1
|
Yu Y, Yang Y, Guo Y, Pan M, Hao W. Exogenous selenium enhances cadmium stress tolerance by improving physiological characteristics of Artemisia argyi seedlings. Sci Rep 2025; 15:3450. [PMID: 39870703 PMCID: PMC11772690 DOI: 10.1038/s41598-025-87340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/17/2025] [Indexed: 01/29/2025] Open
Abstract
The contamination of Chinese medicinal materials with cadmium (Cd) is a pressing global issue that poses significant risks to human health. The beneficial effects of selenium (Se) have been established in improving plant growth and reducing Cd accumulation in plant under Cd stress. This study employed soil cultivation experiments to investigate the remediation effects of exogenous Se (0, 0.5, 1, and 2 mg kg⁻1) under varying levels of Cd stress (0, 0.6 and 4 mg kg⁻1). The findings revealed that Cd stress markedly impaired seedling growth, biomass, and physiological characteristics in Artemisia argyi. Regardless of Cd levels, exogenous Se significantly enhanced seedling biomass, improved antioxidant enzyme activity, and increased the plant's antioxidant capacity, thereby mitigating Cd stress. Additionally, exogenous Se promoted A. argyi plant growth, decreased malondialdehyde (MDA) content in the shoots, and under two Cd stress environments of 0.6 and 4 mg kg⁻1, the application of 1 mg kg⁻1 Se reduced the Cd content in the aboveground parts of seedlings by 31.99 and 82.21%, respectively. We conclude 1 mg kg⁻1 Se could represent a promising strategy to contribute to the development and sustainability of crop production on soils contaminated with Cd at a concentration of up to 0.6 and 4 mg kg⁻1. These results indicate that exogenous Se activates physiological and biochemical defense mechanisms in A. argyi seedlings against Cd stress, offering a foundation for cultivating high-yield, high-quality A. argyi in Cd-contaminated soils.
Collapse
Affiliation(s)
- Yaxin Yu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yingbin Yang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yu Guo
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Meiqi Pan
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Wenfang Hao
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
2
|
Li Q, Zhong Z, Yang Y, Qi R, Du H, Zheng X. Effect of sludge-based biochar on the stabilization of Cd in soil: experimental and theoretical studies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025:1-8. [PMID: 39865579 DOI: 10.1080/15226514.2025.2457510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Soil heavy metal contamination and sludge disposal have become globally environmental issues problems of great concern. Utilizing sludge pyrolysis to produce biochar for remediating heavy metal-contaminated soil is an effective strategy to solve these two environmental problems. In this study, municipal sewage sludge and papermaking sludge were used as feedstock to prepare co-pyrolyzed biochar, which was then applied to reduce the toxicity of Cd in soil. The results indicated that the application of co-pyrolyzed biochar significantly increased soil pH, CEC, and enzyme activity, while decreasing the content of available Cd in the soil. Following the application of 3% co-pyrolyzed biochar, the proportion of acid-soluble Cd in the soil decreased to below 46%, as the biochar facilitated the conversion of leachable acid-soluble Cd to stable oxidizable and residual forms through precipitation and complexation. The DFT computational results indicate that the aromatics in co-pyrolyzed biochar can adsorb Cd ions through cation-π interactions, while carboxyl, hydroxyl, aldehyde, and amide groups can provide more electrons for the adsorption of Cd ions, resulting in stronger adsorption capacities. The study findings provide a feasible solution for the resourceful treatment of sludge and the remediation of heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China
| | - Zhaoping Zhong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China
| | - Yuxuan Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China
| | - Renzhi Qi
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China
| | - Haoran Du
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China
| | - Xiang Zheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Tahira S, Bahadur S, Lu X, Liu J, Wang Z. ZnONPs alleviate cadmium toxicity in pepper by reducing oxidative damage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123796. [PMID: 39721396 DOI: 10.1016/j.jenvman.2024.123796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Cadmium (Cd) is a genotoxic heavy metal causing severe toxicity symptoms in plants, which has been a major threat to worldwide crop production. Recently, nanoparticles (NPs) have been employed as a novel strategy to facilitate the Cd stress and act as nano-fertilizers directly. Therefore, this study aims to explore the effects of zinc oxide nanoparticles (ZnONPs; 15 mg/L) on plant growth, photosynthetic activity, antioxidant activity and root morphology in Capsicum chinense Jacq. under Cd (CdCl2; 50 μM/L) stress. The pepper plants were treated with Cd stress for 14 days, and the treatment was given directly into the hydroponic solution, while ZnONPs were applied as foliar spray two times a day (9 a.m. - 3 p.m.). The results revealed that Cd stress inhibited plant growth and biomass by impairing photosynthesis in photosystem function, gas exchange parameters, root activity, and morphology. In contrast, ZnONPs application notably reinforced the plant growth traits, increased photosynthesis efficiency in terms of chlorophyll content, SPAD index, gas exchange parameters and PSII maximum efficiency (Fv/Fm) and decreased Cd accumulation in leaf and root by 30% and 75%. Furthermore, ZnONPs efficiently restricted the hydrogen peroxide, superoxide ion (H2O2, O2•-). They restored cellular integrity (less MDA production) by triggering the antioxidant enzyme activities such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), protein content, sugar level and proline content. Besides, ZnONPs treatment enhanced secondary metabolites (phenols and flavonoids) contents and these metabolites potentially restricted excess H2O2 accumulation. In conclusion, our findings deciphered the potential functions of ZnONPs in alleviating Cd-induced phytotoxicity in pepper plants by boosting biomass production, photosynthesis, secondary metabolism and reducing oxidative stress.
Collapse
Affiliation(s)
- Sidra Tahira
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Saraj Bahadur
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Xu Lu
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Jiancheng Liu
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhiwei Wang
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
4
|
Chang X, Li J, Wei S, Ying J, Nevill P, Qi Z, Lu Q, You Z. Integrated comparative transcriptome and weighted gene co-expression network analysis provide valuable insights into the response mechanisms of Alisma orientale to cadmium stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177401. [PMID: 39521082 DOI: 10.1016/j.scitotenv.2024.177401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Cadmium (Cd) pollution poses a serious challenge to the quality and safe utilization of traditional Chinese medicine plants as well as human health. In this study, seedlings of the medicinal plant species Alisma orientale were subjected to different levels of Cd stress for 7 days to investigate the effects of Cd stress on its growth, physiological response, and transcriptome profiling. The results showed that under different Cd stress levels, the growth of A. orientale displayed an inverted U-shaped dose response curve as low-dose stimulation and high-dose inhibition. Cd was mainly enriched in roots in the high concentration treatment, and Cd content reached maximum under 200-μM Cd stress. Cd stress-induced indicators including H2O2 (14.1-228.8 % in leaves; 29.7-131.7 % in roots) and MDA (22.0-161.1 % in leaves; 30.0-201.1 % in roots) showed different degree of increase, except under 200-μM Cd stress, which had a slight decrease. Antioxidant enzyme system (SOD, POD and CAT) and nonenzymatic substances (SS, SP, total flavonoid and total polyphenols) played a key role to mitigate Cd toxic effects. Transcriptome analysis revealed 26,442 significantly differentially expressed genes, and plant-pathogen interactions and phenylpropanoid biosynthesis were identified as two key pathways. Through WGCNA joint analysis, the transcription factor genes R2R3-MYB (AoMYB12) and WRKY (AoWRKY5 and AoWRKY6) were identified as hub regulators of A. orientale in response to Cd stress. Our study provides experimental data on the effects of Cd stress on A. orientale growth and Cd accumulation in different plant parts, and investigated the transcriptomic and physio-biochemical features, advancing our understanding of the response and detoxification mechanisms of plants under Cd stress.
Collapse
Affiliation(s)
- Xiao Chang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jie Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shengnan Wei
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianan Ying
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Paul Nevill
- Minesite Biodiversity Monitoring with eDNA Research Group, Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Zhechen Qi
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qixiang Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zhengying You
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
5
|
Meng Y, Li M, Guo Z, Chen J, Wu J, Xia Z. The transcription factor ZmbHLH105 confers cadmium tolerance by promoting abscisic acid biosynthesis in maize. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135826. [PMID: 39270588 DOI: 10.1016/j.jhazmat.2024.135826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Cadmium (Cd), a highly toxic heavy metal, profoundly impacts crop productivity. The bHLH-type transcription factors regulate plant stress responses, yet their involvement in maize's Cd stress response remains unclear. Here, we studied ZmbHLH105, a maize bHLH gene induced by Cd exposure. Overexpression of ZmbHLH105 in maize seedlings, which were treated with 1.0 mM CdCl2 for 7 days, increased endogenous ABA levels, decreased Cd accumulation, and enhanced Cd stress tolerance. ZmbHLH105 directly bound to promoter regions of two key ABA biosynthesis genes ZmNCED1/2, activating their transcription, thus boosting ABA levels and Cd tolerance. ZmbHLH105-overexpression promoted lignin synthesis, while ZmbHLH105-RNAi attenuated this effect. Exogenous ABA supplementation increased lignin content in Cd-stressed maize roots, suggesting ZmbHLH105-mediated Cd tolerance involves ABA-induced lignin deposition and cell wall thickening. Moreover, Cd transport-related gene expression was suppressed in ZmbHLH105 overexpression lines. Our findings demonstrate that ZmbHLH105 decreases Cd accumulation, improving Cd tolerance by enhancing ABA biosynthesis, increasing lignin deposition, thickening cell walls, and inhibiting Cd absorption in maize roots. This study unveils ZmbHLH105's mechanisms in Cd tolerance, highlighting its potential in breeding low Cd-accumulating crops for food and environment safety.
Collapse
Affiliation(s)
- Yazhou Meng
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Mengyao Li
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Ziting Guo
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Jiafa Chen
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan 450046, China; Synergetic Innovation Center of Henan Grain Crops and State Key Laboratory of Wheat & Maize Crop Science, Zhengzhou, Henan 450046, China
| | - Jianyu Wu
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan 450046, China; Synergetic Innovation Center of Henan Grain Crops and State Key Laboratory of Wheat & Maize Crop Science, Zhengzhou, Henan 450046, China
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan 450046, China; Synergetic Innovation Center of Henan Grain Crops and State Key Laboratory of Wheat & Maize Crop Science, Zhengzhou, Henan 450046, China.
| |
Collapse
|
6
|
Xing G, Chen Q, Sun Y, Wang J, Zhou J, Sun L, Shu Q, Zhang J, Yan M. Synergistic promotion mechanism and structure-function relationship of nonmetallic atoms doped carbon nanodots driving Tagetes patula L. to remediate cadmium-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136479. [PMID: 39549400 DOI: 10.1016/j.jhazmat.2024.136479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/23/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Phytoremediation is an economical and effective strategy to remove cadmium (Cd) from polluted environments. To improve its efficiency, nanotechnology has been proposed to collaborate with hyperaccumulators in the remediation of Cd-polluted soils. However, the intricate structure-function relationship and the underlying regulatory mechanisms by which nanomaterials regulate Cd migration and conversion within the soil-plant system remained unrevealed. In this study, functional carbon nanodots (FCNs) were modified by doping with nitrogen and (or) sulfur elements. The synthesized nonmetallic atoms-doped FCNs were utilized to investigate their structure-function relationship and the regulatory mechanisms underlying their role in the phytoremediation of Cd-polluted soils by Tagetes patula L. FCNs-based nanomaterials can regulate the migration and bioaccumulation of Cd in the soil-plant system, which exhibits an obvious structural dependency. Specifically, the synergistic application of sulfur doped FCNs and Tagetes patula L. had the highest Cd removal efficiency of 53.2 %, which was 20.1 % higher than Tagetes patula L. alone. The uptake and migration of Cd in the soil-plant system are regulated by FCNs-based nanomaterials through both direct and indirect mechanisms, involving interfacial reactions, plant physiology regulation and environmental influence. This study not only sheds light on the fate of FCNs-based nanomaterials and Cd in the soil-plant system, but also provides innovative nanotools for reinforcing phytoremediation efficiency in contaminated soils.
Collapse
Affiliation(s)
- Guling Xing
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Qiong Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Yiwen Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jianquan Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Junbo Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Lanxuan Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Quyu Shu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; Collaborative Innovation Center of Yellow River Basin Pharmaceutical Green Manufacturing and Engineering Equipment, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
7
|
Zheng S, Xu C, Zhu H, Huang D, Wang H, Zhang Q, Li X, Zhu Q. Foliar application of zinc and selenium regulates cell wall fixation, physiological and gene expression to reduce cadmium accumulation in rice grains. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136302. [PMID: 39471621 DOI: 10.1016/j.jhazmat.2024.136302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Zinc (Zn) and selenium (Se) are beneficial elements for crops, enhancing crop quality and alleviating heavy metal toxicity. However, there is limited research on the role of foliar Zn and Se in the mechanism of reducing cadmium (Cd) uptake in crops. A field experiment was conducted to investigate the effect on subcellular distribution, leaf antioxidant enzyme activities, and the transcriptional regulation in the process of Cd accumulation of rice grains after foliar applications of Zn, Se, and their mixed solutions (ZnSe). The results show that Zn and ZnSe reduced Cd content in the grains of three different rice (13.9 %-21.8 %/11.9 %-29.5 %) by enhancing the fixation capacity of Cd in the flag leaf by improving the binding efficiency between pectin and Cd in the cell wall. Increased flag leaf antioxidant enzyme activities further mitigated the toxic effects of Cd on rice, while Zn and ZnSe treatments upregulated genes related to metal-binding proteins and antioxidant enzymes and downregulated metal transport genes. This study systematically elucidates the mechanisms by which foliar application of ZnSe alleviates Cd toxicity through the regulation of gene expression and physiological functions, providing a theoretical basis for reducing Cd accumulation in rice and ensuring the safe production of food.
