic matter (DOM). Herein, we developed a novel formula assignment algorithm based on deuterium (D)-labeled UHR-MS, namely, FTMSDeu, for the first time. This algorithm was employed to determine the precursor molecules of halogenated disinfection byproducts (Xn-DBPs) and to evaluate the relative contribution of electrophilic addition and substitution reactions in Xn-DBP formation according to the H/D exchange of DOM molecules. Further, tandem mass spectrometry with homologous-based network analysis was used to validate the formula assignment accuracy of FTMSDeu in the identification of iodinated disinfection byproducts. Electrophilic substitution accounted for 82-98, 71-89, and 43-45% of the formation for Cl-, Br-, and I-containing Xn-DBPs, respectively, indicating the dominant role of the electrophilic substitution in chlorinated disinfection byproducts with low Br and I concentrations. The absence of putative precursors in some Xn-DBPs also suggests that Xn-DBP formation includes secondary reactions (e.g., oxidation and hydrolysis) in addition to the electrophilic addition and/or substitution of halogens. These findings highlight the significance of isotopically labeled UHR-MS techniques in revealing the transformation of DOM in natural and engineered systems.
Collapse
Affiliation(s)
- Qing-Long Fu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.,Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-Ku, Tokyo 152-8550, Japan.,State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-Ku, Tokyo 152-8550, Japan
| | - Akari Watanabe
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-Ku, Tokyo 152-8550, Japan
| | - Eunsang Kwon
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-Ku, Sendai 980-8578, Japan
| |
Collapse
|
23
|
Lu Y, Song ZM, Wang C, Liang JK, Hu Q, Wu QY. Combining high resolution mass spectrometry with a halogen extraction code to characterize and identify brominated disinfection byproducts formed during ozonation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149016. [PMID: 34280624 DOI: 10.1016/j.scitotenv.2021.149016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Ozonation is widely used during water treatment but can generate a variety of toxic disinfection byproducts, especially in the presence of bromide. In the present study, our halogen extraction code was extended and modified to identify bromine isotopic patterns and combined with the R package MFAssignR in selectively identifying brominated disinfection byproducts (Br-DBPs) from high resolution mass spectra. In total, 127 Br-DBPs formed from a Suwannee River natural organic matter (SRNOM) solution were successfully detected from tens of thousands of mass spectrometry peaks. Kendrick mass defect analysis and structural characterization identified 17 structures, 15 of which were identified as brominated carboxylic acids and firstly reported here. Computational model predictions indicated that these brominated carboxylic acids may possess high toxic potencies and raise valid concerns. The adapted halogen extraction code described in this study is a powerful tool for a wider application of analyzing Br-DBPs in complex water matrices and provides an effective technique to characterize and identify these compounds in future studies.
Collapse
Affiliation(s)
- Yao Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zhi-Min Song
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Jun-Kun Liang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Qian-Yuan Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
24
|
Sheng D, Bu L, Zhu S, Wu Y, Wang J, Zhou S. Organic chloramines formation from algal organic matters: Insights from Fourier transform-ion cyclotron resonance mass spectrometry. WATER RESEARCH 2021; 206:117746. [PMID: 34678699 DOI: 10.1016/j.watres.2021.117746] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Release of algal organic matter (AOM) from algae poses great threats to drinking water safety. As organic nitrogen in AOM is relatively higher compared to natural organic matter (NOM), the organic chloramine formation during chlorination cause overestimation of effective chlorine, which may lead to a biological risk. This study compared the organic chloramine formation from AOM and NOM, and confirmed that AOM tend to form more organic chloramines during chlorination. Furthermore, it was found that hydrophilic fraction and high molecular weight (>100 kDa) fraction of AOM generated major organic chloramines due to a high content of protein. Based on the results of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), Spearman's rank correlation was used to analyze the relationship between molecular composition of AOM and organic chloramine formation. Notably, molecules with high correlation to organic chloramine formation located in a triangle region of van Krevelen diagram, which is a typical area of peptides. Therefore, it indicates that the precursors of organic chloramine in AOM are mainly proteins/peptides, and appropriate treatment processes (e.g., biological treatment or membrane filtration) should be addressed to effectively remove the precursors before chlorination.