Collapse
Affiliation(s)
- Shen Zheng
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural Unifversity, Wuhan 430070, China
| | - Chao Xu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Hanhua Zhu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Daoyou Huang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Huajing Wang
- The Faculty Geography Resource Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Quan Zhang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xiaoxue Li
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; The Faculty Geography Resource Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Qihong Zhu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
8
|
Shahzad M, Peng D, Khan A, Ayyaz A, Askri SMH, Naz S, Huang B, Zhang G. Sufficient manganese supply is necessary for OsNramp5 knockout rice plants to ensure normal growth and less Cd uptake. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117386. [PMID: 39579447 DOI: 10.1016/j.ecoenv.2024.117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/05/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
The development of crop cultivars with less Cd uptake in roots and accumulation in shoots is a most efficient and environment-friendly approach to deal with soil Cd contamination. Recently repression of Nramp5 expression or its knockout is commonly recognized to be efficient for reducing Cd accumulation in plants, but such mutant plants suffer from manganese deficiency. In this study, we assessed the efficacy of exogenous Mn addition in mitigating Cd stress in a japonica rice cultivar Xidao 1 (Wild Type, WT) and its OsNramp5 knockout mutant. Exposure to Cd stress resulted in notable low photosynthetic rate, growth inhibition, and high Cd accumulation in rice seedlings. Although the mutant plants contained much lower Cd concentration in both roots and shoots than the WT plants, their growth was significantly inhibited relative to the WT plants under the normal condition. Exogenous application of Mn (40 μM) dramatically reduces root and shoot Cd concentrations and alleviates the toxic effect of Cd stress in both rice types, with the mutant plants demonstrating lower Cd concentration and less Cd toxicity in comparison with WT plants. The alleviation of Cd toxicity by Mn addition was more effective in higher Cd level (1.0 μM) than in lower Cd level (0.1 μM). Mn increases the expression of OsNramp5 and other genes, including OsHMA2, OsHMA3, OsIRT1, and OsIRT2, which encode ion transporters related to Mn uptake and transportation, and meanwhile reduces Cd uptake and accumulation in rice seedlings. In short, the knockout of OsNramp5 results in the significant reduction of Cd uptake, but accompanies with Mn deficiency in rice plants, which can be efficiently overcome through exogenous Mn addition.
Collapse
Affiliation(s)
- Muhammad Shahzad
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Di Peng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Ameer Khan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Ahsan Ayyaz
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Syed Muhammad Hassan Askri
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Shama Naz
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Binbin Huang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China.
| |
Collapse
|
9
|
Zahra A, Kayani S, Shahzad A, Sert TD, Ozcelik H, Qin M, Naeem M, Billah M. Wood biochar induced metal tolerance in Maize (Zea mays L.) plants under heavy metal stress. ENVIRONMENTAL RESEARCH 2024; 262:119940. [PMID: 39243839 DOI: 10.1016/j.envres.2024.119940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Due to metal toxicity, widespread industrialization has negatively impacted crop yield and soil quality. The current study was aimed to prepare and characterize biochar made from wood shavings of Pinus roxburghii and to determine the plant growth promoting and heavy metal detoxification of cadmium (Cd) and chromium (Cr) contaminated soil. FTIR SEM coupled with EDX characterization of biochar was performed; Cd and Cr were used at a rate of 20 mg/kg. Biochar was used at the rate of 50 mg/kg for various treatments. The completely randomized design (CRD) was used for the experiment and three replicates of each treatment were made. Various agronomic and enzymatic parameters were determined. The results indicated that all growth and enzymatic parameters were enhanced by the prepared biochar treatments. The most prominent results were observed in treatment T5 (in which shoot length, root length, peroxidase dismutase (POD), superoxide dismutase (SOD) catalyzes (CAT), and chlorophyll a and b increased by 28%, 23%, 40%, 41%, 42%, and 27%, respectively, compared to the control). This study demonstrated that biochar is a sustainable and cost-effective approach for the remediation of heavy metals, and plays a role in plant growth promotion. Farmers may benefit from the current findings, as prepared biochar is easier to deliver and more affordable than chemical fertilizers. Future research could clarify how to use biochar optimally, applying the minimum amount necessary while maximizing its benefits and increasing yield.
Collapse
Affiliation(s)
- Atiqa Zahra
- Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif, 12080, Azad Jammu and Kashmir, Pakistan.
| | - Sadaf Kayani
- Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif, 12080, Azad Jammu and Kashmir, Pakistan; Department of Biology, Faculty of Engineering and Natural Science, Suleyman Demiral University, East Campus, Isparta, Turkiye.
| | - Asim Shahzad
- College of Geography and Environmental Sciences, Henan University, Jinming Ave, Kaifeng, 475004, China; Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif, 12080, Azad Jammu and Kashmir, Pakistan.
| | - Tijen Demiral Sert
- Department of Biology, Faculty of Engineering and Natural Science, Suleyman Demiral University, East Campus, Isparta, Turkiye.
| | - Hasan Ozcelik
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Mingzhou Qin
- College of Geography and Environmental Sciences, Henan University, Jinming Ave, Kaifeng, 475004, China.
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Motsim Billah
- Directorate of ORIC, Rawalpindi Women University, Rawalpindi, Pakistan.
| |
Collapse
|
10
|
Cao L, Liu L, Zhang C, Ren W, Zheng J, Tao C, Zhu W, Xiang M, Wang L, Liu Y, Cao S, Zheng P. The MYC2 and MYB43 transcription factors cooperate to repress HMA2 and HMA4 expression, altering cadmium tolerance in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135703. [PMID: 39226685 DOI: 10.1016/j.jhazmat.2024.135703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Cadmium (Cd) represents a hazardous heavy metal, prevalent in agricultural soil due to industrial and agricultural expansion. Its propensity for being absorbed by edible plants, even at minimal concentrations, and subsequently transferred along the food chain poses significant risks to human health. Accordingly, it is imperative to investigate novel genes and mechanisms that govern Cd tolerance and detoxification in plants. Here, we discovered that the transcription factor MYC2 directly binds to the promoters of HMA2 and HMA4 to repress their expression, thereby altering the distribution of Cd in plant tissues and negatively regulating Cd stress tolerance. Additionally, molecular, biochemical, and genetic analyses revealed that MYC2 interacts and cooperates with MYB43 to negatively regulate the expression of HMA2 and HMA4 and Cd stress tolerance. Notably, under Cd stress conditions, MYC2 undergoes degradation, thereby alleviating its inhibitory effect on HMA2 and HMA4 expression and plant tolerance to Cd stress. Thus, our study highlights the dynamic regulatory role of MYC2, in concert with MYB43, in regulating the expression of HMA2 and HMA4 under both normal and Cd stress conditions. These findings present MYC2 as a promising target for directed breeding efforts aimed at mitigating Cd accumulation in edible plant roots.
Collapse
Affiliation(s)
- Lei Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Linyao Liu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Cheng Zhang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wangmei Ren
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Jiale Zheng
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Cheng Tao
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wenyan Zhu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Minghao Xiang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Lihuan Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Pengpeng Zheng
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
11
|
Yağcı A, Daler S, Kaya O. An Innovative Approach: Alleviating Cadmium Toxicity in Grapevine Seedlings Using Smoke Solution Derived from the Burning of Vineyard Pruning Waste. PHYSIOLOGIA PLANTARUM 2024; 176:e14624. [PMID: 39537427 DOI: 10.1111/ppl.14624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Although plant-derived smoke solutions (SSs) have exhibited growth-promoting properties in various plant species, their potential role in mitigating heavy metal stress, specifically in grapevines, has remained unexplored and unreported. This knowledge gap prompted the present study to evaluate the efficacy of foliar application of SSs derived from vineyard pruning waste at concentrations of 0%, 0.5%, 1%, and 2% in mitigating Cadmium (Cd) phytotoxicity in grape saplings. In our study, cadmium stress was induced by applying 10 mg/kg CdCl2 to the root area of the saplings, in conjunction with fertilizers. Our findings showed that exposure to Cd toxicity impeded the growth of grapevine saplings, adversely affecting shoot and root length, as well as fresh weight. Furthermore, it resulted in a reduction in chlorophyll content, stomatal conductance, and leaf water content while significantly increasing membrane damage and lipid peroxidation. Notably, the application of 0.5% SS enhanced grapevine sapling growth and alleviated Cd stress-induced damage by more effectively regulating physiological and biochemical responses compared to the control and other concentrations. Based on our results, under Cd stress conditions, the application of 0.5% SS effectively increased chlorophyll content, relative water content (RWC), stomatal conductance (1.79 mmol.m-2.sn-1), and total phenolic content (1.89 mg.g-1), whereas it significantly reduced malondialdehyde (MDA) levels and membrane damage (1.35 nmol.g-1). Additionally, it significantly elevated the activities of antioxidant enzymes, including superoxide dismutase (SOD) (2.16 U.mg-1), catalase (CAT) (1.55 U.mg-1), and ascorbate peroxidase (APX) (3.03 U.mg-1). The study demonstrated that plant-derived SS mitigates Cd stress in grapevines by enhancing antioxidative defence mechanisms.
Collapse
Affiliation(s)
- Adem Yağcı
- Department of Horticulture, Faculty of Agriculture, Tokat Gaziosmanpaşa University, Tokat, Türkiye
| | - Selda Daler
- Department of Horticulture, Faculty of Agriculture, Yozgat Bozok University, Yozgat, Türkiye
| | - Ozkan Kaya
- Republic of Türkiye Ministry of Agriculture and Forestry, Erzincan Horticultural Research Institute, Erzincan, Türkiye
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| |
Collapse
|
12
|
Kou B, Huo L, Cao M, Ke Y, Wang L, Tan W, Yuan Y, Zhu X. Insights into the critical roles of water-soluble organic matter and humic acid within kitchen compost in influencing cadmium bioavailability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122769. [PMID: 39369524 DOI: 10.1016/j.jenvman.2024.122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Compost has demonstrated potential as a cadmium (Cd) remediation agent, while it still remains unclear about the core components in driving the bioactive transformation of Cd. To address this issue, this study isolated three components-kitchen compost powder (KC), humic acid (HA), and water-soluble organic matter (DOM)-from kitchen compost to regulate soil properties, bacterial community structures and functions, and Cd migration risks. The results revealed that the addition of 20% KC and HA reduced the bioavailability factor of Cd by 47.20% and 16.74%, respectively, with HA contributing 35.47% of the total reduction achieved with KC. Conversely, the application of DOM increased the Cd risk through a reduction in soil pH and an increase in the abundance of Cd-activating bacteria, which adversely affected the stability of Cd complexes. However, the porous structure and organic matter in KC and HA provided adsorption sites for Cd passivation and promoted the growth of Cd-fixing bacteria. This study effectively identifies both the positive and negative effects of key compost components on Cd migration and provides scientific guidance for applying kitchen compost in soil management.
Collapse
Affiliation(s)
- Bing Kou
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lin Huo
- Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, 8092, Zurich, Switzerland
| | - Minyi Cao
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Yuxin Ke
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Lei Wang
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
13
|
Ahmed S, Ashraf S, Yasin NA, Sardar R, Al-Ashkar I, Abdelhamid MT, Sabagh AE. Exogenously applied nano-zinc oxide mitigates cadmium stress in Zea mays L. through modulation of physiochemical activities and nutrients homeostasis. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2250-2265. [PMID: 39066663 DOI: 10.1080/15226514.2024.2383657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The increasing levels of cadmium (Cd) pollution in agricultural soil reduces plant growth and yield. This study aims to determine the impact of green synthesized zinc oxide nanoparticles (ZnO-NPs) on the physiochemical activities, nutrition, growth, and yield of Zea mays L. under Cd stress conditions. For this purpose, ZnO-NPs (450 ppm and 600 ppm) synthesized from Syzygium aromaticum were applied through foliar spray to Z. mays and also used as seed priming agents. A significant decline in plant height (35.24%), biomass production (43.86%), mineral content, gas exchange attributes, and yield (37.62%) was observed in Cd-spiked plants compared to the control. While, 450 ppm ZnO-NPs primed seed increased plant height (18.46%), total chlorophyll (80.07%), improved ascorbic acid (25.10%), DPPH activity (26.66%), and soil mineral uptake (Mg+2 (38.86%), K+ (27.83%), and Zn+2 (43.68%) as compared to plants only spiked with Cd. On the contrary, the foliar-applied 450 ppm ZnO-NPs increased plant height (8.22%), total chlorophyll content (73.59%), ascorbic acid (21.39%), and DPPH activity (17.61%) and yield parameters; cob diameter (19.45%), and kernels numbers 6.35% enhanced compared to plants that were spiked only with Cd. The findings of the current study pave the way for safer and more cost-effective crop production in Cd-stressed soils by using green synthesized NPs and provide deep insights into the underlying mechanisms of NPs treatment at the molecular level to provide compelling evidence for the use of NPs in improving plant growth and yield.