Collapse
Affiliation(s)
- Da Sheng
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Shumin Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jue Wang
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
25
|
He C, Fang Z, Li Y, Jiang C, Zhao S, Xu C, Zhang Y, Shi Q. Ionization selectivity of electrospray and atmospheric pressure photoionization FT-ICR MS for petroleum refinery wastewater dissolved organic matter. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1466-1475. [PMID: 34669760 DOI: 10.1039/d1em00248a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dissolved organic matter (DOM) in petroleum refinery wastewater is an extremely complex mixture. A better understanding of chemical compositions of DOM at the molecular level is necessary for the design and optimization of wastewater treatment processes. In this study, two largely different DOM samples, one from a petroleum refinery wastewater and the other from the Suwannee river water, were characterized by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) coupled with positive-/negative-ion electrospray ionization (ESI), and positive-ion atmospheric pressure photoionization (APPI). For wastewater DOM, a total of 6226 molecular formulae were assigned in the three ionization modes. However, only 1182 molecular formulae were common in all three mass spectra, indicating that the techniques were highly complementary in the types of molecules they ionize. Acid Ox (x = 1-9) and basic N1Ox (x = 0-2) classes were dominant in the wastewater DOM detected in negative-ion and positive-ion ESI mode, respectively. And the wastewater DOM contains considerable amounts of polycyclic aromatic hydrocarbons that did not respond to ESI but can be ionized selectively by APPI. Compared with riverine DOM, the refinery wastewater DOM has a higher molecular complexity and is more enriched in hydrocarbon, and nitrogen- and sulfur-containing compounds. The results show that the major components of refinery wastewater DOM were distinctive from those of the natural organic matter. Though not quantitative, the results obtained by various ionization techniques were found to be complementary, and are helpful to our understanding of the selectivity of different ionization techniques as well as the molecular compositions of DOM.
Collapse
Affiliation(s)
- Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Zhi Fang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Yongyong Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | | | - Suoqi Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Yahe Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| |
Collapse
|
26
|
Wang Q, Mitchell RL, Hofman R, Yu J, Yang M, Rietveld LC, Zietzschmann F. How properties of low molecular weight model competitors impact organic micropollutant adsorption onto activated carbon at realistically asymmetric concentrations. WATER RESEARCH 2021; 202:117443. [PMID: 34333298 DOI: 10.1016/j.watres.2021.117443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Low molecular weight (LMW) dissolved organic matter (DOM) is the predominant competitor for adsorption sites against organic micropollutants (OMPs) in activated carbon adsorption. However, top-down approaches using highly complex mixtures of real water DOM do not allow to concisely examine the impacts of specific LMW DOM molecular properties on competitive adsorption. Therefore, we followed a bottom-up approach using fifteen model compounds (mDOM) to elucidate how important DOM characteristics, including hydrophobicity and unsaturated structures (ring, double/triple bond), impact competitiveness. Large concentration asymmetry (~500 μg DOC/μg OMP) made mDOM compounds, which were overall less preferentially adsorbed than OMPs, become competitive against OMPs and inhibit OMP adsorption kinetics by pre-occupation of adsorption sites. Our results revealed that both hydrophobicity interactions and π-interactions increased mDOM competitiveness, while π-interactions outweighed hydrophobic interactions. However, π-interactions could not be satisfactorily evaluated with a parameter such as specific ultraviolet absorbance (SUVA) due to interferences of carboxyl groups in aromatic mDOMs. Instead, mDOM adsorbability, described by mDOM adsorption capacity, proved to be a comprehensive indicator for mDOM competitiveness. To our knowledge, this is the first study that systematically clarifies the impacts of intricately interacting molecular properties on DOM adsorption and the related competition against OMP adsorption. DOM adsorbability may inspire a new fractionation, and assist the further isolation, identification and detailed characterization of LMW DOM competitors in real DOM-containing waters.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Management, Delft University of Technology, PO Box 5048, 2600 GA, Delft, the Netherland; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Raja-Louisa Mitchell