Collapse
Affiliation(s)
- Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Sana Ashraf
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Nasim Ahmad Yasin
- Department of Horticulture, University of the Punjab, Lahore, Pakistan
| | | | - Ibrahim Al-Ashkar
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Ayman El Sabagh
- Faculty of Agriculture, Department of Field Crops, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
14
|
Shar AG, Hussain S, Junaid MB, Hussan MU, Zulfiqar U, AlGarawi AM, Popielec R, Zhang L, Artyszak A. Melatonin Ameliorates Cadmium Toxicity in Tobacco Seedlings by Depriving Its Bioaccumulation, Enhancing Photosynthetic Activity and Antioxidant Gene Expression. PLANTS (BASEL, SWITZERLAND) 2024; 13:3049. [PMID: 39519967 PMCID: PMC11548336 DOI: 10.3390/plants13213049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Soil remediation for cadmium (Cd) toxicity is essential for successful tobacco cultivation and production. Melatonin application can relieve heavy metal stress and promote plant growth; however, it remains somewhat unclear whether melatonin supplementation can remediate the effects of Cd toxicity on the growth and development of tobacco seedlings. Herein, we evaluated the effect of soil-applied melatonin on Cd accumulation in tobacco seedlings, as well as the responses in growth, physiological and biochemical parameters, and the expression of stress-responsive genes. Our results demonstrate that melatonin application mitigated Cd stress in tobacco, and thus promoted plant growth. It increased root fresh weight, dry weight, shoot fresh weight and dry weight by 58.40%, 163.80%, 34.70% and 84.09%, respectively, compared to the control. Physiological analyses also showed significant differences in photosynthetic rate and pigment formation among the treatments, with the highest improvements recorded for melatonin application. In addition, melatonin application alleviated Cd-induced oxidative damage by reducing MDA content and enhancing the activities of enzymatic antioxidants (CAT, SOD, POD and APX) as well as non-enzymatic antioxidants (GSH and AsA). Moreover, confocal microscopic imaging confirmed the effectiveness of melatonin application in sustaining cell integrity under Cd stress. Scanning Electron Microscopy (SEM) observations illustrated the alleviative role of melatonin on stomata and ultrastructural features under Cd toxicity. The qRT-PCR analysis revealed that melatonin application upregulated the expression of photosynthetic and antioxidant-related genes, including SNtChl, q-NtCSD1, NtPsy2 and QntFSD1, in tobacco leaves. Together, our results suggest that soil-applied melatonin can promote tobacco tolerance to Cd stress by modulating morpho-physiological and biochemical changes, as well as the expression of relevant genes.
Collapse
Affiliation(s)
- Abdul Ghaffar Shar
- College of Life Sciences, Northwest A&F University, Yangling 712100, China;
| | - Sadam Hussain
- College of Horticulture, Northwest A&F University, Yangling 712100, China;
| | - Muhammad Bilawal Junaid
- Department of Plant Production, College of Food and Agriculture, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Maqsood Ul Hussan
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China;
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Amal Mohamed AlGarawi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Rafal Popielec
- Institute of Agriculture, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China;
| | - Arkadiusz Artyszak
- Institute of Agriculture, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
15
|
Imran M, Widemann E, Shafiq S, Bakhsh A, Chen X, Tang X. Salicylic Acid and Melatonin Synergy Enhances Boron Toxicity Tolerance via AsA-GSH Cycle and Glyoxalase System Regulation in Fragrant Rice. Metabolites 2024; 14:520. [PMID: 39452901 PMCID: PMC11509829 DOI: 10.3390/metabo14100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Boron is an essential micronutrient for plant growth and productivity, yet excessive boron leads to toxicity, posing significant challenges for agriculture. Fragrant rice is popular among consumers, but the impact of boron toxicity on qualitative traits of fragrant rice, especially aroma, remains largely unexplored. The individual potentials of melatonin and salicylic acid in reducing boron toxicity are less known, while their synergistic effects and mechanisms in fragrant rice remain unclear. Methods: Thus, this study investigates the combined application of melatonin and salicylic acid on fragrant rice affected by boron toxicity. One-week-old seedlings were subjected to boron (0 and 800 µM) and then treated with melatonin and salicylic acid (0 and 100 µM, for 3 weeks). Results: Boron toxicity significantly impaired photosynthetic pigments, plant growth, and chloroplast integrity while increasing oxidative stress markers such as hydrogen peroxide, malondialdehyde, methylglyoxal, and betaine aldehyde dehydrogenase. Likewise, boron toxicity abridged the precursors involved in the 2-acetyl-1-pyrroline (2-AP) biosynthesis pathway. However, individual as well as combined application of melatonin and salicylic acid ameliorated boron toxicity by strengthening the antioxidant defense mechanisms-including the enzymes involved during the ascorbate-glutathione (AsA-GSH) cycle and glyoxalase system-and substantially improved 2-AP precursors including proline, P5C, Δ1-pyrroline, and GABA levels, thereby restoring the 2-AP content and aroma. These findings deduce that melatonin and salicylic acid synergistically alleviate boron toxicity-induced disruptions on the 2-AP biosynthesis pathway by improving the 2-AP precursors and enzymatic activities, as well as modulating the physio-biochemical processes and antioxidant defense system of fragrant rice plants. Conclusions: The findings of this study have the potential to enhance rice productivity and stress tolerance, offering solutions to improve food security and sustainability in agricultural practices, particularly in regions affected by environmental stressors.
Collapse
Affiliation(s)
- Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Emilie Widemann
- Institut de Biologie Moléculaire des Plantes, CNRS-Université de Strasbourg, 67084 Strasbourg, France;
| | - Sarfraz Shafiq
- Thompson Rivers University, Kamloops, BC V2C 0C8, Canada;
| | - Ali Bakhsh
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan;
| | - Xiaoyuan Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
16
|
Arinzechi C, Dong C, Huang P, Zhao P, Liao Q, Li Q, Yang Z. Synergistic mitigation of cadmium stress in rice (Oryza sativa L.) through combined selenium, calcium, and magnesium supplementation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:435. [PMID: 39316186 DOI: 10.1007/s10653-024-02209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024]
Abstract
Rice is susceptible to cadmium (Cd) accumulation, which poses a threat to human health. Traditional methods for mitigating moderately contaminated soils can be impractical or prohibitively expensive, necessitating innovative approaches to reduce Cd uptake in rice. Nutrient management has emerged as a promising solution by leveraging the antagonistic interactions between nutrients and cadmium. However, the research on the synergistic effects of multiple nutrients on Cd toxicity in rice is limited. To address this limitation, pot experiments was utilized to investigate the combined effects of selenium (Se), calcium (Ca), and magnesium (Mg) denoted as (SeCM) on Cd uptake and translocation in rice. The synergistic application of SeCM reduced grain Cd levels by 55.0%, surpassing the individual effects of Se (42.1%) and CM (40.5%), and bringing Cd content below the safe consumption limits. SeCM treatment exhibited multiple beneficial effects: it decreased malondialdehyde (MDA) levels, enhanced catalase (CAT), peroxidase (POD) and glutathione (GSH) enzyme activities, limited Cd translocation from roots to shoots, promoted iron plaque formation, and reduced Cd transfer from soil to iron plaque and subsequently to rice grains. Correlation analysis revealed strong negative relationships between rice Cd content, Cd translocation factors, and the translocation factors of selenium, calcium, and magnesium. These findings suggest that selenium, calcium, and magnesium collaboratively mitigate Cd toxicity through antagonistic and competitive interactions. These nutrients enhance the uptake of beneficial elements, while competitively inhibiting the translocation and accumulation of Cd in rice plants. SeCM application offers a promising strategy for producing nutrient-rich, and Cd-safe rice in contaminated soils.
Collapse
Affiliation(s)
- Chukwuma Arinzechi
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Chunhua Dong
- Soil and Fertilizer Institute of Hunan Province, Changsha, 410125, People's Republic of China
| | - Peicheng Huang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Pengwei Zhao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China.
| |
Collapse
|
17
|
Pugazhendhi A, Govindasamy C, Sharma A. Heavy metal accumulation in root and shoot tapioca plant biomass grown in agriculture land situated around the magnesite mine tailings. ENVIRONMENTAL RESEARCH 2024; 257:119287. [PMID: 38823610 DOI: 10.1016/j.envres.2024.119287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Heavy metal pollution in soil has emerged as a major environmental concern. This can be attributed to human activities such as mining, modern agriculture, and industrialization. This study was conducted to determine how heavy metals spread from mine tailings to surrounding farmland. Metal absorption and accumulation were also investigated in the root and shoot biomass of tapioca crops grown in those farmlands. Metal concentrations in MTAS1 were 85.3 ± 1.2, 45.8 ± 1.5, 134.8 ± 1.7, 92.4 ± 2.2, and 78.95 ± 1.4 mg kg-1, respectively. Heavy metal concentrations in MTAS2 and MTAS3 were found to be 79.62 ± 1.6, 75.4 ± 1.5, 41.31 ± 1.1, 47.8 ± 1.6, 142.5 ± 2.1, 128.4 ± 1.4, 86.2 ± 1.9, 79.5 ± 1.3, and 83.4 ± 1.2 mg kg-1, respectively. Tapioca crop shoot and root biomass grown at these metal polluted sites absorbed and accumulated significant amounts of Cd, Cu, Zn, Pb, Ni, and Mn. Notably, the metal content of the tapioca crop's root and shoot biomass exceeded national standards.
Collapse
Affiliation(s)
- Arivalagan Pugazhendhi
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, AgroInnovationLab, School of Engineering and Sciences, Queretaro, 76130, Mexico
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh-11433, Saudi Arabia
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, AgroInnovationLab, School of Engineering and Sciences, Queretaro, 76130, Mexico.
| |
Collapse
|
18
|
Nijabat A, Mubashir M, Mahmood Ur Rehman M, Siddiqui MH, Alamri S, Nehal J, Khan R, Zaman QU, Haider SZ, Akhlaq M, Ali A. Molasses-based waste water irrigation: a friend or foe for carrot (Daucus carota L.) growth, yield and nutritional quality. BMC PLANT BIOLOGY 2024; 24:855. [PMID: 39266960 PMCID: PMC11391779 DOI: 10.1186/s12870-024-05527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024]
Abstract
Management of molasses-based wastewater generated in yeast and sugar industries is a major environmental concern due to its high chemical oxygen demand and other recalcitrant substances. Several strategies have been used to reduce the inland discharge of wastewater but the results are not satisfactory due to high operating cost. However, reuse of molasses-based wastewater irrigation in agriculture has been a major interest nowadays to reduce the freshwater consumption. Thus, it is crucial to monitor the impacts of molasses-based waste water irrigation on growth, metabolism, yield and nutritional quality of crops for safer consumer's health. In present study, carrot seeds of a local cultivar (T-29) were germinated on filter paper in Petri dishes under controlled conditions. The germinated seeds were then transplanted into pots and irrigated with three different treatments normal water (T0), diluted molasses-based wastewater (T1), and untreated molasses-based wastewater (T2), in six replicates. Results revealed that carrot irrigated with untreated molasses-based waste water had exhibited significant reductions in growth, yield, physiology, metabolism, and nutritional contents. Additionally, accumulation of Cd and Pb contents in carrot roots irrigated with untreated molasses-based waste water exceed the permissible limits suggested by WHO and their consumption may cause health risks. While, diluted molasses-based waste water irrigation positively enhanced the growth, yield of carrot plants without affecting the nutritional quality. This strategy is cost effective, appeared as most appropriate alternative mean to reduce the freshwater consumption in water deficit regions of the world.
Collapse
Affiliation(s)
- Aneela Nijabat
- Department of Botany, University of Mianwali, Mianwali, 42200, Pakistan
| | - Muhammad Mubashir
- Department of Botany, Ghazi University, Dera Ghazi Khan, 44000, Pakistan
| | | | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Javeria Nehal
- Department of Botany, University of Sargodha, Sargodha, 42100, Pakistan
| | - Rahamdad Khan
- Department of Agriculture, Bacha Khan University, Charsadda, Pakistan
| | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore, 54590, Pakistan.
| | - Syda Zahra Haider
- Department of Botany, Ghazi University, Dera Ghazi Khan, 44000, Pakistan
| | - Muhammad Akhlaq
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, 42100, Pakistan
| |
Collapse
|
19
|
Huang F, Chen L, Zhou Y, Huang J, Wu F, Hu Q, Chang N, Qiu T, Zeng Y, He H, White JC, Yang W, Fang L. Exogenous selenium promotes cadmium reduction and selenium enrichment in rice: Evidence, mechanisms, and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135043. [PMID: 38941835 DOI: 10.1016/j.jhazmat.2024.135043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Cadmium (Cd) accumulation in rice, a global environmental issue, poses a significant threat to human health due to its widespread presence and potential transfer through the food chain. Selenium (Se), an essential micronutrient for humans and plants, can reduce Cd uptake in rice and alleviate Cd-induced toxicity. However, the effects and mechanisms of Se supplementation on rice performance in Cd-contaminated soil remain largely unknown. Here, a global meta-analysis was conducted to evaluate the existing knowledge on the effects and mechanisms by which Se supplementation impacts rice growth and Cd accumulation. The result showed that Se supplementation has a significant positive impact on rice growth in Cd-contaminated soil. Specifically, Se supplementation decreased Cd accumulation in rice roots by 16.3 % (11.8-20.6 %), shoots by 24.6 % (19.9-29.1 %), and grain by 37.3 % (33.4-40.9 %), respectively. The grain Cd reduction was associated with Se dose and soil Cd contamination level but not Se type or application method. Se influences Cd accumulation in rice by regulating the expression of Cd transporter genes (OSLCT1, OSHMA2, and OSHMA3), enhancing Cd sequestration in the cell walls, and reducing Cd bioavailability in the soil. Importantly, Se treatment promoted Se enrichment in rice and alleviated oxidative damage associated with Cd exposure by stimulating photosynthesis and activating antioxidant enzymes. Overall, Se treatment mitigated the health hazard associated with Cd in rice grains, particularly in lightly contaminated soil. These findings reveal that Se supplementation is a promising strategy for simultaneous Cd reduction and Se enrichment in rice.
Collapse
Affiliation(s)
- Fengyu Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| | - Ying Zhou
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Jingqiu Huang
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Fang Wu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Qing Hu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States
| | - Wenchao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
20
|
Wang Y, Cui T, Niu K, Ma H. Co-expression analyses reveal key Cd stress response-related metabolites and transcriptional regulators in Kentucky bluegrass. CHEMOSPHERE 2024; 363:142937. [PMID: 39059638 DOI: 10.1016/j.chemosphere.2024.142937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Kentucky bluegrass (Poa pratensis) is known for its high cadmium (Cd) tolerance and accumulation, and it is therefore considered to have the potential for phytoremediation of Cd-contaminated soil. However, the mechanisms underlying the accumulation and tolerance of Cd in Kentucky bluegrass are largely unknown. In this study, we examined variances in the transcriptome and metabolome of a Cd-tolerant variety (Midnight, M) and a Cd-sensitive variety (Rugby II, R) to pinpoint crucial regulatory genes and metabolites associated with Cd response. We also validated the role of the key metabolite, l-phenylalanine, in Cd transport and alleviation of Cd stress by applying it to the Cd-tolerant variety M. Metabolites of the M and R varieties under Cd stress were subjected to co-expression analysis. The results showed that shikimate-phenylpropanoid pathway metabolites (phenolic acids, phenylpropanoids, and polyketides) were highly induced by Cd treatment and were more abundant in the Cd-tolerant variety. Gene co-expression network analysis was employed to further identify genes closely associated with key metabolites. The calcium regulatory genes, zinc finger proteins (ZAT6 and PMA), MYB transcription factors (MYB78, MYB62, and MYB33), ONAC077, receptor-like protein kinase 4, CBL-interacting protein kinase 1, and protein phosphatase 2A were highly correlated with the metabolism of phenolic acids, phenylpropanoids, and polyketides. Exogenous l-phenylalanine can significantly increase the Cd concentration in the leaves (22.27%-55.00%) and roots (7.69%-35.16%) of Kentucky bluegrass. The use of 1 mg/L of l-phenylalanine has been demonstrated to lower malondialdehyde levels and higher total phenols, flavonoids, and anthocyanins levels, while also significantly enhancing the uptake of Cd and its translocation from roots to shoots. Our results provide insights into the response mechanisms to Cd stress and offer a novel l-phenylalanine-based phytoremediation strategy for Cd-containing soil.
Collapse
Affiliation(s)
- Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Ting Cui
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
21
|
Lv YT, Liu TB, Li Y, Wang ZY, Lian CY, Wang L. HO-1 activation contributes to cadmium-induced ferroptosis in renal tubular epithelial cells via increasing the labile iron pool and promoting mitochondrial ROS generation. Chem Biol Interact 2024; 399:111152. [PMID: 39025289 DOI: 10.1016/j.cbi.2024.111152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Cadmium (Cd), a prevalent environmental contaminant, has attracted widespread attention due to its serious health hazards. Ferroptosis is a form of iron-dependent oxidative cell death that contributes to the development of various kidney diseases. However, the mechanisms underlying the occurrence of ferroptosis in Cd-induced renal tubular epithelial cells (TECs) have not been fully elucidated. Hereby, both in-vitro and in-vivo experiments were established to elucidate this issue. In this study, we found that Cd elicited accumulation of lipid peroxides due to intracellular ferrous ion (Fe2+) overload and glutathione depletion, contributing to ferroptosis. Inhibition of ferroptosis via chelation of Fe2+ or reduction of lipid peroxidation can significantly mitigate Cd-induced cytotoxicity. Renal transcriptome analysis revealed that the activation of heme oxygenase 1 (HO-1) was closely related to ferroptosis in Cd-induced TECs injury. Cd-induced ferroptosis and resultant TECs injury are significantly alleviated due to HO-1 inhibition, demonstrating the crucial role of HO-1 in Cd-triggered ferroptosis. Further studies showed that accumulation of lipid peroxides due to iron overload and mitochondrial ROS (mtROS) generation was responsible for HO-1-triggered ferroptosis in Cd-induced cytotoxicity. In conclusion, the current study demonstrates that excessively upregulating HO-1 promotes iron overload and mtROS overproduction to trigger ferroptosis in Cd-induced TECs injury, highlighting that targeting HO-1-mediated ferroptosis may provide new ideas for preventing Cd-induced nephrotoxicity.
Collapse
Affiliation(s)
- Yan-Ting Lv
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 6l Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Tian-Bin Liu
- New Drug Evaluation Center of Shandong Academy of Pharmaceutical Sciences, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Ji'nan City 250101 Shandong Province, China
| | - Yue Li
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 6l Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Zhen-Yong Wang
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 6l Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Cai-Yu Lian
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 6l Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Lin Wang
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 6l Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
22
|
Bai L, Wen Z, Zhu Y, Jama HA, Sawmadal JD, Chen J. Association of blood cadmium, lead, and mercury with anxiety: a cross-sectional study from NHANES 2007-2012. Front Public Health 2024; 12:1402715. [PMID: 39188794 PMCID: PMC11345141 DOI: 10.3389/fpubh.2024.1402715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Objectives The purpose of this paper is to explore the relationship between blood levels of cadmium, lead, and mercury and anxiety in American adults. Methods Blood metals and self-reported anxiety days were extracted from laboratory data and questionnaire data, respectively, using NHANES data from 2007-2012. Weighted logistic regression was used to assess the relationship between cadmium, lead and mercury with anxiety. Restricted cubic spline was used to visualize the non-linear relationship between metal concentrations and anxiety. Weighted quantile sum (WQS) regression was used to investigate the effect of combined exposure to the three metals on anxiety. Results The prevalence of anxiety in adults was 26.0%. After adjusting for potential confounding variables, cadmium levels in the highest quartile (Q4) were associated with a higher risk of anxiety compared to the lowest quartile (Q1) (OR = 1.279, 95% CI: 1.113-1.471, p < 0.01). Restricted cubic spline analysis indicated a positive association between blood cadmium levels and anxiety. Furthermore, co-exposure to multiple heavy metals was positively associated with anxiety risk (WQS positive: OR = 1.068, 95% CI: 1.016-1.160, p < 0.05), with cadmium contributing the most to the overall mixture effect. Compared to the Light RPA, the Vigorous/Moderate RPA group had a relatively low risk of anxiety after cadmium exposure. Conclusion High levels of blood cadmium are positively associated with the development of anxiety disorders, which needs to be further verified in future studies.
Collapse
Affiliation(s)
- Long Bai
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Zongliang Wen
- School of Public Health, Xuzhou Medical University, Xuzhou, China
- School of Management, Xuzhou Medical University, Xuzhou, China
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yan Zhu
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, China
| | | | | | - Jialin Chen
- School of Management, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
23
|
Wang Y, Cui T, Niu K, Ma H. Integrated proteomics, transcriptomics, and metabolomics offer novel insights into Cd resistance and accumulation in Poa pratensis. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134727. [PMID: 38824780 DOI: 10.1016/j.jhazmat.2024.134727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Kentucky bluegrass (Poa pratensis L., KB) demonstrates superior performance in both cadmium (Cd) accumulation and tolerance; however, the regulatory mechanisms and detoxification pathways in this species remain unclear. Therefore, phenotype, root ultrastructure, cell wall components, proteomics, transcriptomics, and metabolomics were analyzed under the hydroponic system to investigate the Cd tolerance and accumulation mechanisms in the Cd-tolerant KB variety 'Midnight (M)' and the Cd-sensitive variety 'Rugby II (R)' under Cd stress. The M variety exhibited higher levels of hydroxyl and carboxyl groups as revealed by Fourier transform infrared spectroscopy spectral analysis. Additionally, a reduced abundance of polysaccharide degradation proteins was observed in the M variety. The higher abundance of glutathione S-transferase and content of L-cysteine-glutathione disulfide and oxidized glutathione in the M variety may contribute to better performance of the M variety under Cd stress. Additionally, the R variety had an enhanced content of carboxylic acids and derivatives, increasing the Cd translocation capacity. Collectively, the down-regulation of cell wall polysaccharide degradation genes coupled with the up-regulation of glutathione metabolism genes enhances the tolerance to Cd stress in KB. Additionally, lignification of the endodermis and the increase in carboxylic acids and derivatives play crucial roles in the redistribution of Cd in KB.
Collapse
Affiliation(s)
- Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China
| | - Ting Cui
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-US. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China.
| |
Collapse
|
24
|
Li L, Chen Q, Cui S, Ishfaq M, Zhou L, Zhou X, Liu Y, Peng Y, Yu Y, Wu W. Exogenous Application of Amino Acids Alleviates Toxicity in Two Chinese Cabbage Cultivars by Modulating Cadmium Distribution and Reducing Its Translocation. Int J Mol Sci 2024; 25:8478. [PMID: 39126047 PMCID: PMC11313598 DOI: 10.3390/ijms25158478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Plants communicate underground by secreting multiple amino acids (AAs) through their roots, triggering defense mechanisms against cadmium (Cd) stress. However, the specific roles of the individual AAs in Cd translocation and detoxification remain unclear. This study investigated how exogenous AAs influence Cd movement from the roots to the shoots in Cd-resistant and Cd-sensitive Chinese cabbage cultivars (Jingcui 60 and 16-7 cultivars). The results showed that methionine (Met) and cysteine (Cys) reduced Cd concentrations in the shoots of Jingcui 60 by approximately 44% and 52%, and in 16-7 by approximately 43% and 32%, respectively, compared to plants treated with Cd alone. However, threonine (Thr) and aspartic acid (Asp) did not show similar effects. Subcellular Cd distribution analysis revealed that AA supplementation increased Cd uptake in the roots, with Jingcui 60 preferentially storing more Cd in the cell wall, whereas the 16-7 cultivar exhibited higher Cd concentrations in the organelles. Moreover, Met and Cys promoted the formation of Cd-phosphate in the roots of Jingcui 60 and Cd-oxalate in the 16-7 cultivar, respectively. Further analysis showed that exogenous Cys inhibited Cd transport to the xylem by downregulating the expression of HMA2 in the roots of both cultivars, and HMA4 in the 16-7 cultivar. These findings provide insights into the influence of exogenous AAs on Cd partitioning and detoxification in Chinese cabbage plants.
Collapse
Affiliation(s)
- Longcheng Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.C.); (S.C.); (L.Z.); (X.Z.); (Y.L.)
| | - Shihao Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.C.); (S.C.); (L.Z.); (X.Z.); (Y.L.)
| | - Muhammad Ishfaq
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Lin Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.C.); (S.C.); (L.Z.); (X.Z.); (Y.L.)
| | - Xue Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.C.); (S.C.); (L.Z.); (X.Z.); (Y.L.)
| | - Yanli Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.C.); (S.C.); (L.Z.); (X.Z.); (Y.L.)
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen 523758, China;
| | - Yifa Yu
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China;
| | - Wenliang Wu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
25
|
Wang Y, Cui T, Niu K, Ma H. Root cell wall polysaccharides and endodermal barriers restrict long-distance Cd translocation in the roots of Kentucky bluegrass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116633. [PMID: 38941659 DOI: 10.1016/j.ecoenv.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Soil Cd pollution is a significant environmental issue faced by contemporary society. Kentucky bluegrass is considered a potential phytoremediation species, as some varieties have excellent cadmium (Cd) tolerance. However, the mechanisms of Cd accumulation and transportation in Kentucky bluegrass are still not fully understood. The Cd-tolerant Kentucky bluegrass cultivar 'Midnight' (M) exhibits lower Cd translocation efficiency and a higher leaf Cd concentration compared to the Cd-sensitive cultivar 'Rugby II' (R). We hypothesized that Cd translocation from roots to shoots in cultivar M is hindered by the endodermal barriers and cell wall polysaccharides; hence, we conducted Cd distribution, cytological observation, cell wall component, and transcriptomic analyses under Cd stress conditions using the M and R cultivars. Cd stress resulted in the thickening of the endodermis and increased synthesis of cell wall polysaccharides in both the M and R cultivars. Endodermis development restricted the radical transport of Cd from the root cortex to the stele, while the accumulation of cell wall polysaccharides promoted the binding of Cd to the cell wall. These changes further inhibited the long-distance translocation of Cd from the roots to the aerial parts. Furthermore, the M cultivar exhibited limited long-distance Cd translocation efficiency compared to the R cultivar, which was attributed to the enhanced development of endodermal barriers and increased Cd binding by cell wall polysaccharides. This study provides valuable insights for screening high Cd transport efficiency in Kentucky bluegrass based on anatomical structure and genetic modification.
Collapse
Affiliation(s)
- Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Ting Cui
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
26
|
Wu T, Zhou J, Zhou J. Comparison of soil addition, foliar spraying, seed soaking, and seed dressing of selenium and silicon nanoparticles effects on cadmium reduction in wheat (Triticum turgidum L.). CHEMOSPHERE 2024; 362:142681. [PMID: 38914290 DOI: 10.1016/j.chemosphere.2024.142681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Wheat cadmium (Cd) contamination is a critical food security issue worldwide, and selenium (Se) and silicon (Si) are widely reported to reduce Cd accumulation in cereal crops. However, few studies have compared the most effective pathway to reduce Cd accumulation in crops using Se nanoparticles (nano-Se), Si nanoparticles (nano-Si), and their mixtures. Here, we investigated the concentrations of Cd in wheat using four application modes: soil addition, foliar spraying, seed soaking, and seed dressing combined with three different materials. The concentration of Cd in wheat grains can be significantly reduced by 31.30-62.99% and 36.96-51.04% through four applications of nano-Se and soil application and seed soaking of nano-Si, respectively. However, all treatments involving mixtures of nano-Si and nano-Se did not show a reduction in Cd concentration. The applications of both nano-Se and nano-Si can enhance antioxidant enzyme systems and regulate Cd-related gene expression to safeguard wheat tissues from Cd stress. Downregulation of the influx transporter from soil to root (TaNramp5) and from root to shoot (TaLCT1), along with the upregulation of the efflux transporter from cytoplasm to vacuole (TaHMA3), contributed to the nano-Si/nano-Se dependent Cd transport and reduced Cd accumulation in wheat grains. Overall, the application of nano-Se instead of nano-Si, and soil addition rather than foliar spraying, seed soaking, and seed dressing, can be efficiently utilized to reduce grain Cd accumulation from Cd-contaminated soils.