- Chair of Water Quality Control, Technische Universität Berlin, KF4, Str. des 17. Juni 135, Berlin 10623, Germany
| | - Roberta Hofman
- KWR Watercycle Research Institute, Nieuwegein 3433PE, the Netherland
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Luuk C Rietveld
- Department of Water Management, Delft University of Technology, PO Box 5048, 2600 GA, Delft, the Netherland
| | - Frederik Zietzschmann
- Department of Water Management, Delft University of Technology, PO Box 5048, 2600 GA, Delft, the Netherland; Chair of Water Quality Control, Technische Universität Berlin, KF4, Str. des 17. Juni 135, Berlin 10623, Germany; Berliner Wasserbetriebe, Motardstr. 35, Berlin 13629, Germany
| |
Collapse
|
27
|
Lu Y, Song ZM, Wang C, Liang JK, Hu Q, Wu QY. Nontargeted identification of chlorinated disinfection byproducts formed from natural organic matter using Orbitrap mass spectrometry and a halogen extraction code. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126198. [PMID: 34492962 DOI: 10.1016/j.jhazmat.2021.126198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Natural organic matter is a major source of precursors of hazardous chlorinated disinfection byproducts (Cl-DBPs) formed during water treatment, but the majority of Cl-DBPs are still unidentified. In this study, we used a self-written halogen extraction code to identify halogen isotopic patterns in combination with the R package MFAssignR, to identify Cl-DBPs from Orbitrap mass spectra. One hundred and eighty-nine Cl-DBPs were detected during chlorination of a Suwannee River natural organic matter solution, and the structures of 20 of these compounds are reported for the first time. Kendrick mass defect analysis and structural identification confirmed that chlorinated carboxylic acids are common and likely to form during chlorination. A toxicity prediction using quantitative structure-activity relationship models indicated that most of the chlorinated carboxylic acids may be highly toxic. Our analytical strategy can identify Cl-DBPs accurately from complex mixtures and may also be applicable to the identification of other halogenated disinfection byproducts formed during water treatment.
Collapse
Affiliation(s)
- Yao Lu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zhi-Min Song
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Jun-Kun Liang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
28
|
Bahureksa W, Tfaily MM, Boiteau RM, Young RB, Logan MN, McKenna AM, Borch T. Soil Organic Matter Characterization by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR MS): A Critical Review of Sample Preparation, Analysis, and Data Interpretation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9637-9656. [PMID: 34232025 DOI: 10.1021/acs.est.1c01135] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The biogeochemical cycling of soil organic matter (SOM) plays a central role in regulating soil health, water quality, carbon storage, and greenhouse gas emissions. Thus, many studies have been conducted to reveal how anthropogenic and climate variables affect carbon sequestration and nutrient cycling. Among the analytical techniques used to better understand the speciation and transformation of SOM, Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) is the only technique that has sufficient mass resolving power to separate and accurately assign elemental compositions to individual SOM molecules. The global increase in the application of FTICR MS to address SOM complexity has highlighted the many challenges and opportunities associated with SOM sample preparation, FTICR MS analysis, and mass spectral interpretation. Here, we provide a critical review of recent strategies for SOM characterization by FTICR MS with emphasis on SOM sample collection, preparation, analysis, and data interpretation. Data processing and visualization methods are presented with suggested workflows that detail the considerations needed for the application of molecular information derived from FTICR MS. Finally, we highlight current research gaps, biases, and future directions needed to improve our understanding of organic matter chemistry and cycling within terrestrial ecosystems.