Collapse
Affiliation(s)
- Tianyi Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jing Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
27
|
Niekerk LA, Gokul A, Basson G, Badiwe M, Nkomo M, Klein A, Keyster M. Heavy metal stress and mitogen activated kinase transcription factors in plants: Exploring heavy metal-ROS influences on plant signalling pathways. PLANT, CELL & ENVIRONMENT 2024; 47:2793-2810. [PMID: 38650576 DOI: 10.1111/pce.14926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Due to their stationary nature, plants are exposed to a diverse range of biotic and abiotic stresses, of which heavy metal (HM) stress poses one of the most detrimental abiotic stresses, targeting diverse plant processes. HMs instigate the overproduction of reactive oxygen species (ROS), and to mitigate the adverse effects of ROS, plants induce multiple defence mechanisms. Besides the negative implications of overproduction of ROS, these molecules play a multitude of signalling roles in plants, acting as a central player in the complex signalling network of cells. One of the ROS-associated signalling mechanisms is the mitogen-activated protein kinase (MAPK) cascade, a signalling pathway which transduces extracellular stimuli into intracellular responses. Plant MAPKs have been implicated in signalling involved in stress response, phytohormone regulation, and cell cycle cues. However, the influence of various HMs on MAPK activation has not been well documented. In this review, we address and summarise several aspects related to various HM-induced ROS signalling. Additionally, we touch on how these signals activate the MAPK cascade and the downstream transcription factors that influence plant responses to HMs. Moreover, we propose a workflow that could characterise genes associated with MAPKs and their roles during plant HM stress responses.
Collapse
Affiliation(s)
- Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthaditjhaba, South Africa
| | - Gerhard Basson
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Mihlali Badiwe
- Plant Pathology Department, AgriScience Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - Mbukeni Nkomo
- Plant Biotechnology Laboratory, Department of Agriculture, University of Zululand, Main Road, KwaDlangezwa, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
28
|
Song Q, Zhao Y, Wu F, Guo X, Yu H, Li J, Li W, Wang Y, Li M, Xu J. Physiological and molecular responses of strawberry plants to Cd stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108800. [PMID: 38905729 DOI: 10.1016/j.plaphy.2024.108800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
Cadmium (Cd), a toxic metal element, can be absorbed by plants via divalent metal ion transporters, thereby retarding plant growth and posing a threat to human health. Strawberries are popular and economically valuable berry species that are sensitive to soil pollutants, especially Cd. However, the mechanisms underlying Cd stress responses in strawberry plants remain largely unclear. Here, we investigated the physiological and molecular basis of Cd stress responses in strawberry plants using the diploid strawberry 'Yellow Wonder' as a material. The results indicated that Cd stress induced oxidative damage, repressed photosynthetic efficiency, and interfered with the accumulation and redistribution of trace elements. Furthermore, Cd stress reduced the concentrations of indoleacetic acid, trans-zeatin riboside and gibberellic acid while increasing the concentration of abscisic acid, thus altering the phytohormone signaling pathway in strawberry plants. Cd stress also inhibited the expression of genes involved in nitrogen uptake and assimilation while promoting the energy supply for plant survival under Cd toxicity. Moreover, the flavonoid biosynthesis pathway was induced, and the anthocyanin concentration increased, thereby improving the free radical scavenging capacity of strawberry plants under Cd toxicity. Additionally, we identified several transcription factors and functional genes as hub genes based on a weighted gene coexpression network analysis. These results collectively provide a theoretical foundation for strawberry breeding and ensuring agriculture and food safety.
Collapse
Affiliation(s)
- Qianqian Song
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Yuan Zhao
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Fei Wu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Xiaoyu Guo
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Hao Yu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Junjun Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Weimin Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Yanfang Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Meng Li
- Department of Pharmacy and Biotechnology, Zibo Vocational Institute, Zibo, 255300, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China.
| |
Collapse
|
29
|
Khlifi N, Ghabriche R, Ayachi I, Zorrig W, Ghnaya T. How does silicon alleviate Cd-induced phytotoxicity in barley, Hordeum vulgare L.? CHEMOSPHERE 2024; 362:142739. [PMID: 38969217 DOI: 10.1016/j.chemosphere.2024.142739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/01/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Toxic heavy metal accumulation in edible plants has become a problem worth worrying about for human health. Cadmium is one of the most toxic metals presenting high bioavailability in the environment. The main route of transfer of Cd to humans is the consumption of contaminated food which suggests that reducing of Cd absorption by plants could reduce this risk. In this context, it was suggested that silicon supply would be able to limit the transfer of Cd to the plants. Thus, this work evaluated the effects of 0.5 mM Si on Cd absorption and accumulation in barley (Hordeum vulgare L.). Plants were grown hydroponically for 21 days in the presence of 0 and 15 μM Cd2+ combined or not with 0.5 mM Si. Analyses were related to growth and photosynthesis parameters, Cd accumulation in organs and Cd subcellular distribution in the shoots. Results showed that, under Cd alone, plants showed severe toxicity symptoms as chlorosis and necrosis and produced significantly less biomass as compared to control. 0.5 mM Si in the medium culture significantly reduced Cd-induced toxicity by mitigating symptoms and restoring growth, photosynthesis, and nutrition. Si also induced a significant reduction of Cd concentration in plants and changed its sub-cellular compartmentalization by enhancing fixation to cell walls and reducing the Cd concentration in the cytoplasmic and organelles fractions. These data suggest that the application of Si could significantly increase Cd tolerance and reduce the risk of the Cd accumulation in edible plants.
Collapse
Affiliation(s)
- Nadia Khlifi
- Laboratory of Extremophile Plants, Biotechnology Center of BorjCedria, BP 901, Hammam-Lif, 2050, Tunis, Tunisia
| | - Rim Ghabriche
- Laboratory of Extremophile Plants, Biotechnology Center of BorjCedria, BP 901, Hammam-Lif, 2050, Tunis, Tunisia
| | - Imen Ayachi
- Laboratory of Extremophile Plants, Biotechnology Center of BorjCedria, BP 901, Hammam-Lif, 2050, Tunis, Tunisia
| | - Walid Zorrig
- Laboratory of Extremophile Plants, Biotechnology Center of BorjCedria, BP 901, Hammam-Lif, 2050, Tunis, Tunisia
| | - Tahar Ghnaya
- Higher Institute of Arts and Crafts of Tataouine, University of Gabes, Rue OmarrEbenkhattab, 6029, Zerig-Gabes, Tunisia; Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-organisms, Institute of Arid Land, 4100, Medenine, University of Gabes Tunisia, Tunisia.
| |
Collapse
|
30
|
Chen Z, Ma Y, Ren Y, Ma L, Tang X, Pan S, Duan M, Tian H, Mo Z. Multi-walled carbon nanotubes affect yield, antioxidant response, and rhizosphere microbial community of scented rice under combined cadmium-lead (Cd-Pb) stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108826. [PMID: 38908351 DOI: 10.1016/j.plaphy.2024.108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Rice production is threatened by heavy metal stress. The use of multi-walled carbon nanotubes (MWCNTs) in agriculture has been reported in previous studies. We aimed to quantify the impact of MWCNTs on the growth and physiological characteristics of scented rice under cadmium (Cd) and lead (Pb) stresses. Therefore, a pot experiment was conducted, two scented rice varieties Yuxiangyouzhan and Xiangyaxiangzhan were used as materials grown under different concentrations of MWCNTs (0, 100, and 300 mg kg-1 recorded as CK, CNPs100, and CNPs300, respectively). The yield, antioxidant response, and rhizosphere microbial community of scented rice were studied. The results showed that compared with the CK treatment, the CNPs100 and CNPs300 treatments increased leaf dry weight by 17.95%-56.22% at the heading stage, and the H2O2 content in leaves decreased significantly by 36.64%-42.27% at the maturity stage. Under CNPs100 treatment, the grain yield of two scented rice varieties increased significantly by 17.54% and 27.40%, respectively. The MWCNTs regulated the distribution of the Cd and Pb in different plant tissues. The content of Cd (0.11-0.20 mg kg-1) and Pb (0.01-0.04 mg kg-1) in grain were at a safety level (<0.2 mg kg-1). Moreover, MWCNTs increased soil microbial community abundance and altered community composition structure under Cd-Pb stress, which in turn improved agronomic traits and quality of scented rice. Overall, this study suggested that the application of MWCNTs regulates the growth, yield, physiological response, and soil microbial community, the genotypes response effect of scented rice to MWCNTs is needed further studied.
Collapse
Affiliation(s)
- Zhilong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yixian Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yong Ren
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology & Pharmacy of Yulin Normal University, Yulin, 537000, China
| | - Lin Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China
| | - Shenggang Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China
| | - Meiyang Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China
| | - Hua Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China.
| |
Collapse
|
31
|
Fan W, Yu H, Yan J, Qin M, Li R, Jia T, Liu Z, Ahmad P, El-Sheikh MA, Yadav KK, Rodríguez-Díaz JM, Zhang L, Liu P. Variety-dependent responses of common tobacco with differential cadmium resistance: Cadmium uptake and distribution, antioxidative activity, and gene expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116596. [PMID: 38896899 DOI: 10.1016/j.ecoenv.2024.116596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Cadmium (Cd), which accumulates in tobacco leaves, enters the human body through inhalation of smoke, causing harmful effects on health. Therefore, identifying the pivotal factors that govern the absorption and resistance of Cd in tobacco is crucial for mitigating the harmful impact of Cd. In the present study, four different Cd-sensitive varieties, namely, ZhongChuan208 (ZC) with resistance, ZhongYan100 (ZY), K326 with moderate resistance, and YunYan87 (YY) with sensitivity, were cultivated in hydroponic with different Cd concentrations (20 µM, 40 µM, 60 µM and 80 µM). The results indicated that plant growth was significantly decreased by Cd. Irrespective of the Cd concentration, ZC exhibited the highest biomass, while YY had the lowest biomass; ZY and K326 showed intermediate levels. Enzymatic (APX, CAT, POD) and nonenzymatic antioxidant (Pro, GSH) systems showed notable variations among varieties. The multifactor analysis suggested that the ZC and ZY varieties, with higher levels of Pro and GSH content, contribute to a decrease in the levels of MDA and ROS. Among all the Cd concentrations, ZC exhibited the lowest Cd accumulation, while YY showed the highest. Additionally, there were significant differences observed in Cd distribution and translocation factors among the four different varieties. In terms of Cd distribution, cell wall Cd accounted for the highest proportion of total Cd, and organelles had the lowest proportion. Among the varieties, ZC showed lower Cd levels in the cell wall, soluble fraction, and organelles. Conversely, YY exhibited the highest Cd accumulation in all tissues; K326 and ZY had intermediate levels. Translocation factors (TF) varied among the varieties under Cd stress, with ZC and ZY showing lower TF compared to YY and K326. This phenomenon mainly attributed to regulation of the NtNramp3 and NtNramp5 genes, which are responsible for the absorption and transport of Cd. This study provides a theoretical foundation for the selection and breeding of tobacco varieties that are resistant to or accumulate less Cd.
Collapse
Affiliation(s)
- Weiru Fan
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Hua Yu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Tao Jia
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama-192301, Jammu and Kashmir, India
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China.
| |
Collapse
|
32
|
Jaramillo-Mazo C, Bravo D, Guerra Sierra BE, Alvarez JC. Association between bacterial community and cadmium distribution across Colombian cacao crops. Microbiol Spectr 2024; 12:e0336323. [PMID: 38814085 PMCID: PMC11218527 DOI: 10.1128/spectrum.03363-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/22/2024] [Indexed: 05/31/2024] Open
Abstract
Assessing the bacterial community composition across cacao crops is important to understand its potential role as a modulator of cadmium (Cd) translocation to plant tissues under field conditions; Cd mobility between soil and plants is a complex and multifactorial problem that cannot be captured only by experimentation. Although microbes have been shown to metabolize and drive the speciation of Cd under controlled conditions, regardless of the link between soil bacterial community (SBC) dynamics and Cd mobilization in the rhizosphere, only a few studies have addressed the relationship between soil bacterial community composition (SBCC) and Cd content in cacao seeds (Cdseed). Therefore, this study aimed to explore the association between SBCC and different factors influencing the distribution of Cd across cacao crop systems. This study comprised 225 samples collected across five farms, where we used an amplicon sequencing approach to characterize the bacterial community composition. The soil Cd concentration alone (Cdsoil) was a poor predictor of Cdseed. Still, we found that this relationship was more apparent when the variation within farms was controlled, suggesting a role of heterogeneity within farms in modulating Cd translocation and, thus, seed Cd content. Our results provide evidence of the link between soil bacterial communities and the distribution of Cd across Colombian cacao crops, and highlight the importance of incorporating fine-spatial-scale studies to advance the understanding of factors driving Cd uptake and accumulation in cacao plants. IMPORTANCE Cadmium (Cd) content in cacao crops is an issue that generates interest due to the commercialization of chocolate for human consumption. Several studies provided evidence about the non-biological factors involved in its translocation into the cacao plant. However, factors related to this process, including soil bacterial community composition (SBCC), still need to be addressed. It is well known that soil microbiome could impact compounds' chemical transformation, including Cd, on the field. Here, we found the first evidence of the link between soil bacterial community composition and Cd concentration in cacao soils and seeds. It highlights the importance of including the variation of bacterial communities to assess the factors driving the Cd translocation into cacao seeds. Moreover, the results highlight the relevance of the spatial heterogeneity within and across cacao farms, influencing the variability of Cd concentrations.
Collapse
Affiliation(s)
- Claudia Jaramillo-Mazo
- Research Group in Biological Sciences and BioProcess (CIBIOP), School of Applied Sciences and Engineering, EAFIT University, Medellín, Colombia
| | - Daniel Bravo
- Laboratory of Soil Microbiology & Calorimetry, Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, Mosquera, Colombia
| | - Beatriz E Guerra Sierra
- Research Group in Agro-Environmental Biotechnology and Health (MICROBIOTA), Facultad de Ciencias Exactas, Naturales y Agropecuarias, Universidad de Santander, Bucaramanga, Colombia
| | - Javier C Alvarez
- Research Group in Biological Sciences and BioProcess (CIBIOP), School of Applied Sciences and Engineering, EAFIT University, Medellín, Colombia
| |
Collapse
|
33
|
Wang Z, Wang Y, Lü J, Li T, Li S, Nie M, Shi G, Zhao X. Silicon and selenium alleviate cadmium toxicity in Artemisia selengensis Turcz by regulating the plant-rhizosphere. ENVIRONMENTAL RESEARCH 2024; 252:119064. [PMID: 38710427 DOI: 10.1016/j.envres.2024.119064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Soil cadmium (Cd) pollution has emerged as a pressing concern due to its deleterious impacts on both plant physiology and human well-being. Silicon (Si) is renowned for its ability to mitigate excessive Cd accumulation within plant cells and reduce the mobility of Cd in soil, whereas Selenium (Se) augments plant antioxidant capabilities and promotes rhizosphere microbial activity. However, research focusing on the simultaneous utilization of Si and Se to ameliorate plant Cd toxicity through multiple mechanisms within the plant-rhizosphere remains comparatively limited. This study combined hydroponic and pot experiments to investigate the effects of the combined application of Si and Se on Cd absorption and accumulation, as well as the growth and rhizosphere of A. selengensis Turcz under Cd stress. The results revealed that a strong synergistic effect was observed between both Si and Se. The combination of Si and Se significantly increased the activity and content of enzymes and non-enzyme antioxidants within A. selengensis Turcz, reduced Cd accumulation and inhibiting its translocation from roots to shoots. Moreover, Si and Se application improved the levels of reducing sugar, soluble protein, and vitamin C, while reducing nitrite content and Cd bioavailability. Furthermore, the experimental results showed that the combination of Si and Se not only increased the abundance of core rhizosphere microorganisms, but also stimulated the activity of soil enzymes, which effectively limited the migration of Cd in the soil. These findings provided valuable insights into the effective mitigation of soil Cd toxicity to plants and also the potential applications in improving plant quality and safety.
Collapse
Affiliation(s)
- Zhen Wang
- School of Environmental Science and Engineering / Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Huei Polytechnic University, Huangshi 435003, China
| | - Yin Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiliang Lü
- School of Environmental Science and Engineering / Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Huei Polytechnic University, Huangshi 435003, China.
| | - Tingqiang Li
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiqian Li
- Fujian Universities and Colleges Engineering Research Center of Modern Facility Agriculture, Fuqing 350300, China; Fujian Provincial Key Lab of Coastal Basin Environment (Fujian Polytechnic Normal Univeristy), Fuqing, 350300, China
| | - Min Nie
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangyu Shi
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaohu Zhao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
34
|
Rombel-Bryzek A, Bojarski B, Świsłowski P, Jakubiak M, Boliukh I, Rajfur M. The effects of cadmium on selected oxidative stress parameters and the content of photosynthetic pigments in cucumber Cucumis sativus L. J Trace Elem Med Biol 2024; 84:127463. [PMID: 38657336 DOI: 10.1016/j.jtemb.2024.127463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Environmental pollution by cadmium (Cd) is currently a common problem in many countries, especially in highly industrialised areas. Cd present in the soil can be absorbed by plants through the root system. AIM The aim of the present study was to investigate the effects of cadmium on the metabolic activity of cucumber plants (Cucumis sativus L.) and the accumulation and distribution of Cd in the organs of the plants. METHODS Cucumber seeds (3 g) were exposed to 0.76, 1.58 or 4.17 mg Cd/L (applied as CdCl2 solutions). The activity of selected antioxidant enzymes - glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT), lipid peroxidation and the content of photosynthetic pigments were determined in 6-week-old cucumber plants. In addition, intake of Cd has been determined by flame atomic absorption spectrometry (F-AAS). RESULTS The results show that the applied cadmium concentrations affected the activity of antioxidant enzymes. An increase in CAT activity and a decrease in SOD activity were observed in all cucumber organs analysed. GSH-Px activity increased in the roots and stems. Surprisingly, GSH-Px activity decreased in the leaves. The level of lipid peroxidation was usually unchanged (the only one statistically significant change was a decrease in the concentration of malondialdehyde in the leaves which was observed after exposure to the highest Cd concentration). The applied Cd concentrations had no effect on the content of photosynthetic pigments. The highest cadmium content was found in the roots of cucumber plants. Cd tends to accumulate in the roots and a small amount was translocated to the stems and leaves, which was confirmed with the translocation factor (TF). CONCLUSIONS The results indicate that the range of cadmium concentrations used, corresponding to the level of environmental pollution recorded in Europe, effectively activates the antioxidant enzyme system, without intensifying lipid peroxidation or reducing the content of photosynthetic pigments.
Collapse
Affiliation(s)
- Agnieszka Rombel-Bryzek
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, Opole 45-052, Poland.
| | - Bartosz Bojarski
- Department of Animal Physiology, Institute of Biology, Pomeranian University in Słupsk, Arciszewskiego 22b, Słupsk 76-200, Poland
| | - Paweł Świsłowski
- Institute of Biology, University of Opole, Oleska 22, Opole 45-052, Poland
| | - Mateusz Jakubiak
- Department of Environmental Management and Protection, Faculty of Mining Surveying and Environmental Engineering, AGH University of Science and Technology, Mickiewicza 30, Kraków 30-059, Poland
| | - Iryna Boliukh
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, Opole 45-052, Poland
| | - Małgorzata Rajfur
- Institute of Biology, University of Opole, Oleska 22, Opole 45-052, Poland
| |
Collapse
|
35
|
Biswash MR, Li KW, Xu RK, Uwiringiyimana E, Guan P, Lu HL, Li JY, Jiang J, Hong ZN, Shi RY. Alteration of soil pH induced by submerging/drainage and application of peanut straw biochar and its impact on Cd(II) availability in an acidic soil to indica-japonica rice varieties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124361. [PMID: 38871167 DOI: 10.1016/j.envpol.2024.124361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The effects of soil pH variations induced by submergence/drainage and biochar application on soil cadmium (Cd) availability to different rice (Oryza sativa L.) varieties are not well understood. This study aims to investigate the possible reasons for available Cd(II) reduction in paddy soil as influenced by biochar and to determine Cd(II) absorption and translocation rates in different parts of various rice varieties. A pot experiment in a greenhouse using four japonica and four indica rice varieties was conducted in Cd(II) contaminated paddy soil with peanut straw biochar. The results indicated that the submerging led to an increase in soil pH due to the consumption of protons (H+) by the reduction reactions of iron/manganese (Fe/Mn) oxides and sulfate (SO42-) and thus the decrease in soil available Cd(II) contents. However, the drainage decreased soil pH due to the release of protons during the oxidation of Fe2+, Mn2+, and S2- and thus the increase in soil available Cd(II) contents. Application of the biochar increased soil pH during soil submerging and inhibited the decline in soil pH during soil drainage, and thus decreased soil available Cd(II) contents under both submerging and drainage conditions. The indica rice varieties absorbed more Cd(II) in their roots and accumulated higher amounts of Cd(II) in their shoots and grains than the japonica rice varieties. The Cd(II) sensitive varieties exhibited a greater absorption and translocation rate of Cd(II) compared to the tolerant varieties of both indica and japonica rice. Biochar inhibited the absorption and accumulation of Cd(II) in the rice varieties, which ultimately lowered the Cd(II) contents in rice grains below the national food safety limit (0.2 mg kg-1). Overall, planting japonica rice varieties in Cd(II) polluted paddy soils combined with the use of biochar can effectively reduce Cd(II) content in rice grains which protects human health against Cd(II) toxicity.
Collapse
Affiliation(s)
- Md Romel Biswash
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China; Adaptive Research Division (ARD), Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
| | - Ke-Wei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ernest Uwiringiyimana
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Guan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Long Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China
| | - Jiu-Yu Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Neng Hong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren-Yong Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Chen X, Jiang Y, Wang C, Yue L, Li X, Cao X, White JC, Wang Z, Xing B. Selenium Nanomaterials Enhance Sheath Blight Resistance and Nutritional Quality of Rice: Mechanisms of Action and Human Health Benefit. ACS NANO 2024; 18:13084-13097. [PMID: 38727520 DOI: 10.1021/acsnano.4c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In the current work, the foliar application of selenium nanomaterials (Se0 NMs) suppressed sheath blight in rice (Oryza sativa). The beneficial effects were nanoscale specific and concentration dependent. Specifically, foliar amendment of 5 mg/L Se0 NMs decreased the disease severity by 68.8% in Rhizoctonia solani-infected rice; this level of control was 1.57- and 2.20-fold greater than that of the Se ions with equivalent Se mass and a commercially available pesticide (Thifluzamide). Mechanistically, (1) the controlled release ability of Se0 NMs enabled a wider safe concentration range and greater bioavailability to Se0 NMs, and (2) transcriptomic and metabolomic analyses demonstrated that Se0 NMs simultaneously promoted the salicylic acid- and jasmonic-acid-dependent acquired disease resistance pathways, antioxidative system, and flavonoid biosynthesis. Additionally, Se0 NMs improved rice yield by 31.1%, increased the nutritional quality by 6.4-7.2%, enhanced organic Se content by 44.8%, and decreased arsenic and cadmium contents by 38.7 and 42.1%, respectively, in grains as compared with infected controls. Human simulated gastrointestinal tract model results showed that the application of Se0 NMs enhanced the bioaccessibility of Se in grains by 22.0% and decreased the bioaccessibility of As and Cd in grains by 20.3 and 13.4%, respectively. These findings demonstrate that Se0 NMs can serve as an effective and sustainable strategy to increase food quality and security.
Collapse
Affiliation(s)
- Xiaofei Chen
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yi Jiang
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven Connecticut 06511, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
37
|
Zhu S, Sun S, Zhao W, Yang X, Mao H, Sheng L, Chen Z. Utilizing transcriptomics and proteomics to unravel key genes and proteins of Oryza sativa seedlings mediated by selenium in response to cadmium stress. BMC PLANT BIOLOGY 2024; 24:360. [PMID: 38698342 PMCID: PMC11067083 DOI: 10.1186/s12870-024-05076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Cadmium (Cd) pollution has declined crop yields and quality. Selenium (Se) is a beneficial mineral element that protects plants from oxidative damage, thereby improving crop tolerance to heavy metals. The molecular mechanism of Se-induced Cd tolerance in rice (Oryza sativa) is not yet understood. This study aimed to elucidate the beneficial mechanism of Se (1 mg/kg) in alleviating Cd toxicity in rice seedlings. RESULTS Exogenous selenium addition significantly improved the toxic effect of cadmium stress on rice seedlings, increasing plant height and fresh weight by 20.53% and 34.48%, respectively, and increasing chlorophyll and carotenoid content by 16.68% and 15.26%, respectively. Moreover, the MDA, ·OH, and protein carbonyl levels induced by cadmium stress were reduced by 47.65%, 67.57%, and 56.43%, respectively. Cell wall metabolism, energy cycling, and enzymatic and non-enzymatic antioxidant systems in rice seedlings were significantly enhanced. Transcriptome analysis showed that the expressions of key functional genes psbQ, psbO, psaG, psaD, atpG, and PetH were significantly up-regulated under low-concentration Se treatment, which enhanced the energy metabolism process of photosystem I and photosystem II in rice seedlings. At the same time, the up-regulation of LHCA, LHCB family, and C4H1, PRX, and atp6 functional genes improved the ability of photon capture and heavy metal ion binding in plants. Combined with proteome analysis, the expression of functional proteins OsGSTF1, OsGSTU11, OsG6PDH4, OsDHAB1, CP29, and CabE was significantly up-regulated under Se, which enhanced photosynthesis and anti-oxidative stress mechanism in rice seedlings. At the same time, it regulates the plant hormone signal transduction pathway. It up-regulates the expression response process of IAA, ABA, and JAZ to activate the synergistic effect between each cell rapidly and jointly maintain the homeostasis balance. CONCLUSION Our results revealed the regulation process of Se-mediated critical metabolic pathways, functional genes, and proteins in rice under cadmium stress. They provided insights into the expression rules and dynamic response process of the Se-mediated plant resistance mechanism. This study provided the theoretical basis and technical support for crop safety in cropland ecosystems and cadmium-contaminated areas.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China.
| | - Suxia Sun
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Wei Zhao
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Xiuqin Yang
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Huan Mao
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Luying Sheng
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Prague-Suchdol, 16500, Czech Republic
| |
Collapse
|
38
|
Liu H, Wang H, Nie Z, Tao Z, Peng H, Shi H, Zhao P, Liu H. Combined application of arbuscular mycorrhizal fungi and selenium fertilizer increased wheat biomass under cadmium stress and shapes rhizosphere soil microbial communities. BMC PLANT BIOLOGY 2024; 24:359. [PMID: 38698306 PMCID: PMC11067182 DOI: 10.1186/s12870-024-05032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Selenium (Se) fertilizer and arbuscular mycorrhizal fungi (AMF) are known to modulate cadmium (Cd) toxicity in plants. However, the effects of their co-application on wheat growth and soil microbial communities in Cd-contaminated soil are unclear. RESULTS A pot experiment inoculation with two types of AMF and the application of Se fertilizer under Cd stress in wheat showed that inoculation AMF alone or combined with Se fertilizer significantly increased wheat biomass. Se and AMF alone or in combination significantly reduced available Cd concentration in wheat and soil, especially in the Se combined with Ri treatment. High throughput sequencing of soil samples indicated that Se and AMF application had stronger influence on bacterial community compared to fungal community and the bacterial network seemed to have more complex interconnections than the fungal network, and finally shaped the formation of specific microflora to affect Cd availability. CONCLUSION These results indicate that the application of Se and AMF, particularly in combination, could successfully decrease soil Cd availability and relieve the harm of Cd in wheat by modifying rhizosphere soil microbial communities.