Collapse
Affiliation(s)
- William Bahureksa
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Malak M Tfaily
- Department of Environmental Science, University of Arizona, Tucson, Arizona 85721, United States
| | - Rene M Boiteau
- College of Earth, Ocean, Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Robert B Young
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523-1170, United States
| | - Merritt N Logan
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Amy M McKenna
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Dr., Tallahassee, Florida 32310-4005, United States
| | - Thomas Borch
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523-1170, United States
| |
Collapse
|
29
|
Sharma VK, Ma X, Guo B, Zhang K. Environmental factors-mediated behavior of microplastics and nanoplastics in water: A review. CHEMOSPHERE 2021; 271:129597. [PMID: 33460897 DOI: 10.1016/j.chemosphere.2021.129597] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
The release of plastics in nature is an increasing global concern due to their degradation from microplastics (MPs) and even to nanoplastics (NPs), which are being recognized as a potential global threat to humans and environment. This paper summarizes the current knowledge on the effect of different environmental factors on the aggregation of MPs and NPs in aquatic environment. Stability (or extent of aggregation) of MPs and NPs varies with pH, ionic strength, ion type (monovalent, divalent, and trivalent), kind of minerals, and natural organic matter (NOM) of the aquatic environment. Electrostatic interactions between particles at different pH and ionic strength caused by salts of different valents govern the aggregation. In the presence of minerals (or inorganic colloids), net surface charge of mineral and surface potential of MPs and NPs (i.e., positive or negative surface functionality) play important roles in the heteroaggregation of MPs and NPs. In the presence of NOM, additional complex interactions including hydrophobic interactions and bridging are also involved in the aggregation of particles. Understanding the interactions of MPs and NPs of different surface charge with diverse environmental factors at a wide range of environmental conditions is pivotal to assess the mobility and the fate of degraded plastic particles and their risk to human health and ecological systems.
Collapse
Affiliation(s)
- Virender K Sharma
- Program of the Environment and Sustainability, Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA.
| | - Xingmao Ma
- Zachery Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Binglin Guo
- Program of the Environment and Sustainability, Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA; Zachery Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Kaiyi Zhang
- Program of the Environment and Sustainability, Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA; Zachery Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
30
|
Cho E, Solihat NN, Kim YH, Kim S. Comprehensive Lists of Internal Calibrants for Ultrahigh-Resolution Mass Spectrometry Analysis of Crude Oil and Natural Organic Matter and Their Preparation Recipes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:590-596. [PMID: 33426888 DOI: 10.1021/jasms.0c00456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, comprehensive lists of internal calibrants for accurate mass determination of molecules in crude oils, natural organic matter, and soil as well as their preparation recipes are presented. The lists include various sets of chemicals for positive- and negative-ion mode electrospray ionization, atmospheric pressure chemical ionization, atmospheric pressure photoionization, and laser desorption ionization. The chemicals were chosen based on their solvent compatibility, ionization efficiency, and accessibility. The sample preparation process was optimized for each ionization method and type of sample. The lists include detailed information on preparation solvent, concentrations, and mixing ratios of sample and calibrants. Internal calibration using the information in the lists results in successful calibration, and all the data presented in this study show root-mean-square errors between the theoretical and obtained m/z numbers of less than 0.4 ppm. The information presented in this study provides an important guideline for researchers working on complex mixtures with ultrahigh-resolution mass spectrometry.
Collapse
Affiliation(s)
- Eunji Cho
- Mass Spectrometry Based Convergence Research Institute, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Nissa Nurfajrin Solihat
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Cibinong 16911, Indonesia
| | - Young Hwan Kim
- Center for Research Equipment, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungcheongbuk-do 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sunghwan Kim
- Mass Spectrometry Based Convergence Research Institute, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Green-Nano Materials Research Center, Daegu 41566, Republic of Korea
| |
Collapse
|
31
|
Prasert T, Ishii Y, Kurisu F, Musikavong C, Phungsai P. Characterization of lower Phong river dissolved organic matters and formations of unknown chlorine dioxide and chlorine disinfection by-products by Orbitrap mass spectrometry. CHEMOSPHERE 2021; 265:128653. [PMID: 33131752 DOI: 10.1016/j.chemosphere.2020.128653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) have been reported as precursors of disinfection byproducts (DBPs) and its molecular characteristics are rarely investigated due to its complexity. In this study, changes in the characteristics of DOM were investigated in the lower Phong River in Thailand in dry season and after the first rain in rainy season, using a non-targeted analysis with Orbitrap mass spectrometry. The river was rich with CHO features dominated by lignin-like molecules, while lipid-like molecules increase after domestic wastewater discharges. Wastewater discharge released DOM with higher molecular weight (MW) that was less oxygenated (low O/C) and less oxidized (low carbon oxidation state [Cos]). A lake affected by anthropogenic activities contributed more oxidized DOM into the river, while surface runoff carried DOM that is more oxygenated (high O/C), less hydrogenated (low H/C), and more oxidized (high Cos) to the stream. Water treatment further modified DOM to be lower MW. Approximately three hundred Cl-containing features (CHOCl) detected upstream were also found downstream. Disinfection by chlorine (Cl2) or chlorine dioxide (ClO2) formed both CHO and CHOCl DBPs. Low chlorine dosage applied to upstream and downstream samples resulted in many common unknown DBPs while increasing chlorine dosage resulted in more unique DBPs. At the same dosage, Cl2 reacted with DOM more than ClO2, including more oxidized molecules that are refractory to ClO2. Both Cl2 and ClO2 produced chlorinated and non-chlorinated DBPs, and some DBPs were commonly found by both disinfections. Cl2-produced DBPs were more unsaturated (higher [DBE-O]/C) and oxidized (higher Cos) than ClO2-DBPs.