Collapse
Affiliation(s)
- Haiyang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China
| | - Haoquan Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China
| | - Zhaojun Nie
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China
| | - Zhikang Tao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China
| | - Hongyu Peng
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Peng Zhao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China
| | - Hongen Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China.
- Key Laboratory of Soil Pollution Control and Remediation in Henan Province, Zhengzhou, 450046, China.
| |
Collapse
|
39
|
Jahantigh M, Jahromi MG, Sefidkon F, Diyanat M, Weisany W. Co-application of biochar and selenium nanoparticles improves yield and modifies fatty acid profile and essential oil composition of fennel (Foeniculum vulgare Mill.) under cadmium toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31331-31342. [PMID: 38630399 DOI: 10.1007/s11356-024-33270-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/05/2024] [Indexed: 10/27/2024]
Abstract
Fatty acids and essential oils (EOs) are the primary variables that influence the quality of fennel (Foeniculum vulgare Mill.). Soil toxicity to cadmium (Cd) is the main environmental issue facing fennel, and priming methods like soil amendments and nanoparticles (NPs) are commonly utilized to deal with it. The goal of the current study was to examine the effects of biochar (BC) and selenium nanoparticles (Se NPs) on fennel plants in Cd-contaminated soils. The pot experiment was conducted with Cd stress at 0, 10, and 20 mg kg-1 soil, BC at 5% (v/v), and foliar-spraying Se NPs at 40 mg L-1 as a factorial completely randomized design (CRD) at a greenhouse condition in 2022. The findings demonstrated that Cd toxicity significantly decreased plant performance, while BC and Se NPs enhanced it. Without BC and Se NPs, Cd toxicity at 20 mg kg-1 soil decreased biological yield (39%), seed yield (37%), EO yield (32%), and monounsaturated fatty acids (14%), while increased saturated fatty acid (26%) and polyunsaturated fatty acids (40%) of fennel. The main EO profile was anethole (65.32-73.25%), followed by limonene (16.12-22.07%), fenchone (5.57-6.83%), and estragole (2.25-3.65%), which mainly were oxygenated monoterpenes. The combined application of BC and Se NPs improved the yield, EO production, and fatty acid profile of fennel plants under Cd stress, increasing the plants' resistance to Cd toxicity.
Collapse
Affiliation(s)
- Masoumeh Jahantigh
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghanbari Jahromi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Fatemeh Sefidkon
- Department of Medicinal Plants, Agricultural Research Education and Extension Organization (AREEO), Research Institute of Forests and Rangelands, Tehran, Iran
| | - Marjan Diyanat
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Weria Weisany
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
40
|
Anwar A, Wang Y, Chen M, Zhang S, Wang J, Feng Y, Xue Y, Zhao M, Su W, Chen R, Song S. Zero-valent iron (nZVI) nanoparticles mediate SlERF1 expression to enhance cadmium stress tolerance in tomato. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133829. [PMID: 38394894 DOI: 10.1016/j.jhazmat.2024.133829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
Cadmium (Cd) pollution threatens plant physiological and biochemical activities and crop production. Significant progress has been made in characterizing how nanoparticles affect Cd stress tolerance; however, the molecular mechanism of nZVI nanoparticles in Cd stress remains largely uncharacterized. Plants treated with nZVI and exposed to Cd had increased antioxidant capacity and reduced Cd accumulation in plant tissues. The nZVI treatment differentially affected the expression of genes involved in plant environmental responses, including those associated with the ERF transcription factor. SlEFR1 was upregulated by Cd stress in nZVI-treated plants when compared with the control and the predicted protein-protein interactions suggested SlERF1 interacts with proteins associated with plant hormone signaling pathway and related to stress. Yeast overexpressing SlEFR1 grew faster after Cd exposure and significantly had higher Cd stress tolerance when compared with empty vector controls. These results suggest that nZVI induces Cd stress tolerance by activating SlERF1 expression to improve plant growth and nutrient accumulation. Our study reveals the molecular mechanism of Cd stress tolerance for improved plant growth and will support new research on overcoming Cd stress and improving vegetable crop production.
Collapse
Affiliation(s)
- Ali Anwar
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yudan Wang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Mengqing Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shuaiwei Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jinmiao Wang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yunqiang Feng
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanxu Xue
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Mingfeng Zhao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wei Su
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shiwei Song
- College of Horticulture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
41
|
Walczak-Skierska J, Krakowska-Sieprawska A, Monedeiro F, Złoch M, Pomastowski P, Cichorek M, Olszewski J, Głowacka K, Gużewska G, Szultka-Młyńska M. Silicon's Influence on Polyphenol and Flavonoid Profiles in Pea ( Pisum sativum L.) under Cadmium Exposure in Hydroponics: A Study of Metabolomics, Extraction Efficacy, and Antimicrobial Properties of Extracts. ACS OMEGA 2024; 9:14899-14910. [PMID: 38585133 PMCID: PMC10993280 DOI: 10.1021/acsomega.3c08327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
The current study aimed to investigate the impact of silicon (Si) supplementation in the form of Na2SiO3 on the metabolome of peas under normal conditions and following exposure to cadmium (Cd) stress. Si is known for its ability to enhance stress tolerance in various plant species, including the mitigation of heavy metal toxicity. Cd, a significant contaminant, poses risks to both human health and the environment. The study focused on analyzing the levels of bioactive compounds in different plant parts, including the shoot, root, and pod, to understand the influence of Si supplementation on their biosynthesis. Metabolomic analysis of pea samples was conducted using a targeted HPLC/MS approach, enabling the identification of 15 metabolites comprising 9 flavonoids and 6 phenolic acids. Among the detected compounds, flavonoids, such as flavon and quercetin, along with phenolic acids, including chlorogenic acid and salicylic acid, were found in significant quantities. The study compared Si supplementation at concentrations of 1 and 2 mM, as well as Cd stress conditions, to evaluate their effects on the metabolomic profile. Additionally, the study explored the extraction efficiency of three different methods: accelerated solvent extraction (ASE), supercritical fluid extraction (SFE), and maceration (MAC). The results revealed that SFE was the most efficient method for extracting polyphenolic compounds from the pea samples. Moreover, the study investigated the stability of polyphenolic compounds under different pH conditions, ranging from 4.0 to 6.0, providing insights into the influence of the pH on the extraction and stability of bioactive compounds.
Collapse
Affiliation(s)
- Justyna Walczak-Skierska
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Aneta Krakowska-Sieprawska
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Fernanda Monedeiro
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Michał Złoch
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Paweł Pomastowski
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Mateusz Cichorek
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Jacek Olszewski
- Experimental
Education Unit, University of Warmia and
Mazury in Olsztyn, Plac Łódzki 1, Olsztyn 10-721, Poland
| | - Katarzyna Głowacka
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Gaja Gużewska
- Department
of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, Torun 87-100, Poland
| | - Małgorzata Szultka-Młyńska
- Department
of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, Torun 87-100, Poland
| |
Collapse
|
42
|
Kou B, Yu T, Tang J, Zhu X, Yuan Y, Tan W. Kitchen compost-derived humic acid application promotes ryegrass growth and enhances the accumulation of Cd: An analysis of the soil microenvironment and rhizosphere functional microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170879. [PMID: 38354798 DOI: 10.1016/j.scitotenv.2024.170879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Phytoremediation is an environmentally friendly and safe approach for remediating environments contaminated with heavy metals. Humic acid (HA) has high biological activity and can effectively complex with heavy metals. However, whether HA affects available Cd storage and the Cd accumulation ability of plants by altering the soil microenvironment and the distribution of special functional microorganisms remains unclear. Here, we investigated the effects of applying kitchen compost-derived HA on the growth and Cd enrichment capacity of ryegrass (Lolium perenne L.). Additionally, the key role of HA in regulating the structure of rhizosphere soil bacterial communities was identified. HA promoted the growth of perennial ryegrass and biomass accumulation and enhanced the Cd enrichment capacity of ryegrass. The positive effect of HA on the soil microenvironment and rhizosphere bacterial community was the main factor promoting the growth of ryegrass, and this was confirmed by the significant positive correlation between the ryegrass growth index and the content of SOM, AP, AK, and AN, as well as the abundance of rhizosphere growth-promoting bacteria such as Pseudomonas, Steroidobacter, Phenylobacterium, and Caulobacter. HA passivated Cd and inhibited the translocation capacity of ryegrass. The auxiliary effect of resistant bacteria on plants drove the absorption of Cd by ryegrass. In addition, HA enhanced the remediation of Cd-contaminated soil by ryegrass under different Cd levels, which indicated that kitchen compost-derived HA could be widely used for the phytoremediation of Cd-contaminated soil. Generally, our findings will aid the development of improved approaches for the use of kitchen compost-derived HA for the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Bing Kou
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Jun Tang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Ying Yuan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wenbing Tan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
43
|
Huang F, Li Z, Yang X, Liu H, Chen L, Chang N, He H, Zeng Y, Qiu T, Fang L. Silicon reduces toxicity and accumulation of arsenic and cadmium in cereal crops: A meta-analysis, mechanism, and perspective study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170663. [PMID: 38311087 DOI: 10.1016/j.scitotenv.2024.170663] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/20/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Arsenic (As) and cadmium (Cd) are two toxic metal(loid)s that pose significant risks to food security and human health. Silicon (Si) has attracted substantial attention because of its positive effects on alleviating the toxicity and accumulation of As and Cd in crops. However, our current knowledge of the comprehensive effects and detailed mechanisms of Si amendment is limited. In this study, a global meta-analysis of 248 original articles with over 7000 paired observations was conducted to evaluate Si-mediated effects on growth and As and Cd accumulation in rice (Oryza sativa L.), wheat (Triticum aestivum L.), and maize (Zea mays L.). Si application increases the biomass of these crops under As and/or Cd contamination. Si amendment also decreased shoot As and Cd accumulation by 24.1 % (20.6 to 27.5 %) and 31.9 % (29.0 to 31.9 %), respectively. Furthermore, the Si amendment reduced the human health risks posed by As (2.6 %) and Cd (12.9 %) in crop grains. Si-induced inhibition of Cd accumulation is associated with decreased Cd bioavailability and the downregulation of gene expression. The regulation of gene expression by Si addition was the driving factor limiting shoot As accumulation. Overall, our analysis demonstrated that Si amendment has great potential to reduce the toxicity and accumulation of As and/or Cd in crops, providing a scientific basis for promoting food safety globally.
Collapse
Affiliation(s)
- Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zimin Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Hongjie Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
44
|
Ghouri F, Sarwar S, Sun L, Riaz M, Haider FU, Ashraf H, Lai M, Imran M, Liu J, Ali S, Liu X, Shahid MQ. Silicon and iron nanoparticles protect rice against lead (Pb) stress by improving oxidative tolerance and minimizing Pb uptake. Sci Rep 2024; 14:5986. [PMID: 38472251 PMCID: PMC10933412 DOI: 10.1038/s41598-024-55810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Lead (Pb) is toxic to the development and growth of rice plants. Nanoparticles (NPs) have been considered one of the efficient remediation techniques to mitigate Pb stress in plants. Therefore, a study was carried out to examine the underlying mechanism of iron (Fe) and silicon (Si) nanoparticle-induced Pb toxicity alleviation in rice seedlings. Si-NPs (2.5 mM) and Fe-NPs (25 mg L-1) were applied alone and in combination to rice plants grown without (control; no Pb stress) and with (100 µM) Pb concentration. Our results revealed that Pb toxicity severely affected all rice growth-related traits, such as inhibited root fresh weight (42%), shoot length (24%), and chlorophyll b contents (26%). Moreover, a substantial amount of Pb was translocated to the above-ground parts of plants, which caused a disturbance in the antioxidative enzyme activities. However, the synergetic use of Fe- and Si-NPs reduced the Pb contents in the upper part of plants by 27%. It reduced the lethal impact of Pb on roots and shoots growth parameters by increasing shoot length (40%), shoot fresh weight (48%), and roots fresh weight (31%). Both Si and Fe-NPs synergistic application significantly elevated superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione (GSH) concentrations by 114%, 186%, 135%, and 151%, respectively, compared to plants subjected to Pb stress alone. The toxicity of Pb resulted in several cellular abnormalities and altered the expression levels of metal transporters and antioxidant genes. We conclude that the synergistic application of Si and Fe-NPs can be deemed favorable, environmentally promising, and cost-effective for reducing Pb deadliness in rice crops and reclaiming Pb-polluted soils.