Collapse
Affiliation(s)
- Thirawit Prasert
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Yoshihiro Ishii
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Futoshi Kurisu
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Charongpun Musikavong
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Phanwatt Phungsai
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
32
|
Abstract
Increased concentrations of natural organic matter (NOM), a complex mixture of organic substances found in most surface waters, have recently emerged as a substantial environmental issue. NOM has a significant variety of molecular and chemical properties, which in combination with its varying concentrations both geographically and seasonally, introduce the opportunity for an array of interactions with the environment. Due to an observable increase in amounts of NOM in water treatment supply sources, an improved effort to remove naturally-occurring organics from drinking water supplies, as well as from municipal wastewater effluents, is required to continue the development of highly efficient and versatile water treatment technologies. Photocatalysis has received increasing interest from around the world, especially during the last decade, as several investigated processes have been regularly reported to be amongst the best performing water treatment technologies to remove NOM from drinking water supplies and mitigate the formation of disinfection by products. Consequently, this overview highlights recent research and developments on the application of photocatalysis to degrade NOM by means of TiO2-based heterogeneous and homogeneous photocatalysts. Analytical techniques to quantify NOM in water and hybrid photocatalytic processes are also reviewed and discussed.
Collapse
|
33
|
Wu C, Li Q. Characteristics of organic matter removed from highly saline mature landfill leachate by an emergency disk tube-reverse osmosis treatment system. CHEMOSPHERE 2021; 263:128347. [PMID: 33297272 DOI: 10.1016/j.chemosphere.2020.128347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 06/12/2023]
Abstract
Some sanitary landfills in China are required to treat aging landfill leachate that is highly saline. In this study, the effectiveness of an emergency disk tube-reverse osmosis (DTRO) treatment system for such a refractory mature landfill leachate was evaluated. A molecular-level analysis was then applied to reveal the changes of the characteristics of leachate organic matter (OM). The DTRO system achieved >83% water recovery rate, reduced the electrical conductivity of effluent to 0.15-0.22 ms/cm, and reduced carbonaceous and nitrogenous pollutants to a level suitable for discharge. Furthermore, the vast majority of salts (e.g., chloride and sulfate ions), as well as refractory OM (e.g., humic- and fulvic-like substances), were effectively removed. The DTRO system can effectively remove a large number of macromolecular dissolved organic compounds with carbon number >23, as well as highly unsaturated compounds with DBE >12. Additionally, > 80% of the molecules assigned to the dissolved OM (DOM) were removed; even CHONS compounds with complex molecular structures were completely removed. The constitution of DOM in the DTRO effluent was simple, mainly comprising anti-sludge agents (e.g., small molecule alcohol and alkyl benzene sulfonic acid, etc.). However, the DOM in the resulting membrane concentrates was very similar to that in raw landfill leachate and the concentration was much higher. Therefore, an effective and feasible method should be developed to treat DTRO membrane concentrates because they pose high environmental risk.
Collapse
Affiliation(s)
- Chuanwei Wu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|