Collapse
Affiliation(s)
- Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Samreen Sarwar
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Riaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jingwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
45
|
Gaddam SR, Sharma A, Trivedi PK. miR397b-LAC2 module regulates cadmium stress response by coordinating root lignification and copper homeostasis in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133100. [PMID: 38042003 DOI: 10.1016/j.jhazmat.2023.133100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Non-essential heavy metal cadmium (Cd) is toxic to plants and animals. Cadmium affects plant photosynthesis, respiration, and causes water imbalance and may lead to plant death. Cadmium induces toxicity by interfering with the essential metal copper (Cu) homeostasis, which affects plant nutrition. Though root lignin biosynthesis is positively regulated by Cd stress, the underlying mechanisms promoting lignin accumulation and controlling Cd-induced Cu limitation responses are unclear. Here, we elucidated the role of Cu-responsive microRNA (miR397b) in Arabidopsis thaliana plants for Cd stress by targeting the LACCASE2 (LAC2) gene. This study demonstrated the fundamental mechanism of miR397b-mediated Cd stress response by enhancing the lignin content in root tissues. We developed miR397b over-expressing plants, which showed considerable Cd stress tolerance. Plants with knockdown function of LAC2 also showed significant tolerance to Cd stress. miR397b overexpressing and lac2 mutant plants showed root reduction, higher biomass and chlorophyll content, and significantly lower Reactive Oxygen Species (ROS). This study demonstrated the miR397b-mediated Cd stress response in Arabidopsis by enhancing the lignin content in root tissues. We conclude that modulation in miR397b can be potentially used for improving plants for Cd tolerance and Cu homeostasis.
Collapse
Affiliation(s)
- Subhash Reddy Gaddam
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; CSIR, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India
| | - Ashish Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India.
| |
Collapse
|
46
|
Ali W, Mao K, Shafeeque M, Aslam MW, Li W. Effects of selenium on biogeochemical cycles of cadmium in rice from flooded paddy soil systems in the alluvial Indus Valley of Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168896. [PMID: 38042182 DOI: 10.1016/j.scitotenv.2023.168896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
This study delves into the pollution status, assesses the effects of Se on Cd biogeochemical pathways, and explores their interactions in nutrient-rich paddy soil-rice ecosystems through 500 soil-rice samples in Pakistan. The results showed that 99.6 % and 12.8 % of soil samples exceeded the World Health Organization (WHO) allowable Se and Cd levels (7 and 0.35 mg/kg). In comparison, 23 % and 6 % of the grain samples exceeded WHO's allowable Se and Cd levels (0.3 and 0.2 mg/kg), respectively. Geographically Weighted Regression (GWR) model results further revealed spatial nonstationarity, confirming diverse associations between dependent variables (Se and Cd in rice grain) and independent variables from paddy soil and plant tissues (root and shoot), such as Soil Organic Matter (SOM), pH, Se, and Cd concentrations. High Se:Cd molar ratios (>1) and a negative correlation (r = -0.16, p < 0.01) between the Cd translocation factor (Cd in rice grain/Cd in root) and Se in roots suggest that increased root Se levels inhibit the transfer of Cd from roots to grains. The inverse correlation between Se and Cd in paddy grains was further characterized as Se deficiency, no risk, high Cd risk, Se risk, Cd risk, and Se-Cd co-exposure risk. There was no apparent risk for human co-consumption in 42.6 % of grain samples with moderate Se and low Cd. The remaining categories indicate differing degrees of risk. In the study area, 31 % and 20 % of grain samples with low Se and Cd indicate Se deficiency and risk, respectively. High Se and low Cd levels in rice samples suggest a potential hazard for severe Se exposure due to frequent rice consumption. This study not only systematically evaluates the pollution status of paddy-soil systems in Pakistan but also provides a reference to thoroughly contemplate the development of a scientific approach for evaluating human risks and the potential dangers associated with paddy soils and rice, specifically in regions characterized by low Se and low Cd concentrations, as well as those with moderate Se and high Cd concentrations. SYNOPSIS: This study is significant for understanding the effects of Se on Cd geochemical cycles and their interactions in paddy soil systems in Pakistan.
Collapse
Affiliation(s)
- Waqar Ali
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | | | - Muhammad Wajahat Aslam
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Li
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science & Technology, Chongqing University, Chongqing 400045, China; Chongqing Field Observation Station for River and Lake Ecosystems, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
47
|
Soni S, Jha AB, Dubey RS, Sharma P. Mitigating cadmium accumulation and toxicity in plants: The promising role of nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168826. [PMID: 38042185 DOI: 10.1016/j.scitotenv.2023.168826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/23/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal that adversely affects humans, animals, and plants, even at low concentrations. It is widely distributed and has both natural and anthropogenic sources. Plants readily absorb and distribute Cd in different parts. It may subsequently enter the food chain posing a risk to human health as it is known to be carcinogenic. Cd has a long half-life, resulting in its persistence in plants and animals. Cd toxicity disrupts crucial physiological and biochemical processes in plants, including reactive oxygen species (ROS) homeostasis, enzyme activities, photosynthesis, and nutrient uptake, leading to stunted growth and reduced biomass. Although plants have developed defense mechanisms to mitigate these damages, they are often inadequate to combat high Cd concentrations, resulting in yield losses. Nanoparticles (NPs), typically smaller than 100 nm, possess unique properties such as a large surface area and small size, making them highly reactive compared to their larger counterparts. NPs from diverse sources have shown potential for various agricultural applications, including their use as fertilizers, pesticides, and stress alleviators. Recently, NPs have emerged as a promising strategy to mitigate heavy metal stress, including Cd toxicity. They offer advantages, such as efficient absorption by crop plants, the reduction of Cd uptake, and the enhancement of mineral nutrition, antioxidant defenses, photosynthetic parameters, anatomical structure, and agronomic traits in Cd-stressed plants. The complex interaction of NPs with calcium ions (Ca2+), intracellular ROS, nitric oxide (NO), and phytohormones likely plays a significant role in alleviating Cd stress. This review aims to explore the positive impacts of diverse NPs in reducing Cd accumulation and toxicity while investigating their underlying mechanisms of action. Additionally, it discusses research gaps, recent advancements, and future prospects of utilizing NPs to alleviate Cd-induced stress, ultimately promoting improved plant growth and yield.
Collapse
Affiliation(s)
- Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Ambuj Bhushan Jha
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector-29, Gandhinagar 382030, Gujarat, India
| | - Pallavi Sharma
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
48
|
Zhang J, Shoaib N, Lin K, Mughal N, Wu X, Sun X, Zhang L, Pan K. Boosting cadmium tolerance in Phoebe zhennan: the synergistic effects of exogenous nitrogen and phosphorus treatments promoting antioxidant defense and root development. FRONTIERS IN PLANT SCIENCE 2024; 15:1340287. [PMID: 38362448 PMCID: PMC10867629 DOI: 10.3389/fpls.2024.1340287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
Plants possess intricate defense mechanisms to resist cadmium (Cd) stress, including strategies like metal exclusion, chelation, osmoprotection, and the regulation of photosynthesis, with antioxidants playing a pivotal role. The application of nitrogen (N) and phosphorus (P) fertilizers are reported to bolster these defenses against Cd stress. Several studies investigated the effects of N or P on Cd stress in non-woody plants and crops. However, the relationship between N, P application, and Cd stress resistance in valuable timber trees remains largely unexplored. This study delves into the Cd tolerance mechanisms of Phoebe zhennan, a forest tree species, under various treatments: Cd exposure alone, combined Cd stress with either N or P and Cd stress with both N and P application. Our results revealed that the P application enhanced root biomass and facilitated the translocation of essential nutrients like K, Mn, and Zn. Conversely, N application, especially under Cd stress, significantly inhibited plant growth, with marked reductions in leaf and stem biomass. Additionally, while the application of P resulted in reduced antioxidant enzyme levels, the combined application of N and P markedly amplified the activities of peroxidase by 266.36%, superoxide dismutase by 168.44%, and ascorbate peroxidase by 26.58% under Cd stress. This indicates an amplified capacity of the plant to neutralize reactive oxygen species. The combined treatment also led to effective regulation of nutrient and Cd distribution in roots, shoots, and leaves, illustrating a synergistic effect in mitigating toxic impact of N. The study also highlights a significant alteration in photosynthetic activities under different treatments. The N addition generally reduced chlorophyll content by over 50%, while P and NP treatments enhanced transpiration rates by up to 58.02%. Our findings suggest P and NP fertilization can manage Cd toxicity by facilitating antioxidant production, osmoprotectant, and root development, thus enhancing Cd tolerance processes, and providing novel strategies for managing Cd contamination in the environment.
Collapse
Affiliation(s)
- Juan Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Noman Shoaib
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kexin Lin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nishbah Mughal
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaogang Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lin Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kaiwen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Wu L, Wang R, Li M, Du Z, Jin Y, Shi Y, Jiang W, Chen J, Jiao Y, Hu B, Huang J. Functional analysis of a rice 12-oxo-phytodienoic acid reductase gene (OsOPR1) involved in Cd stress tolerance. Mol Biol Rep 2024; 51:198. [PMID: 38270739 DOI: 10.1007/s11033-023-09159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND The accumulation of cadmium (Cd) in plants may compromise the growth and development of plants, thereby endangering human health through the food chain. Understanding how plants respond to Cd is important for breeding low-Cd rice cultivars. METHODS In this study, the functions of 12-oxo-phytodienoic acid reductase 1 (OsOPR1) were predicted through bioinformatics analysis. The expression levels of OsOPR1 under Cd stress were analyzed by using qRT-PCR. Then, the role that OsOPR1 gene plays in Cd tolerance was studied in Cd-sensitive yeast strain (ycf1), and the Cd concentration of transgenic yeast was analyzed using inductively coupled plasma mass spectrometry (ICP-MS). RESULTS Bioinformatics analysis revealed that OsOPR1 was a protein with an Old yellow enzyme-like FMN (OYE_like_FMN) domain, and the cis-acting elements which regulate hormone synthesis or responding abiotic stress were abundant in the promoter region, which suggested that OsOPR1 may exhibit multifaceted biological functions. The expression pattern analysis showed that the expression levels of OsOPR1 were induced by Cd stress both in roots and roots of rice plants. However, the induced expression of OsOPR1 by Cd was more significant in the roots compared to that in roots. In addition, the overexpression of OsOPR1 improved the Cd tolerance of yeast cells by affecting the expression of antioxidant enzyme related genes and reducing Cd content in yeast cells. CONCLUSION Overall, these results suggested that OsOPR1 is a Cd-responsive gene and may has a potential for breeding low-Cd or Cd-tolerant rice cultivars and for phytoremediation of Cd-contaminated in farmland.
Collapse
Affiliation(s)
- Longying Wu
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Ruolin Wang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Mingyu Li
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Zhiye Du
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Yufan Jin
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Yang Shi
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Wenjun Jiang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Sichuan, 611130, China.
| | - Yuan Jiao
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Binhua Hu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Sichuan, 610066, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China.
| |
Collapse
|
50
|
Hussain M, Kaousar R, Ali S, Shan C, Wang G, Wang S, Lan Y. Tryptophan Seed Treatment Improves Morphological, Biochemical, and Photosynthetic Attributes of the Sunflower under Cadmium Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:237. [PMID: 38256789 PMCID: PMC10819145 DOI: 10.3390/plants13020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Tryptophan, as a signal molecule, mediates many biotic and environmental stress-induced physiological responses in plants. Therefore, an experiment was conducted to evaluate the effect of tryptophan seed treatment in response to cadmium stress (0, 0.15, and 0.25 mM) in sunflower plants. Different growth and biochemical parameters were determined to compare the efficiency of the treatment agent. The results showed that cadmium stress reduced the growth attributes, including root and shoot length, dry and fresh weight, rate of seed germination, and the number of leaves. Cadmium stress also significantly reduced the contents of chlorophyll a, b, and total chlorophyll, carotenoid contents, phenolics, flavonoids, anthocyanin, and ascorbic acid. Whereas cadmium stress (0.15 and 0.25 mM) enhanced the concentrations of malondialdehyde (45.24% and 53.06%), hydrogen peroxide (-11.07% and 5.86%), and soluble sugars (28.05% and 50.34%) compared to the control. Tryptophan treatment decreased the effect of Cd stress by minimizing lipid peroxidation. Seed treatment with tryptophan under cadmium stress improved the root (19.40%) and shoot length (38.14%), root (41.90%) and shoot fresh weight (13.58%), seed germination ability (13.79%), average leaf area (24.07%), chlorophyll b (51.35%), total chlorophyll (20.04%), carotenoids (43.37%), total phenolic (1.47%), flavonoids (19.02%), anthocyanin (26.57%), ascorbic acid (4%), and total soluble proteins (12.32%) compared with control conditions. Overall, the tryptophan seed treatment showed positive effects on sunflower plants' growth and stress tolerance, highlighting its potential as a sustainable approach to improve crop performance.
Collapse
Affiliation(s)
- Mujahid Hussain
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255022, China; (M.H.)
| | - Rehana Kaousar
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255022, China; (M.H.)
| | - Sharafat Ali
- Department of Botany, College of Life Sciences, Government College University, Allama Iqbal Road, Faisalabad 38000, Pakistan
| | - Changfeng Shan
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255022, China; (M.H.)
| | - Guobin Wang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255022, China; (M.H.)
| | - Shizhou Wang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255022, China; (M.H.)
| | - Yubin Lan
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255022, China; (M.H.)
- National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology (NPAAC), Ministry of Science and Technology, College of Electronics Engineering, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|